МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

(1031)	зитинский тос	ударственный уни	вереитет//		
	Архитектурно-	строительный инст	гитут		
	(наименовани	е института полностью	0)		
Кафедра «Промышл	енное, граждан	ское строительство	о и городское хоз	яйство»	
		нование кафедры)	T		
	00 02 01	1. C			
(MOT II NO		1 Строительство авления подготовки, ст	TOTAL TA HOOTH)		
(код и на	именование напра	авления подготовки, ст	іециальности)		
профиль «	Промышленно	ое и гражданское с	гроительство»		
	(направленность	(профиль)/специализа	ция)		
F	БАКАЛАВ	РСКАЯ РАБО	OTA		
на тему «г. Северо-	Курильск. (<u>Спортивно-оздој</u>	овительный	комплекс (
бассейном»					
Студент(ка)	Н.Г. Р	огожкин			
_	(И.О. Фамилия)		(личная по	дпись)	
Руководитель	В.Н. Шишканова				
V arrayun mayun r	*	(И.О. Фамилия)		дпись)	
Консультанты		ретьякова	(7,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		одионов (С. 1916) — Одионов	(личная по,	цпись)	
		Фамилия)	(личная по	лпись)	
	*	однебесов	(
		. Фамилия)	(личная по	дпись)	
		Чупайда			
		О. Фамилия)	(личная под	дпись)	
		ишканова			
		Фамилия)	(личная под	дпись)	
		Корчагин фамилия)			
Нормоконтроль	(И.О. Фамилия) И.Ю. Амирджанова				
Пормоконтроль		Фамилия)			
	`	,			
Допустить к защите					
7	ПГСГУ		п.с. т		
Заведующий кафедрой	пт Сиг Х	к.т.н., доцент.	<u>, Д.С. ТОШИН</u>		
		(упеная степень эран	ие ИО Фамилия) (лицца	а полимет)	

20____Γ.

АННОТАЦИЯ

Данная квалификационная работа представлена по теме «г. Северо-Курильск. Спортивно-оздоровительный комплекс с бассейном».

Выпускная квалификационная работа состоит из графической части в количестве 9 листов формата A1 и пояснительной записки — 81 лист формата A4.

В пояснительной записке отражены:

- архитектурно-планировочное и конструктивное решения здания;
- расчет металлической фермы;
- технологическая карта на монтаж кровельных сэндвич-панелей;
- организация строительства: календарный план, строительный генеральный план.
- экономика строительства, где определена сметная стоимость строительства;
- идентификация опасных и вредных факторов производства строительных работ, вопросы по обеспечению электробезопасности и пожарной безопасности на рабочем месте.

В графической части выполнены такие чертежи, как: схема планировочной организации земельного участка; объемно-планировочное, архитектурное, конструктивное решения здания; технология и организация строительства.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 АРХИТЕКТУРНО-ПЛАНИРОВОЧНЫЙ РАЗДЕЛ	6
1.1 Схема планировочной организации земельного участка	6
1.2 Объемно-планировочное решение	6
1.3 Конструктивное решение	7
1.4 Архитектурные решения	13
1.5 Инженерные системы	13
2 РАСЧЕТНО-КОНСТРУКТИВНЫЙ РАЗДЕЛ	15
2.1 Расчет металлической фермы Ф-1	15
3 ТЕХНОЛОГИЯ СТРОИТЕЛЬСТВА	36
3.1 Область применения	36
3.2 Организация и технология выполнения работ	36
3.3 Требования к качеству и приемке работ	38
3.4 Выбор машин, механизмов, оборудования	38
3.5 Калькуляция затрат труда и машинного времени	41
3.6 График производства работ	42
3.7 Безопасность труда, пожарная безопасность и экологическая	
безопасность	42
3.8 Технико-экономические показатели	47
4 ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА	48
4.1 Краткая характеристика объекта	48
4.2 Определение объемов работ	48
4.3 Определение потребности в строительных конструкциях, изде	елиях и
материалах	48
4.4 Подбор машин и механизмов для производства работ	48
4.5 Определение трудоемкости и машиноемкости работ	50
4.6 Разработка календарного плана производства работ	50

4.7 Определение потребности в складах, временных зданиях и сооруже	ниях
	51
4.8 Проектирование строительного генерального плана	55
4.9 Мероприятия по охране труда и технике безопасности на строитель	ной
площадке	55
4.10 Технико-экономические показатели	56
5 ЭКОНОМИКА СТРОИТЕЛЬСТВА	58
5.1 Сметная стоимость строительства объекта	58
5.2 Технико-экономические показатели проекта	60
6 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА	62
6.1 Конструктивно-технологическая и организационно-техническая	
характеристика рассматриваемого технического объекта «Спортивно-	
оздоровительного корпуса с бассейном» в г. Северо-Курильск	62
6.2 Идентификация профессиональных рисков	62
6.3 Методы и средства снижения профессиональных рисков	63
6.4 Обеспечение пожарной безопасности технического объекта	63
6.5 Обеспечение экологической безопасности технического объекта	64
ЗАКЛЮЧЕНИЕ	65
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	66
ПРИЛОЖЕНИЕ А	70
ПРИЛОЖЕНИЕ Б	72
ПРИЛОЖЕНИЕ В	78
ПРИЛОЖЕНИЕ Г	81

ВВЕДЕНИЕ

Проектирование спортивно-оздоровительного корпуса с бассейном в г. Северо-Курильск базируется на основании государственной программы Сахалинской области на 2015-2020 годы.

Спортивно-оздоровительный комплекс относится к массовому типу спортивно-оздоровительных учреждений местного уровня, обеспечивающих повседневное обслуживание населения в пределах пешеходной доступности. Здание может быть использовано, как для организованной учебной и внеаудиторной работы с учащимися, так и для самостоятельных занятий, различных социально-возрастных групп населения, в том числе МГН определенных категорий.

Функциональное назначение объекта — организация и проведение оздоровительных и подготовительных занятий по плаванию и другим водным видам спорта, организация и проведение оздоровительных и подготовительных занятий по силовой подготовке.

1 АРХИТЕКТУРНО-ПЛАНИРОВОЧНЫЙ РАЗДЕЛ

1.1 Схема планировочной организации земельного участка

Участок проектирования расположен по адресу: г. Северо-Курильск, ул. Сахалинская. Перепады отметок от 20,00 м до 18,50 м. Система высот - Балтийская. Система координат - городская. Опасных физико-геологических процессов на участке и прилегающей к нему территории не имеется.

Благоустройство территории включает в себя устройство площадок с асфальтовым покрытием, мероприятия по озеленению территории:

- автомобильные проезды шириной 6,0 м запроектированы с учетом обслуживания здания и обеспечения беспрепятственного проезда пожарной техники; радиус закругления составляет 5,0 м;
- гостевая площадка для легкового транспорта с размерами 28,4х5,0 м;
- тротуары для передвижения пешеходов шириной 2,0 м;
- для обеспечения требований санитарно-гигиенических норм и защиты почвы от ветровой и водной эрозии, на свободной от застройки и твердого покрытия территории предусматривается устройство газона и посадка лиственных деревьев.

1.2 Объемно-планировочное решение

Спортивно-оздоровительный комплекс с бассейном представляет собой двухэтажный объем с общими осевыми размерами 34,0x30,5 м. Высота здания в коньке +11,526 м. Второй этаж здания выступает над главным входом и опирается на колонны, тем самым выделяет входную зону и образует навес над крыльцом.

На первом этаже расположены входная группа с вестибюлем, помещение охраны, касса, гардероб верхней одежды, кабинет врача, детская игровая зона и зона ожидания, кабинеты, технические помещения, санузлы в том числе и для МГН. На втором этаже размещен плавательный бассейн габаритами 25х8,5 м с минимальной высотой до низа выступающих конструкций 4,8 м, а также раздевальные с душевыми и санузлами,

тренерская, лаборатория, зал подготовительных занятий и тренажерный зал с инвентарными.

Для подъема на второй этаж предусмотрены две лестничные клетки, симметрично размещенные на продольных фасадах, и пассажирский лифт, который позволяет использовать его для перемещения МГН в колясках. Для обеспечения беспрепятственного доступа МГН в здание со стороны главного входа предусмотрен пандус с поворотной площадкой и ограждением.

Проектируемое здание относится:

- по степени огнестойкости II;
- по классу конструктивной пожарной опасности C0;
- по классу функциональной пожарной опасности Ф 3.6.

За относительную отметку 0,000 проектируемого здания принята отметка чистого пола административной части первого этажа, что составляет 21,400 в Балтийской системе высот.

1.3 Конструктивное решение

Конструктивная схема — рамно-связевой каркас: металлические колонны, металлические вертикальные связи по колоннам, монолитные железобетонные перекрытия по металлическим балкам и стальная скатная кровля. Сетка основных колонн 6,0 х 6,0 м.

Фундаменты — на искусственном основании. Под основные колонны каркаса предусматриваются столбчатые, под стены лестничных клеток и лифтовой шахты, подпорные стены — ленточные, под бассейн — плитный фундамент. Материал фундаментов: бетон БСТ В30 W6 F150. Отдельные фундаменты объединены связевыми железобетонными балками.

По периметру здания и в месте перепада отметки первого этажа по оси Д предусмотрены подпорные стены толщиной 300 мм из бетона БСТ В30 W6 F150.

Основные колонны каркаса – металлические двутавровые по ГОСТ P57837-2017 из стали марки C345 по ГОСТ 27772-2015, объединенные

системой вертикальных связей из гнутых сварных прокатных профилей по ГОСТ 30245-2003 стали марки С255 по ГОСТ 27772-2015.

Несущие конструкции покрытия:

- в осях А-Д/1-6 выполняется по металлическим балкам;
- в осях Д-Ж/1-6 покрытие выполняется по металлическим фермам.

Балки и прогоны запроектированы из горячекатаного двутавра по ГОСТ Р57837-2017 из стали марки С255. Пояса, раскосы и стойки ферм запроектированы из труб по ГОСТ 30245-2003 из стали марки С255, С345 по ГОСТ 27772-2015.

В уровне покрытия формируется жесткий диск кровли. В уровне балок и ферм покрытия запроектирована система горизонтальных и вертикальных связей из труб по ГОСТ 30245-2003 стали марки С255.

Таблица 1.1 – Спецификация элементов каркаса и покрытия

	тионици 1:1 Спецификации элементов каркаса и покрытия						
Поз.	Обозначение	Наименование	Кол.	Масса ед., кг	Примеч.		
К1	ГОСТ Р57837-2017	I40K1	22	1680			
К2	ГОСТ Р57837-2017	I40K1	29	1690			
Б1	ГОСТ Р57837-2017	150Ш1	37	675			
Б2	ГОСТ Р57837-2017	I40Ш1	75	567			
Б3	ГОСТ Р57837-2017	I40Б1	26	284			
Б4	ГОСТ Р57837-2017	І30Б1	4	194			
Б5	ГОСТ Р57837-2017	I40Ш1	30	570			
П1	ГОСТ Р57837-2017	ІЗОШ1	105	321,6			
Ф1	Индивид. изгот.	Ферма стропильная Ф1	4	1300			

Наружные стены и стены лестничных к леток и лифтового узла — самонесущие железобетонные монолитные толщиной 160 мм из бетона БСТ ВЗО F100. Стены устанавливаются на консоли плит перекрытия и выполняются поэтажной разрезкой с креплением к колоннам на гибких связях. Наружные стены утепляются минераловатными плитами «Венти Баттс» фирмы Rockwool толщиной 200 и 130 мм с последующей облицовкой композитными панелями «Sibolux PФ» по навесной системе.

Перекрытие – железобетонное монолитное толщиной 160 мм из бетона БСТ В30 F100 по металлическим балкам.

Конструкция под бассейн является встроенной в основной каркас и представляется собой плиту толщиной 200 мм по балкам сечением 450x600(h) с переменной отметкой верха по сетке колонн сечением 500x500 мм с шагом 3,5x4,3...5,4 м.

Покрытие – наборные сэндвич-панели по металлическим прогонам.

Перегородки – гипсокартонные по металлическим профилям, в мокрых помещениях с обшивкой из влагостойких гипсоволокнистых листов.

Окна – из ПВХ профилей с двухкамерным стеклопакетом по ГОСТ 30674-99.

Двери внутренние – деревянные по ГОСТ 475-2016, противопожарные. Двери наружные – из поливинилхлоридных профилей по ГОСТ 30970-2014.

Таблица 1.2 – Спецификация элементов заполнения проемов

Поз.	Обозначение	Наименование	Кол.
1	2	3	4
		Окна ОП В2	
OK1	ГОСТ 30674-99	1500x1500	12
ОК2	ГОСТ 30674-99	1500x500	10
ОК3	ГОСТ 30674-99	1500x1200	2
ОК4	ГОСТ 30674-99	1500x1130	1
OK5	ГОСТ 30674-99	3900x1000	15
ОК6	ГОСТ 30674-99	1000x1000	8
ОК7	ГОСТ 30674-99	1200x1200	5
OK8	ГОСТ 30674-99	800x800	6
ОК9	ГОСТ 30674-99	2800x800	6
OK10	ГОСТ 30674-99	1400x1300	2
ОК11	ГОСТ 30674-99	1100x1200	6
OK12	ГОСТ 30674-99	1400x500	5
ОК13	ГОСТ 30674-99	1350x1800	1
ОК14	ГОСТ 30674-99	3150x1800	2
ОК15	ГОСТ 30674-99	1350x1000	2
ОК16	ГОСТ 30674-99	2400x2200	2
ОК17	ГОСТ 30674-99	1900x2000	1
ОК18	ГОСТ 30674-99	1500x900	2
		Двери	
1	ГОСТ 30970-2014	ДПН О Дп Р 2100х1500	4
2	ГОСТ 30970-2014	ДПН О Дп Пр Р 2100х1500	1
3	ГОСТ 30970-2014	ДПН О Дп Л Р 2100х1500	1

Продолжение таблицы 1.2

1	2	3	4
4	ГОСТ 475-2016	ДМ 2Рп 21х13 Г ПрБ Мд1	6
5	ГОСТ 31173-2016	ДСВ Дп Пр БргП2лсМ3 21х13	3
6	ГОСТ 31173-2016	ДСН Г Оп Пр Р 21х10	2
7	ГОСТ 475-2016	ДВ 2Р 21х13 Г ПрБ Мд1	2
8	ГОСТ 31173-2016	ДСВ Г Оп Пр Р 21х10	1
9	ГОСТ 475-2016	ДМ 1Рл 21х10 Г ПрБ Мд1	18
10	ГОСТ 31173-2016	ДСВ Г Оп Л Р 21х10	2
11	ГОСТ 475-2016	ДМ 1P 21x8 Г ПрБ Мд1	2
12	ГОСТ 475-2016	ДМ 1Рл 21х8 Г ПрБ Мд1	1
13	ГОСТ 475-2016	ДМ 1Р 21х10 Г ПрБ Мд1	7
14	ГОСТ 475-2016	ДМ 1Рл 21х10 Г ПрБ Мд1	2
15	ГОСТ 30970-2014	ДПВ Оп Пр Р 21х10	4
16	ГОСТ 30970-2014	ДПВ Оп Л Р 21х10	4
17	ГОСТ 30970-2014	ДПВ Дп Пр Р 21х15	2

Кровля – скатная бесчердачная. Водоотвод наружный организованный.

Полы — с покрытием из керамогранитной плитки (в вестибюле, коридорах, лестничных клетках, лифтовых холлах); коммерческого линолеума (в кабинетах и игровой зоне); керамической плитки с нескользящей поверхностью (в гардеробных, санузлах, зале бассейна, кабинете врача, лаборатории); спортивный паркет.

Внутренняя отделка:

- в помещениях бассейна, санузлах, душевых, КУИ, лаборатории, медкабинете в качестве отделки потолков предусмотрена подвесная потолочная система из реечных алюминиевых панелей "Luxalon"; в качестве отделки стен керамическая плитка на высоту стены;
- в вестибюле, коридорах, лестничных клетках, лифтовых холлах, игровой зоне потолок с подвесной системой "Армстронг" огнестойкий; отделка стен панели УНИПРОК-НГ;
- в кабинетах, гардеробах, зале для подготовительный занятий,
 тренажерном зале потолок с подвесной системой "Армстронг"; отделка
 стен панели УНИПРОК;
- в технических помещениях, электрощитовой, венткамере в качестве отделки потолков и стен предусмотрена шпаклевка с окраской акриловой краской.

1.3.1 Теплотехнический расчет ограждающих конструкций

Данные для расчета:

- 1) Место строительства г. Северо-Курильск.
- 2) Относительная влажность воздуха внутри помещения 67%.
- 3) $t_{\rm B} = +27^{\circ}{\rm C}$ температура воздуха внутри помещения бассейна, $t_{\rm B} = +18^{\circ}{\rm C}$ температура воздуха внутри административно-бытовых помещениях.
- 4) Зона влажности влажная (приложение В [4]).
- 5) Условия эксплуатации Б (таблица 2 [4]).
- 6) кол-во дней со среднесуточной температурой наружного воздуха $Z_{\text{от}} = 297$ (таблица 3.1*[5]).
- 7) средняя температура периода с температурой наружного воздуха $t_{or} = -2.3$ °C (таблица 3.1*[5]).
- 8) $\alpha_{\rm B}$ = 8,7 (таблица 4 [4]).
- 9) α_н= 23 (таблица 6 [4]).

Расчет наружной стены:

Таблица 1.3 – Характеристики слоев наружной стены

Have savanavya Mazanya ya	Толщина	Плотность,	Коэфф. Теплопр. λ,
Наименование материала	δ, м	кг/м ³	BT/(M·°C)
Монолитный железобетон	0,16	2500	2,04
Мин.плита «Rockwool Венти	V	90	0.04
Батте»	X	90	0,04
Воздушная прослойка	-	-	-
Композитные панели «Sibalux»	-	-	-

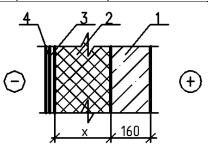


Рисунок 1.1 – Слои наружной стены

Определяем толщину утеплителя для помещений бассейна.

Градусо-сутки отопительного периода определяем по формуле 5.2 [4]:

$$\Gamma CO\Pi = \{ -t_{om} \} Z_{om} = \{ 7 + 0.2 \} 297 = 8078 \, {}^{0}C \cdot cym / cod.$$

$$R_0^{mp} = a \cdot \Gamma OC\Pi + b = 0,0003 \cdot 8078 + 1,2 = 3,62 \,\text{m}^2 \cdot {}^{0}C / Bm \tag{1.1}$$

$$R_0^{mp} = \frac{1}{\alpha_n} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3} + \frac{1}{\alpha_s} = \frac{1}{23} + \frac{0.16}{2.04} + \frac{\delta_2}{0.04} + \frac{1}{8.7} = 3.62$$
 (1.2)

Находим толщину утеплителя: $\delta_2 = 0,175$ м.

Принимаем толщину утеплителя 200мм.

$$R_{0} = \frac{1}{\alpha_{H}} + \frac{\delta_{1}}{\lambda_{1}} + \frac{\delta_{2}}{\lambda_{2}} + \frac{1}{\alpha_{g}} = \frac{1}{23} + \frac{0.16}{2.04} + \frac{0.2}{0.04} + \frac{1}{8.7} = 3.9 M^{20} C / Bm.$$

$$R_{0} > R_{0}^{mp}$$

$$(1.3)$$

По формуле (1.3): 3,9 м^2 . $^{\circ}\text{C/Bt} > 3,62 \text{ м}^2$. $^{\circ}\text{C/Bt} - \text{условие выполнено}$.

Определяем толщину утеплителя для административно-бытовых помещений.

Градусо-сутки отопительного периода определяем по формуле 5.2 [4]:

$$\Gamma CO\Pi = \{ (s - t_{om}) \} Z_{om} = \{ (8 + 0.2) \} 297 = 5405, 4^{\circ}C \cdot cym/cod .$$

$$R_0^{mp} = a \cdot \Gamma OC\Pi + b = 0,0003 \cdot 5405, 4 + 1, 2 = 2,82 \text{ m}^2 \cdot {}^{\circ}C/Bm$$

$$R_0^{mp} = \frac{1}{\alpha_u} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3} + \frac{1}{\alpha_g} = \frac{1}{23} + \frac{0,16}{2,04} + \frac{\delta_2}{0,04} + \frac{1}{8,7} = 2,82$$

Находим толщину утеплителя: $\delta_2 = 0.195$ м.

Принимаем толщину утеплителя 200мм.

$$R_0 = \frac{1}{\alpha_n} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{1}{\alpha_s} = \frac{1}{23} + \frac{0.16}{2.04} + \frac{0.2}{0.04} + \frac{1}{8.7} = 3.9 M^{20} C / Bm.$$

По формуле (1.3): 3,9 $\text{м}^2 \cdot ^{\circ}\text{C/Bt} > 2,82 \text{ M}^2 \cdot ^{\circ}\text{C/Bt} - \text{условие выполнено}.$

Расчет покрытия:

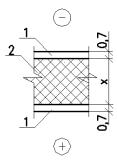


Рисунок 1.2 – Конструкция покрытия: 1 – профилированный лист, 2 – минераловатный утеплитель

Для помещений бассейна требуемое сопротивление теплопредаче:

$$R_0^{mp} = a \cdot \Gamma O C \Pi + b = 0,0004 \cdot 8087 + 1,6 = 4,8 M^2 \cdot {}^{0}C / Bm$$
.

Для административно-бытовых помещений:

$$R_0^{mp} = a \cdot \Gamma OC\Pi + b = 0,0004 \cdot 5405, 4 + 1,6 = 3,76 \,\text{m}^2 \cdot {}^{0}C / Bm$$

В качестве покрытия применяем сэндвич-панели с заполнением минераловатной плитой толщиной 250 мм с приведенным сопротивлением теплопередаче согласно паспортных данных $R_0 = 5.3 M^2 \cdot {}^0 C / Bm$.

1.4 Архитектурные решения

Архитектурная выразительность и лаконичность внешнего облика здания достигается свободным решением оконных проемов, и введением в цветовую композицию здания элементов динамики. Цветовым решением предусмотрен основной светло-серый тон, а в качестве цветового акцента главного фасада - динамичное деление на желтые, зеленые и синие цвета.

1.5 Инженерные системы

Система водоснабжения и водоотведения:

- водопровод хозяйственно-питьевой и противопожарный предусмотрен для обеспечения водой хозяйственно-питьевых и противопожарных нужд здания, источником являются существующие кольцевые сети хозяйственно-питьевого, противопожарного водопровода;
- водопровод горячей воды предусмотрен для подачи воды на хозяйственнопитьевые нужды здания;
- водопровод на технологические нужды;
- канализация бытовая предусмотрена для отвода стоков от сантехнических приборов в наружные сети бытовой канализации;
- канализация от технологических нужд бассейна.

Система теплоснабжения — закрытая по зависимой схеме присоединения к тепловым сетям.

Вентиляция – приточно-вытяжная механическая.

На подключение к сетям электроснабжения источником питания принята точка присоединения: КТП 6/0,4 в объеме не более 150 кВт по III

категории надежности электроснабжения. Для подключения распределительных щитов предусмотрен главный распределительный щит на 250 A в помещении электрощитовой.

2 РАСЧЕТНО-КОНСТРУКТИВНЫЙ РАЗДЕЛ

2.1 Расчет металлической фермы Ф-1

2.1.1 Расчетная схема рамы

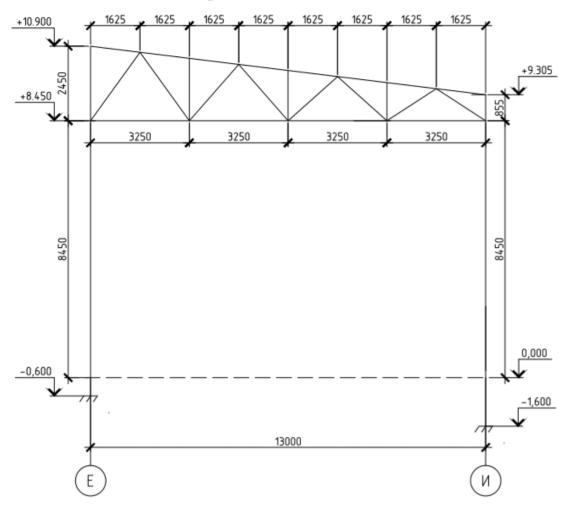


Рисунок 2.1 – Расчетная схема рамы

2.1.2 Постоянные нагрузки

Нагрузка от покрытия:

Таблица 2.1 — Нагрузка на 1 м^2 покрытия

1 3			
	Нормативная	Коэффициент	Расчетная
Вид нагрузки	нагрузка (g^{H}) ,	надежности по	нагрузка (g^p) ,
	T/M^2	нагрузке (γ_f)	T/M^2
1	2	3	4
Стальной профилированный настил HC44-1000-0,7	0,01	1,05	0,011
Минераловатный утеплитель $(t=250\text{мм}, \rho=0,12\text{т/m}^3)$	0,038	1,2	0,046
Стальной профилированный настил HC44-1000-0,7	0,01	1,05	0,011

Продолжение таблицы 2.1

1	2	3	4
Стальные прогоны двутавр 30Ш1	0,04	1,05	0,042
Связи покрытия	0,01	1,05	0,011
ИТОГО:	0,108		0,121

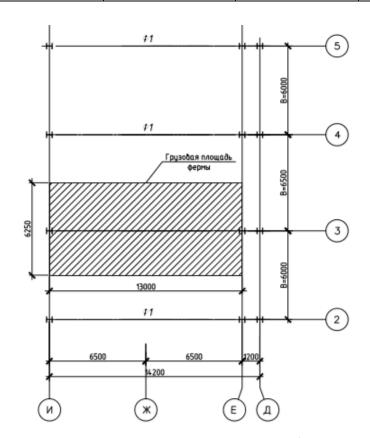


Рисунок 2.2 – Грузовая площадь фермы

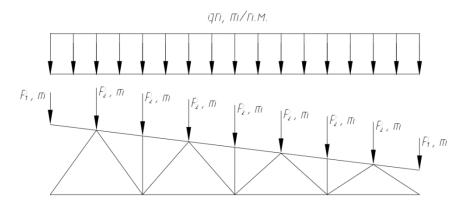


Рисунок 2.3 – Схема приложения нагрузки от веса покрытия

Погонная расчетная нагрузка на единицу длины фермы:

$$q_n = g^p \cdot B = 0.121 \cdot 6.25 = 0.76 \ m/M$$
 (2.1)

где B – шаг ферм, B=6,25м.

Сосредоточенная нагрузка на крайние узлы фермы от веса покрытия:

$$P_1 = q_n \cdot a_1 = 0.76 \cdot 1.625 = 2.47 \text{ T/M}$$
 (2.2)

Сосредоточенная нагрузка на средние узлы фермы от веса покрытия:

$$P_2 = q_n \cdot a_2 = 0.76 \cdot 3.25 = 2.47 \text{ T}$$
 (2.3)

2.1.3 Временные нагрузки

Нормативная снеговая нагрузка:

$$S_0 = c_e \cdot c_t \cdot \mu \cdot S_g = 0.85 \cdot 1 \cdot 1 \cdot 0.41 = 0.349 \, m/\, M^2$$
 (2.4)

где S_g — «нормативное значение веса снегового покрова на 1 м² горизонтальной поверхности земли для VIII снегового района» [13], S_g =4к Π a=0,41т/м² ([13], таблица 10.1);

 c_e — «коэффициент, учитывающий снос снега с покрытий зданий под действием ветра или иных факторов2 [13], c_e =0,85 ([13], π .10.7);

 c_t - термические коэффициент, c_t =1;

 μ — коэффициент перехода от веса снегового покрова земли к снеговой нагрузке на покрытие, принимаемый в соответствии с 10.4 [13], μ = 1.

Расчетная снеговая нагрузка:

$$S_p = S_0 \cdot \gamma_f = 0.349 \cdot 1.4 = 0.489 \, m/\, M^2$$
 (2.5)

где γ_f – коэффициент надежности для снеговой нагрузки, γ_f =1,4 ([13], π .10.12).

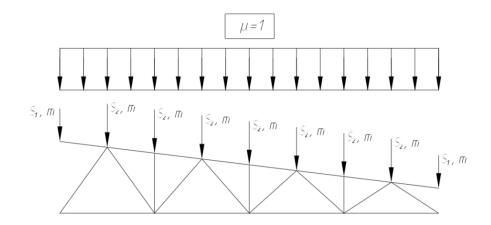


Рисунок 2.4 – Схема приложения нагрузки от веса покрытия Погонная расчетная нагрузка на единицу длины фермы:

$$S_P = S_D \cdot B = 0.489 \cdot 6.25 = 3.06 \ m / M$$
 (2.6)

Сосредоточенная нагрузка на крайние узлы фермы от снеговой нагрузки:

$$S_1 = s_p \cdot a_1 = 3.06 \cdot 1.625 = 4.98 \text{ T}$$
 (2.7)

Сосредоточенная нагрузка на средние узлы фермы от снеговой нагрузки:

$$S_2 = S_p \cdot a_2 = 3,06 \cdot 3,25 = 9,95 \text{ T}$$
 (2.8)

Ветровая нагрузка:

Нормативное значение средней составляющей ветровой нагрузки w_m на высоте z над поверхностью земли определяется по формуле:

$$W_m = W_0 kc \tag{2.9}$$

где w_0 – «нормативное значение ветрового давления для VII ветрового района» [13], w_0 =0,85кПа=0,087 т/м² ([13], таблица 11.1);

k – коэффициент, учитывающий изменение ветрового давления по высоте, принимаем для местности типа A ([13], таблица 11.2);

с – аэродинамический коэффициент ([13], таблица В.2);

 w_p – расчетное значение ветрового давления.

Погонная расчетная линейная нагрузка, передаваемая на колонну по высоте:

$$q^{p} = w^{p} \cdot B \tag{2.10}$$

Таблица 2.2 Расчет ветровой нагрузки

отметка	$w_{0, T/M}^2$	k	С	$\frac{w_m}{T/M^2}$	$\gamma_{ m f}$	w^p T/M^2	q^p $_{ m T/M}$
	Наветренная сторона						
+5,000		0,75		0,052		0,073	0,457
+8,450	0,087	0,908	0,8	0,063	1,4	0,088	0,552
+9,305		0,965		0,067		0,094	0,588

Ветровое давление передаются на раму в виде сосредоточенной силы W, прикладываемой в уровне низа фермы:

Ветровое давление с наветренной стороны:

$$W = q^{p} \cdot h_{\phi} = 0.588 \cdot 0.855 = 0.503 T$$
 (2.11)

где h_{ϕ} – высота фермы с наветренной стороны, h_{ϕ} =0,855м.

2.1.4 Расчет сечений фермы в ПК ЛИРА-САПР 2015

Статический расчет и расчет рамы произведен в ПК ЛИРА-САПР 2015. Для описания модели рассчитываемого объекта используются: для колонн конечный элемент типа 2 (КЭ плоской рамы), для ферм конечный элемент типа 1 (КЭ плоской фермы) из библиотеки конечных элементов.

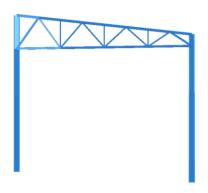


Рисунок 2.5 – Расчетная схема (объемный вид) Заданные жесткости в расчетной схеме смотри рисунок 2.6.

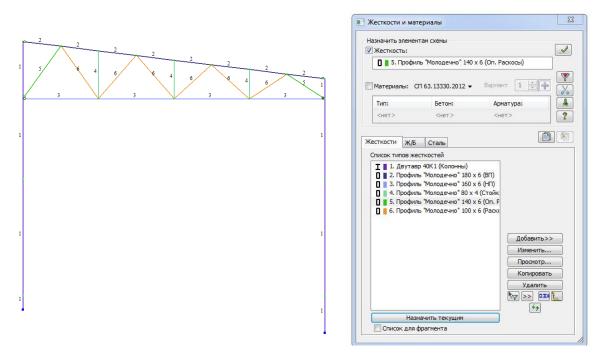


Рисунок 2.6 – Назначение жесткостей

Ниже представлены нагрузки в загружениях 1...4. Нагрузки соответствуют значениям, определенным в главе «Сбор нагрузок». Собственный вес конструкций определяется автоматически, в зависимости от принятых жесткостей (с коэффициентом надежности по нагрузке γ_f =1,05).

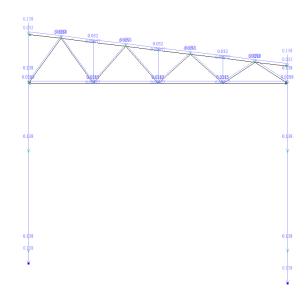


Рисунок 2.7 – Загружение 1. Нагрузка от собственного веса

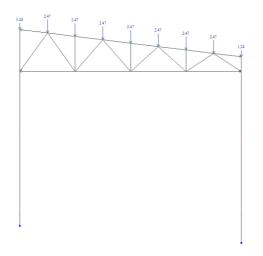


Рисунок 2.8 – Загружение 2. Нагрузка от веса покрытия

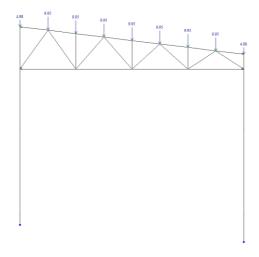


Рисунок 2.9 – Загружение 3. Снеговая нагрузка

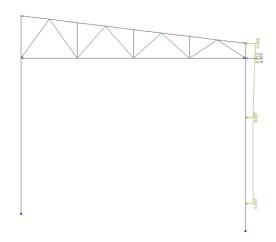


Рисунок 2.10 – Загружение 4. Ветровая нагрузка

Расчетные усилия в сечениях получены от комбинации загружений (PCH1):

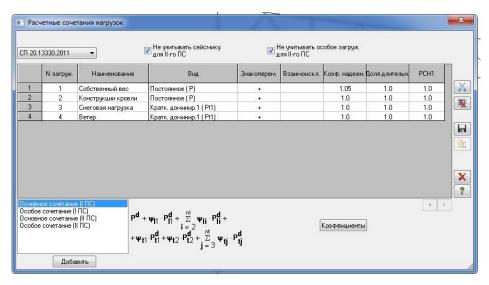


Рисунок 2.11 – Таблица комбинаций расчетных сочетаний нагрузок

Ниже представлены усилия, возникающие в стержнях от действующих нагрузок, и результаты подбора сечений фермы.

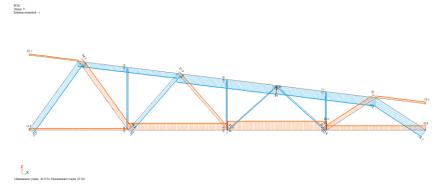


Рисунок 2.12 – Эпюра N, кН

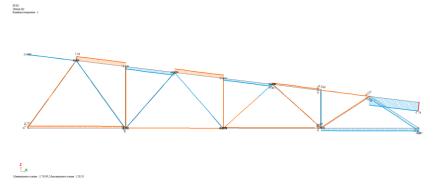


Рисунок 2.13 – Эпюра Qz, кН

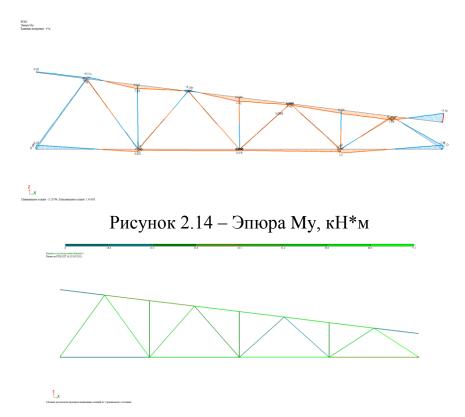


Рисунок 2.15 – Мозаика результатов проверки подобранных сечений по 1 предельному состоянию

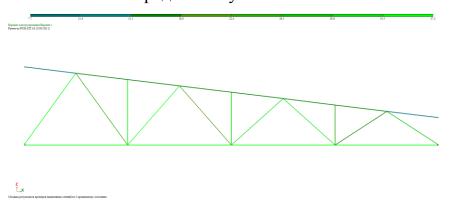


Рисунок 2.16 – Мозаика результатов проверки подобранных сечений по 2 предельному состоянию

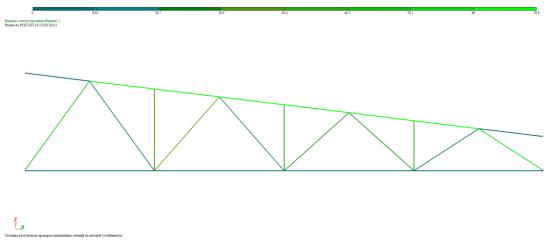


Рисунок 2.17 — Мозаика результатов проверки подобранных сечений по местной устойчивости

Усилия и результаты подбора сечений фермы представлены в табличном виде в соответствии с нумерацией на схеме:

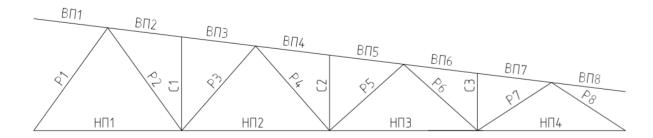


Рисунок 2.18 – Геометрическая схема фермы

Результаты подбора сечений элементов фермы представлены в таблице 2.3.

2.1.3 Конструирование узлов фермы

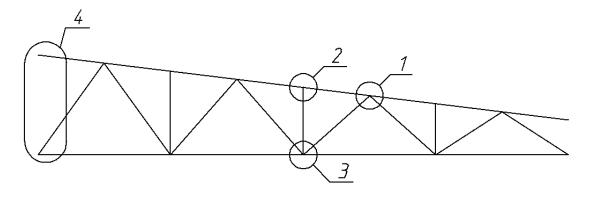


Рисунок 2.19 — Схема расположения узлов к расчету и конструированию узлов фермы

Таблица 2.3 – Результаты подбора сечений элементов фермы

Таблица подбора сечений стержней ферм									Сталь ($C345: R_y = 3$	5,21 т/см ²	
жня	ени		Сечение по	Площадь	Расчетная длина	Радиус инерции	Гибк	сость				эние 2
Наименован ие стержня	Обозначени е	Расчетн. усилия, т	ТУ 36- 2287-80	cm ²	l _х =l _у , см	$i_x = i_y$, cm	$\lambda_{\mathrm{x}} = \lambda_{\mathrm{y}}$	$\lambda_{i\check{o}}$	φ	$m_{ m np}$	γ_c	Напряжение , т/см²
	ВП4	-83,72										
Верхний	ВП5	-84,01	□180x6	40,83	163	7.06	23,1	120	0,975		0,9	2,345
пояс	ВП6	- 79,20		40,63	103	7,06	23,1	120	0,973	_	0,9	2,343
	ВП7	-78,96										
Нижний	НП2	+63,61	□160x6	36,03						1	1	2,315
пояс	НП3	+83,40		30,03	_	-	-	-	-	1	1	2,313
	P1	-79,20	□140x6	31,23	278	5,43	51,2	120	0,887	-	0,9	3,18
Doorsoor	P2	+44,30	□100x6	21,63	-	-	-	-	-	0,8	1	2,57
Раскосы	P7	+37,97	□100x6	21,63	-	-	-	-	-	0,8	1	2,23
	P8	-75,65	□140x6	31,23	194	5,43	35,8	120	0,938	-	0,9	3,20
Стойки	C1	-10,38	□80x4	11,75	205	3,07	66,8	150	0,786	-	0,9	1,25
Стоики	C4	-12,16	□80x4	11,75	125	3,07	40,8	150	0,920	-	0,9	1,25

Расчеты выполняются в соответствии с руководством по проектированию стальных конструкций из гнутосварных замкнутых профилей.

Расчет на продавливание

Расчет производится от каждого элемента решетки отдельно при $b_p/b_n \le 0,9$. Должно выполняется следующее условие согласно [12]:

$$N \leq \frac{\gamma_{c} \cdot \gamma_{p} \cdot \gamma_{n1} \cdot R_{y} \cdot t_{n}^{2} \left(t + c + n_{1} \sqrt{2b_{n}} \cdot \varepsilon \right)}{\left(n_{2} + 1.8 \frac{c}{d} \right) \cdot \varepsilon \cdot \sin \alpha}$$

$$(2.12)$$

где N – «усилие в рассматриваемом элементе решетки» [12], кН;

 γ_c – «коэффициент условий работы» [12] ($\gamma_c = 1, \gamma_c = 0.9$);

 γ_p — коэффициент, зависящий от усилия в рассматриваемом элементе (при растяжении $\gamma_p=1$,2, при сжатии $\gamma_p=1$,0);

 γ_{n1} — коэффициент, зависящий от усилия в поясе («при растяжении в поясе $\gamma_{n1}=1$, при сжатии $\gamma_{n1}=1$,5 — $\frac{F}{AR_y}$ » [12];

F – «усилие в поясе со стороны» [12] рассматриваемого раскоса, т;

A - «площадь пояса, м²» [12];

 $R_y -$ расчетное сопротивление материала, т/см 2 ;

 $t_{\rm n}$ – толщина пояса, см;

d, c – величины, определяемые графическим методом, см;

 ${\bf n}_1,\,{\bf n}_2$ – принимаются в зависимости от вида сопряжения:

- узел первого типа (c/d≤0.25, угол наклона раскосов к поясу α в интервале 40...50°): n₁=1, n₂=0,4;
- узел первого типа (c/d>0.25): n_1 =2, n_2 =1.

Проверка несущей способности вертикальной стенки поясной трубы в месте примыкания сжатого элемента решетки. Проверка производится только при отношении $b_p/b_n>0,85$. Проверочная формула имеет вид:

$$N \le \frac{\mathbf{R}_{y} \cdot \gamma_{c} \cdot t_{n} \cdot 2h_{p}}{\sin^{2} \alpha} \cdot K \cdot m' \tag{2.13}$$

«Расчет на прочность элементов решетки в зоне примыкания к поясу производится по формуле» [12]:

$$N \le \gamma_c \cdot \gamma_p \cdot K \cdot R_y \cdot A_p \cdot m' \tag{2.14}$$

где N — «расчетное усилие в рассматриваемом элементе решетки» [12], т; $A_p-\text{площадь сечения элемента решетки, cm}^2;$

K — «коэффициент, определяемый по рисунку 7, «Руководство по проектированию стальных конструкций из гнутосварных замкнутых профилей», K=1» [12];

ти - коэффициент, принимаемый в зависимости от вида узла:

- для узлов первого типа:

$$m' \le \frac{1}{1 + 0.013 \cdot \frac{b_n}{t_n}} \tag{2.15}$$

– для узлов второго типа:

$$m' \leq \frac{1}{\left(1 + 0.01\left(3 + \frac{5b_p}{b_n} - \frac{0.1h_p}{t_p}\right) \cdot \frac{b_n}{t_n}\right) \cdot \sin \alpha}$$

$$(2.16)$$

Расчет сварных швов

Прочность сварных швов проверяется по формулам:

$$\frac{N \cdot m_{_{3}}}{\beta_{_{f}} \cdot k_{_{f}} \cdot l_{_{w}}} \le R_{_{wf}} \cdot \gamma_{_{wf}} \cdot \frac{\gamma_{_{c}}}{\gamma_{_{n}}} \tag{2.17}$$

$$\frac{N \cdot m_{_{3}}}{\beta_{_{z}} \cdot k_{_{f}} \cdot l_{_{w}}} \le R_{_{wz}} \cdot \gamma_{_{wz}} \cdot \frac{\gamma_{_{c}}}{\gamma_{_{n}}} \tag{2.18}$$

где l_w — длина сварного шва, м. Для узлов первого типа: l_w = 2d + b_p , для узлов второго типа: l_w = 4 h_p ;

 R_{wf}, R_{wz} — расчетные сопротивления угловых швов соответственно по металлу шва т по металлу границы сплавления, МПа;

 m_3 — коэффициент, принимаемый в зависимости от вида узла. Для узлов первого типа: $m_3 = 0.75 + 0.01 b_n/t_n$, для узлов второго типа: $m_3 = 1/m'$.

«Сварка производится полуавтоматом в среде углекислого газа» [12]. По таблицам СП 16.13330.2017 «Стальные конструкции» принимается сварочная проволока Св-08ГА и расчетное сопротивление по металлу шва $R_{wf} = 200 \ \text{МПa} = 2,04 \ \text{т/cm2}$. По таблицам [12] β_f =0.9, β_z =1.05. «Расчетное сопротивление по границе сплавления $R_{wz} = 229.5 \ \text{МПa} = 2,34 \ \text{т/cm2}$. Коэффициенты условий работы сварного соединения принимаются равными $\gamma_{wf} = \gamma_{wz} = 1$ » [12].

2.1.3.1 Узел 1

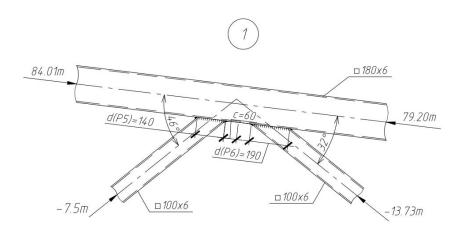


Рисунок 2.20 – Схема к расчету узла 1

Раскос Р5

Расчет на продавливание. Для раскоса P5 отношение c/d=0.43>0.25, поэтому расчет производится как для узлов второго типа:

$$7,5 < \frac{0.9 \cdot 0.8591 \cdot 3.21 \cdot (0.6)^{2} \cdot (14 + 6 + 1\sqrt{2 \cdot 18 \cdot 4})}{\left(0.4 + \frac{1.8 \cdot 6}{14}\right) \cdot 4 \cdot 0.71934} = 8,48T$$

$$\gamma_{m1} = 1,5 - \frac{F}{A \cdot R_{y}} = 1,5 - \frac{84.01}{40.83 \cdot 3.21} = 0.8591 \qquad (2.19)$$

Прочность на продавливание обеспечена.

Для сжатого раскоса отношение $b_p/b_n=0.55<0.85$

«Расчет на прочность элементов в зоне примыкания к поясу» [12].

$$7,5 < 0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot 21,63 \cdot 0,622 = 38,9$$
T

$$m' < \frac{1}{\left(1 + 0.01 \cdot \left(3 + \frac{5 \cdot 10}{18} - \frac{0.1 \cdot 10}{0.6}\right) \cdot \frac{18}{0.6}\right) \cdot 0.7193} = 0.622$$

Прочность раскоса Р5 в зоне примыкания к поясу обеспечена.

Наибольший катет сварного шва 1,2 t_{min} =7,2мм. Наименьший катет по табл. СП 16.13330, 6 мм. Так как $R_{wf}\gamma_{wf}\beta_f < R_{wz}\gamma_{wz}\beta_z$, то расчет производится только по металлу границы сплавления. Длина сварного шва:

$$l_w = 4b_p = 4 \cdot 10 = 40 \,\mathrm{cm} \tag{2.20}$$

Проверка прочности сварных соединений при k_f =0,6 см:

$$\tau = \frac{7.5 \cdot 1,608}{0.9 \cdot 0.6 \cdot 40} = 0.558 < R_{wf} \cdot \gamma_{wf} \cdot \frac{\gamma_c}{\gamma_n} = 1.836 \,\text{T}/cm^2 \quad (2.21)$$

$$m_3 = \frac{1}{\text{m'}} = \frac{1}{0,622} = 1,608$$
 (2.22)

Прочность сварного соединения обеспечена.

Раскос Р6

Для раскоса P6 отношение c/d=0.43>0.25, поэтому расчет производится как для узлов второго типа:

$$13,73 < \frac{0.9 \cdot 1 \cdot 0.896 \cdot 3.21 \cdot (0.6)^{2} \cdot (19 + 6 + 1\sqrt{2 \cdot 18 \cdot 4})}{\left(0.4 + \frac{1.8 \cdot 6}{19}\right) \cdot 4 \cdot 0.529919} = 16,8T$$

$$\gamma_{m1} = 1.5 - \frac{F}{A \cdot R_{y}} = 1.5 - \frac{79.2}{40,83 \cdot 3.21} = 0.896$$

Прочность на продавливание обеспечена.

Отношение $b_p/b_n=0.55<0.85$

Расчет на прочность элементов в зоне примыкания к поясу:

$$13,73 < 0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot 21,63 \cdot 0,622 = 38,9$$
T

$$m' < \frac{1}{\left(1 + 0.01 \cdot \left(3 + \frac{5 \cdot 10}{18} - \frac{0.1 \cdot 10}{0.6}\right) \cdot \frac{18}{0.6}\right) \cdot 0.7193} = 0.622$$

Прочность раскоса Р6 в зоне примыкания к поясу обеспечена.

Наибольший катет сварного шва 1,2 t_{min} =7,2мм. Наименьший катет по табл. СП 16.13330, 6 мм. Так как $R_{wf}\gamma_{wf}\beta_f < R_{wz}\gamma_{wz}\beta_z$, то расчет производится только по металлу границы сплавления. Длина сварного шва:

$$l_w = 4b_p = 4 \cdot 10 = 40 \,\mathrm{cm}$$
.

Проверка прочности сварных соединений при k_f =0,6 см:

$$\tau = \frac{13,73 \cdot 1,608}{0,9 \cdot 0,6 \cdot 40} = 1,022 < R_{wf} \cdot \gamma_{wf} \cdot \frac{\gamma_c}{\gamma_n} = 1,836 \text{ T}/cm^2$$
$$m_3 = \frac{1}{\text{m'}} = \frac{1}{0.622} = 1,608$$

Прочность сварного соединения обеспечена.

2.1.3.2 Узел 2

Стойка С2

Расчет на продавливание. Для раскоса C2 отношение c/d<0.25, поэтому расчет производится как для узлов первого типа:

$$7,5 < \frac{0.9 \cdot 0.8591 \cdot 3.21 \cdot (0.6)^{2} \cdot (8 + 0 + 2\sqrt{2 \cdot 18 \cdot 4})}{\left(1 + \frac{1.8 \cdot 0}{14}\right) \cdot 4 \cdot 0.9925} = 6,27 \text{T}$$

$$\gamma_{m1} = 1,5 - \frac{F}{A \cdot R_{y}} = 1,5 - \frac{79.2}{40.83 \cdot 3.21} = 0.859$$

Условие не выполняется, прочность на продавливание не обеспечена. Требуется установка листовой прокладки толщиной 6мм, тогда расчетная толщина пояса: tn=0,6+0,6=1,2см. Повторная проверка:

$$7,5 < \frac{0.9 \cdot 1 \cdot 0.8591 \cdot 3.21 \cdot (1,2)^{2} \cdot (8+0+2\sqrt{2 \cdot 18 \cdot 4})}{\left(1 + \frac{1.8 \cdot 0}{14}\right) \cdot 4 \cdot 0.9925} = 25,08\text{T}$$

Прочность на продавливание обеспечена.

Отношение b_p/b_n =0.44<0.85

Расчет на прочность элементов в зоне примыкания к поясу.

$$10,79 < 0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot 11,75 \cdot 0,9724 = 38,9$$
T

$$m' < \frac{1}{1 + 0.013 \cdot \frac{18}{1.2}} = 0,9724$$

Прочность стойки С2 в зоне примыкания к поясу обеспечена.

Наибольший катет сварного шва 1,2 t_{min} =4,8мм. Наименьший катет по табл. СП 16.13330, 6 мм. Так как $R_{wf}\gamma_{wf}\beta_f < R_{wz}\gamma_{wz}\beta_z$, то расчет производится только по металлу границы сплавления. Длина сварного шва:

$$l_w = 2d + 2b_p = 2 \cdot 8 + 2 \cdot 8 = 32$$
cm

Проверка прочности сварных соединений при k_f =0,5 см:

$$\tau = \frac{10,79 \cdot 1,03}{0,9 \cdot 0,5 \cdot 32} = 0,771 < R_{wf} \cdot \gamma_{wf} \cdot \frac{\gamma_c}{\gamma_n} = 1,836 \,\text{T}/cm^2$$

$$m_{_3} = \frac{1}{\text{m'}} = \frac{1}{0.9724} = 1,03$$
 Прочность сварного соединения обеспечена.

2.1.3.3 Узел 3

Раскос Р4

Для раскоса P4 отношение c/d=0.19<0.25, поэтому расчет производится как для узлов первого типа:

$$21,36 < \frac{1 \cdot 1,2 \cdot 1 \cdot 3,21 \cdot (0,6)^{2} \cdot (13,5 + 2,5 + 1\sqrt{2 \cdot 16 \cdot 3})}{\left(0,4 + \frac{1,8 \cdot 2,5}{13,25}\right) \cdot 3 \cdot 0,7314} = 6,27 \text{T}$$

Прочность на продавливание обеспечена.

Отношение b_p/b_n =0.625<0.85

Расчет на прочность элементов в зоне примыкания к поясу.

$$21,36 < 1 \cdot 1 \cdot 1 \cdot 3,21 \cdot 21,63 \cdot 0,497 = 34,49$$
T

$$m' < \frac{1}{1 + 0.013 \cdot \frac{16}{0.6}} = 0.497$$

Прочность раскоса Р4 в зоне примыкания к поясу обеспечена.

Наибольший катет сварного шва 1,2 t_{min} =7,2мм. Наименьший катет по табл. СП 16.13330, 6 мм. Так как $R_{wf}\gamma_{wf}\beta_f < R_{wz}\gamma_{wz}\beta_z$, то расчет производится только по металлу границы сплавления. Длина сварного шва:

$$l_w = 2d + 2b_p = 2 \cdot 13,5 + 2 \cdot 10 = 47 \text{ cm}$$

Проверка прочности сварных соединений при k_f =0,6 см:

$$\tau = \frac{21,36 \cdot 2,012}{0,9 \cdot 0,6 \cdot 47} = 0,771 < R_{wf} \cdot \gamma_{wf} \cdot \frac{\gamma_c}{\gamma_n} = 1,836 \,\text{T}/cm^2$$
$$m_3 = \frac{1}{\text{m'}} = \frac{1}{0,497} = 2,012$$

Прочность сварного соединения обеспечена.

Стойка С2

Для стойки C2 отношение c/d<0.25, поэтому расчет производится как для узлов первого типа:

$$10,79 < \frac{0.9 \cdot 1 \cdot 1 \cdot 3,21 \cdot (0.6)^{2} \cdot (8 + 0 + 2\sqrt{2 \cdot 16 \cdot 4})}{\left(0.4 + \frac{1.8 \cdot 0}{8}\right) \cdot 4 \cdot 0,9925} = 6,9T$$

Условие не выполняется, прочность на продавливание не обеспечена. Требуется установка листовой прокладки толщиной 6мм, тогда расчетная толщина пояса: tn=0,6+0,6=1,2см. Повторная проверка:

$$10,79 < \frac{0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot (1,2)^{2} \cdot (8+0+2\sqrt{2 \cdot 16 \cdot 4})}{\left(0,4 + \frac{1,8 \cdot 0}{8}\right) \cdot 4 \cdot 0,9925} = 27,57 \text{T}$$

Прочность на продавливание обеспечена.

Отношение $b_p/b_n=0,5<0,85$.

Расчет на прочность элементов в зоне примыкания к поясу:

$$10,79 < 0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot 11,75 \cdot 0,9933 = 33,72$$
T
$$m' < \frac{1}{1 + 0.013 \cdot \frac{16}{12}} = 0,9933$$

Прочность стойки С2 в зоне примыкания к поясу обеспечена.

Наибольший катет сварного шва 1,2 t_{min} =4,8мм. Наименьший катет по табл. СП 16.13330, 6 мм. Так как $R_{wf}\gamma_{wf}\beta_f < R_{wz}\gamma_{wz}\beta_z$, то расчет производится только по металлу границы сплавления. Длина сварного шва:

$$l_w = 2d + 2b_p = 2 \cdot 8 + 2 \cdot 8 = 32 \text{ cm}$$

Проверка прочности сварных соединений при k_f =0,5 см:

$$\tau = \frac{10,79 \cdot 1,01}{0,9 \cdot 0,5 \cdot 32} = 0,754 < R_{wf} \cdot \gamma_{wf} \cdot \frac{\gamma_c}{\gamma_n} = 1,836 \,\text{T}/cm^2$$
$$m_3 = \frac{1}{\text{m'}} = \frac{1}{0.497} = 1,01$$

Прочность сварного соединения обеспечена.

Раскос Р5

Для раскоса P5 отношение c/d=0.32>0.25, поэтому расчет производится как для узлов второго типа:

$$10,79 < \frac{0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot (0,6)^{2} \cdot (16 + 5 + 2\sqrt{2 \cdot 16 \cdot 3})}{\left(1 + \frac{1,8 \cdot 5}{16}\right) \cdot 3 \cdot 0,629} = 12,29\text{T}$$

$$\gamma_{n1}=1$$
.

Прочность на продавливание обеспечена.

Отношение b_p/b_n =0.625<0.85

Расчет на прочность элементов в зоне примыкания к поясу.

$$7,5 < 0.9 \cdot 1 \cdot 1 \cdot 3.21 \cdot 21.63 \cdot 0.726 = 45.36$$
T

$$m' < \frac{1}{\left(1 + 0.01 \cdot \left(3 + \frac{5 \cdot 10}{16} - \frac{0.1 \cdot 10}{0.6}\right) \cdot \frac{16}{0.6}\right) \cdot 0.6293} = 0.726$$

Прочность раскоса Р5 в зоне примыкания к поясу обеспечена.

Наибольший катет сварного шва 1,2 t_{min} =7,2мм. Наименьший катет по табл. СП 16.13330, 6 мм. Так как $R_{wf}\gamma_{wf}\beta_f$ < $R_{wz}\gamma_{wz}\beta_z$, то расчет производится только по металлу границы сплавления. Длина сварного шва:

$$l_w = 4b_p = 4 \cdot 10 = 40 \text{ cm}$$

Проверка прочности сварных соединений при k_f =0,6 см:

$$\tau = \frac{7.5 \cdot 1.377}{0.9 \cdot 0.6 \cdot 40} = 0.688 < R_{wf} \cdot \gamma_{wf} \cdot \frac{\gamma_c}{\gamma_n} = 1.836 \,\text{T/cm}^2$$
$$m_3 = \frac{1}{\text{m'}} = \frac{1}{0.726} = 1.377$$

Прочность сварного соединения обеспечена.

2.1.3.4 Узел 4 (опорный узел)

Нижний опорный узел проектируется с помощью торцевого фланца и опорной плиты. Торцевой фланец приваривается к опорной плите. Ширина фланца принимается из условия размещения болтов (d_6 =20 мм) для прикрепления узла к колонне. Высота фланца устанавливается при конструировании узла с учетом прикрепления нижнего пояса. Толщина фланца определяется расчетом из условия передачи через торцевое сечение расчетной опорной реакции на нижележащую конструкцию (столик или плиту оголовка колонны) по формуле:

$$t = \frac{R_a}{R_p \cdot b_{db}} \tag{2.23}$$

где R_a – расчетная величина опорной реакции, т;

$$R_a = (q_n + q_{\text{cH}}) \frac{l_{\phi}}{2} = (0.76 + 3.06) \cdot \frac{13}{2} = 24.83$$
 (2.24)

 R_p — расчетное сопротивление торцевому смятию материала фермы $(\gamma_m=1,050,[12],$ таблица 3):

$$R_p = \frac{R_y}{\gamma_m} = \frac{3,21}{1,05} = 3,06$$

Ширина фланца (b_{φ}) — размер в горизонтальной плоскости исходя из размещения болтов и сварных швов. Так как в проектируемой ферме предусмотрено шарнирное опирание ферм на колонны, то болты, прикрепляющие фланец, назначаются конструктивно в количестве 6 штук диаметром 20 мм. Ширина фланца, исходя из условия размещения болтов, принимается равной 320 мм.

$$t \ge \frac{R_a}{R_p \cdot b_\phi} = \frac{24,83}{3,06 \cdot 32} = 0,3cM = 3MM$$

Конструктивно толщина фланца $(t_{\phi\pi})$ принимается не менее 16 мм, поэтому задаемся толщиной фланца $t_{\phi\pi}$ =16 мм.

Расчетная длина сварного шва, прикрепляющий опорный столик к колонне, при катете шва (k^f) равном 0.8 см:

$$l_{w} \ge \frac{1,2 \cdot R_{a} \cdot \gamma_{n}}{\beta_{z} \cdot k_{f} \cdot R_{wz} \cdot \gamma_{wz} \cdot \gamma_{c}} = \frac{1,2 \cdot 24,83 \cdot 0,95}{0,9 \cdot 0,8 \cdot 2,04 \cdot 1 \cdot 1} = 19,3c_{M} = 193 \text{ MM}$$

Раскос Р1

Расчет на продавливание. Для раскоса P1 отношение c/d<0.25, поэтому расчет производится как для узлов первого типа:

$$79,20 < \frac{0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot (0,6)^{2} \cdot (17,5+5+2\sqrt{2 \cdot 16 \cdot 1)}}{\left(1 + \frac{1,8 \cdot 0}{17,5}\right) \cdot 1 \cdot 0,809} = 31,8\tau$$

Условие не выполняется, прочность на продавливание не обеспечена. Требуется установка листовой прокладки толщиной 6мм, тогда расчетная толщина пояса: tn=0,6+0,6=1,2см. Повторная проверка:

$$79,20 < \frac{0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot (1,2)^{2} \cdot (17,5+5+2\sqrt{2 \cdot 16 \cdot 1)}}{\left(1 + \frac{1,8 \cdot 0}{17,5}\right) \cdot 1 \cdot 0,809} = 127,28 \text{T}$$

Прочность на продавливание обеспечена.

Проверка несущей способности вертикальной стенки пояса $(b_p/b_n=0.875>0.85)$

$$79,20 < \frac{3,21 \cdot 1 \cdot 1,2 \cdot 2 \cdot 16}{0,809^{2}} \cdot 1 \cdot 0,9933 = 187,08$$

$$m' = \frac{1}{1 + 0,013 \cdot \frac{16}{1.2}} = 0,9933$$

Прочность вертикальных стенок пояса обеспечена.

Расчет на прочность элементов в зоне примыкания к поясу.

$$79,20 < 0,9 \cdot 1 \cdot 1 \cdot 3,21 \cdot 31,23 \cdot 0,9933 = 85,73$$
T

Прочность раскоса Р1 в зоне примыкания к поясу обеспечена.

Наибольший катет сварного шва 1,2 t_{min} =7,2мм. Наименьший катет по табл. СП 16.13330, 6 мм. Так как $R_{wf}\gamma_{wf}\beta_f < R_{wz}\gamma_{wz}\beta_z$, то расчет производится только по металлу границы сплавления. Длина сварного шва:

$$l_w = 2d + 2b_p = 2 \cdot 17,5 + 2 \cdot 14 = 63$$
cm

Проверка прочности сварных соединений при k_f =0,8 см:

$$\tau = \frac{79.2 \cdot 1.01}{0.9 \cdot 0.8 \cdot 63} = 1.758 < R_{wf} \cdot \gamma_{wf} \cdot \frac{\gamma_c}{\gamma_n} = 1.836 \,\text{T/cm}^2$$
$$m_3 = \frac{1}{\text{m'}} = \frac{1}{0.9933} = 1.01$$

Прочность сварного соединения обеспечена.

Конструктивно назначаем длину сварных швов для прикрепления пояса к фланцу: $l_w = 18 \cdot 4 = 72$ см. Диаметр болтов принимаем таким же, как и для нижнего опорного узла (d=20 мм). Количество болтов также назначается конструктивно, принимаем 4 болта.

Узлы 1-4 – см. графическую часть лист 6.

3 ТЕХНОЛОГИЯ СТРОИТЕЛЬСТВА

3.1 Область применения

В данном разделе разработана технологическая карта на монтаж кровельных сэндвич-панелей здания спортивно-оздоровительного корпуса с бассейном в г. Северо-Курильск.

Данное здание представляет собой двухэтажный объем с общими осевыми размерами 34,0x30,5 м. Высота здания в коньке +11,526 м.

Покрытие – наборные сэндвич-панели по металлическим прогонам.

Работы по данной техкарте ведутся в летний период в две смены.

3.2 Организация и технология выполнения работ

3.2.1 Требования законченности подготовительных работ

Подготовительными работами считаются работы, произведенные перед началом монтажа кровельных сэндвич-панелей. Необходимо получить всю соответствующую документацию. Произвести проверку уклона крыши. А также должны быть проверены опорные конструкции с проектными показателями, горизонтальность прогонов на соответствие проектным данным, работоспособность инструментов для монтажа панелей.

3.2.2 Определение объемов работ, расхода материалов и изделий

Таблица 3.1 – Виды о объемы работ

Наименование работ	Ед. изм.	Общий объем
Монтаж кровельных сэндвич-панелей	100 м ²	11,72

Таблица 3.2 – Потребность в строительных конструкциях, изделиях и материалах

Работы			Изделия, конструкции, материалы			
Наименование работ	Ед. изм.	Кол.	Наименование	Ед. изм.	Вес Ед.	Потребность на весь объем работ
Монтаж кровельных сэндвич-панелей	шт.	31 62 31 31	Кровельные панели «АМКгрупп» ПК250х1000 L=6000мм ПК250х1000 L=9000мм ПК250х1000 L=8400мм ПК250х1000 L=5600мм		1/0,04 1/0,06 1/0,05 1/0,03	31/1,24 62/3,72 31/1,55 31/0,17

3.2.3 Методы и последовательность производства работ по монтажу кровельных сэндвич-панелей

«Подъем сэндвич панелей производится при помощи грузоподъемных механизмов и механических захватов для сэндвич панелей с вакуумными присосками. Поднимают по одной панели, не допуская их складирования на кровле» [15].

«Процесс монтажа начинается с укладки первой панели и крепления ее к прогону вблизи конька. После этого уже вся панель крепится к остальным прогонам. Все последующие панели крепятся к прогонам, но не к коньку» [15].

Порядок укладки кровельных панелей представлен на схеме монтажа в графической части.

«Необходимо перед укладкой панели снять защитную полиэтиленовую пленку с нижней стороны. При стыковании панелей нужно пользоваться двумя захватами, чтобы избежать перекоса панели и деформации замков» [15].

«При укладке крайних элементов кровли, крепление кровельных сэндвич- панелей к прогонам производится путем ввинчивания трех часть (ребро жесткости). Bce саморезов В выступающую панели последующие панели можно закреплять уже двумя саморезами. Bce соединительные элементы стыкуются под углом 90 градусов, перекосы не допускаются» [15].

«После того, как уложены все панели на скаты кровли, производят укладку внутренней коньковой планки, после чего все свободные пространства между панелями заполняются минеральной ватой специальным уплотнителем» [15].

«На прокладки прикрепляется к гребням сэндвич панелей со стороны обоих скатов приконьковая планка, которая соединяется специальным способом. После этого снова укладывается полиуретановая прокладка,

которая имеет клейкую основу. И только теперь можно уложить финишную часть конька – коньковую планку» [15].

3.3 Требования к качеству и приемке работ

Требования к качеству указаны в нормативных документах СП 48.13330.2011 «Организация строительства»; ГОСТ 26433.2-94 «Правила выполнения измерений параметров зданий и сооружений».

«Устройство кровли из сэндвич-панелей выполняется по рабочему проекту для конкретной кровли и по настоящей технологической карте» [15].

«Приёмка смонтированной кровли оформляется актом приемки работ. Качество оценивается степенью соответствия фактических параметров и характеристик кровли проектным, указанным в рабочей документации» [15].

«Кровельные работы выполняют при температуре окружающего воздуха, как правило, до минус 15 °C, несколькими захватками, в две-три смены. В смену могут работать одновременно несколько звеньев кровельщиков, каждая на своей захватке, по 4-5 человек в каждом звене. Панели, поступающие на объект, должны отвечать требованиям соответствующих стандартов, технических условий на их изготовление и рабочих чертежей» [15].

«В процессе подготовки кровельных работ проверяют:

- готовность элементов кровли и мест крепления сэндвич-панелей,
 средств механизации и инструмента к выполнению кровельных работ;
- качество сэндвич-панелей (размеры, отсутствие царапин, вмятин, изгибов, надломов и прочих дефектов)» [15].

Операционный контроль качества представлен в приложении А в таблице А.1

3.4 Выбор машин, механизмов, оборудования

Выбор монтажного крана.

«Высота подъема крюка:

$$H_{\kappa} = h_0 + h_{3} + h_{3n} + h_{cm} + h_{n} \tag{3.1}$$

где h_0 — превышение места установки над уровнем стоянки крана;

 h_3 — высота запас;

 $h_{\scriptscriptstyle 3,1}$ - высота монтируемой конструкции;

 h_{cm} - высота стропов;

 h_n - длина полиспаста» [18].

$$H_{\kappa} = 13.4 + 0.5 + 0.25 + 9.0 + 1.5 = 24.65 \,\text{M}$$

Грузозахватные приспособления представлены в таблице 3.4.

Таблица 3.4 - Грузозахватные приспособления

Наимено-	Macca	Наименование		Характе		Высо-та
вание	эле-	грузозахватного	Эскиз с	Грузо-	Macca,	стро-
монтиру-	мента,	устройства, его	размерами, мм	подъ-	T	повки,
емого	Т	марка,	pushipuhin, mi	ем-		h_{cT} , M
элемента	-	№ чертежа	_	ность, т		11(1, 111
Кровельна я панель	0,19	Строп двухветвевой 2СК-2,0 ГОСТ 25573-82*	I — scalistycas between, 2 — soleniu, 3 — soleniu, 2 — soleniu, 3 — soleniu, 4 — soleniu, 4 — soleniu, 4 — soleniu, 4 — soleniu, 5 — so	2	0,04	9,0

«Оптимальный угол наклона стрелы крана к горизонту:

$$tg\alpha = \frac{2(h_{cm} + h_n)}{b_1 + 2S}$$
 (3.2)

где h_{cm} – смотри формулу 3.2; h_n – смотри формулу 3.2;

 b_1 – длина конструкции, м;

S – расстояние по горизонтали от ранее смонтированного элемента (1,5 м)» [18].

$$tg\alpha = \frac{2 \cdot (9.0 + 1.5)}{9.0 + 2 \cdot 1.5} = 5.25; \alpha = 88^{\circ}$$

«Длина стрелы:

$$L_c = \frac{H_{\kappa} + h_n - h_c}{\sin \alpha} \tag{3.3}$$

где h_c – расстояние от оси крепления стрелы до уровня стоянки крана» [18].

$$L_c = \frac{24,65+2-1,5}{0.982} = 21,6M.$$

«Вылет крюка:

$$L_{\kappa} = L_{c} \cdot \cos \alpha + d \tag{3.4}$$

где d – расстояние от оси вращения крана до оси крепления стрелы.» [18].

$$L_{\kappa} = 21.6 \cdot 0.187 + 1.5 = 6.1 M$$
.

«Угол поворачивания стрелы по горизонтали:

$$tg\varphi = \frac{D}{L_k} \tag{3.5}$$

где D – горизонтальная проекция отрезка от оси пролета здания до центра тяжести монтируемой конструкции» [18].

$$tg\varphi = \frac{9.0}{6.1} = 1.475 \, \varphi = 62^{\circ}$$

«Проекция на горизонтальную плоскость длины стрелы крана в повернутом положении:

$$L_{c,\varphi} = \frac{L_{\kappa}}{\cos \varphi} - d; \gg [18]$$
 (3.6)

$$L_{c,\varphi} = \frac{6,1}{0,562} - 1,5 = 9,35 \,\text{m}.$$

«Угол наклона стрелы крана в повернутом положении:

$$tg\alpha_{\varphi} = \frac{H_{\kappa} - h_{c} + h_{n}}{L_{c,\varphi}}; \gg [18]$$
(3.7)

«Наименьшая длина стрелы крана при монтаже панели:

$$L_{c,\varphi} = \frac{L_{c\varphi}}{\cos \alpha_{\varphi}}; \gg [18]$$
 (3.8)

$$L_{c,\phi} = \frac{9,35}{0,348} = 22,5$$
m.

«Вылет крюка в повернутом положении:

$$L_{\kappa\phi} = L_{c\phi} + d, M, \gg [18]$$
 (3.9)
 $L_{\kappa\phi} = 22.5 + 1.5 = 24 M.$

«Грузоподъемность: $Q_{\kappa} \ge Q_{9} + Q_{pp}$

где $Q_{\mathfrak{p}}$ - масса монтируемого элемента, т; $Q_{\mathfrak{p}}$ - масса грузозахватного устройства, т.» [18].

$$Q_{\kappa} = 1,68 + 2,0 = 3,68m$$
.

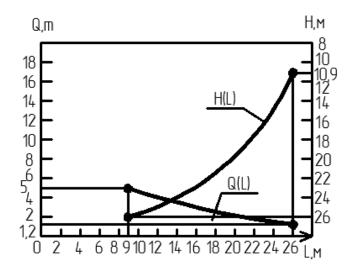


Рисунок 3.1 – Грузозахватные характеристики крана

По расчетам выбираем гусеничный кран ДЭК-251 с длиной стрелы 22,75м с гуськом. Технические параметры монтажного крана ДЭК-251 с гуськом представлены в таблице 3.5. Машины и технологическое оборудование — в таблице 3.6. Потребность в оснастке, инструменте, инвентаре и приспособлениях отображена в приложении А таблице А.2.

Таблица 3.5 – Технические параметры монтажного крана ДЭК-251 с гуськом

Монтируемый элемент	Масса монтажа, Q, т	подт	сота Бема Н, м	Вы стр.	лет L _{к,} м	Длина стр. L _{c,} м	Грузоподт т	ьемность,
Кровельная		Нмах	H _{min}	L _{min}	L _{max}		Q _{max}	Q_{min}
сэндвич-		26,0	12,9	9,0	26,0	22,75	5,0	1,2
панель		20,0	12,9	9,0	20,0		3,0	1,2

Таблица 3.6 – Машины и технологическое оборудование

Наименование	Тип или марка	Параметры	Кол.
Гусеничный кран	ДЭК-251	Скорость передвижен. 1км/ч; Мощ. Двига. 86,0 кВт; Габаритные размеры: 4760x6680x4300мм	1шт.

3.5 Калькуляция затрат труда и машинного времени

«Трудоемкость работ:

$$T_p = \frac{V \cdot H_{sp}}{8.0} \tag{3.10}$$

где V — объем работ; $H_{вp}$ — норма времени (чел.-ч, маш.-ч); 8,0— продолжительность смены, час.» [18].

Таблица 3.8 – Калькуляция затрат труда и машинного времени

			_		Норма времени		Затраты труда	
$N_{\underline{0}}$	Наименование	Обоснование	Ед.	Объем	На ед.	. ИЗМ.	На объем	1 работ
п/п	процессов	Оооснованис	ИЗМ.	работ	челчас	маш	челсм	маш
					4CJ14aC	час	40J1CM	CM
	Монтаж	ГЭСН 09-04-						
1	кровельных	002-03	100 m^2	11,72	45,2	9,74	66,2	14,3
	сэндвич-панелей	002-03						
2	Установка	E5-1-15	100 м	0,31	80,8		3,13	
	коньковой планки	1:3-1-13	100 M	0,31	00,0	-	3,13	_

3.6 График производства работ

«Продолжительность выполнения работы:

$$\Pi = \frac{T_p}{n \cdot \kappa} \tag{3.11}$$

где T_p — трудозатраты (чел.-дн); n — количество рабочих в звене; κ — сменность.» [18].

$$\Pi_1 = \frac{80,5}{5 \cdot 2} = 8 \partial H e \ddot{u}, \quad \Pi_2 = \frac{3,13}{2 \cdot 1} = 1,5 \partial H Я$$

3.7 Безопасность труда, пожарная безопасность и экологическая безопасность

3.7.1 Безопасность труда

«К обслуживанию и эксплуатации средств механизации при производстве кровельных работ допускаются лица, хорошо изучившие правила эксплуатации, специфические требования по технике безопасности и имеющие удостоверение о допуске к работе» [15].

«Типовая технологическая карта является основным технологическим документом на устройство кровли из трёхслойных сэндвич-панелей» [15].

«Типовая технологическая карта содержит мероприятия по выполнению работ с использованием современной технологии, с

применением высокопроизводительных средств механизации, способствующих обеспечению высокого качества, сокращению сроков и стоимости работ» [15].

«Для подачи сэндвич-панелей на кровельное перекрытие в зону монтажа применяют стреловые и башенные краны, строительные подъёмники и другие средства механизации» [15].

«В карте приведены положения по организации и технологии производства работ, изложены требования к качеству работ, технике безопасности и охране труда» [15].

«При разработке карты учтены результаты работ ЦНИИОМТП и других институтов в строительной отрасли, а также производственный опыт московских строительных организаций и фирм» [15].

«Перед началом работы кровельщик должен надеть спецодежду и убедиться в ее исправности. Обувь должна быть не скользящей. Предохранительные приспособления (пояс, веревка, ходовые мостики, переносные стремянки и т.п.) должны быть своевременно испытаны и иметь бирки» [15].

3.7.2 Пожарная безопасность

«В процессе строительства необходимо обеспечить:

- приоритетное выполнение противопожарных мероприятий, предусмотренных проектом, разработанным в соответствии с действующими нормами и утвержденным в установленном порядке;
- соблюдение противопожарных правил, предусмотренных ППБ 01, и охрану от пожара строящегося и вспомогательных объектов, пожаробезопасное проведение строительных и монтажных работ;
 - наличие и исправное содержание средств борьбы с пожаром;
- возможность безопасной эвакуации и спасения людей, а также защиты материальных ценностей при пожаре в строящемся объекте и на строительной площадке» [29].

«Пожарная опасность строительных материалов определяется следующими пожарно-техническими характеристиками: горючестью, воспламеняемостью, распространением пламени по поверхности, дымообразующей способностью и токсичностью» [29].

«Строительные материалы подразделяются на негорючие (НГ) и горючие (Г). Горючие строительные материалы подразделяются на четыре группы:

Г1 (слабогорючие);

Г2 (умеренногорючие);

ГЗ (нормальногорючие);

Г4 (сильногорючие)» [29].

«Горючесть и группы строительных материалов по горючести устанавливают по ГОСТ 30244» [29].

«Для негорючих строительных материалов другие показатели пожарной опасности не определяются и не нормируются» [29].

«Горючие строительные материалы по воспламеняемости подразделяются на три группы:

В1 (трудновоспламеняемые);

В2 (умеренновоспламеняемые);

В3 (легковоспламеняемые)» [29].

«Группы строительных материалов по воспламеняемости устанавливают по ГОСТ 30402)» [29].

«Строительные конструкции характеризуются огнестойкостью и пожарной опасностью» [29].

«Показателем огнестойкости является предел огнестойкости, пожарную опасность конструкции характеризует класс ее пожарной опасности» [29].

«Лестницы и лестничные клетки, предназначенные для эвакуации, подразделяются на лестницы типов» [29]:

«1 - внутренние, размещаемые в лестничных клетках;

- 2 внутренние открытые;
- 3 наружные открытые» [29].

«Эвакуация представляет собой процесс организованного самостоятельного движения людей наружу из помещений, в которых имеется возможность воздействия на них опасных факторов пожара. Эвакуацией также следует считать несамостоятельное перемещение людей, относящихся маломобильным К группам населения, осуществляемое обслуживающим персоналом. Эвакуация осуществляется по путям эвакуации через эвакуационные выходы. [29]

«Пути эвакуации должны быть освещены в соответствии с требованиями СНиП 23-05» [29].

3.7.3 Экологическая безопасность

«При планировке и застройке поселений следует выполнять требования по обеспечению экологической безопасности и охраны здоровья населения, предусматривать мероприятия по охране природы, рациональному использованию и воспроизводству природных ресурсов, оздоровлению окружающей среды. На территории поселений необходимо обеспечивать достижение нормативных требований и стандартов, определяющих качество атмосферного воздуха, воды, почв, а также допустимых уровней шума, вибрации, электромагнитных излучений, радиации и других факторов природного и техногенного происхождения» [29].

«При планировке и застройке городов и их пригородных зон следует обеспечивать соблюдение установленных законом "Об особо охраняемых природных территориях" режимных требований с учетом особенностей следующих категорий особо охраняемых территорий - государственных природных заповедников, в том числе биосферных, национальных парков, государственных природных заказников, памятников природы, парков и ботанических лечебнодендрологических садов, а также оздоровительных местностей и курортов» [29].

«Размещение зданий, сооружений и коммуникаций инженерной и транспортной инфраструктур запрещается:

на землях заповедников, заказников, природных национальных парков, ботанических садов, дендрологических парков и водоохранных полос (зон), если проектируемые объекты не связаны с целевым назначением этих территорий;

на землях зеленых зон городов, городских лесов, если проектируемые объекты не предназначены для целей отдыха, спорта или для обслуживания пригородного лесного хозяйства;

в первом поясе зоны санитарной охраны источников водоснабжения и площадок водопроводных сооружений, если проектируемые объекты не связаны с эксплуатацией источников;

на земельных участках, уровень загрязнения почв и грунтов которых превышает установленные нормы, без выполнения требований, приведенных в 14.15 настоящего свода правил» [29].

«При планировке и застройке поселений необходимо обеспечивать требования к качеству атмосферного воздуха в соответствии с действующими санитарными нормами. При этом в жилых, общественно-деловых и смешанных зонах поселений не допускается превышение установленных санитарными нормами предельно допустимых концентраций (ПДК) загрязнений, а в зонах с особыми требованиями к качеству атмосферного воздуха (территории объектов здравоохранения, детских дошкольных учреждений, школ, объектов рекреации) - 0,8 ПДК» [29].

«При планировке и застройке поселений и пригородных зон необходимо предусматривать организацию водоохранных зон и прибрежных защитных полос на природных водных объектах, размеры и режим использования которых следует принимать в соответствии с Положением о водоохранных зонах и прибрежных защитных полосах водных объектов*, утвержденным постановлением Правительства Российской Федерации» [29].

3.8 Технико-экономические показатели

Общая трудоемкость работ $T_{\text{общ}}$ =69,33 чел.-см. (таблица 3.8).

Затраты машинного времени $T_{\rm M}$ =14,3 маш.-см. (таблица 3.8).

Максимальное количество рабочих R_{max} =10 чел. (смотри лист 7 графическая часть).

Продолжительность работ по графику П=9,5 дней.

Среднее количество рабочих:

$$R_{cp} = \frac{T_{o\delta u_{\parallel}}}{\Pi} \tag{3.12}$$

$$R_{cp} = rac{69,33\, \text{чел.} - \partial ext{н.}}{9,5\partial ext{h.}} = 7\, \text{чел.}$$

Выработка на одного рабочего в смену:

$$B = \frac{\sum V}{T_{o \delta u \mu}} \tag{3.13}$$

$$B = \frac{1172 \text{ м}^2}{69,33 \text{чел.} - \partial H} = 16,9 \text{м}^2 / \text{чел.} - c M.$$

Затраты труда на единицу объема работ:
$$3_{mp} = \frac{1}{B}$$
 (3.14)

$$3_{mp} = \frac{1}{16.9} = 0.06$$
 чел. — см. / м².

4 ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА

4.1 Краткая характеристика объекта

Спортивно-оздоровительный комплекс с бассейном представляет собой двухэтажное здание с общими осевыми размерами 34,0x30,5 м. Высота здания в коньке +11,526 м.

Конструктивная схема — рамно-связевой каркас: металлические колонны, металлические вертикальные связи по колоннам, монолитные железобетонные перекрытия по металлическим балкам и стальная скатная кровля. Сетка основных колонн 6,0 х 6,0 м.

4.2 Определение объемов работ

Объем работ по возведению надземной части здания спортивнооздоровительного комплекса определяем в табличной форме (смотри приложение Б таблицу Б.1).

4.3 Определение потребности в строительных конструкциях, изделиях и материалах

Перечень основных используемых строительных материалов с их характеристиками представлен в приложении Б таблице Б.2.

4.4 Подбор машин и механизмов для производства работ

Грузозахватные приспособления представлены в таблице 4.3.

Подбор стрелового самоходного крана смотри раздел 3 данной пояснительной записки.

Таблица 4.3 – Ведомость грузозахватных приспособлений

Наимено-	Macc	Наименование		Характер	оистика	Высо-
вание монтиру- емого элемента	а эле- мента , т	грузозахватног о устройства, его марка, № чертежа	Эскиз с размерами, мм	Грузо- подъ-ем- ность, т	Macca,	та стро- повки , h _{ст,} м
Балка, прогон, связи, кровельна я панель	0,517	Строп двухветвевой 2СК-2,0 ГОСТ 25573- 82*	Primar 1 — SCHRITTHAN BOTTAN; 2 — SHORE, 2 — SHORE; Vectr. 2	2	0,04	9,0

Продолжение таблицы 4.3

Наимено-	Macc	Наименование		Характер	оистика	Высо-
вание монтиру- емого элемента	а эле- мента , т	грузозахватног о устройства, его марка, № чертежа	Эскиз с размерами, мм	Грузо- подъ-ем- ность, т	Macca,	та стро- повки , h _{ст,} м
Колонна	1,68	Строп облегченный СКК- 2,0/2000 ГОСТ 25573-82 РД 10-33-93*	(I) University	3,2	2,0	2,0
Ферма	1,3	Траверса ПИ Промстальконс трукция, 15946P-11	2000	5	0,75	3,6

Выбор методов производства работ и требуемых для этого механизмов приведён в таблице 4.4.

Таблица 4.4 – Машины, механизмы и оборудование для производства

работ

Наименование	Тип, марка	Параметры	Назначение	Кол.
2	3	4	5	6
Кран на гусеничном ходу	ДЭК-251	Скорость 1км/ч; Двигатель мощностью 85,0 кВт; Габаритные размеры: 4760х6680х4300мм	Монтаж конструкций	1
Сварочный аппарат	MT-1607	Номинальная можность 190 кВт; Габаритные размеры: 1620x640x2230мм	Сварочные работы	1
Автомобиль	Камаз		Перевозка груза	2
Виброрейка	CO-47		Бетонные работы	1
Бетоносмеситель	КамАЗ 58147c	геометрический объем барабана $-6,1\text{m}^3$. Выход готовой смеси не менее $4,5\text{m}^3$		1

4.5 Определение трудоемкости и машиноемкости работ

Для определения затрат труда рабочих и времени эксплуатации машин для проведения строительно-монтажных работ необходимо определить норму времени и задаться продолжительностью смены работ.

Норма времени $H_{вр}$ применяются на основании ЕНИР/ГЭСН на строительные работы. Согласно ТК РФ продолжительность смены не должна превышать 8 часов.

«Трудоемкость работ:

$$T_p = \frac{V \cdot H_{gp}}{8.0} \tag{4.1}$$

где V – объем работ;

Н_{вр}- норма времени (чел.-час, маш.-ч);

8,0- продолжительность смены, ч.» [18].

Ведомость трудоемкости и машиноёмкости работ представлена в приложении Б таблице Б.3.

4.6 Разработка календарного плана производства работ

«Продолжительность выполнения работы определяется по формуле:

$$\Pi = \frac{T_p}{n \cdot \kappa} \,, \tag{4.2}$$

где T_p - трудозатраты (чел-дн);

n - количество рабочих в звене;

к - сменность» [18].

При разработке календарного плана необходимо рассчитать коэффициент равномерности потока по числу рабочих:

$$\alpha = \frac{R_{cp}}{R_{max}} = \frac{64e\pi}{104e\pi} = 0.6,$$
 (4.3)

$$R_{cp} = \frac{\sum T_p}{\Pi \cdot \kappa} = \frac{390,2 \text{чел.} - \partial \text{н.}}{70 \partial \text{н.} \cdot 1} = 6 \text{чел.}, \qquad (4.4)$$

Равномерность потока во времени:

$$\beta = \frac{\Pi_{ycm}}{\Pi} = \frac{22\partial H}{70\partial H} = 0.31 \tag{4.5}$$

4.7 Определение потребности в складах, временных зданиях и сооружениях

4.7.1 Расчет и подбор временных зданий

Согласно графика движения рабочей силы $R_{\rm max} = 10$ чел., в том числе для жилищно-гражданского строительства: $N_{\it paar{o}} = 0.85 \cdot 10 = 9$ чел.,

$$N_{\mathit{HTP}} = 0.11 \cdot 10 = 1$$
 yea., $N_{\mathit{ching}} = 0.032 \cdot 11 = 1$ yea., $N_{\mathit{MOH}} = 0.013 \cdot 11 = 1$ yea.

«Общее количество рабочих в сутки:

$$N_{obs} = N_{pab} + N_{HTP} + N_{c.v.v.} + N_{MOII} \gg [18]$$
 (4.6)

$$N_{oбщ} = 9 + 1 + 1 + 1 = 12$$
чел.

«Расчетное количество работающих на стройплощадке:

$$N_{pacy} = 1.05 \cdot N_{oom} \gg [18]$$
 (4.7)

 $N_{pacy} = 1,05 \cdot 12 = 13$ чел.

Все необходимые временные здания представлены в таблице 4.6.

Таблица 4.6 – Ведомость временных зданий

Наименование	Чис.	Норма	$S_{p,2}$	S_{ϕ} , M^2	АхВ, м	Кол.	Характеристика
зданий	Перс.	площа	\mathbf{M}^2			зданий	
		ДИ					
Проходная	-	-	-	6	2x3	2	-
Прорабская	3	3	9	18	6x3	1	ГОСС-П-3
Прорасская	3	3	,	10	UAS	1	передвижной
Гардеробная	9	0,9	8,1	18	6x3	1	31315
тардерооная	9	0,9	0,1	16	UXJ	1	контейнерный
Душевая	9	0,43	3,86	27	9x3	1	ГОССД-6
душсвая	9	0,43	3,80	21	983	1	контейнер.
Комната для отдыха, обогрева, приема пищи и сушки спецодежды	12	1,0	1,0	21,7	6,5x2,6	1	4078 - 100- 00.000.СБ передвижной
Туалет	12	0,07	0,84	25,0	8,7x2,9	1	ТСП-2-8000000 передвижной
Медпункт	12	0,05	0,6	27,0	9× 3	1	ГОСС-С-20 контейнер.
Мастерская	-	-	-	20,0	5x4	1	передвижной

4.7.2 Расчет площадей складов

«Запасное количество ресурсов:

$$Q_{3an} = \frac{Q_{o\delta u_{\downarrow}}}{T} \cdot n \cdot k_{1} \cdot k_{2}, \qquad (4.8)$$

где $Q_{oбщ}$ - общее количество ресурсов;

т - расчетный период;

n - запас по норме;

 k_1 - коэффициент неравномерности доставки ресурсов на склад, $k_1 = 1,1$ - для автомобильного транспорта;

 k_2 - коэффициент неравномерности расхода ресурсов, k_2 = 1,3 .

Полезная площадь:

$$F_{non} = \frac{Q_{san}}{q}, m^2 \tag{4.9}$$

где q - норма складирования.

Общая площадь:

$$F_{oou} = F_{non} \cdot K_{ucn}, M^2 \tag{4.10}$$

где K_{ucn} - коэффициент использования площади склада» [18].

Ведомость потребности в складах смотри приложение Б таблицу Б.4.

4.7.3 Расчет и проектирование сетей водопотребления и водоотведения

«На основании календарного графика находим период строительства, затрачиваемый на производство работ, требуемый наибольшее количество воды и на основании его рассчитываем максимальный расход воды на производственные нужды» [18]:

$$Q_{np} = \frac{k_{ny} \cdot q_n \cdot \Pi_n \cdot k_{q}}{3600 \cdot t}, \tag{4.11}$$

Максимальный расход воды происходит при устройстве монолитных стен.

$$\Pi_n = \frac{V_{\text{бетона}}}{T} = \frac{254,4}{11,5} = 22,12\,\text{m}^3, \ Q_{np} = \frac{1,2\cdot250\cdot22,12\cdot1,3}{3600\cdot8} = 0,3\pi/c.$$

Определяем необходимое количество воды на разные нужды в смену с наибольшей численностью людей на площадке по формуле:

$$Q_{xos} = \frac{q_y \cdot n_p \cdot k_q}{3600 \cdot t} + \frac{q_o \cdot n_o}{60 \cdot t_o}, \tag{4.12}$$

где q_{v} - удельный расход на хозяйственно-бытовые нужды;

 $k_{_{\it u}}$ - коэффициент часовой неравномерности потребления воды (1,5-3,0); t - число часов в смену, t = 8uac .

$$Q_{xo3} = \frac{25 \cdot 11 \cdot 2}{3600 \cdot 8} + \frac{50 \cdot 9}{60 \cdot 45} = 0.19 \pi/c;$$

В соответствии с таблицей 7.9 [18] $Q_{nox} = 10\pi/c$.

Рассчитываем требуемый максимальный расход воды:

$$Q_{o\delta u} = Q_{np} + Q_{xo3} + Q_{noж}$$

$$Q_{o\delta u} = 0.3 + 0.19 + 10 = 10.49 \pi/c.$$
(4.13)

По требуемому расходу воды рассчитывается диаметр труб временной водопроводной сети:

$$\mathcal{A} = 2 \cdot \sqrt{\frac{1000 \cdot Q_{mp}}{3,14 \cdot v}},\tag{4.14}$$

где *V* - скорость движения воды по трубам, 1,5-2 л/с;

$$\mathcal{A} = 2 \cdot \sqrt{\frac{1000 \cdot 10,49}{3,14 \cdot 1,5}} = 94 \text{MM}.$$

Таким образом, диаметр временной сети хозяйственно-бытовой канализации принимаем равным: $D_{\text{кан}} = 1,4 \cdot D_{\text{вод}} = 1,4 \cdot 100 = 140$ мм.

4.7.4 Расчет и проектирование сетей электроснабжения

На основе календарного графика работ составляем ведомость установленной мощности силовых потребителей (таблица 4.8).

Таблица 4.8 – Ведомость установленной мощности силовых потребителей

Наименование потребителей	Ед.	Установленная мощность, кВт	Кол-во	Общая установленная мощность, кВт
Сварочный аппарат МТ-1607	шт.	190	1	190
Виброрейка СО-47	ШТ.	0,6	1	0,6
				190,6

Используем метод расчета по установленной мощности электроприемников и коэффициенту спроса:

$$P_{p} = \alpha \cdot \left(\frac{\kappa_{1c} \times P_{c}}{\cos \varphi} + \frac{\kappa_{2c} \times P_{T}}{\cos \varphi} + \dots + \kappa_{3c} \times P_{oB} + \kappa_{4c} \times P_{oH} \right), \quad (4.15)$$

$$\Sigma \frac{\kappa_{1c} \cdot P_{c}}{\cos \varphi} = \frac{0.1 \cdot 0.6}{0.4} + \frac{0.35 \cdot 190}{0.4} = 166.4 \kappa B m$$

$$\Sigma \frac{\kappa_{3c} \cdot P_{oB}}{\cos \varphi} = \frac{0.8 \cdot 0.628}{1.0} = 0.502 \kappa B m$$

Таблица 4.9 – Потребная мощность внутреннего освещения

Потребители эл. энергии	Ед. изм.	Удельная мощность, кВт	Норма освещенн ости, лк	Действитель ная площадь	Потребная мощность, кВт
Проходная	100 м2	0,9	75	0,006	0,005
Мастерская	100 м2	1,2	75	0,02	0,02
Контора прораба	100 м2	1,2	75	0,02	0,024
Гардеробная	100 м2	1	50	0,03	0,03
Душевая	100 м2	0,8	75	0,016	0,013
Помещение для приема пищи и обогрева рабочих	100 м2	1	75	0,018	0,018
Медпункт	100 м2	1,2	75	0,027	0,032
Уборная	100 м2	0,8	75	0,045	0,036
Закрытый склад	100 м2	1	75	0,45	0,45
Итого					∑Ров=0,62 8

Таблица 4.10 – Потребная мощность наружного освещения

Потребители эл. энергии	Ед. изм.	Удельная мощность, кВт	Норма освещенн ости, лк	Действитель ная площадь	Потребная мощность, кВт
Открытые склады	1000 m^2	1,0	10	0,196	0,196
Территория строительства в районе производства работ	1000 м ²	0,4	2	1,2	0,48
Проходы и проезды	КМ	0,16	20	0,264	0,042
Итого:					$\sum P_{\text{oH}} = 0,718$

$$\Sigma \frac{\kappa_{_{4c}} \cdot P_{_{on}}}{\cos \varphi} = \frac{1,0 \cdot 0,718}{1,0} = 0,718 \,\kappa Bm$$

Итого потребляемая мощность:

$$P_p = 1.1 \ \ 66.4 + 0 + 0.502 + 0.718 \ \ = 184.4 \ \kappa Bm$$
 (4.16)

Производим перерасчёт мощности (из кВт в кВтА):

$$P = P_{p} \cdot \cos \varphi = 184, 4 \cdot 0, 8 = 147, 5\kappa Bm \tag{4.17}$$

Принимаем трансформатор СКТП-180-10(6)/0,4 мощность 180 кВ·А, размеры габаритные 2,73 х 2 м.

Предусматриваем на строительной площадке прожекторы ПЗС-35. Необходимо рассчитать их количество:

$$N = \frac{P_{yo} \cdot E \cdot S}{P_{yo}} = \frac{0.25 \cdot 2.7190}{1000} = 3.6$$
 (4.18)

Полученное значение округляем в большую сторону и принимаем 4 прожектора марки ПЗС-35 с мощность лампы 1000Вт. при высота установки 15 м.

4.8 Проектирование строительного генерального плана

Строительный генеральный план (СГП) разработан на период возведения надземной части здания спортивно-оздоровительного комплекса с бассейном в городе Северо-Курильске.

Временные здания, проходы и места отдыха работающих располагаются за пределами опасных зон с соблюдением соответствующих санитарных норм и правил.

Строительная площадка обеспечена противопожарным водоснабжением и инвентарем, освещением и средствами сигнализации.

Конструкций монтируются гусеничным краном ДЭК-251 с вылетом стрелы 22,75 м с гуськом. Склады материалов располагаются в области работы крана. На строительном генплане показаны:

- область обслуживания крана $R_{\text{max}} = 24,0 \text{ м}$;
- область перемещения груза $R_{nep} = R_{max} = 24,0 M$;
- опасная область действия крана $R_{on} = 24.0 + 5.0 = 29.0 M$.

4.9 Мероприятия по охране труда и технике безопасности на строительной площадке

«Перед началом выполнения строительно-монтажных работ администрация организации, строящая объект, обязана оформить акт-допуск на производство работ. Наряд-допуск выдается непосредственному

руководителю работ (прорабу, мастеру) лицом, уполномоченным приказом руководителя организации. Перед началом работ руководитель работы или инженер по охране труда обязан ознакомить работников с мероприятиями по безопасности производства работ и оформить инструктаж с записью в наряде-допуске. На территории строительной площадки, на дорогах и в проездах устанавливают указатели проездов И дорожные знаки обозначением допускаемой скорости движения транспорта. Подъездные пути и дороги сооружают до начала основных работ. Все лица, находящиеся на строительной площадке, обязаны носить защитные каски, должны быть обеспечены спецодеждой, спецобувью и др. специальными средствами индивидуальной защиты. Во время разгрузки изделий нельзя находиться на раме автомашины или прицепа, а также в непосредственной близости от разгружаемых конструкций» [18].

«Монтажник при совместной работе со сварщиком должен соблюдать следующие меры безопасности: использовать индивидуальные средства защиты; глаза предохранять защитными очками; следить при резке металла за движением резака, чтобы исключить ожоги; обращать внимание на исправность изоляции проводов, не допускать их переплетения между собой и другими проводами и шлангами. Монтаж и сварка в подвешенном состоянии или неустойчивом положении запрещаются» [18].

«Места прохода людей в пределах опасных зон должны иметь защитные ограждения. Входы в строящиеся здания (сооружения) должны быть защищены сверху сплошным навесом шириной не менее 2 м от стены здания. Угол, образуемый между навесом и вышерасположенной стеной над входом должен быть в пределах 70–75°» [18].

4.10 Технико-экономические показатели

- 1. Общая трудоемкость работ: $T_p = 390,2$ чел. ∂H .
- 2. Общая трудоемкость работы машин: $T_{\text{маш}} = 28,1$ маш. см.
- 3. Общая площадь строительной площадки: $S_{oбщ} = 7190 M^2$.

- 4. Общая площадь застройки: $S_{sacmp} = 1200 m^2$.
- 5. Площадь временных зданий: $S_{\text{spen}} = 171,8 \text{м}^2$.
- 6. Площади складов:
 - открытых: $S_{omkp} = 196,0 M^2$;
 - закрытых: $S_{3akp} = 45,0 M^2$.
- 7. Длина:
 - временных дорог: $L_{sp.\partial op} = 264,0 M$;
 - водопровода: $L_{\omega o} = 75,0 M$;
 - канализации: $L_{\kappa a \mu} = 52,0 M$;
 - электрической линии: $L_{ocsem} = 355,0 M$.
- 8. Число рабочих на стройке:
 - максимальное: $R_{\text{max}} = 10$ чел.;
 - среднее: $R_{cp} = 6$ иел.;
 - минимальное: $R_{\min} = 4$ *чел*..
- 9. Коэффициент неравномерности потока:
 - по числу рабочих: $\alpha = 0.6$;
 - по времени: β=0,31.
- 10. Продолжительность производства работ: $\Pi_{\text{общ}} = 70 \partial \text{ней}$.

5 ЭКОНОМИКА СТРОИТЕЛЬСТВА

5.1 Сметная стоимость строительства объекта

Проектируемый объект - Спортивно-оздоровительный комплекс с бассейном. Двухэтажное здание с общими осевыми размерами 34,0 х 30,5 м. Плавательный бассейн габаритами 25 х 8,5 м. Высота здания — 11,526м. Район строительства — г. Северо-Курильск.

Сметные расчеты составлены на основании сметно-нормативной базы (СНБ-2001) согласно МДС 81-35.2004 «Методика определения стоимости строительной продукции на территории Российской Федерации ».

стоимость объекта строительства выполняется методом укрупненного расчета на основе укрупненных нормативов цены строительства НЦС 81-02-05-2017 «Укрупненные нормативы цены строительства», сборник № 5. Спортивные здания и сооружения. Уровень цен – по состоянию на 01.01.2017 г. для базового района (Московская область).

Пересчет от базового района ведется с учетом коэффициента перехода от цен базового района (Московская область) к уровню цен Сахалинской области по данной категории объекта строительства, который равен Кпер = 1,49. Основание – приложение № 17 к приказу Минстроя России № 506/пр от 28.08.2014 года.

Пересчет уровня цен с 01.01.2017г. в текущие цены ведется с учетом индекса-дефлятора 2017г. в 2019г. $K_{2017 - 2019} = 1,05$ согласно письма министерства экономического развития Сахалинской области «Об индексах-дефляторах на строительство».

Согласно расценке 05-03-001-01 таблицы 05-03-001 «Спортивные комплексы с плавательными бассейнами (без зрительских мест)» по укрупненным нормативам стоимости строительства (НЦС), которые рассчитаны в уровне цен по состоянию на 01.01.2017г. для базового района (Московская область), стоимость строительства объекта-представителя составляет всего 121909,58 тыс. руб.

В том числе:

- стоимость проектно-изыскательских работ 3568,17 тыс. руб.,
- стоимость технологического оборудования 8041,04 тыс. руб.

Стоимость, приведенная на 1 м^2 здания – 53,53 тыс. руб.

Стоимость, приведенная на 1 м^3 здания – 10,27 тыс. руб.

Стоимость возведения фундаментов – 5621,04 тыс. руб.

В расценке 05-03-001-01 предусмотрены стоимости общестроительных конструктивных элементов, инженерных систем и элементов, системы безопасности, технологического оборудования, инженерного оборудования и пуско-наладочных работ.

Строительный объем проектируемого объекта - спортивнооздоровительного комплекса с бассейном в г. Северо-Курильск составляет 11952,46 м³.

Сметная стоимость строительства спортивно-оздоровительного комплекса с бассейном в г. Северо-Курильск с учетом коэффициента перехода к ценам Сахалинской области и индекса-дефлятора составляет:

 $10,27 \times 11952,46 \times 1,49 \times 1,05 = 192045,135$ тыс. руб. в текущих ценах.

В том числе:

- стоимость проектно-изыскательских работ 5703,74 тыс. руб.,
- стоимость технологического оборудования 12667,105 тыс. руб.

Стоимость, приведенная на 1 m^3 здания — 20,436 тыс. руб.

Затраты на временные здания и сооружения по ГСН 81-05-01-2001 «Сборник сметных норм затрат на строительство временных зданий и сооружений», приложение 1, п. 4.2 - 1,8 %.

Резерв средств на непредвиденные работы и затраты - 2 % приняты согласно МДС81 – 35.2004 «Методика определения стоимости строительной продукции на территории Российской Федерации».

На основании разработанных объектных смет (OC-02-01 и OC-07-01) и с учетом лимитированных затрат представлен сводный сметный расчет

объекта строительства - спортивно-оздоровительного комплекса с бассейном в г. Северо-Курильск.

НДС в размере 20% в соответствии с МДС 81-35.2004 «Методика определения стоимости строительной продукции на территории Российской Федерации» и Налоговым кодексом РФ.

Сметная стоимость строительства спортивно-оздоровительного комплекса с бассейном в г. Северо-Курильск составляет –244263,29 тыс. руб, в т.ч. НДС - 40710,55 тыс. руб.

Сметная стоимость элемента благоустройства: площадки, дорожки, тротуары с покрытием из литой асфальтобетонной смеси однослойные определена в соответствии с укрупненными нормативами цены строительства НЦС 81-02-16-2017, сборник № 16. Малые архитектурные формы.

С учетом коэффициента перехода к ценам Сахалинской области и индекса-дефлятора сметная стоимость элемента благоустройства: площадки, дорожки, тротуары с покрытием из литой асфальтобетонной смеси однослойные составляет:

 $139,21 \times 13 \times 1,49 \times 1,05 = 2831,32$ тыс. руб. в текущих ценах. Сметная стоимость 1m^3 здания спортивно-оздоровительного комплекса с бассейном в г. Северо-Курильск составляет – 20436 рублей, в т.ч. НДС

Сводный сметный расчет стоимости строительства составлен в ценах по состоянию на 2019 и представлен в таблице 5.1. Объектный сметный расчет № ОС-01-01 на общестроительные работы и внутренние инженерные системы ОС-01-01 представлен в таблице 5.2. Объектный сметный расчет № ОС-07-01 на благоустройство и озеленение представлен в таблице 5.3.

5.2 Технико-экономические показатели проекта

Сметная стоимость строительства здания спортивно-оздоровительного комплекса с бассейном в г. Северо-Курильск составляет — 244263,29 тыс. руб, в т.ч. НДС - 40710,55 тыс. руб.

Стоимость проектно-изыскательских работ объекта строительства - 5703,74 тыс. руб.

Строительный объем проектируемого объекта - спортивно- оздоровительного комплекса с бассейном в г. Северо-Курильск составляет $11952,46~{\rm m}^3.$

Сметная стоимость строительства $1 \, \mathrm{m}^3$ здания составляет — 20436 рублей, в т.ч. НДС.

Все расчеты представлены в приложении В.

6 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА

6.1 Конструктивно-технологическая и организационнотехническая характеристика рассматриваемого технического объекта «Спортивно-оздоровительного корпуса с бассейном» в г. Северо-Курильск.

Рассматриваем технологический процесс монтажа кровельных сэндвич-панелей.

Таблица 6.1 – Технологический паспорт объекта

Технологич еский процесс	Технологич. операция, вид выполняемых работ	Должность работника, выполняющего технологич. процесс, операцию	Оборудование, устройство, приспособле ние	Материалы, вещества
Монтаж	Монтажные	Монтажник	Кран гусеничный,	Сэндвич-
кровельных	работы	стальных	строп, шнур	панели,
сэндвич-		конструкций	капроновый,	заклепки,
панелей			электродрель,	саморезы
			отвертка,	
			клепальный	
			пистолет	

6.2 Идентификация профессиональных рисков

В результате анализа технологического процесса произведена идентификация профессиональных рисков (таблица 6.2).

Таблица 6.2 – Идентификация профессиональных рисков

Технологическая операция, вид выполняемых работ	Опасный и/или вредный производственный фактор	Источник опасного и/или вредного производственного фактора		
Монтаж кровельных	Расположен. рабочего места	Лестница с площадкой		
сэндвич-панелей	на высоте			
	Вероятность падения груза	Монтажный кран		
	Повышенная запыленность и	Пыль, выхлопные газы, искры		
	загазованность воздуха			
	рабочей зоны			
	Подвижные части	Монтажный кран		
	оборудования			

6.3 Методы и средства снижения профессиональных рисков

На основании таблицы 6.2 подбираем средства индивидуальной защиты (смотри таблицу 6.3).

Таблица 6.3-Методы и средства снижения воздействия опасных и

вредных производственных факторов

Опасный и/или вредный производственный фактор	Методы устранения опасного и/или вредного производственного фактора	Средства индивид. защиты работника на основании приказа №477 от 16.07.2007г.
Расположение рабочего	Использование защитных	Страховочная система,
места на высоте	ограждений,	строительная каска
	предупреждающих знаков,	
	страховочной системы	
Вероятность падения груза	Использование средств	Строительная каска
Повышенная запыленность и	индивидуальной защиты	Очки защитные
загазованность воздуха		
рабочей зоны		
Подвижные части		Костюм сигнал.
оборудования		антистатический,
		ботинки с жестким
		подноском

6.4 Обеспечение пожарной безопасности технического объекта

6.4.1 Идентификация опасных факторов пожара

Опасные факторы и класс пожара рассмотрены в таблице 6.4.

Таблица 6.4 – Идентификация классов и опасных факторов пожара

тионици от тидентификации классов и опасных факторов пожара								
Участок,	Оборудован	Класс	Опасные факторы	Сопутствующие				
подразделение	ие	пожара	пожара	проявления				
				факторов пожара				
Спортивно-	Кран	Класс В	Искры и пламя,	Осколки, части				
оздоровительны	гусеничный		понижение	разрушенных				
й комплекс с			концентрации	зданий,				
бассейном			кислорода, тепловой	сооружений,				
			поток, снижен.	технологических				
			видимости в дыму.	установок,				
				оборудования				

6.4.2 Разработка средств, методов и мер обеспечения пожарной безопасности

Средства обеспечения пожарной безопасности смотри таблицу 6.5.

Таблица 6.5 – Средства обеспечения пожарной безопасности

Первичные средства пожаротушен ия	Установки пожароту шения	Средства пожарной автоматики	Пожарное оборудо- вание	Средства индивид. защиты и спасения людей при пожаре	Пожарный Инструме нт	Пожар. Сигнал. связь и оповещ.
Песок, вода,	Пожарные	Не предус-	Пожарные	Аппарат	Топор,	01,c
земля, ведра,	гидранты	мотрены	гидранты,	защиты	лом,	моби.
огнетушитель			щиты	органов	багор,	Теле. 112
OXΠ-10 – 4				дыхания пути	крюк,	
шт.				эвакуации	лопата,	
					устройств	
					о для	
					резки	
					воздушны	
					х линий	
					электро	
					передачи	

6.4.3 Мероприятия по предотвращению пожара

Мероприятия по обеспечению пожарной безопасности представлены в таблице 6.6.

Таблица 6.6 – Мероприятия по обеспечению пожарной безопасности

	1	1
Наименование	Виды организационных	Нормативные требования
технологического процесса	мероприятий	1
Монтаж кровельных	Монтаж кровельных	Необходимо соблюдать
сэндвич-панелей	сэндвич-панелей,	правила пожарной
	установка фасонных	безопасности, предусмотрен-
	элементов	ные Постановлением
		Правительства РФ от 25.04.12.
		№390 п.363-367, 371

6.5 Обеспечение экологической безопасности технического объекта

В этом подразделе производим идентификацию экологических факторов, которую представляем в таблице Г.1 приложения Г. Мероприятия по снижению негативного антропогенного воздействия на окружающую среду представлены в таблице Г.2 приложения Г.

ЗАКЛЮЧЕНИЕ

В процессе разработки выпускной квалификационной работы, я подробно рассмотрел все пункты, указанные в задании на проектирование.

В архитектурно-планировочном разделе приведена схема планировочной организации земельного объемноучастка, описаны планировочное конструктивное решения И здания, выполнен теплотехнический расчет ограждающих конструкций.

В расчетно-конструктивном разделе рассчитана и законструирована металлическая ферма со стержнями из квадратных труб.

В разделе технология строительства разработана технологическая карта на монтаж кровельных сэндвич-панелей.

В разделе организация строительства разработан календарный план производства работ с стройгенплан на возведение надземной части здания.

В разделе экономика строительства определена сметная стоимость строительства.

В разделе безопасность и экологичность объекта разработаны мероприятия по безопасной работе монтажника.

В результате выполнения выпускной квалификационной работы были достигнуты поставленные цели и задачи.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Выпускная квалификационная работа бакалавра [Электронный ресурс] : учеб. пособие / О. А. Коробова [и др.] ; Новосибир. гос. архит.-строит. ун-т (Сибстрин). Новосибирск : НГАСУ (Сибстрин), 2016. 73 с. : ил. ISBN 978-5-7795-0766-0. Режим доступа: http://www.iprbookshop.ru/68758.html (дата обращения: 20.01 2019).
- 2. Плешивцев А. А. Архитектура и конструирование гражданских зданий [Электронный ресурс] : учеб. пособие для студентов 3 курса / А. А. Плешивцев. Москва : МГСУ : Ай Пи Эр Медиа : ЭБС АСВ, 2015. 403 с. : ил. (Архитектура). ISBN 978-5-7264-1071-5. Режим доступа: http://www.iprbookshop.ru/35438.html (дата обращения 25.01.2019).
- 3. СП 4.13130.2013 Системы противопожарной защиты. Ограничение распространения пожара на объектах защиты. Требования к объемнопланировочным и конструктивным решениям [Текст]. введ. 24.06.2013. Москва: МЧС России, 2013. 128 с.
- 4. СП 42.13330.2016 Градостроительство. Планировка и застройка городских и сельских поселений [Текст]. введ. 01.07.2017. Москва: Минстрой России, 2016. 94 с.
- 5. СП 50.13330.2012 Тепловая защита зданий. [Текст]. введ. 01.07.2013.– Москва: Минрегион России, 2012. 96 с.
- 6. СП 70.13330.2012 Несущие и ограждающие конструкции [Текст]. введ. 01.07.2013. Москва: Госстрой России, 2012. 198 с.
- 7. СП 71.13330.2017 Изоляционные и отделочные покрытия [Текст]. введ. 28.08.2017. Москва: ФГБОУ ВО НИУ МГСУ, 2017. 82 с.
- 8. СП 118.133.30.2012 Общественные здания и сооружения [Текст]. введ. 01.01.2013. Москва: Минстрой России, 2016. 72 с.
- 9. СП 131.13330.2012 Строительная климатология. [Текст]. введ. 01.01.2013. Москва: Минстрой России, 2015. 120 с.

- 10. Кузин Н. Я. Проектирование и расчёт стальных ферм покрытий промышленных зданий [Электронный ресурс] : учеб. пособие / Н. Я. Кузин. 2-е изд., перераб. и доп. Москва : ИНФРА-М, 2015. 240 с. Режим доступа: http://znanium.com/bookread2.php.book=432590. Электронно-библиотечная система "ZNANIUM.COM" (дата обращения: 08.02.2019).
- 11. расчет Родионов И. К. Работа, И конструирование стальных центрально-сжатых сплошных колонн [Электронный pecypc] : электрон. учеб.-метод. пособие / И. К. Родионов; ТГУ; Архитектурностроит. ин-т; каф. "Городское стр-во и хоз-во". – Тольятти: ТГУ, 2016. - 52 с. : ил. - Библиогр.: с. 51. - Глоссарий: с. 52. - ISBN 978-5-8259-0901-1. – Режим доступа: https://dspace.tltsu.ru/handle/123456789/2959 (дата обращения 09.02.2019).
- СП 16.13330.2017. Стальные конструкции. Актуализированная редакция СНиП II-23-81*. [Текст]. введ. 28.08.2017. Москва: Минстрой России, 2017. 140 с.
- СП 20.13330.2016 Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85*. [Текст]. введ. 04.06.2017. Москва: Минстрой России, 2016. 80 с.
- 14. Черноиван, В. Н. Монтаж строительных конструкций [Электронный ресурс] : учеб.-метод. пособие / В. Н. Черноиван, С. Н. Леонович. Минск : Новое знание, 2015 ; Москва : ИНФРА-М, 2015. 200 с. Режим доступа: http://znanium.com/bookread2.php?book=483102 / (дата обращения: 01.03.2019).
- 15. Типовая технологическая карта на устройство кровли из трехслойных сэндвич-панелей [Электронный ресурс]. Москва : АОЗТ ЦНИИОМТП, 2012. Режим доступа: http://docs.cntd.ru/document/677021296 / (дата обращения: 13.04.2019).

- 16. СП 12-135-2003. Безопасность труда в строительстве. Отраслевые типовые конструкции по охране труда*. [Текст]. введ. 01.07.2003. Москва: Госстрой России, 2013. 151 с.
- 17. СП 12-136-2002. Решения по охране труда и промышленной безопасности в проектах организации строительства и проектах производства работ. [Текст]. введ. 05.01.2003. Москва : Госстрой России, 2002. 9 с.
- 18. Маслова, Н.В. Организация строительного производства [Электронный ресурс]: электрон. учеб. –метод. пособие / Н.В. Маслова, Л.Б. Кивилевич; ТГУ; Архитектурно-строит. ин-т; каф. «Промышленное и гражданское строительство». Тольятти: ТГУ, 2015. 147 с.: ил. Библиогр.: с. 104-106. Прил.: с.115-147. Глоссарий: с. 107-114. ISBN 978-5-8259-0890-8.: 1.00 / (дата обращения: 16.04.2018) / (дата обращения: 25.03.2019).
- 19. Михайлов А. Ю. Организация строительства. Календарное и сетевое планирование [Электронный ресурс] : учеб. пособие / А. Ю. Михайлов. Москва : Инфра-Инженерия, 2016. 296 с. : ил. ISBN 978-5-9729-0134-0. Режим доступа: http://www.iprbookshop.ru/51728.html / (дата обращения: 25.03.2019).
- 20. Михайлов А. Ю. Организация строительства. Стройгенплан [Электронный ресурс] : учеб. пособие / А. Ю. Михайлов. Москва : Инфра-Инженерия, 2016. 172 с. : ил. ISBN 978-5-9729-0113-5. Режим доступа: http://www.iprbookshop.ru/51729.html / (дата обращения: 26.03.2019).
- 21. СП 48.13330.2011 Организация строительства. Актуализированная редакция СНиП 12-01-2004. [Текст]. введ. 20.05.2011. Москва : Минрегион России, 2010. 22 с.
- 22. Плотникова И. А. Сметное дело в строительстве [Электронный ресурс]: учеб. пособие / И. А. Плотникова, И. В. Сорокина. Саратов : Ай Пи

- Эр Медиа, 2018. 187 с. ISBN 978-5-4486-0142-2. Режим доступа: http://www.iprbookshop.ru/70280.html / (дата обращения: 10.04.2019).
- 23. Технический регламент о требованиях пожарной безопасности [Электронный ресурс] : Федеральный закон от 28.07.2008 №123 (ред. от 29.07.2017). URL: http://rulaws.ru/laws/Federalnyy-zakon-ot-22.07.2008-N-123-FZ/ (дата обращения: 05.03.2019).
- 24. ГОСТ Р 21.501-2011 Система проектной документации для строительства (СПДС). Правила выполнения рабочей документации архитектурных и конструктивных решений. [Текст]. введ. 01.05.2013. Москва: Росстандарт, 2012. 42 с.
- 25. ГОСТ 2.109-73 ЕСКД. Основные требования к чертежам. [Текст]. введ. 01.07.1974. Москва : Стандартинформ, 2004. 70 с.
- 26. ГОСТ 2.301-68 ЕСКД. Форматы. [Текст]. введ. 01.01.1971. Москва : Стандартинформ, 2007. 3 с.
- 27. ГОСТ 2.304-81 ЕСКД. Шрифты чертежные. [Текст]. введ. 01.01.1982.– Москва : Стандартинформ, 2007. 21 с.
- 28. ГОСТ 2.316-2008 ЕСКД. Правила нанесения надписей, технических требований и таблиц на графических документах. Общие требования. [Текст]. введ. 25.12.2008. Москва: Стандартинформ, 2009. 10 с.
- 29. СП 112.13330.2011. Пожарная безопасность зданий и сооружений. Взамен СНиП 21-01-97. Введ. 01.01.1998. М.: Госстрой России. М.: ГУП ЦПП, 2002. 33 с.

приложение а

Таблица А.1 – Операционный контроль качества

	таолица А.т – Опера	The million Kenipesib		
N π/π	Технологические процессы и операции	Контролируемый параметр, элемент	Допускаемое значение, требования	Способ контроля и инструмент
		Разметка кровли		
1	Разметка крайних точек горизонтальной и вертикальной линий	Точность разметки	±2,0 мм	Нивелир
2	Разметка места укладки первой панели»	Точность разметки	±2,0 мм	Теодолит
	Уклади	а кровельных сэндвич	ı-панелей	
3	Проверка точности	Отклонение прогонов от прямолинейности	2 мм на 1 м длины	Рулетка, уровень
3	прогонов	Отклонение прогонов от горизонтальности	±2,0 мм	Лазерный нивелир, отвес, рулетка
4	Укладка панелей	Точность укладки	±2,0 мм	Рулетка
	Креплен	ие кровельных сэндви	и-панелей	-
5	Контроль затяжки винтовых соединений	Внешний вид шайбы	Отсутствие перетяжки или недотяжки	Визуально
6	Контроль точности расположения панелей	±		Уровень, рулетка
	Mo	онтаж фасонных элеме	СНТОВ	
7	Контроль точности монтажа	Отклонение фактических от проектных размеров	±2,0 мм	Уровень, рулетка

Таблица А.2 – Потребность в оснастке, инструменте, инвентаре и

приспособлениях

Наименование	Марка и параметры	Ед.	Количество	Примечание
Строп двухветвевой	Строп двухветвевой 2СК-2,0 ГОСТ 25573-82*	шт.	1	Строповочные, монтажные работы
Вакуумный захват	4 присоски	шт.	1	Строповочные, монтажные работы
Шнур капроновый	Длина шнура - 5 м, диаметр 3 мм	шт.	4	Разграничение захваток
Лазерный уровень	BL 20 СКБ «Стройприбор» Точность измерения 0,1 мм/м	шт.	2	Проверка горизонталь- ности конструкций
Электродрель с насадками для завинчивания	Интерскол ДУ-800-ЭР	ШТ.	2	Сверление отверстий и завинчивание винтов
Отвертка с рычажным наконечником	Отвертка Профи ООО "ИНФОТЕКС"	ШТ.	2	Завинчивание/отвинчи вание винтов, болтов
Клепальный пистолет аккумуляторный	Типа ERT 130 "RIVETEC"	ШТ.	2	Установка вытяжных заклепок
Ограждения участков кровельных работ	ГОСТ 23407-78 Инвентарные, высота не менее 1,6 м	М	80	Безопасность работ
Каски строительные	ГОСТ Р 50849-96	шт.	по количеству рабочих	Безопасность работ
Жилеты оранжевые	ГОСТ 12.4.087-84	шт.	4	Средство защиты

приложение б

Таблица Б.1– Ведомость объемов работ на надземную часть здания

, , , , , , , , , , , , , , , , , , , ,		P	на надземную часть здания				
Наименование работ	Ед. изм.	Кол.	Расчет объемов работ				
1	2	3	4				
Надземная часть							
Установка металлических колонн	1 эл-т	51	Колонны К1 - 22шт.; К2 – 29шт.				
Монтаж металлических связей вертикальных	1 эл-т	14	Связи металлические Св1 – 14шт.				
Монтаж металлических балок	1 эл-т	172	Балки металлические Б1 – 37 шт.; Б2 - 75шт.; Б3 -26шт.; Б4 -4шт; Б5-30шт.				
Монтаж стропильных ферм	1 эл-т	4	Фермы металлические Ф1 -4шт.				
Монтаж металлических связей по покрытию	1 эл-т	32	Сг1 -32шт.				
Монтаж металлических прогонов	1 эл-т	105	П1 – 105шт.				
Устройство монолитных колонн под чашу бассейна а) установка арматуры колонн отдельными стержнями б) бетонирование колонн	Т	7,8	Км1:0,41т·9=3,69т; Км2: 0,46·9=4,14т Км1-1,2м ³ -9шт.; Км2-1,3м ³ -9шт.				
о) оетонирование колонн	м ³	22,5	KM1-1,2M -9III1., KM2-1,3M -9III1.				
Устройство монолитной чаши бассейна а) установка арматуры отдельными стержнями б) бетонирование чаши	т м ³	16,9 62	по проектным данным				
Устройство монолитных лестниц а) Установка арматуры лестниц отдельными стержнями б) бетонирование лестниц	T M ³	0,35	по проектным данным				
Устройство монолитного перекрытия			по проектным данным				
а) установка арматуры перекрытия отдельными стержнями	T	31,8	по проектным данным				
б) бетонирование перекрытия	м ³	140					
Монтаж кровельных сэндвич- панелей	100м ²	11,72	$F_{\text{кровли}} = 1172 \text{м}^2$				
Устройство гипсокартонных перегородок	м ²	2003	C1 – 266,6m ² ; C2 – 372,5m ² ; C3 – 928,1m ² ; C4 – 219,7m ² ; C5 – 215,9m ²				

Продолжение таблицы Б.1

1	2	3	4
Установка оконных блоков из ПВХ профиля (стеклопакет)	100м ²	1,79	OK1 1500x1500 - 12 μ T., F_{OK1} =27 μ 2 OK2 1500x500 - 10 μ T., F_{OK2} =7,5 μ 2 OK3 1500x1200 - 2 μ T., F_{OK3} =3,6 μ 2 OK4 1500x1130 - 1 μ T., F_{OK4} =1,7 μ 2 OK5 3900x1000 - 15 μ T., F_{OK5} =58,5 μ 2 OK6 1000x1000 - 8 μ T., F_{OK6} =8,0 μ 2 OK7 1200x1200 - 5 μ T., F_{OK7} =7,2 μ 2 OK8 800x800 - 6 μ T., F_{OK9} =13,4 μ 2 OK10 1400x1300 - 2 μ T., F_{OK10} =3,6 μ 2 OK11 1100x1200 - 6 μ T., F_{OK11} =7,9 μ 2 OK12 1400x500 - 5 μ T., F_{OK12} =3,5 μ 2 OK13 1350x1800 - 1 μ T., F_{OK12} =3,5 μ 2 OK14 3150x1800 - 2 μ T., F_{OK13} =2,4 μ 2 OK15 1350x1000 - 2 μ T., F_{OK14} =11,3 μ 2 OK16 2400x2200 - 2 μ T., F_{OK16} =10,6 μ 2 OK17 1900x2000 - 1 μ T., F_{OK18} =2,7 μ 2
Установка витражей в алюминиевых переплетах	100м ²	0,34	B1 $3400x2500 - 1$ mt., $F_{B1} = 8.5$ m ² B2 $3400x5100 - 1$ mt, $F_{B2} = 17.3$ m ² B3 $3400x2500 - 1$ mt., $F_{B3} = 8.5$ m ²
Установка дверных блоков площадью проема до 3м ²	100м ²	1,44	$F_{\text{дв}} = 2,1 \cdot 1,5 \cdot 8 \text{шт.} + 2,1 \cdot 1,3 \cdot 11 \text{шт.} + 2,1 \cdot 1,0 \cdot 40 \text{шт.} + 2,1 \cdot 0,8 \cdot 3 \text{шт.} = 144,3 \text{м}^2$

Таблица Б.2 – Ведомость потребности в строительных конструкциях,

изделиях и материалах

Работы	10011		Материальные ресурсы					
Наименование	Ед.	Кол.	Наименование	Ед.	Вес един.	Потребность на вес объем работ		
Установка колонн	шт.	51	Двутавр 40К1	шт/т	1/1,68	51/85,8		
Монтаж металлических связей	ШТ.	46	Труба 240х160х10 Труба 160х4	шт/т	1/0,517	46/23,8		
Монтаж металлических балок	ШТ.	172	Двутавр 50Ш1 Двутавр 50Б1 Двутавр 40Ш1 Двутавр 40Б1 Двутавр 30Ш1	шт/т	1/0,083	172/14,3		
Монтаж стропильных ферм	ШТ.	4	Фермы металлические	шт/т	1/1,3	4/5,2		
Монтаж прогонов	шт.	105	Двутавр 30Б1	шт/т	1/0,023	105/2,4		
Устройство монолитных колонн, стен, лестниц, перекрытия	M	670 2025 1700 0 2242	Арматура Ø32 Ø25 Ø16 Ø12	м/т	1/0,0063 1/0,0039 1/0,0016 1/0,009	670/4,219 2025/7,895 17000/27,2 2242/20,18		
	м ³	421	Бетон БСТ В30	M^3/T	1/2,5	421/1053,5		
Устройство монолитной чаши	M	538 806	Арматура Ø25 Ø16	м/т	1/0,0039 1/0,0016	538/2,1 806/1,29		
бассейна	м ³	62	Бетон БСТ В30	M^3/T	1/2,5	1/155		
Монтаж кровельных панелей	ШТ.	155	Панель стеновая	шт/т	1/0,19	155/29,45		
Устройство гипсокартонных перегородок	M ²	2003	Листы ГКЛ	м ² /т	1/0,01	2003/20,03		
Установка оконных блоков	M ²	179	Блоки оконные из ПВХ профилей	M ² /T	1/0,08	179/14,32		
Установка витражей	M ²	34	Витражи из алюминиевых профилей	м ² /т	1/0,05	34/1,7		
Установка дверных блоков	M ²	144	Дверные блоки	м ² /т	1/0,025	144/3,6		

Таблица Б.3 - Ведомость трудоемкости и машиноемкости работ

таолица в.э - ведом		Обоснова	Hop.			удоемкос	ГЬ	Вс	его	Профессиональный,
Наименование работ	Един. изм.	ние § ЕНиР	Ч-ч	М-ч	Объем Раб.	Ч-д	М-см.	Ч-д	М-см.	квалификационный состав звена
1	2	3	4	5	6	7	8	9	10	11
				Надзе	мная часті	D				
Установка металлических колонн	1 эл-т	E5-1-8	3,5	0,7	51	0,45	0,09	23,0	4,6	Монтажник 6p-1,5p-1 4p-2,3p-1, машин. 6p-1
Монтаж металлических связей вертикальных	1 эл-т	E5-1-6	0,64	0,21	14	0,08	0,03	1,1	0,4	Монтажник 5p-1, 4p- 1,3p-1, машин. 6p-1
Монтаж металлических балок	1 эл-т	E5-1-6	0,3	0,1	172	0,04	0,01	6,8	1,7	Монтажник 5p-1, 4p- 1,3p-1, машин. 6p-1
Монтаж стропильных ферм	1 эл-т	E5-1-6	2,9	0,58	4	0,35	0,07	1,4	0,3	Монтажник 6р -1, 4р-3, 3р-1, машин. 6р-1
Монтаж металлических связей по покрытию	1 эл-т	E5-1-6	0,33	0,11	32	0,04	0,01	1,3	0,3	Монтажник 5p-1, 4p- 1,3p-1, машин. 6p-1
Монтаж металлических прогонов	1 эл-т	E5-1-6	0,64	0,21	105	0,08	0,03	8,4	3,2	Монтажник 5p-1, 4p- 1,3p-1, машин. 6p-1
Устройство монолитных колонн под чашу бассейна а) установка арматуры колонн отдельными стержнями	Т	E4-1-46	12,0	-	7,8	1,5	-	11,7	-	Арматурщик 5р-1, 2р-1
б) бетонирование колонн	\mathbf{M}^3	E1-1-49	1,5	-	22,5	0,19	-	4,3	-	Бетонщик 4р-1, 2р-1
Устройство монолитных стен										
а) Установка арматуры стен отдельными стержнями	Т	E4-1-46	11,5	-	10,4	1,44	-	15,0	-	Арматурщик 5р-1, 2р-1
б) бетонирование стен	M^3	E1-1-49	1,6		254,4	0,2	_	40,9		Бетонщик 4р-1, 2р-1

Продолжение таблицы Б.3

тродолжение таолицы в										
1	2	3	4	5	6	7	8	9	10	11
Устройство монолитной										
чаши бассейна										
а) установка арматуры	T	E4-1-46	13,0	-	16,9	1,6	-	27,0	-	Арматурщик 5р-1, 2р-1
чаши бассейна										
б) бетонирование чаши	\mathbf{M}^3	E1-1-49	0,81	-	62	0,1	-	6,2	-	Бетонщик 4р-1, 2р-1
Устройство монолитных										
лестниц										
а) Установка арматуры	T	E4-1-46	13,0	-	0,35	1,62	-	0,6	-	Арматурщик 5р-1, 2р-1
лестниц										
б) бетонирование лестниц	\mathbf{M}^3	E1-1-49	0,81	-	4,5	0,1	-	0,5	-	Бетонщик 4р-1, 2р-1
Устройство монолитного										
перекрытия										
а) установка арматуры	Т	E4-1-46	13,0	-	31,8	1,62	_	21,5	-	Арматурщик 5p-1, 2p-1
перекрытия б) бетонирование										
б) бетонирование перекрытия	M^3	E1-1-49	0,81	-	140	0,1	-	14,0	-	Бетонщик 4р-1, 2р-1
Монтаж кровельных	100м ²	ГЭСН 09-	45.0	9,74	11.72	5 65	1,22	66,2	14,3	Монтажник 4,2р-1, 3р-2
сэндвич-панелей	TOOM	04-002-03	45,2	9,74	11,72	5,65	1,22	00,2	14,3	Машинист 6р-1
Устройство										
гипсокартонных	M^2	E6-7-5	0,46	-	2003	0,06	-	80,0	-	Плотник 3р-1, 2р-1
перегородок										
Устройство оконных										П 4 1 2 1
блоков из ПВХ профиля	100m^2	E6-13	18,0	9,0	1,79	2,25	1,13	4,0	2,0	Плотник 4р-1,2р-1
(стеклопакет)										Машинист 5р-1
Установка витражей в	100м ²	EC 12	11 4	<i>-</i> 7	0.02	1 40	0.71	0.1	0.1	Плотник 4р-1,2р-1
алюминиевых переплетах	IUUM	E6-13	11,4	5,7	0,03	1,42	0,71	0,1	0,1	Машинист 5р-1
Установка дверных										-
блоков площадью проема до 3м ²	100м ²	E6-13	13,4	6,7	1,44	1,68	0,84	2,4	1,2	Плотник 4p-1,2p-1 Машинист 5p-1
1.1							1		l	l .

Продолжение таблицы Б.3

1	2	3	4	5	6	7	8	9	10	11
								336,4	28,1	
Проч. Неучт. работы		16%						53,8	-	Подсобный рабочий 1р- 2
Σ :								390,2	28,1	

Таблица Б.4 – Ведомость потребности в складах

Таолица 1	Продолжи-	Потребност	ь в ресурсах		есурсов	П	лощадь склад	ца	Розмор омноно	
Материальные ресурсы	тельность потребления, дни	Общая	Суточная	Кол. Дн.	Кол. Qзап	Норматив на 1м ²	Полезная $F_{\text{пол}}, M^2$	Общая F _{общ} , м ²	Размер склада и способ хранения	
				Открытые с	клады					
Панели кровельные	8	293 м ³	36,6 м ³	1	52 м ³	$0,5-0,8 \text{ m}^3$	65,4	82,0	В вертикальном положении	
Арматура	17	67,3 т	3,96 т	8	45,3 т	1,2 м ³	37,7	39,0	Навалом	
Металлические конструкции	6	131,5 т	21,9 т	1	31,3 т	0,3-0,5т	62,6	75,0	Штабель	
								Σ=196		
				Закрытые с	клады				•	
Гипсокартонные листы	20	2003 м ²	100 m^2	5	715 м ² .	29 m ²	24,7	30,0	В горизонтальных стопах	
Блоки оконные	2	179 м ²	$89,5 \text{ m}^2$	1	128 м ²	20-25 м ²	5,1	7,0	Штабель	
Блоки дверные	1	144 m ²	144 м ²	1	144 м ²	20-25 м ²	5,8	8,0	Штабель	
								Σ=45		

приложение в

Таблица В.1 – Сводный сметный расчет стоимости строительства

Сметные		Сто	Суммарная			
расчеты и сметы	Наименование глав, объектов, работ и затрат	строительн ых работ	монтажных работ	оборуд ования, мебели	Прочее	сметная стоимость, тыс.руб.
	Глава 2. Основные объекты строительства					
OC-02-01	Общестроительные работы, внутренние и инженерные системы	186341,39				186341,39
	Итого по главе 2:	186341,39				186341,39
OC-07-01	Глава 7. Благоустройство и озеленение территории					
	Благоустройство и озеленение	3106,32				3106,32
	Итого по главам 1 - 7	189447,71				189447,71
	Глава 8. Временные здания и сооружения					
ГСН 81-05- 01-2001 п 4.2	Средства на строительство и разборку титул. врем. зданий и сооружений 1,8%	4410,06				4410,06
	Итого по главе 8:	4410,06				4410,06
	Итого по главам 1-8:	193857,77				193857,77
	Глава 12. Проектные и изыскательские работы					
Расчет НЦС	Определение стоимости проектных работ				5703,7	5703,74
	Итого по главам 1-12:	193857,77			5703,7	199561,51
МДС 81-	Резерв средств на непредвиденные работы и затраты					
35.2004	Гражданские здания 2.%	3877,16			114,07	3991,23
	Итого:	197734,93			5817,8	203552,74
	НДС= 20%	39546,99			1163,5	40710,55
	Всего по сводному сметному расчету:	237281,92			6981,3	244263,29

Таблица В.2 – Объектный сметный расчет № ОС-02-01. Общестроительные работы и инженерные системы

Объект	Объект «Спортивно-оздорови	тельный ког	мплекс с	бассейном»				
Общая стоимость	228081,86 тыс. руб., в т.ч. НДС - 38013,64 тыс. руб.							
Норма стоимости	Строительный объем = 11952,46 м ³							
Цены	II квартал 2019 г.							
Номер расчета	Производимая работа	Работы по строитель- ству	Работы по монтаж у	по видам работ Инвентарь мебель и прочие принадлежн ости	Другие расход ы	Общее	Оплата труда рабочи х, тыс. руб.	Единичн ая стоимос ть, руб.
Расчет НЦС 81-02-05-2017	Общестроительные работы и инженерные системы	186341,39				186341,39		
МДС 81-35.2004	Резерв средств на непредвиденные работы и затраты. Гражданские здания 2.%	3726,83				3726,83		
	Итого:	190068,22				190068,22		
	НДС=20%	38013,64				38013,64		
	Итого с НДС	228081,86				228081,86		

Таблица В.3 – Объектный сметный расчет № ОС-07-01. Благоустройство и озеленение

Объе	ект	Объект «Спортивно-оздоровительный комплекс	с бассейном	I»		
		(наименование объекта)				
Общ	ая стоимость	тыс. руб.				
Вце	нах на	2019 г.				
N π/π	Наименование сметного расчета	Выполняемый вид работ	Единица измерения	Объем работ	Норма по НЦС, тыс. руб	Итоговая стоимость, тыс. руб
1	2	3	4	5	6	7
1	НЦС 81-02-16- 2017 16-06-002-01	Площадки, дорожки, тротуары с покрытием из литой асфальтобетонной смеси однослойные	100 м ²	13,00	139,21	1809,73 x 1,49 x 1,05 = 2831,32
2	Прайс-лист Сахалинская обл.	Озеленение участка	1м ²	1100	250	275,0
		Итого:				3106,32

приложение г

Таблица Г.1 – Идентификация негативных экологических факторов

Наименование	Структурные	Негативное	экологическое	воздействие
	составляющие	технического о	бъекта	, .
	технического	на атмосферу	на гидросферу	на литосферу
	объекта,	1 10		
	энергетической			
	установки,			
	транспортного			
	средства и т.п.			
Монтаж	Работа	Загрязнение	Мойка колес	Образование
кровельных	автотранспорта;	воздуха		строительного
сэндвич-	работа	выхлопными		мусора;
панелей.	электроинструме	газами		выемка
Спортивно-	нта			плодородного
оздоровительны				слоя
й комплекс с				
бассейном				

Таблица Г.2 – Мероприятия по снижению негативного антропогенного

воздействия на окружающую среду

Мероприятия по					
снижению негативного	Наименование технического объекта: Спортивно-				
антропогенного	оздоровительный комплекс с бассейном				
воздействия на:					
	Производить контроль и регулирование строительной				
Атмосферу	техники по токсичности отработавших газов.				
Атмосферу	Улучшать состав выхлопных газов с помощью				
	определенных добавок к топливу.				
	Ограничение стекания сточных вод со стройплощадки в				
Гинросфору	ливневку.				
Гидросферу	Экономия воды.				
Питосфору	Строительный мусор складируют в мусорные баки и				
Литосферу	контейнеры; отходы увозит мусоровоз				