Министерство науки и высшего образования Российской Федерации Тольяттинский государственный университет

О.А. Кузнецова, С.Ш. Палферова

ЭКОНОМЕТРИКА: продвинутый уровень

Лабораторный практикум

© ФГБОУ ВО «Тольяттинский государственный университет», 2023

ISBN 978-5-8259-1320-9

Рецензенты:

канд. пед. наук, доцент, заведующий кафедрой математики и информатики Поволжского православного института имени Святителя Алексия, митрополита Московского *E.B. Бахусова*;

канд. пед. наук, доцент, доцент кафедры «Высшая математика и математическое образование» Тольяттинского государственного университета *Е.С. Павлова*.

Кузнецова, О.А. Эконометрика: продвинутый уровень : лабораторный практикум / О.А. Кузнецова, С.Ш. Палферова. – Тольятти : Изд-во ТГУ, 2023. – 1 оптический диск. – ISBN 978-5-8259-1320-9.

Лабораторный практикум по изучению дисциплины «Эконометрика (продвинутый уровень)» содержит указания по выполнению лабораторных (расчетно-графических) работ по построению уравнений нелинейной и множественной регрессии с использованием надстройки «Анализ данных» MS Excel с необходимыми пояснениями порядка действий и диалоговых окон.

Предназначен для студентов, обучающихся по направлению подготовки магистров 38.04.01 «Экономика», очной и заочной форм обучения, а также может быть полезен для студентов дистанционной формы обучения.

Текстовое электронное издание.

Рекомендовано к изданию научно-методическим советом Тольяттинского государственного университета.

Минимальные системные требования: IBM PC-совместимый компьютер: Windows XP/Vista/7/8/10; PIII 500 МГц или эквивалент; 128 Мб ОЗУ; SVGA; CD-ROM; Adobe Acrobat Reader.

© Кузнецова О.А., Палферова С.Ш., 2023

© ФГБОУ ВО «Тольяттинский государственный университет», 2023 Редактор Е.В. Пилясова Технический редактор Н.П. Крюкова Компьютерная верстка: Л.В. Сызганцева Художественное оформление, компьютерное проектирование: Г.В. Карасева

В оформлении пособия использовано изображение от vectorjuice на Freepik

Дата подписания к использованию 02.02.2023. Объем издания 4 Мб. Комплектация издания: компакт-диск, первичная упаковка. Заказ № 1-64-21.

Издательство Тольяттинского государственного университета 445020, г. Тольятти, ул. Белорусская, 14, тел. 8 (8482) 44-91-47, www.tltsu.ru

Содержание

ВВЕДЕНИЕ	5
Лабораторная работа 1. НЕЛИНЕЙНЫЕ	
РЕГРЕССИОННЫЕ МОДЕЛИ	7
Лабораторная работа 2. МНОЖЕСТВЕННАЯ	
ЛИНЕЙНАЯ РЕГРЕССИЯ	31
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	64

введение

В соответствии с федеральным государственным образовательным стандартом высшего образования по направлению подготовки 38.04.01 «Экономика» учебный курс «Эконометрика (продвинутый уровень)» включен в учебные планы подготовки магистров экономики как обязательная дисциплина, является основной и преподается во всех ведущих университетах мира.

Лабораторный практикум предназначен для освоения дисциплины «Эконометрика (продвинутый уровень)», целью которой является обучение студентов методологии и методике построения и применения эконометрических моделей для анализа состояния и оценки перспектив развития экономических и социальных систем в условиях взаимосвязей между их внутренними и внешними факторами.

Целью лабораторного практикума является приобретение студентами опыта построения эконометрических моделей, реализация типовых задач на компьютере с помощью пакетов прикладных программ.

Задачи изучения дисциплины:

- Формирование у студентов навыков анализа связей между экономическими факторами и показателями на основе статистических данных с использованием аппарата теории вероятностей и математической статистики.
- 2. Обучение студентов практическому применению методов экономической теории, экономической статистики, экономических измерений и математико-статистического инструментария.
- 3. Развитие навыков прогнозирования социально-экономических показателей, характеризующих состояние и развитие анализируемой системы.

Лабораторный практикум ориентирован на решение следующих задач:

- научить студентов использовать средства MS Excel для построения эконометрических моделей на основе пространственных данных;
- сформировать навыки анализа связей между показателями на основе полученных результатов.

В результате выполнения лабораторных работ по дисциплине «Эконометрика (продвинутый уровень)» обучающиеся должны:

✓ *знать* основные виды эконометрических моделей, используемых в моделировании и прогнозировании экономических процессов на основе пространственных данных;

✓ *уметь* использовать средства пакета прикладных программ для построения эконометрических моделей;

✓ *владеть* навыками математической обработки экономических данных с широким использованием современных компьютерных вычислительных технологий, а также визуализацией результатов на всех этапах эконометрического моделирования.

Данный лабораторный практикум является дополнением к учебно-методическому пособию «Эконометрика (продвинутый уровень)», разработанному теми же авторами, включает выполнение двух лабораторных работ, предусмотренных учебным планом по направлению подготовки 38.04.01 «Экономика», содержит этапы выполнения работы, примеры решения типовых задач в MS Excel с необходимыми пояснениями порядка действий и демонстрацией диалоговых окон, задания для индивидуальной работы студентов.

Лабораторная работа 1

НЕЛИНЕЙНЫЕ РЕГРЕССИОННЫЕ МОДЕЛИ

Цель: формирование навыков построения различных форм нелинейных моделей, использования методов проверки качества таких моделей с помощью средств MS Excel.

План проведения лабораторной работы

- 1. Выполнить задания работы согласно варианту. Расчеты производить в Excel с использованием надстройки «Анализ данных», меню «Данные».
- 2. Произвести исследование построенной модели по порядку в соответствии с перечисленными в заданиях пунктами.
- 3. Оформить отчет о лабораторной работе, используя текстовый редактор MS Word, для ввода формул использовать редактор формул.

Оборудование и материалы

- 1. Персональный компьютер со встроенным пакетом MS Office.
- 2. Принтер, бумага, необходимые для оформления отчета о лабораторной работе.

Задания к лабораторной работе

В течение года *i*-я семья, имеющая располагаемый доход x_i , затратила на приобретение этого товара V_i руб. (см. данные своего варианта).

1. Подберите модель зависимости, в которой эластичность потребления рассматриваемого товара по отношению к располагаемому доходу не зависит от размера располагаемого дохода.

Замечание. Постоянство эластичности предполагает оценивание модели, линейной в логарифмах уровней.

- 2. Постройте график подбора значений регрессии.
- 3. Рассчитайте среднюю ошибку аппроксимации. Сделайте выводы.
- 4. Проверьте значимость подобранной модели на уровне $\alpha = 0.05$.

Замечание. Используйте коэффициент детерминации и критерий Фишера.

- 5. Оцените значение объясняемой переменной при $X = 153\ 000$.
- 6. Найдите 95%-ные доверительные интервалы для среднего и индивидуального значений объясняемой переменной при том же значении *X*.
- 7. Найдите с надежностью 0,95 интервальные оценки параметров уравнения регрессии α и β, дисперсии ошибок var(ε_i). Сделайте выводы.
- 8. С помощью графического метода оцените соответствие используемых для построения модели статистических данных стандартным предположениям регрессионного анализа.
- 9. В рамках подобранной модели проверьте гипотезы о том, что потребление данного товара эластично по отношению к располагаемому доходу.

Замечание. Эластичное потребление соответствует значению эластичности, большему единицы по абсолютной величине $(|\eta| = |\beta| > 1).$

 В рамках подобранной модели проверьте гипотезы о том, что потребление данного товара неэластично по отношению к располагаемому доходу (|η| = |β| < 1).

Номер варианта определяется по таблице по первой букве фамилии студента.

Буква	Α	Б	В	Г	Д	Е	Ж
№ вар.	1	2	3	4	5	6	7
Буква	3	И	К	Л	М	Н	0
№ вар.	8	9	10	11	12	13	14
Буква	П	Р	С	Т	У	Φ	X
№ вар.	15	16	17	18	19	20	21
Буква	ц	Ч	ш	щ	Э	Ю	я
№ вар.	22	23	24	25	26	27	28

Варианты заданий

с 1 по 7 вариант	1	2	3	4	5	6	7
x _i				V_{i}			
150537,1	3736,022	6107,689	4513,006	12360,85	6492,436	3304,019	3453,137
136570,9	3155,929	4962,273	3666,651	10441,58	5378,59	2818,311	2778,363
151518,1	4091,394	6706,055	4955,142	13536,61	7119,241	3615,949	3793,902
110318,6	3037,814	4385,618	3240,558	10050,79	4960,9	2771,366	2403,633
155144,1	3603,569	5962,619	4405,812	11922,62	6300,129	3177,29	3381,295
129398,2	3025,638	4655,843	3440,229	10010,5	5101,198	2716,574	2592,768
118036	3041,839	4511,824	3333,812	10064,1	5035,106	2756,336	2489,58
153232,6	3907,761	6433,963	4754,091	12929,05	6815,03	3449,771	3644,066
174761,2	3961,124	6873,953	5079,202	13105,61	7092,135	3451,21	3944,787
158744,2	4072,685	6800,956	5025,265	13474,71	7153,027	3582,684	3865,559
151702,4	3991,685	6545,808	4836,735	13206,72	6947,431	3527,398	3703,694
143872,3	3692,751	5928,584	4380,664	12217,68	6359,383	3280,574	3336,731
166110,4	4227,418	7188,594	5311,692	13986,66	7492,453	3701,97	4104,461
164493	3783,255	6408,18	4735,04	12517,12	6692,135	3316,259	3655,291
114337,7	3174,847	4649,526	3435,561	10504,17	5221,92	2886,033	2557,409
136811,3	3265,973	5138,914	3797,173	10805,66	5568,093	2916,069	2877,77
135744,2	3359,623	5269,74	3893,84	11115,51	5718,793	3002,036	2948,722
120100,7	2737,437	4088,58	3021,075	9056,97	4546,978	2476,208	2259,954
169115,2	3801,232	6510,397	4810,569	12576,6	6761,303	3322,795	3723,902
156830,3	3828,464	6362,19	4701,058	12666,7	6707,8	3371,934	3611,787
173678,5	3652,607	6322,829	4671,974	12084,86	6531,631	3184,386	3626,257
98372,26	2432,41	3354,253	2478,476	8047,768	3882,226	2244,641	1817,421
174902,9	3823,984	6638,118	4904,943	12651,87	6847,705	3331,455	3809,756
173312	4465,222	7722,974	5706,549	14773,45	7981,386	3893,657	4428,33
156933	4326,829	7192,263	5314,404	14315,56	7581,971	3810,621	4083,283

с 1 по 7 вариант	1	2	3	4	5	6	7
x				V _i	-		
140565,3	3504,023	5573,503	4118,293	11593,26	6006,37	3120,158	3129,598
176069,6	4505,115	7841,329	5794,002	14905,44	8078,157	3922,247	4503,297
161690,9	4461,26	7504,848	5545,374	14760,34	7864,375	3917,297	4273,493
172933,5	3684,829	6367,649	4705,091	12191,47	6583,589	3213,859	3650,392
155816,2	3777,938	6261,956	4626,994	12499,53	6610,692	3329,593	3552,58
142207,7	3406,962	5444,357	4022,866	11272,13	5853,578	3030,208	3060,634
145502,6	3913,684	6311,667	4663,726	12948,65	6755,063	3472,931	3556,343
98055,92	1978,545	2724,868	2013,42	6546,13	3155,805	1826,4	1475,929
151223,7	3533,754	5787,544	4276,448	11691,63	6146,527	3123,718	3273,624
136893,9	2937,451	4623,11	3416,042	9718,726	5008,606	2622,586	2589,078
168809,8	3807,876	6517,064	4815,495	12598,58	6770,674	3329,205	3727,042
148475	3600,899	5854,4	4325,849	11913,78	6240,382	3188,916	3305,371
132941,9	3695,458	5748,349	4247,487	12226,64	6264,266	3309,021	3209,829
166977,6	3968,5	6762,383	4996,763	13130,01	7040,89	3473,426	3863,119
154991,7	4603,27	7613,772	5625,859	15230,19	8046,326	4059,131	4317,21
159979,8	3234,597	5418,216	4003,55	10701,85	5689,875	2843,224	3082,019
169942,9	3819,756	6554,914	4843,463	12637,89	6800,891	3337,358	3751,197
174351,5	4093,711	7097,371	5244,287	13544,28	7326,082	3567,566	4072,045
151347,1	3071,714	5032,462	3718,514	10162,94	5343,737	2715,069	2846,757
190010,7	4094,785	7347,716	5429,269	13547,83	7455,147	3537,943	4252,092
167075,4	4366,154	7441,735	5498,739	14445,68	7747,313	3821,249	4251,459
161465,3	3937,949	6620,822	4892,163	13028,93	6939,937	3458,276	3769,575
109115,4	2428,233	3490,237	2578,956	8033,951	3956,737	2217,682	1910,803
143582,7	3847,491	6172,036	4560,552	12729,65	6623,195	3418,731	3473,051
124368,6	3400,901	5150,962	3806,075	11252,08	5688,604	3065,635	2857,143

с 8 по 14 вариант	8	9	10	11	12	13	14
x _i				V_{i}			
150537,1	3304,019	7059,309	6243,028	7178,972	6243,028	7982,318	5103,085
136570,9	2818,311	5848,209	5222,574	5889,718	5222,574	6548,793	4105,896
151518,1	3615,949	7740,841	6841,309	7877,173	6841,309	8758,649	5606,671
110318,6	2771,366	5394,05	4920,935	5317,599	4920,935	5912,653	3552,116
155144,1	3177,29	6850,21	6039,874	6987,361	6039,874	7769,265	4996,916
129398,2	2716,574	5546,597	4980,022	5555,91	4980,022	6177,631	3831,622
118036	2756,336	5474,735	4960,885	5433,758	4960,885	6041,81	3679,129
153232,6	3449,771	7410,068	6541,609	7549,064	6541,609	8393,824	5385,241
174761,2	3451,21	7711,368	6718,687	7959,975	6718,687	8850,717	5829,65
158744,2	3582,684	7777,577	6841,826	7951,515	6841,826	8841,31	5712,566
151702,4	3527,398	7554,031	6675,395	7688,006	6675,395	8548,315	5473,36
143872,3	3280,574	6914,638	6142,84	7000,079	6142,84	7783,406	4931,058
166110,4	3701,97	8146,64	7134,053	8366,695	7134,053	9302,951	6065,619
164493	3316,259	7276,443	6378,255	7465,685	6378,255	8301,114	5401,83
114337,7	2886,033	5677,861	5161,349	5617,453	5161,349	6246,061	3779,368
136811,3	2916,069	6054,258	5405,629	6098,301	5405,629	6780,717	4252,801
135744,2	3002,036	6218,116	5556,281	6258,449	5556,281	6958,786	4357,654
120100,7	2476,208	4943,987	4472,19	4915,499	4472,19	5465,557	3339,786
169115,2	3322,795	7351,651	6426,346	7563,78	6426,346	8410,187	5503,224
156830,3	3371,934	7293,477	6423,757	7447,549	6423,757	8280,949	5337,54
173678,5	3184,386	7101,926	6191,545	7326,331	6191,545	8146,166	5358,923
98372,26	2244,641	4221,193	3895,341	4113,943	3895,341	4574,304	2685,806
174902,9	3331,455	7445,597	6486,603	7686,258	6486,603	8546,371	5630,101
173312	3893,657	8678,262	7567,412	8950,584	7567,412	9952,178	6544,235
156933	3810,621	8243,974	7260,435	8418,676	7260,435	9360,748	6034,322

с 8 по 14 вариант	8	9	10	11	12	13	14
x _i				V _i			
140565,3	3120,158	6530,802	5815,355	6596,144	5815,355	7334,27	4624,956
176069,6	3922,247	8783,483	7647,083	9073,418	7647,083	10088,76	6655,024
161690,9	3917,297	8551,035	7508,404	8758,364	7508,404	9738,449	6315,416
172933,5	3213,859	7158,42	6243,48	7381,436	6243,48	8207,438	5394,591
155816,2	3329,593	7187,89	6334,869	7334,971	6334,869	8155,774	5250,042
142207,7	3030,208	6364,67	5660,842	6435,821	5660,842	7156,006	4523,04
145502,6	3472,931	7344,866	6517,699	7444,006	6517,699	8277,009	5255,604
98055,92	1826,4	3431,347	3167,486	3343,088	3167,486	3717,188	2181,144
151223,7	3123,718	6683,197	5907,718	6799,578	5907,718	7560,469	4837,798
136893,9	2622,586	5445,921	4862,173	5485,87	4862,173	6099,753	3826,169
168809,8	3329,205	7361,84	6436,416	7572,894	6436,416	8420,321	5507,864
148475	3188,916	6785,246	6008,939	6890,754	6008,939	7661,847	4884,715
132941,9	3309,021	6811,216	6098,962	6841,11	6098,962	7606,649	4743,521
166977,6	3473,426	7655,65	6700,6	7866,538	6700,6	8746,824	5708,961
154991,7	4059,131	8748,873	7714,695	8923,16	7714,695	9921,686	6380,022
159979,8	2843,224	6186,673	5438,112	6329,938	5438,112	7038,275	4554,642
169942,9	3337,358	7394,696	6460,817	7611,782	6460,817	8463,561	5543,56
174351,5	3567,566	7965,743	6941,945	8220,62	6941,945	9140,53	6017,714
151347,1	2715,069	5810,314	5135,7	5911,977	5135,7	6573,543	4206,97
190010,7	3537,943	8106,077	7003,746	8437,703	7003,746	9381,905	6283,79
167075,4	3821,249	8423,752	7372,45	8656,306	7372,45	9624,97	6282,853
161465,3	3458,276	7545,882	6626,734	7727,761	6626,734	8592,518	5570,72
109115,4	2217,682	4302,21	3929,167	4236,585	3929,167	4710,671	2823,807
143582,7	3418,731	7201,484	6398,958	7289	6398,958	8104,658	5132,514
124368,6	3065,635	6185,292	5575,535	6171,163	5575,535	6861,732	4222,318

с 15 по 21 вариант	15	16	17	18	19	20	21
x _i				V _i			
144354,6	3932,599	6322,109	4671,442	13011,23	6776,966	3492,481	3559,406
149545,6	3886,132	6336,321	4681,943	12857,49	6744,377	3439,044	3580,033
170410,3	3352,526	5759,444	4255,685	11092,03	5972,289	2928,33	3296,876
153039,5	3295,72	5423,528	4007,475	10904,08	5746,198	2909,829	3071,388
159254,2	3900,406	6521,631	4818,87	12904,72	6854,843	3430,032	3707,984
149145,2	3777,833	6153,137	4546,588	12499,18	6552,91	3344,101	3475,602
160664,6	4602,151	7722,165	5705,951	15226,48	8102,415	4043,583	4394,441
116919,8	3422,525	5057,22	3736,808	11323,62	5654,494	3104,24	2787,874
144054,5	3700,39	5943,856	4391,948	12242,95	6374,151	3286,944	3345,75
168181,5	3845,074	6570,918	4855,288	12721,65	6831,718	3362,981	3756,44
139014,7	3869,305	6127,275	4527,478	12801,82	6617,816	3449,247	3436,735
144764	3561,304	5731,7	4235,185	11782,78	6140,599	3161,844	3227,915
158904,1	3595,007	6005,703	4437,648	11894,29	6315,333	3162,159	3413,893
136085,9	3385,927	5316,342	3928,275	11202,54	5766,466	3024,78	2975,547
126789,5	3124,223	4768,541	3523,502	10336,67	5246	2810,808	2650,125
142027,4	3055,907	4880,89	3606,517	10110,65	5249,091	2718,319	2743,524
148287,3	3590,945	5835,264	4311,709	11880,85	6221,558	3180,504	3294,15
151869,5	3719,061	6101,429	4508,38	12304,73	6474,361	3286,122	3452,638
170769,1	3972,955	6831,049	5047,501	13144,75	7080,518	3469,526	3911,117
112560,6	2699,635	3928,889	2903,078	8931,9	4426,413	2457,899	2157,649
158135,5	4338,21	7233,232	5344,675	14353,22	7613,528	3817,729	4109,678
147938,8	3711,616	6025,678	4452,408	12280,1	6427,602	3288,155	3400,844
180925,9	3467,633	6101,596	4508,504	11472,86	6251,767	3010,79	3513,711
171602,9	3238,695	5579,432	4122,673	10715,41	5777,561	2826,93	3196,06
144688,6	3481,719	5602,445	4139,678	11519,47	6002,748	3091,347	3154,958

с 15 по 21 вариант	15	16	17	18	19	20	21
x _i				V_{i}			
125323,1	3476,83	5282,092	3902,967	11503,29	5824,507	3131,683	2932,119
178958,8	3883,503	6803,54	5027,174	12848,8	6986,245	3375,56	3913,657
113467,8	2908,816	4246,932	3138,082	9623,988	4777,056	2646,224	2334,184
128714,3	2995,496	4599,7	3398,744	9910,772	5045,028	2690,937	2560,146
145694,9	3762,642	6071,287	4486,108	12448,92	6496,079	3338,458	3421,352
130069,7	3945,544	6083,974	4495,483	13054,06	6659,04	3540,68	3389,827
147528,6	3937,871	6385,899	4718,577	13028,68	6815,634	3489,566	3603,149
126329,9	3174,962	4838,95	3575,527	10504,55	5327,327	2857,495	2688,279
145643	3586,361	5786,019	4275,322	11865,68	6191,294	3182,164	3260,479
138883,1	3569,578	5650,498	4175,184	11810,16	6104,024	3182,361	3169,014
128861,8	2984,161	4584,395	3387,435	9873,269	5027,089	2680,447	2551,919
193164,5	4359,968	7875,25	5819,067	14425,21	7964,13	3760,868	4564,883
144182,9	3298,282	5299,847	3916,087	10912,56	5682,508	2929,503	2983,508
163252,1	5028,73	8492,038	6274,814	16637,85	8881,772	4411,334	4840,278
155851,7	3293,124	5458,87	4033,59	10895,49	5762,619	2902,248	3097,037
170377,9	4275,861	7345,122	5427,352	14146,93	7616,856	3734,906	4204,485
143300,6	3499,246	5608,978	4144,505	11577,46	6021,346	3109,905	3155,593
178801,3	4350,788	7619,496	5630,088	14394,84	7825,491	3782,06	4382,64
120644,4	3071,097	4595,222	3395,435	10160,9	5105,808	2776,773	2541,147
106478,5	2658,765	3784,381	2796,3	8796,678	4311,237	2434,172	2066,777
130654,1	3383,745	5227,053	3862,299	11195,32	5715,994	3035,169	2913,679
140898,9	3245,975	5167,95	3818,628	10739,5	5566,68	2889,695	2902,563
137216,7	3046,9	4799,888	3546,664	10080,85	5197,676	2719,662	2688,712
152373,6	3325,377	5462,795	4036,49	11002,2	5792,852	2937,294	3092,277
174615,3	3845,7	6671,421	4929,55	12723,72	6884,325	3350,924	3828,24

с 22 по 28 вариант	22	23	24	25	26	27	28
x _i				V_{i}			
144354,6	3492,481	7368,681	6544,014	7462,229	6544,014	8297,273	5260,131
149545,6	3439,044	7333,247	6489,578	7452,628	6489,578	8286,597	5290,613
170410,3	2928,33	6493,746	5672,091	6686,22	5672,091	7434,425	4872,161
153039,5	2909,829	6247,914	5516,355	6364,308	5516,355	7076,491	4538,932
159254,2	3430,032	7453,358	6554,512	7622,489	6554,512	8475,466	5479,7
149145,2	3344,101	7125,062	6307,034	7239,113	6307,034	8049,189	5136,284
160664,6	4043,583	8809,859	7740,596	9017,72	7740,596	10026,83	6494,154
116919,8	3104,24	6148,203	5576,438	6096,39	5576,438	6778,592	4119,952
144054,5	3286,944	6930,695	6156,326	7017,223	6156,326	7802,468	4944,387
168181,5	3362,981	7428,213	6496,868	7638,322	6496,868	8493,07	5551,309
139014,7	3449,247	7195,635	6414,466	7259,571	6414,466	8071,936	5078,845
144764	3161,844	6676,751	5927,842	6763,431	5927,842	7520,276	4770,248
158904,1	3162,159	6866,742	6039,969	7021,017	6039,969	7806,687	5045,089
136085,9	3024,78	6269,952	5601,191	6312,208	5601,191	7018,561	4397,296
126789,5	2810,808	5704,043	5131,826	5701,995	5131,826	6340,064	3916,385
142027,4	2718,319	5707,403	5076,903	5770,475	5076,903	6416,206	4054,411
148287,3	3180,504	6764,779	5991,571	6869,099	5991,571	7637,769	4868,132
151869,5	3286,122	7039,655	6220,164	7165,296	6220,164	7967,112	5102,348
170769,1	3469,526	7698,737	6723,2	7928,594	6723,2	8815,824	5779,893
112560,6	2457,899	4812,895	4381,928	4754,236	4381,928	5286,248	3188,598
158135,5	3817,729	8278,286	7285,091	8460,171	7285,091	9406,886	6073,329
147938,8	3288,155	6988,813	6191,455	7094,918	6191,455	7888,859	5025,805
180925,9	3010,79	6797,626	5902,074	7041,141	5902,074	7829,064	5192,602
171602,9	2826,93	6282,015	5483,325	6472,726	5483,325	7197,041	4723,174
144688,6	3091,347	6526,865	5795,07	6611,254	5795,07	7351,07	4662,432

с 22 по 28 вариант	22	23	24	25	26	27	28
x _i				V_{i}			
125323,1	3131,683	6333,061	5704,375	6323,427	5704,375	7031,036	4333,118
178958,8	3375,56	7596,233	6602,683	7859,76	6602,683	8739,288	5783,646
113467,8	2646,224	5194,154	4725,253	5134,969	4725,253	5709,585	3449,484
128714,3	2690,937	5485,523	4927,798	5491,823	4927,798	6106,372	3783,412
145694,9	3338,458	7063,269	6266,987	7159,554	6266,987	7960,727	5056,112
130069,7	3540,68	7240,458	6497,495	7256,37	6497,495	8068,377	5009,524
147528,6	3489,566	7410,726	6567,054	7521,148	6567,054	8362,784	5324,774
126329,9	2857,495	5792,47	5213,275	5788,289	5213,275	6436,013	3972,768
145643	3182,164	6731,873	5973,164	6823,396	5973,164	7586,953	4818,372
138883,1	3182,361	6636,983	5917,023	6695,321	5917,023	7444,546	4683,204
128861,8	2680,447	5466,018	4909,713	5472,922	4909,713	6085,356	3771,255
193164,5	3760,868	8659,5	7469,604	9028,618	7469,604	10038,94	6746,035
144182,9	2929,503	6178,663	5487,83	6256,359	5487,83	6956,462	4409,062
163252,1	4411,334	9657,263	8471,605	9900,924	8471,605	11008,86	7153,017
155851,7	2902,248	6265,769	5522,055	6394,128	5522,055	7109,648	4576,837
170377,9	3734,906	8281,905	7234,131	8527,217	7234,131	9481,436	6213,436
143300,6	3109,905	6547,086	5818,63	6625,346	5818,63	7366,74	4663,371
178801,3	3782,06	8508,756	7396,504	8803,166	7396,504	9788,263	6476,715
120644,4	2776,773	5551,611	5019,561	5522,115	5019,561	6140,054	3755,335
106478,5	2434,172	4687,663	4291,683	4604,88	4291,683	5120,178	3054,306
130654,1	3035,169	6215,073	5574,828	6231,524	5574,828	6928,849	4305,868
140898,9	2889,695	6052,722	5388,371	6114,73	5388,371	6798,984	4289,44
137216,7	2719,662	5651,499	5044,527	5694,297	5044,527	6331,504	3973,409
152373,6	2937,294	6298,641	5563,568	6413,183	5563,568	7130,835	4569,802
174615,3	3350,924	7485,414	6522,365	7726,091	6522,365	8590,661	5657,415

Алгоритм проведения опыта

1. Подберите модель зависимости, в которой эластичность потребления рассматриваемого товара по отношению к располагаемому доходу не зависит от размера располагаемого дохода. Постоянство эластичности предполагает оценивание модели, линейной в логарифмах уровней.

2. Постройте график подбора значений регрессии. Рассчитайте среднюю ошибку аппроксимации. Сделайте выводы.

3. Проверьте значимость подобранной модели на уровне $\alpha = 0,05$, используя коэффициент детерминации и критерий Фишера.

4. С помощью графического метода оцените соответствие используемых для построения модели статистических данных стандартным предположениям регрессионного анализа.

Исследуется зависимость расходов на приобретение некоторого товара (группы товаров) семейными хозяйствами от располагаемого дохода.

В течение года *i*-я семья, имеющая располагаемый доход x_i , затратила на приобретение этого товара V_i руб. (табл. 1).

Таблица 1

Номер наблюдения, <i>і</i>	Располагаемый доход семейного хозяйства, x (руб.)	Расходы семейного хозяйства на приобретение некоторого товара, V (руб.)
1	150537,1	3736,022
2	136570,9	3155,929
3	151518,1	4091,394
4	110318,6	3037,814
5	155144,1	3603,569
6	129398,2	3025,638
7	118036	3041,839
8	153232,6	3907,761
9	174761,2	3961,124
10	158744,2	4072,685
11	151702,4	3991,685
12	143872,3	3692,751

Окончание табл. 1

Номер наблюдения, <i>і</i>	Располагаемый доход семейного хозяйства, x (руб.)	Расходы семейного хозяйства на приобретение некоторого товара, V (руб.)
13	166110,4	4227,418
14	164493	3783,255
15	114337,7	3174,847
16	136811,3	3265,973
17	135744,2	3359,623
18	120100,7	2737,437
19	169115,2	3801,232
20	156830,3	3828,464

Алгоритм обработки экспериментальных данных

1. Ввод данных и построение поля корреляции.

Открыв MS Excel, введем экспериментальные данные в ячейки A1 – B21, скопировав их значения из табл. 1, по заданным значения ям построим поле корреляции. Для этого в меню «Вставка» выберем построение точечной диаграммы (рис. 1).

⊎ъ∙	¢••													Кн	wrat - Excel					
Файл Г.	nassan Beras	na Pas																		
Сводная Рекл таблица свод	Сливнуруемые Таблицы Таблицы Таблицы	Sittenaja Pier	сунки Изобр из Ин	ажения Ф пернета Иллюст	🤣 🔭 wypы Smarti рация	Art Criminek	着 Maras 🎝 Mon I	ин чадстройки Надг	. Карты Bing тройки	Социальны граф	ій Реко ди	иранны награнны награнны награнны на награнны на награнны на награнны на награнны на награнны на на на на на н Награнны на награнны на	ніі - 100 - Днагр	La ·	№ Своди № диаграм	ная Зі има кар)- Fpa	Спаркла	ма Вынгр пронгр йны	₹ ыш/ рыш
Диаграм	* : ×	V 54												ľ.,	 Isot 	Nd	3.2			
- A	8	c	D	F	F	6	н	1		ĸ	1.1	1.1	м	1	Teverman	IX X	1.2258	R	s	
1 X	V.					-								K.	Данный тип	диаграмм	ы		-	_
2 15053	7 3736.02														 используето для сравня 	ж ния деух и	Gonee			
3 13657	1 3155,93													Пуз	наборов зна значений	чений или	nap			
4 15151	8 4091,39													1.	 для отобра 	DOCTION AND ADDRESS OF	имосвязи			
5 11031	9 3037,81														mexty pita	an search	10.			
6 15514	4 3603,57													腟	 когда данн 	зя в случая ые предста	с иляют			
7 12939	8 3025,64														собой разна	не измерен	MA.			
8 11803	6 3041,84																			
9 15323	3 3907,76																			
10 17476	1 3961,12									0									0	
11 15874	4 4072,69														Vi					
12 15170	2 3991,69									4	500									
13 14387	2 3692,75									4	000						. N	•		
14 10011	0 4227,42									3	500									
15 10449	3 3/83,20									- 3	000				•					
16 11433	8 31/4,85									°.	000								9	
17 13081	4 2260.62										500									
18 13374	1 2727.44									1	000									
19 12010	5 3801 23										500									
21 15683	0 3828.46										•									
22										0			50000		-0		50000	20000	0	
23																				
24																				
25																				
27																				
28																				
30																				
31																				
32																				
33		0																		
	Лист1	۲																1		
101060					-		_													
Пуск) 🚞	•	<u>я</u> (Y		w] ×	1													

-18-

По виду облака рассеивания и исходя из экономического смысла экспериментальных данных, предположим, что наша модель связи переменных имеет вид

$$V(x) = \alpha \cdot x^{\beta},$$

где при оценивании коэффициентов такой модели метод наименьших квадратов применяют к логарифмам уровней. То есть, линеаризуя модель, получим

$$\ln V = \ln \alpha + \beta \cdot \ln x.$$

Введем обозначения $\ln V = V'$, $\ln \alpha = a$, $\beta = b$, $\ln x = x'$, тогда получим линейную модель регрессии

$$V' = a + b \cdot x'.$$

Рассчитаем логарифмы уровней и оценки коэффициентов для линейного уравнения парной регрессии, используя надстройку «Анализ данных».

Для нахождения логарифмов переменных V и x в окне вкладки «Формулы» выберем «Другие функции» и в ее окне — группу «Математические», затем выберем необходимую функцию «LN» (рис. 2).

E																	
•	r	лавная Вс	тавка Раз	метка стран	анцы 🛛	Рормулы	Данные	Рецензиј	ование	Вид	ABBYY FineRe	ader 12					
) Вст фун	fx авить А кцию	росумма Пос	педние Финан	S icosыe Лог - Бин	ические Т- блиотека ф	кстовые Др т вр	ата и Ссыл емя * масси	ког и – Матем вы т	атические	Другие функции -	Диспетчер имен	 Присе Испол Созда Определен 	юить имя — тьзовать в фо ть из выделен иные имена	рмуле – ного	В∘ Влияно «Вависи В∕убрать	цие ячейки иые ячейки стрелки т	 Показа Провер Вычисл Зави
A2		* : X	🗸 💃	=LN(A	2)												
	А	В	С	D	E	F	G	н	1	J.	к	L	м	N	0	P	Q
1	X_{I}	V_{i}	ln(x _i)	$\ln(V_i)$													
2	15053	7 3736,0	2 =LN(A2)														
3	13657	1 3155,9	3														
4	15151	8 4091,3	9														
5	11031	9 3037,8	1														
6	15514	4 3603,5	7					Аргунент	гы фүнкци							2	×
7	12939	8 3025,6	4					UN					-	10122.1			1
8	11803	5 3041,8	4							INCHO 142				.90337,1			
9	15323	3 3907,7	6					Возеращ	ает натурал	ьный логар	ифм числа.		- 1	1,9219648	•		
10	17476	1 3961,1	2								нисло полож	ительное,	действительн	ре число, ,	для которого	вычисляетс	
11	15874	4 4072,6	9								натура	льный лог	арифм.				
12	15170	2 3991,6	9					Значения	11,92196	484							
13	14387	2 3692,7	5					Справка	τιο ποπ φγε	RELEASE				Г	OK	Отмена	1
14	16611	0 4227,4	2											_	_	-	-
15	16449	3 3783,2	6														
16	11433	8 3174,8	5														
17	13681	1 3265,9	7														
18	13574	4 3359,6	2														
19	12010	1 2737,4	4														
20	16911	5 3801,2	3														
21	15683	3828,4	6														
22																	

Рис. 2. Расчет логарифмов уровней

После нажатия копки «Ок» скопируем формулу в ячейки C3 – D21.

Далее для нахождения оценок параметров *a* и *b* линейной модели в главном меню выберем вкладку «Данные», а в ней – подменю «Анализ данных». В появившемся окне выбираем функцию «Регрессия» (рис. 3).

the st																												
0.0																												× 1
in Fran	ная Вста	ика Разма	епа страниц	ы фо	раулы	Данные	Peijeroz	pressure	Fra /	ABBYY Fine	Reader 12	V the sea	ютите сде	uni)						_			_			- Per	Q 064	wit goory
b Access	12		1		Показать за	просы		Падкл	10-10168	\$1 B		1 20		- Dia	Lly Mrs	C6694908 38	naneesse [н ^о Консоли	Vertex	2	2						Asarus Ja-	846K
b Vivreposeta	Из другия	Существу	roupe Ce	WH C	Из табликды Пак автори		Ofecer	The Case of Ca	78.8	AL Copy	ировка Фи	warp Walter		Текст	10 C Dee	nens gybras	аты :		A	ans '-m	Лист	Группироват	Pasrpynne	ровать Пр	OMERITOR	4		
Demo	PICTO-INSTITUTE	· · · · · · · · · · · · · · · · · · ·	-cristi 340	Company Log -	h needes	10.000	sce -	Descenario			Contractor	y se		CIENDA	am Co Hyo	Dafora r	ABURAR			Doctor	porvesa			*****	WHER		daman re	
		V Je																										
A	8	с	D	E	F	6	н	1	J	K	L	м	N	0	P	Q	R	s	т	U	v	W	×	Y	Z	AA	AB	AC
X_{I}	V_{i}	ln(x _i)	h(V)																									
150537	3736,02	11,922	8,2258																									
136571	3155,93	11,825	8,057																									
151518	4091,39	11,928	8,3100																									
110319	3037,81	11,011	8,0189																									
120308	3005,57	11,932	8 0140					Anane	Данных					11														
118036	2041 84	11.670	8.0202					Rect	рунскты ан	anvoa				OK														
153233	3907.76	11.94	8 2707					Anto	ws Oyper	an P-rect ga	a georepose		-	Otsesa														
174761	3961.12	12.071	8.2843					CKD	wanties che	(pree				Croseka														
158744	4072,69	11,975	8,3121					Pare	иперсенти	4.10	~		_ 11															
151702	3991.69	11.93	8,292					Det	орка	(
143872	3692,75	11,877	8,2141					Days	sutopores	uù t-recr c o	Annax Openny	(provepowe																
166110	4227,42	12,02	8,3493											T														
164493	3783,26	12,011	8,2383																									
114338	3174,85	11,647	8,063																									
136811	3265,97	11,826	8,0913																									
135744	3359,62	11,819	8,1196																									
120101	2737,44	11,696	7,9148																									
169115	3801,23	12,038	8,2431																									
156830	3828,46	11,963	8,2502																									

Рис. 3. Диалоговое окно «Анализ данных»

После нажатия кнопки «Ок» в появившемся окне функции «Регрессия» заполняем необходимые поля:

- для входного интервала *Y* кнопкой мыши выделяем ячейки D2 – D21;
- для входного интервала X кнопкой мыши выделяем ячейки C2 – C21;
- ставим галочку в ячейке «Уровень надежности 95 %»;
- ставим галочку в ячейке «Выходной интервал», указывая в соответствующем поле напротив адрес ячейки, с которой будут размещены выходные данные выбранной функции (рис. 4).

После нажатия кнопки «**Ок**» на рабочем листе появятся результаты выбранной операции (рис. 5).

E	. • -∂	· •												Книг	al - Excel	
0	йа Глав	ная Встая	ka Pasn	етка страни	ицы Фор	мулы	Данные	Рецензи	ование	Вид	ABBYY FineRe	ader 12				
	Из Access Из Интернета Из текста Получ	Из других источников сние внешних	Существ подклю данных	ующие С	Создать апрос - Со П Скачать 8	оказать за з таблиць оследние k преобра	просы и источники зовать	Обновит все т	© Поді Свої Свої Измі Подключе	слючения і́ства енить связи ния	А↓ ЯА Я↓ Сорти	А Я ровка Фи Сортиро	Торона Торон	истить вторить полнительно р	Текст г столбц	Ш Мл ⊪ Уда м В Пре
B3	9 *	1 ×	$\sqrt{-f_{\rm K}}$													
A	A	в	с	D	E	F	G	н	1	1	к	L	м	N	0	Ρ
10	174761	3961,12	12,071	8,2843												
11	158744	4072,69	11,975	8,3121												
12	151702	3991,69	11,93	8,292					Per	ессия					?×	
13	143872	3692,75	11,877	8,2141					Bx	одные данны	ie .				or 1	
14	166110	4227,42	12,02	8,3493					2	ходной инте	рвал Ү:	SDS2:SD	521			
15	164493	3783.26	12.011	8,2383					8	ходной инте	рвал Х:	SCS2:SC	521		мена	
16	114338	3174,85	11,647	8,063					ſ	Метон		Конст	анта - ноль	<u>C</u> n	равка	
17	136811	3265,97	11.826	8.0913					F	Уровень н	адежности:	95	%			
18	135744	3359.62	11.819	8,1196					-0.							
19	120101	2737.44	11.696	7.9148					6	Выходной	интервал:	\$8\$39		1		
20	160115	3801.23	12 038	8 2431					- 0	Новый раб	іочий лист:					
21	156830	3828.46	11 063	8 2502						Новая раб	очая книга					
22	150650	5626,40	11,905	0,2502	- r					статки		-				
23							•			Остатки Станаарти	TOBAHHNE OCT	атки 🗆 Гр	афик остатк афик подбо	os ,		
24				Vi						-Tan Mala an			adaux Tottas			
25	4500								— i	График но	рмальной ве	роятности				
26	4000					1.1										
27	3500						• *		_							
29	3000															
30	2500				•											
31	2000															
32	1500															
33	1000															
34	500															
36	0															
37	0		50000	10000	00	150000	200	000								
38																
39																
40																

Рис. 4. Диалоговое окно функции «Регрессия»

38										
39	вывод ито	ГОВ								
40										
41	Регрессионная с	mamucm	ика							
42	Множестве	0,873242								
43	R-квадрат	0,762551								
44	Нормирова	0,749359								
45	Стандартна	0,062999								
46	Наблюдени	20								
47										
48	Дисперсион	ный аналі	из							
49		df	SS	MS	F	ачимость	F			
50	Регрессия	1	0,229423	0,229423	57,8057	5,02E-07				
51	Остаток	18	0,07144	0,003969						
52	Итого	19	0,300862							
53										
54	Коэ	ффициен	артная о	татисти	-значени	ижние 95	ерхние 95	жние 95,0	рхние 95,0	5%
55	Ү-пересече	-1,41547	1,261392	-1,12215	0,276544	-4,06556	1,234612	-4,06556	1,234612	
56	Переменна	0,807559	0,106216	7,603006	5,02E-07	0,584408	1,03071	0,584408	1,03071	
57										
58										

Рис. 5. Выходные данные функции «Регрессия»

Пояснения к таблице «Регрессионная статистика» на рис. 5:

— множественный R — множественный коэффициент корреляции между x' и V', для парной линейной регрессии значение выборочного коэффициента корреляции r_{∞} ;

- R-квадрат – коэффициент детерминации R^2 ;

– нормированный *R*-квадрат – скорректированный коэффициент детерминации

$$R_{\rm ckop}^2 = R^2 - \frac{R^2(m-1)}{n-m},$$

где *m* — число коэффициентов (параметров) в модели регрессии; *n* — число экспериментальных данных;

 стандартная ошибка – оценка S среднеквадратического отклонения σ ошибок регрессии ε.;

- наблюдений - объем выборки *n*.

Пояснения к таблице «Дисперсионный анализ» на рис. 5:

- *df* - число степеней свободы;

- *SS* - сумма квадратов;

- *MS* - средние квадраты;

- *F* - вычисленное значение критерия Фишера (*F*-статистики);

— значимость F — уровень значимости, при котором вычисленное значение критерия Фишера является критической точкой распределения Фишера. Нулевая гипотеза о незначимости уравнения регрессии (H_0 : b = 0) отклоняется, если это значение меньше заданного уровня значимости α ;

– в строке «Регрессия» приведены число степеней свободы, равное *m* – 1; сумма квадратов отклонений

$$SS_R = Q_R = \sum_{i=1}^n (\hat{V}_i - \bar{V})^2,$$

объясняемых регрессией; средний квадрат

$$MS_R = \frac{Q_R}{m-1};$$

значение F и значимость F;

— в строке «Остаток» приведены число степеней свободы, равное *n* – *m*; остаточная сумма квадратов отклонений

остаточный средний квадрат

$$MS_{\text{oct}} = \frac{Q_e}{n-m};$$

 в строке «Итого» приведены число степеней свободы *n* – 1 и общая сумма квадратов отклонений

$$SS_{\text{общ}} = Q = \sum_{i=1}^{n} (\hat{V}_i - \bar{V})^2.$$

Третья таблица на рис. 5 содержит МНК-оценки коэффициентов уравнения регрессии, их стандартные ошибки, значения *t*-статистик для проверки нулевых гипотез (H_0 : a = 0 и H_0 : b = 0), *P*-значения и границы доверительных интервалов для коэффициентов уравнения регрессии для заданных надежностей.

В строке с именем «У-пересечение» приводятся:

- оценка \hat{a} коэффициента a;

— ее стандартная ошибка S_a ;

– вычисленное значение *t*-статистики, равное \hat{a}/S_a ;

— *P*-значение — вероятность того, что случайная величина, имеющая распределение Стьюдента (*t*-распределение) с числом степеней свободы n - 2, примет значение по абсолютной величине больше, чем модуль вычисленного значения *t*-статистики. То есть *P*-значение — это уровень значимости, при котором вычисленное значение *t*-статистики является критической точкой. Следовательно, нулевая гипотеза H_0 : a = 0 отклоняется, если *P*-значение меньше заданного уровня значимости, и принимается в противном случае;

— нижняя и верхняя границы 95%-ного доверительного интервала для *а*.

В строке с именем «*X*» приводятся аналогичные данные для коэффициента *b* уравнения регрессии.

Для нашего примера значение $\hat{a} = -1,415$, $\hat{b} = 0,809$. Таким образом, получили уравнение линейной регрессии для логарифмов уровней вида

$$\widehat{V}' = -1,415 + 0,809 \cdot x'.$$

Перейдем к исходной форме модели $V = \alpha \cdot x^{\beta}$. Для этого рассчитаем коэффициент $\hat{a} = e^{-1,415} = 0,243$, введя в ячейку C57 формулу «=EXP(C55)». Таким образом, подобранная модель с постоянной эластичностью имеет вид: $\hat{V} = 0,243 \cdot x^{0,808}$.

2. Построим график подбора значений регрессии. Для этого в столбце Е книги Excel вычислим значения \hat{V}_i , подставляя в найденную модель наблюдаемые значения x_i из таблицы исходных данных (рис. 6).

В ячейку E2 вводим формулу вычисления значения \hat{V}_1 : «=\$C\$57*A2^\$C\$56». Затем копируем формулу в ячейки E3—E21.

	Буфер об	мена	F ₂₄	Шриф	т	r _a
E2	-	: ×	$\sqrt{-f_X}$	=\$C\$57	*A2^\$C\$56	
	A	В	С	D	E	F
1	Xi	Vi	ln(x _i)	$\ln(V_i)$	\widehat{V}_i	
2	150537	3736,02	11,922	8,2258	3685,7	
3	136571	3155,93	11,825	8,057	3407	
4	151518	4091,39	11,928	8,3166	3705,1	
5	110319	3037,81	11,611	8,0189	2867,5	
6	155144	3603,57	11,952	8,1897	3776,5	
7	129398	3025,64	11,771	8,0149	3261,8	
8	118036	3041,84	11,679	8,0202	3028,4	
9	153233	3907,76	11,94	8,2707	3738,9	
10	174761	3961,12	12,071	8,2843	4157,7	
11	158744	4072,69	11,975	8,3121	3847,2	
12	151702	3991,69	11,93	8,292	3708,7	
13	143872	3692,75	11,877	8,2141	3553,4	
14	166110	4227,42	12,02	8,3493	3990,7	
15	164493	3783,26	12,011	8,2383	3959,3	
16	114338	3174,85	11,647	8,063	2951,6	
17	136811	3265,97	11,826	8,0913	3411,9	
18	135744	3359,62	11,819	8,1196	3390,3	
19	120101	2737,44	11,696	7,9148	3071,2	
20	169115	3801,23	12,038	8,2431	4048,9	
21	156830	3828,46	11,963	8,2502	3809,7	

	-				
Dura	6	H mun (an	DIMINATATING	<i>I</i> Z.	
гис.	υ.	пример	вычисления	Vi	
				ı	

На одном графике изобразим поле корреляции и подобранную по модели кривую. Для этого с помощью мастера диаграмм построим точечную диаграмму с гладкими кривыми и маркерами, выделив предварительно столбцы значений x_i и \hat{V}_i и скопировав полученную линию на диаграмму поля корреляции (рис. 7).

По графику видно, что подобранная модель хорошо аппроксимирует исходные данные.

1	A	В	C	D	E	F	G	н	1	J	K	L	M	N	0
1	X _i	V _t	ln(x _i)	$\ln(V_i)$	\hat{V}_i										
2	150537	3736,02	11,922	8,2258	3685,7					Названи	40 ЛИЗГ О	DAAAALI			
3	136571	3155,93	11,825	8,057	3407		45	00		nasbarn	ле диагр	ammor			
4	151518	4091,39	11,928	8,3166	3705,1		40	00					-		
5	110319	3037,81	11,611	8,0189	2867,5		35	00				~			
6	155144	3603,57	11,952	8,1897	3776,5		30	00				-			
7	129398	3025,64	11,771	8,0149	3261,8		25	00			2.4	_			
8	118036	3041,84	11,679	8,0202	3028,4		20	00				_			
9	153233	3907,76	11,94	8,2707	3738,9		15	00							
10	174761	3961,12	12,071	8,2843	4157,7		10	00				_			
11	158744	4072,69	11,975	8,3121	3847,2		5	00							
12	151702	3991,69	11,93	8,292	3708,7			0	5000	10	100000	150	1000	200000	
13	143872	3692,75	11,877	8,2141	3553,4				5000		100000			200000	
14	166110	4227,42	12,02	8,3493	3990,7										
15	164493	3783,26	12,011	8,2383	3959,3					Названи	ие диагра	аммы			
16	114338	3174,85	11,647	8,063	2951,6		45	00							
17	136811	3265,97	11,826	8,0913	3411,9		40	00				-	1 miles		
18	135744	3359,62	11,819	8,1196	3390,3		35	00				- P			
19	120101	2737,44	11,696	7,9148	3071,2		30	00			201				
20	169115	3801,23	12,038	8,2431	4048,9		25	00							
21	156830	3828,46	11,963	8,2502	3809,7		20	00							
22							15	00							
23							10	00							
24							5	00							
25								0	5000	0	100000	100		200000	
26								0	5000	U	100000	150		200000	
27															

Рис. 7. Построение кривой по модели

Найдем среднюю ошибку аппроксимации, заполнив столбцы F, G и H таблицы Excel (рис. 8).

H2	Ŧ	: ×	$\sqrt{-f_x}$	=ABS(F	2/B2)*100			
	A	В	с	D	E	F	G	Н
1	x_i	Vi	ln(x _i)	$\ln(V_i)$	\hat{V}_i	$V_i - \hat{V}_i$	$(V_i - \widehat{V}_i)^2$	Ai
2	150537	3736,02	11,922	8,2258	3685,7	50,307	2530,79	1,3465
3	136571	3155,93	11,825	8,057	3407	-251,1	63043,2	7,956
4	151518	4091,39	11,928	8,3166	3705,1	386,29	149224	9,4416
5	110319	3037,81	11,611	8,0189	2867,5	170,3	29002,3	5,606
6	155144	3603,57	11,952	8,1897	3776,5	-173	29919	4,8
7	129398	3025,64	11,771	8,0149	3261,8	-236,1	55756,2	7,8042
8	118036	3041,84	11,679	8,0202	3028,4	13,392	179,337	0,4402
9	153233	3907,76	11,94	8,2707	3738,9	168,84	28507,4	4,3207
10	174761	3961,12	12,071	8,2843	4157,7	-196,6	38640,8	4,9625
11	158744	4072,69	11,975	8,3121	3847,2	225,53	50864,6	5,5377
12	151702	3991,69	11,93	8,292	3708,7	282,95	80058,8	7,0884
13	143872	3692,75	11,877	8,2141	3553,4	139,38	19428	3,7745
14	166110	4227,42	12,02	8,3493	3990,7	236,73	56042	5,5999
15	164493	3783,26	12,011	8,2383	3959,3	-176	30983,9	4,6527
16	114338	3174,85	11,647	8,063	2951,6	223,26	49845,3	7,0322
17	136811	3265,97	11,826	8,0913	3411,9	-145,9	21281,7	4,4667
18	135744	3359,62	11,819	8,1196	3390,3	-30,73	944,067	0,9146
19	120101	2737,44	11,696	7,9148	3071,2	-333,7	111368	12,191
20	169115	3801,23	12,038	8,2431	4048,9	-247,6	61330,3	6,515
21	156830	3828,46	11,963	8,2502	3809,7	18,812	353,876	0,4914
22						111101		
23							A=	5,2471

Рис. 8. Пример расчета средней ошибки аппроксимации \bar{A}

-25-

В столбце F рассчитаем значения $V_i - \hat{V}_i$, введя в ячейку F2 формулу «=B2-E2» и скопировав ее в ячейки F3–F21; в столбце G – значения $(V_i - \hat{V}_i)^2$, введя в ячейку G2 формулу «=F2^2» и скопировав ее в ячейки G3–G21; в столбце H – значения $\left|\frac{V_i - \hat{V}_i}{V_i}\right| \cdot 100$, введя в ячейку H2 формулу «=ABS(F2/B2)*100» и скопировав ее в ячейки H3–H21. Для нахождения средней ошибки аппроксимации в ячейку H23 задаем формулу «=CP3HAЧ(H2:H21)», используя в меню «Формулы» / подменю «Автосумма» функцию «СРЗНАЧ».

Для нашего примера

$$A_{i} = \left| \frac{V_{i} - \hat{V}_{x_{i}}}{V_{i}} \right| \cdot 100 \%, \quad \overline{A} = \frac{1}{n} \sum A_{i} = 5,25 \%,$$

что свидетельствует о хорошем подборе модели к исходным данным.

3. Проверим значимость подобранной модели на уровне $\alpha = 0,05$, используя коэффициент детерминации и критерий Фишера.

Для этого вычислим коэффициент детерминации степенной модели по формуле

$$R=1-\frac{Q_e}{Q},$$

где $Q_e = \sum_{i=1}^n (V_i - \hat{V}_i)^2 = \sum_{i=1}^n e_i^2 = 879303,2$ — остаточная сумма квадратов; $Q = \sum_{i=1}^n (V_i - \bar{V})^2 = 3626622$ — полная сумма квадратов.

В ячейке B22 рассчитаем \bar{V} по формуле «=CP3HAЧ(B2:B21)», в ячейке G22 – Q_e по формуле «=CVMM(G2:G21)», в столбце I – значения $(V_i - \bar{V})^2$, введя в ячейку I2 формулу «=(B2-\$B\$22)^2» и скопировав ее в диапазон ячеек I3–I21. Тогда полную сумму квадратов Q находим как «=CVMM(I2:I21)». В ячейке H23 рассчитываем коэффициент детерминации: «=1-G22/I22» (рис. 9).

Коэффициент детерминации $R^2 = 0,758$ показывает, что уравнением регрессии объясняется 75,8 % дисперсии результативного признака, а на долю прочих факторов приходится 24,2 %. То есть 75,8 % вариации расходов на приобретение некоторого товара (*V*) объясняется вариацией фактора *x* – дохода семейного хозяйства.

H2	4 *	1 × 4	√ f _x	=1-G22/12	22					
	A	В	с	D	E	F	G	н	1	
1	x _i	V_i	ln(x _i)	$\ln(V_i)$	\hat{V}_i	$V_i - \hat{V}_i$	$(V_i - \widehat{V}_i)^2$	Ai	$(V_i - \bar{V})^2$	
2	150537,1	3736,022	11,922	8,2258	3685,7	50,307	2530,79	1,3465	25985,118	
3	136570,9	3155,929	11,825	8,057	3407	-251,1	63043,2	7,956	175472,18	
4	151518,1	4091,394	11,928	8,3166	3705,1	386,29	149224	9,4416	266845,6	
5	110318,6	3037,814	11,611	8,0189	2867,5	170,3	29002,3	5,606	288378,67	
6	155144,1	3603,569	11,952	8,1897	3776,5	-173	29919	4,8	826,33252	
7	129398,2	3025,638	11,771	8,0149	3261,8	-236,1	55756,2	7,8042	301604,16	
8	118036	3041,839	11,679	8,0202	3028,4	13,392	179,337	0,4402	284071,94	
9	153232,6	3907,761	11,94	8,2707	3738,9	168,84	28507,4	4,3207	110847,71	
10	174761,2	3961,124	12,071	8,2843	4157,7	-196,6	38640,8	4,9625	149228,46	
11	158744,2	4072,685	11,975	8,3121	3847,2	225,53	50864,6	5,5377	247866,57	
12	151702,4	3991,685	11,93	8,292	3708,7	282,95	80058,8	7,0884	173773,93	
13	143872,3	3692,751	11,877	8,2141	3553,4	139,38	19428	3,7745	13907,013	
14	166110,4	4227,418	12,02	8,3493	3990,7	236,73	56042	5,5999	425880,23	
15	164493	3783,255	12,011	8,2383	3959,3	-176	30983,9	4,6527	43443,899	
16	114337,7	3174,847	11,647	8,063	2951,6	223,26	49845,3	7,0322	159980,8	
17	136811,3	3265,973	11,826	8,0913	3411,9	-145,9	21281,7	4,4667	95388,322	
18	135744,2	3359,623	11,819	8,1196	3390,3	-30,73	944,067	0,9146	46311,04	
19	120100,7	2737,437	11,696	7,9148	3071,2	-333,7	111368	12,191	701215,31	
20	169115,2	3801,232	12,038	8,2431	4048,9	-247,6	61330,3	6,515	51261,035	
21	156830,3	3828,464	11,963	8,2502	3809,7	18,812	353,876	0,4914	64333,757	
22		3574,823					879303		3626622,1	
23							A=	5,2471		
24							R=	0,7575		
25										

F.0	обР •	1 × 4	√ fe	=F.O5P(0	,95;1;18)										
1	A	В	с	D	E	F	G	н	1	J	к	L	м		
1	X ₁	V_i	ln(x _i)	$\ln(V_i)$	\hat{V}_i	$V_i - \hat{V}_i$	$(V_i - \widehat{V}_i)^2$	Ai	$(V_i - \bar{V})^2$						
2	150537,1	3736,022	11,922	8,2258	3685,7	50,307	2530,79	1,3465	25985,118						
3	136570,9	3155,929	11,825	8,057	3407	-251,1	63043,2	7,956	175472,18						
4	151518,1	4091,394	11,928	8,3166	3705,1	386,29	149224	9,4416	266845,6						
5	110318,6	3037,814	11,611	8,0189	2867,5	170,3	29002,3	5,606	288378,67						
6	155144,1	3603,569	11,952	8,1897	3776,5	-173	29919	4,8	826,33252				4500		
7	129398,2	3025,638	11,771	8,0149	3261,8	-236,1	55756,2	7,8042	301604,16				4000		
8	118036	3041,839	11,679	8,0202	3028,4	13,392	179,337	0,4402	284071,94				3500		
9	153232,6	3907.									2 ×	1	3000		
10	174761,2	3961,	61, FORP												
11	158744,2	4072,(F.O	072, ^{6.069}												
12	151702,4	3991.0		Вероятно	ость 0.95			2 =	0,95				1500		
13	143872,3	3692.1	Cre	пени_свобо;	ды1 1			2 -	1				1000		
14	166110,4	4227,4	Cre	пени_свобо;	ды2 18			2 -	18				500		
15	164493	3783.1						-	4,413873419				11.2		
16	114337,7	3174, Bose	ращает обрат	ное значение	для (левосто	роннего) F-р	аспределения вер	хоятностей: е	сли p = F.PACП(к,), т	o F.O6P(p	.) = x.				
17	136811,3	3265.5		Степен	и свободы	в знаменато	ль степеней своб	оды - число о	от 1 до 10^10, исклю	Has 10^10					
18	135744,2	3359.0											4500		
19	120100,7	2737.											4000		
20	169115,2	3801.	аениле: 4,4131	373419									3500		
21	156830,3	3828. Cope	авка по этой ф	учколи					OK		Отмена		2000		
22		3574,823					879303		3626622,1		1	-	2500		
23							A=	5,2471					2000		
24							R=	0,7575					1500		
25							F=	56,24							
26							F табл=	95;1;18)					2000		
27							1.11/19/20/20/20						500		

Рис. 10. Диалоговое окно вычисления критического значения критерия Фишера

Для оценки качества модели по критерию Фишера в ячейке H24 вычислим $F_{\phi a \kappa \tau} = \frac{R^2(n-m)}{(1-R^2)(m-1)} = 56,24$ по формуле «=H24/(1-H24)*18». Табличное значение критерия Фишера определим, используя в меню «Формулы» / подменю «Вставить функцию» / категории «Статистические» / функция «F.OBP» (рис. 10). В поле «Вероятность» вводим значение доверительной вероятности 0,95, «Степени_свободы1»: $k_1 = m - 1 = 1$, «Степени_ свободы2»: $k_2 = n - m = 18$. После нажатия кнопки «Ок» получаем $F_{\text{табл}} = 4,41$. Так как $F_{\phi a \kappa \tau} > F_{\text{табл}}$, то признается статистическая значимость уравнения в целом.

4. С помощью графического метода оценим соответствие используемых для построения модели статистических данных стандартным предположениям регрессионного анализа.

Рассчитаем стандартизированные остатки модели по формуле $C_i = \frac{v_i - \hat{v}_i}{s_{\varepsilon_i}}$. Значение $S_{\varepsilon_i} = 221,228$ вычислим в ячейке H27 по формуле «=КОРЕНЬ(G22/18)». Заполним столбец J, введя в ячейку J2 формулу «=F2/\$H\$27» и скопировав ее в диапазон ячеек J3–J21.

Далее выделим значения в столбцах В и J и с помощью мастера диаграмм построим точечную диаграмму зависимости C_i от V_i (рис. 11).

0až		в Вставка	Размети														
Cirota ratio	7 П нал Рекоме на сводные Таб	7 ндуемые Табли таблицы нцы	и нца Рисун	еся Изобраз в Интер	сения Фигур нете И) 🥳 ан Эначки Тр инострации	ессмерные	SmartArt Снимок *	🗄 Получит 🗿 Мон над	ь надстройкі стройки =	Visio Data Visualizer	Coupear	Bing тыный граф	Рекомени диагра	ніі - ій - ій - ій - ій - алы	Карты Сео	April 10-
Диат	pamm	I X V	/ ft														d T
		8	c	D	F	F	6	н	1	1.1	ĸ	1.1	м	N	0	[•°•• • •°• • [/	
1	x .	V.	ln(x.)	$\ln(V_{i})$	Ŷ,	$V = \hat{V}$	$(V_{i} - \hat{V}_{i})^{2}$	A	$(V_i - \bar{V})^2$	C						ike Ma	
2 1	50537.1	3736.022	11.922	8.2258	3685.7	50.307	2530.79	1.3465	25985.118	0.2276			Ha	звание д	иаграмм	123 17N	
3 1	36570.9	3155.929	11.825	8.057	3407	-251.1	63043.2	7.956	175472.18	3 -1.136	4500					Пузырьковая	
4 1	51518,1	4091,394	11.928	8,3166	3705,1	386,29	149224	9,4416	266845.0	5 1,7478	4000						
5 1	10318,6	3037,814	11,611	8,0189	2867,5	170,3	29002,3	5,606	288378,67	0,7705	3500						
6 1	55144,1	3603,569	11,952	8,1897	3776,5	-173	29919	4,8	826,33252	-0,783	3000					🗄 Друрие точечные д	иаграммы
7 1	29398,2	3025,638	11,771	8,0149	3261,8	-236,1	55756,2	7,8042	301604,10	5 -1,068	2500				-		
8	118036	3041,839	11,679	8,0202	3028,4	13,392	179,337	0,4402	284071,94	0,0606	2000						
9 1	53232,6	3907,761	11,94	8,2707	3738,9	168,84	28507,4	4,3207	110847,71	0,7639	1500						
10 I	74761,2	3961,124	12,071	8,2843	4157,7	-196,6	38640,8	4,9625	149228,40	5 -0,889	1000						
11]	58744,2	4072,685	11,975	8,3121	3847,2	225,53	50864,6	5,5377	247866,57	7 1,0204	500						
12 I	51702,4	3991,685	11,93	8,292	3708,7	282,95	80058,8	7,0884	173773,93	3 1,2802	0						
13 I	43872,3	3692,751	11,877	8,2141	3553,4	139,38	19428	3,7745	13907,013	0,6306		0	50000	10	0000	150000 200	000
14 I	66110,4	4227,418	12,02	8,3493	3990,7	236,73	56042	5,5999	425880,23	3 1,0711	o						- · .
15	164493	3783,255	12,011	8,2383	3959,3	-176	30983,9	4,6527	43443,899	-0,796			Наз	вание д	иаграмм	ы	
16 l	14337,7	3174,847	11,647	8,063	2951,6	223,26	49845,3	7,0322	159980,8	8 1,0101	2						1
17 I	36811,3	3265,973	11,826	8,0913	3411,9	-145,9	21281,7	4,4667	95388,322	-0,66	1,5						
18 I	35744,2	3359,623	11,819	8,1196	3390,3	-30,73	944,067	0,9146	46311,04	-0,139	1						T
19 l	20100,7	2737,437	11,696	7,9148	3071,2	-333,7	111368	12,191	701215,31	-1,51	0.5					• • •	
20 1	69115,2	3801,232	12,038	8,2431	4048,9	-247,6	61330,3	6,515	51261,035	-1,12	9						0
21]	56830,3	3828,464	11,963	8,2502	3809,7	18,812	353,876	0,4914	64333,751	0,0851		500	1000 150	0 2000	2500 30	00 3500 4000 45	00
22		3574,823					879303	6.0471	5626622,1		-0,5					• • • •	
23							A=	5,2471			-1 -					••	
24							R=	0,7575			-1,5				•		
25							F=	50,24			1 2 -						
26							г таол=	4,4139			0						

Рис. 11. Построение диаграммы стандартизированных остатков

По виду точечной диаграммы можно сделать следующие выводы: 1) нет выделяющихся наблюдений, что указывает на выполнение условия *M*(ε.) = 0;

 не наблюдается функциональной зависимости C_i от величины V_i, то есть дисперсия ошибок гомоскедастична. Спецификация модели подобрана правильно.

Таким образом, используемые для построения модели статистические данные соответствуют стандартным предположениям регрессионного анализа.

Сравнительный анализ результатов эксперимента и выводы

При расчете средней ошибки аппроксимации сделан вывод о качественном подборе математической модели к исходным данным. Расчет коэффициента детерминации показал, что уравнением регрессии объясняется 75,8 % дисперсии результативного признака (75,8 % вариации расходов на приобретение некоторого товара (*V*) объясняется вариацией фактора x – дохода семейного хозяйства), а на долю прочих факторов приходится 24,2 %. Выполнение неравенства $F_{\phi a \kappa \tau} > F_{r a \delta n}$ позволяет признать статистическую значимость уравнения в целом. Графический метод анализа показал правильность подбора спецификации модели, что свидетельствует о соответствии статистических данных стандартным предположениям регрессионного анализа.

Форма отчета о лабораторной работе

- 1. Титульный лист.
- 2. Формулы и графики, необходимые для расчета.
- 3. Расчетные значения характеристик и параметров, необходимые пояснения и выводы в соответствии с алгоритмом проведения опыта.
- 4. Приложение: анализ данных в Excel.

Критерии оценки лабораторной работы

«Зачтено» — выполнено не менее 70 % всех заданий лабораторной работы.

«Не зачтено» — выполнено менее 70 % всех заданий лабораторной работы.

Требования к технике безопасности при выполнении работы

При выполнении лабораторных работ на ПЭВМ необходимо соблюдать гигиенические требования к персональным электронно-вычислительным машинам и организации работы, установленные СП 2.2.3670-20 «Санитарно-эпидемиологические требования к условиям труда» (URL: http://www.rospotrebnadzor.ru/g:les/news/ sp2.2.3670-20_trud.pdf).

множественная линейная регрессия

Цель: формирование навыков построения модели множественной линейной регрессии, оценки значимости параметров и модели в целом с помощью средств MS Excel.

Порядок выполнения лабораторной работы

- 1. Выполнить задания работы согласно варианту. Расчеты производить в Excel, используя надстройку «Анализ данных», меню «Сервис».
- 2. Исследования построенной модели произвести по порядку в соответствии с перечисленными в заданиях пунктами.
- 3. Оформить отчет о лабораторной работе, используя текстовый редактор MS Word, для ввода формул использовать надстройку Equation.

Используемое оборудование и материалы

- 1. Персональный компьютер со встроенным пакетом MS Office.
- 2. Принтер, бумага, необходимые для оформления отчета о лабораторной работе.

Задания к лабораторной работе

1. Постройте линейную модель множественной регрессии. Запишите стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжируйте факторы по степени их влияния на результат.

2. Найдите коэффициенты парной, частной и множественной корреляции. Проанализируйте их.

3. Найдите скорректированный коэффициент множественной детерминации. Сравните его с нескорректированным (общим) коэффициентом детерминации.

4. С помощью *F*-критерия Фишера оцените статистическую надежность уравнения регрессии и коэффициента детерминации $R_{yx_1x_2}^2$. 5. С помощью частных *F*-критериев Фишера оцените целесообразность включения в уравнение множественной регрессии фактора x_1 после x_2 и фактора x_2 , после x_1 .

6. Составьте уравнение парной линейной регрессии, оставив лишь один значащий фактор.

Номер варианта находится по таблице по первой букве имени студента.

Буква	A, X	B, Y	Д	Е	И	K	Л	Б	Н	С
№ вар.	1	2	3	4	5	6	7	8	9	10
Буква	0	ш	Р, Щ	П	Г, Ж	Ф, Э	Ч, Ю	М, Я	Т	Ц, З
№ вар.	11	12	13	14	15	16	17	18	19	20

Варианты заданий

Государство	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
Австрия	52	3,2	2,4	2,3	111
Азербайджан	34	2,4	2,3	2,4	100
Албания	55	2,7	2,6	2,7	102
Алжир	50	4,0	2,7	2,5	99
Бруней	51	2,7	3,0	2,2	97
Ботсвана	49	2,5	2,9	3,3	90
Бутан	59	5,3	1,7	2,0	81
Венгрия	52	2,9	2,3	1,8	82
Венесуэла	53	2,4	3,0	2,9	112
Нигерия	51	4,4	3,0	2,7	88
Вьетнам	49	5,2	2,9	2,8	65
Габон	60	3,9	3,2	2,9	111
Гаити	61	4,9	2,1	2,2	70
Гайана	58	6,3	3,2	2,6	96
Гамбия	63	6,6	3,3	4,1	50
Греция	60	8,0	2,9	2,9	75
Кения	49	5,1	3,3	2,7	112

Государство	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
Куба	58	7,2	3,0	3,1	93
Лаос	54	4,7	2,7	2,9	98
Молдавия	55	6,9	2,8	2,4	63

Для варианта 1 в таблице исходных данных приняты обозначения:

у – средняя продолжительность жизни, ожидаемая при рождении ребенка, г.;

*x*₁ – ВВП в соотношении к покупательской возможности;

 x_2 – скорость прироста населения в соотношении с предыдущим годом, %;

*x*₃ – коэффициент роста задействованных на рабочих специальностях в соотношении с предыдущим годом, %;

 x_{4} – младенческая смертность, %.

№ п/п	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇
1	13,0	1	1	37,0	21,5	6,5	0	20
2	16,5	1	1	60,0	27,0	22,4	0	10
3	17,0	1	1	60,0	30,0	15,0	0	10
4	15,0	1	1	53,0	26,2	13,0	0	15
5	14,2	1	1	35,0	19,0	9,0	0	8
6	10,5	1	1	30,3	17,5	5,6	1	15
7	23,0	1	1	43,0	25,5	8,5	0	5
8	12,0	1	1	30,0	17,8	5,5	1	10
9	15,6	1	1	35,0	18,0	5,3	1	3
10	12,5	1	1	32,0	17,0	6,0	1	5
11	11,3	1	0	31,0	18,0	5,5	1	10
12	13,0	1	0	33,0	19,6	7,0	0	5
13	21,0	1	0	53,0	26,0	16,0	1	5
14	12,0	1	0	32,2	18,0	6,3	0	20
15	11,0	1	0	31,0	17,3	5,5	1	15
16	11,0	1	0	36,0	19,0	8,0	1	5

Для варианта 2 в таблице исходных данных приняты обозначения:

у – цены квартир в населенном пункте, тыс. долл.;

 x_1 – число комнат в квартире;

 x_2 — район города (1 — расположение близко к центру города, 0 — расположение далеко от центра);

 x_3 — площадь общая (м²);

 x_4 — площадь жилая (м²);

 x_5 — площадь кухни (м²);

 x_6 – тип дома (1 – панельный, 0 – другой);

 x_7 — расстояние от остановок общественного транспорта, минут пешком.

Государство	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆
Австралийский Союз	0,914	76,5	105	3113	23,2	56,2	74,2
Республика Ангола	0,912	75,8	102	3101	21,3	61,3	78,2
Белиз	0,763	78,4	74	3101	25,7	59,3	68,0
Республика Бенин	0,924	71,7	111	3243	17,8	63,3	77,2
Босния и Герцеговина	0,918	84,4	113	3237	15,9	64,1	77,2
Федеративная Республика Бразилия	0,916	75,9	111	3330	22,4	57,0	77,2
Буркина-Фасо	0,905	76,2	119	3818	20,6	50,7	75,7
Республика Вануату	0,546	67,5	146	2415	23,2	57,1	62,6
Республика Джибути	0,894	78,2	113	3295	20,7	62,0	78,0
Арабская Республика Египет	0,923	78,1	112	3504	16,5	61,6	78,2
Исламская Республика Иран	0,932	78,6	123	3056	19,7	58,6	79,0
Государство Катар	0,740	84,0	71	3007	18,5	71,7	67,6
Ливанская Республика	0,701	59,2	212	2844	42,4	48,0	69,8
Республика Парагвай	0,744	91,2	100	2861	24,0	63,9	68,4
Независимое Государство Папуа — Новая Гвинея	0,922	72,8	118	3239	20,2	59,1	74,9

Для варианта 3 в таблице исходных данных приняты обозначения:

у – индекс развития гражданина;

 x_1 – расходы на конечное потребление в текущих ценах, % к ВВП;

 $x_{2} - BB\Pi$, % к предыдущему десятилетию;

*x*₃ — калорийность питания в сутки для населения страны, ккал на душу населения;

 x_{4} – валовое накопление, % к ВВП;

 x_5 – затраты семей, % к ВВП;

 x_6 — средняя продолжительность жизни, ожидаемая при рождении ребенка, г.

Nº ⊓/⊓	у	x_1	x2	<i>x</i> ₃
1	6.5	82.6	6.8	221.0
2	3,2	6,6	17,8	32,5
3	6,3	51,2	106,8	81,3
4	3,5	14,9	17,5	50,2
5	0,2	30,0	69,6	300,3
6	3,7	14,3	15,2	42,6
7	1,4	5,7	3,9	16,5
8	5,2	24,2	52,3	136,0
9	1,9	12,2	17,8	83,2
10	3,1	15,4	33,3	113,3
11	4,5	31,3	72,0	215,5
12	2,8	26,3	92,7	612,0
13	1,7	6,3	10,5	42,8
14	1,4	11,5	30,5	100,3
15	3,2	14,2	33,7	115,2
16	2,8	6,7	12,8	48,2
17	2,7	22,9	63,8	51,4
18	1,8	16,0	29,3	471,0
19	2,4	9,7	13,1	73,0
20	0,8	19,8	32,5	45,3

Для варианта 4 в таблице исходных данных приняты обозначения:

у – чистый доход, млрд долл. США;

*x*₁ – использованный капитал, млрд долл.;

*x*₂ – оборот капитала, млрд долл.;

*x*₃ – численность служащих, тыс. чел.

Вариант 5

Номер предприятия	У	x_1	<i>x</i> ₂	<i>x</i> ₃
1	7,0	10,0	3,9	36
2	7,0	14,0	3,9	37
3	7,0	15,0	3,7	42
4	7,0	16,0	4,0	39
5	7,0	17,0	3,8	41
6	7,0	19,0	4,8	38
7	8,0	19,0	5,4	46
8	8,0	20,0	4,4	41
9	8,0	20,0	5,3	40
10	10,0	20,0	6,8	45
11	9,0	21,0	6,0	45
12	11,0	22,0	6,4	46
13	9,0	22,0	6,8	49
14	11,0	25,0	7,2	44
15	12,0	28,0	8,0	45
16	12,0	29,0	8,2	46
17	12,0	30,0	8,1	48
18	12,0	31,0	8,5	48
19	14,0	32,0	9,6	51
20	14,0	36,0	9,0	50

Для варианта 5 в таблице исходных данных приняты обозначения:

у — выработка продукции на одного сотрудника предприятия, тыс. руб.;

 x_1 — отношение количества рабочих высокой квалификации к общему числу рабочих предприятия, %;

 x_2 — коэффициент отношения стоимости ввода новых основных фондов к стоимости фондов на конец года, %;

 x_3 – внедрение рацпредложений, %.

Государство	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
Республика Науру	1612	0,836	13,8	71,6
Королевство Нидерландов	7111	0,843	11,9	58,8
Республика Палау	6636	0,799	12,7	63,6
Румыния	6331	0,822	16,9	70,3
Словацкая Республика	6103	0,874	11,3	71,3
Республика Уганда	4200	0,698	11,0	64,7
Черногория	4000	0,513	33,8	72,3
Республика Эль-Сальвадор	3690	0,666	40,7	73,4
Тоголезская Республика	3655	0,718	22,6	71,3
Королевство Тонга	3180	0,713	20,5	69,8
Республика Панама	2683	0,667	16,8	64,3
Республика Никарагуа	2605	0.598	21,5	63,7
Монголия	2611	0.666	16,9	70,8
Республика Молдова	2221	0.523	16,7	72,6
Республика Мали	2155	0.455	47,8	69,9
Ливанская Республика	1372	0.338	42,3	68,7
Королевство Лесото	1288	0.389	41,5	65,7

Вариант 6

Для варианта 6 в таблице исходных данных приняты обозначения:

- у среднедушевой доход, долл.;
- x_1 индекс развития человека;
- *x*₂ индекс бедности;

x₃ – средняя по стране продолжительность жизни, число лет.

Номер фирмы	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
1	1,0	1,5	27	2,64	14,5
2	1,1	1,4	28	3,45	15,6
3	1,6	1,6	28	4,21	17,4
4	0,9	1,5	26	3,45	16,8
5	0,85	1,5	25	2,88	12,0
6	0,95	1,4	22	3,12	14,8
7	1,0	1,5	28	5,23	15,5
8	1,1	1,6	26	4,43	12,9
9	1,2	1,4	25	3,34	16,2
10	1,4	1,3	25	3,32	16,5
11	1,3	1,3	28	4,1	15,6
12	1,1	1,6	31	5,15	16,0
13	1,0	1,4	32	4,3	14,4
14	1,5	1,5	29	2,9	15,2
15	1,2	1,7	27	3,48	13,6

Для варианта 7 в таблице исходных данных приняты обозначения:

у – себестоимость единицы продукции, тыс. руб.;

*x*₁ – оптовая цена за 1 т энергоносителя, млн руб.;

- *x*₂ доля прибыли, изымаемая государством, %;
- x_3 объем производства, млн руб.;

 x_4- трудоемкость единицы продукции, чел/ч.

Номер района	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
1	33	27	0,5	1223	10
2	37	28	0,1	1348	15
3	25	25	0,1	1541	13
4	18	27	0,2	1720	8
5	34	30	0,1	2678	17

Номер района	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
6	39	33	0,2	1738	16
7	56	39	0,2	1363	26
8	43	31	0,3	1458	22
9	44	44	0,1	1289	27
10	48	41	0,1	1946	23
11	51	43	0,2	1352	18
12	50	40	0,3	1425	15
13	51	40	0,3	1382	21
14	55	39	0,1	1623	31
15	56	43	0,1	1296	30
16	47	39	0,1	1362	24
17	43	40	0,1	1634	13
18	78	68	0,2	1295	32
19	71	66	0,1	1362	33
20	59	48	0,1	1348	25

Для варианта 8 в таблице исходных данных приняты обозначения:

y – число абитуриентов, поступивших в вузы, %;

 x_1 — число абитуриентов, имеющих аттестаты с положительными оценками, %;

 x_2 – число абитуриентов, окончивших школу с медалью, %;

 x_3 – среднедушевой доход, руб.;

 x_4 — количество школ с углубленным изучением отдельных дисциплин, %.

Номер области	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
1	60	43	61,5	38
2	65	50	62,0	49
3	64	48	53,9	47
4	64	45	58,3	27

Номер области	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
5	67	43	62,1	31
6	66	48	49,2	60
7	72	45	39,3	58
8	73	48	35,5	57
9	71	50	33,3	51
10	75	48	44,5	34
11	81	51	42,5	29
12	80	53	39,3	32
13	80	52	35,4	52
14	82	52	36,7	49
15	85	54	33,9	48
16	87	53	36,4	42
17	89	58	39,7	51
18	91	58	44,1	53
19	90	57	43,0	42
20	92	56	48,0	59
21	93	58	53,6	56
22	90	61	59,4	54
23	91	62	61,7	39
24	92	63	46,5	47
25	95	59	57,9	48

Для варианта 9 в таблице исходных данных приняты обозначения:

у – душевой доход в день, руб.;

*x*₁ – среднедневная заработная плата рабочего, руб.;

 x_2 – возраст безработных в среднем по области, лет;

 x_{3} – неработающие пенсионеры, %.

Государство	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
Республика Маршалловы Острова	0,914	77,4	3351	10
Мальдивская Республика	0,823	77,3	3111	13
Республика Кот-д'Ивуар	0,837	71,9	3236	12
Демократическая Республика Конго	0,743	65,1	3122	16
Лаосская Народно-Демократическая Республика	0,823	78,3	3544	7
Корейская Народно-Демократиче- ская Республика (Северная Корея)	0,799	64,9	2940	40
Соединенное Королевство Велико- британии и Северной Ирландии	0,917	73,2	3136	8
Республика Ботсвана	0,797	70,1	3411	20
Габонская Республика	0,916	71,9	3333	23
Кооперативная Республика Гайана	0,869	77,1	3576	27
Боливарианская Республика Венесуэла	0,915	75,9	3708	8
Исламская Республика Афганистан	0,617	66,4	3288	57
Аргентинская Республика	0,888	77,3	3273	10
Антигуа и Барбуда	0,546	62,3	2414	50
Княжество Андорра	0,895	78,1	3245	20
Демократическая Республика Восточный Тимор	0,901	78,4	3503	21
Королевство Нидерландов	0,933	79,1	3052	15
Федеративная Республика Сомали	0,733	64,5	3111	30
Республика Таджикистан	0,743	68,5	2132	33
Государство Япония	0,745	64,4	2322	18

Для варианта 10 в таблице исходных данных приняты обозначения:

у – индекс развития человека;

*x*₁ – продолжительность жизни, ожидаемая при рождении, лет;

*x*₂ – среднесуточная калорийность питания граждан страны, ккал;

х₃ – младенческая смертность, %.

Номер предприятия	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
1	9,0	350	18	108
2	9,3	305	20	113
3	7,4	300	19	71
4	7,0	284	42	210
5	7,4	286	23	94
6	9,2	326	20	118
7	9,3	335	25	130
8	8,0	334	22	127
9	7,4	270	23	61
10	9,3	364	18	117
11	7,2	275	20	46
12	9,1	292	17	107
13	9,2	355	17	110
14	8,3	318	30	99
15	9,1	328	20	101
16	9,2	316	14	105
17	8,9	330	21	113
18	5,5	241	25	146
19	9,1	381	21	119
20	9,1	333	22	110

Для варианта 11 в таблице исходных данных приняты обозначения:

- у инвестиции, млн руб.;
- x_1 совокупный доход, млн руб.;
- *x*₂ запасы капитала, млн руб.;
- *х*₃ налоги, млн руб.

Номер области	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
1	68	7,4	3,1	46
2	59	7,4	2,8	73
3	47	4,9	3,1	124
4	60	8,3	2,9	90
5	51	5,7	2,5	96
6	57	7,5	2,4	55
7	67	7,0	3,0	45
8	69	10,8	1,1	34
9	57	7,8	2,9	56
10	51	7,6	2,9	90
11	72	12,1	1,3	16
12	63	14,2	2,0	56
13	64	14,1	1,6	51
14	66	10,6	2,2	39
15	65	12,4	2,0	55
16	57	9,0	2,3	64
17	66	12,4	2,9	44
18	69	15,6	2,2	36
19	71	14,3	1,9	37
20	74	13,1	1,0	13

Для варианта 12 в таблице исходных данных приняты обозначения:

у – % населения, способного к труду;

 x_1 – ежегодный прирост населения, %;

 x_2 – ежегодный прирост трудоспособного населения, %;

x₃ — число действующих фирм и учреждений, использующих рабочую силу.

	1		[
Номер области	У	x_1	<i>x</i> ₂	<i>x</i> ₃
1	12,4	2,0	55	65
2	9,0	2,3	64	57
3	12,4	2,9	44	66
4	15,6	2,2	36	69
5	14,3	1,9	37	71
6	13,1	1,0	13	74
7	19,6	2,2	34	70
8	9,7	2,2	36	67
9	13,5	2,7	41	68
10	18,5	1,9	39	69
11	15,6	0,2	13	70
12	14,0	2,0	47	66
13	28,0	0,9	35	69
14	22,2	1,7	23	73
15	20,7	1,7	48	67
16	20,0	0,3	14	70
17	13,4	0,3	11	72
18	29,3	2,3	23	71
19	18,6	2,2	50	64
20	23,7	1,9	33	72

Для варианта 13 в таблице исходных данных приняты обозначения:

у – % семей, имеющих двух и более детей;

- x_1 прирост населения за год, %;
- $x_2 \%$ семей, не нуждающихся в жилье;
- x₃ средняя продолжительность жизни.

Номер завода	У	x_1	<i>x</i> ₂	<i>x</i> ₃
1	1,8	49,0	16	71
2	1,6	20,0	44	67
3	1,8	31,9	13	72
4	2,7	33,4	12	71
5	2,1	35,3	12	72
6	1,0	24,6	18	73
7	2,0	30,8	22	73
8	0,9	43,4	9	78
9	1,9	42,4	10	72
10	1,0	53,8	7	77
11	1,5	60,6	7	76
12	1,7	58,1	6	77
13	3,5	61,1	8	77
14	1,4	70,2	6	77
15	0,4	73,7	7	78
16	1,0	78,3	6	78
17	0,1	65,8	5	76
18	1,3	85,1	5	79
19	0,3	68,7	4	79
20	0,6	73,9	6	78

Для варианта 14 в таблице исходных данных приняты обозначения:

у – темп обновления основных фондов предприятия;

*x*₁ – средний возраст рабочего;

 x_2 – степень травматизма, чел/год;

x₃ – % работников, являющихся членами профсоюза.

Подразде- ление	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
1	6	1,1	70,2	7,7	1,4
2	7	0,2	73,7	7,8	0,4
3	6	1,3	78,3	7,8	1,0
4	5	0,5	65,8	7,6	0,1
5	5	1,6	85,1	7,9	1,3
6	4	0,6	68,7	7,9	0,3
7	6	0,7	73,9	7,8	0,6
8	8	0,4	80,3	7,7	0,5
9	6	0,5	78,0	7,8	0,8
10	4	2,0	84,4	7,6	1,7
11	6	0,8	78,7	7,7	0,5
12	8	1,0	100,0	7,7	1,1
13	6	0,3	78,7	7,5	0,1
14	4	0,3	82,0	8,0	0,6
15	6	1,0	95,9	7,8	0,8

Для варианта 15 в таблице исходных данных приняты обозначения:

у – доля брака, %;

 x_1 – степень обновления инструментария, %;

 x_{2} – оснащенность рабочего места, %;

*x*₃ – выполненная высококвалифицированная работа, %;

 x_4 – ежегодное увеличение з/п, %.

Номер предприятия	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
1	23,9	72	53	74	16
2	32,5	98	51	150	10
3	43,0	100	45	350	25
4	17,8	59	39	62	10
5	28,0	75	40	180	3
6	32,7	85	59	90	5
7	31,0	66	48	60	2
8	33,0	81	52	120	10
9	28,0	76	49	100	5
10	21,5	55	41	60	15
11	15,3	53	38	55	3
12	21,0	57	38	63	7
13	35,5	62	52	80	3
14	22,0	74	47	100	15
15	29,0	70	45	90	2

Для варианта 16 в таблице исходных данных приняты обозначения:

у – цена детали, у. е.;

- *x*₁ число изготовленных деталей;
- *x*₂ число деталей высшего качества;
- *x*₃ количество занятых на рабочих специальностях;
- x_4 количество менеджеров.

Номер предприятия	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
1	8,0	29,1	15,5	924
2	6,4	29,3	14,2	695
3	7,9	31,6	14,6	923
4	7,9	32,8	15,0	914
5	7,4	31,8	13,8	833
6	7,8	35,5	14,4	918
7	7,7	29,2	14,1	913
8	6,9	27,5	13,9	721
9	6,9	35,6	13,3	728
10	7,7	36,4	12,8	927
11	7,0	29,4	14,6	752
12	6,7	27,0	13,6	747
13	7,2	33,3	12,6	852
14	7,3	33,4	15,0	802
15	7,8	33,5	15,1	927
16	7,8	32,6	13,4	921
17	6,8	28,6	13,9	744
18	7,0	28,4	14,3	701
19	6,8	30,0	14,7	740
20	7,9	30,6	14,0	932

Для варианта 17 в таблице исходных данных приняты обозначения:

- y доход, млн руб.;
- *x*₁ выработка изделий на 1 рабочего, тыс. руб.;
- x_2 потребление, тыс. руб.;
- x_3 запас средств, тыс. руб.

Номер факультета	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
1	10,0	80	110	4,3
2	9,0	62	92	3,0
3	8,5	76	115	3,7
4	8,2	51	75	2,6
5	9,0	46	74	2,3
6	9,0	62	88	3,4
7	9,0	74	106	4,6
8	6,5	49	74	2,3
9	33,0	110	176	6,5
10	9,5	73	92	2,4
11	9,0	69	96	3,8
12	15,0	129	176	7,5
13	10,0	66	93	2,7
14	9,5	76	107	4,3
15	16,5	81	116	3,5
16	8.0	62	90	4,6
17	12.0	75	114	3,6
18	25.6	74	115	3,1
19	12.5	56	87	4,1
20	11.8	66	102	2,7

Для варианта 18 в таблице исходных данных приняты обозначения:

у – студенты, успешно сдавшие сессию, %;

*x*₁ – количество студентов, занимающих бюджетные места;

*x*₂ – количество студентов факультета;

 x_3 — число восстановленных после академического отпуска студентов, %.

Номер района	у	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>X</i> ₄
1	9,70	0,14	0,32	0,25	1,59
2	9,95	0,66	0,77	0,26	0,46
3	8,40	0,46	0,59	0,29	0,28
4	8,78	0,64	0,55	0,27	1,13
5	10,5	0,82	0,76	0,24	0,64
6	11,2	0,89	0,99	0,31	0,59
7	12,0	0,20	0,64	0,27	0,73
8	10,1	0,35	0,38	0,27	1,34
9	9,67	0,42	0,48	0,28	1,06
10	9,55	0,51	0,62	0,26	1,33
11	10,3	0,44	0,81	0,23	0,95
12	11,6	0,37	0,75	0,28	0,86
13	12,4	0,28	0,46	0,27	0,97
14	11,3	0,19	0,42	0,26	1,05
15	12,1	0,30	0,57	0,26	1,38
16	11,7	0,38	0,76	0,25	1,25
17	10,4	0,47	0,79	0,28	0,77
18	9,93	0,40	0,77	0,26	0,94
19	9,48	0,63	0,86	0,25	0,82
20	8,85	0,52	0,88	0,26	0,78

Для варианта 19 в таблице исходных данных приняты обозначения:

у – урожайность зерновых культур, ц/га;

- x_1 масса химических средств защиты на 1 га, ц/га;
- x_2 масса удобрений, расходуемых на 1 га, т/га;
- *x*₃ количество зерноуборочных комбайнов на 100 га;

*x*₄ – количество тракторов приведенной мощности на 100 га.

Номер пред- приятия	У	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃
1	243	100	118	7
2	411	88	125	10
3	310	116	244	10
4	356	124	122	5
5	460	90	81	6
6	351	115	165	10
7	428	107	97	10
8	270	93	101	16
9	750	175	150	10
10	382	96	90	8
11	235	93	96	10
12	650	176	333	21
13	231	75	65	15
14	444	116	90	11
15	340	89	93	3
16	232	74	93	10
17	265	75	81	12
18	370	111	87	5
19	303	90	92	15
20	423	100	110	7

Для варианта 20 в таблице исходных данных приняты обозначения:

у – число рабочих мест;

 $x_1 -$ руководство, чел.;

 $x_{\rm 2}-$ труд высококвалифицированных специалистов, чел.;

*x*₃ – количество вакантных мест работы.

Алгоритм проведения опыта

По заданным статистическим данным (табл. 2) постройте линейную модель множественной регрессии и исследуйте ее.

Y – средняя ожидаемая продолжительность жизни при рождении, лет;

*X*₁ – ВВП в паритетах покупательной способности;

 X_2 – темпы прироста населения по сравнению с предыдущим годом, %;

 X_{3} – темпы прироста рабочей силы по сравнению с предыдущим годом, %;

 X_{4} – коэффициент младенческой смертности, %.

Таблица 2

Страна	Y	X_1	<i>X</i> ₂	<i>X</i> ₃	X_4
Мозамбик	47	3,0	2,6	2,4	113
Бурунди	49	2,3	2,6	2,7	98
Чад	48	2,6	2,5	2,5	117
Непал	55	4,3	2,5	2,4	91
Буркина-Фасо	49	2,9	2,8	2,1	99
Мадагаскар	52	2,4	3,1	3,1	89
Бангладеш	58	5,1	1,6	2,1	79
Гаити	57	3,4	2,0	1,7	72
Мали	50	2,0	2,9	2,7	123
Нигерия	53	4,5	2,9	2,8	80
Кения	58	5,1	2,7	2,7	58
Того	56	4,2	3,0	2,8	88
Индия	62	5,2	1,8	2,0	68
Бенин	50	6,5	2,9	2,5	95
Никарагуа	68	7,4	3,1	4,0	46
Гана	59	7,4	2,8	2,7	73
Ангола	47	4,9	3,1	2,8	124
Пакистан	60	8,3	2,9	3,3	90
Мавритания	51	5,7	2,5	2,7	96
Зимбабве	57	7,5	2,4	2,2	55

Алгоритм обработки экспериментальных данных

1. Для построения линейной модели множественной регрессии скопируем исходные данные в рабочий лист книги NS Excel. В строке 22 для каждой переменной модели вычислим средние значения: $\bar{Y} = 54,3$; $\bar{X}_1 = 4,735$; $\bar{X}_2 = 2,635$; $\bar{X}_3 = 2,61$; $\bar{X}_4 = 87,7$. В строке 23 найдем соответствующие значения средних квадратических отклонений. Для этого выбираем в меню «Формулы» / подменю «Вставить функцию» / категория «Статистические» / функция «СТАНДОТКЛОНПА» и в поле задаем диапазон ячеек, содержащих данные соответствующей переменной.

Получили следующие значения: $\sigma_{\gamma} = 5,496$; $\sigma_{\chi_1} = 1,887$; $\sigma_{\chi_2} = 0,413$; $\sigma_{\chi_2} = 0,49$; $\sigma_{\chi_4} = 21,345$.

Чтобы найти оценки параметров линейной модели, используем в надстройке «Анализ данных» функцию «Регрессия» (рис. 12).

Результаты выполнения данной операции представлены на рис. 13.

В третьей таблице (второй столбец) рис. 13 представлены коэффициенты уравнения множественной линейной регрессии. Таким образом, модель будет иметь следующий вид

1	A	8	C	D	E	F	G H I J K L
1	Страна	у	x1	x2	X3	x4	
2	Мозамбик	47	3	2,6	2,4	113	Perpecon
3	Бурунди	49	2,3	2,6	2,7	98	Входной интервал Y: 5852-58521 ОК
4	Чад	48	2,6	2,5	2,5	117	Видиной интереза К
5	Непал	55	4,3	2,5	2,4	91	Справка
6	Буркина-Фасо	49	2,9	2,8	2,1	99	Метки Константа - ноль
7	Мадагаскар	52	2,4	3,1	3,1	89	In Shorese seffer social las
8	Бангладеш	58	5,1	1,6	2,1	79	Параметры вывода
9	Ганти	57	3,4	2	1,7	72	(* Буходной интервал: 154327
10	Мали	50	2	2,9	2,7	123	С Новыя рабочня дист:
11	Нигерия	53	4,5	2,9	2,8	80	Остатки
12	Кения	58	5,1	2,7	2,7	58	Сстатки График остатков
13	Toro	56	4,2	3	2,8	88	1 Сдандартизованные остатки 1 Трафик подвора
14	Индия	62	5,2	1,8	2	68	Нормальная вероятность Г График нормальной вероятности
15	Бенин	50	6,5	2,9	2,5	95	
16	Никарагуа	68	7,4	3,1	4	46	
17	Гана	59	7,4	2,8	2,7	73	
18	Ангола	47	4,9	3,1	2,8	124	
19	Пакистан	60	8,3	2,9	3,3	90	
20	Мавритания	51	5,7	2,5	2,7	96	
21	Зимбабве	57	7,5	2,4	2,2	55	
22	среднее	54,300	4,735	2,635	2,610	87,700	
23	среднее квадратичное отклонение	5,496	1,887	0,413	0,490	21,345	

$$\hat{y} = 66,81 + 0,44 \cdot x_1 - 5,41 \cdot x_2 + 5,25 \cdot x_3 - 0,16 \cdot x_4.$$

Рис. 12. Ввод данных в окно функции «Регрессия»

27	вывод итогов								
28									
29	Регрессионная ста	атистика							
30	Множественный R	0,919058809							
31	R-квадрат	0,844669094							
32	Нормированный R-квадр	0,803247519							
33	Стандартная ошибка	2,501345416							
34	Наблюдения	20							
35									
36	Дисперсионный анализ								
37		df	SS	MS	F	Значимость F			
38	Регрессия	4	510,3490667	127,5872667	20,39200818	6,30718E-06			
39	Остаток	15	93,85093334	6,25672889					
40	Итого	19	604,2						
41									
42		Коэффициентын	дартная оши	t-статистика	Р-Значение	Нижние 95%	ерхние 95	жние 95,0	рхние 95,0%
43	Y-пересечение	66,81415194	4,790035949	13,94857004	5,391E-10	56,604432	77,02387	56,60443	77,02387
44	Переменная Х 1	0,441496913	0,380772214	1,159477758	0,264386169	-0,37009985	1,253094	-0,3701	1,253094
45	Переменная Х 2	-5,410333539	2,224272809	-2,432405556	0,027991512	-10,15125881	-0,66941	-10,1513	-0,66941
46	Переменная Х 3	5,254149625	1,881468214	2,792579532	0,013662711	1,243895055	9,264404	1,243895	9,264404
47	Переменная Х 4	-0,160339127	0,034491078	-4,648713201	0,000315073	-0,233855119	-0,08682	-0,23386	-0,08682
48									
49									
50									
51	ВЫВОД ОСТАТКА								
52									
53	Наблюдение	Предсказанное Ү	Остатки						
54	1	48,56341319	-1,563413185						
55	2	52,23569714	-3,235697145						
20		40.011000000	0.0110000007						

Рис. 13. Выходные данные функции «Регрессия»

Рассчитаем коэффициенты β_i стандартизированного уравнения регрессии по формуле

$$\beta_i = b_i \frac{\sigma_{X_i}}{\sigma_Y}.$$

Для нахождения коэффициента β₁ в ячейку К44 введем формулу «=В44*С23/В23». Аналогично вычислим остальные коэффициенты (рис. 14).

			-								
- 4	A	в	C	D	E	F	G	н	1	,	ĸ
41					_						
42		Коэффициенты	ндартная оши	t-статистика	Р-Значение	Нижние 95%	ерхние 955	жние 95,0	рхние 95,0	6	-
43	Y-пересечение	66,81415194	4,790035949	13,94857004	5,391E-10	56,604432	77,0239	56,6044	77,0239		βi
44	Переменная Х 1	0,441496913	0,380772214	1,159477758	0,264386169	-0,37009985	1,25309	-0,3701	1,25309		0,15158
45	Переменная Х 2	-5,410333539	2,224272809	-2,432405556	0,027991512	-10,15125881	-0,66941	-10,1513	-0,66941		-0,40619
46	Переменная Х 3	5,254149625	1,881468214	2,792579532	0,013662711	1,243895055	9,2644	1,2439	9,2644	~	0,46821
47	Переменная Х 4	-0,160339127	0,034491078	-4,648713201	0,000315073	-0,233855119	-0,08682	-0,23386	-0,08682		-0,62267
48									1		

Рис. 14. Значения коэффициентов стандартизированного уравнения

Согласно найденным значениям β_i получили следующее стандартизированное уравнение множественной регрессии:

 $\hat{t}_y = 0,152 \cdot t_{x_1} - 0,406 \cdot t_{x_2} + 0,468 \cdot t_{x_3} - 0,623 \cdot t_{x_4}.$

Сравнивая коэффициенты β_i по абсолютной величине, определяем степень влияния данного фактора на результативный признак *Y*. Здесь фактор X_4 имеет большее влияние по сравнению с остальными, так как $|\beta_4|$ наибольший.

Вычислим средние коэффициенты эластичности $\overline{\Im}_i$ по формуле

$$\overline{\vartheta}_i = b_i \frac{\overline{X}_i}{\overline{Y}}.$$

Для нахождения $\overline{\Im}_1$ в ячейку L44 введем формулу «=B44*C22/B22».

Аналогично рассчитываются остальные коэффициенты (рис. 15).

Рис. 15. Вычисление средних коэффициентов эластичности

Средний коэффициент эластичности показывает, на сколько процентов изменится результативный признак *Y* при изменении данного фактора *X* на один процент.

2. Найдем коэффициенты парной линейной корреляции. Для этого в меню «Данные» / подменю «Анализ данных» выберем функцию «Корреляция» (рис. 16). В поле «Входной интервал» задаем диапазон ячеек B1–F21, для выходного интервала – любую удобную для вывода данных ячейку на данном листе. Также необходимо поставить значок «v» напротив записи «Метки в первой строке». После нажатия кнопки «Ок» появится матрица коэффициентов парной корреляции.

A 4											
17 Гана	59	7,4	2,8	2,7	73						
18 Ангола	47	4,9	3,1	2,8	124						~
19 Пакистан	60	8,3	2.9	3,3	90	Koppena	24A			1	
20 Мавритания	51	5,7	2,5	2,7	96	Bgogwoil	интервал:	\$8\$1:57	\$21 1	e 0	<
21 Зимбабве	57	7,5	2,4	2.2	55	Группер	реание	() no ci	олбцам	Оты	543
22 среднее	54,300	4,735	2,635	2,610	87,700	12 Mars	w a named crocke	0 m c	рокам	Cripa	8KB
среднее						0.000					
квадратичное						 Base 	дной интервал:	\$H\$29	1	E	
23 отклонение	5,496	1,887	0,413	0,490	21,345	O Hoes	й рабочий дист:				
24	- /	,				O Hose	я рабочая дняга				
25											
26											
27 ВЫВОД ИТОГОВ											
28							Матрица коз	ффициент	ов парной	корреляци	и
29 Регрессионная ста	пистика						y	x1	x2	x3	x4
30 Множественный R	0,919058809					У	1				
31 R-квадрат	0,844669094					×1	0,638668	1			
32 Нормированный R-квадрат	0,803247519					×2	-0,20745	0,03952	1		
33 Стандартная ошибка	2,501345416					x3	0,283051	0,316073	0,728064	1	
34 Наблюдения	20					×4	-0,85288	-0,57036	0,237912	-0,10062	
35											
36 Лисперсионный зизана											

Рис. 16. Диалоговое окно функции «Корреляция»

Анализ матрицы коэффициентов парной корреляции начнем с анализа первого столбца матрицы, в котором расположены коэффициенты корреляции, отражающие тесноту связи зависимой переменной (средняя ожидаемая продолжительность жизни при рождении) с факторами, включенными в модель. Анализ показывает, что зависимая переменная, то есть средняя ожидаемая продолжительность жизни при рождении, имеет прямую заметную связь с ВВП в паритетах покупательной способности ($r_{yx_1} = 0,639$), высокую обратную связь с коэффициентом младенческой смертности ($r_{yx_4} = -0,853$), прямую слабую связь с темпами прироста рабочей силы по сравнению с предыдущим годом ($r_{yx_3} = 0,283$) и обратную слабую связь с темпами прироста населения по сравнению с предыдущим годом ($r_{yx_2} = -0,207$).

Для вычисления коэффициентов частной корреляции дополним матрицу коэффициентов парной корреляции (рис. 17). Для полученной матрицы необходимо найти обратную матрицу. Для этого выделим диапазон ячеек O28—T34, как это показано на рис. 17, и ставим курсор в ячейку P30. Затем выбираем в меню «Формулы» / подменю «*f_x* вставить функцию» / категория «Математические» / функция «МОБР» и в появившемся окне «Аргументы функции» в поле «Массив» вводим адрес ячеек матрицы коэффициентов парной корреляции (рис. 17).

После нажатия кнопки «Ок» в ячейке Р30 появится значение первого элемента обратной матрицы.

130		× ✓ ft	MOEP(130:M34)										
1	н	1	J	К	L	М	N	0	Р	Q	R	S	Т
27													
28		Матрица коз	оффициент	ов парной	корреляц	ии		Обр	атная матрица	коэффи	циентов ча	стной корр	еляции
29		У	x1	x2	х3	x4			У	x1	x2	х3	x4
30	У	1	0,638668	-0,20745	0,283051	-0,85288		У	130:M34)				
31	x1	0,638668	1	0,03952	0,316073	-0,57036		x1					
32	x2	-0,20745	0,03952	1	0,728064	0,237912		x2					
33	х3	0,283051	0,316073	0,728064	1	-0,10062		x3					
34	x4	-0,85288	-0,57036	0,237912	-0,10062	1		x4					
35								-					1 2
36								мося	HCTNN				1
37								mode	Массия (30.М34)		2 = (1	0.638667749424738-0	20744779387944_
38											= (6	437868846693:-0,9758	81733993425:2,6
39								бозвращает обр	атную матрицу (матрица хран Массия	итоя в массиве).	Dates of KOAPUPCTRON	TOOK & CTORENON, RADIO	AND AN ADDRESS OF
40													
41								значение: 6,43	/86884/			04	
42	жние 9	5.Срхние 95.С	0%					Citpateka no stor	.epinoise			UK	Uniteda

Рис. 17. Вычисление обратной матрицы

Чтобы найти остальные элементы обратной матрицы, выделим диапазон ячеек P30–T34, в строке состояния формул поставим курсор в центр полученной формулы и нажмем одновременно три клавиши: Ctrl + Shift + Enter. Появятся еще 15 значений элементов обратной матрицы (рис. 18).

•	5-G-•											Kowra1 - Excel		
	Главнал В	Іставка Разметка	страницы Форм	улы Данные	Рецензирование	Вид Справка		пите сделать?						
ĥ	👗 Вырезать		• 11 · •)	A* A* = = ;	_ み - お Пер	реносить текст		Общий	· 18		Обычный	Нейтральн	ый Плохой)
Вставит	Копировать Формат по с	образцу Ж.К	ч • ⊞ • ð •	A · ≣ ≣ ∃		ьединить и помести	ь в центре 👻	명 - % [%	о Условное	Форматироват	Вывод	Вычислени	Контрол	sHa /
	Буфер обмена	6	Шрифг		Вырати	013-01		Чисто				Стил	и	
мобр		×	MOEP(130:M34)	>										
1	н	1	МОБР(массив)	К	L	М	N	0	Р	Q	R	S	Т	
27														
28	N	1атрица коз	ффициент	ов парной	корреляци	ии		Обрат	ная матриц	а коэффиг	иентов п	арной ко	рреляции	1
29		у	x1	х2	х3	x4			у	x1	x2	х3	x4	
30	/	1	0,638668	-0,20745	0,283051	-0,85288		у	I30:M34)					
31	(1	0,638668	1	0,03952	0,316073	-0,57036		x1						
32	(2	-0,20745	0,03952	1	0,728064	0,237912		x2	Обрат	ная матриц	а коэффиц	иентов па	оной корр	еляци
33	(3	0,283051	0,316073	0,728064	1	-0,10062		x3		у	×1	x2	x3	×4
34	<i>(</i> 4	-0.85288	-0.57036	0.237912	-0.10062	, 1		x4	У	6,437869	-0,97588	2,614967	-3,01429	4,008
		0,00200	0,01000	0,207022	0,20002	-		A 1	×1	-0,97588	1,798441	-0,30189	-0,0462	0,260
									x2	2,614967	-0,30189	3,754995	-3,29479	0,833
									x3	-3,01429	-0,0462	-3,29479	4,125929	-1,39
									x4	4,008694	0,260616	0,833178	-1,39814	4,27

Рис. 18. Обратная матрица коэффициентов парной корреляции

Используя элементы полученной матрицы, рассчитаем коэффициенты частной корреляции по формуле

$$r_{jk.1,2,\dots,m} = -\frac{C_{jk}}{\sqrt{C_{jj} \cdot C_{kk}}},$$

где C_{jk} — соответствующие элементы обратной матрицы. Так, для расчета коэффициента $r_{v_{x_1} + x_2 x_3 x_4}$ получим

$$r_{yx_1 \cdot x_2 x_3 x_4} = -\frac{C_{12}}{\sqrt{C_{11} \cdot C_{22}}} = -\frac{-0.97588}{\sqrt{6.437869 \cdot 1.798441}} = 0.286799.$$

-57-

В ячейку Р39 вводим формулу «=-Р31/КОРЕНЬ(Р30*Q31)». Аналогично рассчитываем остальные коэффициенты. Результаты вычислений представлены на рис. 19.

	6. 0						
••• Файл	Главная В	ставка	Разметка	страницы	Формулы	Данные	Pe
Встави	 Вырезать Копировать Копировать Формат по о Буфер обмена 	• бразцу г,	Calibri ЖК	т 1 Ч т ⊞ т Шрифт	1 • A A		
P41	• = ;	× v	f_X	=-P33/KOPE	НЬ(РЗО*S33	3)	
	0		P	Q	1	R	
36	Коэффици	енть	і част	ной кор	реляц	ии	
37			У				
38	у		1				
39	x1	0,28	36799				
40	x2	-0,5	53185	/			
41	х3	0,58	34861	/			
42	x4	-0	,7683				
40							

Рис. 19. Вычисление коэффициентов частной корреляции

Коэффициент множественной корреляции

$$R_{yx_1x_2} = \sqrt{1 - \frac{\Delta r}{\Delta r_{11}}} = 0,919,$$

заданный в ячейке В30, указывает на весьма высокую связь всего набора факторов с результатом.

3. Скорректированный коэффициент множественной детерминации задан в таблице «Регрессионная статистика», значение которого равно 0,80325. Общий коэффициент детерминации равен 0,84467 (*R*-квадрат в таблице «Регрессионная статистика»). При этом значения коэффициентов не сильно отличаются друг от друга.

4. Оценим статистическую надежность уравнения регрессии и коэффициента детерминации R^2 с помощью критерия Фишера. Фактическое значение критерия задано в таблице «Дисперсионный анализ» и равно 20,392. Для нахождения критического значения используем в меню «Формулы» / подменю « f_x вставить функцию» / категория «Статистические» / функция «FPACПОБР» (рис. 20).

	5.0.1						Korrat - B	xcel			
Φaiλ	Главная Вставка Релинтка страницы	Формулы Данные Рецанзир	ование Вид Справка	9 Что вы хотите саелать?							
1	X Bupesars	$ \mathbf{A}, \mathbf{A}' = = = \gg \cdot$	2 Перенсоль текст	Ofunit	• E	Обычный Обычный	Нейтрал	пьный Плот	кой Хороций	Веод	-
	forten offenna 5 Ellevetr		Burbanosterer	5 Neter	форматирова	ore - Kex toGarage -	0.01100.01	Crane	pontenting Transition	in press	
F.05F	 · : × ✓ fr =F.OEP(0.95; 	4;15)									
	А	В	с	D	E	F		G	Н	1	J
36	Дисперсионный анализ				~	~					
37		df	55	MS	F	Значима	ость F		F табл		
38	Регрессия	4	510,3490667	127,5872667	20,39	200818 / 6,30	718E-06		95;4;15)		
39	Остаток	15	93,85093334	6,25672889	~						
40	Итого	19	604,2			Аргументы функции				?	×
41						F.OSP	0.95		 		
42		Коэффициенты с	андартная ошиť	t-статистика	Р-Значе	Crenew, ceofogui	4		± = 4		
43	Y-пересечение	66,81415194	4,790035949	13,94857004	5,3	Степени, свободы2	15		★ = 15		
44	Переменная Х 1	0,441496913	0,380772214	1,159477758	0,264	Возвращает обратное значение для (левостороннего) F-р	аспределения вир	 3.055568276 юатностей: если р = F.PACП(), to F.O6P(p) =	
45	Переменная Х 2	-5,410333539	2,224272809	-2,432405556	0,027	Crenews, co	ofogu2 somewate	ets creteriek caolo	оды - число-от 1 до 10° 10, и	ocnovas 10*10.	
46	Переменная Х З	5,254149625	1,881468214	2,792579532	0,013						
47	Переменная Х 4	-0,160339127	0,034491078	-4,648713201	0,000	3-savenue: 3,055568276					
48						Спревка по этой функции				ок с	тиена

Рис. 20. Вычисление F

Получили, что $F_{\text{факт}} > F_{\text{табл}}$, что подтверждает статистическую значимость всего уравнения и показателя тесноты связи факторов и объясняемой переменной.

5. Найдем частные критерии Фишера для оценки целесообразности включения в модель фактора X_i после включения других факторов. В общем виде для фактора x_i частный *F*-критерий определится как

$$F_{\text{uact},x_1} = \frac{R_{yx_1...x_i...x_m}^2 - R_{yx_1...x_{i-1}x_{i+1}...x_m}^2}{1 - R_{yx_1...x_{i...x_m}}^2} \cdot \frac{n - m}{m - 1},$$

где $R_{yx_1...x_i...x_m}^2$ — коэффициент множественной детерминации для модели с полным набором факторов; $R_{yx_1...x_{i-1}x_{i+1}...x_m}^2$ — тот же показатель, но без включения в модель фактора x_i ; n — число наблюдений; m — число параметров в модели.

Для определения $R_{yx_2...x_k}^2$ воспользуемся меню «Данные» / подменю «Анализ данных» / функция «Регрессия», вводя в поле «Входной интервал Х» значения факторов X_2 , X_3 , X_4 из таблицы исходных данных, то есть не включая значения для фактора X_1 (рис. 21).

После нажатия кнопки «Ок» получим выходные данные операции «Регрессия». Здесь нас интересует только значение множественного коэффициента детерминации, заданного в таблице «Регрессионная статистика». Аналогично вычислим соответствующие коэффициенты множественной детерминации, исключая из модели поочередно факторы X_2 , X_3 , X_4 . Результаты вычислений представлены на рис. 22.

1	A	В	D	E	F	G	н	1	J		K
1	Страна	У	X ₂	X ₃	X4	Perpecora				?	×
2	Мозамбик	47	2,6	2,4	113	Входичие да Входичие да	nnae nrepear Y:	\$852.58521	*	OK	
3	Бурунди	49	2,6	2,7	98	Rangwood a	нограл Х	\$0\$2:\$F\$21	1	Otwee	13
4	Чад	48	2,5	2,5	117	☐ Merco ♥ ypose	нь надежности:	Kgectaetta - er 95 %	0/h	Cripse	ка
5	Непал	55	2,5	2,4	91	Параметры	sueda				
6	Буркина-Фасо	49	2,8	2,1	99	Revise None	ной интервал: і рабоний дист:	SASEQ	1		
7	Мадагаскар	52	3,1	3,1	89	O Hosan Octation	рабочая дняга				
8	Бангладеш	58	1,6	2,1	79	Carra	и артизованные остатки	График о График р	статков одбора		
9	Гаити	57	2	1,7	72	Нормалын	ая вероятность к цормальной вероятне	xte			
10	Мали	50	2,9	2,7	123						
	TT	C 2	2.0	2.0	00						

Рис. 21. Ввод данных в окно функции «Регрессия»

	A	В	D		A	В	С
80	вывод итогов			102	ВЫВОД ИТОГОВ		
81				103			
82	Регрессионная стат	истика		104	Регрессионная стат	истика	
83	Множественный R	0,911453466		105	Множественный R	0,885099093	
84	R-квадрат	0,83074742	без Х1	106	R-квадрат	0,783400405	без Х2
85	Нормированный R-квадрат	0.799012561		107	Нормированный R-квадрат	0,742787981	
86	Стандартная ошибка	2,528121941		108	Стандартная ошибка	2,859954932	
87	Наблюдения	20		109	Наблюдения	20	
				++0			
1	A	В	С		A	В	С
124	вывод итогов			146	ВЫВОД ИТОГОВ		
125				147			
126	Регрессионная стап	пистика		148	Регрессионная стал	пистика	
127	Множественный R	0,87402091		140	Museus and B	0.707001010	
128	R-квадрат	0,763912552	без ХЗ	149	ічножественный к	0,787961612	e
129	Нормированный R-квадрат	0,719646155		150	R-квадрат	0,620883501	без Х4
130	Стандартная ошибка	2,98584197		151	Нормированный R-квадрат	0,549799158	
131	Наблюдения	20		152	Стандартная ошибка	3,783700144	
100				153	Наблюдения	20	

Рис. 22. Значения коэффициентов детерминации $R^2_{yx_1...x_{i-1}x_{i+1}...x_m}$

Таким образом, получили:

 $R_{yx_2x_3x_4}^2 = 0,831; \ R_{yx_1x_3x_4}^2 = 0,783; \ R_{yx_1x_2x_4}^2 = 0,764; \ R_{yx_1x_2x_3}^2 = 0,621.$

Теперь рассчитаем частные критерии Фишера. В ячейку E84 вводим формулу «=(B31-B84)/(1-B31)*(15/4)». Получили $F_{_{\rm част,}X_4} = 0,336$. Аналогично вычислим критерии для остальных факторов. Значения частных критериев Фишера представлены на рис. 23.

Сравниваем полученные значения с табличным, которое ранее было определено в ячейке H38 ($F_{\text{табл}} = 3,056$). Так как только $F_{\text{част},X_4} > F_{\text{табл}}$, то целесообразно включение фактора X_4 в модель после включения других факторов. Таким образом, данный фактор является статистически значимым по сравнению с остальными.

	Буфер обмена 🙃 Шрифт	F	Выравнивание	п Число п	
E84	- : × ✓ fr =(B31-B84)/(1-B31)*(15/4)			
1	А	В	6	D	E
82	Регрессионная стати	стика			
83	Множественный R	0,911453466			_
84	R-квадрат	0,83074742	без Х1	F част X1	0,336097168
85	Нормированный R-квадрат	0,799012561			
86	Стандартная ошибка	2,528121941			
87	Наблюдения	20			
00	Буфер обмена 🕞 Шрифт	n.)	Выравнивание	rs Huceo rs	
E106	- : × < fr =(B31-B106)/(1-B	31)*(15/4)			
1	A	В	С	D	E
102	вывод итогов				
103					
104	Регрессионная стати	істика			
105	Множественный R	0,885099093			
106	R-квадрат	0,783400405	без Х2	F част Х2	1,479149198
107	Нормированный R-квадрат	0,742787981			
108	Стандартная ошибка	2,859954932			
109	Наблюдения	20			
	Буфер обмена та Шрифт	6	Выразнивание	is Nacao is	
E128	- X / fr =(B31-B128)/(1-6	331)*(15/4)			
1	A	В	С	D	E
124	вывод итогов				
125					
126	Регрессионная стат				
127	Множественный R	0,87402091			
128	R-квадрат	0,763912552	без ХЗ	F част X3	1,949625111
129	Нормированный R-квадрат	0,719646155			
130	Стандартная ошибка	2,98584197			
131	Наблюдения	20			
100	Буфер обмена та Шрифт		Выравнивание	л Чиско л	
E150	- : × √ fx =(B31-B150)/(1-E	131)*(15/4)			
	А	В	c	D	E
146	вывод итогов				
147					
148	Регрессионная стат	истика			
149	Множественный R	0,787961612			
150	R-квадрат	0,620883501	без Х4	F част Х4	5,402633607
151	Нормированный R-квадрат	0,549799158			
152	Стандартная ошибка	3,783700144			
153	Наблюдения	20			

Рис. 23. Значения частных критериев Фишера

6. Согласно полученным результатам можно сделать вывод, что в модели присутствует только один существенный фактор X_4 , остальные являются несущественными и их из модели множественной регрессии следует исключить. Для определения уравнения парной линейной регрессии с одним фактором воспользуемся функцией **«Регрессия»** в меню **«Анализ данных»**, где в поле **«Входной интервал Х**» вводится диапазон ячеек F2 – F21 значений переменной X_4 .

Результаты данной операции представлены на рис. 24.

1	A	В	С	D	E	F	G	Н	1
168	вывод итогов								
169									
170) Регрессионная статистика								
171	Множественный R	0,852881142							
172	R-квадрат	0,727406243							
173	Нормированный R-квадрат	0,712262146							
174	Стандартная ошибка	3,024907234							
175	Наблюдения	20							
176									
177	Дисперсионный анализ								
178		df	SS	MS	F	Значимость F			
179	Регрессия	1	439,4988521	439,4988521	48,03232666	1,77504E-06			
180	Остаток	18	164,7011479	9,150063773					
181	Итого	19	604,2						
182									
183		Коэффициенты	пандартная ошибі	t-статистика	Р-Значение	Нижние 95%	ерхние 95	жние 95,0	рхние 95,0%
184	Ү-пересечение	73,56046838	2,86020151	25,71863141	1,2066E-15	67,55140799	79,56953	67,55141	79,56953
185	Переменная Х 4	-0,219617655	0,031688409	-6,930535813	1,77504E-06	-0,286192533	-0,15304	-0,28619	-0,15304
186									

Рис. 24. Выходные данные операции «Регрессия» для переменных X₄ и Y

Согласно полученным данным, уравнение парной линейной регрессии с одним значимым фактором X_4 имеет вид:

$$\hat{Y}_X = 73,56 - 0,22 \cdot X_4,$$

коэффициент корреляции $r_{xy} = 0,85$, коэффициент детерминации $R^2 = 0,73$.

Сравнительный анализ результатов эксперимента и выводы

По результатам эксперимента получено неравенство $F_{\phi a \kappa \tau} > F_{raba}$, подтверждающее статистическую значимость всего уравнения и показателей тесноты связи факторов и объясняемой переменной.

В линейной модели множественной регрессии определен только один существенный фактор X_4 , остальные являются несущественными, и их из модели множественной регрессии следует исключить для определения уравнения парной линейной регрессии с одним фактором.

Форма отчета о лабораторной работе

- 1. Титульный лист.
- 2. Расчетные формулы. Графики.
- 3. Порядок расчета значений параметров и характеристик, пояснения к расчетам, выводы по полученным данным в соответствии с алгоритмом проведения опыта.
- 4. Анализ данных, произведенный в Excel, в качестве приложения и обоснования верности проведенных расчетов и выводов.

Критерии оценки лабораторной работы

«Зачтено» — выполнено не менее 70 % всех заданий лабораторной работы.

«Не зачтено» — выполнено менее 70 % всех заданий лабораторной работы.

Требования к технике безопасности при выполнении работы

При выполнении лабораторных работ на ПЭВМ необходимо соблюдать гигиенические требования к персональным электронно-вычислительным машинам и организации работы, установленные СП 2.2.3670-20 «Санитарно-эпидемиологические требования к условиям труда» (URL: http://www.rospotrebnadzor.ru/g:les/news/ sp2.2.3670-20_trud.pdf).

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- Галочкин, В. Т. Эконометрика : учебник и практикум для вузов / В. Т. Галочкин. – Москва : Юрайт, 2021. – 293 с. – (Высшее образование). – URL: urait.ru/bcode/486226 (дата обращения: 30.03.2022). – ISBN 978-5-534-14974-6.
- Домбровский, В. В. Эконометрика : учебник / В. В. Домбровский. Москва : Новый учебник, 2004. 342 с. ISBN 5-8393-0400-Х.
- Доугерти, К. Введение в эконометрику = Introduction to Econometrics : учебник для вузов / К. Доугерти ; пер. с англ.
 Е. Н. Лукаш [и др.] ; науч. ред. О. О. Замков. – Москва : ИНФРА-М, 2001. – 402 с. – (Университетский учебник). – ISBN 5-86225-458-7.
- Кремер, Н. Ш. Эконометрика : учебник для студентов вузов / Н. Ш. Кремер, Б. А. Путко ; под ред. Н. Ш. Кремера. – 3-е изд., перераб. и доп. – Москва : ЮНИТИ-ДАНА, 2017. – 328 с. – URL: www.iprbookshop.ru/71071.html (дата обращения: 30.03.2022). – ISBN 978-5-238-01720-4.
- Кузнецова, О. А. Эконометрика : (продвинутый уровень) : электрон. учеб.-метод. пособие / О. А. Кузнецова, С. Ш. Палфёрова ; Тольяттинский государственный университет. – Тольятти : Издво ТГУ, 2020. – 125 с. – URL: dspace.tltsu.ru/ (дата обращения: 30.03.2022). – ISBN 978-5-8259-1525-8.
- Орлов, А. И. Эконометрика : учебник для вузов / А. И. Орлов. 2-е изд., перераб. и доп. – Москва : Экзамен, 2003. – 575 с. – ISBN 5-94692-452-4.
- Приходько, А. И. Практикум по эконометрике : Регрессионный анализ средствами Excel : учеб. пособие / А. И. Приходько. – Ростов-на-Дону : Феникс, 2007. – 250 с. – (Высшее образование). – ISBN 978-5-222-11214-4.
- Сборник задач по эконометрике : учеб. пособие для вузов / сост. Е. Ю. Дорохина [и др.] ; под общ. ред. Н. П. Тихомирова. – Москва : Экзамен, 2003. – 222 с. – ISBN 5-94692-206-8.
- Тихомиров, Н. П. Эконометрика : учебник для вузов / Н. П. Тихомиров, Е. Ю. Дорохина. – Москва : Экзамен, 2003. – 510 с. – ISBN 5-94692-438-9.

- Абдуллин, Р. З. Эконометрика в MS Excel : практикум / Р. З. Абдуллин, В. Р. Абдуллин ; Байкальский государственный университет. – Иркутск : Изд-во БГУ, 2016. – 134 с. – URL: www.studmed.ru/ abdullin-r-z-abdullin-v-r-ekonometrika-v-ms-excel_4ee516a789c. html (дата обращения: 31.03.2022).
- Эконометрика : учебник для вузов / И. И. Елисеева, С. В. Курышева, Ю. В. Нерадовская [и др.] ; под ред. И. И. Елисеевой. Москва : Юрайт, 2021. 449 с. (Высшее образование). URL: urait.ru/bcode/468366 (дата обращения: 31.03.2022). ISBN 978-5-534-00313-0.
- 12. Эконометрика : лабораторный практикум / Амурский гуманитарно-педагогический государственный университет ; сост. Н. А. Чечерова. – 2-е электрон. изд. – Комсомольск-на-Амуре [и др.] : Изд-во АмГПГУ [и др.], 2019. – 175 с. – URL: www. iprbookshop.ru/85837.html (дата обращения: 31.03.2022). – ISBN 978-5-4497-0154-1.
- Яковлева, А. В. Эконометрика : учеб. пособие / А. В. Яковлева. 2-е изд. (электрон.). Саратов : Научная книга, 2019. 223 с. URL: www.iprbookshop.ru/81090.html (дата обращения: 31.03.2022). ISBN 978-5-9758-1820-1.