МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ МАШИНОСТРОЕНИЯ

(наименование института полностью)

Кафедра <u>«Энергетические машины и системы управления»</u> (наименование)

13.03.03 Энергетическое машиностроение (код и наименование направления подготовки)

«Альтернативные источники энергии транспортных средств» (направленность (профиль))

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Улучшение экологических характеристик дизельных генераторных установок_

Студент

Ф.З. Гоибов (И.О. Фамилия)

(личная подпись)

Руководитель

к.т.н., доцент, Д.А. Павлов (ученая степень, звание, И.О. Фамилия)

Тольятти 2023

АННОТАЦИЯ

Выпускная квалификационная работа посвящена вопросу улучшению экологических характеристик дизельных генераторных установок.

Целью бакалаврского проекта является улучшение экологических характеристик дизельных генераторных установок за счет добавки водорода, для снижения дымности и повышения стабильности сгорания.

Поэтому в данном бакалаврской работе представлены результаты проектирования четырехцилиндровой дизельной генераторной установки, адаптированного для работы с малыми добавками водорода во впускной коллектор, а также проведен анализ возможностей улучшение экологических характеристик дизельных генераторных установок за счет добавки водорода. Бакалаврская работа состоит из пояснительной записки и графической части.

Пояснительная записка состоит из аннотации, введения, 4 разделов, заключения с основными результатами и выводами, содержит 29 рисунков, 15 таблиц, списка использованных источников (65 источник). Основной текст изложен на 63 страницах.

Графическая часть работы содержит 8 листов формата A1 иллюстрирующих материал, представленный в пояснительной записке.

ABSTRACT

Topic of the bachelor thesis: "Improving the efficiency of the fuel system for VAZ engines".

The fuel delivery system plays a crucial role in internal combustion engines. This thesis examines the shortcomings of the existing fuel delivery system and proposes a solution to address the high amplitude fuel pressure fluctuations.

This bachelor's thesis aims to improve the fuel delivery system for the VAZ 21129 gasoline engine. It consists of an explanatory note of 63 pages and a graphical part. The explanatory note covers the following topics:

- Analysis of the existing fuel delivery system;

- Thermal balance and thermal calculation of the engine;
- Kinematic and dynamic calculations were performed;
- Design of an external damper.

The graphic section contains six A1-sized sheets. They show longitudinal and transverse sections of the engine, three diagram sheets, and detailed drawings of the proposed fuel delivery system.

СОДЕРЖАНИЕ

Введение	4
1 Использование водорода в поршневых двигателях транспортных	
средств	5
1.1 Водород как топливо для дизельных двигателей внутреннего	
сгорания	5
1.2 Формирование выбросов в двигателях с воспламенением от	
сжатия	7
1.3 Водородно-дизельное двойное топливо	18
2 Тепловой расчет проектируемого двигателя	25
2.1 Тепловой расчет двигателя при работе на дизельном топливе	25
2.2 Тепловой расчет дизельного двигателя с добавкой водорода	30
3 Кинематический и динамический расчет кривошипно-шатунного	
механизма двигателя	36
3.1 Кинематический расчет кривошипно-шатунного механизма	
двигателя	36
3.2 Динамический расчет кривошипно-шатунного механизма	
двигателя	38
4 Анализ токсичности отработавших газов и эффективных	
показателей для дизельного двигателя с добавкой водорода.	
полученных на виртуальной молели	44
Заключение	55
	57
	51

введение

Водород является привлекательным альтернативным энергоносителем, оставить в прошлом вредные выбросы, глобальное который может нефти. В текущей потепление И ненадежность поставок работе рассматривается возможность использования водорода В двигателях сгорания. Водородные двигатели могут быть внутреннего внедрены относительно легко как с технологической, так и с экономической точек зрения.

Водород демонстрирует отличительные черты приемлемого безуглеродного топлива. При сгорании водорода не образуются токсичные продукты, такие как углеводороды, монооксид углерода, оксиды серы, органические кислоты или диоксид углерода.

Хорошо известно, что пролитый водород не оказывает вредного воздействия на окружающую среду благодаря своей высокой плавучести и способности к диффузии в воздухе. Водородный поток быстро рассеивается в атмосфере. С другой стороны, пролитый бензин часто создает опасность возгорания, а в некоторых случаях оказался загрязнителем грунтовых вод.

Энергоэффективность и воздействие на окружающую среду стали доминирующими темами при разработке двигателей внутреннего сгорания. Среди многих стратегий повышения мощности и снижения выбросов дизельных двигателей является частичное смешивание водорода и воздуха в качестве компонентов свежего заряда с образованием чрезвычайно бедной и гомогенной смеси, которая препятствует самовозгоранию, в то время как дизельное топливо впрыскивается непосредственно в камеру сгорания с использованием обычного системы впрыска топлива.

Поэтому исследование перспектив применения водорода в автомобильных силовых установках является актуальной темой бакалаврской работы.

1 Использование водорода в поршневых двигателях транспортных средств

В настоящее время тепловые системы должны стать энергоэффективными и производить меньше выбросов. Дизельные двигатели являются одной из таких систем, которые необходимо улучшить в этом отношении. Ожидается, что в ближайшем будущем водород станет одним из наиболее важных видов топлива для сокращения выбросов парниковых газов. Этот вклад, основанный на характеристиках обоих видов топлива, дает представление о возможности повышения мощности дизельных двигателей и снижения выбросов за счет добавления водорода.

1.1 Водород как топливо для дизельных двигателей внутреннего сгорания

Дизельные двигатели характеризуются выбросами оксидов углерода, оксидов азота, сажи и твердых частиц. В соответствующей литературе показано, что введение водорода для частичной замены заряда дизельного топлива повысит производительность двигателя [1]. В основном это помогает выбросы снизить оксидов углерода вследствие оптимизированных характеристик смеси благодаря газообразному состоянию водорода. Другие исследователи использовали Computational Fluid Dynamics для изучения изменений в выбросах оксидов азота при сгорании дизельного топлива, обогащенного водородом, в различных условиях эксплуатации. Их результаты подтверждают, что наблюдается заметное снижение выбросов выхлопных газов с увеличением процентного содержания водорода [2]. Другие авторы приводят пример измерения давления в цилиндрах водородно-дизельной системы. Полученные данные свидетельствуют о нормальном сгорании дежурного топлива без предварительного зажигания и сжигании предварительного смешения. Но давление имеет тенденцию к

высокой температурой резкому повышению, так как водород С самовоспламенения воспламеняется после предварительного зажигания дизеля. Это позволяет использовать водород без серьезной модификации уже борту дизелей [3]. В установленных на другом исследовании [4] рассматривалось сжигание обедненной смеси с использованием водородного топлива. Результат этого вклада указывает на то, что водород помогает оптимизировать процесс сгорания, что позволяет значительно расширить предел обедненной смеси за счет улучшения предела пропусков зажигания. Кроме того, он показывает, что колебания от цикла к циклу уменьшаются благодаря лучшему смешиванию и более быстрому сгоранию. Другое исследование, представленное в [5], относится как к сгоранию чистого водорода в условиях воспламенения от сжатия однородного заряда, так и к сгоранию водород-дизель в двигателе с воспламенением от сжатия. Различные дозы водорода используются для получения информации о влиянии на интенсивность детонации при сгорании, массовую долю сжигаемого топлива и скорость выделения тепла, а также на долговечность двигателя. Представленные результаты показывают, что до семнадцати процентов водорода могут оказывать положительное влияние на Экспериментальные исследования [6]-[9] были производительность. нацелены на влияние использования водорода на параметры двигателя, такие как момент впрыска, максимальная тепловая эффективность тормозов и оксиды азота. В нем делается вывод о том, что водород с впрыском через порт помогает повысить тепловую эффективность торможения двигателя при большем снижении выбросов.

В настоящем вкладе производительность дизельного двигателя рассматривается с использованием добавления водорода и на основе моделирования двигателя среднего значения, ориентированного на улучшение мощности и выбросов. Газообразный водород вводится во впускной коллектор с использованием доступных методов заправки газом. Концепция основана на непрерывном впрыске во впускной коллектор, где

центральный дозирующий клапан и распределитель подают испаренный водород во впускные каналы. Для этого тепло охлаждающей жидкости двигателя используется для испарения водорода и регулирования его температуры. Подача относительно низкотемпературного газообразного водорода во впускной коллектор способствует охлаждению свежего заряда, что увеличивает плотность заряда и помогает снизить выбросы двигателя. Бедная смесь предотвращает обратный выброс во впускные каналы. Дизельное топливо впрыскивается непосредственно в камеру сгорания с использованием современных технологий заправки топливом с небольшими изменениями для уменьшения расхода дизельного топлива, которое будет заменено потоком водородного топлива [10]. Сгорание смеси осуществляется за счет сжигания дизельного топлива, учитывая, что водородная смесь относительно очень бедная и превышает предел пропусков зажигания в двигателях, работающих ПО циклу Отто. Таким образом, можно предположить, что горение водорода синхронизировано с дизельным. Захваченная энергия топлива сравнивается для диапазона нагрузок и концентраций. Анализ и экспериментальные результаты дают четкое представление о предполагаемой возможности частичного и экономичного улучшения производительности дизельных двигателей за счет частичного добавления водорода при частичных нагрузках.

1.2 Формирование выбросов в двигателях с воспламенением от сжатия

Водяной пар, водород и CO_2 — не единственные продукты выхлопа двигателя с воспламенением. В результате получаются другие выбросы, такие как выбросы NOx, CO, UHC, PM и диоксида серы (SO₂), как показано на рисунке 1. Выбросы отработавших газов двигателей CI состоят из множества загрязняющих веществ, различающихся по размеру, структуре и токсическим свойствам. Существует два класса выбросов, которые основаны

на их физических фазах или их причинах. Чжао [12] классифицировал выбросы выхлопных газов, образующиеся при сгорании дизель-воздушных смесей, на три группы в зависимости от их причин. Во-первых, выбросы NOx возникают в результате вторичной химической реакции. Во-вторых, выбросы UHC, CO и сажи образуются из-за неполного сгорания. Наконец, реакция между примесями в дизельном топливе приводит к SO₂. С другой стороны, Меркер [14] классифицировал выбросы выхлопных газов на твердые частицы и газообразные выбросы в соответствии с их физическими фазами. Выбросы РМ известны как все частицы, выбрасываемые двигателем CI [14]. Несмотря многочисленные что образуются частицы. сажа на TO. является доминирующей частицей. В то время как CO₂, NOx, CO, HC и SO₂ представляют собой газообразные выбросы. Последняя классификация используется в настоящем исследовании.

Рисунок 1 – Компоненты выбросов выхлопных газов двигателей с ИК [12]

1.2.1 Образование СО

СО считается токсичным газом при низком уровне [13]. Это продукт промежуточного окисления из-за неполного сгорания. Неполное сгорание (главным образом вызывается недостатком воздуха кислорода). температурой и временем пребывания. Другими словами, СО в основном образуется из-за недостаточной гомогенности топливно-воздушной смеси, как показано на рисунке 2, во-первых, он образуется на кромках факела впрыска перед преобладанием CO_2 . Он также образуется у стенок камеры сгорания из-за низкой температуры. Однако СО можно превратить в СО₂ в результате реакции рекомбинации между различными окислителями и СО или при наличии достаточного количества воздуха [13]. Высокие уровни СО обычно возникают в результате сгорания богатых топливно-воздушных смесей. В то время как при сжигании СО воздушно-топливная смесь обеднена, в ней есть кислород. Таким образом, производство выбросов СО от двигателя CI очень низкое и считается незначительным [13].

Рисунок 2 – Модель сгорания дизельного топлива [13]

1.2.2 Формирование несгоревших углеводородов

Выбросы несгоревших углеводородов (НС) возникают в результате смесей, сжигания дизельно-воздушных состоящих либо ИЗ рекомбинированных промежуточных соединений, либо из разложившихся молекул топлива [13]. Смазочное масло является еще одним источником выбросов НС. Два основных пути лежат в основе формирования выбросов HC; смесь воздух-топливо может быть слишком бедной ДЛЯ самовоспламенения ИЛИ смесь может стать слишком богатой для самовоспламенения. Топливо может расходоваться за счет более медленной окисления позже в процессе расширения при реакции термического смешивании топлива с дополнительным воздухом. Следовательно, углеводороды остаются несгоревшими из-за неполного смешения или гашения окисления. В заключение, производство НС может быть связано с топливной частью на стенке камеры, форсуночной сердцевине и хвостовой части форсунки.

1.2.3 Образование NOx

Термин NO_x обозначает монооксид азота (NO) и диоксид азота (NO2). NO составляет более 90% от общего количества NOx [12]. По этой причине в литературе в первую очередь рассматривалось образование NO, а не другие компоненты NO_x. Для образования NO определены три различных метода, а именно топливный NO, быстрый NO и термический NO [12, 13]. Во-первых, топливный NO образуется из молекул азота в топливе. Азот в топливе перед попаданием в зону горения преобразуется в соединения или радикалы цианосоединений (тройная связь углерода с азотом). Затем в зоне пламени частицы частично окисляются с образованием NO. Но содержание азота в составе дизельного топлива очень низкое, поэтому он с меньшей вероятностью способствует образованию NO [12, 13]. Во-вторых, из азота в воздухе внутри реакционной зоны обогащенного углеводородного пламени образуется быстрый NO. Локальная температура, по-видимому, аналогична

температуре в условиях адиабатического горения, достигающей 2800 К при стехиометрическом соотношении [12].

термический NO образуется из В-третьих, молекул азота В воздухе при высоких температурах (2200 К). индуцированном Это инициируется радикалами кислорода и усиливается радикалами OH. Согласно механизму Зельдовича, атом кислорода подвергается воздействию высокой температуры в области с высокой концентрацией азота [12, 13]. Образуется NO, а атом азота остается в нестабильном состоянии (уравнение 1). Этот атом стабилизируется за счет реакции с молекулой кислорода, когда в процессе горения имеется достаточно тепловой энергии. В результате образуется NO, а атом кислорода уходит в нестабильное состояние (уравнение 2). Чжао [13] заявил, что существует модифицированный механизм Зельдовича, при котором радикалы ОН реагируют с атомами азота с образованием большего количества NO и атома водорода в богатых или близких к стехиометрическим смесях (уравнение 3).

$$N_2 + O \rightarrow NO + N \tag{1}$$

$$O_2 + N \to NO + O \tag{2}$$

$$OH + N \rightarrow NO + H$$
 (3)

По механизму Зельдовича атомы азота не вступают в реакцию из-за низких равновесных концентраций в процессе горения по сравнению с равновесными концентрациями атомов кислорода [13, 15]. Следовательно, образование локального NO в аэрозоле связано с концентрацией локальных атомов кислорода и локальной температурой. NO₂ образуется в результате реакции NO с избытком кислорода. Уровни NO замораживаются выше равновесных концентраций из-за гашения избытком воздуха. Концентрация NO не уменьшается при снижении температуры во время такта расширения. Ньюхолл и Старкман [16] указали, что концентрация NO была постоянной из-за медленных процессов удаления NO во время такта расширения.

Комияма и Хейвуд [17] также обнаружили, что концентрация NO была постоянной в обедненных топливовоздушных смесях.

1.2.4 Образование твердых чавстиц

Твердые частицы (ТЧ) являются одним из самых вредных выбросов, производимых двигателями СІ. В отличие от газообразных выбросов ТЧ не являются хорошо известными химическими соединениями. Определение ТЧ распространяется на любые жидкие (конденсат) и твердые вещества, присутствующие в охлажденных и разбавленных дизельных выхлопах [13]. Масса выбросов ТЧ определяется по ТЧ, собранным на фильтрах для отбора проб. Любое изменение параметров разбавления или типов фильтров может привести к другим результатам. Частицы выхлопных газов двигателей с воспламенением включают множество элементарных углеродов, серы, полиароматических и углеводородных соединений. Токсичные свойства ТЧ различаются по размеру, растворимости и составу [18]. Сажа является основным компонентом ТЧ из-за дефицита кислорода [12, 19].

Выбросы ТЧ состоят из аккумулирующих и зародышевых частиц. Диаметр частиц ядер составляет от 0,007 до 0,04 мкм. Тем не менее, в некоторых исследованиях диапазон размеров ядерных частиц был изменен в сторону уменьшения от 0,003 до 0,03 мкм [20]. Однако в этом исследовании измеряется масса ТЧ (мг/м³), а не размер частиц.

На самом деле существует множество терминов, относящихся к выбросам ТЧ, таких как общее количество ТЧ, выбросы нелетучих ТЧ (нлТЧ) и летучих ТЧ (лТЧ). Кроме того, для измерений тестовых топливных смесей масса нлТЧ измерялась с использованием прибора лазерно-индуцированного накаливания (LII). Плотность дыма — еще один термин, относящийся к выбросам ТЧ. В этом исследовании измерялся показатель плотности дыма, основанный на ARP 1533. Плотность дыма выражали в виде дымного числа, фиксированный которое получали, пропуская объем пробы через фильтровальную бумагу и записывая коэффициент отражения до и после отбора пробы.

1.2.4.1 Процесс образования сажи

Образование сажи из жидкой или паровой фазы в твердые частицы может включать пять этапов; как показано на рисунке 3 [21, 22]. Однако окисление может произойти в любое время в процессе образования сажи путем превращения углеводородов в CO₂, CO и H₂O. Иногда термин «чистое сажеобразование» используется для описания сочетания процессов окисления и сажеобразования [21]. Однако в этом разделе окисление представлено как процесс, аналогичный исследованию Три и Свенссона [21].

Рисунок 3 – Процесс образования сажи [22]

1.2.4.1.1 Окисление

Как упоминалось выше, окисление может происходить в любой момент в процессе образования сажи с образованием таких продуктов сгорания, как CO₂, CO и H₂O. Обычно на это влияет состояние воздушно-топливной смеси в этот момент. Окисление мелких частиц сажи связано с двумя процессами окисления; абсорбция и десорбция [21]. Процесс абсорбции представляет собой химическое присоединение кислорода к поверхности, а процесс десорбции десорбции происходит при кислорода присоединенным компонентом топлива с поверхности сажи. Преобладающее окисление сажи происходит радикалами ОН в условиях стехиометрической и богатой топливом смеси, тогда как и ОН, и кислород с большей вероятностью окисляются в условиях обедненной смеси [21]. Окисление сажи происходит при температуре более 1300 К.

1.2.4.1.2 Пиролиз топлива

Пиролиз топлива – это процесс разложения органических соединений топлива, который изменяет его молекулярную структуру при высокой температуре [23]. Это происходит без окисления, хотя может присутствовать

кислород. Высокая температура в цилиндрах и состояние воздушноважными топливной смеси являются факторами, способствующими реакциям пиролиза [21]. Результаты процесса пиролиза считаются строительными блоками или предшественниками образования сажи. На самом деле и пиролиз, и окисление играют важную роль в предвестниках сажеобразования из-за присутствия радикалов ОН [21, 23]. Хотя оба имеют пропорциональную зависимость ОТ температуры, скорость пиролиза медленнее, чем окисление. Следовательно, в случае предварительно смешанных пламен присутствует больше кислорода, что приводит к уменьшению образования сажи, однако в диффузионном пламени образуется больше сажи, поскольку в области пиролиза с повышенной температурой имеется незначительное содержание кислорода. Радикалы ОН также важны; особенно в диффузионном пламени, поскольку они ускоряют процесс пиролиза [23].

Полициклические ароматические углеводороды, ацетилен и полиацетилены являются основными продуктами процесса пиролиза. Кроме того, исследование Хейнса и Вагнера [24] показало, что бензол, CH₄, C₂H₄, C₃H₆ и C₂H₂ являются типичными продуктами пиролиза в случае ламинарного диффузионного пламени.

1.2.4.1.3 Нуклеация

Образование частиц сажи из газофазных реагентов известно как зарождение или зародышеобразование частиц сажи. Эти частицы, также называемые ядрами, имеют размер от 1,5 до 3 нм. Процесс зарождения частиц основан на присоединении небольших углеводородных и алифатических радикалов к большим ароматическим молекулам при температурах 1300-1600К. Хотя ядра частиц не формируют общую массу сажи, они играют основную роль в влиянии на массу, добавляемую позже. Это потому, что они являются строительными блоками для поверхностного роста.

У зародышеобразования сажи есть три пути; циклизация, прямой путь ароматических колец, а также распад и рециклизация колец, на которые влияют состав топлива и температура [21]. Цепные молекулы циклизуются в кольцевую структуру. Например, бензольное кольцо образуется за счет соединения молекул ацетилена. Ароматические кольца дегидрируются непосредственно при низкой температуре с образованием полициклических соединений. Однако при высокой температуре кольца образуются за счет распада и рециклизации молекул.

1.2.4.1.4 Поверхностный рост

Поверхностный рост — это увеличение массы поверхности частиц сажи в результате зародышеобразования. Однако дело в том, что различие между началом процесса поверхностного роста и зарождением не ясно. Три и Свенссон [21] утверждали, что оба процесса происходят одновременно. В процессе роста поверхности реакционная способность горячей поверхности частиц сажи поглощает углеводороды в газовой фазе, что способствует увеличению массы частиц сажи. Однако число частиц остается постоянным. Поскольку более радикальные центры мелких частиц сажи реакционноспособны, скорость их поверхностного роста выше, чем у крупных частиц.

1.2.4.1.5 Слияние и агломерация

Коалесценция, иногда называемая коагуляцией, происходит, когда частицы сажи сталкиваются и сливаются. Следовательно, количество первичных частиц уменьшается и образуются фрактальные частицы как совокупность малых частиц [21, 25]. Однако объединенная масса остается постоянной. Агломерация известна как объединение больших групп частиц с образованием цепочечных структур. Частицы сажи в выхлопных газах двигателей с КИ, вероятно, имеют фрактальную форму, а их размер зависит от типа топливной форсунки, условий эксплуатации и методов измерения, как показано на рисунке 4 [21, 22]. Ли и др. [26] сообщили о первичных частицах в диапазоне от 20 до 50 нм и около 30 нм в качестве среднего

диаметра с использованием пробоотборного зонда и метода оптического рассеяния соответственно. Брюс и др. [27] использовали метод рассеяния света в цилиндре и обнаружили, что средний размер частиц находится в диапазоне от 30 до 70 нм.

Рисунок 4 – Схематическое изображение ПМ [22]

На рисунке 5 показаны структуры выхлопных газов из двигателя СІ в изображении с помощью просвечивающего электронного микроскопа (ПЭМ) [11]. Принцип ПЭМ основан на пучке электронов, который проходит через образец для формирования изображения. Как показано на рисунке 5а, агломерированные частицы имеют форму кристаллитов графита, размер которых составляет несколько нанометров. На рисунке 5б агломерированные частицы демонстрируют фрактальную кластероподобную структуру, состоящую из сотен ядерных модовых частиц.

Рисунок 5 – ТЭМ агломерированной дизельной сажи [11]

1.2.4.2 Дизельный сажевый фильтр

Выбросы твердых частиц от двигателей с системой воспламенения продолжают снижаться во всем мире, например, в соответствии со стандартами Евро-6. Таким образом, использование дизельного сажевого фильтра (DPF) является важным устройством доочистки, которое может уменьшить размер и количество частиц [28, 29]. DPF обычно могут быть изготовлены из карбида кремния, кордиерита и титаната алюминия [30]. Твердые частицы улавливаются пористой стенкой сажевого фильтра, когда выхлопные газы проходят через впускные каналы [31]. Конструкция DPF может быть покрыта катализатором, таким как катализатор снижения выбросов NOx. Отфильтрованные частицы удаляются из устройства с помощью пассивной или активной регенерации или обоих вместе. При пассивной регенерации выбросы NO₂ используются для окисления твердых частиц до выбросов CO₂ и CO. Чтобы увеличить концентрацию NO₂ в выхлопных газах, NO преобразуется в NO₂ с помощью дизельного окислительного катализатора (DOC). Напротив, эффективность пассивной регенерации низкая, когда температура выхлопных газов низкая или отсутствуют выбросы NOx. Однако в этом случае можно использовать активную регенерацию. Активная регенерация основана на периодическом

использовании кислорода в выхлопных газах. Однако температуру выхлопных газов можно поддерживать в пределах 500–550°С для усиления окисления ТЧ [30].

1.3 Водородно-дизельное двойное топливо

1.3.1 Свойства водорода

Водород не имеет запаха, цвета и не образует вредных выбросов при сжигании с кислородом [64]. Водород используется в топливных элементах, где топливо преобразуется в чистую энергию посредством электрохимической реакции, преобразующей химическую энергию водорода и окислителя в электричество [64]. С другой стороны, этот метод является очень затратным процессом и нуждается в развитии.

Водород можно получить из нефти и воды. В последнее время большая часть водорода (95%) производится методами, основанными на ископаемом топливе [64]. Низкая плотность газообразного водорода является серьезной проблемой, связанной с пространством для хранения, необходимым для питания автомобиля с разумным расстоянием вождения. Кроме того, низкая плотность способствует снижению плотности энергии в цилиндре, что приводит к низкой выходной мощности. Снижение расхода топлива может быть обедненной достигнуто С смесью, поскольку диапазон воспламеняемости водорода обеспечивает диапазон топливно-воздушных смесей) [64].

1.3.2 Влияние водорода на двигатель CI

Несколько исследований касались влияния водорода только в двигателях с воспламенением. Хоман и др. [15] обнаружили, что работа двигателя СІ только с водородом была ограничена из-за высокой устойчивости водорода к самовоспламенению. Это не было решено даже при высокой степени сжатия. Некоторые авторы рекомендовали использовать свечи накаливания, а свечи зажигания с многократным зажиганием можно

использовать для облегчения сгорания водорода. Однако большинство исследований показывают, что использование водорода в качестве более привлекательного метода использования водорода в двигателях с воспламенением от перегрева. Это связано с тем, что низкая температура самовоспламенения дизельного топлива может преодолеть сопротивление самовоспламенению водорода [14].

Варде и Фрейм [16] экспериментально исследовали возможность снижения содержания твердых частиц в результате аспирации небольших количеств водорода. В целом, концентрация дыма снизилась при частичной нагрузке, тогда как при высокой нагрузке она была незначительной. Было обнаружено, что оптимальное процентное содержание водорода для уменьшения дыма составляет от 10% до 15% в расчете на энергию. Было также отмечено, что выбросы ВОУ не подвергались влиянию фумигации водорода. Однако уровни NOx увеличивались с увеличением количества водорода.

Поведение выбросов NOx при сгорании водородно-дизельного топлива было изучено Lilik et al. [17]. Количество водорода, впрыскиваемого во всасываемый воздух, составляло до 15% в расчете на энергию. Они заметили, что дизельное топливо приводит к более высоким уровням NOx. В частности, уменьшение выбросов NO и увеличение выбросов NO₂, при этом выбросы NO₂ становятся доминирующим компонентом NOx в некоторых режимах горения, как показано на рисунке б.

Рисунок 6 – NOx, NO, NO₂ в зависимости от процентного содержания водорода в расчете на энергию [14, 17]

Кöse и Ciniviz [18] оценили эффекты двойного топлива водород-дизель на переменных скоростях при полной нагрузке. Процентное содержание водорода по объему, добавляемого в камеру сгорания, составляло 2,5, 5 и 7,5%. Общие результаты эксперимента показали более высокую выходную мощность, выходной крутящий момент, тепловой КПД и уровни NOx при добавлении водорода, тогда как наблюдались более низкие выбросы UHC, СО и О2. При добавлении 7,5% водорода наблюдалось увеличение выходной мощности и крутящего момента на 17% при 2250 об/мин и 8,3% при 1250 об/мин соответственно по сравнению с дизельным режимом, как показано на рисунке 7. При низких оборотах двигателя (т.е. 1000 и 12500 об/мин) добавление 5% и 7,5% водорода по объему снижало концентрацию кислорода в камере сгорания по сравнению с дизельным режимом и 2,5% водорода. В результате низкий уровень кислорода привел к плохому окислению, что привело к высоким выбросам СО. Дальнейшие исследования, касающиеся двойного водородно-дизельного топлива, представлены в таблице 1.

а) выбросы СО

в) выбросы сверхвысоких углеводородов

Рисунок 7 – Выбросы выхлопных газов при использовании водороднодизельного топлива и стандартного дизельного топлива (SDI) [28] Таблица 1 – Сводная информация о влиянии двойного водородно-дизельного топлива на двигатель с воспламенением

Тип двигателя	Условия испытаний	Производительн	Выбросы
		ость	
Четырехтактн	Частота вращения	при добавлении	С 90% водородом уровень NOx
ый	двигателя 1500	30% водорода	снижен с 2762 до 515 частей на
одноцилиндро	об/мин, выходная	увеличение ВТЕ	миллион при 70% нагрузке.
вый двигатель	мощность 3,78 кВт.	с 22,78% до	Снижение выбросов твердых
DI CI	При разных	27,9%	частиц и дыма на 50% при полной
	нагрузках		нагрузке.
Четырехтактн	Частота вращения		Более низкие уровни NOx при
ый 4-	двигателя 1800		низких нагрузках и более высокие
цилиндровый	об/мин, при разных		уровни NOx при высоких
двигатель DI	нагрузках		нагрузках. Более низкие уровни
CI			UHC с более чем 30% водорода
			при низких и средних нагрузках.
			Более низкие уровни РМ, СО и
			СО2 с добавлением водорода.
Четырехтактн	Частота вращения		Более низкие уровни СО на 67,3 %
ый	двигателя 1100		и 69,2 % при добавлении водорода
одноцилиндро	об/мин, при полной		на 22 и 53 % соответственно.
вый двигатель	нагрузке		Значительно более высокие уровни
DI CI			NOx при добавлении 53 %
			водорода Несколько более высокие
			уровни UHC при добавлении
			водорода
Четырехтактн	Четырехтактный 6-	Увеличение ВТЕ	Более высокие уровни NOx и UHC
ый 6-	цилиндровый	и снижение	при высокой нагрузке. Более
цилиндровый	двигатель DI CI	BSFC c	низкие уровни СО, СО2 при
двигатель DI	Холостой ход	увеличением	высокой нагрузке
CI	двигателя В	содержания	
	диапазоне нагрузок	водорода	
	двигателя		
Четырехтактн	Частота вращения		Повышенный уровень NOx при
ый	двигателя 1100		полной нагрузке. Более низкий
одноцилиндро	об/мин при нагрузке		уровень NOx и дыма при низкой
вый двигатель	40 %, 60 %, 75 % и		нагрузке. Более низкий уровень
DICI	100 %		СО, СО2 при полной нагрузке.

В заключение, некоторые исследования показали, что ВТЕ увеличивается, особенно с увеличением содержания водорода [68, 69, 72]. Использование двойного топлива водород-дизель вместо дизеля приводит к улучшению однородности топливно-воздушной смеси, способствуя лучшему сгоранию [68]. Кроме того, использование водородо-дизельного топлива

может привести к снижению расхода топлива, поскольку диапазон воспламеняемости водорода позволяет двигателю с воспламенением работать в различном диапазоне топливно-воздушных смесей, что приводит к снижению расхода топлива на обедненной смеси [72].

Увеличение содержания водорода приводит к снижению уровня NOx при низких нагрузках и увеличению при высоких нагрузках [70, 72, 73]. Теплотворная способность дизельного топлива ниже, чем у водорода, поэтому увеличение содержания водорода способствует более высокому пиковому давлению и температуре сгорания [64, 72]. В частности, высокая пиковая температура сгорания способствует повышению уровня NOx. При высокой нагрузке достигается увеличение уровня NOx, поскольку более быстрое сгорание усиливается за счет высокой диффузии и скорости пламени.

Уровни дыма или ТЧ снижаются с увеличением содержания водорода из-за улучшения однородности, уменьшения фазы диффузионного горения и углеводородов. Это снижение выбросов дыма или ТЧ может быть связано с уменьшением содержания углерода и увеличением скорости окисления сажи из-за высокой температуры в цилиндре [69, 71].

Большинство исследований показали, что выбросы CO2 и CO снижались с увеличением концентрации водорода при различных нагрузках [10, 12, 13]. Основная причина такого снижения может быть связана с высоким отношением H/C из-за добавления водорода [2]. Обогащение водородом также способствует повышению эффективности сгорания и сокращает продолжительность сгорания, что приводит к снижению выбросов CO и CO2. Кроме того, водород имеет параметр диффузии, который способствует формированию более однородной предварительно смешанной горючей смеси, что увеличивает доступность кислорода [73]. Некоторые исследования показали более низкие уровни UHC при использовании двойного водородно-дизельного топлива [8, 10]. Тем не менее, в нескольких исследованиях было обнаружено, что в результате возникают более высокие

выбросы ВОУ, хотя они по-прежнему соответствуют нормам выбросов [11, 2]. Добавление водорода в камеру сгорания способствует снижению содержания углерода в топливно-воздушной смеси, что приводит к снижению выбросов UHC по сравнению со сгоранием чистого дизельного топлива.

Выводы по первому разделу

Проведённый анализ известных источников показал, перспективность применения водорода в двигателях, с искровым зажиганием. Широкие пределы воспламеняемости позволяют двигателям на водороде работать в условиях качественного регулирования нагрузкой в диапазоне составов смесей от стехиометрического до 5 – 6 по коэффициенту избытка воздуха, что приводит к снижению температуры сгорания и практически к нулевым выбросам токсичных компонентов на режимах низких нагрузок.

2 Тепловой расчет проектируемого двигателя

Основные параметры двигателя, выбранного для дальнейшей проработки, приведены в таблице 2.

Таблица 2 – Технические параметры двигателя, выбранного как прототип для дальнейшей проработки

Параметры двигателя	Базовый
Тип	4-тактный дизельный
Кол-во цилиндров, тип ГБЦ	4, DOHC
Диаметр цилиндров, мм	76
Ход поршня, мм	84
Длина шатуна, мм	135
Рабочий объем, л	1,525
Степень сжатия	24

2.1 Тепловой расчет двигателя при работе на дизельном топливе

Тепловой расчет производиться по методике И.И. Вибе. Расчет проводился для двух видов топлива это дизельное топливо и газодизельное топливо (96% КПГ и 4% дизельное топливо для номинального режима и 90% КПГ и 10% дизельного топлива). Результаты расчета представлены в виде таблиц и графиков. Исследование проводятся на пяти режимах работы при оборотах коленчатого вала 600, 2000, 3500, 5000 и 6000 мин⁻¹.

Для удобства анализа регулировочных характеристик представим данные в виде таблицы 3. Коэффициент избытка воздуха принят равным 1,417 для расчета на дизельном топливе и равным 1 для расчета на газодизельном топливе в связи с необходимостью поддержания эффективной работы каталитического нейтрализатора отработавших газов, так как это максимально возможная величина, которая обеспечивает оптимальные условия работы системы нейтрализации отработавших газов.

Для удобства анализа термохимических характеристик дизельного представим их в виде таблицы 4. Массовое содержание элементов в дизельном топливе взято из [6 и 12].

Название параметра, размерность	Условное обозначение	е Значение характеристики		ристики		
Частота вращения, мин ⁻¹	n	600	2000	3500	5000	6000
Угол опережения впрыска топлива, ^о ПКВ	Θ	10	12	15	18	20
Коэффициент избытка воздуха	α	1,4180	1,4180	1,4180	1,4180	1,4180
Температура подогрева заряда в цилиндре ДВС, °С	ΔΤΝ	5	5	5	5	5
Степень сжатия	3	24	24	24	24	24
Температура на впуске, К	То	293,15	293,15	293,15	293,15	293,15
Расчетная политропа сжатия	n _p	1,3704	1,3704	1,3705	1,3706	1,3706
Действительная политропа сжатия	n _д	1,3604	1,3604	1,3605	1,3606	1,3606
Предполагаемая температура остаточных газов, К	Tr	788	787	795	810	822
Продолжительность горения, ° ПКВ	$\Phi_{\rm r}$	50	56	62	68	75
Показатель характера сгорания	m	1	1	1	1	1
Коэффициент выделения теплоты	σ	1	1	1	1	1
Коэффициент использования теплоты	δί	0,86	0,86	0,86	0,86	0,86
Коэффициент эффективности сгорания топлива	ځ	0,86	0,86	0,86	0,86	0,86

Таблица 3 – Регулировочные характеристики двигателя на дизельном топливе

Таблица 4 – Термохимические характеристики дизельного топлива

Название характеристики, размерность	Условное обозначение	Значение характеристики
Массовое содержание Н	Н	0,12017
Массовое содержание С	C	0,85743
Массовое содержание О	0	0,00381
Массовое содержание S	S	0,00333
Массовое содержание N	Ν	0,01526
Молекулярная масса топлива	m _т , кг/моль	206,21535
Низшая теплота сгорания, МДж/кг	H _u	41449,095
Теоретически необходимое количество	Lo, кмоль возд./кг топлива	0,487
воздуха для сгорания 1 кг топлива	Lo, кг возд./кг топлива	14,105
	Мс СО, кмоль СО/кг	0.0715
	топлива	0,0713
Количество компонента продуктов	MH_2O , кмоль $H_2O/кг$	0.0601
сгорания	топлива	0,0001
	MN ₂ , кмоль N ₂ /кг топлива	0,5404
	МО ₂ , кмоль О ₂ /кг топлива	0
Общее количество продуктов сгорания	М ₂ кмоль пр. сг./кг	0.7125
топлива,	топлива	0,7125
Коэффициент изменения гор. смеси	μ ₀	1,0368

Для удобства расчетов цикла для двигателя на дизельном топливе представим данные в виде таблицы 5.

Таблица 5 – Расчет действительного цикла двигателя на дизельном топливе

Название параметра	Условное обозначение		Значе	ние характе	ристики				
Частота врашения	n мин ⁻¹	600 2000 3500 5000 6000							
Лавление остаточных газов	Pr. MПа	0.1037	0.1058	0.1106	0.1180	0.1244			
Температура подогрева	ΔT _N , K	10,7895	8,9474	6,9737	5,0000	3,6842			
Средняя скорость движения заряда	ω _{вп} , м/с	3,9786	13,3639	23,3868	33,4096	40,0916			
Давление в конце впуска	Ра, МПа	0,1000	0,0998	0.0994	0.0987	0,0838			
Коэффициент остаточных	γ _r	0,0182	0,0183	0,0188	0,0193	0,0240			
Коэффициент наполнения	n.,	0 9225	0.9355	0 9454	0.9619	0.8020			
Температура в конце впуска	Ta K	312 5843	310 8210	309 2351	307 8429	309 1665			
Улельный объем рабочего	3,	512,5515	510,0210	307,2351	307,0129	505,1005			
тела в конце наполнения	Va, м ³ /кг	0,8626	0,8594	0,8588	0,8608	1,0173			
Давление в конце сжатия	P _c , MПа	7,5361	7,5267	7,4983	7,4512	6,3282			
Температура в конце сжатия	T _c , K	981,7502	977,2424	973,7892	971,6983	972,2641			
Политропа расширения	n ₂	1,2204	1,2214	1,2222	1,2229	0,5667			
Удельный объем рабочего	Var a ³ /m	0.0442	0.0494	0.0570	0.0604	0.0807			
тела в момент воспламенения	v y, м /кг	0,0442	0,0484	0,0370	0,0094	0,0807			
Давление рабочего тела в момент воспламенения	Ру, МПа	5,6869	5,0319	4,0638	3,1688	2,6362			
Температура рабочего тела в	Ty, K	911,5751	882,1250	838,9915	796,7783	770,9198			
Общая удельная теплота	q _z , кДж/кг	1667,0801	1666,3947	1664,5323	1661,5830	1657,5788			
	Е МПа	02 6308	01 5556	88 3603	83.0662	78 2060			
Станаш расширания	£2, 10111a	5 4080	4 7048	4 2655	3 8870	3 3687			
	0	5,4089	4,7048	4,2055	5,0079	5,5087			
сгорания	Р _z , МПа	3,2406	2,6829	2,2846	1,9120	1,5078			
Гемпература в конце процесса сгорания	T _z , K	1811,2358	1743,4970	1694,9422	1652,7020	1593,8310			
Давление в конце процесса расширения	Рь, МПа	0,4130	0,4047	0,3880	0,3634	0,3406			
Гемпература в конце процесс расширения	T _b , K	1248,5436	1237,3566	1227,8999	1221,0999	1212,9429			
Теоретическая индикаторная работа цикла	L _т , кДж	1,0677	1,0538	1,0175	1,0064	1,0093			
Расчетное среднее инликаторное давление	РіТ, МПа	1,2898	1,2586	1,1742	1,0937	1,0352			
Индикаторный коэффициент полезного лействия	ηi	0,5730	0,5599	0,5357	0,5202	0,5282			
Удельный индикаторный расхол топлива	g _i , г/кВт*ч	151,5775	155,1210	162,1313	166,9704	164,4241			
Давление механических	Р _м , МПа	0,0530	0,0973	0,1447	0,1922	0,2238			
Средняя скорость поршня	$C_{\pi} M/c$	1 6800	5 6000	9 8000	14 0000	16 8000			
Средние эффективное	Ре, МПа	1,2368	1,1614	1,0294	0,9015	0,8114			
Механический КПЛ	nм	0.9589	0.9227	0.8767	0.8243	0 7838			
Эффективный КПЛ	ne	0,5495	0,5166	0.4697	0.4288	0.4140			
Удельный эффективный			0,0100						
расход топлива	g _e , г/кВт*ч	158,0712	168,1146	184,9273	202,5684	209,7851			
Эффективная мощность	N _e , кВт	9,4257	29,5033	45,7657	57,2549	61,8368			
Часовой расход топлива	G_{T} , КГ/Ч	1,4899	4,9599	8,4633	11,5980	12,9724			
Крутящий момент	M _e , Н*м	150,0151	140,8680	124,8658	109,3487	98,4163			

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 8) для двигателя на дизельном топливе.

Рисунок 8 – Индикаторные диаграммы в P-V координатах двигателя на дизельном топливе: (а) 600; (б) 2000; (в) 3500; (г) 5000 и (д) 6000 мин⁻¹.

По результатам расчетов построим внешнюю скоростную характеристику (рисунок 9) двигателя на дизельном топливе.

Рисунок 9 – Внешняя скоростная характеристика двигателя на дизельном топливе

Для удобства расчетов теплового баланса двигателя на дизельном топливе представим данные в виде графика на рисунке 10.

Рисунок 10 – Диаграмма внешнего теплового баланса двигателя на дизельном топливе

2.2 Тепловой расчет дизельного двигателя с добавкой водорода

Для удобства анализа регулировочных характеристик дизельного двигателя с добавкой водорода представим данные в виде таблицы 6. Для удобства анализа термохимических характеристик топлива с добавкой водорода представим их в виде таблицы 7.

Таблица 6 — Регулировочные характеристики дизельного двигателя с добавкой водорода

Название параметра, размерность	Условное обозначение	Значение характеристики				
Частота вращения, мин -1	n	600	2000	3500	5000	6000
Угол опережения впрыска топлива, [°] ПКВ	Θ	10	12	15	18	20
Коэффициент избытка воздуха	α	1	1	1	1	1
Температура подогрева заряда в цилиндре ДВС, °С	ΔΤΝ	1,3736	1,3736	1,5262	1,5262	1,5262
Действительная политропа сжатия	n _д	1,3603	1,3604	1,3605	1,3606	1,3605
Предполагаемая температура остаточных газов, К	Tr	970	1010	1020	1040	1055
Продолжительность горения, ^о ПКВ	фг	48	55	60	65	70
Показатель характера сгорания	m	3	3	3	3	3
Степень сжатия	3	14	14	14	14	14
Коэффициент эффективности сгорания топлива	لج	0,86	0,86	0,86	0,86	0,86

Таблица 7 – Термохимические характеристики дизельного топлива – с добавкой водорода

Название характеристики	Условное обозначение	Значение характеристики						
Частота вращения, мин ⁻¹	n	600	2000	3500	5000	6000		
	Н	0,23821	0,24083	0,24346	0,24477	0,24608		
Массовое	С	0,75955	0,75738	0,75520	0,75411	0,75303		
содержание	0	0,00038	0,00030	0,00023	0,00019	0,00015		
элементов в топливе	S	0,00033	0,00027	0,00020	0,00017	0,00013		
	N	0,00153	0,00122	0,00092	0,00076	0,00061		
Молекулярная масса топлива	т, кг/моль	35,06024	31,25679	27,45334	25,55162	23,64989		
Низшая теплота сгорания, МДж/кг	H _u	50293,784	50490,333	50686,881	50785,156	50883,430		
Теоретически необходимое количество воздуха для сгорания 1 кг топлива	Lo, кмоль возд./кг топлива	0,591	0,593	0,595	0,596	0,597		
	Lo, кг возд./кг топлива	17,090	17,157	17,223	17,256	17,289		
V	Mc CO	0,0633	0,0631	0,0629	0,0628	0,0628		
колнонента пролистор	MH ₂ O	0,1191	0,1204	0,1217	0,1224	0,1230		
компонента продуктов	MN_2	0,4677	0,4695	0,4714	0,4723	0,4732		
сторания, кмоль / кг	MO_2	0	0	0	0	0		
Общее количество	М ₂ кмоль							
продуктов сгорания	пр. сг./кг	0,6501	0,6531	0,6560	0,6575	0,6590		
топлива,	топлива							
Коэффициент изменения гор. смеси	μ_0	1,0502	1,0452	1,0387	1,0347	1,0301		

Для удобства расчетов цикла дизельного двигателя с добавкой водорода представим данные в виде таблицы 8.

Таблица 8 – Расчет цикла дизельного двигателя с добавкой водорода

Название параметра	Условное обозначение	Значение характеристики							
Частота вращения	n, мин ⁻¹	600	2000	3500	5000	6000			
Давление остаточных газов	Pr, M∏a	0,1037	0,1058	0,1106	0,1180	0,1244			
Температура подогрева	$\Delta T_{N}, K$	10,7895	8,9474	6,9737	5,0000	3,6842			
Средняя скорость движения заряда	ω _{вп} , м/с	3,9786	13,3639	23,3868	33,4096	40,0916			
Давление в конце впуска	Ра, МПа	0,1000	0,0998	0,0994	0,0987	0,0019			
Коэффициент остаточных газов	$\gamma_{\rm r}$	0,0347	0,0998	0,0994	0,0987	0,0981			
Коэффициент наполнения	η_V	0,8577	0,0345	0,0341	0,0351	0,0366			
Температура в конце впуска	Ta, K	320,0878	0,8804	0,9202	0,9347	0,9175			
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	0,9316	318,2144	316,4402	315,5289	315,8417			
Давление в конце сжатия	Р _с , МПа	3,6639	0,9353	0,9436	0,9530	0,9663			
Температура в конце сжатия	T _c , K	842,7581	839,0657	834,6859	832,6786	833,3197			
Политропа расширения	n ₂	1,2035	1,2023	1,2029	1,2035	1,2040			
Удельный объем рабочего	Vy, м ³ /кг	0,0753	0,0793	0,0868	0,0959	0,1037			
Павление рабочего тела в									
момент воспламенения	Ру, МПа	3,1214	2,9224	2,6062	2,2890	2,0858			
Температура рабочего тела в момент воспламенения	Ty, K	807,5782	790,3136	763,2648	736,7479	720,3815			
Общая удельная теплота сгорания топлива	q _z , кДж/кг	2325,5642	2329,0064	2330,1537	2328,6152	2325,2598			
Давление в процессе сгорания	E ₂ , МПа	69,4505	69,2042	68,6438	67,9010	66,8790			
Степень расширения	δ	5,1872	4,4576	4,2065	3,9759	3,6643			
Давление в конце процесса сгорания	Р _z , МПа	4,0071	3,4837	3,2119	2,9594	2,6463			
Гемпература в конце процесса сгорания	T _z , K	2373,4102	2405,1739	2360,8899	2319,8449	2276,1899			
Давление в конце процесса расширения	Рь, МПа	0,5526	0,5776	0,5705	0,5621	0,5541			
Гемпература в конце процесса расширения	T _b , K	1697,8178	1777,5067	1763,8848	1751,8556	1746,5262			
Теоретическая индикаторная работа цикла	L _т , кДж	1,3199	1,2169	1,2180	1,2251	1,2066			
Расчетное среднее индикаторное давление	РіТ, МПа	1,5161	1,3907	1,3801	1,3739	1,3348			
Индикаторный коэффициент полезного действия	ηi	0,5303	0,4765	0,4555	0,4483	0,4458			
Удельный индикаторный расход топлива	g _i , г/кВт*ч	134,9796	149,6456	155,9348	158,1388	158,7052			
Давление механических потерь	Р _м , МПа	0,0471	0,0777	0,1105	0,1432	0,1651			
Средняя скорость поршня	С _п , м/с	1,1600	3,8667	6,7667	9,6667	11,6000			
Среднее эффективное давление	Ре, МПа	1,4690	1,3130	1,2696	1,2307	1,1697			
Механический КПД	ηм	0,9689	0,9441	0,9200	0,8957	0,8763			
Эффективный КПД	ηе	0,5138	0,4498	0,4190	0,4015	0,3907			
Удельный эффективный расход топлива	g _e , г/кВт*ч	139,3083	158,5003	169,5021	176,5438	181,1035			
Эффективная мошность	N _{0.} кВт	2,9269	8,7207	14,7564	20,4344	23,3060			
Часовой расхол топлива	<u>G</u> _т , КГ/Ч	0.4077	1.3822	2.5012	3.6076	4,2208			
Крутящий момент	М _е , Н*м	46,5834	41,6385	40,2610	39,0267	37,0927			

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 11) для дизельного двигателя с добавкой водорода.

Рисунок 11 – Индикаторные диаграммы в P-V координатах, для дизельного двигателя с добавкой водорода: (а) 600; (б) 2000; (в) 3500; (г) 5000 и (д) 6000 мин⁻¹.

По результатам расчетов построим внешнюю скоростную характеристику (рисунок 12) для дизельного двигателя с добавкой водорода.

Рисунок 12 – Внешняя скоростная характеристика дизельного двигателя с добавкой водорода

Для удобства расчетов теплового баланса дизельного двигателя с добавкой водорода представим данные в виде графика (рисунок 13).

Рисунок 13 – Диаграмма внешнего теплового баланса дизельного двигателя с добавкой водорода

Выводы по второму разделу

Проведенные расчеты дизельного двигателя с добавкой водорода и на дизельном топливе, показали улучшение эффективных показателей работы двигателя при переходе с дизельного топлива на альтернативное топливо – дизель с добавкой водорода.

3 Кинематический и динамический расчет кривошипно-шатунного механизма двигателя

3.1 Кинематический расчет кривошипно-шатунного механизма двигателя

Кинематический расчет для центрального кривошипно-шатунного механизма проектируемого двигателя (радиус кривошипа 42 мм, а длина шатуна 135 мм) проводился по известным методикам приведенным в [1,2], при частоте вращения коленчатого вала 6000 мин⁻¹.

Результаты расчета перемещения, скорости и ускорения поршня приведены на рисунках 14, 15 и 16.

Рисунок 14 – Диаграмма изменения хода поршня

Рисунок 15 – Диаграмма изменения скорости поршня

Рисунок 16 – Диаграмма изменения ускорения поршня

По результатам кинематического расчета мы можем определить инерционные силы в динамическом расчете.

3.2 Динамический расчет кривошипно-шатунного механизма двигателя

Динамический расчет кривошипно-шатунного механизма проектируемого двигателя проводился при частоте вращения коленчатого вала 6000 мин⁻¹, при работе на обоих рассматриваемых топливах – дизельном и дизельном с добавкой водорода (96% дизельного топлива и 4% водорода по массе), результаты приведение масс кривошипно-шатунного механизма по двух массовой схеме показаны в таблице 9.

Таблица 9 – Приведение масс кривошипно-шатунного механизма

Параметр	Величина
Площадь поршня, м ²	0,004536
Удельная масса поршня, кг/м ²	80
Масса поршневой группы, кг	0,36292
Удельная масса шатуна, кг/м ²	130
Масса шатуна, кг	0,5897398
Масса шатуна, сосредоточенная на оси поршневого	0,162
пальца, кг	
Масса шатуна, сосредоточенная на оси кривошипа, кг	0,428
Удельная масса одного колена вала, кг/м ²	140
Масса неуравновешенных частей одного колена вала,	0,6351
КГ	
Массы, совершающие возвратно-поступательное	0,5251
движение	
Массы, совершающие вращательное движение	1,06267
Центробежная сила инерции вращающихся масс	
шатуна, Н	-7089,37
Центробежная сила инерции вращающихся масс	
кривошипа, Н	-10530,62
Центробежная сила инерции вращающихся масс, Н	-17619,99

Результаты расчета приведены в виде графиков. На рисунке 17 приведены силы инерции возвратно-поступательного движения.

В таблице 10 приведены силы, действующие на поршневой палец и крутящий момент дизельного двигателя.

Рисунок 17 – Силы инерции возвратно-поступательного движения поршня	И
шатуна	

Таблица	10 –	Суммарные	силы,	действующие	на	поршневой	палец	И
крутящий	і момен	нт двигателя в	на дизе.	льном топливе				

$\phi_{\kappa B}$	N, H	К, Н	Z, H	T, H	Мкр.ц1	$\phi_{\rm KB}$	N, H	К, Н	Z, H	T, H	Мкр.ц1
0	0	-3825,2	-3825	0	0	370	1225,3	27251	26597	5933,9	172,08
10	-168	-3735,5	-3646	-813,4	-23,59	380	1517,9	17140	15524	7265,7	210,71
20	-307,5	-3472	-3145	-1472	-42,68	390	1210,2	9347,8	7422,2	5682,7	164,8
30	-395	-3051,3	-2423	-1855	-53,79	400	852,59	5122,6	3321,4	3900	113,1
40	-416,2	-2500,6	-1621	-1904	-55,21	410	615,2	3101,6	1482,8	2724,2	79,001
50	-368,1	-1855,6	-887,1	-1630	-47,27	420	515,9	2300,7	674,26	2199,6	63,79
60	-259,8	-1158,4	-339,5	-1108	-32,12	430	515,21	2117,5	218,32	2106,2	61,08
70	-110,5	-454,05	-46,81	-451,6	-13,1	440	563,64	2210,4	-183,9	2202,7	63,88
80	54,604	214,14	-17,82	213,39	6,1884	450	625,55	2415,9	-625,5	2333,5	67,672
90	209,49	809,06	-209,5	781,47	22,663	460	672,76	2638,3	-1106	2395,5	69,47
100	332,57	1304,2	-546,5	1184,2	34,341	470	687,24	2824,5	-1583	2339,4	67,842
110	410,3	1686,3	-945	1396,7	40,503	480	661,74	2951,1	-2011	2159,7	62,632
120	438,58	1955,8	-1333	1431,4	41,51	490	598,09	3015,3	-2358	1879,5	54,507
130	421,53	2125,2	-1662	1324,7	38,415	500	504,05	3028,5	-2612	1533,4	44,469
140	368,65	2215	-1910	1121,5	32,524	510	360,2	2782,2	-2569	1067,5	30,957
150	291,3	2250	-2078	863,27	25,035	520	205,85	2324,4	-2246	598,44	17,355
160	199,65	2254,4	-2178	580,43	16,832	530	104,23	2318,1	-2299	299,48	8,685
170	101,09	2248,3	-2229	290,47	8,4236	540	2E-13	2314,5	-2314	9E-13	2E-14
180	7E-14	2244,8	-2245	3E-13	8E-15	550	-104,2	2318,1	-2299	-299,5	-8,685
190	-101,2	2250	-2231	-290,7	-8,43	560	-205,8	2324,4	-2246	-598,4	-17,35
200	-200,3	2261,3	-2185	-582,2	-16,88	570	-300,4	2320,3	-2143	-890,2	-25,82
210	-293,4	2265,9	-2092	-869,4	-25,21	580	-380,4	2285,7	-1971	-1157	-33,56
220	-373,6	2244,7	-1936	-1137	-32,96	590	-435,6	2196,3	-1717	-1369	-39,7
230	-431,4	2174,9	-1701	-1356	-39,31	600	-454,6	2027,4	-1382	-1484	-43,03
240	-456	2033,6	-1386	-1488	-43,16	610	-427,8	1758,2	-985,3	-1456	-42,23
250	-438,8	1803,3	-1011	-1494	-43,31	620	-350,9	1376,3	-576,7	-1250	-36,24
260	-376,5	1476,3	-618,6	-1340	-38,87	630	-228,2	881,22	-228,2	-851,2	-24,68

270	-274,4	1059,9	-274,4	-1024	-29,69	640	-72,98	286,22	-23,82	-285,2	-8,272				
280	-147,9	580,11	-48,27	-578,1	-16,76	650	92,993	-382,19	-39,41	380,16	11,025				
290	-21,04	86,465	8,9147	-86	-2,494	660	243,73	-1086,9	-318,5	1039,2	30,137				
300	76,414	-340,77	-99,87	325,81	9,4484	670	353,96	-1784,5	-853,1	1567,4	45,454				
310	113,34	-571,39	-273,2	501,86	14,554	680	404,43	-2430	-1576	1850	53,649				
320	62,325	-374,47	-242,8	285,09	8,2676	690	385,94	-2981,1	-2367	1812,2	52,554				
330	-91,58	707,35	561,64	-430	-12,47	700	301,28	-3402	-3081	1442,1	41,82				
340	-317,1	3581	3243,3	-1518	-44,02	710	164,82	-3665,7	-3578	798,21	23,148				
350	-589,6	13114	12799	-2856	-82,81	720	5E-13	-3755,5	-3756	2E-12	5E-14				
360	-2E-12	27476	27476	-7E-12	-2E-13	Мкр.	Мкр.ц.Суммарный Н*м								

Продолжение таблицы 10

В таблице 11 приведены силы, действующие на поршневой палец и крутящий момент двигателя при работе дизеля с добавкой водорода.

Таблица 11 – Суммарные силы, действующие на поршневой палец и крутящий момент дизеля с добавкой водорода

$\phi_{\rm KB}$	N, H	К, Н	Z, H	T, H	Мкр.ц1	$\phi_{\kappa B}$	N, H	К, Н	Z, H	Т, Н	Мкр.ц1
0	0	-3825,2	-3825	0	0	370	368,57	8197,2	8000,5	1785	51,764
10	-168	-3735,5	-3646	-813,4	-23,59	380	850,24	9600,8	8695,6	4069,7	118,02
20	-307,5	-3472	-3145	-1472	-42,68	390	1100,2	8498,4	6747,8	5166,3	149,82
30	-395	-3051,3	-2423	-1855	-53,79	400	1001,5	6017,1	3901,4	4581	132,85
40	-416,2	-2500,6	-1621	-1904	-55,21	410	812,98	4098,7	1959,5	3600	104,4
50	-368,1	-1855,6	-887,1	-1630	-47,27	420	724,84	3232,4	947,33	3090,5	89,624
60	-259,8	-1158,4	-339,5	-1108	-32,12	430	710,63	2920,6	301,12	2905,1	84,247
70	-110,5	-454,05	-46,81	-451,6	-13,1	440	740,52	2904	-241,7	2894	83,925
80	54,604	214,14	-17,82	213,39	6,1884	450	782,53	3022,2	-782,5	2919,1	84,655
90	209,49	809,06	-209,5	781,47	22,663	460	809,95	3176,3	-1331	2884	83,636
100	332,57	1304,2	-546,5	1184,2	34,341	470	805,24	3309,5	-1855	2741	79,49
110	410,3	1686,3	-945	1396,7	40,503	480	761,28	3394,9	-2314	2484,6	72,053
120	438,58	1955,8	-1333	1431,4	41,51	490	679,87	3427,6	-2680	2136,5	61,959
130	421,53	2125,2	-1662	1324,7	38,415	500	568,69	3416,9	-2947	1730,1	50,172
140	368,65	2215	-1910	1121,5	32,524	510	408,38	3154,4	-2913	1210,3	35,098
150	291,3	2250	-2078	863,27	25,035	520	206,08	2327	-2249	599,12	17,374
160	199,65	2254,4	-2178	580,43	16,832	530	104,34	2320,7	-2301	299,82	8,6947
170	101,09	2248,3	-2229	290,47	8,4236	540	2E-13	2317	-2317	9E-13	2E-14
180	7E-14	2244,8	-2245	3E-13	8E-15	550	-104,3	2320,7	-2301	-299,8	-8,695
190	-101,2	2249,9	-2231	-290,7	-8,43	560	-206,1	2327	-2249	-599,1	-17,37
200	-200,2	2261	-2185	-582,1	-16,88	570	-300,7	2322,9	-2145	-891,2	-25,85
210	-293,3	2265,4	-2092	-869,2	-25,21	580	-380,9	2288,3	-1973	-1159	-33,6
220	-373,4	2243,7	-1935	-1136	-32,95	590	-436,2	2198,9	-1719	-1371	-39,75
230	-431	2173	-1699	-1355	-39,28	600	-455,2	2030	-1383	-1486	-43,08
240	-455,3	2030,5	-1384	-1486	-43,1	610	-428,4	1760,8	-986,7	-1458	-42,29
250	-437,5	1798,2	-1008	-1489	-43,19	620	-351,6	1379	-577,8	-1252	-36,31
260	-374,3	1467,9	-615,1	-1333	-38,65	630	-228,9	883,9	-228,9	-853,8	-24,76
270	-270,8	1045,7	-270,8	-1010	-29,29	640	-73,67	288,89	-24,04	-287,9	-8,349
280	-141,7	555,62	-46,24	-553,7	-16,06	650	92,345	-379,53	-39,13	377,51	10,948
290	-10,3	42,339	4,3652	-42,11	-1,221	660	243,14	-1084,3	-317,8	1036,7	30,063
300	95,298	-424,98	-124,6	406,32	11,783	670	353,44	-1781,9	-851,9	1565,1	45,387
310	147,65	-744,4	-355,9	653,82	18,961	680	404	-2427,3	-1574	1848	53,591
320	127,01	-763,1	-494,8	580,97	16,848	690	385,6	-2978,5	-2365	1810,6	52,508
330	32,724	-252,77	-200,7	153,66	4,4562	700	301,05	-3399,4	-3079	1441	41,788
340	-97,26	1098,2	994,68	-465,5	-13,5	710	164,7	-3663,1	-3575	797,65	23,132
350	-142,2	3162,5	3086,6	-688,6	-19,97	720	5E-13	-3825,2	-3825	2E-12	5E-14
360	-4E-13	5616,4	5616,4	-1E-12	-4E-14	Мкр.і	ц.Суммар	ный Н*м			79,26

В таблице 12 приведены силы, действующие на шатунную и коренные шейки коленчатого вала двигателя на дизельном топливе.

Таблица	12	– Силы,	действующие	на	шатунную	И	коренные	шейки
коленчато	ого д	вигателя н	а дизельном то	плие	e			

	Rш.ш.,	Rк.ш1(5)	Rк.ш2(4)	Rк.ш3,		Rш.ш.,	Rк.ш1(5)	Rк.ш2(4)	Rк.ш3,
$\phi_{\kappa B}$	Н	,H	,H	Н	$\phi_{\kappa B}$	Н	, H	,H	Н
0	664,0803	2E-14	671,148	0	370	24823,11	0,906	614,321	24695,9
10	652,9433	-24,464	614,321	474,736	380	28901,5	2,7514	615,36	26799,7
20	620,3813	-51,4	615,36	439,053	390	27178,05	6,8203	616,372	22374,9
30	568,9254	-83,196	616,372	383,545	400	21165	14,956	616,568	14523,3
40	502,7594	-122,2	616,568	332,206	410	15221,36	29,529	615,342	7889,88
50	427,7592	-171,05	615,342	318,439	420	11297,01	53,075	612,565	3705,66
60	351,7636	-233,32	612,565	357,13	430	8788,929	87,604	608,685	2065,8
70	285,2265	-314,54	608,685	425,807	440	7104,643	133,66	604,52	3834,85
80	241,2335	-423,61	604,52	494,15	450	5944,89	189,39	600,902	6882,37
90	229,968	-574,18	600,902	543,357	460	5127,582	249,9	599,28	10894,3
100	247,7228	-785,85	599,28	565,806	470	4539,875	307,32	607,045	15705
110	279,9063	-1084,4	607,045	562,038	480	4110,637	351,69	656,69	21306,1
120	314,1822	-1499,8	656,69	361,536	490	3794,524	372,69	842,26	27710,1
130	344,2041	-2056,9	842,26	326,425	500	3562,528	361,91	1323,06	31721,9
140	367,6889	-2746,8	1323,06	289,784	510	2772,609	315,05	2276,23	29293,3
150	384,4851	-3442,9	2276,23	259,145	520	713,3496	233,4	3837,49	21642,9
160	395,3853	-3721	3837,49	237,49	530	529,9413	124,28	5931,63	15497,5
170	401,4012	-2793,2	5931,63	222,894	540	341,2465	2E-13	8641,25	11413,6
180	403,3107	-5E-12	8641,25	210,704	550	225,7616	-183,65	11794,1	8822,99
190	405,6547	5182,6	11794,1	199,428	560	222,6899	46,553	13872,3	7096,7
200	412,5614	11759	13872,3	191,735	570	217,2336	-423,61	13073,2	5898,22
210	423,7574	15928	13073,2	186,34	580	209,4859	-5E-12	10150,1	5047,93
220	439,1194	15644	10150,1	179,717	590	200,8595	4702,6	7278,84	4434,56
230	459,1557	13093	7278,84	168,293	600	195,4083	2,7514	5428,64	3986,72
240	485,7068	10670	5428,64	149,728	610	200,5813	351,69	4291,01	3656,25
250	523,0074	8704,4	4291,01	122,944	620	224,7333	233,4	3562,94	3408,56
260	579,4402	7095,3	3562,94	89,3863	630	271,4833	124,28	3088,86	2593,86
270	670,5188	5782,2	3088,86	73,9668	640	337,941	2E-13	2773,64	491,926
280	823,7013	4702,6	2773,64	153,064	650	417,9634	-183,65	2558,82	248,565
290	1085,678	3804	2558,82	349,732	660	504,7881	46,553	2408,51	20,865
300	1533,988	3044,7	2408,51	725,349	670	591,834	-423,61	2300,85	233,99
310	2297,637	2392,7	2300,85	1429,04	680	672,9186	-5E-12	2222,82	344,645
320	3589,959	1823	2222,82	2721,32	690	742,4656	4702,6	1856,81	455,234
330	5728,022	1057,6	1856,81	4994,07	700	795,7668	2,7514	850,242	552,02
340	9000,501	135,8	850,242	8617,94	710	829,243	351,69	764,063	621,901
350	13273,96	41,933	764,063	13403,9	720	664,0803	0	671,148	478,968
360	18544,33	4E-14	671,148	18971,8					

В таблице 13 приведены силы, действующие на шатунную и коренные шейки коленчатого вала двигателя с добавкой водорода.

(0)		Rк.ш1(5)	Rк.ш2(4)	Rк.ш3,	(0)	Rш.ш.,	Rк.ш1(5)	Rк.ш2(4)	Rк.ш3,
$\phi_{\kappa B}$	КШ.Ш., П	,Н	,Н	Н	ϕ_{kb}	Н	, Н	,Н	Н
0	187,1581	243,014	858,2	511,7	370	47872,12	23789,9	24377	507,9
10	180,4867	239,574	862,2	507,9	380	46927,34	23327,2	23906	496,3
20	164,5919	230,77	873,6	496,3	390	38776,61	19267,3	19834	475,6
30	153,7928	221,18	890,8	475,6	400	28581,51	14190,3	14745	444,1
40	170,5113	217,934	911,6	444,1	410	20379,97	10114,2	10659	398,6
50	223,4124	228,12	933,3	398,6	420	15111,02	7507,06	8051	334,7
60	300,8762	254,428	953,1	334,7	430	11733,97	5847,22	6407	245,6
70	389,5375	293,765	968,8	245,6	440	9463,612	4740,61	5347	121,3
80	480,1117	340,308	978,5	121,3	450	7896,85	3984,44	4685	53,84
90	566,2491	388,546	981,1	53,84	460	6789,71	3455,74	4327	304,9
100	643,6604	434,367	976,4	304,9	470	5991,553	3078,58	4243	673,6
110	709,7777	475,123	965	673,6	480	5407,556	2805,24	4460	1232
120	763,5451	509,41	948,4	1232	490	4977,165	2605,4	5076	2104
130	805,1614	536,807	928,4	2104	500	4661,43	2459,68	6291	3506
140	835,7402	557,591	907,5	3506	510	3816,363	2046,6	8105	5758
150	856,9166	572,458	887,9	5758	520	1912,011	1101,46	10552	9164
160	870,4514	582,259	872,1	9164	530	1901,451	1099,18	15419	14047
170	877,8787	587,776	861,8	14047	540	1903,543	1101,21	21105	20247
180	880,233	589,551	346,5	20247	550	1901,451	1099,18	24883	24023
190	885,9833	591,823	354,3	24023	560	1894,742	1092,84	24398	23531
200	903,4444	598,669	377,3	23531	570	1882,183	1081,53	20302	19425
210	933,3828	610,244	415,2	19425	580	1861,917	1064,21	15176	14287
220	977,544	627,038	467,7	14287	590	1831,747	1039,66	11041	10138
230	1039,413	650,244	535,1	10138	600	1789,517	1006,72	8369	7451
240	1125,424	682,357	619,1	7451	610	1733,534	964,448	6639	5708
250	1246,848	728,156	723,9	5708	620	1662,988	912,413	5461	4520
260	1422,766	796,333	857,6	4520	630	1578,29	850,855	4634	3688
270	1684,906	902,257	1035	3688	640	1481,28	780,793	4036	3090
280	2085,781	1072,57	1280	3090	650	1375,237	704,031	3594	2654
290	2713,008	1352,74	1636	2654	660	1264,72	623,062	3261	2331
300	3715,339	1819,8	2177	2331	670	1155,261	540,94	3008	2092
310	5349,452	2604,88	3029	2092	680	1052,997	461,195	2816	1917
320	8053,064	3928,93	4411	1917	690	964,2796	387,974	2365	1482
330	12471,41	6115,78	6644	1482	700	895,2499	326,572	1392	521,4
340	19218,1	9472,84	10035	521,4	710	851,2747	284,118	1373	511,9
350	28943,41	14325,6	14908	511,9	720	187,1581	243,014	858,2	511,7
360	40305.88	20003.5	20593	511.7					

Таблица 13 – Силы, действующие на шатунную и коренные шейки коленчатого двигателя с добавкой водорода

На рисунке 18 приведено сравнение суммарной силы, действующую на шатунную шейку в полярных координатах. А на рисунке 19 приведено сравнение суммарных сил, действующих на 1-ю коренную шейку в полярных координатах.

Рисунок 18 – Суммарная сила, действующая на шатунную шейку в полярных координатах: (а) на дизельном топливе; (б) с добавкой водорода

Рисунок 19 – Суммарные силы, действующие на 1-ю коренную шейку в полярных координатах: (а) на дизельном топливе; (б) с добавкой водорода

Выводы по 3-му разделу

Переход на альтернативное топливо, двухтопливная работа двигателя, водород подается во впускной трубопровод, а основное топливо многотактным впрыском дизельного топлива – такой цикл позволяет значительно снизить нагрузки на кривошипно-шатунный механизм. 4 Анализ токсичности отработавших газов и эффективных показателей для дизельного двигателя с добавкой водорода, полученных на виртуальной модели

Анализ токсичности отработавших газов при работе дизельного двигателя с добавкой водорода проводился по модели, представленной на рисунке 20, выполненной использованием С ведущего на рынке программного обеспечения для моделирования двигателей WAVE Ricardo 17.1. Реализована прогнозирующая модель горения, использующая квазиразмерный процесс распространения пламени. Трехмерная модель формы камеры сгорания используется для расчета площади распространения пламени. Особое внимание при проверке модели уделялось давлению в цилиндре во время газообмена и сгорания для оценки производительности впускной и выпускной систем, а также прогнозирующей модели сгорания.

Для моделирования сгорание дизельного топлива с предварительным впрыском, используется расширенная подмодель Вибе для дизельного двигателя. Расширенная модель имеет дело только с разделенным впрыском, состоящим из двух частей: предварительным и основным впрыском.

Сначала модель проверяется, чтобы увидеть, разделена ли скорость впрыска топлива на две отдельные части. Если впрыск однократный, модель предварительным горения будет отключена. Если впрыск состоит из двух или более отдельных частей, модель будет определять время начала и соотношения массы топлива в предварительной и основной фазе впрыска. Затем предполагается, что все топливо, впрыскиваемое предварительно, сгорает как по модели гомогенного горения, а все топливо основного впрыска – как диффузионное горение с диффузионным догоранием. Две отдельные функции Вибе используются для предварительного и основного сгорания. Масса топлива горит в соответствии с нормализованной площадью под кривой впрыска для каждой фазы сгорания.

Для сгорания с предварительным впрыском задержка зажигания имеет те же параметры, что и для стандартной дизельной подмодели сгорания Вибе. Для основного сгорания нет задержки зажигания. Все параметры модели, включая формы и продолжительность горения, такие же, как у стандартной дизельной подмодели Вибе.

Рисунок 20 – Структура модели виртуального дизельного двигателя с добавкой водорода

Таже проведен расчет скоростных характеристики дизельного двигателя с добавкой водорода, представлены в таблицах 14 и 15.

Скорость двигателя	rpm	5999	5500	4999	4500	4000	3499	3000	2500	2000	1499	1000	499
Массовый расход воздуха	kg/hr	79.2348	73.2018	66.2805	58.9149	51.3057	43.9151	36.9079	30.313	24.0155	17.7373	11.5756	5.54939
Обратный поток (закрытие)	%	1.20375	1.88909	2.86782	4.15678	5.68459	7.17315	8.17368	8.61175	8.84115	9.67304	11.3437	14.9934
Обратный поток (перекрытие)	%	0.175118	0.001912	0.0006685	0.000874	0.022864	0.060636	0.001259	0.027263	0.025216	0.050141	0.0270514	0.0123828
Начало горения	deg	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466
Максимальная скорость повышения													
давления	bar/deg	2.07267	2.08815	2.07863	2.05219	2.00921	1,9564	1.92597	1.89713	1.87467	1.833	1.77828	1,6439
Массовый расход топлива	kg/hr	13.1424	13.2821	13.2501	13.0941	12.8142	12.4974	12.1757	11.879	11.5687	11.0634	10.2306	8.42801
GMEP по методу точки пересечения	bar	13.507	13.5803	13.4828	13.2669	12.9344	12.5747	12.2196	11.8996	11.5751	11.0641	10.2303	8.428
GMEP	bar	279.246	265.773	249.169	230.954	210.47	190.076	168.417	150.689	133.267	112.496	88.6376	58.3867
Скорость теплопередачи	W	330.131	309.696	287.22	263.963	240.251	217.207	195.575	175.219	155.43	134.369	110.648	78.7887
IMEP	bar	13.1424	13.2821	13.2501	13.0941	12.8142	12.4974	12.1757	11.879	11.5687	11.0634	10.2306	8.42801
Перекрытие клапана	deg	75	75	75	75	75	75	75	75	75	75	75	75
Максимальное давление	bar	62.082	62.3819	61.9788	61.0673	59.6952	58.2329	56.8919	55.8723	55.0593	53.8183	51.8955	47.799
													-
PMEP	bar	-1.20001	-0.93454	-0.680102	-0.470743	-0.31362	-0.204238	-0.130287	-0.0793957	-0.0437936	-0.0217294	-0.00960062	0.00244969
Объемный коэффициент наполнения	-	0.970914	0.9782	0.974079	0.96195	0.942569	0.922515	0.906581	0.89568	0.888914	0.877804	0.86154	0.826054
Объемный коэффициент наполнения													
(только воздух)	-	0.951524	0.958692	0.954681	0.942813	0.923791	0.904129	0.888491	0.877798	0.87123	0.860306	0.844338	0.809796
Остаточная газовая фракция	%	3.47672	3.36981	3.25	3.44738	мар.63	3.69892	3.84356	4.00576	4.14831	4.42431	4.73025	5.45562
Продолжительность от 0% до 10%		17.2593	17.2593	17.2593	17.2593	17.2593	17.2513	17.2584	17.2583	17.2598	17.2619	17.2621	17.2631
сжигания массы топлива	deg												
Продолжительность между от 0% до		9.93125	9.93125	9.93125	9.93125	9.93125	9.94547	9.93805	9.9437	9.95225	9.9495	9.95403	9.95454
2% сжигания массы топлива	deg												
Продолжительность между от 0% до		13.5687	13.5687	13.5687	13.5687	13.5687	13.5676	13.5747	13.5738	13.5778	13.5777	13.5802	13.5801
5% сжигания массы топлива	deg												
Продолжительность от 0% до 90%		48.269	48.269	48.269	48.269	48.269	48.2778	48.2672	48.2718	48.2656	48.268	48.2665	48.2657
сжигания массы топлива	deg												
Время сжигания 1% массы топлива	deg	-16.49	-16.49	-16.49	-16.49	-16.49	-16.4632	-16.4771	-16.4756	-16.4693	-16.4606	-16.462	-16.4589
Продолжительность сжигания от 10%													
до 90% массы топлива	deg	31.0097	31.0097	31.0097	31.0097	31.0097	31.0265	31.0088	31.0135	31.0058	31.0061	31.0044	31.0026
Время сжигания 10% массы топлива	deg	-7.08725	-7.08725	-7.08725	-7.08725	-7.08725	-7.09528	-7.08814	-7.08824	-7.0868	-7.08465	-7.08451	-7.08353
Время сжигания 50% массы топлива	deg	8.00074	8.00074	8.00074	8.00074	8.00074	8.001	8.00095	8.00082	8.00085	8.0008	8.00076	8.00075
Время сжигания 90% массы топлива	deg	23.9224	23.9224	23.9224	23.9224	23.9224	23.9312	23.9207	23.9252	23.919	23.9214	23.9199	23.9191
Время сжигания 99% массы топлива	deg	36.4881	36.4881	36.4881	36.4881	36.4881	36.4742	36.4817	36.4767	36.4677	36.4673	36.4661	36.4642
Время максимального давления	deg	14.0525	14.0658	14.0737	14.0802	14.0815	14.0559	14.0144	13.9299	13.8594	13.8089	13.4795	12.02

Таблица 14 – Скоростные характеристики при работе на дизельном топливе

Скорость двигателя	rpm	5999	5500	4999	4500	4000	3500	3000	2499	2000	1500	999	500
Массовый расход воздуха	kg/hr	47.9596	41.5077	34.9423	31.5858	25.3938	20.853	16.7179	13.4585	9.49222	6.33109	3.69741	1.61259
Обратный поток (закрытие)	%	3.04223	4.34848	5.92315	7.1602	8.49894	9.08511	9.27912	9.58154	9,73	11.01	14.2729	18.5162
Обратный поток (перекрытие)	%	0.122676	0.0669626	0.0285729	0.0502703	0.130068	0.0583092	0.153157	0.0805822	0.0691929	0.0731691	0.0621703	0.03961
Начало горения	deg	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217
Максимальная скорость повышения													
давления	bar/deg	1.34941	1.281	1.19866	1.28385	1.08579	1.02258	0.950678	0.991005	0.790492	0.691735	0.596053	0.533858
Массовый расход топлива	kg/hr	2.19511	2.13363	2.04663	1.76984	1.67339	1.52879	1.35866	1.15211	0.987677	0.774634	0.532207	0.265382
GMEP по методу точки пересечения	bar	9.71102	9.27978	8.72237	9.14587	7.97989	7.52876	7.0565	7.16815	6.01137	5.43	4.59774	3.58502
Скорость теплопередачи	W	7570.29	6546.95	5528.83	5574.95	4168.96	3485.54	2885.25	2680.73	1803.53	1322.47	890.825	496.693
IMEP	bar	9.37511	9.04731	8.55912	9.01539	7.88762	7.101	7.00781	7.13353	5.99048	5.35361	4.34	3.58395
Максимальное давление	bar	47.9397	46.2563	44.0844	45.0924	41.0322	39.4513	37.9341	38.2795	34.7263	32.7315	30.3491	27.296
		-						-	-	-	-		
PMEP	bar	0.454901	-0.31189	-0.211205	-0.174365	-0.108229	-0.075308	0.0506027	0.0352175	0.0198308	0.0106413	-0.0043431	-0.00107566
Объемный коэффициент наполнения	-	0.588498	0.561918	0.525952	0.525675	0.480415	0.455676	0.430086	0.417568	0.375472	0.339462	0.302642	0.267404
Объемный коэффициент наполнения													
(только воздух)	-	0.563236	0.535117	0.497766	0.499141	0.452117	0.425988	0.399283	0.38637	0.341776	0.30434	0.266756	0.232305
Коэффициент остаточных газов	%	4.15538	4.13147	4.33276	4.43948	4.75467	4.70706	5.03969	5.26309	5.38809	5.70263	6.0762	6.37942
Продолжительность от 0% до 10%													
сжигания массы топлива	deg	13.2427	13.2547	13.2524	13.2637	13.26	13.2639	13.264	13.2628	13.2631	13.2651	13.2649	13.2652
Продолжительность между от 0% до													
2% сжигания массы топлива	deg	4,69920	4.70971	4.70585	4.70833	4.70631	4.70821	4.83	4.70981	4.71102	4.71152	4.71159	4,71190
Продолжительность между от 0% до													
5% сжигания массы топлива	deg	8.09481	8.094	8.09534	8.09574	8.09062	8.09529	8.08877	8.09083	8.08964	8.08876	8.08776	8.0878
Продолжительность от 0% до 90%													
сжигания массы топлива	deg	35.2721	35.2711	35.2624	35.2537	35.2582	35.2548	35.2606	35.2557	35.2544	35.2542	35.2536	35.2532
Время сжигания 1% массы топлива	deg	-6.68732	-6.66975	-6.65498	-6.675	-6.66018	-6.64975	-6.65097	-6.64898	-6.64562	-6.64417	-6.64236	-6.64176
Продолжительность сжигания от 10%													
до 90% массы топлива	deg	22.0295	22.0163	22.01	21.99	21.9982	21.991	21.9966	21.9929	21.9913	21.9891	21.9887	21.988
Время сжигания 10% массы топлива	deg	3.02571	3.03778	3.03548	3.0467	3.043	3.04692	3.04706	3.04583	3.04616	3.04816	3.04795	3.04821
Время сжигания 50% массы топлива	deg	14.4716	14.4719	14.4718	14.472	14.4719	14.472	14.4719	14.4719	14.472	14.472	14.472	14.472
Время сжигания 90% массы топлива	deg	25.0552	25.0541	25.0455	25.0367	25.0413	25.0379	25.0436	25.0387	25.0374	25.0372	25.0366	25.0362
Время сжигания 99% массы топлива	deg	33.2501	33.2515	33.2316	33.2174	33.2295	33.2248	33.2212	33.2171	33.2198	33.2162	33.2168	33.2162
Время максимального давления	deg	9.70357	8.94985	9.40657	9.16395	9.94714	8.91726	9.61073	9.33953	8.96062	9.62569	-5.44574	-5.51498

Таблица 15 – Скоростные характеристики при работе на дизельном топливе с добавкой водорода

На рисунках 21 и 22 представлена среднее индикаторное давление при работе на бензине и на водороде соответственно.

Рисунок 21 – Среднее индикаторное давление при работе на бензине

Рисунок 22 – Среднее индикаторное давление при работе на водороде

На рисунках 23 и 24 представлен графики зависимости объемного коэффициента наполнения от частоты вращения при работе на бензине и на водороде соответственно.

Рисунок 23 – Зависимость объемного коэффициента наполнения от частоты вращения при работе на бензине

Рисунок 24 – Зависимость объемного коэффициента наполнения при работе на водороде

На рисунке 25 представлена зависимость удельных выбросов по СО в г/кВт ч от частоты вращения при 5 различных комбинации состава смеси – дизельное топливо (ДТ), ДТ с долей водорода от1 до 4% по массе с шагом в 1%, соответственно.

Рисунок 25 – Зависимость удельных выбросов по СО в г/кВт ч от частоты вращения при 5 различных комбинации состава смеси.

На рисунке 26 представлена зависимость удельных выбросов по NO₂ в г/кВт ч от частоты вращения при 5 различных комбинации состава смеси – дизельное топливо (ДТ), ДТ с долей водорода от1 до 4% по массе с шагом в 1%, соответственно.

Рисунок 26 – Зависимость удельных выбросов по NO₂ в г/кВт ч от частоты вращения при 5 различных комбинации состава смеси.

На рисунке 27 представлена зависимость концентрации СО в мил⁻¹ (ppm) от частоты вращения при 5 различных комбинации состава смеси – дизельное топливо (ДТ), ДТ с долей водорода от1 до 4% по массе с шагом в 1%, соответственно.

Рисунок 27 – Зависимость концентрации СО в мил⁻¹ (ppm) от частоты вращения при 5 различных комбинации состава смеси.

На рисунке 28 представлена зависимость концентрации СН в мил⁻¹ (ppm) от частоты вращения при 5 различных комбинации состава смеси – дизельное топливо (ДТ), ДТ с долей водорода от1 до 4% по массе с шагом в 1%, соответственно.

Рисунок 28 – Зависимость концентрации СН в мил⁻¹ (ppm) от частоты вращения 5 различных комбинации состава смеси

На рисунке 29 представлена зависимость концентрации NO в мил⁻¹ (ppm) от частоты вращения при 5 различных комбинации состава смеси – дизельное топливо (ДТ), ДТ с долей водорода от1 до 4% по массе с шагом в 1%, соответственно.

Выводы по 4-му разделу

В ходе стационарного моделирования концепция дизельного двигателя с добавками водорода была оптимизирована для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя. Представленные результаты наглядно показывают, что при обеднении смеси и увеличении доли водорода топлива концентрация оксидов азота снижается, что говорит о целесообразности на добавки водорода в качестве активатора горения и элемента, снижающего токсичность.

ЗАКЛЮЧЕНИЕ

В бакалаврской работе проведен анализ рабочего процесса дизельного двигателя с добавкой водорода. Получены основные выводы по работе:

- Добавка водорода повышает интенсивность процесса сгорания, что эффективно сказывается на, возможности снижения токсичности особенно активно по продуктам неполного сгорания и саже.
- Представленные результаты наглядно показывают, что при обеднении смеси и увеличении доли водорода топлива концентрация оксидов азота несколько увеличивается, при этом концентрация продуктов неполного сгорания и сажи значительно меньше, что говорит о целесообразности на добавки водорода в качестве активатора горения и элемента, снижающего токсичность.

Выводы по первому разделу

Проведённый анализ известных источников показал, перспективность применения водорода в двигателях, с искровым зажиганием. Широкие пределы воспламеняемости позволяют двигателям на водороде работать в условиях качественного регулирования нагрузкой в диапазоне составов смесей от стехиометрического до 5 – 6 по коэффициенту избытка воздуха, что приводит к снижению температуры сгорания и практически к нулевым выбросам токсичных компонентов на режимах низких нагрузок.

Выводы по второму разделу

Проведенные расчеты дизельного двигателя с добавкой водорода и на дизельном топливе, показали улучшение эффективных показателей работы двигателя при переходе с дизельного топлива на альтернативное топливо – дизель с добавкой водорода.

Выводы по 3-му разделу

Переход на альтернативное топливо, двухтопливная работа двигателя, водород подается во впускной трубопровод, а основное топливо

многотактным впрыском дизельного топлива – такой цикл позволяет значительно снизить нагрузки на кривошипно-шатунный механизм.

Выводы по 4-му разделу

В ходе стационарного моделирования концепция дизельного двигателя с добавками водорода была оптимизирована для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя. Представленные результаты наглядно показывают, что при обеднении смеси и увеличении доли водорода топлива концентрация оксидов азота снижается, что говорит о целесообразности на добавки водорода в качестве активатора горения и элемента, снижающего токсичность.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- Adnan N Ahmed, Zuhair H Obeid and Alauldinn H Jasim Experimental investigation for optimum compression ratio of single cylinder spark ignition engine / IOP Conf. Series: Materials Science and Engineering 454 (2018) 012003
- 2. Antriebskonzepte fur heute und morgen. Motorentechnische Zeitschrift MTZ, 09:630–631, 2013.
- Helmut Eichlseder and Andreas Wimmer. Potential of IC-engines as minimum emission propulsion system. Atmospheric Environment, 37:5227– 5236, 2003.
- 4. Lutz Eckstein, Rene Gobbels, and Roland Wohlecker. Benchmarking of the Electric Vehicle Mitsubishi i-MiEV. ATZ worldwide, 12:48–53, 2011.
- R.A.B. Semin. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines. Am. J. Engg. & Applied Sci, 1:302–311, 2008.
- Wolfgang Warnecke, John Karanikas, Bruce Levell, Carl Mesters, J[°]org Adolf, Jens Schreckenberg Max Kofod, and Karsten Wildbrand. Natural Gas
 A bridging tehenology for future mobility? In 34. Internationales Wiener Motorensymposium, 25 - 26, April, 2013.
- David Serrano and Bertrand Lecointe. Exploring the Potential of Dual Fuel Diesel-CNG Combustion for Passenger Car Engine. In Proceedings of the FISITA 2012 World Automotive Congress, Beijing, China, 27-30 November 2012.
- Tobias Ott, Florian Zurbriggen, Christopher Onder, and Lino Guzzella. Cycle-averaged efficiency of hybrid electric vehicles. Institution of Mechanical Engineering Part D, Journal of Automobile Engineering, 227:78–86, 2012.

- 9. Tobias Ott, Christopher Onder, and Lino Guzzella. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine. Energies, 6:3571–3592, 2013.
- Norman Brinkman, Michael Wang, Trudy Weber, and Thomas Dar- lington. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions, 2005.
- T. Ishiyama, J. Kang, Y. Ozawa, and T. Sako. Improvement of Performance and Reduction of Exhaust Emissions by Pilot-Fuel-Injection Control in a Lean-Burning Natural-Gas Dual-Fuel Engine. SAE International Journal of Fuels and Lubricants, 5:243–253, 2012.
- Thorsten Schmidt, Christian Weiskirch, Stefan Lieske, and Holger Manz. Modern industrial engines emission calibration and engine man- agement. ATZ off highway, 9:24–35, 2010.
- Bernhard Schneeweiss and Philipp Teiner. Hardware-in-the-Loop-Simulation am Motorenprufstand fur realitatsnahe Emissions- und Verbrauchsanalysen. Automobiltechnische Zeitschrift ATZ, 5:76–79, 2010.
- Gerhard Henning, Tobias Go¨decke, and Angsar Damm. Neue Getriebe fu¨r die neuen Kompakten. ATZ, 9:70–73, 2012.
- Chasse and A. Sciaretta. Supervisory control of hybrid powertrains: An experimental benchmark of offline optimization and online energy management. Control Engineering Practice, 19:1253–1265, 2011.
- Heffel, J. W. (2003). "NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation." International Journal of Hydrogen Energy, 28(8), pp. 901-908.
- 17. Lipman, T., and Hwang, R. (2003). "Hybrid electric and fuel cell vehicle technological innovation: hybrid and zero-emission vehicle technology links." Proceedings of the 2003 20th International Electric Vehicle Symposium and Exposition, Long Beach, CA.

- Burke, A. (2005). "Hybrid vehicles: design approaches, component options, and potential fuel economy improvements." Institute of Transporation Studies, University of California at Davis.
- Atwood, P., Gurski, S., Nelson, D. (2001). "Degree of hybridization modeling of a fuel cell hybrid electric sport utility vehicle." SAE Paper 2001-01-0236.
- Miller, J. (2006). "Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type." IEEE Transactions on Power Electronics, 21(3), pp. 756-767.
- 21. Service, R. F. (2004). "The hydrogen backlash." Science, 305(5686), Aug 13, pp. 958-961.
- 22. Romm, J. J. (2004). The Hype About Hydrogen: Fact and Fiction in the Race to Save the Climate, Island Press, Washington, D.C.
- Zhang, Y., Lin, H., Zhang, B., and Mi, C. (2006). "Performance Modeling and Optimization of a Novel Multi-mode Hybrid Powertrain." Journal of Mechanical Design, 128, pp. 79-89.
- 24. Adamchak F., Adede A., 2013. LNG as a marine fuel, 17th International conference and exhibition on Liquefied Natural Gas (LNG 17), Houston
- Adom F., Dunn J.B., Elgowainy A., Han J., Wang M., Chang R., Perez H., Sellers J., Billings R., 2013. Life Cycle Analysis of Conventional and Alternative Marine Fuels in GREET.
- Agostini A., Giuntoli J., Boulamanti A., 2013. Carbon accounting of forest bioenergy - Conclusions and recommendations from a critical literature review. JRC Technical reports, EUR 25354 EN, ISBN 978-92-79-25100-9.
- 27. Anselmo A., Sullivan J., 2015. DME: The Best Fuel, Period. Dimethyl Ether: The Future of Electricity, Heat and Transportation. ChemBioPower Ltd. Available at: www.chembiopower.com/s/CBP-WhitePaper-v5.pdf

- Bell Performance, 2013. Fuel Storage and Diesel Generator Problems: Fuel Microbes, Available at: http://www.bellperformance.com/bell-performsblog/diesel-generator- problems-fuel-microbes
- Bengtsson S., Andersson K., Fridell E., 2011. A comparative life cycle assessment of marine fuels; liquefied natural gas and three other fossil fuels. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 225, pp. 97–110
- Corvus, 2015. Corvus Energy Announces Investment from Statoil Technology Invest.
- Cowie A., Berndes G., Smith T., 2013. On the timing of greenhouse gas mitigation benefits of forest-based bioenergy, IEA Bioenergy; ExCo 2013:04
- Deniz C., Kilic A., Civkaroglu G., 2010. Estimation of shipping emissions in Candarli Gulf, Turkey. Environmental Monitoring and Assessment. Vol.171, pp.219–228.
- 33. DNV GL, 2014. Alternative fuels for shipping. DNV GL Strategic Research & Innovation Position Paper 1-2014.
- Florentinus A., Hamelinck C., van den Bos A., Winkel R., Cuijpers M., 2012. Potential of biofuels for shipping - Final Report. Prepared by Ecofys for European Maritime Safety Agency (EMSA).
- 35. Landalv I., Gebart R., Marke B., Granberg F., Furusjo E., Lownertz P., Öhrman O.G.W., Sørensen E. L., Salomonsson P., 2014. Two years experience of the BioDME project – a complete wood to wheel concept. Environmental Progress and Sustainable Energy. Vol.33, pp. 744–750.
- Lin C.Y., 2013. Effects of biodiesel blend on marine fuel characteristics for marine vessels. Energies. Vol.6, pp.4945–4955
- O'Dowd C., 2012. Aerosol in Global Atmosphere. In Encyclopedia of Sustainability Science and Technology, Robert A. Meyers (Ed). pp 111-148. Springer New York

- Petzold A., Lauer P., Fritsche U., Hasselbach J., Lichtenstern M., Schlager H., Fleischer F., 2011. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects. Environmental Science and Technology. Vol. 45, pp.10394–10400.
- Sherrard A., 2015. Poly-gen flash pyrolysis praised for rapid roll-out. Bioenergy International 78(2). Pp 18-19
- Thomson H., Corbett J. J., Winebrake J.J., 2015. Natural gas as a marine fuel. Energy Policy 87 pp 153–167
- K. Ahn, A.G. Stefanopoulou and M. Jankovic, "Estimation of Ethanol Content in Flex-Fuel Vehicles Using an Exhaust Gas Oxygen Sensor: Model, Tuning and Sensitivity," In proceedings of ASME 2008 Dynamic Systems and Control Conference, October, 2008, Ann Arbor, MI, USA.
- 42. Jiang, S., and Nutter, D., "Implementation of Model-Based Calibration for a Gasoline Engine", SAE 2012-01-0722, 2012
- Guerrier, M. and Cawsey, P., "The Development of Model Based Methodologies for Gasoline IC Engine Calibration," SAE Technical Paper 2004-01-1466, 2004
- Vibe, I.I., "Semi-empirical expression for combustion rate in engines", Proceedings of Conference on piston engines, USSR Academy of sciences, Moscow, pp. 186-191, 1956.
- 45. Wiebe I.I., "Brennverlauf und Kreisprozeb von Ver-brennungsmotoren". In VEB- Verlag Technik, Berlin, 1970.
- Lindström, F., Ångström, H., Kalghatgi, G., and Möller, C., "An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations," SAE Technical Paper, 2005-01-2106, 2005
- Longwic, R., "Modelling the Combustion Process in the Diesel Engine with the Use of Neural Networks," SAE Technical Paper 2008-01-2446, 2008, doi:10.4271/2008-01-2446.

- Maass, B., Deng, J., and Stobart, R., "In-Cylinder Pressure Modelling with Artificial Neural Networks," SAE Technical Paper 2011-01-1417, 2011, doi:10.4271/2011-01-1417.
- Cavina N. and Suglia R., "Spark Advance Control based on a Grey Box Model of the Combustion Process", SAE 2005-01-3760, 2005
- 50. Heywood J. B., "Internal Combustion Engines Fundamentals", McGraw and Hill, 1988
- Boiarciuc A. and Floch A., "Evaluation of a 0D Phenomenological SI Combustion Model", SAE 2011-01-1894, 2011
- 52. Prucka R., "An Experimental Characterization of a High Degree of Freedom Spark- Ignition Engine to Achieve Optimized Ignition Timing Control", Dissertation for the degree of Doctor of Philosophy,2008
- 53. Schmid, A., Grill, M., Berner, H., Bargende, M. et al., "Development of a Quasi- Dimensional Combustion Model for Stratified SI-Engines," SAE Int. J. Engines 2(2):48-57, 2010
- 54. Rakopoulos, C., Michos, C., and Giakoumis, E., "Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi- Dimensional, Multi-Zone Combustion Model,"SAE Int. J. Engines 2(1):880-910, 2009
- Tan, Z. and Reitz, R., "Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method," SAE Technical Paper 2003-01-0722, 2003.
- 56. Конструирование двигателей внутреннего сгорания : **v**чебник для обучающихся "Двигатели студентов BV30B, по специальности сгорания" внутреннего направления подготовки "Энергомашиностроение" / Н. Д. Чайнов, Н. А. Иващенко, А. Н. Краснокутский, Л. Л. Мягков ; под ред. Н. Д. Чайнова. - 3-е изд. -Москва : Машиностроение, 2023. - 495 с.

- 57. Автомобиль. Устройство. Автомобильные двигатели : учебное пособие / А. В. Костенко, А. В. Петров, Е. А. Степанова [и др.]. - Изд. 3-е, стер. -Санкт-Петербург : Лань, 2023. - 436 с.
- 58. Петров, А. И. Техническая термодинамика и теплопередача : учебник /
 А. И. Петров. Изд. 2-е, стер. Санкт-Петербург : Лань, 2023. 428 с.
- 59. Баширов, Р. М. Автотракторные двигатели : конструкция, основы теории и расчета : учебник / Р. М. Баширов. - Изд. 4-е, стер. - Санкт-Петербург : Лань, 2022. - 336 с.
- Вальехо М. П. Расчет кинематики и динамики рядных поршневых двигателей : учебное пособие / М. П. Вальехо, Н. Д. Чайнов. - Москва : ИНФРА-М, 2022. - 259 с.
- Суркин, В. И. Основы теории и расчёта автотракторных двигателей : курс лекций : учеб. пособие / В. И. Суркин. - Изд. 2-е, перераб. и доп. -Санкт-Петербург : Лань, 2022. - 304 с.
- Крюков, К. С. Теория и конструкция силовых установок : учеб. пособие
 / К. С. Крюков. Москва : ИНФРА-М, 2021. 211 с.
- 63. Курасов, В. С. Теория двигателей внутреннего сгорания : учеб. пособие / В. С. Курасов, В. В. Драгуленко. Москва : ИНФРА-М, 2021. 86 с.
- 64. Гоц А. Н. Динамика двигателей : курсовое проектирование : учеб. пособие / А. Н. Гоц. 3-е изд., испр. и доп. Москва : ИНФРА-М, 2020. 175 с.
- Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / И.И.
 Вибе// М. Машиностроение, 1971. с.282