МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт машиностроения

(наименование института полностью)

Кафедра «Энергетические машины и системы управления»

(наименование)

13.03.03 Энергетическое машиностроение

(наименование)

«Альтернативные источники энергии транспортных средств»

(направленность (профиль))

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Адаптация двигателя для транспортного средства с гибридной силовой установкой

Обучающийся

И. Н. Семдянов

(Инициалы, фамилия)

(личная подпись)

Руководитель

к. т. н., доцент, В. В. Смоленский

(учёная степень, учёное звание, инициалы, фамилия)

Тольятти 2024

Аннотация

Целью работы был перевод двигателя CBR500R на природный газ и установка на двигатель генератора.

Такой агрегат, по сути, является удлинителем пробега, его можно использовать в составе гибридной силовой установки на автомобилях класса С и D, а также как стационарную электростанцию.

В результате адаптации двигатель был переведён на природный газ и оснащён турбонаддувом.

На главном валу коробки передач был скомпонован генератор, и была построена его 3D модель в САПР. Также были сделаны продольный и поперечный разрезы двигателя, чертежи картера статора и крышки генератора, составлена спецификация.

Модернизированный двигатель CBR500R – экологичен, его можно использовать в качестве стационарной электростанции, а также в качестве удлинителя пробега на последовательном подключаемом гибридном автомобиле.

Abstract

The purpose of the work was to convert the CBR500R engine to natural gas and install an electric generator on the engine.

Such a unit, in fact, is a mileage extender, it can be used as part of a hybrid power plant on class C and D vehicles, as well as a stationary power plant.

As a result of the adaptation, the engine was switched to natural gas and equipped with turbocharging.

A generator was assembled on the main shaft of the gearbox, and its 3D - model was built. Longitudinal and transverse sections of the engine were drawn, drawings of the stator crankcase and generator cover and BOM was made.

The upgraded CBR500R engine is eco–friendly, it can be used as a stationary power plant, as well as a mileage extender on a serial plug-in hybrid car.

Содержание

В	веден	ие	6
1	Co	стояние вопроса	8
2	Pa	счет цикла и выбор основных параметров двигателя	. 11
	2.1	Параметры топлива	. 12
	2.2	Параметры рабочего тела	. 12
	2.3	Параметры окружающей среды и остаточных газов	. 14
	2.4	Процесс впуска	. 15
	2.5	Процесс сжатия	. 17
	2.6	Процесс сгорания	. 18
	2.7	Процессы расширения и выпуска	. 19
	2.8	Индикаторные параметры рабочего цикла	. 20
	2.9	Эффективные показатели двигателя	. 20
	2.10	Основные параметры цилиндра и двигателя	. 20
	2.11	Построение индикаторной диаграммы	. 21
	2.1	1.1 Построение расчётной индикаторной диаграммы	. 22
	2.1	1.2 Построение действительной индикаторной диаграммы	. 24
	2.12	Построение внешней скоростной характеристики	. 27
3	Ки	нематический расчет двигателя	. 28
4	Ди	намический расчет двигателя	. 30
	4.1	Общие сведения	. 30
	4.2	Силы давления газов	. 30
	4.3	Приведение масс частей кривошипно-шатунного механизма	. 30
	4.4	Силы инерции	. 33
	4.5	Суммарные силы, действующие в кривошипно-шатунном механизм 33	1e
	4.6	Силы, действующие на шатунные шейки коленчатого вала	. 34
	4.7	Силы, действующие на коренные шейки коленчатого вала	. 35
5	Ур	авновешивание двигателя	. 37
6	Ко	нструирование и расчет на прочность основных деталей двигателя	. 38
	6.1	Расчёт коленчатого вала	. 38
	6.1	.1 Общие сведения	. 38
	6.1	.2 Определение удельного давления на поверхности шеек	. 38

6.1.3	Расчёт коренных и шатунных шеек	39						
6.1.4	Расчёт щёк	39						
6.2 Pa	счёт поршня двигателя	39						
6.3 Pa	6.3 Расчёт поршневого пальца двигателя 40							
6.4 Pa	счёт шатунной группы двигателя	40						
6.4.1	Поршневая головка	40						
6.4.2	Кривошипная головка	40						
6.4.3	Стержень шатуна							
6.4.4	Шатунные болты							
7 Конст	груирование и расчет механизма газораспределения							
7.1 Ко	онструирование и расчет впускных элементов механизма							
газорас	пределения							
7.1.1	Общие сведения							
7.1.2	Профилирование кулачков впускного распредвала методом 43	Курца						
7.1.3	Расчёт пружин впускного клапана	54						
8 Описа	ание и расчет основных систем двигателя	71						
8.1 Pa	счёт системы смазки	71						
8.2 Pa	счёт системы охлаждения	75						
8.2.1	Общий расчёт системы охлаждения	75						
8.2.2	Расчёт жидкостного насоса	76						
8.2.3	Расчёт жидкостного радиатора							
8.2.4	Расчёт вентилятора							
9 Спецч	часть	80						
Заключен	ие	83						
Список и	Список используемой литературы и используемых источников							
Приложен	ние А Таблицы и графики	87						

Введение

Переход на экологически чистый транспорт является важной задачей как для мирового сообщества в целом, так и для России в частности, потому что автомобильные выхлопы содержат вредные вещества, приводящие к онкологическим и другим заболеваниям, увеличивают количество парниковых газов, вызывающих глобальное потепление.

Гибридный автомобиль имеет ряд преимуществ по сравнению с классическими, имеющими только ДВС, и электромобилями.

Преимущества по сравнению с классическим автомобилем следующие, во-первых, двигатель автомобиля с гибридной силовой установкой работает, как правило, на режимах с большим КПД, что обеспечивает меньший расход топлива и меньшие затраты на него. Во-вторых, автомобиль с гибридной силовой установкой более экологичен, т.к. ежедневный пробег составляет, в среднем 50 км, такие поездки можно осуществлять без подзарядки аккумуляторных батарей при помощи ДВС, который загрязняет воздух при работе. В-третьих, гибридный автомобиль, при выключенном ДВС, работает практически бесшумно, а это весьма актуально в больших городах.

Также существует ряд преимуществ по сравнению с электромобилем. Во-первых, автомобиль, оснащённый удлинителем пробега, увеличивает запас хода, в среднем, на 100-200 км, что позволяет автомобилю с аккумулятором малой ёмкости совершать междугородние поездки. Во-вторых, тепло, отводимое от ДВС, можно использовать для обогрева салона, а также, на некоторых режимах, для обогрева аккумуляторных батарей. Это особенно актуально в условиях России. В-третьих, зарядная инфраструктура для электрического транспорта развивается постепенно. Автомобиль с гибридной силовой установкой является решением этой проблемы, будучи неким переходом от классического автомобиля к электромобилю. В-четвёртых, гибридному автомобилю не нужен ёмкий аккумулятор, что снижает его массу и стоимость [5].

Таким образом, развитие двигателей для автомобилей с гибридной силовой установкой является перспективным направлением в нашей стране, что также подтверждается стратегией развития автомобильной промышленности Российской Федерации до 2035 года [3].

Цель работы – перевод двигателя CBR500R на природный газ и установка на двигатель генератора для работы в составе последовательного подключаемого гибридного автомобиля.

Задачи:

– эскизная и рабочая компоновка генератора в составе агрегата;

- компоновка и расчёт ТКА;

– расчёт цикла и другие расчёты двигателя;

– проектирование корпусных деталей генератора с создание чертежей.

1 Состояние вопроса

Электромобиль – это автомобиль, приводимый в движение одним или несколькими электродвигателями с питанием от автономного источника электроэнергии (аккумуляторов, топливных элементов, конденсаторов и т.д.), а не двигателем внутреннего сгорания.

Для большей точности электромобили разделили на следующие категории:

– электромобили с аккумуляторной батареей (Battery Electric Vehicle),

- гибридные электромобили (Hybrid Electric Vehicle),

– подключаемые гибридные электромобили (Plug-in Hybrid Electric Vehicle),

– электромобили на топливных элементах (Fuel Cell Electric Vehicle).

В процессе развития и совершенствования электромобилей, гибридные автомобили заняли особое положение.

Гибридный автомобиль – это автомобиль, использующий для привода ведущих колёс более одного источника энергии. В настоящее время большинство серийно выпускаемых гибридов имеют ДВС и, один или несколько, электродвигателей, питающихся от аккумуляторной батареи.

По способу подключения двигателя и аккумулятора различают следующие типы гибридных автомобилей:

 последовательная (ДВС не соединён с трансмиссией, он лишь заряжает аккумулятор);

 – параллельная (колёса приводятся как от электродвигателя, так и от ДВС);

– последовательно-параллельная (ДВС может приводить колёса, а может заряжать аккумулятор при помощи генератора).

По относительной мощности электродвигателя и ёмкости аккумулятора:

 – мягкий гибрид (электродвигатель используется только для помощи ДВС, а малоёмкий аккумулятор накапливает энергию при торможении);

 подключаемый гибрид (автомобиль может проехать некоторое расстояние исключительно на электротяге, за счёт мощного электродвигателя и ёмкого аккумулятора).

Проектируемый удлинитель пробега предназначен для последовательно подключаемого гибрида.

Удлинитель пробега должен быть рассчитан в первую очередь для автомобилей С и D класса. Porsche Taycan с аккумулятором Performance Battery Plus относится к классу D, его расход энергии, определённый по WLTP (Worldwide harmonized Light vehicles Test Procedure) составляет, в среднем, 22 кВт [4]. Исходя из вышесказанного было решено, что удлинитель пробега должен вырабатывать мощность порядка 25 кВт с учётом запаса.

На момент 2014 года по оценкам «Forbes» и «ВР», при неизменном уровне потребления нефти 93 млн баррелей с сутки, мировых запасов нефти хватит примерно на 50 лет добычи. Таким образом, нефть является не возобновляемым природным ресурсом, потребление которого необходимо сокращать. Запасов природного газа, большая часть которого находится в нашей стране, ещё очень много, поэтому, одним из решений проблемы дефицита нефти, является перевод автомобильного транспорта на природный Газовый мотор обладает схожей компонентной базой газ. И эксплуатационными характеристиками ПО сравнению С двигателями, использующими жидкое топливо [3]. Также, необходимо отметить, что этот вид топлива является значительно более экологичным, чем бензин. Всё это является главной причиной выбора в качестве топлива для модернизируемого двигателя природного газа.

В качестве ДВС был выбран двигатель CBR500R. Двигатель CBR500R – двухцилиндровый четырёхтактный бензиновый двигатель с литражом 0,471 л и номинальной характеристикой, представляющей некую физическую величину, равную отношению произведённой работы к другой величине, измеряемой в секундах, минутах и некоторых других величинах. Единица измерения вышеупомянутой характеристики в международной системе –

Ватт. Количественное выражение упомянутой характеристики зависит от количества оборотов, производимых одной из вращающихся деталей двигателя, отнесённых к единичной величине, измеряемой в минутах, и составляет 35×10³ Вт, при количестве оборотов, равном 8600 за одну минуту.

Причин, по которым был выбран именно этот двигатель – несколько:

1) Двигатель CBR500R имеет малый литраж 0,471 л, при котором двигатель, даже с учётом падения мощности, вследствие перевода его на природный газ, вполне способен вырабатывать мощность 25 кВт на необходимой частоте, если оборудовать его турбонаддувом;

2) Вследствие малого литража, двигатель обладает низкими массогабаритными характеристиками, что даёт большую свободу для размещения аккумуляторных батарей.

Оптимальный коэффициент наддува определён в расчёте цикла.

Исходя из требуемой мощности удлинителя пробега был выбран генератор гибридного автомобиля Honda IMA с бензиновым двигателем, объёмом 1,5 л. Номинальная мощность генератора составляет 22 кВт., которую можно увеличить до необходимых 25 кВт. Также этот генератор обладает рядом важных компоновочных качеств, которые описаны в сецчасти.

Исходя из вышесказанного можно сделать вывод о перспективности подобного рода гибридных автомобилей, т.к. они являются экологичными, обладают преимуществами по сравнению с электромобилями и автомобилями с ДВС, хорошо подходят для условий России, а также соответствуют стратегии развития автомобильной промышленности Российской Федерации до 2035 года [3].

2 Расчет цикла и выбор основных параметров двигателя

Расчёт цикла был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 61-99] по методике Гринивецкого-Мазинга.

Цель расчёта цикла – определение степени наддува и других параметров, при которых мощность двигателя CBR500R будет составлять 25 кВт при частоте 5000 мин⁻¹. Расчёт должен проводиться для двигателя, использующего в качестве топлива природный газ, именно поэтому для получения необходимой мощности, двигатель должен оборудоваться агрегатом наддува. Расчёт проводится для восьми режимов (Таблица 1).

Таблица 1 – Расчётные режимы работы двигателя

Номер режима	1	2	3	4	5	6	7	8
Кол-во оборотов	4000	5000	6000	7000	8000	8600	9000	10000
вала, называемого								
коленчатым, мин ⁻¹								

Далее значения некоторых параметров в таблицах будут указываться несколько раз в зависимости от режима. Значения параметров, указанных один раз либо не зависят от режима, либо относятся к режиму №6.

Основные параметры двигателя представлены ниже, в таблице 2.

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
i	_	2	Количество цилиндров
τ	-	4	Тактность
ε	_	10,7	Степень сжатия
D	ММ	67	Диаметр цилиндра
R	MM	66,5	Радиус кривошипа
	ММ	115	Длина шатуна

Таблица 2 – Основные параметры двигателя CBR500R

2.1 Параметры топлива

Входные данные для расчёта измеряемых величин (параметров) горючего представлены даны в приложении (Таблица А.1). Выходные данные расчета представлены в таблице 3.

Таблица 3 – Выходные данные расчёта параметров топлива

Обозначение	Единица	Значение	измеряемой	Название	измеряемой
измеряемой	измерения	величины		величины	
величины	измеряемой				
	величины				
H'_u	МДж/м ³	35,46		Низшая теплот	га сгорания
				природного га	3a

2.2 Параметры рабочего тела

Данные для расчёта измеряемых величин тела рабочего (именуемых в других случаях – «параметры»), с которых начинается расчёт, представлены ниже (таблица 4). Выходные данные, т. е. как раз наоборот, результаты расчета, представлены в таблице 5.

Обозначение	Единица	Значение	измеряемой	Название из	змеряемой
измеряемой	измерения	величины		величины	
величины	измеряемой				
	величины				
α	_	1) 1,1		Коэффициент изб	ытка
		2) 1		воздуха	
		3) 1			
		4) 1			
		5) 1,1			
		6) 1,1			
		7) 1,15			
		8) 1.2			

Таблица 4 – Входные данные для расчёта параметров рабочего тела

Обозначение	Единица измерения	Значение	Название измеряемой величины
измеряемой	измеряемой	измеряемой	
величины	величины	величины	
<i>L</i> ′ ₀	м ³ возд./м ³ топл.	9,533	Теоретическое соотношение объёма смеси атмосферных газов к объёму газообразного топлива, необходимое для полного сгорания последнего
M'1	моль гор. см./ /моль топл.	1) 10,486 2) 9,533 3) 9,533 4) 9,533 5) 10,486 6) 10,486 7) 10,963 8) 11,44	Количество горючей смеси
M' _{CO2}	моль <i>СО</i> ₂ /моль топл.	1.013	Количество в-ва, описываемого химической формулой «це-о-два» и находящегося в третьем (после твёрдого и жидкого) агрегатном состоянии, которое осталось в результате неполной экзотермической реакции газообразного горючего
M _{CO}	моль <i>СО</i> /моль топл.	0	Количество в-ва, описываемого химической формулой «це-о», которое осталось в результате неполной экзотермической реакции газообразного горючего
M' _{H2} 0	моль <i>H</i> ₂ <i>O</i> /моль топл.	1,95	Количество в-ва, описываемого химической формулой «аш-два-о» и находящегося в третьем (после твёрдого и жидкого) агрегатном состоянии, которое осталось в результате неполной экзотермической реакции газообразного горючего
<i>M</i> _{<i>H</i>₂}	моль H_2 /моль топл.	0	Количество в-ва, описываемого химической формулой «аш-два», которое осталось в результате неполной экзотермической реакции газообразного горючего
M' _{N2}	моль <i>N</i> ₂ /моль топл.	7,602	Количество в-ва, описываемого химической формулой «эн-два», которое осталось в результате неполной экзотермической реакции газообразного горючего

Таблица 5 – Результаты расчета параметров рабочего тела

Обозначение	Единица измерения	Значение	Название измеряемой величины
измеряемой	измеряемой	измеряемой	
величины	величины	величины	
M'_{O_2}	моль O_2 /моль топл.		Количество в-ва, описываемого
2			химической формулой «о-два»,
			которое осталось в результате
			неполной экзотермической реакции
		0	газообразного горючего
M'_2	моль пр.сгор./	1) 11,518	Общее количество того, что
	/моль топл.	2) 10,565	осталось в результате неполной
		3) 10,565	экзотермической реакции
		4) 10,565	газообразного горючего
		5) 11,518	
		6) 11,518	
		7) 11,995	
		8) 12,471	

2.3 Параметры окружающей среды и остаточных газов

Входные количественные характеристики для расчёта измеряемых величин смеси газов окружающих и остаточных веществ в третьем АС представлены ниже (таблица 6). Результаты внесены в таблицу 7 и представлены в конце подраздела.

Таблица 6 – Входные количественные характеристики для расчёта измеряемых величин смеси газов окружающих и остаточных веществ в третьем AC

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
n _k	_	1,9	Коэффициент наддува
p_0	МПа	0,1	Давление смеси газов окружающих
T_0	К	293	Горячность смеси газов окружающих
n_{κ}	-	1,5	Показатель политропы сжатия смеси газов,
			получаемых из окружающих, в компрессоре
			(для радиально-центробежного
			компрессора)[1, с. 65]
p_{rN}	МПа	0,152	Давление остаточных веществ в третьем АС
			в режиме, определённом как номинальный

Таблица 7 – Выходные данные расчёта измеряемых величин смеси газов окружающих и остаточных веществ в третьем AC

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
p_r	МПа	0,152	Отношение силы остаточных газов,
			действующих на некую поверхность,
			характеризуемую площадью, к этой площади
p_{κ}	МПа	0,19	Давление смеси газов перед устройствами,
			обеспечивающими впуск
	К	363	Горячность смеси газов перед устройствами,
			обеспечивающими впуск

2.4 Процесс впуска

Входные данные для расчёта процесса впуска представлены ниже (таблица 8), где «СЗ» есть свежий заряд. Выходные данные расчёта представлены в конце подраздела (таблица 9).

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
ΔT_N	К	7	Увеличение горячности СЗ при номинальном
			режиме (для двигателя с наддувом) [1, с. 67]
R _B	Дж/(кг•К)	287,1	Удельная газовая постоянная известной
			смеси атмосферных газов
$(\beta^2 + \xi_{\scriptscriptstyle \mathrm{BII}})$		2,5	(для устройства, преобразующего хим.
			энергию горючего в мех. энергию,
			оборудованного электронным вбрызгом
			горючего) [1, с. 67]
$\omega_{\scriptscriptstyle m B\Pi}$	м/с	1) 62,9	Путь, проходимый частицей СЗ по
		2) 78,63	максимально узкой части впускного канала,
		3) 94,35	отнесённый к физической величине,
		4) 110,08	измеряемой в секундах.
		5) 125,81	
		6) 135,24	
		7) 141,53	
		8) 157,26	
$\varphi_{_{ m OY}}$	_	0,9	Коэффициент очистки
Ψ 0Ч	<u> </u>	0,7	Rospy indication o morain

Таблица 8 – Входные данные для расчёта процесса впуска

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
$arphi_{ extsf{D03}}$	_	1) 1,05	Коэффициент дозарядки
		2) 1,08	
		3) 1,12	
		4) 1,15	
		5) 1,18	
		6) 1,195	
		7) 1,21	
		8) 1,24	
T_r	К	1) 990	Горячность остаточных газов
		2) 1007	
		3) 1004	
		4) 1000	
		5) 978	
		6) 976	
		7) 965	
		8) 935	

Таблица 9 – Выходные данные расчёта процесса впуска

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
$ ho_{ m K}$	кг/м ³	1,824	Плотность заряда на впуске
$\Delta p_{\rm a}$	МПа	0,042	Потери давления на впуске
p_a	МПа	0,148	Давление в конце впуска
γ_r	-	0,024	Отношение количества оставшихся
			веществ к количеству СЗ, т. н. «коэфф.
			остаточных газов», который показывает
			цилиндра очистки качество. Сгорания
			продуктов от
T_a	К	384	Горячность в завершении впуска
η_V	_	1) 0,716	Коэффициент наполнения
		2) 0,764	
		3) 0,82	
		4) 0,867	
		5) 0,913	
		6) 0,937	
		7) 0,956	
		8) 0,995	

2.5 Процесс сжатия

Числовые значения измеряемых величин, необходимые для расчёта последовательности впуска даны в таблице 10. Выходные данные расчёта представлены в конце подраздела (таблица 11).

		1 1		
Обозначение	Единица	Значение	измеряемой	Название измеряемой
измеряемой	измерения	величины		величины
величины	измеряемой			
	величины			
n_1	_	1) 1,357		Средний показатель
		2) 1,36		политропы сжатия
		3) 1,363		
		4) 1,366		
		5) 1,369		
		6) 1,371		
		7) 1,372		
		8) 1,375		

T (10	D			••		
Гаолина	10 -	Вхолные	ланные	ΠΠΠ	пасчета	процесса	сжатия
таолица	10	Блодные	данные	длл	pue le lu	процесси	Chaim

Таблица 11 – Выходные данные расчёта процесса сжатия

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
p_c	МПа		Отношение силы к площади в конце
		3,819	сжатия
T_c	К	924	Горячность в завершении сжатия
t _c	°C	651	Горячность в завершении сжатия
$(mc_V)_{t0}^{tc}$	кДж/(кмоль∙град)		Средняя молярная характеристика
			способности смеси атмосферных
			газов увеличивать горячность при
			поглощении теплоты в завершении
		22,318	сжатия
$(mc''_{VCO2})_{t0}^{tc}$	кДж/(кмоль∙град)		Средняя молярная характеристика
			способности «це-о-два» увеличивать
			горячность при поглощении теплоты
		37,986	в завершении сжатия
$(mc''_{VH20})_{t0}^{tc}$	кДж/(кмоль∙град)		Средняя молярная характеристика
			способности «аш-два-о» в третьем
			АС увеличивать горячность при
			поглощении теплоты в завершении
		27,943	сжатия

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	-
величины	измеряемой	величины	
	величины		
$(mc''_{VN2})_{t0}^{tc}$	кДж/(кмоль•град)		Средняя молярная характеристика
× ///2/00			способности «эн-два» увеличивать
			горячность при поглощении теплоты
		22,026	в завершении сжатия
$(mc''_{VO2})_{t0}^{tc}$	кДж/(кмоль∙град)		Средняя молярная характеристика
			способности «о-два» увеличивать
			горячность при поглощении теплоты
		23,952	в завершении сжатия
$(mc''_{VCO})_{t0}^{tc}$	кДж/(кмоль∙град)		Средняя молярная характеристика
			способности «це-о» увеличивать
			горячность при поглощении теплоты
		22,336	в завершении сжатия
$(mc''_{VH2})_{t0}^{tc}$	кДж/(кмоль•град)		Средняя молярная характеристика
× /112/00			способности «аш-два» увеличивать
			горячность при поглощении теплоты
		21,067	в завершении сжатия
$(mc''_{V})_{t0}^{tc}$	кДж/(кмоль•град)		Средняя молярная характеристика
× /////			способности оставшихся веществ в
			третьем АС увеличивать горячность
			при поглощении теплоты в
		24,465	завершении сжатия
$(mc'_V)_{t0}^{tc}$	кДж/(кмоль•град)		Средняя молярная теплоёмкость
		22,368	рабочей смеси в завершении сжатия

2.6 Процесс сгорания

Выходные данные расчёта представлены в таблице 12.

Обозначение	Единица измерения	Значение	Название измеряемой величины
измеряемой	измеряемой	измеряемой	
величины	величины	величины	
ξ _z	_	1) 0,985 2) 0,99 3) 0,985 4) 0,975 5) 0,97 6) 0,96 7) 0,955 8) 0,0	Отношение теплоты, которая была пущена в дело, к её общему количеству, на участке где экзотермическая реакция газообразного горючего явно наблюдалась
μ ₀	моль пр. сгор./ /моль гор. см.	1,098	Коэффициент молекулярного изменения горючей смеси (свежего заряда)

05	Б	n	TT V
Обозначение	Единица измерения	Значение	Название измеряемои величины
измеряемой	измеряемой	измеряемой	
величины	величины	величины	
μ	моль пр. сгор./	1,096	Коэффициент молекулярного
	/моль гор. см.		изменения рабочей смеси
ΔH_{μ}	МДж/кг	-	Теплота, потерянная вследствие
			неполной хим. экзотермической
			реакции газообразного горючего
Н _{раб.см}	МДж/кмоль раб. см	73,99	Теплота сгорания рабочей смеси
t_z	°C	1) 2871	Температура в конце видимого
2		2) 2970	сгорания
		3) 2918	
		4) 2853	
		5) 2663	
		6) 2616	
		7) 2526	
		8) 2318	
$(mc''_{V})_{t0}^{tz}$	кДж/(кмоль град)	29,86	Средняя мольная теплоёмкость
< V/0		,	продуктов сгорания при
			постоянном объёме и температуре
			15012800°C
T_z	К	2889	Температура в конце видимого
2			сгорания
p_z	МПа	1) 12,31	Максимальное теоретическое
		2) 13,29	давление сгорания
		3) 13,54	
		4) 13,68	
		5) 13,1	
		6) 13,09	
		7) 12,75	
		8) 12	
$p_{z_{\mathcal{I}}}$	МПа	1) 10,47	Максимальное действительное
		2) 11,3	давление сгорания
		3) 11,51	
		4) 11,63	
		5) 11,14	
		6) 11,12	
		7) 10,84	
		8) 10,2	
λ	_	3,43	Степень повышения давления

2.7 Процессы расширения и выпуска

Выходные данные расчёта процесса расширения и выпуска представлены в конце подраздела (таблица 13).

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	-
величины	измеряемой	величины	
	величины		
<i>k</i> ₂	_	1,247	Средний показатель адиабаты расширения
<i>n</i> ₂	_	1,247	Средний показатель политропы
			расширения
p_b	МПа	0,681	Давление в конце расширения,
			изохорический процесс
T _b	К	1609	Горячность в конце расширения с
			подводом теплоты в изохорическом проц.
T _{rд}	К	976	Действительная температура остаточных
			газов
ΔT_r	%	0,01	Погрешность между $T_{r_{\mathcal{I}}}$ и T_r

Таблица 13 – Результаты расчётов протекания расширения и выпуска

2.8 Индикаторные параметры рабочего цикла

Входные данные для расчёта индикаторных параметров рабочего цикла представлены ниже (таблица 14). Результаты расчёта даны в приложении (Таблица А.2).

Таблица 14 – Входные данные для расчёта индикаторных параметров рабочего цикла

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
$arphi_{ m H}$	_	0,98	Коэффициент полноты диаграммы

2.9 Эффективные показатели двигателя

Выходные данные расчёта представлены в приложении (Таблица А.3).

2.10 Основные параметры цилиндра и двигателя

Выходные данные расчёта основных измеряемых величин цилиндра и устройства (ДВС) даны в приложении (Таблица А.4).

2.11 Построение индикаторной диаграммы

Графическое представление давления в цилиндре, как функцию от положения поршня (ИД), строим для режима №6 при помощи табличного редактора на ЭВМ по точкам.

Входные данные, необходимые для построения ИД, представлены ниже (таблица 15). Выходные данные, полученные при построении ИД, даны в конце подраздела (таблица 17).

Таблица 15 – Значения измеряемых величин, необходимые для калькуляции эффективных показателей двигателя

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
θ	градус	30	Угол опережения зажигания
$arphi_{ m 0.0.B bi \Pi. K \pi.}$	градус	33	Отрицательный угол запаздывания
			открытия устройства для выпуска газов
$arphi_{ ext{0.0.BП.КЛ.}}$	градус	5	Отрицательный угол запаздывания
			открытия устройства для впуска газов
$arphi_{\scriptscriptstyle 3.3.B ext{b} ext{III.KJ.}}$	градус	13	Угол запаздывания закрытия устройства
			для выпуска газов
<i>ф</i> _{з.з.вп.кл.}	градус	35	Угол запаздывания закрытия устройства
			для впуска газов

Перед началом построения индикаторной диаграммы определим некоторые важные параметры: объём камеры сгорания V_c и полный объём цилиндра V_a.

Объём камеры сгорания определяется по формуле

$$V_c = \frac{V_h}{\varepsilon - 1}, \, \pi. \tag{1}$$

Полный объём цилиндра определяется по формуле

$$V_a = V_c + V_h, \pi. \tag{2}$$

2.11.1 Построение расчётной индикаторной диаграммы

Построим расчётную индикаторную диаграмму. Для этого создаём таблицу. Столбец 1 содержит угол поворота коленвала φ , изменяющийся с шагом 5° (таблица 16), необходимо отметить, что таблица должна иметь две строки со значением $\varphi = 360^\circ$ и $\varphi = 540^\circ$. Столбец 2 содержит объём внутри цилиндра V при текущем значении φ , вычисленный по зависимости

$$V = V_c + F_{\Pi} [R(1 - \cos\varphi) + 0.25\lambda(1 - \cos2\varphi)], \pi,$$
(3)

где V – объём внутри цилиндра (как функция от φ), л;

 φ – угол поворота коленвала, град;

 $\lambda = L_{
m m}/R$ – отношение длины шатуна к радиусу кривошипа.

Таблица 16 –	Параметры,	необходимые	для построения	индикаторной	расчётной
диаграммы					

arphi, °	<i>V</i> , л	р, МПа (для	р, МПа (для
		расчётной	действительной
		диаграммы)	диаграммы)
0	0,024	0,148	0,150
5	0,025	0,148	0,149
10	0,027	0,148	0,149
15	0,029	0,148	0,148
180	0,260	0,148	0,148
185	0,259	0,149	0,149
190	0,259	0,149	0,149
195	0,257	0,151	0,151
200	0,255	0,152	0,152
205	0,252	0,155	0,155
210	0,248	0,158	0,158
215	0,244	0,162	0,162
220	0,239	0,166	0,166
225	0,234	0,171	0,171
510	0,252	0,661	0,650
515	0,255	0,652	0,600
520	0,257	0,645	0,550
525	0,259	0,640	0,450
530	0,259	0,637	0,400
535	0,260	0,636	0,350
540	0,259	0,637	0,335
540	0,259	0,152	0,335

<i>φ</i> , °	<i>V</i> , л	р, МПа (для	р, МПа (для
		расчётной	действительной
		диаграммы)	диаграммы)
720	0,024	0,152	0,151

На расчётной индикаторной диаграмме можно выделить следующие точки:

а – точка конца впуска;

с – точка конца сжатия;

z – точка конца видимого сгорания;

b – точка конца расширения;

1-точка начала выпуска;

r – точка конца выпуска;

r'' – точка начала впуска.

Эти точки изображены на рис. 1.

Рисунок 1 – Пример расчётной и действительной индикаторной диаграммы с характерными точками

Столбец 3 содержит давление внутри цилиндра p, для построения расчётной индикаторной диаграммы, при текущем значении φ . При углах φ от 0 до 180 давление p соответствует давлению в конце впуска p_a . При углах φ от 190 до 360 (верхнее значение) давление p рассчитывается по формуле

$$p = p_a (V_a/V)^{n_1}, \text{M}\Pi a, \tag{4}$$

где *V* – текущий объём внутри цилиндра (функция от угла поворота коленвала φ), л.

При угле $\varphi = 360^{\circ}$ (нижнее значение) давление $p = p_z$.

Объём цилиндра в конце расширения рассчитывается по формуле

$$V_{b} = V_{c} + F_{\Pi} [R (1 - \cos(540 - \varphi_{0.0.B \text{ bin. K.n.}})) + 0.25\lambda (1 - \cos(540 - \varphi_{0.0.B \text{ bin. K.n.}}))], \pi,$$
(5)

где $\varphi_{0.0.Bып.кл.}$ – отрицательный угол запаздывания открытия устройства, обеспечивающего выпуск, °.

При углах φ от 370° до 540° (верхнее значение) давление p рассчитывается по формуле

$$p = p_b (V_b/V)^{n_2}, \text{M}\Pi\text{a}, \tag{6}$$

где *V* – текущий объём, ограниченный стенкой ц., днищем п. и головкой ц. (зависимость от углового положения вала, имеющего колена, *φ*), л.

При значении φ от 540° (наименьшее значение) до 720° давление p соответствует давлению остаточных газов p_r .

Построенная расчётная индикаторная диаграмма в p-V координатах представлена в приложении (Рисунок А.1).

2.11.2 Построение действительной индикаторной диаграммы

Построение действительной индикаторной диаграммы производится по следующим основным точкам:

а – конец впуска;

с' – зажигание;

с" – точка повышенного давления в конце сжатия;

z_д – действительная точка конца видимого сгорания;

b' – точка открытия выпускного клапана;

b'' – точка сниженного давления в конце расширения;

r – точка конца выпуска;

а' – точка начала впуска.

Столбец 4 содержит давление внутри цилиндра p для построения действительной индикаторной диаграммы при текущем значении φ . Точки г и а' должны быть соединены на диаграмме плавной кривой, поэтому, при угле $\varphi = 720 - \varphi_{0.0.BILKTML}$ (точка а') $p = p_r$, при угле $\varphi = \varphi_{3.3.BыILKTML}$ (точка г) $p = p_a$, промежуточные значения давлений подбираем так, чтобы точки г и а' были соединены плавной кривой.

При углах φ от $\varphi_{_{3.3.ВЫП.КЛ.}}$ (точка г) до 180 $p = p_a$.

При углах φ от 180 до $\varphi = 360 - \theta$ (точка с') давление p рассчитывается по формуле

$$p = p_a (V_a/V)^{n_1}, \text{M}\Pi a, \tag{7}$$

где *V* – текущий объём внутри цилиндра (функция от угла поворота коленвала φ), л.

Рассчитаем давление в точке с'' по формуле

$$p_{c''} = 1,2p_c, M\Pi a.$$
 (8)

При угле $\varphi = 360 \ p = p_{c''}$ (точка с''). Значения давлений на промежутке от $\varphi = 360 - \theta$ (точка с') до $\varphi = 360$ подбираем так, чтобы очки с' и с'' были соединены плавной кривой.

Пусть точка z_{π} соответствует углу $\varphi = 365^{\circ}$, давление в этой точке соответствует давлению $p_{z\pi}$. Точка b' соответствует углу

 $\varphi = 540 - \varphi_{0.0.Bып.кл.}$. При углах φ от 365 до $\varphi = 540 - \varphi_{0.0.Bып.кл.}$ (точка b') давление p рассчитывается по формуле

$$p = p_h (V_h / V)^{n_2}, \text{MIIa}, \tag{9}$$

где V – текущий объём внутри цилиндра (функция от угла поворота коленвала φ), л.

Точка b'' находится примерно посередине между точками b и l на расчётной индикаторной диаграмме. Поэтому давление в точке b'' принимаем $p_{b''} = (p_b + p_l)/2$ МПа. Значения давлений на промежутке от $\varphi = 540 - \varphi_{0.0.Bып.кл.}$ (точка b') до $\varphi = 540$ (точка b'') подбираем так, чтобы очки b' и b'' были соединены плавной кривой.

Далее, после точки b'' ($\varphi = 540$), кривая плавно перетекает в горизонтальную прямую, которая соответствует давлению $p = p_r$, и продолжается до точки г ($\varphi = 715$).

Построенная действительная индикаторная диаграмма в p-V координатах представлена в приложении (Рисунок А.2).

Действительная и расчётная индикаторные диаграммы в p-V координатах представлены в приложении (Рисунок А.3).

Действительная индикаторная диаграмма в р-ф координатах представлена в приложении (Рисунок А.4).

~ ~	_		
Обозначение	Единица	Значение	Название параметра
HODOMOTRO	UDMODOUUI	Поромотро	
параметра	измерения	параметра	
	параметра		
V _c	Л	0,024	Объём камеры сгорания
Va	Л	0,26	Полный объём цилиндра
V _b	Л	0,246	Объём цилиндра в конце расширения
<i>p</i> _{<i>c</i>''}	МПа	4,583	Давление в точке с''
рь''	МПа	0,335	Давление в точке b''

Таблица 17 – Выходные данные, полученные при построении индикаторной диаграммы

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
λ	_	0,29	Отношение длины шатуна к радиусу
			кривошипа

2.12 Построение внешней скоростной характеристики

ВСХ строится по значениям номинальной мощности на разных скоростных режимах работы двигателя. Внешняя скоростная характеристика двигателя CBR500R, использующего в качестве топлива природный газ, приведена в приложении (Рисунок А.5).

Выводы по второму разделу.

В результате проведения расчёта цикла была определена номинальная мощность двигателя – 27 кВт, коэффициент наддува – 1,9 и удельный эффективный расход топлива 297 г/(кВт*ч).

3 Кинематический расчет двигателя

Кинематический расчет двигателя есть определение числовых значений изменения линейной координаты поршня, её первой и второй производных по времени, как функции угла поворота коленчатого вала. Принимается, что коленвал вращается с постоянной угловой скоростью.

Графики координаты поршня и её производных в зависимости от угла поворота коленвала строим для номинального режима при помощи табличного редактора на ЭВМ по точкам, затем выводим его в виде растрового изображения в отдельный файл.

Входные данные для расчета представлены в таблице ниже (таблица 18). Выходные данные расчёта представлены в конце раздела. (Таблица 19).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
S	ММ	66,8	Ход поршня
R	ММ	67	Радиус кривошипа (Таблица)
λ	_	0,29	Отношение длины шатуна к радиусу
			кривошипа (Таблица)
n	мин ⁻¹	8600	Частота вращения коленвала

Таблица 18 – Входные данные для кинематического расчета двигателя

Построенный таким образом график зависимости перемещения поршня s_x от угла поворота коленвала φ показан на рисунке А.6.

Также построен график зависимости первой производной координаты поршня ϑ_{n} (скорости) от угла поворота коленвала φ (рисунок А.7) и график зависимости второй производной координаты поршня *j* (ускорения) от угла поворота коленвала φ (рисунок А.8).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
ω	рад/с	901	Угловая скорость коленвала

Выводы по третьему разделу.

В результате проведения кинематического расчёта были получены графики зависимости перемещения, скорости и ускорения поршня от угла поворота коленчатого вала.

4 Динамический расчет двигателя

4.1 Общие сведения

В динамическом расчёте двигателя внутреннего сгорания определяем суммарные силы и моменты, которые воздействуют на подвижные детали кривошипно-шатунного механизма, возникающие в результате давления газов и сил инерции. По результатам расчёта производится построение графиков.

Динамический расчёт проводим для номинального режима. Все графики строим при помощи табличного редактора на ЭВМ по рассчитанным точкам.

4.2 Силы давления газов

График зависимости избыточного давления от угла поворота коленвала приведён на рисунке А.9.

4.3 Приведение масс частей кривошипно-шатунного механизма

Приведённые массы деталей кривошипно-шатунного механизма, их названия и числовые значения представлены ниже (таблица 20). Выходные данные приведены в конце подраздела (таблица 21).

25	-	n	TT .
Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
m_{π}	КГ	0,194	Масса поршневой группы
m _{III}	КГ	0,329	Масса шатунной группы
			Положение центра тяжести шатуна
			относительно теоретической оси шатунной
L _{Ш.к}	MM	20	шейки
_			
Lui	MM	115	Длина шатуна
			Масса шатунной шейки с прилегающими к ней
тш.ш	КГ	0,21	частями щёк
			Масса средней части щеки по контуру abcd
mщ	КГ	0,103	(см. рис.)

Таблица 20 – Исходные данные для расчёта приведённых масс частей КШМ

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Положение центра тяжести средней части
			щеки по контуру abcd относительно оси
ρ	MM	2,2	коленчатого вала

На рисунке 2 показана динамически равнозначная реальному КШМ система сосредоточенных масс.

Рисунок 2 – Система сосредоточенных масс, динамически равнозначная кривошипношатунному механизму

Параметры, указанные на рисунке, были получены путём построения точных трёхмерных математических моделей поршней с маслосъёмными и компрессионными кольцами, поршневых пальцев с упорными кольцами, шатунов с шатунными болтами и гайками, коленчатого вала и назначения моделям соответствующих материалов.

На рисунке:

- 1) m_п масса поршневой группы (измерена по ММ);
- 2) т_ш масса шатунной группы (измерена по ММ);

3) $L_{\text{ш.к}}$ – расстояние от ЦТ шатуна до оси шатунной шейки (измерено по MM);

4) L_ш – длина шатуна;

5) m_{ш.ш} – масса шатунной шейки с прилегающими частями щёк (измерена по MM);

6) m_{μ} – масса средней части щеки по контуру abcd (рис. 2) (измерена по MM);

7) р – расстояние от оси коленвала до центра тяжести средней части щеки по контуру abcd (измерено по MM).

Рисунок 3 – Модель коленчатого вала

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Расстояние от центра тяжести шатуна до теоретической прямой линии, являющейся осью цилиндрической поверхности по которой происходит сопряжение поршня и
$L_{\rm m,m}$	MM	95	поршневого пальца

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
1 1	параметра	1 1	
	параметра		
			Суммарное значение меры инертности
			частей деталей, расположенных вблизи
			теоретической прямой, являющейся осью
			цилиндрической поверхности по которой
			происходит сопряжение поршня и
$m_{{\scriptscriptstyle \mathrm{III.III}}}$	КГ	0,057	поршневого пальца
			Суммарное значение меры инертности
			частей деталей, расположенных вблизи
			теоретической прямой, являющейся осью
			цилиндрической поверхности по которой
			происходит сопряжение шатуна и
$m_{_{ m III.K}}$	КГ	0,272	коленчатого вала
			Масса, двигающаяся вдоль прямой оси
m_j	КГ	0,251	цилиндра туда-сюда
			Мера инертности части одного колена
			вала, которая не уравновешена
$m_{ m K}$	КГ	0,224	противовесами
			Масса, траектория движения которой есть
m_R	КГ	0,495	окружность

4.4 Силы инерции

Суммарные силы, действующие в кривошипно-шатунном механизме приведены в таблице 22.

Таблица 22 – Результат расчёта сил инерции

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Сила инерции массы шатуна,
К _{КШ}	кН	-7	совершающей вращательное движение
			Сила инерции массы кривошипа,
K _{RK}	кН	-6	совершающей вращательное движение
K _R	ĸН	-13	Общая сила ин. вращающихся масс

4.5 Суммарные силы, действующие в кривошипно-шатунном механизме

Результаты расчёта сложенных сил, действующих в кривошипношатунном механизме приведены в таблице 23. Строим график зависимости сил P, S, N от φ (Рисунок А.10) и график зависимости сил K, T от φ (Рисунок А.11).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Значение касательной (танг.) силы,
T _{cp}	кН	0,99	усреднённое, за цикл
M _{cp}	Н∙м	66,1	Суммарный крутящий момент

Таблица 23 – Результаты расчёта сложенных сил, действующих в КШМ

4.6 Силы, действующие на шатунные шейки коленчатого вала

Результаты расчёта сил, действующих на шатунные шейки коленчатого вала, приведены в таблице 24.

Строим график зависимости P_{κ} от T (Рисунок А.12), который характеризует модуль силы $R_{\mu,\mu}$ и её наклон относительно оси кривошипа.

Также строим график $R_{\text{ш.ш.}}$ от φ (Рисунок А.13), по которому определяем максимальное $R_{\text{ш.ш.}max}$, минимальное $R_{\text{ш.ш.}min}$ и среднее $R_{\text{ш.ш.}cp}$ значение силы, которая воздействует на шейку вала, на которую установлен шатун.

Таблица 24 – Результаты расчёта сил, действующих на шейки вала, на которые установлен шатун

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Максимальная сила, которая воздействует
			на шейку вала, на которую установлен
$R_{\text{III.III.}max}$	κН	22,844	шатун
			Минимальная сила, которая воздействует
			на шейку вала, на которую установлен
$R_{\text{III.III.}min}$	κН	0,338	шатун
			Средняя сила, которая воздействует на
R _{ш.ш.ср}	кН	10,638	шейку вала, на которую установлен шатун

4.7 Силы, действующие на коренные шейки коленчатого вала

Данные для расчёта сил, действующих на те шейки коленчатого вала, на которых вал установлен в блоке, приведены ниже (таблица 25). Выходные данные расчёта приведены в конце подраздела в таблице 26.

Таблица 25 – Входные данные для расчёта сил, действующих на те шейки коленчатого вала, на которых вал установлен в блоке

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Линейный размер между точками
			проекции на ось коленвала центра 1-й
$l_{1.1}$	MM	49	коренной и центра 1-й шатунной шейки
			Линейный размер между точками
			проекции на ось коленвала центра 1-й
l _{1.2}	MM	37	шатунной и центра 2-й коренной шейки
			Линейный размер между точками
			проекции на ось коленвала центра 2-й
$l_{2.1}$	MM	37	коренной и центра 2-й шатунной шейки
			Линейный размер между точками
			проекции на ось коленвала центра 2-й
l _{2.2}	MM	44	шатунной и центра 3-й коренной шейки
γ_{κ}	градус	180	Угол между осями кривошипами

По значениям T_{κ} и K_{κ} строим диаграмму силы $R_{\kappa,\mu}$ в полярных координатах T и K (Рисунок А.14).

Также строим график зависимости $R_{\text{к.ш.}}$ от φ (Рисунок А.15), по которому определяем максимальное $R_{\text{к.ш.}max}$, минимальное $R_{\text{к.ш.}min}$ и среднее $R_{\text{к.ш.}cp}$ значение силы, действующей на 2-ую коренную шейку.

Таблица 26 – Выходные данные расчёта сил, действующих на те шейки коленчатого вала, на которых вал установлен в блоке

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
<i>L</i> ₁	MM	86	Линейный размер между точками проекции на ось коленвала центра 1-й коренной и центра 2-й коренной шейки
L_2	MM	81	Линейный размер между точками проекции на ось коленвала центра 2-й коренной и центра 3-й коренной шейки

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Мах сила, действующая на 2-ую коренную
R _{к.ш.max}	κН	20,071	шейку
			Min сила, действующая на 2-ую коренную
$R_{\mathrm{K},\mathrm{III},min}$	κН	1,093	шейку
			Средняя сила, действующая на 2-ую
R _{к.ш.ср}	кН	3,77	коренную шейку

Выводы по четвёртому разделу.

В динамическом расчёте двигателя внутреннего сгорания определили суммарные силы и моменты, которые воздействуют на подвижные детали кривошипно-шатунного механизма, возникающие в результате давления газов и сил инерции. По результатам расчёта произвели построение графиков.
5 Уравновешивание двигателя

Входные данные для расчёта уравновешивания двигателя приведены ниже (27). Выходные данные расчёта приведены в конце подраздела (28).

Таблица 27 – Входные данные для расчёта уравновешивания двигателя

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
			Расстояние от теоретической прямой
			линии, вокруг которой происходит
			вращение коленчатого вала, до точки ц.т.
f	М	0,035	противовеса с массой $m_{{ m np}K_R}$

Таблица 28 – Выходные данные расчёта уравновешивания двигателя

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
			Величина, характеризующая меру
			инертности противовесов для
$m_{{ m np}K_R}$	КГ	0,236	уравновешивания силы K_R
			Величина, характеризующая меру
			инертности противовесов для
$m_{\mathrm{np}M_{j}}$	КГ	0,12	уравновешивания момента М _і

Вывод по пятому разделу.

В результате проведения расчёта уравновешивания двигателя были определены параметры противовесов коленчатого и балансировочного валов.

6 Конструирование и расчет на прочность основных деталей двигателя

6.1 Расчёт коленчатого вала

6.1.1 Общие сведения

Коленчатый вал двигателя рассчитывается на номинальном режиме.

6.1.2 Определение удельного давления на поверхности шеек

Исходные данные для расчёта давления на поверхности шеек приведены ниже (таблица 29). Выходные данные расчёта приведены в конце подраздела (таблица 30).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
$d_{ ext{m.m}}$	М	0,036	Диаметр шатунной шейки
l' _{ш.ш}	М	0,017	Рабочая ширина шатунного вкладыша
d _{к.ш}	М	0,017	Диаметр коренной шейки
l' _{к.ш}	М	0,017	Рабочая ширина коренного вкладыша

Таблица 29 – Исходные данные для расчёта давления на шейку

Таблица 30 – Результаты расчёта удельного давления на шейку

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Среднее удельное давление на шатунную
k _{ш.ш.ср}	МПа	17,38	шейку
			Среднее удельное давление на 2-ю коренную
k _{к.ш.ср}	МПа	13,04	шейку
	МПа		Максимальное удельное давление на
k _{ш.ш.max}		37,327	шатунную шейку
	МПа		Максимальное удельное давление на 2-ю
k _{к.ш2.max}		69,451	коренную шейку

6.1.3 Расчёт коренных и шатунных шеек

Входные данные для расчёта коренных и шатунных шеек приведены в приложении (Таблица А.5). Выходные данные расчёта приведены в конце подраздела (Таблица А.6).

Расчёт 2-й коренной шейки

Производим расчёт этой коренной шейки, как наиболее нагруженной. Расчёт проводим только на кручение. После расчёта строим график скручивающего момента 2-й коренной шейки $M_{\text{к.ш2}} = M_{\text{кр.ц.2}}$, как функцию угла поворота коленвала φ (см. рис. А.16).

Расчёт 2-й шатунной шейки

В отличие от коренных, шатунные шейки рассчитываются как на кручение, так и на изгиб.

Строим график зависимости скручивающего момента 2-й коренной шейки $M_{\text{ш.ш2}} = M_{\text{кр.ц.2}}$ (рисунок А.17) от угла поворота коленвала φ .

Строим график зависимости $M_{\varphi_{M}}$ от угла поворота коленвала φ , рисунок А.18.

6.1.4 Расчёт щёк

Входные данные для расчёта щёк приведены ниже (Таблица А.7). Выходные данные расчёта приведены в конце подраздела (Таблица А.8).

6.2 Расчёт поршня двигателя

Расчёт поршня был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 254-266].

Расчёт поршня проводится для номинального режима.

Входные данные для расчета поршня двигателя представлены ниже (Таблица А.9). Выходные данные расчёта приведены в конце подраздела (Таблица А.10).

6.3 Расчёт поршневого пальца двигателя

Расчёт поршневого пальца был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 273-280].

Исходные данные для проведения расчета детали двигателя, имеющей цилиндрическую форму и служащей для соединения поршня с шатуном, представлены в приложении в таблице A.11, а результаты в таблице A.12.

6.4 Расчёт шатунной группы двигателя

Расчёт шатунной группы был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 280-307]. Шатун изготовлен из стали 40Х методом горячей штамповки. Поковка подвергается дробеструйной обработке, закалке, отпуску и КП 315. Отверстие в поршневой головке шатуна подвергается чистовому точению без упрочнения поверхности. Втулка – отсутствует. В поршневой головке имеются два отверстия для подвода масла.

6.4.1 Поршневая головка

Расчёт поршневой головки был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 280-296]. Входные данные для расчёта поршневой головки шатуна представлены в приложении (Таблица А.13).

6.4.2 Кривошипная головка

Расчёт кривошипной головки был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 296-299]. Входные данные для расчёта кривошипной головки шатуна представлены ниже (таблица 31).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
m _{кр}	КГ	0,11	Масса крышки кривошипной головки
m _{ш.п}	КГ	0,057	Масса шатунной группы, совершающая
			движение вдоль оси цилиндра

Таблица 31 – Входные данные для расчёта кривошипной головки шатуна

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
тш.к	КГ	0,272	Масса шатунной группы, совершающая
			вращательное движение
Сб	М	0,051	Расстояние между шатунными болтами
t _B	М	0,0015	Толщина стенки вкладыша
l _K	М	0,02	Длина кривошипной головки
d _{III.III}	Μ	0,032	Диаметр шатунной шейки

Примечание – ω_{х.х.max} равна n_N, т.к. она ограничена электронной системой управления.

6.4.3 Стержень шатуна

Расчёт стержня шатуна был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 299-304]. Входные данные, по которым рассчитана центральная часть шатуна, соединяющая поршневую и кривошипную головки, представлены в таблице А.14 приложения.

6.4.4 Шатунные болты

Шатунные болты рассчитаны по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 304-307]. Материал болтов – сталь 40ХНМА. Входные данные для расчёта представлены ниже (таблица 32).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
iб	_	2	Число шатунных болтов
χ	_	0,2	Коэффициент основной нагрузки
			резьбового соединения
d	Μ	0,006	Номинальный диаметр болта
t	М	0,001	Шаг резьбы

Таблица 32 – Входные данные для расчёта шатунных болтов

Выводы по шестому разделу.

В результате конструирования и расчёта на прочность основных деталей двигателя был рассчитан поршень, поршневой палец, шатун и коленчатый вал двигателя.

7 Конструирование и расчет механизма газораспределения

7.1 Конструирование и расчет впускных элементов механизма газораспределения

7.1.1 Общие сведения

Расчёт был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 352-356].

Было решено принять максимальную высоту, на которую происходит открытие (подъём) клапана h_{кл.max} и диаметр горловины d_{гор} близкими к параметрам аналога. Многие параметры в данном разделе берутся по аналогу.

Схема привода клапанов двигателя CBR500R, изображена на рисунках 4 и 5.

Рисунок 4 – Схема привода клапанов

Рисунок 5 – Схема привода клапанов

Изображённая схема, применительно к одному цилиндру, включает в себя кулачок, роликовый толкатель, рычаг, две тарелки пружины, сухари, две пары пружин, две опорные шайбы пружин, две направляющие втулки, два клапана. Угол фаски клапана – 45°. На каждый цилиндр приходится по два впускных клапана.

7.1.2 Профилирование кулачков впускного распредвала методом Курца

Расчёт кулачка Курца был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 360-393]. Двигатель CBR500R является быстроходным, поэтому на нём используется безударный кулачок, а именно – кулачок Курца. В данной работе профиль кулачка построен не был, был лишь определён закон изменения перемещения клапана в зависимости от углового положения распредвала. По данному закону, в дальнейшем, можно построить

профиль кулачка. Исходные данные для расчета кулачка и результаты представлены соответственно в таблицах А.15 и А.16 приложения.

1) Рассчитаем угол φ_{p0}, который является углом, на котором клапан находится в открытом состоянии. Он рассчитывается по формуле

$$\varphi_{p0} = (\varphi_{\pi p} + \varphi_{3\pi} + 180)/4 = 55, градусы,$$
(10)

где фпр – угол предварения открытия клапана, град;

 $\phi_{\mbox{\tiny 3\Pi}}-$ угол запаздывания закрытия клапана, град.

2) Определим радиус начальной окружности кулачка и радиус тыльной части кулачка.

Радиус начальной окружности кулачка рассчитывается по формуле

$$r_0 = 1,75h_{\kappa л.max}$$
, мм. (11)

Радиус тыльной части кулачка рассчитывается по формуле

$$r_{\rm k} = r_0 - \Delta s, \,\rm MM, \tag{12}$$

где *Δs* – зазор, учитывающий упругие деформации, мм.

3) Определим продолжительность участка сбега кулачка Φ_0 (в углах поворота коленвала), на котором происходит выбор зазора Δs (при набегании и сбегании кулачка).

Продолжительность участка сбега кулачка, выраженная через угол поворота распредвала, рассчитывается по формуле

$$\Phi_0 = \frac{\pi^2 \Delta s}{2 \cdot 180 \omega'_{\text{т0к}}}, \text{рад,}$$
(13)

4) Решаем систему уравнений

$$\Phi_1 + \Phi_2 + \Phi_3 = \frac{\pi \,\varphi_{\rm p0}}{180} \tag{14}$$

$$\Phi_2 = 0.125 \ \Phi_3 \tag{15}$$

$$\Phi_2 + \Phi_3 = 2.25 \ \Phi_1 \tag{16}$$

где Ф₁ – участок разгона (в углах поворота распредвала), рад;

Ф2 – первый участок торможения (в углах поворота распредвала), рад;

Φ₃ – второй участок торможения (в углах поворота распредвала), рад. Примечание – В настоящем разделе углы Φ₀, Φ₁, Φ₂, Φ₃ даны в углах поворота распредвала.

После решения системы уравнений находим углы Φ_1 , Φ_2 , Φ_3 , все они изображены ниже (см. рис. 6).

Рисунок 6 – Углы, выражающие определённые участки кулачка и отображённые на оси угла поворота распредвала

Примечание – Углы ϕ_{np} и ϕ_{3n} выражены в углах поворота распредвала, а углы Φ_0 , Φ_1 , Φ_2 , Φ_3 в градусах. Отметка 0° на координатной прямой соответствует ВМТ.

Далее определяем коэффициенты, необходимые для описания закона движения клапана. Исходим из того, что перемещения, скорости и ускорения должны быть равны при переходе с каждого участка на следующий. Эти коэффициенты рассчитываются по следующим формулам

$$c_{11} = \frac{K_1 \omega n_{\text{TOK}} + K_2 h_{\text{KJ},max}}{2K_1 + K_2 \Phi_1};$$
(17)

$$c_{12} = \frac{\Phi_1(c_{11} - \omega''_{\text{TOK}})}{\pi}; \tag{18}$$

$$c_{32} = \frac{2c_{11} - \omega''_{\text{TOK}}}{K_2}; \tag{19}$$

$$c_{21} = c_{32}k_3; (20)$$

$$c_{22} = c_{32}k_1; (21)$$

$$c_{31} = \frac{c_{32}(1-Z)}{6\Phi_3^2}; \tag{22}$$

$$c_{33} = c_{32}k_2. (23)$$

где
$$K_1 = k_1 + k_2 + k_3 \Phi_2;$$

 $k_1 = 8Z(\Phi_2/\pi)^2;$
 $Z;$
 $k_2 = \Phi_3^2(5 + Z)/6;$
 $k_3 = \Phi_3^2(4 + 2Z)/3;$
 $\omega^{22} = 180\omega^2 \circ \pi = 0.859 -$ церрая произ

ω''_{т0к} = 180ω'_{т0к}/π = 0.859 – первая производная перемещения толкателя в момент окончания участка сбега, мм/рад;

 $K_2 = k_3 + 4Z\Phi_2/\pi;$

Ф2 – первый участок торможений, рад;

Ф3 – второй участок торможений, рад.

Далее переводим углы предварения открытия и запаздывания закрытия клапана из угловых единиц поворота коленвала в единицы поворота распредвала (градусы). В этом случае формула угловой величины предварения открытия устройства газораспределения (клапана) в градусах поворота распредвала будет выглядеть следующим образом

$$\varphi_{\text{пр.р}} = \frac{\varphi_{\text{пр}}}{2}$$
, градус. (24)

Формула угла запаздывания закрытия устройства в градусах поворота распредвала будет следующей

$$\varphi_{3п.p} = \frac{\varphi_{3n}}{2},$$
градус. (25)

Определим углы поворота распределительного вала и, соответственно, кулачка для начала каждого участка (см. рис. 6). Они вычисляются по формулам

$$\varphi_{\kappa 0 \mu} = -(\Phi_0 + \varphi_{\pi p.p}),$$
 градус; (26)

$$\varphi_{\kappa 1 \mathrm{H}} = -\varphi_{\mathrm{пр.p.}}$$
, градус; (27)

$$\varphi_{\kappa 2 \mu} = \varphi_{\pi p. p} + \Phi_1$$
, градус; (28)

$$\varphi_{\kappa_{3H}} = -\varphi_{\text{пр.р}} + \Phi_1 + \Phi_2, \text{градус;}$$
(29)

$$\varphi'_{\kappa 3 \mu} = \varphi_{\kappa 3 \mu} + \Phi_3, \text{ градус.} \tag{30}$$

Примечание – Углы Ф₀, Ф₁, Ф₂, Ф₃ выражены в градусах.

В координатных осях h(φ) (где h – перемещение клапана, мм; φ – угол поворота распредвала, град) построим график по нижеприведённой системе уравнений

$$\mathbf{h} = \Delta \mathbf{s} \left[1 - \cos \left[\frac{\pi}{180} \left[\frac{\pi}{2 \Phi_0} \left(\varphi - \varphi_{\mathbf{k}0\mathbf{H}} \right) \right] \right] \quad \mathbf{при} \quad \varphi_{\mathbf{k}0\mathbf{H}} \le \varphi < \varphi_{\mathbf{k}1\mathbf{H}} ;$$
(31)

$$h = \Delta s + c_{11} \left[\frac{\pi}{180} \left(\varphi - \varphi_{\kappa 1 H} \right) \right] - c_{12} \sin \left[\frac{\pi}{180} \left[\frac{\pi}{\Phi_1} \left(\varphi - \varphi_{\kappa 1 H} \right) \right] \right]$$
 при
при $\varphi_{\kappa 1 H} \le \varphi < \varphi_{\kappa 2 H}$; (32)

$$h = \Delta s + c_{11} \Phi_1 + c_{21} \left[\frac{\pi}{180} \left(\varphi - \varphi_{\kappa 2H} \right) \right] + c_{22} \sin \left[\frac{\pi}{180} \left[\frac{\pi}{2 \Phi_2} \left(\varphi - \varphi_{\kappa 2H} \right) \right] \right] \text{ при }$$
(33) при $\varphi_{\kappa 2H} \le \varphi < \varphi_{\kappa 3H}$;

$$h = \Delta s + c_{11} \Phi_{1} + c_{21} \Phi_{2} + c_{22} + c_{31} \left[\Phi_{3} - \left[\frac{\pi}{180} \left(\varphi - \varphi_{K3H} \right) \right] \right]^{4} - c_{3} \times$$

$$\times \left[\Phi_{3} - \left[\frac{\pi}{180} \left(\varphi - \varphi_{K3H} \right) \right] \right]^{2} + c_{33} \quad \text{при} \quad \varphi_{K3H} \le \varphi < \varphi'_{K3H};$$

$$h = 0 \quad \text{при} \quad \varphi < \varphi_{K3H}.$$

$$(34)$$

По данной системе уравнений построим график. Полученный график будет отображать зависимость перемещения клапана от угла поворота распредвала от $\phi_{\kappa 0 \mu}$ (угол начала перемещения

клапана) до $\phi'_{\kappa_{3H}}$ (угол, при котором клапан максимально открыт). График изображён на рисунке 7.

Рисунок 7 – График зависимости перемещения клапана h от угла поворота распредвала ф при угле поворота распредвала от $\phi_{\kappa 0 \mu}$ до $\phi'_{\kappa 3 \mu}$

Отзеркалим вышеприведённый график относительно вертикали, проведённой через $\varphi'_{\kappa_{3H}}$, получим полноценный график зависимости перемещения клапана h от угла поворота распредвала φ , рис. 8.

Рисунок 8 – График зависимости перемещения клапана h от угла поворота распредвала φ, при отсутствии упругих деформаций в клапанном механизме

Необходимо отметить, что данный график будет справедлив при отсутствии упругих деформаций в клапанном механизме, максимальное перемещение клапана по данному графику равно сумме максимального перемещения клапана (заданного в начале раздела) и зазора, учитывающего упругие деформации, ($h_{\kappa n.max} + \Delta s$). В реальности упругие деформации будут, поэтому, на реальном графике зависимости перемещения клапана от угла поворота распредвала, максимальное перемещение клапана будет соответствовать максимальное перемещение клапана hкл.max (заданному в начале раздела). Таким образом, по графику h(ф) (рис. 8), а также зная геометрические параметры кинематической схемы привода клапанов, можно построить профиль безударного кулачка, который будет обеспечивать заданное максимальное перемещение клапана h_{кл.max}.

Найдём функцию изменения положения клапана h, мм, от времени t, c

$$h_t(t) = h(6n_p t), MM,$$
 (35)

где h – функция изменения положения клапана h от угла поворота распредвала ф;

49

 $n_p = n/2 - частота вращения распредвала, мин⁻¹;$

n – частота вращения коленвала, мин⁻¹;

t – время, с.

Примечание – График $h_t(t)$ в данной работе не приведён.

Найдём функцию скорости клапана ω, мм, от времени t, с. Она является производной функции h_t(t) и вычисляется по формуле

$$\omega_t(t) = \frac{d(h_t(t))}{dt}, \text{MM/C}, \tag{36}$$

где t – время, с.

Примечание – График $\omega_t(t)$ в данной работе не приведён.

Найдём функцию скорости клапана ω, мм/с, от угла поворота распредвала φ, град

$$\omega(\varphi) = \omega_{t} \left(\frac{\varphi}{6 n_{p}}\right). \tag{37}$$

График ω(φ) изображён ниже (рис. 9).

Найдём функцию ускорения клапана j, мм, от времени t, с. Она является второй производной функции h_t(t) и вычисляется по формуле

$$j_t(t) = \frac{d^2(h_t(t))}{dt^2}, \text{MM/c}^2,$$
 (38)

где t – время, с.

Примечание. График $j_t(t)$ в данной работе не приведён.

Найдём функцию ускорения клапана j, мм/с², от угла поворота распредвала ф, град

$$\mathbf{j}(\varphi) = \mathbf{j}_{t} \left(\frac{\varphi}{6 \mathbf{n}_{p}} \right). \tag{39}$$

График ј(ф) изображён ниже (рис. 10).

Рисунок 10 – График зависимости ускорения клапана ј от угла поворота распредвала ф

Найдём функцию ускорения клапана j_м, м, от угла поворота распредвала φ, град. Она вычисляется по формуле

$$j_{\rm M}(\varphi) = \frac{j(\varphi)}{1000}$$
 (40)

Примечание – График $j_{M}(\varphi)$ в данной работе не приведён.

Время-сечение клапана

Функция площади проходного сечения впускного клапана $F_{\kappa\pi}$, мм², с углом фаски 45° от времени t, с, рассчитывается по формуле

$$F_{KI}(t) = 2.22 \, d_{rop} \, h_t(t) + 1.11 \, h_t(t), \, \text{MM}^2, \quad (41)$$

где d_{гор} – диаметр горловины, мм;

h_t(t) – функция перемещение клапана от времени, мм.

Примечание – График $F_{\kappa n}(t)$ в данной работе не приведён.

Время начала и время окончания такта впуска вычисляются по формулам

$$t_1 = \frac{0}{6n_p}$$
, c; (42)

$$t_2 = \frac{90}{6n_p}$$
, c; (43)

где t_1 – время начала такта впуска, с;

*t*₂ – время окончания такта впуска, с.

Время-сечение впускного клапана за такт впуска вычисляется по формуле

$$\int_{t_1}^{t_2} F_{\kappa\pi}(t) dt, \text{MM}^2 \cdot \text{c.}$$
(44)

Средняя площадь проходного сечения впускного клапана за такт впуска вычисляется по формуле

$$F_{\kappa\pi.cp} = \int_{t_1}^{t_2} F_{\kappa\pi}(t) dt / (t_2 - t_1), \,\mathrm{MM}^2.$$
(45)

Временные промежутки, за которые происходит открытие и закрытие впускного газораспределительного устройства (клапана) вычисляются по следующим формулам

$$t_{\rm np} = \frac{-\varphi_{\rm np,p}}{6n_p}, c; \tag{46}$$

$$t_{3\pi} = \frac{90 + \varphi_{3\pi.p}}{6n_p}$$
, c. (47)

Полное время-сечение газораспределительного устройства, обеспечивающего впуск от момента открытия до момента закрытия есть интеграл

$$\int_{t_{\rm np}}^{t_{\rm sn}} F_{\rm k,n}(t) dt , \, \rm MM^2 \cdot c.$$
(48)

По формуле ниже определяем среднюю скорость, с которой движется поток газов в канале между седлом поднятого клапана и собственно клапаном

$$\omega'_{\rm BR} = \frac{100\vartheta_{\rm n.cp}F_{\rm R}}{i_{\rm KR}F_{\rm KR.cp}}, \, {\rm M/c.}$$
(49)

где $\vartheta_{n,cp}$ – средняя скорость поршня, м/с;

 F_{Π} – площадь поршня, см²;

*i*_{кл} – количество впускных клапанов, приходящихся на один цилиндр.

7.1.3 Расчёт пружин впускного клапана

Расчёт пружин впускного клапана был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 393-401]. Входные данные для расчета пружин впускного клапана представлены ниже (33). Выходные данные расчета представлены в конце подраздела (34).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
\mathbf{J}_{K}	кг·м ²	1,13.10-5	Момент инерции рычага относительно оси его
			качания
1 кл	М	0,035	Длина плеча рычага, прилегающая к клапану

Таблица 33 – Входные данные для расчета пружин впускного клапана

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
] _T	M	0.0263	Ллина плеча рычага, прилегающая к
		0,0200	толкателю
m _{πn}	кг	0.033	Масса пружин
m _T	кг	0	Масса толкателя
mur	кг	0	Масса штанги
т	кг	0.024	Масса комплекта клапана
K	_	1.5	Коэффициент запаса по усилию пружины
(01	гралус	14.39	Угол поворота распрелвала, при котором
Υ.	- Purch	1.,05	начинается отрицательное ускорение клапана
Ø 2	гралус	52.5	Угол поворота распрелвала, при котором
1-	1 / 2	- ,-	ускорение достигает минимального значения
h' _{кл.max}	ММ	7.95	Максимальное перемещение клапана по
		,	графику h(ϕ) (без учёта упругих деформаций)
P _{max.H}	MH	2.10-4	Максимальная сила упругости наружной
			пружины
P _{min.H}	MH	0,7.10-4	Минимальная сила упругости наружной
			пружины
D _{пр.н}	см	1,93	Средний диаметр наружной пружины
δпр.н	СМ	0,28	Диаметр проволоки наружной пружины
G	MH/см ²	8,15	Модуль упругости материала пружины
			второго рода
$\Delta_{\min.\mathrm{H}}$	ММ	0,6	Расстояние между витками внешней упругой
			детали при полностью открытом устройстве
k'н	—	1.2	Напряжения не равномерны в поперечном
			сечении витка. Коэффициент учёта этого
			явления для наружной пр.
τ_{-1}	МПа	350	Сталь при кручении устаёт. Предел такого
			состояния материала пружины
α_{τ}	—	0,2	Коэффициент приведения ассиметричного
			цикла к равноопасному симметричному при
			нормальных касательных напряжениях
D _{пр.в}	СМ	1,35	Средний диаметр внутренней пружины
δ _{пр.в}	СМ	0,22	Диаметр проволоки внутренней пружины
d _{BT}	СМ	0.9	Диаметр направляющей втулки
$\Delta_{\min.B}$	MM	0,2	Расстояние между витками внутренней
			упругой детали при полностью открытом
1.		1.2	устроистве
Ќв	-	1.2	Напряжения не равномерны в поперечном
			сечении витка. Коэффициент учёта этого
1			явления для внутренней пр.

Примечание — m_{T} и m_{mT} равны нулю в виду их отсутствия. Расчёт ведётся только для одной пары пружин, поэтому параметр J_{κ} в два раза меньше действительного.

Общий расчёт пружин впускного клапана

Требования к пружинам впускного газораспределительного устройства, которые должны обеспечиваться при всех нагрузочных и скоростных режимах работы двигателя:

1) обеспечивать плотную посадку газораспределительного устройства в седле и удержание его в закрытом положении во время соприкосновения толкателя с начальной окружностью кулачка г₀ (с тыльной стороной кулачка). Т.к. проектируемый двигатель имеет малую степень наддува, то давление во впускном трубопроводе будет небольшим и будет незначительно превышать давление в цилиндре, поэтому данное условие будет выполняться практически при любом минимальном усилии пружины. Принимаем, что данное условие можно не учитывать;

2) обеспечивать неразрывность кинематической связи между клапаном, толкателем и кулачком во время движения клапана с отрицательным ускорением.

Сначала найдём общую меру инертности клапанного механизма, приведённую к запирающему элементу, которая вычисляется по формуле

$$M_{\rm KJ} = m_{\rm KJ} + \frac{m_{\rm np}}{3} + (m_{\rm T} + m_{\rm IIIT}) \left(\frac{l_{\rm T}}{l_{\rm KJ}}\right)^2 + m'_{\rm K}, \, \rm Kr,$$
(50)

где m_{кл} – масса комплекта клапана (сам запирающий элемент, плоская деталь под пружиной, плоская круглая деталь для регулировки, сухари), кг;

m_{пр} – мера инертности упругих элементов (взята с MM), кг;

m_т – массу толкателя принимаем равной нулю, т.к. она учитывается при расчёте m'_к, кг;

m_{шт} – масса штанги (равна нулю, т.к. штанга – отсутствует), кг;

l_т – длина плеча рычага, прилегающая к толкателю (рис. 11), м;

1_{кл} – длина плеча рычага, прилегающая к клапану (рис. 11), м;

 $m'_{\kappa} = J_{\kappa}/l_{\kappa \pi^2}$, кг — масса рычажно-роликового толкателя, приведённая к оси клапана;

 J_{κ} – момент инерции рычага относительно оси его качания (момент инерции рычага, приведённый таблице, в два раза меньше действительного, т.к. рычаг приводит два клапана), кг·м².

Рисунок 11 – Условная схема привода клапанов

Функция силы инерции масс которые совершают поступательное движение Р_{јкл2}, Н, от углового положения распределительного вала ϕ , град, изображена на рисунке 12 и рассчитывается следующим образом

$$P_{j\kappa\pi2}(\varphi) = -M_{\kappa\pi} j_{M}(\varphi) H, \qquad (51)$$

где j_м(φ) – функция ускорения клапана j_м, м, от углового положения распределительного вала φ, град.

Рисунок 12 – Зависимость силы инерции поступательно движущихся масс Р_{јкл2} и необходимых сил упругости Р_{пр} от угла поворота распредвала ф

Функция необходимых сил, обусловленных упругими свойствами материала Р_{пр}, Н, от углового положения распредвала ф, град, изображена на рис. 12 и рассчитывается по формуле

$$P_{np}(\varphi) = K P_{j\kappa n2}(\varphi) H, \qquad (52)$$

где К – коэффициент запаса по усилию пружины.

Далее необходимо получить реальный график зависимости перемещения от силы упругости пружин. Для этого построим график зависимости перемещения клапана h, мм, от требуемой силы развиваемой упругими элементами P_{пp}, H. Oн изображён ниже (рис. 13). Построим реальный график зависимости силы упругости пружин P, H, от перемещения клапана f, мм. Этот график представляет собой прямую, его необходимо построить таким образом, чтобы, в промежутке с отрицательным ускорением

клапана, реальная сила упругости пружин Р была больше или равна необходимой P_{np} . Т.к. график $j(\phi)$ симметричен относительно вертикали, проведённой через точку, в которой ускорение минимально, то достаточно, чтобы Р была больше P_{np} на промежутке от $h(\phi_1)$ до $h(\phi_2)$, где ϕ_1 – угол поворота распредвала, при котором начинается отрицательное ускорение клапана (этот угол был найден по графику $j(\phi)$), ϕ_2 – угол поворота распредвала, при которение достигает минимального значения (этот угол был найден по графику $p(\phi)$). График P(f) изображён ниже (рис. 13).

Рисунок 13 – График зависимости перемещения клапана h от необходимой силы упругости пружин Р_{пр} и реальный график зависимости силы упругости пружин P от перемещения клапана f

Примечание – На графике функция Р отложена по оси абсцисс, а аргумент f – по оси ординат.

По графику P(f) находим предварительную деформацию пружин fmin.

Полная деформация пружин определяется по формуле

$$f_{max} = h_{\kappa\pi} + f_{min}, \text{MM}, \tag{53}$$

где h'_{кл.max} – максимальное перемещение клапана по графику h(φ) (без учёта упругих деформаций), мм.

Полная деформацию пружин, выраженная в сантиметрах, $f_{max.cm} = 1,188$ см.

Максимальная сила упругости пружин P_{max} , была найдена по графику, изображённому на рисунке выше (рис. 13) (соответствует $h = h'_{\kappa n.max}$).

Минимальная сила упругости пружин P_{min} , была найдена по графику, изображённому на рисунке выше (рис. 13) (соответствует h = 0 мм).

Жёсткость пружин определяется формулой

$$c = \frac{P_{max}}{f_{max}}, \mathrm{H/MM}.$$
 (54)

Т.к. на каждый клапан приходится две пружины, то необходимо выполнение следующего условия

$$P_{max} = P_{max.B} + P_{max.H}, MH,$$
(55)

где Р_{тах.в} – максимальная сила упругости внутренней пружины, МН; Р_{тах.н} – максимальная сила упругости наружной пружины, МН; Р_{тах} – максимальная сила упругости пружин, МН.

Пусть наружная пружина воспринимает максимальную силу Р_{тах.н}, тогда максимальная сила упругости внутренней пружины

$$P_{max.B} = P_{max} - P_{max.H}, MH.$$
(56)

То же самое касается и минимальных сил упругости

$$P_{min} = P_{min,B} + P_{min,H}, MH,$$
(57)

где Р_{тіп.в} – минимальная сила упругости внутренней пружины, МН;

P_{min.н} – минимальная сила упругости наружной пружины, МН;
 P_{min} – минимальная сила упругости пружин, МН.

Пусть наружная пружина воспринимает минимальную силу P_{min.н}, тогда минимальная сила упругости внутренней пружины

$$P_{min.B} = P_{min} - P_{min.H}, MH.$$
(58)

Расчёт наружной пружины впускного клапана

Далее проводим расчёт наружного упругого элемента газораспределительного механизма, обеспечивающего закрытие впускного клапана.

Основными конструктивными параметрами витого упругого элемента являются: диаметр витков по оси проволоки круглого сечения D_{пp}; размер, характеризующий круглое сечение проволоки δ_{пp}; число витков i; линейный размер между равнорасположенными точками соседних витков t и длина свободной пружины L_{cв}.

При выборе диаметра витков по оси проволоки круглого сечения наружной пружины D_{пр.н} и размера сечения проволоки наружной пружины $\delta_{пр.н}$ необходимо учитывать радиальный зазор между наружной пружиной и горловиной, который определяется по формуле

$$\Delta r_1 = 10 \cdot \frac{d_{\rm rop} - D_{\rm пр.H} - \delta_{\rm пр.H}}{2}, \, \text{MM},$$
(59)

где d_{гор} – диаметр горловины, см;

D_{пр.н} – диаметр витков по оси проволоки наружной пружины, см;

δ_{пр.н} – размер, характеризующий круглое сечение проволоки наружной пружины, см.

 $\Delta \mathbf{r}_1$ должен быть достаточным.

По формуле, приведённой ниже, определим количество рабочих витков наружной пружины

$$i_{\rm p.H} = \frac{G\delta_{\rm \pi p.H}^4 f_{max.cM}}{8P_{max.H}D_{\rm \pi p.H}^3},$$
(60)

где G-модуль упругости материала упругого элемента второго рода, MH/см².

По формуле ниже определим полное число витков

$$i_{\text{п.H}} = i_{\text{р.H}} + 2.$$
 (61)

Размер между соседними витками свободной наружной пружины определяется по формуле

$$t_{\rm H} = 10\delta_{\rm пp.H} + \frac{f_{max}}{i_{\rm p.H}} + \Delta_{min.H},$$
 MM, (62)

где $\Delta_{\min.H}$ — min зазор между соседними рабочими витками наружной пружины, когда клапан полностью открыт, мм.

Формула для определения расстояния между торцами пружины при полностью открытом клапане

$$L_{min.H} = 10i_{\Pi.H}\delta_{\Pi p.H} + i_{p.H}\Delta_{min.H}$$
, мм. (63)

Формула для определения расстояния между торцами пружины при полностью закрытом клапане

$$L_{0.H} = L_{min.H} + h_{\kappa \pi.max}$$
, мм. (64)

Формула для определения расстояния между торцами пружины, когда та находится в свободном состоянии

$$L_{\rm CB.H} = L_{min.H} + f_{max}, \,\rm MM. \tag{65}$$

Определение запаса прочности наружной пружины

Формула, для определения max касательного напряжения, появляющегося в наружном упругом элементе

$$\tau_{max.H} = \frac{8k'_{\rm H} P_{max.H} (0.01 D_{\rm \Pi p.H})}{\pi (0.01 \delta_{\rm \Pi p.H})^3}, \text{M}\Pi\text{a},$$
(66)

Т. к. напряжения в поперечном сечении витка распределены неравномерно, для учёта неравномерности вводится коэффициент k'_н (k'_н = 1,2 при отношении $D_{\text{пр.н}}/\delta_{\text{пр.н}} = 6,893$).

Соответственно min касательное напряжение в наружном упругом элементе, когда газораспределительное устройство закрыто вычисляется по формуле

$$\tau_{min.H} = \frac{8k'_{H}P_{min.H}(0,01D_{\Pi p.H})}{\pi (0,01\delta_{\Pi p.H})^{3}}, M\Pi a.$$
(67)

Среднее касательное напряжение наружной пружины определяется по формуле

$$\tau_{m.\mathrm{H}} = \frac{\tau_{max.\mathrm{H}} + \tau_{min.\mathrm{H}}}{2}, \,\mathrm{M}\Pi\mathrm{a}.$$
(68)

Для определения амплитуды касательных напряжений внешнего упругого элемента используем формулу

$$\tau_{a.H} = \frac{\tau_{max.H} - \tau_{min.H}}{2}$$
, MПа. (69)

Учитывая, что концентрация напряжений в витках упругого элемента зависит от коэффициента k'_н, а $k_{\tau}/(\epsilon_{\rm M}\epsilon_{\rm II})\approx 1$, то

$$\tau_{\mathrm{ak,H}} = \tau_{\mathrm{a,H}} k_{\tau} / (\varepsilon_{\mathrm{M}} \varepsilon_{\mathrm{H}}).$$
(70)

Необходимое превышение показателя прочности наружного упругого элемента определяется по формуле

$$n_{\tau.\mathrm{H}} = \frac{\tau_{-1}}{\tau_{\mathrm{aK}.\mathrm{H}} + \alpha_{\tau} \tau_{m.\mathrm{H}}}.$$
(71)

где τ₋₁ – предел усталости при таком виде деформации, который не является сдвигом, изгибом или растяжением/сжатием (для материала, из которого изготавливаются упругие элементы равен примерно 350 МПа), МПа;

 α_{τ} – коэффициент приведения ассиметричного цикла к аналогичному симметричному при нормальных касательных напряжениях (для материала пружины с пределом прочности $\sigma_{\rm B} = 1100$ МПа коэффициент $\alpha_{\tau} = 0.2$).

Расчёт внутренних пружин впускного клапана

Затем считаются внутренние пружины впускного клапана.

При выборе размеров внутренней пружины (среднего диаметра D_{пр.в} и диаметра проволоки $\delta_{пр.в}$ необходимо обеспечить радиальный зазор между наружной и внутренней пружинам и зазор между внутренней пружиной и направляющей втулкой.

Для определения зазора между пружинами используется формула

$$\Delta r_2 = 10 \cdot \frac{D_{\text{пр.н}} - \delta_{\text{пр.н}} - D_{\text{пр.в}} - \delta_{\text{пр.в}}}{2}, \text{ мм,}$$
(72)

где D_{пр.в} – диаметр проекции спиральной осевой линии, по которой навита проволока внутренней пружины, на плоскость, перпендикулярную оси пружины, см;

δ_{пр.в} – диаметр окружности сечения проволоки внутренней пружины, см.

Радиальный зазор между внутренним упругим элементом и направляющей цилиндрической деталью определяется по формуле

$$\Delta r_3 = 10 \cdot \frac{D_{\text{пр.в}} - \delta_{\text{пр.в}} - d_{\text{вт}}}{2}, \text{ мм,}$$
(73)

где d_{вт} – диаметр направляющей цилиндрической детали, см.

Δr₂ и Δr₃ должны быть достаточными, чтобы компенсировать возможную деформацию пружин при работе.

Рабочих витков у внутренней пружины должно быть

$$i_{\rm p.B} = \frac{G \delta_{\Pi {\rm p.B}}{}^4 f_{max.{\rm CM}}}{8 P_{max.{\rm B}} D_{\Pi {\rm p.B}}{}^3},$$
 (74)

где G – модуль упругости материала пружины второго рода, MH/см².

Полное число витков внутренней пружины определяется как сумма рабочих и упорных витков, число которых принимаем равное двум

$$i_{\text{п.в}} = i_{\text{р.в}} + 2.$$
 (75)

Шаг витка свободной внутренней пружины определяется по формуле

$$t_{\rm B} = 10\delta_{\rm пp.B} + \frac{f_{max}}{i_{\rm p.B}} + \Delta_{min.B},$$
 MM, (76)

где $\Delta_{\min,B}$ – min зазор между соседними витками внутренней пружины при полностью открытом клапане, мм.

Расстояние между торцами внутренней пружины при полностью открытом клапане определяем

$$L_{\rm min.b} = 10i_{\rm fi.b}\delta_{\rm fip.b} + i_{\rm p.b}\Delta_{min.b}, \,\rm MM,$$
(77)

Расстояние между торцами внутренней пружины при закрытом клапане определяется по формуле

$$L_{0.B} = L_{min.B} + h_{\kappa \pi.max}$$
, MM. (78)

Расстояние между торцами свободной внутренней пружины определяется по формуле

$$L_{\rm cb.b} = L_{\rm min.b} + f_{max}$$
, MM. (79)

Определение запаса прочности внутренней пружины

Максимальное касательное напряжение, возникающее в пружине, определяется по формуле

$$\tau_{max.H} = \frac{8k'_{H}P_{max.B}(0,01D_{\Pi P.B})}{\pi(0,01\delta_{\Pi P.B})^{3}}, M\Pi a,$$
(80)

где, для учёта неравномерного распределения напряжений по сечению витка, введём коэффициент k'_в, (k'_в = 1,2 при отношении $D_{пр.B}/\delta_{пр.B} = 6,136$).

Минимальное и среднее касательные напряжения, возникающие в пружине, при закрытом клапане определим по формулам

$$\tau_{min.B} = \frac{8k'_{\rm H} P_{min.B} (0,01D_{\rm \Pi p.B})}{\pi (0,01\delta_{\rm \Pi p.B})^3}, M\Pi a,$$
(81)

И

$$\tau_{m.B} = \frac{\tau_{max.B} + \tau_{min.B}}{2}, M\Pi a.$$
(82)

Амплитуду касательных напряжений внутренней пружины определим по формуле

$$\tau_{a.\mathrm{B}} = \frac{\tau_{max.\mathrm{B}} - \tau_{min.\mathrm{B}}}{2}, \,\mathrm{M}\Pi\mathrm{a}.$$
(83)

Т.к. концентрация напряжений в витках внутренней пружины учитывается коэффициентом k'_в, а $k_{\tau}/(\epsilon_{\rm M}\epsilon_{\rm n}) \approx 1$, то

$$\tau_{a\kappa,B} = \tau_{a,B} k_{\tau} / (\epsilon_{M} \epsilon_{\Pi}).$$
(84)

Запас прочности внутренней пружины определяется по формуле

$$n_{\tau.B} = \frac{\tau_{-1}}{\tau_{aK,B} + \alpha_{\tau} \tau_{m,B}},$$
(85)

где т₋₁ – предел усталости при кручении, МПа;

α_τ – коэффициент приведения ассиметричного цикла к равноопасному симметричному при нормальных касательных напряжениях.

Расчёт пружин на резонанс

Каждое физическое тело обладает таким свойством, как собственная частота, зависящая от многих параметров, в частности от формы тела. При совпадении собственной частоты (частоты собственных колебаний) с частотой вынужденных (от внешнего источника) колебаний возникает явление резонанса – увеличение амплитуды колебаний. Во избежание резонанса необходимо выполнение следующих условий:

 n_{с.н}/n_p не должно быть равно целому числу (n_{с.н} – частота собственных колебаний наружной пружины; n_p – частота внешнего воздействия – вращения распредвала);

n_{с.в}/n_р не должно быть равно целому числу (n_{с.в} – частота собственных колебаний внутренней пружины);

n_{с.н}/n_р не должно быть равно n_{с.в}/n_р.

Частота собственных колебаний наружной пружины определяется по формуле

$$n_{\rm c.H} = \frac{2,17 \cdot 10^7 \delta_{\rm пр.H}}{i_{\rm p.H} D_{\rm пр.H}^2}, \Gamma ц.$$
(86)

Частота собственных колебаний внутренней пружины определяется по формуле

$$n_{\rm c.B} = \frac{2,17 \cdot 10^7 \delta_{\rm пр.B}}{i_{\rm p.B} D_{\rm пр.B}^2}$$
, Гц. (87)

Проверим выполнение условий:

$$\frac{n_{\rm c.H}}{n_{\rm p}} = 75,87$$
 (88)

75,87 ≠ целому числу, следовательно, первое условие выполняется;

$$\frac{n_{\rm c.B}}{n_{\rm p}} = 87,03$$
 (89)

87,03 ≠ целому числу, следовательно, второе условие выполняется;

$$\frac{n_{\rm c.H}}{n_{\rm p}} \neq \frac{n_{\rm c.B}}{n_{\rm p}} \tag{90}$$

следовательно, третье условие выполняется.

Таблица 34 – Выходные данные расчета пружин впускного клапана

Обозначение	Елиница	Значение	Название параметра
	ъдиница	Sha lenne	
параметра	измерения	параметра	
	параметра		
M _{кл}	КГ	0,044	Суммарная масса деталей механизма,
			приведённая к клапану
m'_{κ}	КГ	9,22·10 ⁻³	Масса рычажно-роликового толкателя,
			приведённая к оси клапана
\mathbf{f}_{\min}	MM	3,93	Минимальная деформация пружин
f_{max}	MM	11,88	Полная деформацию пружин
f _{max.см}	СМ	1,188	Полная деформацию пружин, выраженная в
			сантиметрах
P _{max}	Н	357	Максимальная сила упругости пружин

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
1 1	параметра	1 1	
Pmin	H	118	Минимальная сила упругости пружин
Pmax	MH	357.10-6	Максимальная сила упругости пружин в МН
Pmin	MH	$118 \cdot 10^{-6}$	Минимальная сила упругости пружин в МН
Pmarp	MH	$156.6 \cdot 10^{-6}$	Максимальная сила упругости внутренней
- max.B			пружины
P _{min B}	MH	$47,9.10^{-6}$	Минимальная сила упругости внутренней
munub			пружины
Δr_1	ММ	0,355	Радиальный зазор между наружной пружиной
_			и горловиной
<i>i</i> _{р.н}	-	5	Число рабочих витков наружной пружины
<i>і</i> _{п.н}	—	7	Полное число витков наружной пружины
$t_{ m H}$	ММ	5,78	Шаг витка свободной наружной пружины
L _{min.H}	ММ	22,6	Расстояние между торцами наружного
			упругого элемента при полностью открытом
			клапане
L _{0.н}	ММ	30,25	Расстояние между торцами наружного
			упругого элемента при закрытом клапане
L _{cb.h}	ММ	34,5	Расстояние между торцами свободного
			наружного упругого элемента
$ au_{max. ext{H}}$	МПа	537	Максимальное касательное напряжение,
			возникающее в наружной пружине
$ au_{min. ext{H}}$	МПа	188	Минимальное касательное напряжение,
			возникающее в наружной пружине, при
			закрытом клапане
$ au_{m. ext{H}}$	MIIa	363	Среднее касательное напряжение наружной
		175	пружины
$ au_{a. ext{H}}$	MIIIa	1/5	Амплитуда касательных напряжении
-	МПа	175	наружной пружины
	Ivii ia	1/3	
$\Lambda_{\tau,\mathrm{H}}$		1,410	Радион ини разор мажной пружины
ΔI_2	IVI IVI	0,4	гадиальный зазор между наружной и
Λr	MM	1 1 5	Валиальный 2220р межлу внутренней
	101101	1,15	пружиной и направляющей втулкой
i	_	7	Число рабочих витков внутренней пружины
ср.в		, Q	
ι _{п.в}		/ 097	Шаг ритка свободной риутренней пружины
	MM	4,097	
итіп.в	101101	<i>∠</i> 1, <i>∠</i>	дляна впутреппен пружины при полностью открытом клапане
I	MM	28.85	Лиция внутренней прухини при закрытом
<i>и</i> 0.в	141141	20,05	клапане
I.	мм	33.08	Ллина своболной внутренней пружины
τ	МПа	607	Максимальное касательное напряжение
<i>° тах</i> .в	141110	007	возникающее во внутренней пружение,
T	МПа	186	Минимальное касательное напряжение
∽min.в			возникающее во внутренней пружине
1			

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
$ au_{m.{ m B}}$	МПа	396	Среднее касательное напряжение внутренней
			пружины
$ au_{a.\mathrm{B}}$	МПа	210	Амплитуда касательных напряжений
			внутренней пружины
$ au_{a\kappa. B}$	МПа	210	_
$n_{ au, ext{B}}$	—	1,208	Запас прочности внутренней пружины
n _{c.H}	Гц	$3,262 \cdot 10^5$	Частота собственных колебаний наружной
			пружины
n _{c.b}	Гц	$3,742 \cdot 10^5$	Частота собственных колебаний внутренней
			пружины

Выводы по седьмому разделу.

В результате расчёта механизма газораспределения были получены данные для профилирования кулачка распределительного вала, также были определены параметры пружин и произведён их расчёт.

8 Описание и расчет основных систем двигателя

8.1 Расчёт системы смазки

В качестве масляного насоса был выбран героторный тип насоса.

Входные данные для этого расчёта представлены ниже (таблица 35). Выходные данные расчёта приведены в конце подраздела (таблица 36).

Таблица 35 – Входные данные для расчета системы смазки

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
H _u	кДж/кг	49670	Низшая теплота сгорания топлива
G _T	кг/час	10,931	Часовой расход топлива
ρ_{M}	кг/м ³	900	Плотность масла
C _M	кДж∕(кг∙К)	2,094	Средняя теплоёмкость масла
$\Delta T_{\rm M}$	К	12,4	Температура нагрева масла в двигателе
z	—	4	Число зубьев шестерни (внутреннего ротора)
hπ	MM	10	Ширина шестерни
$\overline{R} = R/r$	-	2,6	-
λ	-	0,73	-

Сколько тепла, выделяет горючее за 1 с:

$$Q_0 = \frac{H_u \cdot G_{\mathrm{T}}}{3600}, \, \mathrm{кДж/c},\tag{91}$$

где *H_u* – низшая теплота сгорания топлива, кДж/кг;

*G*_т – часовой расход топлива, кг/час.

Теплота, которую масло отводит от двигателя:

$$Q_{\rm M} = 0.0225 \cdot Q_0. \tag{92}$$

Циркуляционный расход масла:

$$V_{\rm II} = \frac{Q_{\rm M}}{\rho_{\rm M} \cdot c_{\rm M} \cdot \Delta T_{\rm M}}, \, {\rm M}^3/{\rm C}, \tag{93}$$

где $\rho_{\rm M}$ – величина обратная удельному объёму смазывающей жидкости, кг/м³;

*с*_м – средняя теплоёмкость смазывающей жидкости, кДж/(кг·К);

 $\Delta T_{\rm M}$ – температура нагрева смазывающей жидкости в двигателе, К.

Для стабилизации давления в системе циркуляционный расход масла обычно увеличивают в 2 раза. Увеличенный циркуляционный расход масла:

$$V' = 2 \cdot V_{\rm II}, \,\mathrm{M}^3/\mathrm{c},\tag{94}$$

где $V_{\rm II}$ – циркуляционный расход масла, м³/с.

Расчётная производительность насоса, с учётом утечек:

$$V_{\rm p} = V' / \eta_{\rm H}, \, {\rm M}^3 / {\rm c},$$
 (95)

где $\eta_{\rm H} = 0.7 - {
m o}$ бъёмный коэффициент подачи.

Была принята частота вращения шестерни насоса n = 5800 мин⁻¹, из этого можно определить рабочий объём насоса:

$$V_{\Pi} = \frac{60 \cdot V_{\rm p}}{n}$$
, M³, (96)

где n – частота вращения шестерни насоса, мин⁻¹.

Расчёт геометрических параметров насоса проводился по учебнику «Применение, разработка и расчет героторного насоса» [2].

Число зубьев шестерни (внутреннего ротора) z принимаем равным 4.

Ширина шестерни $h_{\pi} = 10 \cdot 10^{-3}$.

Рекомендуется величину r/R брать из диапазона:

где r – расстояние от центра окружности до точки окружности, обкатывающейся без скольжения по основной окружности радиусом R_o, мм;

R – номинальный радиус зуба колеса. Номинальный радиус равен радиусу обрабатывающего инструмента при изготовлении шестерни.
Параметр R' = 2,6Тогда отношение $r/R = R'^{-1} = 0,358$. Параметр:

$$t = \frac{(z+2)^3}{27z(z+1)^2}.$$
(97)

Тогда:

$$\lambda_{max} = \frac{1-t}{1+t}.$$
(98)

Рекомендуется величину λ брать из диапазона:

$$0.7 < \lambda < \lambda_{max}$$

Примем параметр $\lambda = 0,73$.

Радиус окружности, обкатывающейся без скольжения по основной окружности радиусом R_o:

$$r = \sqrt{\frac{V_{\Pi}}{4\pi\lambda h_{\Pi}(z+1-R')}}, \mathbf{M}.$$
(99)

Эксцентриситет между осями шестерни и колеса:

$$e = \lambda r$$
, м. (100)

Номинальный радиус зуба колеса, равный радиусу обрабатывающего инструмента при изготовлении шестерни:

$$\mathbf{R} = \mathbf{r} \cdot \mathbf{R}', \,\mathbf{M}. \tag{101}$$

Число зубьев колеса:

$$z_{\rm K} = z + 1.$$
 (102)

Радиус внутреннего диаметра по вершинам зубьев:

$$r_{\rm B} = r(z+1) - R, \,\mathrm{M}. \tag{103}$$

Радиус, на котором расположены центры окружностей зубьев:

$$R_{\rm ц} = r(z+1),$$
 м. (104)

Угловой шаг расположения зубьев по окружности с радиусом R_ц:

$$\delta = \frac{2\pi}{z+1}.\tag{105}$$

Радиус окружности впадин между зубьями колеса вычисляется по формуле

$$R_{\rm K} = r(z+1+2\lambda) - R + m, \,\rm{M}. \tag{106}$$

Принимая рабочее давление масла в системе p = 0,4 МПа, а механический КПД насоса $\eta_{\text{м.н}} = 0,85$, рассчитаем мощность, затрачиваемую на привод масляного насоса:

$$N_{\rm H} = \frac{V_{\rm p} \cdot p \cdot 10^3}{\eta_{\rm M,H}}, \, \text{\kappaBT}, \tag{107}$$

где $V_{\rm p}$ – расчётная производительность насоса, м³/с;

p – рабочее давление масла в системе, МПа;

 $\eta_{\scriptscriptstyle {\rm M.H}}$ – механический КПД насоса.

Система смазки оснащена сетчатым фильтром грубой очистки и фильтром тонкой очистки.

Гаолица 36 – Выходные параметры расчета системы смаз
--

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
0.	кЛж/с	122.6	Количество тёплоты, выделяемой топливом за
E 0		,-	1 c
Q _M	кДж/с	3,393	Количество теплоты, отводимой маслом от
			двигателя
	м ³ /с	1,171.10-4	Циркуляционный расход масла
V'	м ³ /с	2,881.10-4	Увеличенный циркуляционный расход масла
V _p	м ³ /с	4,116.10-4	Расчётная производительность насоса, с
F			учётом утечек
V _n	M ³	4,258.10-6	Рабочий объём насоса
t	—	0,08	_
λ_{max}	_	0,852	_
r	М	$4, 4 \cdot 10^{-3}$	Расстояние от центра окружности до точки
			окружности окружности, обкатывающейся без
			скольжения по основной окружности радиусом
			Ro
е	М	$3,2\cdot10^{-3}$	Эксцентриситет между осями шестерни и
			колеса
R	М	0,011	Номинальный радиус зуба колеса, равный
			радиусу обрабатывающего инструмента при
			изготовлении шестерни
Z _K	-	5	Число зубьев колеса
r _B	М	0,011	Радиус внутреннего диаметра по вершинам
			зубьев
R _ц	М	0,022	Радиус, на котором расположены центры
			окружностей зубьев
δ	-	1,26	Угловой шаг расположения зубьев по
			окружности с радиусом R _ц
R_{κ}	М	0,017	Радиус окружности впадин между зубьями
			колеса
N _H	кВт	0,194	Мощность, затрачиваемая на привод
			масляного насоса

8.2 Расчёт системы охлаждения

Расчёт системы отведения неизрасходованного тепла выполнен по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 478-491]. Расчёт проводится для номинального режима.

8.2.1 Общий расчёт системы охлаждения

Общий расчёт системы охлаждения был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 478-480], его сутью было

нахождение количества отводимой теплоты. При общем расчёте системы охлаждения учитывались данные, приведённые ниже (таблица 37).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
с	-	0,5	Коэффициент пропорциональности для
			четырёхтактных двигателей
i	—	2	Число цилиндров
D	СМ	6,7	Диаметр цилиндра
m	—	0,65	Показатель степени для четырёхтактных
			двигателей
n	мин ⁻¹	8600	Частота вращения коленвала
Hu	кДж/кг	49670	Низшая теплота сгорания топлива
ΔH_u	кДж/кг	0	Количество теплоты, потерянное вследствие
			неполноты сгорания

Таблица 37 – Входные данные для общего расчёта системы охлаждения

8.2.2 Расчёт жидкостного насоса

Расчёт жидкостного насоса был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 480-485]. На двигателе применяется центробежный жидкостный насос. Расчёт жидкостный насос был сделан по книге «Расчёт автомобильных и тракторных двигателей». Входные данные для расчёта представлены ниже (38). Выходные данные представлены в конце подраздела (39).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
ΔТж	К	9	Температурный перепад жидкости в радиаторе
ρж	кг/м ³	1000	Плотность охлаждающей жидкости
Сж	Дж/(кг∙К)	4187	Средняя теплоёмкость охлаждающей
			жидкости
η	—	0,85	Коэффициент подачи
r o	М	0,0075	Радиус ступицы крыльчатки
r 1	М	0,012	Радиус входного отверстия
α_2	град	10	Угол между направлениями скоростей c2 и u2
β2	град	45	Угол между направлениями скоростей u ₂ и ω ₂
рж	Па	10^{5}	Напор, создаваемый насосом
η _h	_	0,65	Гидравлический КПД
пв.н	мин ⁻¹	5831	Частота вращения крыльчатки

Таблица 38 – Входные данные для расчёта жидкостного насоса

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
Z	_	8	Число лопаток крыльчатки
δ_1	М	0,003	Толщина лопатки на входе
δ_2	М	0,003	Толщина лопатки на выходе
η _м	_	0,8	Механический КПД жидкостного насоса

Схема построения профиля лопатки насоса изображена на рис. 14.

Рисунок 14 – Схема построения профиля лопатки насоса

	Таблица	39 –	Выходные	данные	расчёта	жидкостного	насоса
--	---------	------	----------	--------	---------	-------------	--------

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
G _ж	м ³ /с	6,916.10-4	Циркуляционный расход охлаждающей
			жидкости
G _{ж.p}	м ³ /с	8,137.10-4	Расчётная производительность насоса
<i>c</i> ₁	м/с	2,951	Скорость жидкости на входе
<i>u</i> ₂	м/с	13,45	Окружная скорость схода жидкости
r_2	М	0,022	Радиус крыльчатки на выходе
u_1	м/с	7,33	Окружная скорость входа потока
β_1	градус	22	Угол между направлениями скоростей u_1 и ω_1
b_1	М	0,025	Ширина лопатки на входе
C _r	м/с	2	Начальная скорость схода
b_2	М	3,9.10-3	Ширина лопатки на выходе
N _{B.H}	кВт	0,102	Мощность, потребляемая жидкостным насосом

8.2.3 Расчёт жидкостного радиатора

Расчёт жидкостного радиатора был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 485-488]. Входные данные для расчёта жидкостного радиатора представлены ниже (40). Выходные данные расчёта представлены в конце подраздела (41).

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
Κ	$BT/(M^2 \cdot K)$	160	Коэффициент теплопередачи радиатора
Т _{ж.вх}	К	360	Температура жидкости на входе в радиатор
Свозд	Дж/(кг•К)	1000	Средняя теплоёмкость воздуха
$\Delta T_{ m BO3d}$	К	25	Температурный перепад в решётке радиатора
Твозд.вх	К	313	Температура воздуха на входе в радиатор

Таблица 40 – Входные данные для расчёта жидкостного радиатора

T C 41	D					••		
120 I 120	- Rr	іхолные	Π 2	памет	nti	пасчета	жилкостного	насоса
гаолица н		подпые	ma	pumer	pDI	pue ieru	мидкостного	nacoca

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
Q_{m}	Дж/с	2,606.104	Количество теплоты, отводимое жидкостью
$Q_{\scriptscriptstyle m BO3d}$	Дж/с	$2,606 \cdot 10^4$	Количество теплоты, переходящее от
			жидкости к воздуху
Т _{ж.вых}	К	351	Температура жидкости на выходе из радиатора
$G'_{\mathfrak{K}}$	кг/с	0,692	Количество жидкости, проходящей через
			радиатор
$T_{\rm cp. \pi}$	К	355,5	Средняя температура воды в радиаторе
<i>Т</i> _{возд.вых}	К	338	Температура воздуха на выходе из радиатора
<i>Т</i> _{ср.возд}	К	325,5	Средняя температура воздуха, проходящего
			через радиатор
F	M ²	5,43	Поверхность охлаждения радиатора
<i>G</i> ′ _{возд}	кг/с	1,042	Количество воздуха, проходящего через
			радиатор

8.2.4 Расчёт вентилятора

Расчёт вентилятора был сделан по книге «Расчёт автомобильных и тракторных двигателей» [1, с. 488-491]. Входные данные для расчёта вентилятора представлены ниже (42). Выходные данные расчёта представлены в конце подраздела (43).

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
p_0	МПа	0,1	Давление смеси газов
R _B	Дж/(кг•К)	287	Газовая постоянная для сухой смеси газов
$\Delta p_{ ext{T}p}$	Па	800	Сопротивление смесегазового тракта
η_{B}	_	0,6	КПД вентилятора
W _{возд}	м/с	15	Скорость смеси газов перед передом
			теплообменного устройства без учёта
			скорости транспортного средства
ψл	_	2,6	Коэффициент формы лопастей

Таблица 42 – Входные данные для расчёта вентилятора

Таблица 43 – Выходные данные расчёта вентилятора

Обозначение	Единица	Значение	Название измеряемой величины
измеряемой	измерения	измеряемой	
величины	измеряемой	величины	
	величины		
$ ho_{{\scriptscriptstyle { m BO3}}{ m J}}$	кг/м ³	1,07	Плотность воздуха при его средней
			температуре в радиаторе
G _{возд}	м ³ /с	0,974	Производительность вентилятора
N _{BeH}	кВт	1,3	Мощность, потребляемая вентилятором
<i>F</i> _{фр.рад}	M ²	0,065	Фронтовая площадь решётки радиатора
D _{вент}	М	0,288	Диаметр вентилятора
u	м/с	71	Окружная скорость
n _{BeHT}	мин ⁻¹	4721	Частота вращения вентилятора

Выводы по восьмому разделу.

В результате расчёта были определены параметры следующих систем: системы смазки и системы охлаждения двигателя.

9 Спецчасть

В качестве места для установки генератора на двигатель был выбран входной конец главного вала коробки передач. В оригинальном двигателе, в этом месте размещено сцепление, работающее в масляной ванне. Схема смазки сцепления изображена ниже (рис. 16).

По характеристике генератора (рис. 15) была определена частота, при которой последний вырабатывает мощность 25 кВт, она равна 2500 мин⁻¹.

Рисунок 15 – Характеристика генератора

Для установки генератора это место было выбрано по нескольким причинам:

1) Масло в сцепление поступает из отверстия в главном вале коробки передач. Это масло можно использовать для охлаждения обмотки статора;

2) Крутящий момент передаётся на сцепление через зубчатую передачу. Ведущая шестерня установлена на коленчатом валу, а ведомое колесо установлено на игольчатом подшипнике главного вала коробки (рис. 16). Передаточное отношение зубчатой передачи примерно равно 2, значит, при частоте вращений коленчатого вала 5000 мин⁻¹, генератор будет вращаться с необходимой частотой 2500 мин⁻¹.

Рисунок 16 – Схема смазки сцепления двигателя CBR500R

От двигателя CBR500R на главном валу коробки передач остаётся только звёздочка привода масляного насоса, колесо наружной муфты сцепления и втулка упорная с доработкой.

Для сборки и монтажа генератора требуется установить статор, ротор, энкодер (датчик положения и частоты ротора), а также элементы электрических соединений. Статор и энкодер необходимо неподвижно закрепить на фланце блока двигателя, что можно сделать при помощи картера статора. В дальнейшем планируется скомпоновать в составе с CBR500R более мощный генератор (мощностью 50 кВт), но с близкими габаритами, поэтому картер статора выполняется универсальным по литьевой форме, т. е. для двух вариантов генератора, картеры статора будут отличаться только мехобработкой. Для подачи масла, охлаждающего обмотку статора, во фланце картера выполнен маслоподводящий канал. Ротор устанавливается на главном валу коробки передач, соединённый с колесом через точёную втулку с фланцем. Ротор крепится к фланцу втулки, сидящей на шлицах главного вала коробки передач и удерживаемой на нём центральной гайкой. Втулка сопряжена с колесом посредством посадки с натягом. Торцевая часть генератора закрывается литой крышкой. Для доступа к силовым проводам при монтаже или демонтаже предусмотрен лючок. Контакты энкодера выходят наружу через окно, образованное приливом на картере статора и крышкой генератора.

Таким образом, при работе двигателя, крутящий момент передаётся с коленчатого вала, через шестерню и колесо с втулкой, на ротор, который вращается относительно неподвижного статора. Масло под давлением поступает из канала в блоке цилиндров в канавку на торце картера и, поднявшись в его верхнюю часть, разбрызгивается на обмотку статора. Масло охлаждает обмотки и самотёком попадает в поддон картера двигателя.

Вывод по спецчасти.

Определены основные параметры и выбрана схема размещения генератора в составе силовой установки.

82

Заключение

В результате работы был проведён расчёт цикла, кинематический и динамический расчёты, а также расчёты основных деталей и систем двигателя CBR500R, оснащённого турбонаддувом, обеспечивающим степень наддува $n_k = 1,9$, и переведённого на природный газ. Номинальная мощность двигателя $N_e = 36,8$ кВт при частоте n = 8600 мин⁻¹. Удельные показатели на номинальном режиме – $g_e = 297$ г/(кВт·ч), $N_{\pi} = 78,2$ кВт/л.

Для основных деталей кривошипно-шатунного и газораспределительного механизмов были выполнены расчёты на прочность, которые подтвердили соответствие модернизируемого двигателя современным требованиям к надёжности.

На главном валу коробки передач был скомпонован генератор с номинальной мощностью 22 кВт. С применением САПР высокого уровня на ЭВМ была построена трёхмерная модель генератора в составе двигателя. В процессе работы были разработаны литьевые картерные детали для агрегатирования двигателя CBR500R. Также были получены продольный и поперечный разрезы двигателя, чертежи картера статора и крышки генератора.

Модернизированный двигатель CBR500R может быть использован в качестве стационарной электростанции, а также в качестве удлинителя пробега на гибридном автомобиле. Установка обладает высоким классом токсичности и хорошей экономичностью за счёт использования в качестве топлива природного газа. Оснащение двигателя турбокомпрессором с относительно невысокой степенью наддува позволило, с одной стороны, не допустить ухудшения мощностных характеристик двигателя при переводе его на природный газ, с другой, обеспечило высокие ресурсные характеристики.

Исходя из вышеперечисленного, можно считать, что цель работы была достигнута – двигатель CBR500R переведён на природный газ, скомпонован и установлен генератор.

83

Список используемой литературы и используемых источников

- Вальехо М. П. Расчет кинематики и динамики рядных поршневых двигателей: учебное пособие / М. П. Вальехо, Н. Д. Чайнов. - Москва: ИНФРА-М, 2022. - 259 с.
- Гоц А. Н. Анализ уравновешенности и методы уравновешивания автомобильных и тракторных двигателей : учебное пособие / А. Н. Гоц. — Владимир : Изд-во Владимирского гос. ун-та, 2007. — 128 с.
- Дополнение к материалу «Типология японских гибридов». URL: <u>https://toyota-club.net/files/2023/23-04-30_honda_idcd_ru.htm</u>. (Дата обращения 20.02.2024).
- 4. Ерохов В. И. Экологическая эффективность газобаллонного автомобиля на компримированном природном газе : научная статья / В. И. Ерохов. URL: <u>https://cyberleninka.ru/article/n/ekologicheskaya-effektivnost-gazoballonnogo-avtomobilya-na-komprimirovannom-prirodnom-gaze</u>. (Дата обращения 20.02.2024).
- Колчин А. И. Расчёт автомобильных и трактирных двигателей: Учеб. пособие для вузов/А. И. Колчин, В. П. Демидов. — 4-е изд., стер. — М.: Высш. шк., 2008. — 496 с.: ил.
- Конструирование двигателей внутреннего сгорания: учебник для студентов вузов, обучающихся по специальности "Двигатели внутреннего сгорания" направления подготовки "Энергомашиностроение" / Н. Д. Чайнов, Н. А. Иващенко, А. Н. Краснокутский, Л. Л. Мягков; под ред. Н. Д. Чайнова. - 3-е изд. -Москва: Машиностроение, 2023. - 495 с
- Курасов В. С. Теория двигателей внутреннего сгорания : учеб. пособие / В. С. Курасов, В. В. Драгуленко. - Москва: ИНФРА-М, 2021. - 86 с.

- Мотовилин Г. В. Автомобильные материалы : Справочник/ Г. В. Мотовилин, М. А. Масино, О. М. Суворов. 3-е изд., М.: Транспорт, 1989. 464 с.: ил.
- Петрв А. П. Конструкция и проектирование гибридных автомобилей : учебное пособие / А. П. Петров. — Курган : Изд-во Курганского гос. ун-та, 2024. — 168 с.
- Романов, А. С. Основы конструирования. Конструирование отливки. Часть 3: учеб.-метод. пособие к практическим занятиям по дисциплине «Основы конструирования» для студентов направления подготовки 22.03.02 «Металлургия», всех форм обучения/ НГТУ им. P.E. Алексеева; сост.: А.С. Романов. – Нижний Новгород, 2022. – 48 с.
- 11. Стасенко Д. Л., Лаевский Д. В. Методика расчета героторного насоса с эпициклоидальным зацеплением. УДК 621.671.001. 2011. 11 с.
- Стратегия развития автомобильной промышленности РФ до 2035 г.: распоряжение Правительства Российской Федерации от 28 декабря 2022 г. № 4261-р. — Москва.
- 13. Тепловой расчёт автомобильных газовых двигателей : методические указания к курсовому проектированию /
 Р. Ф. Калимуллин, С. В. Горбачёв, А. А. Филиппов. — Оренбург : Изд-во Оренбургского гос. ун-та, 2007. — 42 с.
- 14. Цветное литьё : Справочник / Под общ. ред. Н. М. Галдина. М.: Машиностроение, 1989. 528 с: ил.
- Anselmo A., Sullivan J. DME: The Best Fuel, Period. Dimethyl Ether: The Future of Electricity, Heat and Transportation. ChemBioPower Ltd. 2015. Available at: <u>www.chembiopower.com/s/CBP-WhitePaper-v5.pdf</u>
- 16. Bengtsson S., Andersson K., Fridell E. A comparative life cycle assessment of marine fuels; liquefied natural gas and three other fossil fuels. Proceedings of the Institution of Mechanical Engineers, Part M:

Journal of Engineering for the Maritime Environment. 2011. 225, pp. 97–110

- Brinkman N., Wang M., Weber T., and Darlington T. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions, 2005.
- 18. Taycan с аккумулятором Performance Battery Plus. URL: <u>https://media.porsche.com/mediakit/taycan/ru/specifications/taycan-</u><u>with-performance-battery-plus</u>. (Дата обращения 23.02.2024).
- 19. Heywood, J. B. Internal combustion engine fundamentals sec. edition
 ISBN: 978-1-26-011611-3 © McGraw-Hill Education, 2018 p. 1721.
- 20. Global EV Outlook 2021. URL: https://www.iea.org/reports/global-evoutlook-2021. (Дата обращения 04.01.2024).

Приложение А

Таблицы и графики

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
r _{CH4}	_	0,9	Объёмная доля метана в природном газе
<i>r</i> _{C2H6}	_	0,0296	Объёмная доля этана в природном газе
r _{C3H8}	_	0,0017	Объёмная доля пропана в природном газе
r_{C4H10}	_	0,0055	Объёмная доля бутана в природном газе
<i>r</i> _{C5H12}	_	0,0042	Объёмная доля пентана в природном газе
r_{H2}	_		Объёмная доля водорода в природном
		0,0014	газе
r _{co}	—		Объёмная доля оксида углерода в
		0,0014	природном газе
<i>r</i> _{CO2}	—		Объёмная доля углекислого газа в
		0,0047	природном газе
r_{N2}	_	0,0515	Объёмная доля азота в природном газе
H_{uCH_4}	МДж/м ³	35,7	Низшая теплота сгорания метана
$H_{uC_2H_6}$	МДж/м ³	63,3	Низшая теплота сгорания этана
$H_{uC_3H_8}$	МДж/м ³	90,9	Низшая теплота сгорания пропана
$H_{uC_4H_{10}}$	МДж/м ³	119,7	Низшая теплота сгорания бутана
$H_{uC_{5}H_{12}}$	МДж/м ³	146,2	Низшая теплота сгорания пентана
H_{uH_2}	МДж/м ³	10,8	Низшая теплота сгорания водорода
H_{uCO}	МДж/м ³		Низшая теплота сгорания оксида
		12,8	углерода
H_{uCO_2}	МДж/м ³		Низшая теплота сгорания углекислого
		0	газа
H_{uN_2}	МДж/м ³	0	Низшая теплота сгорания азота
α	_	1,15	Коэффициент избытка воздуха

Таблица А.1 – Входные данные для расчёта параметров топлива

Таблица А.2 – Выходные данные расчёта индикаторных параметров рабочего цикла

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
p'_i	МПа	1,799	Теоретическое среднее индикаторное
			давление
p_i	МПа	1) 1,512	Среднее индикаторное давление
		2) 1,699	
		3) 1,765	
		4) 1,815	
		5) 1,747	
		6) 1,764	
		7) 1,72	
		8) 1,624	

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
η_i	_	1) 0,443	Индикаторный КПД
		2) 0,424	
		3) 0,41	
		4) 0,399	
		5) 0,401	
		6) 0,395	
		7) 0,394	
		8) 0,373	
g_i	г/(кВт·ч)	1) 163,8	Индикаторный удельный расход
		2) 171	топлива
		3) 177	
		4) 182	
		5) 181	
		6) 183,6	
		7) 184	
		8) 194	

	р	11	~
1 aonuna A 3 –	- Кыхолные ланны	пасчета эффект	гивных показателей лвигателя
1 иолици 1 1.5	DDINOTITIDIO Taimpi	pue le la supper	пылых показателен дын ателя

Обозначение	Единица	Значение параметра	Название параметра
параметра	измерения		
	параметра		
$\vartheta_{\Pi,CD}$	м/с	1) 8,91	Средняя скорость поршня
1		2) 11,13	
		3) 13,36	
		4) 15,59	
		5) 17,81	
		6) 19,15	
		7) 20,04	
		8) 22,27	
$p_{\scriptscriptstyle \mathrm{M}}$	МПа	1) 0,338	Среднее давление
		2) 0,408	механических потерь
		3) 0,48	
		4) 0,553	
		5) 0,627	
		6) 0,672	
		7) 0,702	
		8) 0,777	
p_e	МПа	1) 1,174	Среднее эффективное давление
		2) 1,292	
		3) 1,285	
		4) 1,262	
		5) 1,12	
		6) 1,091	
		7) 1,018	
		8) 0,847	

Обознанение	Елинина	Знанение параметра	Назрание параметра
Обозначение	Единица	эначение параметра	пазвание параметра
параметра	измерения		
	параметра		
$\eta_{\scriptscriptstyle \mathrm{M}}$	-	1) 0,777	Механический КПД
		2) 0,76	
		3) 0,728	
		4) 0,695	
		5) 0,641	
		6) 0,619	
		7) 0,592	
		8) 0,522	
η_e	_	1) 0,344	Эффективный КПД
		2) 0,322	
		3) 0,299	
		4) 0,277	
		5) 0,257	
		6) 0,244	
		7) 0,233	
		8) 0,195	
g _e	г/(кВт·ч)	1) 210,9	Эффективный удельный расход
01		2) 225	топлива
		3) 243	
		4) 261	
		5) 282	
		6) 297	
		7) 311	
		8) 372	
N	кВт	1) 18.43	Эффективная мошность
- 'e		2) 25.37	лвигателя
		3) 30.26	
		4) 34.68	
		5) 35.16	
		6) 36.84	
		7) 35.91	
		8) 33.21	
M.	Н∙м	1) 44	Момент на коленчатом валу
1.16		2) 48.45	лвигателя
		3) 48 16	
		4) 47 31	
		5) 41 97	
		6) 40 91	
		7) 38 1	
		8) 31 72	
	1	0/31,72	

Таблица А.4 -	- Выходные	данные	расчёта	основных	параметров	цилиндра и	и двигателя
	— — — — — — — — — — — — — — — — — — —	_	F F		rr		

Обозначение	Единица	Значение параметра	Название параметра
параметра	измерения		
	параметра		
V_{π}	Л	0,471	Литраж двигателя
V _h	Л	0,236	Рабочий объём одного цилиндра

Обозначение	Единица	Значение параметра	Название параметра
параметра	измерения		
	параметра		
G _t	кг/ч	1) 3,887	Часовой расход топлива
		2) 5,705	
		3) 7,344	
		4) 9,063	
		5) 9,912	
		6) 10,931	
		7) 11,168	
		8) 12,37	
N_{π}	кВт/л	1) 39,23	Литровая мощность двигателя
		2) 53,82	
		3) 64,24	
		4) 73,63	
		5) 74,65	
		6) 78,22	
		7) 76,36	
		8) 70,59	

Рисунок А.1 – Расчётная индикаторная диаграмма проектируемого двигателя в p-V координатах

Рисунок А.2 – Действительная индикаторная диаграмма проектируемого двигателя в p-V координатах

Рисунок А.3 – Действительная и расчётная индикаторные диаграммы проектируемого двигателя в p-V координатах

Рисунок А.4 – Действительная индикаторная диаграмма проектируемого двигателя в р-ф координатах

Рисунок А.5 – Внешняя скоростная характеристика двигателя CBR500R, работающего на природном газе

Рисунок А.6 – График зависимости перемещения поршня от угла поворота коленвала

Рисунок А.7 – График зависимости скорости поршня от угла поворота коленвала

Рисунок А.8 – График зависимости ускорения поршня от угла поворота коленвала

Рисунок А.9 – Графики зависимости избыточного давления $\Delta p_{\rm r}$, удельной силы инерции p_j и удельной суммарной силы р от угла поворота коленвала φ

Рисунок А.10 – График зависимости сил P, S, N от φ

Рисунок А.11 – График зависимости сил K, T от φ

Рисунок А.12 – График зависимости $P_{\rm K}$ от T

Рисунок А.13 – График зависимости $R_{\text{ш.ш}}$ от φ

Рисунок А.14 — Полярная диаграмма силы $R_{\rm к.m}$ в координатах T и K

Рисунок А.15 – График зависимости $R_{\text{к.ш}}$ от φ

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
$\delta_{ ext{ iny K}. ext{ iny M}}$	М	0	Внутренний диаметр коренной шейки
τ_{-1}	МПа	350	Предел усталости при кручении
$ au_{ m T}$	МПа	700	Предел текучести при кручении
			Коэффициент приведения ассиметричного
			цикла к равноопасному симметричному при
ατ		0,18	кручении
			Коэффициент чувствительности материала к
q	_	1	концентрации напряжений
$\alpha_{\kappa\sigma}$	_	2	Теоретический коэффициент концентрации напряжений
ε _{mτ}	_	0,8	Масштабный коэффициент
			Коэффициент поверхностной
$\mathcal{E}_{\Pi \tau}$	_	2,2	чувствительности
$\delta_{ m m.m}$	М	0	Внутренний диаметр шатунной шейки
$\alpha_{\kappa\sigma}$	_	2	Теоретический коэффициент концентрации напряжений

Таблица А.5 – Входные данные для расчёта коренных и шатунных шеек

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
ε _{мτ}	_	0,8	Масштабный коэффициент
$\mathcal{E}_{\Pi T}$	_	2,2	Коэффициент поверхностной чувствительности
			Угол между осью кривошипа и осью
$arphi_{ ext{M}}$	градус	90	масляного отверстия
σ_{-1}	МПа	625	Предел усталости при изгибе
$\sigma_{ m r}$	МПа	1225	Предел текучести при изгибе
α_{σ}	_	0,2	Коэффициент приведения ассиметричного цикла к равноопасному симметричному при изгибе
$\alpha_{\kappa\sigma}$	_	2	Теоретический коэффициент концентрации напряжений
$\mathcal{E}_{M\sigma}$	_	0,82	Масштабный коэффициент
$\mathcal{E}_{\mathrm{n}\sigma}$	_	2,2	Коэффициент поверхностной чувствительности

Таблица А.6 – Выходные данные расчёта коренных и шатунных шеек

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Максимальное значение скручивающего
М _{к.ш2.max}	Н∙м	234	момента 2-й коренной шейки
Maria	Н∙м	-145	Минимальное значение скручивающего момента 2-й коренной шейки
<u>1.1</u> к.ш2.тіп	11 14	115	Момент сопротивления коренной шейки
<i>W</i> _{т к.ш}	M ³	9,647·10 ⁻⁷	кручению
			Максимальное значение касательных
$\tau_{max.2}$	МПа	243	напряжений 2-й коренной шейки
			Минимальное значение касательных
$ au_{min.2}$	МПа	-150	напряжений 2-й коренной шейки
			Среднее напряжение цикла 2-й коренной
$ au_{m.2}$	МПа	46	шейки
$\tau_{a,2}$	МПа	196	Амплитуда цикла 2-й коренной шейки
			Отношение предела усталости к пределу
$\beta_{ au}$	_	0,5	текучести при кручении
$\tau_{a,2}/\tau_{m,2}$	_	4,23	_
$(\beta_{\tau} - \alpha_{\tau})/$			
$/(1-\beta_{\tau})$	_	0,64	_
			Эффективный коэффициент концентрации
k_{σ}	_	2	напряжений
			Эффективный коэффициент концентрации
$k_{ au}$	—	1	напряжений при кручении

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
1 1	Поромотро		
	параметра	_	
			Запас прочности при расчёте по пределу
n_{τ}	_	2,919	усталости
			Максимальное значение скручивающего
$M_{\rm III,III2,max}$	Н∙м	211	момента 2-й шатунной шейки
			Минимальное значение скручивающего
M	Н∙м	-187	момента 2-й шатунной шейки
<u>m.m2.mun</u>		101	Момент сопротивления шатунной шейки
WZ	M ³	$9.161 \cdot 10^{-6}$	
₩тш.ш	IVI	9,101 10	
_	MIT	22	
$\tau_{max.2}$	MIIIa	23	напряжении 2-и шатуннои шеики
			Минимальное значение касательных
$ au_{min.2}$	MIIa	-20	напряжений 2-й шатунной шейки
			Среднее напряжение цикла 2-й шатунной
$ au_{m.2}$	МПа	1	шейки
$\tau_{a.2}$	MIIa	22	Амплитуда цикла 2-й шатунной шейки
$\tau_{a,2}/\tau_{m,2}$	_	16,68	_
<u>u.27 111.2</u>		,	Эффективный коэффициент концентрации
<i>k</i> _	_	2	напряжений
~σ			Эффективный коэффициент концентрации
k		1	эффективный коэффициент концентрации
κ_{τ}		1	
		27 779	запас прочности при расчете по пределу
n_{τ}	—	27,778	усталости
			Максимальное значение изгибающего
			момента 2-й шатунной шейки в плоскости
М _{фм тах}	Н∙м	95	масляного отверстия
			Минимальное значение изгибающего
			момента 2-й шатунной шейки в плоскости
$M_{\varphi_{\rm M}min}$	Н∙м	-154	масляного отверстия
•			Момент сопротивления шатунной шейки
W_{τ}	M ³	$5.58 \cdot 10^{-6}$	изгибу
О ш.ш			Максимальное значение напряжений изгиба
σ	МΠа	21	2-й шатулной шейки
Omax	Willia	21	
_	MIT	24	
σ_{min}	MIIa	-34	2-и шатуннои шеики
			Среднее напряжение цикла 2-й шатунной
σ_m	МПа	-6	шейки
σ	МПа	27	Амплитула шикла 2-й шатунной шейки
∽a	1/1110		Addersupin in readding remained in the
1-			эффективный коэффициент концентрации
κσ		<u>ک</u>	напряжении
			Запас прочности при расчёте по пределу
$n_{T\sigma}$	-	51,557	текучести

Рисунок А.16 – График зависимости $M_{\rm K,m2}$ от φ

Рисунок А.17 – График зависимости $M_{\rm III.III2}$ от φ

Рисунок А.18 – График зависимости $M_{arphi^{\mathrm{M}}}$ от arphi

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Расстояние от середины 1-й коренной шейки
$l_{ extsf{m}1}$	ММ	22,7	до 1-й щеки
			Расстояние от середины 2-й коренной шейки
l _{щ2}	ММ	13	до 2-й щеки
			Расстояние от середины 2-й коренной шейки
$l_{{ m III}3}$	ММ	13	до 3-й щеки
			Расстояние от середины 3-й коренной шейки
$l_{ m III4}$	MM	13,5	до 4-й щеки
h_1	ММ	14	Толщина 1-й щеки
h_2	ММ	12	Толщина 2-й щеки
h_3	ММ	12	Толщина 3-й щеки
h_4	ММ	17	Толщина 4-й щеки
θ	_	0,312	Коэффициент, зависящий от отношения b/h
<i>b</i> ₃	ММ	126	Ширина 3-й щеки
$\alpha_{\kappa\sigma}$	_	1,75	Теоретический коэффициент концентрации напряжений

Таблица	Α7_	Вхолные	ланные	ππя	пасчёта	шёк
таолица л	A./ –	Б ходныс	данные	для	расчета	щек

Таблица А.8 – Выходные данные расчёта щёк

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Максимальное значение скручивающего
<i>М</i> _{к.щ2 <i>max</i>}	Н∙м	2	момента, вызнанного силой T'_2
			Минимальное значение скручивающего
<u> M_{к.щ2} min</u>	Н∙м	-69	момента, вызнанного силой T'_2
			Максимальное значение касательных
τ_{max}	MIIa	0	напряжении в 3-и щеке от момента <i>М</i> _{К.щ2}
	MIT	10	Минимальное значение касательных
τ_{min}	MIIa	-12	напряжении в 3-и щеке от момента <i>М</i> _{К.щ2}
$ au_m$	МПа	-6	Среднее напряжение цикла
τ_{a}	МПа	6	Амплитула напряжения пикла
- <i>a</i>			Эффективный коэффициент концентрации
k_{σ}	_	1,75	напряжений
			Эффективный коэффициент концентрации
k_{τ}	—	0,875	напряжений при кручении
			Максимальное напряжение цикла, с учётом
			концентрации напряжений и обработки
τ_{max}	МПа	7	поверхности
			Запас прочности при расчёте по пределу
$n_{\mathrm{T}\tau}$	-	105	текучести
34			Максимальное значение изгибающего момента
M _{н.щ max}	Н∙м	478	$M_{\rm H.iii}$, вызнанного силами <i>K</i> , K_R И $K_{\rm Пp}$
			Минимальное значение изгибающего момента
M _{н.щ min}	Н∙м	-23	$M_{\rm H.iii}$, вызнанного силами <i>K</i> , K_R И $K_{\rm IIp}$
			Максимальное значение силы растяжения-
P _{щ max}	МПа	8	сжатия P_{III} Вызнанной силами K, K_R И $K_{\Pi p}$
			Минимальное значение силы растяжения-
$P_{\rm III} min$	МПа	-11	сжатия P_{III} Вызнанной силами K, K_R И $K_{\Pi p}$
$W_{\sigma \pm 3}$	м ³	3,024.10-6	Момент сопротивления 3-й щеки изгибу
F _{m2}	M ²	$1.512 \cdot 10^{-3}$	Плошаль расчётного сечения А-А 3-й шеки
- щз	141	1,512 10	Максимальное значение нормальных
			напряжений в 3-й шеке от момента $M_{\rm H}$ И
σ_{π}	MПа	158	силы Ри
	Iviilu	150	Минимальное значение нормальных
			напряжений в 3-й шеке от момента $M_{\rm H}$ И
σ_{-} ,	MПа	-8	силы Ра
<u>~2 min</u>			щ
σ_m	МПа	75	Среднее напряжение цикла
σ_a	МПа	83	Амплитуда напряжения цикла
			Максимальное напряжение цикла, с учётом
			концентрации напряжений и обработки
σ_{max}	МПа	374	поверхности

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
			Запас прочности при расчёте по пределу
n_{σ}	_	1,994	усталости
			Общий запас прочности 3-й щеки от
n	_	1,994	нормальных и касательных напряжений

Таблица А.9 – Входные данные для расчета поршня двигателя

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
r _i	М	0,0225	Внутренний радиус днища
δ	М	0,005	Толщина днища
K	_	0,5	Коэффициент наличия ребер жесткости
K_{τ}	_	1	Коэффициент, учитывающий напряженность
			цикла двигателя
α	град-1	22.10-6	Коэффициент линейного расширения
			материала поршня
Ε	МПа	6.10^{4}	Модуль упругости материала поршня
$\lambda_{ m ren}$	Вт/(м·К)	160	Коэффициент теплопроводности материала
			поршня
h_{π}	ММ	2	Толщина межкольцевой перемычки
F _{AA}	M ²	6,4.10-4	Ослабленное сечение уплотняющей части
			поршня
$n_{\rm xxmax}$	мин ⁻¹	8600	Максимальная частота вращения холостого
			хода
m _{xx}	КГ	0,115	Масса головки поршня с кольцами,
			расположенная выше сечения А-А
N _{max}	MH	$1,\overline{84\cdot 10^{-3}}$	Максимальная боковая сила, действующая на
			стенку цилиндра
Hю	М	0,0265	Высота юбки

Таблица А.10 –	- Выходные	данные р	расчета	поршня	двигателя
----------------	------------	----------	---------	--------	-----------

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
M _{из}	МН∙м	42,22.10-6	Изгибающий момент, возникающий в днище
			поршня от давления газов
W _{M3}	M ³	187,5.10-9	Момент сопротивление изгибу плоского
			днища
$\sigma_{_{ m H3}}$	МПа	112,6	Напряжение изгиба в днище поршня от
			давления газов
q	BT/M^2	$4,7.10^{6}$	Удельная тепловая нагрузка
$\sigma_{ m ren}$	МПа	97,15	Тепловые напряжения в днище поршня
σ_{Σ}	МПа	209,74	Суммарное напряжение в днище поршня
$\sigma_{_{ m H3}}$	МПа	56,157	Напряжение изгиба в межкольцевой
			перемычке

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
τ	МПа	11,697	Напряжение среза в межкольцевой перемычки
σ_{Σ}	МПа	60,835	Суммарное напряжение, определяемое по
			третьей теории прочности
$\sigma_{ m cm}$	МПа	61,258	Напряжение сжатия
$\omega_{\rm xxmax}$	рад/с	838	Максимальная угловая скорость холостого
			хода двигателя
$\sigma_{ m p}$	МПа	5,435	Напряжение разрыва в сечении х-х
$q_{ m HO}$	МПа	1,036	Удельная нагрузка на юбке

Таблица А.11 – Входные данные для расчета поршневого пальца двигателя

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
n	мин ⁻¹	8600	Частота вращения коленвала на
			рассматриваемом режиме
k	-	0,8	Коэффициент, учитывающий массу
			поршневого пальца
d_{π}	М	0,016	Наружный диаметр пальца
$l_{ m III}$	М	0,015	Длина опорной поверхности пальца в
			головке шатуна
l_{π}	М	0,046	Общая длина пальца
b	М	0,019	Расстояние между торцами бобышек
$d_{\scriptscriptstyle m B}$	М	0,01	Внутренний диаметр пальца
Ε	МПа	2.10^{5}	Модуль упругости материала пальца

Таблица А.12 – Выходные данные расчета поршневого пальца двигателя

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
ω	рад/с	901	Угловая скорость коленчатого вала на
			рассматриваемом режиме
P_j	MH	$-6,782 \cdot 10^{-3}$	Сила инерции поршневой группы
Р	MH	0,034	Расчётная сила, действующая на поршневой
			палец
$q_{ m III}$	МПа	140,75	Удельное давление пальца на втулку
			поршневой головки шатуна
q_{6}	МПа	78,2	Удельное давление плавающего пальца на
			бобышки
$\sigma_{_{\rm H3}}$	МПа	499	Напряжение изгиба пальца
τ	МПа	267	Касательные напряжения от среза пальца в
			сечениях, расположенных между бобышками и
			головкой шатуна
Δd_{max}	ММ	0,036	Наибольшее увеличение горизонтального
			диаметра пальца

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
$\sigma_{\alpha 0^{\circ}}$	МПа	189	Напряжения, возникающие при овализации
			пальца, на внешней поверхности пальца в
			горизонтальной плоскости
$\sigma_{\alpha 90^{\circ}}$	МПа	425	Напряжения, возникающие при овализации
			пальца, на внешней поверхности пальца в
			вертикальной плоскости
$\sigma_{i0^{\circ}}$	МПа	645	Напряжения, возникающие при овализации
			пальца, на внутренней поверхности пальца в
			горизонтальной плоскости
$\sigma_{i90^{\circ}}$	МПа	338	Напряжения, возникающие при овализации
			пальца, на внутренней поверхности пальца в
			вертикальной плоскости

Таблица А.13 – Входные данные для расчёта поршневой головки шатуна

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра	1 1	
mπ	КГ	0,194	Масса поршневой группы
т. т	КГ	0,0124	Масса верхней части головки
n _{x.x.max}	мин ⁻¹	8600	Максимальная частота вращения холостого
			хода
λ	_	0,29	_
R	М	0,0334	Радиус кривошипа
h_{Γ}	М	3,3.10-3	Минимальная радиальная толщина стенки
			поршневой головки
d	М	0,016	Внутренний диаметр поршневой головки
lш	М	0,015	Длина поршневой головки
$\alpha_{\rm B}$	K ⁻¹	$1,8.10^{-5}$	Термический коэффициент расширения
			втулки
αΓ	K ⁻¹	$1,8.10^{-5}$	Термический коэффициент расширения
			ГОЛОВКИ
ΔT	К	150	Средняя температура подогрева головки и
			втулки при работе двигателя
Δ	MM	0	Натяг посадки бронзовой втулки
ω	мин ⁻¹	8600	Угловая скорость вращения коленвала
dΓ	М	22,6.10-3	Наружный диаметр поршневой головки
μ	—	0,3	Коэффициент Пуассона
Еш	МПа	$2,2\cdot10^{5}$	Модуль упругости шатуна
dπ	М	16·10 ⁻³	Внутренний диаметр втулки
Ев	МПа	$2,2\cdot 10^5$	Модуль упругости втулки
Фш.з	град	127	Угол заделки
Fπ	м ²	3,53·10 ⁻³	Площадь поршня
pzд	МПа	7,3	Максимальное давление действительное (на
			режиме максимально крутящего момента)
p 0	МПа	0,1	Атмосферное давление
Nсж0/Рсж	-	0,007	-

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
M _{сж0} /(Р _{сж} ·r _{ср})	_	0,0024	_
σ-1	МПа	290	Предел усталости при изгибе
σ	МПа	800	Предел текучести
$lpha_{\sigma}$	_	0,17	Коэффициент приведения цикла при изгибе
σ -1p	МПа	290	Предел усталости при растяжении-сжатии
$\sigma_{\rm B}$	МПа	900	Предел прочности
ε _M	_	0,92	Масштабный коэффициент при растяжении-
			сжатии и изгибе для сечения шатуна
επ	_	1,3	Коэффициент поверхностной
			чувствительности шатуна (поверхность
			подвергалась обдувке дробью)

Примечание – Δ и Δ_t равны 0, т.к. втулка – отсутствует. $\omega_{x.x.max}$ равна n_N , т.к. она ограничена электронной системой управления.

	I		
Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
φ	градус	370	Угол, при котором сила, сжимающая
			шатун, достигает максимального значения
pr	МПа	0,115	Давление остаточных газов
J _x	M ⁴	3,515.10-9	Момент инерции сечения В-В
			относительно оси х-х, перпендикулярной
			плоскости качания шатуна
Fcp	м ²	101.10-6	Площадь среднего сечения шатуна
Jy	M ⁴	0,497.10-9	Момент инерции сечения В-В
			относительно оси у-у, перпендикулярной
			плоскости качания шатуна
d ₁	М	0,039	Внутренний диаметр кривошипной
			ГОЛОВКИ
ε _M	—	0,92	Масштабный коэффициент при
			растяжении-сжатии и изгибе для сечения
			шатуна
επ	—	1,3	Коэффициент поверхностной
			чувствительности шатуна (поверхность
			подвергалась обдувке дробью)
ασ	_	0,145	Коэффициент приведения цикла при
			растяжении-сжатии

Таблица А.14 – Входные данные для расчёта стержня шатуна

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
θ _{п.cp}	м/с	19,15	Средняя скорость поршня
iкл	_	2	Количество впускных клапанов,
			приходящихся на один цилиндр
h _{кл.max}	MM	7,65	Максимальное перемещение клапана
drop	MM	22,8	Диаметр горловины
Фпр	град	5	Угол предварения открытия клапана
Ф 3П	град	35	Угол запаздывания закрытия клапана
Δs	ММ	0,3	Зазор, учитывающий упругие деформации
ω' _{т0к}	мм/град	0,015	Скорость толкателя в конце сбега
Ζ	_	5/8	_
n	мин ⁻¹	8600	Частота вращения коленвала
Fπ	cm ²	35,26	Площадь поршня

Таблица А.16 – Выходные данные расчёта профиля кулачка Курца

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
φ _p 0	градус	55	Угол поворота распредвала, на котором
			клапан находится в открытом состоянии
r_0	ММ	13,39	Радиус начальной окружности кулачка
r _K	ММ	13,09	Радиус тыльной части кулачка
Φ_0	рад	0,548	Продолжительность участка сбега кулачка,
			выраженная в углах поворота распредвала
Φ_1	рад	0,295	Участок положительных ускорений (в углах
			поворота распредвала)
Φ_2	рад	0,074	Первый участок отрицательных ускорений (в
			углах поворота распредвала)
Φ_3	рад	0,591	Второй участок отрицательных ускорений (в
			углах поворота распредвала)
<i>c</i> ₁₁	_	7,67	-
<i>c</i> ₁₂	_	0,64	_
C ₃₂	_	13,254	-
<i>c</i> ₂₁	_	13,702	_
C ₂₂	_	0,037	-
C ₃₁	_	2,374	-
C ₃₃	_	4,336	-
<i>K</i> ₁	_	0,406	-
<i>k</i> ₁	_	$2,762 \cdot 10^{-3}$	-
Ζ	_	5/8	-
<i>k</i> ₂	_	0,327	-
<i>k</i> ₃		1,034	-
$\omega''_{\rm T0K}$	мм/рад	0,859	Скорость толкателя в конце участка сбега
<i>K</i> ₂	_	1,093	-

Обозначение	Единица	Значение	Название параметра
параметра	измерения	параметра	
	параметра		
$arphi_{ m np.p}$	градус	2,5	Угол предварения открытия клапана в
			градусах поворота распредвала
$arphi_{ m 3n.p}$	градус	17,5	Угол запаздывания закрытия клапана в
-			градусах поворота распредвала
$arphi_{ m \kappa 0 H}$	градус	-33,9	-
$arphi_{ ext{K1H}}$	градус	-2,5	_
$\varphi_{ ext{k2h}}$	градус	14,4	_
$arphi_{ m \kappa 3 H}$	градус	18,7	-
$\varphi'_{\rm K3H}$	градус	52,5	_
t_1	с	0	Время начала такта впуска
t_2	c	3,49·10 ⁻³	Время окончания такта впуска
t_2	MM ² ·c	1,071	Время-сечение впускного клапана за такт
$\int F_{r_{\pi}}(t)dt$			впуска
$\int t_1$			
F _{KI} cp	MM ²	307	Средняя площадь проходного сечения
nunep			впускного клапана за такт впуска
t _{πp}	c	-0,969.10-4	Время открытия впускного клапана
	с	$4,167 \cdot 10^{-3}$	Время закрытия впускного клапана
t _{3Π}	мм ² ·с	1,111	Полное время-сечение впускного клапана с
$\int E_{rr}(t)dt$			момента открытия до момента закрытия
ι _{np}	1	110	
ω΄ _{BΠ}	M/C	110	Средняя скорость потока в седле клапана