МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт энергетики и электротехники

Кафедра «Электроснабжение и электротехника»

13.03.02 Электроэнергетика и электротехника

(код и наименование направления подготовки, специальности)

Электроснабжение

(направленность (профиль))

БАКАЛАВРСКАЯ РАБОТА

на тему «Реконструкция электрической части понизительной подстанции «Кряжская» 110/35/6 кВ»

Студент(ка)	А.В. Ускова	
Руководитель	(И.О. Фамилия) С.В. Шлыков	(личная подпись)
	(и.О. Фамилия)	(личная подпись)
Консультанты	(И.О. Фамилия)	(личная подпись)
	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
Заведующий кафедрой	і д.т.н., профессор В.В. Вахнина	
44	2016 -	
(()	2016 г.	

Тольятти 2016

Аннотация

Темой выпускной квалификационной работы являлась реконструкция главной понизительной подстанции «Кряжская».

Пояснительная записка включает в себя следующие разделы: введение и заключение;

- 1) расчёт электрических нагрузок понизительной ПС;
- 2) выбор типа, числа, мощности силовых трансформаторов;
- 3) расчёт токов короткого замыкания;
- 4) выбор электрических аппаратов;
- 5) компенсация емкостных токов;
- 6) собственные нужды подстанции;
- 7) молниезащита, заземление и защита от перенапряжений.

Выпускная квалификационная работа состоит из пояснительной записки на 52 листа, одного приложения, 15 таблиц, 7 рисунков, шести чертежей на формате

А1.

Содержание

Введение	4
1 Описание объекта	6
2 Расчет электрических нагрузок понизительной подстанции	8
3 Выбор типа, числа и мощности силовых трансформаторов	10
4 Расчет токов короткого замыкания	24
5 Выбор электрических аппаратов	37
6 Компенсация емкостных токов	43
7 Собственные нужды подстанции	49
8 Молниезащита, заземление и защита от перенапряжений	52
Заключение	54
Список использованных источников	55

Введение

Электрическая энергия является наиболее удобным и дешевым видом энергии. Широкое распространение электрической энергии обусловлено относительной легкостью ее получения, преобразования и возможностью ее передачи на большие расстояния.

Огромную роль в системах электроснабжения играют электрические подстанции электроустановки, предназначенные приема, ДЛЯ преобразования И распределения электроэнергии. Различают вида электрической распределительная трансформаторная. подстанции: И Распределительная подстанция работает на одном напряжении и служит узлом для потребителей и других подстанций. На трансформаторной используются трансформаторы для повышения или понижения напряжения. Чаще всего встречаются совмещенные подстанции. Они являются важным звеном в системе электроснабжения.

При проектировании подстанции стараются использовать типовые решения, схемы и элементы, что приводит к унификации оборудования подстанции и, как следствие, к удешевлению обслуживания и проектировочной стоимости. Но на практике, при проектировании подстанции приходится учитывать особенности месторасположения и другие исходные условия.

Проектирование электрической части подстанции представляет собой сложный процесс выработки и принятия решений по схеме электрических соединений, составу электрооборудования и его размещению.

Схема подстанции тесно увязывается с назначением и способом присоединения подстанции к питающей сети и должна:

- обеспечивать надёжность электроснабжения потребителей подстанции и перетоков мощности по межсистемным или магистральным связям в нормальном и в послеаварийном режимах;
 - учитывать перспективу развития;

- допускать возможность постепенного расширения распределительного устройства всех напряжений;
 - учитывать требования противоаварийной автоматики.

Цель – обеспечить надежное и бесперебойное питание потребителей электрической энергии путем проектирования электрической части понизительной двухтрансформаторной подстанции. Для достижения данной цели поставлены следующие задачи:

- рассчитать электрическую нагрузку понизительной подстанции;
- произвести выбор типа, числа и мощности силовых трансформаторов;
- осуществить выбор электрической схемы подстанции;
- произвести расчет токов короткого замыкания, на основании которого выбрать электрические аппараты и проводники;
- произвести выбор основных конструктивных решений по понизительной подстанции;
- спроектировать схему релейной защиты и систему измерений на подстанции, а также выбрать оперативный ток;
 - произвести расчет заземления и молниезащиту подстанции.

1 Описание объекта

1.1 Территориальное расположение подстанции

Проектируемая подстанция «Кряжская»» принадлежит филиалу ОАО «МРСК Волги» и предназначена для надежного и качественного электроснабжения существующих потребителей и покрытия перспективных нагрузок.

Подстанция «Кряжская» располагается по адресу: город Самара, улица Ново-Садовая, 106/133.

Рисунок 1 – Расположение подстанции «Кряжская»

1.2 Оценка оборудования подстанции «Кряжская» до реконструкции и решения по обновлению оборудования

Проектом предусмотрена заменой реконструкция подстанции трансформаторов с 2х40 МВА на 2х63 МВА с количеством присоединений на стороне 110 кВ, согласно «Технического задания на разработку проектной и рабочей документации реконструкции ПС 110 кВ «Кряжская», ОРУ – 110, ЗРУ – 110, ЗРУ – 35, с заменой силовых трансформаторов с 2х40 на 2х63». В процессе оборудования реконструкции предполагается замена открытого распределительного устройства 110 кВ, замена оборудования закрытого распределительного устройства 110 кВ со схемой первичных соединений по

схеме «Двойная система шин с шиносоеденительным выключателем и с обходной системой шин на ОРУ – 110 кВ», закрытого распределительного устройства 35 кВ со схемой первичных соединений по схеме «Двойная система шин с шиносоеденительным выключателем», закрытого распределительного устройства 6 кВ со схемой первичных соединений по схеме «Две одиночные, секционирпованные выключателями системы шин».

2 Расчёт электрических нагрузок понизительной подстанции

На каждой ступени распределительного напряжения проектируемой подстанции (ПС) заданы нагрузки потребителей в виде максимальных значений активной мощности P, которые соответствуют 100% максимальной ступени для суточных графиков и годовых графиков по продолжительности. Значения мощностей для других ступеней нагрузки по графикам определяются пропорционально в виде P(t).

По известным годовым графикам по продолжительности для заданных потребителей (из задания) P(t) определяются значения потребляемой электроэнергии, как для отдельных потребителей:

$$W_n = \sum_{i=1}^n P_{in}(t) \, t_{in},$$

где P_{in} - мощность потребителя на конкретной ступени, t_{in} - время потребления этой мощности на конкретной ступени.

Суммарный график нагрузки представлен на рисунке 2.

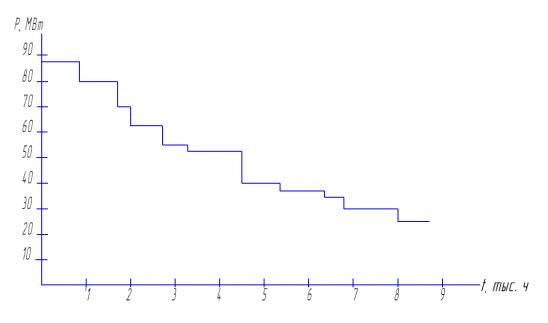


Рисунок 2 – Суммарный график нагрузки

Найдём значение полной мощности потребителей на подстанции:

$$S_{\Pi C} = \frac{P_{\Pi C}}{\cos \varphi_{\Pi C}};$$

$$S_{IIC} = \frac{140586, 5}{0,92} = 87,5 \text{ MBA}.$$

3 Выбор типа, числа и мощности силовых трансформаторов

3.1 Выбор числа и мощности силовых трансформаторов

Количество трансформаторов на подстанции выбирается с учетом категории надежности потребителей питания. На данной подстанции присутствуют потребители первой категории. На подстанции установлено два трансформатора. Вычисляем мощность трансформатора:

$$S_{\text{hom}T} \ge \frac{S_{\text{max}\Pi C} \cdot \kappa_{1-2}}{\kappa_{nep} \cdot (n-1)},$$

где $\kappa_{_{1-2}}$ - коэффициент участия в нагрузке потребителей первой и второй категории (0,75...0,85);

 $\kappa_{{}_{nep}}$ - коэффициент перегрузки трансформатора равный 1,4.

$$S_{HOM.T} \ge \frac{87,5 \cdot 0,8}{1,4 \cdot (2-1)} \ge 50,2 \text{ MBA}.$$

Исходя из этого выбираем трансформаторы типа ТДТН-63000/110/35/6 и ТДТН-80000/110/35/6.

3.2 Технико-экономический выбор трансформатора

3.2.1 Расчёт ТДТН-63000/110/35/6

Технические параметры трансформатора ТДТН-63000/110/35/6 представлены в таблице 1.

Таблица 1 – Параметры ТДТН-63000/110/35/6

Тип	Рх, кВт	Рк, кВт	Uk, % B-H	ix, %
ТДТН-63000/110/10/6	45	270	37	0,28

Рассчитаем потери реактивной мощности трансформатора в режиме х.х.:

$$Q_{xx} = \frac{I_{xx}}{100} \cdot S_{HOM};$$
 $Q_{xx} = \frac{0.28}{100} \cdot 63000 = 176,4$ квар.

Рассчитаем коэффициенты загрузки обмоток трансформатора:

$$\kappa_{_{3.n}}=\frac{S_{_{n}}}{S_{_{HOM}}};$$

$$\kappa_{_{3.6}} = \frac{87.5}{63} = 1,38;$$

$$\kappa_{\rm 3.c} = \frac{35}{63} = 0,55;$$

$$\kappa_{_{3.H}} = \frac{52,5}{63} = 0,8.$$

Найдём приведённые потери мощности в режиме холостого хода:

$$P_x^{'} = \Delta P_x + \kappa_{un} \cdot Q_x;$$

 $P_x^{'} = 45 + 0.05 \cdot 176, 4 = 53.82 \,\kappa Bm;$

где ΔP_{x} - потери холостого хода трансформатора, кВт;

 κ_{un} - коэффициент изменения потерь, который зависит от удаленности потребителей и от источника питания, принимаем равный $0.05~\mathrm{kBt/kBap}$.

Найдём напряжения короткого замыкания обмоток трансформатора:

$$U_{\kappa B} = 0,5 \cdot (U_{\kappa BH-HH} + U_{\kappa BH-CH} - U_{\kappa CH-HH});$$

$$U_{\kappa B} = 0,5 \cdot (18 + 37 - 7) = 10,75\%;$$

$$U_{\kappa C} = 0,5 \cdot (U_{\kappa BH-CH} + U_{\kappa CH-HH} - U_{\kappa BH-HH});$$

$$U_{\kappa C} = 0,5 \cdot (37 + 7 - 18) = 0,25;$$

$$U_{\kappa H} = 0,5 \cdot (U_{\kappa BH-HH} + U_{\kappa CH-HH} - U_{\kappa BH-CH});$$

$$U_{\kappa H} = 0,5 \cdot (18 + 7 - 37) = 7,25\%.$$

Найдём реактивные потери обмоток трансформатора в режиме к.з.:

$$Q_{\text{к.в}} = \frac{U_{\text{к.В}}}{100} \cdot S_{\text{ном}};$$

$$Q_{\text{к.в}} = \frac{10,75}{100} \cdot 63000 = 6772,5 \text{ квар};$$

$$Q_{\text{к.С}} = \frac{0,25}{100} \cdot 63000 = 157,5 \text{ квар};$$

$$Q_{\text{к.H}} = \frac{7,25}{100} \cdot 63000 = 4567,5 \text{ квар}.$$

Рассчитаем приведённые потери мощности трансформатора:

$$P_{T}^{'}=P_{x}^{'}+\kappa_{_{3.6}}^{^{2}}\cdot P_{_{\kappa.B}}^{'}+\kappa_{_{3.c}}^{^{2}}\cdot P_{_{\kappa.c}}^{'}+\kappa_{_{3.H}}^{^{2}}\cdot P_{_{\kappa.H}}^{'};$$

$$P_{T}^{'}=53,82+0,803^{^{2}}\cdot 41,34375+0,396^{^{2}}\cdot 1068,8125+0,41^{^{2}}\cdot 1068,8125=$$

$$=449,356\text{ kBt}.$$

Экономическая нагрузка трансформаторов для подстанции:

$$\begin{split} S_{_{9.nc}} &= S_{_{HOM.T}} \cdot \sqrt{n \cdot (n-1) \cdot \frac{P_{_{x}}^{'}}{P_{_{\kappa}}^{'}}}; \\ S_{_{9.nc}} &= 63000 \cdot \sqrt{2 \cdot (2-1) \cdot \frac{53,82}{600,75}} = 26,667 \text{ MBA}. \end{split}$$

Найдём потери электроэнергии подстанции:

$$\Delta W_{nc} = \sum n_i \cdot P_x^{'} \cdot T_i + \sum_{i=1}^{\kappa} \left(\frac{1}{n} \cdot P_{\kappa.B}^{'} \cdot \kappa_{\kappa.B}^2 \cdot T_i + \frac{1}{n} \cdot P_{\kappa.C}^{'} \cdot \kappa_{\kappa.C}^2 \cdot T_i + \frac{1}{n} \cdot P_{\kappa.H}^{'} \cdot \kappa_{\kappa.H}^2 \cdot T_i\right)$$

Результаты расчётов потерей электроэнергии приведены в таблице 2.

Таблица 2 - Результаты расчётов потерей электроэнергии трансформатора ТРДЦН-63000/110/35/10

i	Ѕві, МВА	Sci, MBA	Ѕні, МВА	ni	Тi, ч	Wxi, кВт • ч	Кзв	Кзс	Кзн	Wкв, кВт∙ч	Wкс, кВт∙ч	Wкн, кВт•ч	∑Wпс, кВт∙ч
1	87,5	35	52,5	2	750	80730	1,38	0,55	0,8	32136,75	5104,6	10800	
2	81,3	32,5	48,8	2	1000	107640	1,29	0,5	0,77	37442,25	5625	13340,25	
3	70,9	28,4	42,5	2	250	26910	1,13	0,45	0,67	7182,56	1139	2525	
4	62,3	24,9	37,4	2	750	80730	0,98	0,39	0,6	16206,75	2566,7	6075	
5	56,2	22,5	33,7	2	500	53820	0,89	0,36	0,54	8911,125	1458	3280,5	
6	53,1	21,2	31,86	2	1250	134550	0,84	0,3	0,5	19845	2531,25	7031,25	
7	40,8	16,3	24,5	2	750	80730	0,65	0,26	0,39	7129,9	1140,75	2566,7	
8	38,2	15,3	22,9	2	1000	107640	0,6	0,24	0,36	8100	1296	2916	
9	35,6	14,2	21,4	2	500	53820	0,57	0,23	0,34	3655	595,125	1300,5	
10	29,1	11,6	17,5	2	1250	134550	0,46	0,18	0,28	5951,25	911,25	2205	
11	27,8	11,1	16,7	2	576	62000	0,44	0,17	0,26	2509	374,5	876	
		Σ		•		1649420				149069,58	22742,2	52916,3	1874148

3.2.2 Расчёт ТДТН-80000/110/35/6

Технические параметры трансформатора ТДТН-80000/110/35/6 представлены в таблице 3.

Таблица 3 – ТДТН-80000/110/35/6

Тип	Рх, кВт	Рк, кВт	Uk, % B-H	ix, %
ТДТН-80000/110/10/6	102	390	37	0,6

Рассчитаем потери реактивной мощности трансформатора в режиме х.х.:

$$Q_{xx} = \frac{I_{xx}}{100} \cdot S_{HOM} = \frac{0.6}{100} \cdot 80000 = 480$$
 квар.

Рассчитаем коэффициенты загрузки обмоток трансформатора:

$$\kappa_{_{3.n}} = \frac{S_n}{S_{_{HOM}}};$$

$$\kappa_{_{3.6}} = \frac{87.5}{80} = 1.09;$$

$$\kappa_{_{3.c}} = \frac{35}{80} = 0,43;$$

$$\kappa_{_{3.H}} = \frac{52,5}{80} = 0,66.$$

Найдём приведённые потери мощности в режиме х.х. трансформатора используя формулу:

$$P_x' = \Delta P_x + \kappa_{un} \cdot Q_x = 102 + 0,05 \cdot 480 = 126 \text{ kBt},$$

где ΔP_{x} - потери холостого хода трансформатора, кВт;

 κ_{un} - коэффициент изменения потерь, который зависит от удаленности потребителей и от источника питания, принимаем равный $0,05~\mathrm{kBt/kBap}$.

Найдём напряжения короткого замыкания обмоток трансформатора:

$$U_{\kappa B} = 0,5 \cdot (\mathbf{u}_{\kappa B-H} + u_{\kappa B-C} + u_{\kappa C-H}) = 0,5 \cdot (17 + 37 - 6,5) = 10,5;$$

$$U_{\kappa C} = 0,5 \cdot (u_{\kappa B-C} + u_{\kappa C-H} - u_{\kappa B-H}) = 0,5 \cdot (37 + 6,5 - 17) = 0;$$

$$U_{\kappa H} = 0,5 \cdot (u_{\kappa B-H} + u_{\kappa C-H} - u_{\kappa B-C}) = 0,5 \cdot (17 + 6,5 - 37) = 6,5.$$

Найдём реактивные потери обмоток трансформатора в режиме к.з.:

$$Q_{\kappa.n} = \frac{U_{\kappa.n}}{100} \cdot S_{hom};$$

$$Q_{\kappa.6} = \frac{37}{100} \cdot 80000 = 8400$$
 квар;

$$Q_{\kappa,H} = \frac{0}{100} \cdot 80000 = 0$$
 квар;

$$Q_{\kappa,H} = \frac{6.5}{100} \cdot 80000 = 5200$$
 квар.

Найдём приведённые потери обмоток трансформатора в режиме к.з.:

$$P_{\kappa n}' = P_{\kappa n} + \kappa_{\nu n} \cdot Q_{\kappa n};$$

$$P_{\kappa,g}^{'} = 0 + 0.05 \cdot 1640.625 = 82.03125$$
 kBt;

$$P_{\kappa,H1}^{'} = P_{\kappa,H2}^{'} = 800 + 0.05 \cdot 22968,75 = 1948,4375$$
 kBt,

где
$$P_{\kappa.n}=P_{\kappa.e}=0\cdot\Delta P_{\kappa.BH-HH}=0\cdot245=0$$
 кВт;

$$P_{\kappa,n} = P_{\kappa,H1} = P_{\kappa,H2} = 2 \cdot \Delta P_{\kappa,BH-HH} = 2 \cdot 400 = 800 \text{ kBt}.$$

Рассчитаем приведённые потери мощности трансформатора:

$$P_{T}^{'} = P_{x}^{'} + \kappa_{3.6}^{2} \cdot P_{\kappa.B}^{'} + \kappa_{3.H1}^{2} \cdot P_{\kappa.H1}^{'} + \kappa_{3.H2}^{2} \cdot P_{\kappa.H2}^{'} = 134,375 + 0,607^{2} \cdot 82,03125 + 0,3^{2} \cdot 1948,4375 + 0,307^{2} \cdot 1948,4375 = 523,853 \text{ kBt.}$$

Экономическая нагрузка трансформаторов для подстанции:

$$S_{9,nc} = S_{HOM,T} \cdot \sqrt{n \cdot (n-1) \cdot \frac{P_x^{'}}{P_\kappa^{'}}} = 80000 \cdot \sqrt{2 \cdot (2-1) \cdot \frac{1126}{414}} = 62,415 \text{ MBA}.$$

Найдём потери электроэнергии подстанции:

$$\Delta W_{nc} = \sum n_i \cdot P_x^{'} \cdot T_i + \sum_{i=1}^{\kappa} (\frac{1}{n} \cdot P_{\kappa,B}^{'} \cdot \kappa_{\kappa,B}^2 \cdot T_i + \frac{1}{n} \cdot P_{\kappa,C}^{'} \cdot \kappa_{\kappa,C}^2 \cdot T_i + \frac{1}{n} \cdot P_{\kappa,H}^{'} \cdot \kappa_{\kappa,H}^2 \cdot T_i)$$

Результаты расчётов потерей электроэнергии приведены в таблице 4.

Таблица 4 - Результаты расчётов потерей электроэнергии трансформатора ТДТН-80000/110/35/6

i	SBi, MBA	SH1i, MBA	SH2i, MBA	ni	Тi, ч	Wxi, кВт • ч	Кзв	Кзн1	Кзн2	Wкв, кВт•ч	Wкн1, кВт∙ч	Wкн2, кВт•ч	∑Wпс, кВт∙ч
1	87,5	35	52,5	2	750	189000	1,09	0,43	0,66	20049	3120,2	7350,75	
2	81,3	32,5	48,8	2	1000	252000	1	0,4	0,61	22500	3600	8372,25	
3	70,9	28,4	42,5	2	250	63000	0,88	0,35	0,55	4356	689,1	1580	
4	62,3	24,9	37,4	2	750	189000	0,77	0,3	0,47	10005	1518,75	3727,7	
5	56,2	22,5	33,7	2	500	126000	0,7	0,28	0,42	5512,5	882	1984,5	
6	53,1	21,2	31,86	2	1250	315000	0,66	0,26	0,39	12251,25	1901,25	4277,8	
7	40,8	16,3	24,5	2	750	189000	0,51	0,2	0,3	4389	675	1518,75	
8	38,2	15,3	22,9	2	1000	252000	0,48	0,19	0,28	5184	812,25	1764	
9	35,6	14,2	21,4	2	500	126000	0,45	0,17	0,26	2278,125	325,125	760,5	
10	29,1	11,6	17,5	2	1250	315000	0,36	0,16	0,23	3645	720	1487,8	
11	27,8	11,1	16,7	2	576	145152	0,34	0,14	0,2	1498,2	254	518,4	
		Σ								91668,075	14397,675	33342,45	2300560,1

Найдём стоимость электроэнергии за 1 кВт.ч.:

$$C_{9} = \frac{\alpha}{T_{yy}} + \beta;$$

$$C_{9} = \frac{441}{6376,44} + 0.18 = 0.979 \frac{\text{pyo}}{\text{kBt}},$$

где α =441- основная ставка двухставочного тарифа за 1 кВт \cdot ч договорной мощности;

 β =0,18- дополнительная ставка двухставочного тарифа за каждый, кВт \cdot ч.

Найдём стоимость годовых потерь электроэнергии в трансформаторах:

$$M_{2} = \Delta W_{nc} \cdot C_{2};$$

$$M_{9.63} = 1874148 \cdot 0,979 = 1834790,892 \text{ py6};$$

$$M_{2.80} = 2300560, 1.0, 979 = 2252248, 4 \text{ py6},$$

где $U_{\scriptscriptstyle 9.63}$ - стоимость годовых потерь трансформатора ТДТН-63000/110/35/6, $U_{\scriptscriptstyle 9.80}$ - стоимость годовых потерь трансформатора ТДТН-80000/110/35/6. Определим экономическую целесообразность трансформаторов используя метод приведённых затрат:

$$3_{np} = E_{\scriptscriptstyle H} \cdot K + p_{\scriptscriptstyle CYM} \cdot K + M_{\scriptscriptstyle 9},$$

где $E_{_{\scriptscriptstyle H}}$ =0,1 - нормативный коэффициент дисконтирования,K - капитальные затраты на оборудование ΠC (учитывается только стоимость

трансформаторов) для ТРДЦН-63000/110/35/6 K = 28 млн. руб., для ТДТН-80000/110/35/6 K = 36 млн. руб., $p_{_{\text{сум}}}$ = 0,094- суммарный коэффициент отчислений на обслуживание и ремонт.

$$\begin{split} 3_{np.63} &= 2 \cdot (0, 1 \cdot 28 \cdot 10^6 + 0,094 \cdot 28 \cdot 10^6) + 1834790,892 = 12698790,892 \text{ py6.} \\ 3_{np.80} &= 2 \cdot (0, 1 \cdot 36 \cdot 10^6 + 0,094 \cdot 36 \cdot 10^6) + 2252248,4 = 1622024,4 \text{ py6.} \end{split}$$

Из приведенных затрат видно, что выгоднее использовать трансформатор ТДТН-63000/110/35/6. Основные данные силового трансформатора представлены в приложение А.

4 Расчет токов короткого замыкания

Расчеты токов короткого замыкания (к.з.) необходимы для выбора и проверки электрических аппаратов и проводников, проектирования и настройки устройств релейной защиты и автоматики, проектирования заземляющих устройств и т.д.

В данном пункте рассмотрим расчет токов трехфазного и однофазного короткого замыкания напряжением выше 1 кВ.

4.1 Расчет токов трехфазного короткого замыкания

Расчет токов трехфазного к.з. выполняется в следующем порядке:

- составляется расчетная схема рассматриваемой электроустановки. Намечаются расчетные точки к.з. Такая схема приведена на рисунке 3;
- на основании расчетной схемы составляется эквивалентная схема замещения, все сопротивления на ней нумеруется. Такая схема приведена на рисунке 4.
- определяются величины сопротивлений всех элементов схемы замещения в относительных или именованных единицах, номинальные параметры берутся в каталожных данных электрооборудования, средние значения удельных сопротивлений линий электропередачи $X_{yд}$. Расчет сопротивлений ведется в относительных единицах относительно базисной ступени 110 кВ. Расчетные формулы для определения сопротивлений в относительных единицах приведены в таблице 5;
- путем постепенного преобразования относительно расчетной точки к.з. приводят схему замещения к наиболее простому виду, чтобы каждый источник питания или группа источников, характеризующиеся определенными значениями эквивалентной ЭДС и ударного коэффициента, были связаны с точкой к.з. одним результирующим сопротивлением;

- определяют начальное действующее значение периодической составляющей тока к.з. $I_{n,o}$, а затем ударный ток $i_{y\partial}$, периодическую и апериодическую составляющие тока к.з. для данного момента времени.

Составим расчетную схему для вычисления тока короткого замыкания, и наметим точки короткого замыкания.

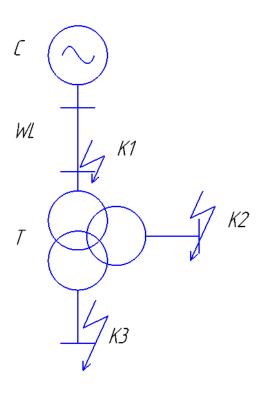


Рисунок 3 – Расчетная схема

На основании расчетной схемы составим схему замещения с обозначением сопротивлением входящих в нее элементов.

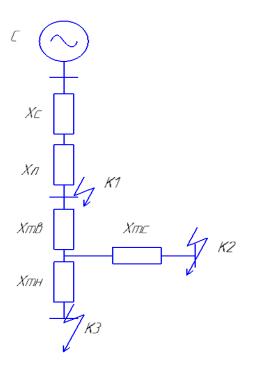


Рисунок 4 – Схема замещения

По стандартным формулам рассчитаем в относительных единицах приведенные к базисной мощности значения сопротивлений элементов.

Таблица 5 – Расчетные формулы для определения сопротивлений

Наименование	Исходный	Относительные единицы, о.е.
элемента	параметр	
Система	S_k , MBA.	$x_C = \frac{S_{\delta}}{S_k} = \frac{1000}{3200} = 0,313.$
Трансформатор	$U_{\scriptscriptstyle k},\%_{;}$ $S_{\scriptscriptstyle HOM},$ MBA.	$x_{T.B} = \frac{U_{kB}}{100} \cdot \frac{S_{\delta}}{S_{HOM T}} = \frac{10,75}{100} \cdot \frac{1000}{63} = 1,7;$ $x_{T.C} = \frac{U_{kC}}{100} \cdot \frac{S_{\delta}}{S_{HOM T}} = \frac{0,25}{100} \cdot \frac{1000}{63} = 0,04;$ $x_{T.H} = \frac{U_{kH}}{100} \cdot \frac{S_{\delta}}{S_{HOM T}} = \frac{7,25}{100} \cdot \frac{1000}{63} = 1,15$
Линия электропередачи	$x_{y\partial}$, Ом/км; l , км.	$x_n = x_{y\partial} l \cdot \frac{S_{\delta}}{U_{cp}^2} = 0,147 \cdot 2 \cdot \frac{1000}{115^2} = 0,022228$.

где $S_{\sigma}=1000~{
m MBA}$ - базисная мощность;

 S_k – мощность K3 системы определяемая заданием;

 U_{δ} – базисное напряжение, кВ;

1 - длина линии, км;

 $x_{y\partial}$ -удельное (погонное) реактивное сопротивление кабельной линии на км длины.

Определим начальное действующее значение периодической составляющей тока к.з.:

$$I_{n,o} = \frac{E_{*_{\delta}}^{"}}{X_{*_{pes(\delta)}}} \cdot I_{\delta} \text{ KA},$$

где
$$I_{\sigma} = \frac{S_{\sigma}}{\sqrt{3} \cdot U_{\sigma}}$$
 – базисный ток, кА;

 S_{δ} – базисная мощность, MBA;

 $E_{*_{6}}^{"}$ —сверхпереходная ЭДС, о.е.;

 $\mathcal{X}_{*_{pe3(\vec{0})}}$ —результирующее сопротивление до точки к.з., о.е.

Максимальное значение апериодической составляющей тока к.з. определяется по формуле :

$$I_{a,\tau} = \sqrt{2} \cdot I_{n,o} \cdot e^{-\tau/T_a},$$

где $\tau=t_{p,3}+t_{c,s}$ - расчетное время, соответствующее времени размыкания цепи при к.з. дугогасительными контактами выключателями; $t_{c,s}$ - собственное время отключения выбранного выключателя, с ($t_{c,s}$ =0,03);

 $t_{p,3}$ - время срабатывания релейной защиты, принимаемое равным 0,01с;

 T_a - постоянная времени затухания апериодической составляющей тока к.з.

Ударный ток к.з. определяем по формуле:

$$i_{v\partial} = \sqrt{2} \cdot I_{n,o} \cdot k_{v\partial} ,$$

где $k_{y\delta}$ - ударный коэффициент.

Таблица 6 – Расчетные формулы для определения сопротивлений

Исходный	Относительные единицы, о.е.
параметр	
	$R_{TB} = \frac{x_{TB}}{\left(\frac{X}{R}\right)_{T}} = \frac{1,7}{27} = 0,0062;$
	$R_{TC} = \frac{x_{TC}}{\left(\frac{X}{R}\right)_T} = \frac{0.04}{27} = 0.0015;$
	$R_{TH} = \frac{x_{TH}}{\left(\frac{X}{R}\right)_T} = \frac{1,15}{27} = 0,043.$
$R_{y\partial}$, OM/KM;	$R_{_{\pi}} = R_{_{yo}}l \cdot \frac{S_{_{6}}}{U^{_{cp}}} = 0,102 \cdot 2 \cdot \frac{1000}{115^{_{2}}} = 0,019055$.
	параметр $S_{\scriptscriptstyle HOM},$ MBA.

где $\left(\frac{X}{R}\right)_{\!\scriptscriptstyle T}$ - это отношения реактивного сопротивления к активному силового трансформатора ТДТН-63000/110/35/6;

 $R_{y\vartheta}$ - удельное (погонное) активное сопротивление линии на км длины.

Найдём постоянную времени затухания апериодической составляющей тока короткого замыкания в точке K1:

$$T_{a.\kappa 1} = \frac{x_c + x_{\pi}}{2 \cdot \pi \cdot f \cdot R_{\pi}};$$

$$T_{a.\kappa 1} = \frac{0.313 + 0.022228}{2 \cdot \pi \cdot 50 \cdot 0.019055} = 0.056 \text{ c.}$$

Найдём постоянную времени затухания апериодической составляющей тока короткого замыкания в точке K2:

$$T_{a.\kappa2} = \frac{x_c + x_{\pi} + x_{T.B} + x_{T.C}}{2 \cdot \pi \cdot f \cdot R_{\pi} + R_{T.B} + R_{T.C}};$$

$$T_{a.\kappa2} = \frac{0,215517 + 0,022228 + 0,208333 + 2,5321}{2 \cdot \pi \cdot 50 \cdot 0,019055 + 0,0062 + 0,0015} = 0,332 \text{ c.}$$

Найдём постоянную времени затухания апериодической составляющей тока короткого замыкания в точке K3:

$$T_{a.\kappa3} = \frac{x_c + x_n + x_{T.B} + x_{T.H}}{2 \cdot \pi \cdot f \cdot R_n + R_{T.B} + R_{T.H}};$$

$$T_{a.\kappa2} = \frac{0.215517 + 0.022228 + 0.208333 + 2.867}{2 \cdot \pi \cdot 50 \cdot 0.019055 + 0.0062 + 0.043} = 0.155 \text{ c.}$$

Найдём ударный коэффициент тока короткого замыкания в точке К1:

$$k_{y\partial.\kappa 1} = 1 + e^{-\tau/T_a}$$
; .
$$k_{y\partial.\kappa 1} = 1 + e^{-0.01/0.04898} = 1.815335.$$

Найдём ударный коэффициент тока короткого замыкания в точках К2:

$$k_{y\partial.\kappa2} = 1 + e^{-\tau/T_a}$$
;.
$$k_{y\partial.\kappa2} = 1 + e^{-0.01/0.081590833} = 1,884650358.$$

Найдём ударный коэффициент тока короткого замыкания в точке К3:

$$k_{y\partial.\kappa3} = 1 + e^{-\tau/T_a};$$

$$k_{y\partial.\kappa3} = 1 + e^{-0.01/0.081924} = 1,8746503.$$

По значения T_a и k_{yo} , занесём в таблицу 7 для характерных точек электросети .

Таблица 7 — Расчётные значения T_a и k_{yo} для характерных точек к.з.

Точка КЗ	T_a	$k_{y\dot{o}}$
K1	0,048982	1,815335
K2	0,081590833	1,884650358
К3	0,081924	1,8746503

Рассчитаем суммарное сопротивление для точек K1, K2 и K3, исходя из данных, рассчитанных в таблице 5:

$$x_{\Sigma_{K1}} = x_C + x_{II};$$

$$x_{\Sigma \kappa 1} = 0.215517 + 0.022228 = 0.237745 \text{ Om.}$$

$$x_{\Sigma_{\kappa}2} = x_C + x_{\pi} + x_{TB} + x_{TC};$$

$$x_{_{\Sigma \ \kappa 2}} = 0.215517 + 0.022228 + 0.208333 + 2.5321 = 2,79 \ \mathrm{Om}.$$

$$x_{\Sigma \kappa 3} = x_C + x_{\pi} + x_{TB} + x_{TH};$$

$$x_{\Sigma \kappa 3} = 0.215517 + 0.022228 + 0.208333 + 2.867 = 3.313$$
 Om.

Рассчитаем базисный ток:

$$I_{\delta k1} = \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}};$$

$$I_{6 k1} = \frac{1000}{\sqrt{3} \cdot 115} = 5,02 \text{ KA}.$$

$$I_{6k2} = \frac{S_6}{\sqrt{3} \cdot U_6};$$

$$I_{6 k2} = \frac{1000}{\sqrt{3} \cdot 37} = 54,985 \text{ KA}.$$

$$I_{\delta k3} = \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}};$$

$$I_{6k3} = \frac{1000}{\sqrt{3} \cdot 6.6} = 89,126 \text{ KA}.$$

Определим действующее значение периодической составляющей тока к.з. для точек K1, K2 и K3:

$$I_{n,o\ k1} = \frac{E_{*_{\delta}}^{"}}{x_{\Sigma \kappa 1}} \cdot I_{\delta};$$

$$I_{n,o \ k1} = \frac{1}{0.237745} \cdot 5,02 = 21,11686 \text{ KA}.$$

$$I_{n,o k2} = \frac{E_{*_{\delta}}^{"}}{x_{\sum \kappa 2}} \cdot I_{\delta};$$

$$I_{n,o k2} = \frac{1}{2.79} \cdot 54,985 = 19,7 \text{ KA}.$$

$$I_{n,o \ k3} = \frac{E_{*_{6}}^{"}}{x_{\Sigma \ \kappa3}} \cdot I_{6};.$$

$$I_{n,o \ k3} = \frac{1}{3,313} \cdot 54,985 = 16,596 \text{ KA}.$$

Определим максимальное значение апериодической составляющей для каждой из точек:

$$I_{a,\tau\;k1} = \sqrt{2} \cdot I_{n,o} \cdot e^{-\tau/T_a};$$

$$I_{a,\tau\;k1} = \sqrt{2} \cdot 21,11686 \cdot e^{-0,04/0,048982} = 13,19742 \text{ KA}.$$

$$I_{a,\tau\;k2} = \sqrt{2} \cdot I_{n,o} \cdot e^{-\tau/T_a};$$

$$I_{a,\tau\;k2} = \sqrt{2} \cdot 19,7 \cdot e^{-0,04/0,081590833} = 14,16308 \text{ KA}.$$

$$I_{a,\tau\;k3} = \sqrt{2} \cdot I_{n,o} \cdot e^{-\tau/T_a};$$

$$I_{a,\tau\;k3} = \sqrt{2} \cdot 19,7 \cdot e^{-0,04/0,0874503} = 14,3658 \text{ KA}.$$

Рассчитаем ударный ток для точек К1, К2 и К3:

$$\begin{split} i_{_{y\partial\;\kappa 1}} &= \sqrt{2} \cdot I_{_{n,o}} \cdot k_{_{y\partial}}\;; \\ i_{_{y\partial\;\kappa 1}} &= \sqrt{2} \cdot 21,11686 \cdot 1,815335 = 54,21272 \text{ kA.} \\ i_{_{y\partial\;\kappa 2}} &= \sqrt{2} \cdot I_{_{n,o}} \cdot k_{_{y\partial}}\;; \\ i_{_{y\partial\;\kappa 2}} &= \sqrt{2} \cdot 19,7 \cdot 1,884650358 = 52,5 \text{ kA.} \\ i_{_{y\partial\;\kappa 3}} &= \sqrt{2} \cdot I_{_{n,o}} \cdot k_{_{y\partial}}\;; \end{split}$$

$$i_{y\partial \kappa 3} = \sqrt{2} \cdot 16,596 \cdot 1,8746503 = 43,556 \kappa A.$$

4.2 Расчет токов однофазного короткого замыкания

Для расчета токов однофазного короткого замыкания необходимо составить схемы замещения прямой, обратной и нулевой последовательности и произвести расчет их сопротивлений.

Схема замещения прямой и обратной последовательности соответствуют схеме замещения для расчета токов трехфазного короткого замыкания. Поэтому результирующей сопротивление прямой и обратной последовательности до точки К1 составляет $x_{\Sigma 1} = x_{\Sigma 2} = 0,237745$.

На стороне 6-35 кВ однофазного короткого замыкания не бывает, так как это сети с изолированной нейтралью. В данной выпускной квалификационной работе на низкой стороне 10 кВ, следовательно для точки К2 и К3 расчёт однофазного короткого замыкания не ведётся. Значения дополнительного индуктивного сопротивления и коэффициенты, которые зависят от вида к.з. представлены в таблице 8.

Таблица 8 — Значения дополнительного индуктивного сопротивления и коэффициента, которые зависят от вида к.з.

Вид к.з.	$\Delta x^{(n)}$	$m^{(n)}$
Однофазное	$x_{2\Sigma} + x_{0\Sigma}$	3
	$x_{2\Sigma}$	$\sqrt{3}$
Двухфазное		
Двухфазное на землю	$\frac{x_{2\Sigma} \cdot x_{0\Sigma}}{x_{2\Sigma} + x_{0\Sigma}}$	$\sqrt{3} \cdot \sqrt{1 - \frac{x_{2\Sigma} \cdot x_{0\Sigma}}{\left(x_{2\Sigma} + x_{0\Sigma}\right)^2}}$

Составим схему замещения нулевой последовательности.

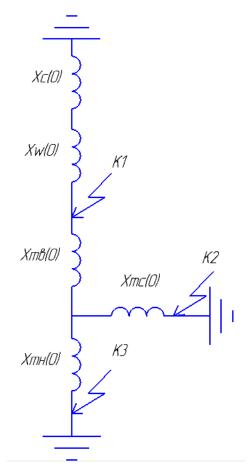


Рисунок 5 - Схема замещения нулевой последовательности

Сопротивления элементов схем нулевой последовательности соответствуют сопротивлениям при расчете трехфазного тока короткого замыкания, за исключением сопротивления линии.

Найдём сопротивления нулевой последовательности линии:

$$x_{{\scriptscriptstyle \Pi}(0)} = \mathbf{x}_{{\scriptscriptstyle \Pi}} \cdot d;$$

$$x_{\pi(0)} = 0.022228 \cdot 4 = 0.088913$$
.

где d - коэффициент, учитывающий соотношением между сопротивлением прямой и нулевой последовательности (для кабельных линий принимается равной 4);

 $x_{_{\it I}}$ - сопротивление линии $x_{_{\it I}}=0,022228$.

Найдём результирующее сопротивление нулевой последовательности:

$$x_{\Sigma_{\kappa_{1}(0)}} = \frac{(x_{C} \cdot x_{\pi(0)}) \cdot (x_{TB} + 2 \cdot x_{TH})}{(x_{C} + x_{\pi(0)}) + (x_{TB} + 2 \cdot x_{TH})};$$

$$x_{\Sigma \kappa^{1}(0)} = \frac{(0,21552 + 0,088913) \cdot (0,208333 + 2 \cdot 2,916667)}{(0,21552 + 0,088913) + (0,208333 + 2 \cdot 2,916667)} = 0,289826.$$

Найдём периодическую составляющую тока несимметричного к.з.:

$$I_{n,o}^{(n)} = m^{(n)} \cdot \frac{E_*^{(n)}}{x_{\sum 1} + \Delta x^{(n)}} I_b;$$

$$I_{n,o_{k1}}^{(1)} = 3 \cdot \frac{1}{0,237745 + 0,237745 + 0,289826} \cdot 5,02 = 19,67983$$
 KA.

Симметричные и несимметричные токи к.з. представлены в таблице 9. Таблица 9 – Симметричные и несимметричные токи к.з.

Точка к.з.	Однофазное	Трёхфазное
K1	19,67983	21,11686
К2	-	19,7
К3	-	16,596

По таблице 9 мы видим, что наиболее опасным видом короткого замыкания:

- на стороне высокого напряжения является трехфазное к.з. которое числено равно 21,11686 кА;
- на стороне низкого напряжения является трехфазное к.з. которое числено равно 16,596 кА.

5 Выбор электрических аппаратов

Рекомендуемая марка и сечение сборных шин и ошиновки ОРУ 110 кВ ПС Кряжская — AC-240 $\32$ (для провода AC-240 длительно-допустимый ток составляет 605 A).

Ошиновка 35 кВ от вводов силовых трансформаторов до проходных изоляторов ЗРУ 35 кВ выполнена двумя проводами AC-240\32 в фазе (длительно допустимый ток составляет 605 A).

Шинный мост 6 кВ от трансформатора до ЗРУ 6 кВ выполнен токопроводом пофазноизолированным с литой изоляцией наружного применения типа ТПЛА-6-6500-300 У1.

Таблица 10 – Выбор и проверка оборудования

Тип	Расчет	ные дан	ные			К	Каталожные данные					
оборудования											Вт.	
	I_{pac} ,	I_{K3} ,	іуд, кА		Вκ,	I_{H}	, A	$I_{\text{эл.дин}}$,	i _{дин} ,	i _{а.вык} ,	доп,	
	A	кА		кА	кА2с			кА	кА	кА	кА2с	
110 кВ												
Выключатель												
BΓT – 110 –	316,7	14,22	34,53	5,33	19,13	3	150	40	102	13,1	4800	
40\3150 УХЛ1												
Разъединитель												
PΓH-1(2)-	316,7	14,22	34,53	5,33	19,13	10	000	31,5	80		2976,75	
110\100 У1												
35 кВ												
Выключатель												
Siemens 3AF01	990,9	13	31,5	5,1	17,7	71	1600	31,5	80	8,24	3969	
			7									
Разъединитель												
PP3-1(2)-35\1000	990,9	13	31,5	5,1	17,7	71	1000	31,5	80		2976	
У3			7								,75	
6 кВ												
Выключатель												
EVOLIS 12PI-12-	2890	15,	38,6	5,64	25,2	26	3150	31,5	80	9,2	2 2976	
25-2500		917	5								,75	
Вилитионоточи												
Выключатель	251.5	15	29.6	5 61	25.0	16	1250	21.5	00	, , ,	2076	
EVOLIS 12P1-12-	251,5	15,	38,6	5,64	25,2	20	1250	31,5	80	9,2		
25-2500		917	5								,75	

Выбранное оборудование удовлетворяет требованиям на коммутационную способность и стойкость токам короткого замыкания.

5.1 Выбор электрических аппаратов для высокой стороны

В состав ЗРУ-110 кВ входит следующее оборудование:

Силовые выключатели 110 кВ типа ВГТЗ -110-40/3150 XЛ1 производства ЗАО «Энергомаш» - 10 трехфазных комплекта;

Разъединители 110 кВ типа РГН-2-110/1000 УХЛ1 с двигательным приводом ПД-14 производства ЗАО «ЗЭТО» – 13 трехфазных комплектов;

Разъединители 110 кВ типа РГН-1-110/1000 УХЛ1 с двигательным приводом ПД-14 производства ЗАО «ЗЭТО» – 18 трехфазных комплектов;

Трансформаторы напряжения 110 кВ типа ЗНГ-110УХЛ1 производства ЗАО «Энергомаш» - 6 однофазных комплекта;

Трансформаторы тока 110 кВ типа ТРГ-110 УХЛ1 производства ЗАО «Энергомаш» - 10 трехфазных комплекта;

Ограничители перенапряжений нелинейные типа ОПН-П1-110/88/10/2УХЛ1 производства ЗАО "ЗЭТО" – ЗАО «Завод электротехнического оборудования» - 12 однофазных комплекта.

В состав ОРУ-110 кВ входит следующее оборудование:

Разъединители 110 кВ типа РГН-2-110/1000 УХЛ1 с двигательным приводом ПД-14 производства ЗАО «ЗЭТО» – 1 трехфазных комплектов;

Разъединители 110 кВ типа РГН-1-110/1000 УХЛ1 с двигательным приводом ПД-14 производства ЗАО «ЗЭТО» – 6 трехфазных комплектов;

Трансформаторы напряжения 110 кВ типа ЗНГ-110УХЛ1 производства ЗАО «Энергомаш» - 3 однофазных комплекта;

Ограничители перенапряжений нелинейные типа ОПН-П1- 110/88/10/2УХЛ1 производства ЗАО "ЗЭТО" – ЗАО «Завод электротехнического оборудования» - 3 однофазных комплекта.

При проектировании применялось оборудование соответствующее Российским стандартам и сертифицированное в установленном порядке.

По требованиям «Норм технологического проектирования подстанций 35 - 750 кВ» выбираемые выключатели приняты элегазовыми, номинальное напряжение 110 кВ, должны допускать наружную установку И от -40°C до +40°C. температурах эксплуатацию при Выключатели выбирались ПО условию длительного режима, ПО электродинамической стойкости, стойкости, ПО термической ПО коммутационной способности, амплитуде полного тока отключения, по току включения.

В целях улучшения обслуживания и повышения автоматизации ПС разъединители 110 кВ устанавливаются с электродвигательными приводами на главных и заземляющих ножах.

Устанавливаемые трансформаторы тока и напряжения обеспечат требуемые условия работы РЗА, АСКУЭ и питания измерительных приборов.

Применение специальных блокировок обеспечивает невозможность ошибочных коммутаций и исключающих попадание под напряжение эксплуатационного персонала. Для проверки оборудования РУ-110 кВ на электродинамическую и термическую стойкость выполнен расчет максимальных токов короткого замыкания на шинах распределительного устройства ПС. По результатам расчетов, значение тока периодической составляющей в начальный момент короткого замыкания составляет 12,37 кА, ударный ток — 34,53 кА. Нестойких аппаратов к токам КЗ в РУ-110 кВ нет.

5.2 Выбор электрических аппаратов для средней стороны

В состав ЗРУ-35 кВ входит следующее оборудование:

Силовые выключатели 35 кВ типа 3AF01 производства «Siemens » - 11 трехфазных комплекта;

Разъединители 35 кВ типа РРЗ-2-35/1000 с двигательным приводом ПД-

14 производства ЗАО «ЗЭТО» – 14 трехфазных комплектов;

Разъединители 35 кВ типа РРЗ-1-35/1000 с двигательным приводом ПД-14 производства ЗАО «ЗЭТО» – 20 трехфазных комплектов;

Трансформаторы напряжения 35 кВ типа GEF-36 УХЛ1 производства ЗАО «Электрощит» - 6 однофазных комплекта;

Трансформаторы тока 35 кВ типа GIF-36 УХЛ1 производства ЗАО «Электрощит» - 33 однофазных комплекта;

Ограничители перенапряжений нелинейные типа ОПН-П1-35/40,5/10/2УХЛ1 производства ЗАО "ЗЭТО" – ЗАО «Завод электротехнического оборудования» - 15 однофазных комплекта.

При проектировании применялось оборудование соответствующее Российским стандартам и сертифицированное в установленном порядке.

По требованиям «Норм технологического проектирования подстанций 35 - 750 кВ» выбираемые выключатели приняты элегазовыми, номинальное напряжение 110 кВ, должны допускать наружную установку И эксплуатацию температурах от -40°C до +40°C. при Выключатели выбирались ПО условию длительного режима, ПО электродинамической стойкости, ПО термической стойкости, ПО коммутационной способности, амплитуде полного тока отключения, по току включения.

В целях улучшения обслуживания и повышения автоматизации ПС разъединители 35 кВ устанавливаются с электродвигательными приводами на главных и заземляющих ножах.

Устанавливаемые трансформаторы тока и напряжения обеспечат требуемые условия работы РЗА, АСКУЭ и питания измерительных приборов.

Для проверки оборудования РУ-35 кВ на электродинамическую и термическую стойкость выполнен расчет максимальных токов короткого замыкания на шинах распределительного устройства ПС. По результатам расчетов, значение тока периодической составляющей в начальный момент

короткого замыкания составляет 13,0 кA, ударный ток – 31,57 кA. Нестойких аппаратов к токам КЗ в РУ-35 кВ нет.

5.3 Выбор электрических аппаратов для низкой стороны

Комплектное распределительное устройство внешний установки серии СЭЩ-63 и серии СЭЩ-61М, предназначено для приема, преобразования, распределения и транзита электрической энергии трехфазного переменного тока с частотой 50 Гц, при номинальном напряжении 6 кВ.

Технические решения по РУ-6 кВ выполнены в соответствии с технической информацией ТИ-071-2009 «Устройство комплектное распределительное напряжением 6-10 кВ на токи 63-2000 А СЭЩ-63 (К-63)», ТИ-076-2009 «Устройство комплектное распределительное напряжением 6-10 кВ на токи 63-4000 А СЭЩ-61М (К-61М)», выполненной ООО «Электрощит» «Самара». Оборудование РУ-6 кВ устанавливается в здании ЗРУ-6 кВ.

РУ-6 кВ набирается из ячеек с нижним выводами кабелей и является закрытым распределительным устройством, установленном в здании ЗРУ-6 кВ. РУ-6 кВ выполнена по схеме «Две одиночные, секционированные выключателями системы шин».

Конструкция КРУ обеспечивает полную защиту от прикосновения к токоведущим частям, закрытым металлическим заземленным корпусом. Применение специальных блокировок обеспечивает невозможность ошибочных коммутаций и исключающих попадание под напряжение эксплуатационного персонала.

Для проверки оборудования РУ-6 кВ на электродинамическую и термическую стойкость выполнен расчет максимальных токов короткого замыкания на шинах распределительного устройства ПС. По результатам расчетов, значение тока периодической составляющей в начальный момент короткого замыкания составляет 15,917 кА, ударный ток — 38,65 кА. Нестойких аппаратов к токам КЗ в РУ-6 кВ нет.

6 Компенсация емкостных токов

Расчет емкостных токов замыкания на землю. Исходные данные:

I секция шин 35 кB:

Таблица 11 – Исходные данные для расчетов емкостных токов замыкания на землю

Фидер	Длина кабельной линии $\ell_{KЛ}$, км	Длина воздушной линии $\ell_{ extbf{B} extbf{Л}}$, км
Долотная-1	-	2
СЛИП	3,87	7,8
Кряжская-1	2,4	9,66
KT-1	-	1,2
Суммарная длина линий	6,27	20,66

II секция шин 35 кВ:

Таблица 12 - Исходные данные для расчетов емкостных токов замыкания на землю

Фидер	Длина кабельной линии $\ell_{KЛ}$, км	Длина воздушной линии $\ell_{\rm BЛ}$, км			
Долотная-2	-	2			
Кряжская-3	-	1,85			
Водозабор-2	-	6,46			
KT-2	-	1,2			
Суммарная длина линий	-	11,51			

I секция шин 6 кВ: Таблица 13 - Исходные данные для расчетов емкостных токов замыкания на землю

Фидер	Длина кабельной линии $\ell_{\mathbf{K}\mathbf{J}}$, км	Длина воздушной линии $\ell_{ extbf{B}\Pi}$, км				
Ф-4	0,5	-				
Ф-5	0,75	-				
Ф-6	0,96	-				
Ф-7	0,1	-				
Ф-10	1,238	-				
Ф-11	0,74	-				
Ф-12	2,85	-				
Ф-15	0,105	-				
Ф-16	0,98	-				
Суммарная длина линий	8,223	-				

II секция шин 6 кВ:Таблица 14 - Исходные данные для расчетов емкостных токов замыкания на землю

Фидер	Длина кабельной линии $\ell_{ extbf{K} extbf{J}}$, км	Длина воздушной линии $\ell_{ extbf{B} extbf{J}}$, км		
1	2	3		
Ф-17	0,75	-		
Ф-18	0,98	-		
Ф-19	0,1	-		
Ф-20	1,238	-		
Ф-21	2,85	-		

Продолжение таблицы 14

1	2	3
Ф-22	0,5	-
Ф-26	0,98	-
Ф-28	0,74	-
Суммарная длина линий	8,138	-

Емкостной ток замыкания на землю определяется по формуле:

$$I_{y_{\overline{A}}} \sum = 3 \cdot U_{\varphi} \cdot \omega \cdot C_{y_{\overline{A}}} \cdot L,$$

где С $_{\rm уд.}$ - удельная емкость одной фазы сети относительно земли, $\Phi/{\rm кm}$.

$$C_{VJL} = 0.25 \cdot 10^{-6}, \Phi/_{KM}.$$

Для воздушной линии $C_{\text{УД.}} = 0.004 \cdot 10^{-6}$, $\Phi/\text{км}$.

 U_{Φ} — фазное напряжение сети, кB; L - длина линии, км; $\omega = 2\pi f = 314$, рад/с.

Емкостный ток с учетом коэффициента развития и коэффициента запаса:

$$I_c = I_c \sum \cdot K_{p}$$

Где К p = 1,25 — коэффициент развития в ближайшие 10 лет. Емкостный ток кабельных линий первой секции шин 35 кВ:

$$I_{GKJI} = 3 \cdot \frac{37}{\sqrt{3}} \cdot 314 \cdot 0.25 \cdot 10^{-6} \cdot 6.27 = 31.54 A.$$

Емкостный ток воздушных линий первой секции шин 35 кВ:

$$I_{GBJI} = 3 \cdot \frac{37}{\sqrt{3}} \cdot 314 \cdot 0,004 \cdot 10^{-6} \cdot 20,66 = 1,66 \text{ A}.$$

Емкостный ток первой секции шин 35 кВ:

$$I_{G1cm} = I_{GKJ} + I_{GBJ} = 31,54 + 1,66 = 33,2 \text{ A}.$$

Емкостный ток первой секции шин 35 кВ с учетом развития сети:

$$I_{G1cm} = 33.2 \cdot 1.25 = 41.5 A.$$

Емкостный ток воздушных линий второй секции шин 35 кВ:

$$I_{GBJI} = 3 \cdot \frac{37}{\sqrt{3}} \cdot 314 \cdot 0,004 \cdot 10^{-6} \cdot 11,51 = 0,93 \text{ A}.$$

Емкостный ток второй секции шин 35 кВ:

$$I_{\rm G2c_{III}} = I_{\rm GKJI} + I_{\rm GBJI} = 0 + 0.93 = 0.93 \ A.$$

Емкостный ток второй секции шин 35 кВ с учетом развития сети:

$$I_{G2cui} = 0.93 \cdot 1.25 = 1.16 A.$$

Суммарный емкостный ток линий 35 кВ с учетом развития сети:

$$I_G = I_{G1cm} + I_{G2cm} = 41.5 + 1.16 = 42.66 \text{ A}.$$

Таким образом, согласно пункту 1.2.16. ПУЭ, необходима компенсация емкостных токов. Исходя из вышесказанного выбираем мощность дугогасящего реактора:

$$Q_K = n \cdot I_C \cdot \frac{U_H}{\sqrt{3}} = 1,25 \cdot 42,66 \cdot \frac{37}{\sqrt{3}} = 1078,8 \text{ kBA}.$$

Выбираем дугогасящий реактор типа ASR1.6 на 35 кВ, 1620 кВА. Емкостный ток первой секции шин 6 кВ с учетом развития сети:

$$I_{G1cm} = 6.76 \cdot 1.25 = 8.45 \text{ A}.$$

Емкостный ток второй секции шин 6 кВ:

$$I_{GKJI} = 3.6,3/(\sqrt{3}).314.0,25.10^{-6}.8,138 = 6,68A.$$

Емкостный ток второй секции шин 6 кВ с учетом развития сети:

$$I_{G2cui} = 6.68 \cdot 1.25 = 8.35 \text{ A}.$$

Суммарный емкостный ток линий 6 кВ с учетом развития сети:

$$I_G = I_{G1cIII} + I_{G2cIII} = 8,45 + 8,35 = 16,8 \text{ A}.$$

Таким образом, согласно пункту 1.2.16. ПУЭ, необходима компенсация емкостных токов. Исходя из вышесказанного выбираем мощность дугогасящего реактора:

$$Q_K = n \cdot I_C \cdot \frac{U_H}{\sqrt{3}} = 1,25 \cdot 16,8 \cdot \frac{6}{\sqrt{3}} = 72,8 \text{ kBA}.$$

Выбираем дугогасящий реактор типа ZTC250 на 6 кВ, 300 кВА.

7 Собственные нужды подстанции

Для питания потребителей CH и ОПТ предусмотрена установка следующего оборудования:

- -два трансформатора собственных нужд TRIHAL наружной установки мощностью 400 кВА;
 - -один щит СН, состоящий из семи панелей;
 - -два щита постоянного тока, состоящих из трех панелей;
 - -две аккумуляторных батареи 210 Ач;
 - -четыре распределительных шкафа оперативного тока;
 - четыре зарядно-подзарядных устройства.

Трансформаторы СН подключаются к разным секциям КРУ 6 кВ (1 и 2 системы шин) через ячейки выключателей.

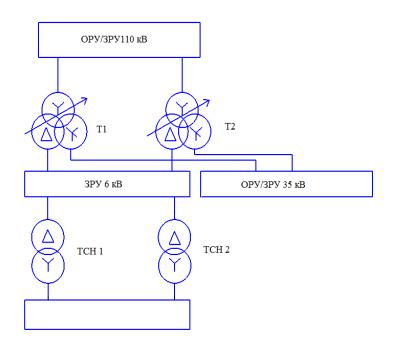


Рисунок 6 - Структурная схема ПС «Кряжская»

Питание электроприемников выполняется по смешанной (магистрально-радиальной) схеме распределения электроэнергии от ТСН.

Основным распределительным устройством сети СН подстанции, является щит СН 0,4 кВ (ЩСН). Трансформаторы и потребители СН подключаются к нему через автоматические выключатели.

На территории открытых распределительных устройств, в непосредственной близости от основного коммутационного оборудования, устанавливаются промежуточные распределительные шкафы, от которых запитываются силовые цепи приводов выключателей и разъединителей, а также обогрев ящиков зажимов.

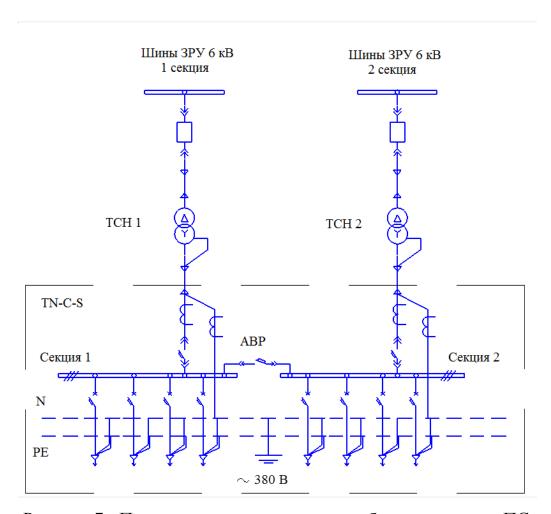


Рисунок 7 - Принципиальная схема сети собственных нужд ПС «Кряжская»

7.1 Выбор типа, числа и мощности ТСН

На площадке установлены два трансформатора собственных нужд типа

TRIHAL наружной установки, производства Schneider Electric.

Трансформатор представляет собой трехфазный силовой трансформатор сухого типа с изоляцией из эпоксидной смолы с наполнителями, которые смешиваются и заливаются в вакууме, с переключателем без возбуждения (ПБВ), работающий в сетях переменного тока частотой 50 Гц. Трансформаторы соответствуют стандартам МЭК 76-1-76-5, МЭК 726 (1982), CENELEC, ГОСТ 11677-85 и сертифицированы в России.

Основные параметры ТСН приведены в таблице 15.

Таблица 15 – Параметры ТСН

Мощность трансфор- матора,	Номи -ное напря ние, к	же-	Потери, Вт		Uĸ	Группа соединен	Ixx	Регулирова-	Транспорт- ная масса,
кВА	ВН	НН	XX	К3	%	ий	%	напряжения	КГ
400	6	0,4	1000	4500	6,0	D/Үн-11	1,5	ПБВ±2х2,5%	1440

8 Молниезащита, заземление и защита от перенапряжений

Для защиты людей OT поражения электрическим при током повреждении изоляции все нетоковедущие металлические части электрооборудования подлежат защитному заземлению или занулению. Для зануления используется нулевой провод, соединенный с глухозаземленной нейтралью трансформатора.

В электроустановках до 1 кВ выполнено зануление, а выше 1 кВ - заземление.

С целью уравнивания потенциалов в помещениях и наружных установках, в которых применяется заземление или зануление, все строительные и производственные конструкции, стационарно проложенные трубопроводы всех назначений, металлические корпуса технологического оборудования, воздуховоды вентиляционных систем присоединены к сети заземления и зануления.

Сопротивление заземлителя должно быть не более 0,5 Ом.

Согласно ГОСТ Р 50571.10-96, в помещениях ЗРУ выполнена главная система уравнивания потенциалов, соединяющая между собой следующие проводящие части:

- защитный проводник (РЕМ-проводник) питающей линии;
- заземляющий проводник, присоединенный к искусственному заземлителю;
- металлические трубы коммуникаций, входящих в здание (трубыгорячего и холодного водоснабжения, канализации, отопления и т.п.);
 - металлический каркас здания;
- металлические части систем вентиляции и кондиционирования; заземляющий проводник функционального заземления.

Соединение указанных проводящих частей между собой выполнено при помощи главной заземляющей шины с использованием сторонних проводящих частей (каркаса здания).

Изолированные проводники уравнивания потенциалов имеют изоляцию, обозначенную желто- зелеными полосами. Голые проводники системы уравнивания потенциалов в местах их присоединения к сторонним проводящим частям обозначены желто-зелеными полосами, выполненными краской или клейкой двухцветной лентой.

Молниезащита зданий, сооружений и наружных сетей выполнена в соответствии действующими нормами и стандартами РФ.

Сооружения, относящиеся к II категории, защищены от прямых ударов молнии, вторичных проявлений молнии и заноса высоких потенциалов через наземные и подземные металлические коммуникации.

Прочие сооружения, относящиеся к III категории, защищены от прямых ударов молнии, и заноса высоких потенциалов через наземные металлические коммуникации.

Заключение

В бакалаврской работе реконструирована понизительная трансформаторная подстанция.

По потребляемой мощности подстанции и по экономическому расчёту выбраны два силовых трансформатора ТДТН-63000/110/35/6.

Трехфазное и однофазное короткие замыкания рассчитали на высокой, средней и низкой сторонах. В результате наиболее опасным видом короткого замыкания являются трехфазное к.з. которое числено равно 21,11686 кА и на стороне низкого напряжения является трехфазное к.з. которое числено равно 16,596 кА.

По расчетным данным было выбрано и проверено оборудование ЗРУ 110 кВ, ОРУ 110 кВ, ЗРУ 35 кВ и РУ 6 кВ на электродинамическую и термическую стойкость, выполнен расчет максимальных токов короткого замыкания на шинах распределительного устройства ПС. Нестойких аппаратов к токам КЗ нет.

На подстанции оперативный ток будет и постоянный, и переменный. Для питания постоянным током будем использовать шкаф оперативного тока SOT-01-01. Питание переменного тока будет происходить от трансформаторов собственных нужд.

Для питания подстанции, на основе расчетов, выбраны два трансформатора собственных нужд TCH-400 кВА.

Для контроля за режимом работы основного и вспомогательного электрооборудования на подстанции выбраны контрольно-измерительные приборы, устанавливаемые на щитах управления.

Также рассчитали заземление подстанции. Напряжение прикосновения попадает в допустимый диапазон.

Молниезащита зданий, сооружений и наружных сетей выполнена в соответствии действующими нормами и стандартами РФ.

Список использованных источников

- 1. Степкина, Ю.В. Проектирование электрической части понизительной подстанции: учеб.-метод. пособие по выполнению курсового и дипломного проектирования / Ю.В. Степкина, В.М. Салтыкова. Тольятти: ТГУ, 2007. 124 с.
- 2. Васильев, А.А. Электрическая часть станций и подстанций/ А.А. Васильев, И.П. Крючков, Е.Ф. Няшкова. 2-е изд., перераб. И доп. Москва: Энергоатомиздат, 1990. 576 с.
- 3. Правила устройства электроустановок (ПУЭ). 7-е изд. Москва: НЦ ЭНАС, 2007.
- 4. Лыкин, А.В. Электрические системы и сети / А.В.Лыкин. Москва: Логос, 2006. 256 с.
- 5. Салтыкова, О.А. Релейная защита понизительной трансформаторной подстанции: учеб. пособие для курсового и дипломного проектирования / О.А. Салтыкоав, В.В. Вахнина, О.В. Самолина. Тольятти: ТГУ, 2007. 47 с.
- 6. Кудрин, Б. И. Электроснабжение промышленных предприятий / Б. И. Кудрин. Москва: Интермет Инжиринг, 2006. 671 с.
- 7. Сенько, В.В. Электромагнитные переходные процессы в СЭС: учебно-методическое пособие / В.В. Сенько. Тольятти: ТГУ, 2007.
- 8. Evaluation of cooperation WPP and PV connected through the shared transformer to the network 22kV: [Электронный ресурс] // doaj.org: the Directory of Open Access Journals. 2003-2016. URL: https://doaj.org/article/1a14de7bccb942b2b9cd0399ebc5c16e.
- 9. Power System Stability Enhancement Using Unified Power Flow Controller: [Электронный ресурс] // doaj.org: the Directory of Open Access Journals.2003-2016.
- URL: https://doaj.org/article/11c4124a47e543a0a090e7057e73d2e4.
- 10. Isolated Bidirectional Full-Bridge DC-DC Converter with a Flyback Snubber: [Электронный ресурс] // doaj.org: the Directory of Open Access

Journals.2003-2016.

URL: https://doaj.org/article/0b6996e8c3e949d1aa0eda867bcdecae.

- 11. Solar Powered Full Bridge FET SMPS based Pulse Battery Charger with Power Management Using Atmega328: [Электронный ресурс] // doaj.org: the Directory of Open Access Journals. 2003-2016. URL:https://doaj.org/article/1c97be5fef8542db9d07f5bcb11a247b.
- 12. Мясоедов, Ю.В. Проектирование электрической части электростанций и подстанций: учеб. пособие / Ю.В. Мясоедов, Н.В. Савина, А.Г. Ротачева. Благовещенск: АмГУ, 2002. 141 с.
- 13. Соловьёв, А.Л. Трансформаторы и Автотрансформаторы 35-220 кВ. Дифференциальная токовая защита. Расчёт уставок: методическое указание / А.Л. Соловьёв. Санкт-Петербург: ООО «НТЦ «Механотроника»», 2013. 55 с.
- 14. Вахнина, В.В. Электроснабжение промышленных предприятий и городов: учебно-методическое пособие для практических занятий и курсового проектирования / В.В. Вахнина, А.Н. Черненко. Тольятти: ТГУ, 2007.
- 15. Иванов, В.М. Электрические станции, подстанции, сети и питающие системы: учебно-методическое пособие / В.М. Иванов, Е.А. Печагин, А.В. Баранов. Тамбов: ТГТУ, 2002. 32 с.
- 16. Лыкин, А.В. Электрические системы и сети / А.В. Лыкин. М.: Логос, 2006. 256 с.
- 17. Инструкция по устройству молниезащиты зданий, сооружений и промышленных коммуникаций: СО 153-34.21.122-2003. Москва: 2003.
- 18. Свиридов, Ю.П. Проектирование электрических станций и подстанций: методическое указания к курсу проектированию / Ю. П. Свиридов, С. М. Пестов. Ульяновск: УлГТУ, 2011. 26 с.
- 19. Ополева, Г.Н. Схемы и подстанции электроснабжения: справочник / Г.Н. Ополева. Москва: Инфра М, 2006. 480 с.

. Вахнина, В.В. Компенсация реактивной мощности в системах электроснабжения промышленных предприятий: учеб. пособие. / В.В. Вахнина – Тольятти : ТГУ, $2006.-69~\mathrm{c}.$