МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт химии и энергетики
(наименование института полностью)
<u>Кафедра «Электроснабжение и электротехника»</u> (наименование)
13.03.02 Электроэнергетика и электротехника
(код и наименование направления подготовки/ специальности)
Электроснабжение

(направленность (профиль) / специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Проектирование системы электроснабжения района города Самарской области

Обучающийся	Н. В. Журавлев						
	(Инициалы Фамилия)	(личная подпись)					
Руководитель	одитель к.п.н., доцент, М. Н. Третьякова						
	(ученая степень (при наличии), ученое звание (при наличии), Инициалы Фамилия)						

Аннотация

ВКР посвящена проектированию системы электроснабжения района города Самарской области.

В работе рассчитаны электрические нагрузки:

- Зданий образовательного назначения;
- Медицинских учреждений;
- Жилых и общественных зданий;
- Вспомогательных сооружений и зданий общественно-бытового назначения.

Расчет нагрузок позволил выбрать соответствующие силовые трансформаторы. Места установки КТП определены путем расчета центров электрических нагрузок (ЦЭН).

После выбора силовых трансформаторов, были вычислены токи короткого замыкания (ТКЗ).

Результаты расчетов ТКЗ, термической и электродинамической стойкости позволили выбрать электрооборудование КТП. Далее был проведен расчет и выбор кабельных линий.

Заключительным этапом ВКР является расчет заземления трансформаторный подстанций района.

Содержание

Введение	4
1 Анализ исходных данных	5
2 Расчет электрических нагрузок	7
3 Расчет освещения	15
4 Выбор числа и мощности трансформаторов	16
5 Выбор схемы электроснабжения потребителей	23
6 Расчет токов короткого замыкания	40
7 Выбор оборудования трансформаторных подстанций	46
8 Расчет заземления трансформаторных подстанций	49
Заключение	51
Список используемых источников	52

Введение

При проектировании жилых районов важную роль играет электроснабжение. Создание приятной жилой среды и обеспечение комфортного проживания людей требует учета всех современных требований при строительстве зданий и сооружений.

Актуальность темы ВКР обусловлена тем, что ежегодно возводятся огромное количество зданий и сооружений и поэтому, важно обеспечить надежное и безопасное электроснабжения объектов строительства.

Целью ВКР является обеспечение надежного и энергоэффективного электроснабжения района города Самарской области.

Для достижения поставленной цели необходимо решить ряд задач, без которых проектирование системы электроснабжение невозможно:

- Провести расчет электрических нагрузок жилых зданий и сооружений общественно-бытового назначения;
- Выполнить расчет внутриквартального освещения;
- Выбрать соответствующие силовые трансформаторы для электроснабжения зданий района города;
- Сравнить различные схемы питания потребителей района города;
- Определить места установки КТП путем расчета ЦЭН;
- Рассчитать токи короткого замыкания (ТКЗ);
- Выбрать кабельные линии;
- Используя результаты расчетов ТКЗ, термической и электродинамической стойкости выбрать силовое электрооборудование КТП;
- Рассчитать заземление и молниезащиту в соответствии с требованиями правил нормативных документов.

Выполнение данных задач обеспечит бесперебойное и безопасное электроснабжение зданий и сооружений, образующих инфраструктуру жилого массива города Самарской области.

1 Анализ исходных данных

В рассматриваемом районе города Самарской области расположены жилые дома этажностью в 9, 12 и 14. Все жилые дома оборудованы электроплитами, лифтами.

Также в районе города застроены общественные здания различного назначения:

- Аптека;
- Универсам;
- Отделение банка;
- Медицинский центр;
- Детский сад;
- Бассейн;
- Школа;
- Общепит;
- Университет;
- Колледж;
- Торгово-развлекательные центры;
- Спортивный зал.

Нагрузка зданий определяется исходя из приблизительной пропускной способности (производительности).

Территориально район разбит на три квартала, расстановка зданий внутри кварталов одинаковая (рисунок 1). Университет и колледж разделен на три корпуса, которые расположены в каждом из кварталов района.

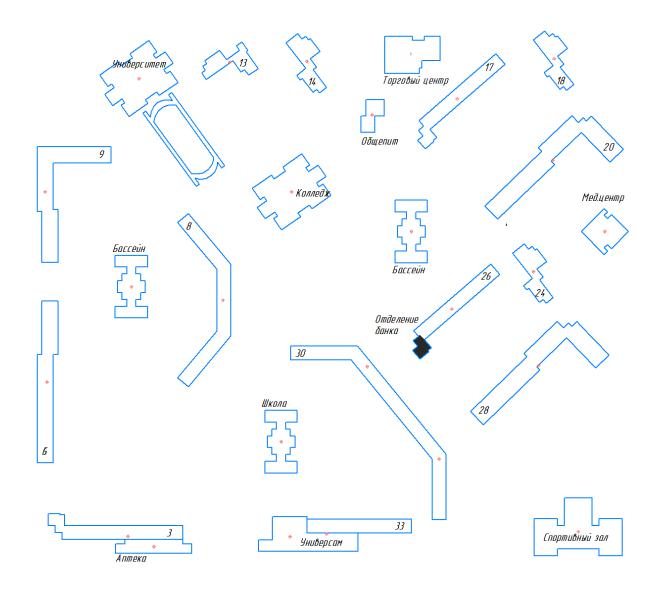


Рисунок 1 – План застройки района Самарской области

Выводы по разделу

Дальнейшие расчеты будут проводится для одного квартала района, что позволит получить нагрузку для всего района города Самарской области.

2 Расчет электрических нагрузок

Рассчитаем электрические нагрузки района города Самарской области. «Расчетная мощность жилого дома:

$$P_{\text{р.жд}} = P_{\text{кв.уд}} \cdot n_{\text{кв}} + k_{\text{y}} \cdot P_{\text{c}}, \tag{1}$$

где $n_{\text{кв}}$ — количество квартир;

 $P_{\text{кв.уд}}$ — удельная мощность одной квартиры, кВт;

 k_y – коэффициент участия в максимуме нагрузки силовых электроприемников (равен 0,9);

 P_c — расчетная нагрузка силовых электроприемников МКД, кВт» [3] — [11].

«Расчетные нагрузки силового электрооборудования МКД по методу коэффициента спроса:

$$P_{\rm p} = P_{\rm H} \cdot K_{\rm c},\tag{2}$$

где $K_{\rm c}$ – коэффициент спроса;

 $P_{\rm H}$ — номинальная мощность группы электроприемников, кВт» [3] — [11].

Силовое оборудование включает в себя [11]:

- Вентиляционные установки;
- Электропривода лифтов;
- Насосы.

«Реактивная нагрузка потребителя микрорайона:

$$Q_{\rm p} = P_{\rm p} \cdot tg\varphi,\tag{3}$$

где $tg\varphi$ — коэффициент реактивной мощности группы электроприемников» [3] — [11].

Полная нагрузка:

$$S_{\rm p} = \sqrt{P_{\rm p}^2 + Q_{\rm p}^2} \tag{4}$$

Расчеты полных нагрузок жилых домов представлены в таблице 1. [22] Расчетные нагрузки силового оборудования жилых домов представлены в таблицах 2 и 3. [24]

Удельные осветительные нагрузки технических и общих помещений учитываются в нагрузках на одну квартиру. [23]

Общие помещения включают в себя:

- лестнечные площадки;
- подвалы и чердаки;
- этажи технического назначения.

Суммарные нагрузки по жилым домам занесем в таблицу 4.

Далее рассчитаем нагрузки остальных зданий и результаты расчетов занесем в таблицу 5.

Таблица 1 – Расчет нагрузок лифтов жилых домов

Пол	К	оличеств	0	$P_{ ext{к.уд,}}$		$P_{ m H},$	1_		4	P_{Π} ,	Qл,	S_{Π} ,
Дом	Подъезды	Этажи	Квартиры	кВт/кв	кВт/кв п	кВт	k_{C}	cosφ	tgφ	кВт	квар	кВА
13	4	14	224	1,28	4	8	0,76	0,7	1,02	24,32	24,81	34,74
14	4	14	224	1,28	4	8	0,76	0,7	1,02	24,32	24,81	34,74
18	4	14	224	1,28	4	8	0,76	0,7	1,02	24,32	24,81	34,74
24	4	14	224	1,28	4	8	0,76	0,7	1,02	24,32	24,81	34,74
3	7	9	252	1,23	14	5	0,43	0,7	1,02	30,1	30,70	43,00
6	7	9	252	1,23	14	5	0,43	0,7	1,02	30,1	30,70	43,00
33	5	9	180	1,23	10	5	0,54	0,7	1,02	27	27,54	38,57
9	7	9	252	1,23	14	5	0,43	0,7	1,02	30,1	30,70	43,00
17	6	9	216	1,23	12	5	0,54	0,7	1,02	32,4	33,05	46,28
20	7	9	252	1,23	14	5	0,43	0,7	1,02	30,1	30,70	43,00
26	5	9	180	1,23	10	5	0,54	0,7	1,02	27	27,54	38,57
28	7	9	252	1,23	14	5	0,43	0,7	1,02	30,1	30,70	43,00
8	6	12	288	1,25	6	6	0,66	0,7	1,02	23,76	24,24	33,94
30	9	12	432	1,25	9	6	0,54	0,7	1,02	29,16	29,74	41,65

Таблица 2 – Расчет нагрузок насосов и вспомогательного к ним оборудования жилых домов

Пом	k	Соличество		$P_{ ext{ iny,}},$	D vDm	1,	2224	tora	D vDm	$Q_{\rm CO}$,	S_{CO} ,
Дом	Подъезды	Этажи	Квартиры	кВт/кв	$P_{ m H}$, к ${ m B}{ m T}$	$k_{\rm C}$	cosφ	tgφ	$P_{\rm CO}$, к ${ m B}{ m T}$	квар	кВА
13	4	14	224	1,28	8	0,76	0,7	1,02	24,32	24,81	34,74
14	4	14	224	1,28	8	0,76	0,7	1,02	24,32	24,81	34,74
18	4	14	224	1,28	8	0,76	0,7	1,02	24,32	24,81	34,74
24	4	14	224	1,28	8	0,76	0,7	1,02	24,32	24,81	34,74
3	7	9	252	1,23	5	0,43	0,7	1,02	30,1	30,70	43,00
6	7	9	252	1,23	5	0,43	0,7	1,02	30,1	30,70	43,00
33	5	9	180	1,23	5	0,54	0,7	1,02	27	27,54	38,57
9	7	9	252	1,23	5	0,43	0,7	1,02	30,1	30,70	43,00
17	6	9	216	1,23	5	0,54	0,7	1,02	32,4	33,05	46,28
20	7	9	252	1,23	5	0,43	0,7	1,02	30,1	30,70	43,00
26	5	9	180	1,23	5	0,54	0,7	1,02	27	27,54	38,57
28	7	9	252	1,23	5	0,43	0,7	1,02	30,1	30,70	43,00
8	6	12	288	1,25	6	0,66	0,7	1,02	23,76	24,24	33,94
30	9	12	432	1,25	6	0,54	0,7	1,02	29,16	29,74	41,65

Таблица 3 – Расчет нагрузок систем вентиляции жилых домов

Поле	k	Соличество		$P_{ ext{ iny,}}$	D vDm	1-		40.0	D vDm	Q_{BO} ,	S_{BO} ,
Дом	Подъезды	Этажи	Квартиры	кВт/кв	$P_{ m H}$, к ${ m B}{ m T}$	$k_{\rm C}$	cosφ	tgφ	P_{BO} , к B т	квар	кВА
13	4	14	224	1,28	3,36	1,00	0,8	0,75	3,36	2,52	4,20
14	4	14	224	1,28	3,36	1,00	0,8	0,75	3,36	2,52	4,20
18	4	14	224	1,28	3,36	1,00	0,8	0,75	3,36	2,52	4,20
24	4	14	224	1,28	3,36	1,00	0,8	0,75	3,36	2,52	4,20
3	7	9	252	1,23	3,78	1,00	0,8	0,75	3,78	2,84	4,73
6	7	9	252	1,23	3,78	1,00	0,8	0,75	3,78	2,84	4,73
33	5	9	180	1,23	2,7	1,00	0,8	0,75	2,7	2,03	3,38
9	7	9	252	1,23	3,78	1,00	0,8	0,75	3,78	2,84	4,73
17	6	9	216	1,23	3,24	1,00	0,8	0,75	3,24	2,43	4,05
20	7	9	252	1,23	3,78	1,00	0,8	0,75	3,78	2,84	4,73
26	5	9	180	1,23	2,7	1,00	0,8	0,75	2,7	2,03	3,38
28	7	9	252	1,23	3,78	1,00	0,8	0,75	3,78	2,84	4,73
8	6	12	288	1,25	4,32	1,00	0,8	0,75	4,32	3,24	5,40
30	9	12	432	1,25	6,48	1,00	0,8	0,75	6,48	4,86	8,10

Таблица 4 – Расчет общих нагрузок жилых домов

Дом	k	Соличество		$P_{ ext{к.уд,}}$	2050	tan	$S_{\kappa \mathrm{B}}$, к BA	<i>S</i> л, кВА	$S_{\rm CO}$,	S_{BO} ,	S_{Σ} , κ BA
Дом	Подъезды	Этажи	Квартиры	кВт/кв	cosφ	$tg\varphi$	SKB, KDA	Ы, KDA	кВА	кВА	SΣ, KDA
13	4	14	224	1,28	0,97	0,25	295,54	34,74	5,60	4,20	340,08
14	4	14	224	1,28	0,97	0,25	295,54	34,74	5,60	4,20	340,08
18	4	14	224	1,28	0,97	0,25	295,54	34,74	5,60	4,20	340,08
24	4	14	224	1,28	0,97	0,25	295,54	34,74	5,60	4,20	340,08
3	7	9	252	1,23	0,97	0,25	319,50	43,00	6,30	4,73	373,52
6	7	9	252	1,23	0,97	0,25	319,50	43,00	6,30	4,73	373,52
33	5	9	180	1,23	0,97	0,25	228,21	38,57	4,50	3,38	274,66
9	7	9	252	1,23	0,97	0,25	319,50	43,00	6,30	4,73	373,52
17	6	9	216	1,23	0,97	0,25	273,86	46,28	5,40	4,05	329,59
20	7	9	252	1,23	0,97	0,25	319,50	43,00	6,30	4,73	373,52
26	5	9	180	1,23	0,97	0,25	228,21	38,57	4,50	3,38	274,66
28	7	9	252	1,23	0,97	0,25	319,50	43,00	6,30	4,73	373,52
8	6	12	288	1,25	0,97	0,25	371,08	33,94	7,20	5,40	417,62
30	9	12	432	1,25	0,97	0,25	556,62	41,65	10,80	8,10	617,17

Таблица 5 – Расчет зданий общественных благ района Самарской области

Назначение	S	Ед.изм	$P_{ m yд}$, к ${ m BT}/S$	cosφ	tgφ	Рр, кВт	$Q_{ m p}$, квар	$k_{ m y}$	<i>P</i> _{р.м} , кВт	<i>Q</i> _{р.м} , квар	S _{р.м} , кВА
Аптека	35	кВт	_	0,91	0,46	35	16,10	0,9	31,5	14,49	34,67
Универсам	1730	\mathbf{M}^2	0,2	0,91	0,46	346	159,16	0,9	311,4	143,24	342,77
Отделение банка	30	кВт	_	0,89	0,51	30	15,30	0,9	27	13,77	30,31
Медицинский центр	850	человек	0,43	0,86	0,59	365,5	215,65	0,7	255,85	150,95	297,06
Детский сад	200	человек	0,41	0,96	0,29	82	23,78	0,4	32,8	9,51	34,15
Бассейн	200	человек	0,41	0,96	0,29	82	23,78	0,4	32,8	9,51	34,15
Школа	200	человек	0,41	0,96	0,29	82	23,78	0,4	32,8	9,51	34,15
Общепит	70	место	0,8	0,94	0,36	48	17,28	0,6	28,8	10,37	30,61
Университет	700	человек	0,3	0,94	0,36	210	75,60	0,4	84	30,24	89,28
Колледж	700	человек	0,3	0,94	0,36	210	75,60	0,4	84	30,24	89,28
Торгово- развлекательные центры	2600	M ²	0,22	0,91	0,46	572	263,12	0,8	457,6	210,50	503,69
Спортивный зал	400	кВт	_	0,89	0,51	400	204,00	0,9	360	183,60	404,12
											1924,24

«Расчетная нагрузка административных и общественных зданий района:

$$P_{\text{p.3}\text{Д}} = P_{\text{y}\text{Д}} \cdot S, \tag{5}$$

где $P_{yд}$ — удельная нагрузка здания (величина, которая берется из таблицы удельных расчетных электрических нагрузок 2.2.1 РД 34.20.185-94 в зависимости от назначения здания);

S — удельная нагрузка здания (исходные данные) » [3].

К общественным и административным зданиям относятся:

- учебные заведения;
- торговые здания;
- спортивные и медицинские учреждения.

«Максимальные нагрузки зданий:

$$P_{\text{p.м.3},\text{d}} = P_{\text{p.3},\text{d}} \cdot k_{\text{y}} \tag{6}$$

где $k_{\rm y}$ — коэффициент участия в максимуме нагрузки (таблица коэффициентов 2.3.1 РД 34.20.185-94)» [3].

Выводы по разделу

В результате проведенных расчетов определена нагрузка потребителей района Самарской области, которая составила 7065,86 кВА.

Теперь рассчитаем осветительную нагрузку района Самарской области для выбора оборудования проектируемой системы электроснабжения.

3 Расчет освещения

Освещенность территорий района должна составлять не менее 10 лк. [1], [9].

Данной освещенности соответствует значение удельной мощности 0,7 Bt/m^2 [5].

«Электрическую нагрузку искусственного освещения территорий внутри района рассчитаем по методу удельной мощности освещения:

$$P_0 = F \cdot S \cdot K_{\text{CO}} \cdot 10^{-3},\tag{7}$$

где F – площадь освещения, M^2 ;

S – удельная плотность нагрузки на освещение, B_T/M^2 ;

 $K_{\rm CO}$ – коэффициент спроса освещения» [5].

Значения удельной мощности потребителей района города занесем в таблицу 2.

Коэффициент спроса освещения составляет 0,9. Площадь освещения – 15 га.

Выводы по разделу

Нагрузка уличного освещения района составляет 94,5 кВт. Данная нагрузка включает в себя нагрузку освещения дворов, улиц, площадок. Суммарная полная нагрузка района составляет 7155,64 кВА.

4 Выбор числа и мощности трансформаторов

Электроснабжение осуществляется от внешних сетей напряжением 110 кВ. Класс напряжения района выберем 10 кВ.

«Напряжение сети 380/220В при глухо-заземленной нейтрали трансформатора. Тип системы заземления TN-C-S» [10].

Категории надежности потребителей района Самарской области занесем в таблицу 6.

Таблица 6 – Категории надежности потребителей района города

Тип здания	Категория надежности
Жилые дома	II, III
Аптека	II
Универсам	II
Отделение банка	II
Медицинский центр	I
Детский сад	I
Бассейн	I
Школа	I
Общепит	II
Университет	II
Колледж	II
Торгово-развлекательные центры	II
Спортивный зал	II

III категория надежности соответствует зданиям при количестве этажей 1-8, а от 9 этажей – II категория надежности [3]. Примем двухтрансформаторные подстанции, поскольку имеются здания I категории надежности.

Расчет мощности трансформаторов района города Самарской области будем проводить по методу удельной плотности нагрузок.

«Удельная мощность:

$$\sigma = \frac{s}{F}$$

$$\sigma = \frac{s}{F} = \frac{7155}{0,185} = 38,68 \text{ kBA/m}^2$$
(8)

где S — полная расчетная мощность района, кBA;

F – площадь района, м²» [3]

«Поскольку плотность нагрузки выше 8, необходимо рассматривать трансформаторы выше 630 кВА. Наиболее оптимальная нагрузка распределительного пункта должна составлять 12 МВт» [3].

Для компенсации реактивной мощности установим конденсаторные батареи. Результирующие нагрузки занесем в таблицу 7. Аналогичный расчет для трансформаторов ТМГ1250 представим в таблице 8.

Таблица 7 – Расчет ЦЭН с трансформаторами ТМГ1000 10/0,4

Hamanananana	S	X	Y	k_3	$\chi_{ ext{II}}$	уц
Наименование	кВА	M	M	_	M	M
КТП1	1309,78	_	_	0,65	339,29	136,89
Дом №13	340,08	445	186	_	_	_
Дом №9	373,52	335	39	_	_	_
Дом №8	417,62	239	169	_	_	_
Университет	89,28	430	107	_	_	_
Колледж	89,28	333	239	_	_	_
КТП2	1544,06	_	_	0,77	440,20	357,59
Дом №14	340,08	445	253	_	_	_
Дом №17	329,59	413	382	_	_	_
Дом №18	340,08	448	466	_	_	_
Общепит	30,61	399	309	_	_	_
Торгово- развлекательные центры	503,69	452	342	_	_	_
КТП3	1349,78	_	_	0,67	291,12	447,88
Дом №20	373,52	360	465	_	_	_
Дом №24	340,08	263	448	_	_	_

Hayyyayanayyya	S	X	Y	кз	хц	уц
Наименование	кВА	M	M	_	M	M
Дом №26	274,66	231	378	_	_	_
Отделение банка	30,31	231	378	_	_	_
Бассейн	34,15	295	343	_	_	_
Медицинский центр	297,06	298	510	_	_	_
КТП4	1467,44	_	_	0,73	76,61	155,27
Дом №6	373,52	168	28	_	_	_
Дом №3	373,52	35	98	_	_	_
Дом №33	274,66	37	269	_	_	_
Бассейн	34,15	250	101	_	_	_
Школа	34,15	117	230	_	_	_
Аптека	34,67	35	98	_	_	_
Универсам	342,77	37	269	_	_	_
КТП5	1394,81	_	_	0,70	122,87	405,33
Дом №28	373,52	182	453	_	_	_
Дом №30	617,17	142	323	_	_	_
Спортивный зал	404,12	39	487	_	_	_

Таблица 8 – Расчет ЦЭН с трансформаторами ТМГ1250 10/0,4

Hamsayanayya	S	X	Y	k_3	$\chi_{ ext{II}}$	уц
Наименование	кВА	M	M	_	M	M
КТП1	1770,09	_	_	0,71	414,48	213,96
Дом №13	340,08	445	186	_	_	_
Дом №14	340,08	445	253	_	_	_
Дом №9	373,52	335	39	_	_	_
Бассейн	34,15	295	343	_	_	_
Университет	89,28	430	107	_	_	_
Колледж	89,28	333	239	_	_	_
Торгово- развлекательные центры	503,69	452	342	_		_
КТП2	1745,10	_	_	0,70	357,11	448,74

Hamanananana	S	X	Y	кз	хц	уц
Наименование	кВА	M	M	_	M	M
Дом №18	340,08	448	466	_	_	_
Дом №24	340,08	263	448	_	_	_
Дом №17	329,59	413	382	_	_	_
Дом №20	373,52	360	465	_	_	_
Медицинский центр	297,06	298	510	_	_	_
Бассейн	34,15	295	343	_	_	_
Общепит	30,61	399	309	_	_	_
КТП3	1850,91	_	_	0,74	110,05	159,37
Дом №6	373,52	168	28	_	_	_
Дом №18	417,62	239	169	_	_	_
Дом №3	373,52	35	98	_	_	_
Дом №33	274,66	37	269	_	_	_
Школа	34,15	117	230	_	_	_
Аптека	34,67	35	98	_	_	_
Универсам	342,77	37	269	_	_	_
КТП4	1699,77	_	_	0,68	142,27	400,43
Дом №28	373,52	182	453	_	_	_
Дом №30 подъезд 1- 4	617,17	142	323	_	_	_
Дом №30 подъезд 5- 9		_		_	_	_
Дом №26	274,66	231	378	_	_	_
Спортивный зал	404,12	39	487	_	_	_
Отделение банка	30,31	231	378	_	_	_

«Количество КТП определим по следующей формуле:

$$N = \frac{S}{k_3 S_{\text{HT}}} \tag{9}$$

где $S_{\mbox{\tiny HT}}$ — номинальная мощность трансформаторов, кВА;

 k_3 – коэффициент загрузки трансформаторов» [3].

Рассмотрим следующие варианты электроснабжения потребителей района:

- $\text{TM}\Gamma 630 \ 10/0,4 8 \text{ KT}\Pi;$
- $\text{TM}\Gamma 1000 \ 10/0, 4 5 \text{ KT}\Pi;$
- TMΓ1250 10/0,4 4 KTΠ.

ТМГ630 обладают большими потерями, чем ТМГ1250 при том, что количество КТП с ТМГ630 больше ровно в 2 раза. Поэтому рассмотрим два последних варианта.

Определим центры электрических нагрузок (ЦЭН) района города. «ЦЭН района города:

$$x_{ii} = \frac{\sum S_i x_i}{S_i}, y_{ii} = \frac{\sum S_i y_i}{S_i}$$
 (10)

где S — нагрузка i-го потребителя, кBA;

 x_i, y_i – координаты ЦЭН і-го потребителя» [12].

«Радиус окружностей картограммы электрических нагрузок:

$$r_i = \sqrt{S/\pi \cdot m},\tag{11}$$

где S – расчетная нагрузка і-го потребителя, кBA;

m — масштаб для определения площади окружности (примем равным 0,7)» [12].

Полученные вычисления представлены для трансформаторов ТМГ 1000 на рисунке 2 и для трансформаторов ТМГ 1250 на рисунке 3.

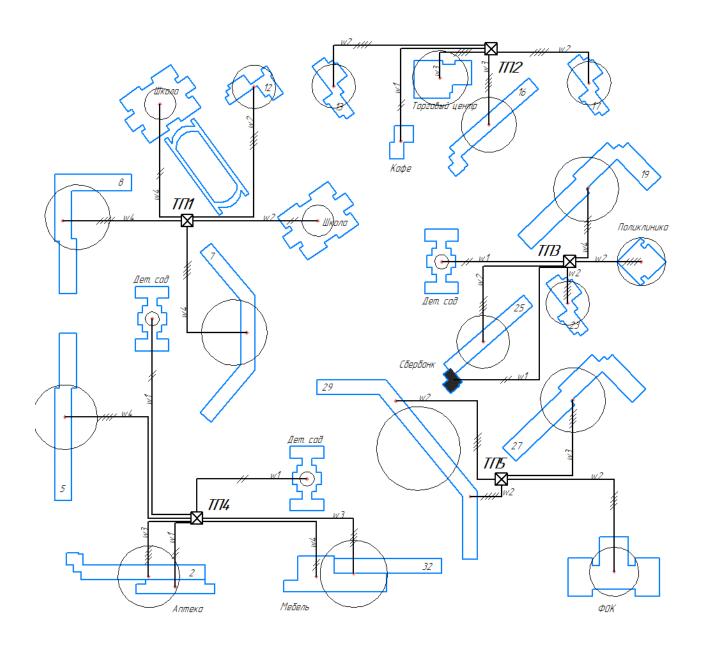


Рисунок 2 — План расстановки КТП с ТМГ1000 10/0,4

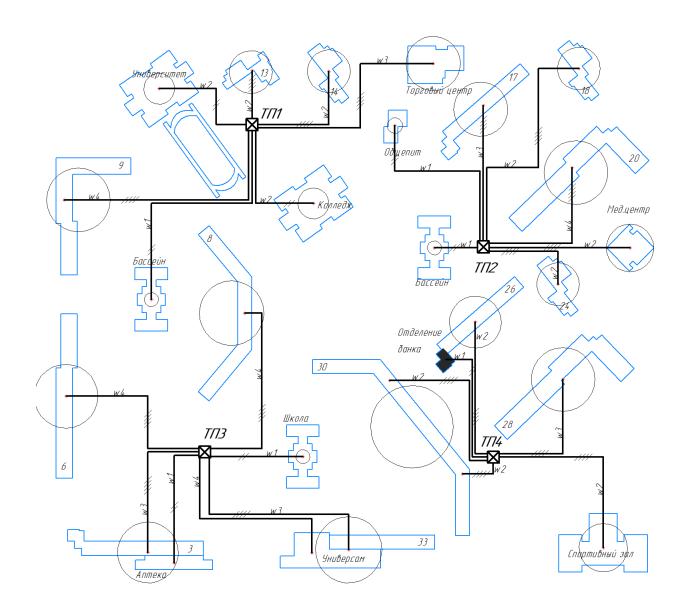


Рисунок 3 — План расстановки КТП с ТМГ1250 10/0,4

Выводы по разделу

Согласно требованиям нормативных документов было определено 3 варианта электроснабжения 10/0,4 кВ с трансформаторами ТМГ 630-1250 кВА. Для технико-экономического сравнения приняты трансформаторы ТМГ1000 и ТМГ1250.

5 Выбор схемы электроснабжения потребителей

Рассмотрим радиальную и магистральную двухлучевую схемы распределительных сетей на основании категорий надежности потребителей и расстановки КТП.

«Для потребителей II категории надежности электроснабжения применим параллельные магистральные линии с секционированием шин ВРУ 0,4 кВ зданий. Для потребителей I категории надежности электроснабжения необходима установка АВР на вводе к потребителю» [23].

Кабели необходимо проложить, основываясь на расстановку потребителей по району города Самарской области.

«Потребители, расположенные в близи КТП целесообразно запитать отдельными кабельными линиями, не включая в магистральные схемы распределительных сетей» [24].

«Расчетный ток:

$$I = \frac{S}{\sqrt{3}U \cdot n} \tag{12}$$

где n — количество кабельных линий, участвующих в электроснабжении потребителя» [22].

Маркировка кабелей – АПвБбШп [4].

«Расчетное сечение кабельных линий:

$$F = \frac{I}{j_{\text{эк}}} \tag{13}$$

где I – расчетный ток в час максимума энергосистемы, A;

 $j_{\text{эк}}$ — нормированное значение экономической плотности тока, А/мм², для заданных условий работы, выбираемое по табл. 1.3.36» [10]. $j_{\text{эк}}$ = 1,6 А/мм² поскольку $T_{max} > 5300$ ч.

«Длительнодопустимый ток:

$$I_{\text{доп}} = I_{\text{доп.справ}} \cdot k_{\text{п}} \cdot k_{t} \cdot k_{\text{ж}} \tag{14}$$

где $I_{\text{доп.справ}}$ — допустимый длительный ток для кабелей с алюминиевыми жилами с пластмассовой изоляцией, прокладываемых в земле» [10]; « k_{Π} — коэффициент прокладки, определяемый по числу кабелей, проложенных в траншее» [10]. Для четырех кабелей принимаем k_{Π} = 0,9 при рабочем режиме и k_{Π} = 0,8 — при аварийном;

 $\langle k_t -$ коэффициент поправки на температуру среды» [10]. Принимаем $k_t = 1,06$;

 $\ll k_{\text{ж}}$ — коэффициент поправки на количество жил» [10]. Принимаем $k_{\text{ж}}$ = 0,92.

Результаты расчетов допустимых токов представлены в таблицах 9 и 10. «Для сетей 0,4кВ допустимые потери напряжений составляют не более 5%» [17].

«Потери напряжения в кабельных линиях определим по следующему выражению:

$$\Delta U = \frac{(P \cdot r_0 + Q \cdot x_0)}{U_{\text{HOM}}} l \tag{15}$$

где r_0 , x_0 – активное и индуктивное сопротивление кабеля, Ом/км;

l — длина кабеля, км;

P, Q — активная и реактивная мощность проходящая через кабель» [12].

Результаты расчетов потерь напряжения представлены в таблицах 11 и 12.

Таблица 9 – Электроснабжение трансформаторами ТМГ1000

Наименование	<i>P</i> , кВт	<i>Q</i> , квар	<i>S</i> , кВА	<i>I</i> _{раб} , А	$I_{\Pi ext{aB}}, \ ext{A}$	$F_{ m pac ext{ iny q}}, \ ext{ iny MM}^2$	<i>F</i> , mm ²	$I_{ exttt{доп.справ}}, \ ext{A}$	<i>I</i> _{доп.раб} ,	<i>I</i> _{доп.пав} , А
Дом №13	318,88	102,37	340,08	122,72	245,43	76,70	95	255	198,94	223,81
Дом №9	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Дом №8	393,84	121,80	417,62	150,70	301,39	94,18	120	295	230,15	258,92
Университет	84,00	30,24	89,28	32,22	64,43	20,13	25	115	89,72	100,93
Колледж	84,00	30,24	89,28	32,22	64,43	20,13	25	115	89,72	100,93
Дом №14	318,88	102,37	340,08	122,72	245,43	76,70	95	255	198,94	223,81
Дом №17	305,64	105,14	329,59	118,93	237,86	74,33	95	255	198,94	223,81
Дом №18	318,88	102,37	340,08	122,72	245,43	76,70	95	255	198,94	223,81
Общепит	28,80	10,37	30,61	11,05	22,09	6,90	10	70	54,61	61,44
Торгово- развлекательные центры	457,60	210,50	503,69	181,75	363,51	113,60	120	295	230,15	258,92
Дом №20	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Дом №24	318,88	102,37	340,08	122,72	245,43	76,70	95	255	198,94	223,81
Дом №26	254,70	87,62	274,66	99,11	198,22	61,94	95	255	198,94	223,81
Отделение банка	27,00	13,77	30,31	10,94	21,87	6,84	10	70	54,61	61,44
Бассейн	32,80	9,51	34,15	12,32	24,65	7,70	10	70	54,61	61,44

Наименование	<i>Р</i> , кВт	<i>Q</i> , квар	S, кВА	<i>I</i> _{раб} , А	$I_{\Pi ext{aB}}, \ ext{A}$	$F_{ m pac q}$, мм 2	<i>F</i> , mm ²	$I_{ m Доп. cправ}, \ { m A}$	<i>I</i> _{доп.раб} ,	$I_{ extsf{доп.пав}}, \ extsf{A}$
Медицинский центр	255,85	150,95	297,06	107,19	214,39	67,00	95	255	198,94	223,81
Дом №6	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Дом №3	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Дом №33	254,70	87,62	274,66	99,11	198,22	61,94	95	255	198,94	223,81
Бассейн	32,80	9,51	34,15	12,32	24,65	7,70	10	70	54,61	61,44
Школа	32,80	9,51	34,15	12,32	24,65	7,70	10	70	54,61	61,44
Аптека	31,50	14,49	34,67	12,51	25,02	7,82	10	70	54,61	61,44
Универсам	311,40	143,24	342,77	123,69	247,37	77,30	70	210	163,83	184,31
Дом №28	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Дом №30 подъезд 1-4	292,14	88,04	308,59	111,35	222,70	69,59	95	255	198,94	223,81
Дом №30 подъезд 5-9	292,14	88,04	308,59	111,35	222,70	69,59	95	255	198,94	223,81
Спортивный зал	360,00	183,60	404,12	145,82	291,64	91,14	95	255	198,94	223,81

Таблица 10 – Электроснабжение трансформаторами ТМГ1250

Наименование	<i>P</i> , кВт	<i>Q</i> , квар	S, кВА	<i>I</i> _{раб} , А	$I_{\Pi ext{aB}}, \ ext{A}$	$F_{ m pac q}, \ { m MM}^2$	F,	$I_{ ext{доп.справ}}, \ ext{A}$	<i>I</i> _{доп.раб} ,	$I_{ ext{ iny don. nab}}, \ A$
Дом №13	318,88	102,37	340,08	122,72	245,43	76,70	95	255	198,94	223,81
Дом №14	318,88	102,37	340,08	122,72	245,43	76,70	95	255	198,94	223,81
Дом №9	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Бассейн	32,80	9,51	34,15	12,32	24,65	7,70	10	70	54,61	61,44
Университет	84,00	30,24	89,28	32,22	64,43	20,13	25	115	89,72	100,93
Колледж	84,00	30,24	89,28	32,22	64,43	20,13	25	115	89,72	100,93
Торгово- развлекательные центры	457,60	210,50	503,69	181,75	363,51	113,60	120	295	230,15	258,92
Дом №18	318,88	102,37	340,08	122,72	245,43	76,70	95	255	198,94	223,81
Дом №24	318,88	102,37	340,08	122,72	245,43	76,70	95	255	198,94	223,81
Дом №17	305,64	105,14	329,59	118,93	237,86	74,33	95	255	198,94	223,81
Дом №20	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Медицинский центр	255,85	150,95	297,06	107,19	214,39	67,00	95	255	198,94	223,81
Бассейн	32,80	9,51	34,15	12,32	24,65	7,70	10	70	54,61	61,44
Общепит	28,80	10,37	30,61	11,05	22,09	6,90	10	70	54,61	61,44

Наименование	<i>P</i> , кВт	<i>Q</i> , квар	S, кВА	<i>I</i> _{раб} , А	$I_{\scriptscriptstyle \Pi ext{aB}}, \ ext{A}$	$F_{ m pacq}, \ m_{MM}^2$	<i>F</i> , mm ²	$I_{ m Доп. cправ}, \ { m A}$	<i>I</i> _{доп.раб} ,	$I_{ extsf{доп.пав}}, \ extsf{A}$
Дом №6	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Дом №18	393,84	121,80	417,62	150,70	301,39	94,18	120	295	230,15	258,92
Дом №3	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Дом №33	254,70	87,62	274,66	99,11	198,22	61,94	95	255	198,94	223,81
Школа	32,80	9,51	34,15	12,32	24,65	7,70	10	70	54,61	61,44
Аптека	31,50	14,49	34,67	12,51	25,02	7,82	10	70	54,61	61,44
Универсам	143,24	342,77	342,77	123,69	247,37	77,30	70	210	163,83	184,31
Дом №28	348,88	114,81	373,52	134,78	269,56	84,24	120	295	230,15	258,92
Дом №30 подъезд 1-4	292,14	88,04	308,59	111,35	222,70	69,59	95	255	198,94	223,81
Дом №30 подъезд 5-9	292,14	88,04	308,59	111,35	222,70	69,59	95	255	198,94	223,81
Дом №26	254,70	87,62	274,66	99,11	198,22	61,94	95	255	198,94	223,81
Спортивный зал	360,00	183,60	404,12	145,82	291,64	91,14	95	255	198,94	223,81
Отделение банка	27,00	13,77	27,00	9,74	19,49	6,09	10	70	54,61	61,44

Таблица 11 – Потери в кабельных линиях при электроснабжении трансформаторами ТМГ1000

Hamanananana	Р	Q	S	F	r	X	L	dU_{pa6}	$dU_{\scriptscriptstyle \Pi ext{AB}},$
Наименование	кВт	квар	кВА	MM^2	Ом/км	Ом/км	КМ	%	%
Дом №13	318,88	102,37	340,08	95	0,329	0,081	0,172	1,22%	2,43%
Дом №9	348,88	114,81	373,52	120	0,261	0,08	0,111	0,70%	1,39%
Дом №8	393,84	121,80	417,62	120	0,329	0,081	0,152	1,32%	2,65%
Университет	84,00	30,24	89,28	25	1,28	0,085	0,121	0,83%	1,67%
Колледж	84,00	30,24	89,28	25	1,28	0,085	0,122	0,84%	1,68%
Дом №14	318,88	102,37	340,08	95	0,329	0,081	0,171	1,21%	2,42%
Дом №17	305,64	105,14	329,59	95	0,329	0,081	0,112	0,76%	1,53%
Дом №18	318,88	102,37	340,08	95	0,329	0,081	0,071	0,50%	1,00%
Общепит	28,80	10,37	30,61	10	3,16	0,099	0,162	0,93%	1,86%
Торгово- развлекательные центры	457,60	210,50	503,69	120	0,261	0,08	0,071	0,60%	1,21%
Дом №20	348,88	114,81	373,52	120	0,261	0,08	0,042	0,26%	0,53%
Дом №24	318,88	102,37	340,08	95	0,329	0,081	0,081	0,57%	1,15%
Дом №26	254,70	87,62	274,66	95	0,329	0,081	0,0142	0,08%	0,16%
Отделение банка	27,00	13,77	30,31	10	3,16	0,099	0,181	0,98%	1,96%

Harrisanan	Р	Q	S	F	r	X	L	dU_{pa6}	$dU_{\scriptscriptstyle \Pi ext{aB}},$
Наименование	кВт	квар	кВА	mm ²	Ом/км	Ом/км	КМ	%	%
Бассейн	32,80	9,51	34,15	10	3,16	0,099	0,061	0,40%	0,80%
Медицинский центр	255,85	150,95	297,06	95	0,329	0,081	0,111	0,67%	1,34%
Дом №6	348,88	114,81	373,52	120	0,261	0,08	0,21	1,32%	2,63%
Дом №3	348,88	114,81	373,52	120	0,261	0,08	0,091	0,57%	1,14%
Дом №33	254,70	87,62	274,66	95	0,329	0,081	0,181	1,03%	2,06%
Бассейн	32,80	9,51	34,15	10	3,16	0,099	0,071	0,46%	0,93%
Школа	32,80	9,51	34,15	10	3,16	0,099	0,141	0,92%	1,84%
Аптека	31,50	14,49	34,67	10	3,16	0,099	0,131	0,83%	1,65%
Универсам	311,40	143,24	342,77	70	0,447	0,082	0,181	1,71%	3,42%
Дом №28	348,88	114,81	373,52	120	0,261	0,08	0,131	0,82%	1,64%
Дом №30 подъезд 1-4	292,14	88,04	308,59	95	0,329	0,081	0,151	0,97%	1,95%
Дом №30 подъезд 5-9	292,14	88,04	308,59	95	0,329	0,081	0,041	0,26%	0,53%
Спортивный зал	360,00	183,60	404,12	95	0,329	0,081	0,018	0,15%	0,30%

Таблица 12 – Потери в кабельных линиях при электроснабжении трансформаторами ТМГ1250

			ı		1	1	1	1	1
Наименование	P	Q	S	F	r	X	L	dUраб	$dU_{\scriptscriptstyle \Pi BB}$,
Паименование	кВт	квар	кВА	MM^2	Ом/км	Ом/км	КМ	%	%
Дом №13	318,88	102,37	340,08	95	0,329	0,081	0,021	0,15%	0,30%
Дом №14	318,88	102,37	340,08	95	0,329	0,081	0,231	1,63%	3,27%
Дом №9	348,88	114,81	373,52	120	0,261	0,08	0,121	0,76%	1,52%
Бассейн	32,80	9,51	34,15	10	3,16	0,099	0,121	0,79%	1,58%
Университет	84,00	30,24	89,28	25	1,28	0,085	0,121	0,83%	1,67%
Колледж	84,00	30,24	89,28	25	1,28	0,085	0,241	1,66%	3,32%
Торгово- развлекательные центры	457,60	210,50	503,69	120	0,261	0,08	0,221	1,88%	3,76%
Дом №18	318,88	102,37	340,08	95	0,329	0,081	0,105	0,74%	1,49%
Дом №24	318,88	102,37	340,08	95	0,329	0,081	0,241	1,71%	3,41%
Дом №17	305,64	105,14	329,59	95	0,329	0,081	0,131	0,89%	1,79%
Дом №20	348,88	114,81	373,52	120	0,261	0,08	0,151	0,95%	1,89%
Медицинский центр	255,85	150,95	297,06	95	0,329	0,081	0,131	0,79%	1,58%
Бассейн	32,80	9,51	34,15	10	3,16	0,099	0,051	0,33%	0,67%
Общепит	28,80	10,37	30,61	10	3,16	0,099	0,181	1,04%	2,08%
Дом №6	348,88	114,81	373,52	120	0,261	0,08	0,172	1,08%	2,16%
Дом №8	393,84	121,80	417,62	120	0,261	0,08	0,181	1,27%	2,55%

Полимонороми	P	Q	S	F	r	х	L	$dU_{ m pa6}$	$dU_{\Pi ext{BB}},$
Наименование	кВт	квар	кВА	MM^2	Ом/км	Ом/км	КМ	%	%
Дом №3	348,88	114,81	373,52	120	0,261	0,08	0,092	0,58%	1,15%
Дом №33	254,70	87,62	274,66	95	0,329	0,081	0,142	0,81%	1,61%
Школа	32,80	9,51	34,15	10	3,16	0,099	0,211	1,38%	2,76%
Аптека	31,50	14,49	34,67	10	3,16	0,099	0,112	0,71%	1,41%
Универсам	143,24	342,77	342,77	70	0,447	0,082	0,162	0,93%	1,87%
КТП4	348,88	114,81	373,52	120	0,261	0,08	0,131	0,82%	1,64%
Дом №28	292,14	88,04	308,59	95	0,329	0,081	0,131	0,85%	1,69%
Дом №30 подъезд 1-4	292,14	88,04	308,59	95	0,329	0,081	0,152	0,98%	1,96%
Дом №30 подъезд 5-9	254,70	87,62	274,66	95	0,329	0,081	0,042	0,24%	0,48%
Дом №26	360,00	183,60	404,12	95	0,329	0,081	0,121	1,01%	2,02%
Спортивный зал	27,00	13,77	27,00	10	3,16	0,099	0,182	0,99%	1,97%

Для выбора мощности трансформаторов необходимо провести соответствующие расчеты.

Технико-экономические данные трансформаторов приведены в таблице 13.

Таблица 13 – Технико-экономические данные сравниваемых трансформаторов

Параметры	$P_{\scriptscriptstyle ext{XX.T}}$	$P_{ ext{ iny K3.T}}$	$U_{{\scriptscriptstyle \mathrm{K3.T}}}$	$I_{\scriptscriptstyle m XX.T}$	Стоимость
трансформатора	Вт	Вт	%	%	руб/шт
ΤΜΓ1000/10/0,4	1540	10700	5,4	1,1	278 000
ТМГ1250/10/0,4	1790	12300	5,9	0,5	320 000

Число часов максимальных потерь за год работы трансформатора:

$$\delta_{\rm M} = 8760 \cdot (0.124 + \frac{\sigma_{max}}{10000})^2 \tag{16}$$

где « σ_{max} — число часов использования максимума электрической нагрузки, ч». [3] В нашем случае это 5300ч.

Годовые потери электроэнергии одного из двух трансформаторов:

$$\Delta W_{\text{год.T}} = \Delta P_{\text{XX.T}} \cdot T_{\text{T}} \cdot n_{\text{T}} + \Delta P_{\text{K3.T}} \cdot \left(\frac{S_{\text{p.rp}\Sigma}}{S_{\text{H.TD}}}\right)^2 \cdot \delta_{\text{M}} \cdot \frac{1}{n_{\text{T}}}$$
(17)

где $T_{\rm T}$ – количество рабочих часов трансформатора, ч/год.

Денежные издержки одного трансформатора:

$$\mathcal{H}_{\text{год.т}} = \rho_{\text{а.т}} \cdot K_{\text{T}} + \left(\frac{\gamma}{\sigma_{max}} + \vartheta\right) \cdot \Delta W_{\text{год.тр}} \cdot 10^{-5}$$
(18)

где $\rho_{\rm a.t}$ – коэффициент амортизации;

 γ – стоимость 1 кВт мощности по договору;

 θ – стоимость дополнительного кВт⁻ч по счетчику;

 $K_{\rm T}$ – стоимость трансформатора, тыс. руб.

Денежные затраты на приобретение трансформатора:

$$3_{\mathrm{T}} = p_{\mathrm{H.T}} \cdot K_{\mathrm{T}} + \mathsf{M}_{\mathrm{FOJ.T}} \tag{19}$$

где « $p_{\text{н.т}}$ – показатель экономической эффективности» [12].

Результаты вычислений занесем в таблицу 14.

Таблица 14 – Техническое и экономическое сравнение вариантов

Параметр	Ед. изм.	TMΓ 1000/10/0,4	ΤΜΓ 1250/10/0,4
$\delta_{\scriptscriptstyle ext{M}}$	ч/год	3861	3861
$ extstyle extstyle W_{ extstyle $	кВт∙ч	37320	43205
И _{год.т}		36492,56	42247,68
$p_{\scriptscriptstyle \mathrm{H.T}} \cdot K_{\scriptscriptstyle \mathrm{T}}$	тыс. руб	33,36	38,40
3		36525,92	42286,08

Теперь рассчитаем капиталовложения для строительства систем электроснабжения на базе трансформаторов ТМГ 1000 и ТМГ 1250. Результаты расчетов капиталовложений представлены в таблицах 15 и 16.

Таблица 15 — Технико-экономический расчет электроснабжения района трансформаторами ТМГ-1000

Наименование	L, км	$C_{\text{прокл}}$, руб/м	$K_{\text{прокл}}$, руб	Скаб, руб/м	$K_{ m \kappa a 6}$, руб	$V_{\text{земл}}, \text{м}^3$	$K_{\text{земл}}$, руб
Дом №13	0,172	310	53320	463	79636	137,6	158240
Дом №9	0,111	340	37740	529	58719	88,8	102120
Дом №8	0,152	340	51680	529	80408	121,6	139840
Университет	0,121	195	23595	175	21175	96,8	111320
Колледж	0,122	195	23790	175	21350	97,6	112240
Дом №14	0,171	310	53010	463	79173	136,8	157320
Дом №17	0,112	310	34720	463	51856	89,6	103040
Дом №18	0,071	310	22010	463	32873	56,8	65320
Общепит	0,162	160	25920	88	14256	129,6	149040
Торгово- развлекательные центры	0,071	340	24140	529	37559	56,8	65320
Дом №20	0,042	340	14280	529	22218	33,6	38640
Дом №24	0,081	310	25110	463	37503	64,8	74520
Дом №26	0,0142	310	4402	463	6574,6	11,36	13064
Отделение банка	0,181	160	28960	88	15928	144,8	166520
Бассейн	0,061	160	9760	88	5368	48,8	56120

Наименование	L, km	$C_{\text{прокл}}$, руб/м	Кпрокл, руб	Скаб, руб/м	Ккаб, руб	$V_{\text{земл}}$, м ³	Кземл, руб
Медицинский центр	0,111	310	34410	463	51393	88,8	102120
Дом №6	0,21	340	71400	529	111090	168	193200
Дом №3	0,091	340	30940	529	48139	72,8	83720
Дом №33	0,181	310	56110	463	83803	144,8	166520
Бассейн	0,071	160	11360	88	6248	56,8	65320
Школа	0,141	160	22560	88	12408	112,8	129720
Аптека	0,131	160	20960	88	11528	104,8	120520
Универсам	0,181	270	48870	330	59730	144,8	166520
Дом №28	0,131	340	44540	529	69299	104,8	120520
Дом №30 подъезд 1-4	0,151	310	46810	463	69913	120,8	138920
Дом №30 подъезд 5-9	0,041	310	12710	463	18983	32,8	37720
Физкультурно- оздоровительный комплекс	0,018	310	5580	463	8334	14,4	16560
			838687	_	1115464,6	2481,76	2854024

Таблица 16 – Технико-экономический расчет электроснабжения района трансформаторами ТМГ1000

Наименование	L, km	Спрокл, руб/м	$K_{\rm прокл}$, руб	Скаб, руб/м	Ккаб, руб	$V_{\text{земл}}, \mathbf{M}^3$	$K_{\text{земл}}$, руб
Дом №13	0,021	310	6510	463	9723	16,8	19320
Дом №14	0,231	310	71610	463	106953	184,8	212520
Дом №9	0,121	340	41140	529	64009	96,8	111320
Бассейн	0,121	160	19360	88	10648	96,8	111320
Университет	0,121	195	23595	175	21175	96,8	111320
Колледж	0,241	195	46995	175	42175	192,8	221720
Торгово- развлекательные центры	0,221	340	75140	529	116909	176,8	203320
Дом №18	0,105	310	32550	463	48615	84	96600
Дом №24	0,241	310	74710	463	111583	192,8	221720
Дом №17	0,131	310	40610	463	60653	104,8	120520
Дом №20	0,151	340	51340	529	79879	120,8	138920
Медицинский центр	0,131	310	40610	463	60653	104,8	120520
Бассейн	0,051	160	8160	88	4488	40,8	46920
Общепит	0,181	160	28960	88	15928	144,8	166520
Дом №6	0,172	340	58480	529	90988	137,6	158240

Продолжение таблицы 16

Наименование	L, км	$C_{\text{прокл}}$, руб/м	Кпрокл, руб	Скаб, руб/м	Ккаб, руб	$V_{\text{земл}}, \text{м}^3$	$K_{\text{земл}}$, руб
Дом №8	0,181	340	61540	529	95749	144,8	166520
Дом №3	0,092	340	31280	529	48668	73,6	84640
Дом №33	0,142	310	44020	463	65746	113,6	130640
Школа	0,211	160	33760	88	18568	168,8	194120
Аптека	0,112	160	17920	88	9856	89,6	103040
Универсам	0,162	270	43740	330	53460	129,6	149040
Дом №28	0,131	340	44540	529	69299	104,8	120520
Дом №30 подъезд 1-4	0,131	310	40610	463	60653	104,8	120520
Дом №30 подъезд 5-9	0,152	310	47120	463	70376	121,6	139840
Дом №26	0,042	310	13020	463	19446	33,6	38640
Спортивный зал	0,121	310	37510	463	56023	96,8	111320
Отделение банка	0,182	270	49140	88	16016	145,6	167440
			1083970	_	1428239	3119,2	3587080

Параметры кабельной траншеи:

- глубина 1 м
- ширина 0,8 м.

Цена кабеля определена по каталогу электротехнической продукции [6]. «Общая стоимость капиталовложений для прокладки кабельных линий:

$$3 = K_{\text{прокл}} + K_{\text{каб}} + K_{\text{земл}} = (C_{\text{прокл}} + C_{\text{каб}})L + V_{\text{земл}}C_{\text{земл}}$$
(20)

где $C_{\text{прокл}}$ – стоимость прокладки кабеля, руб/м;

 $C_{\text{каб}}$ – стоимость кабеля, руб/м;

 $V_{\text{земл}}$ – объем земляных работ, м³;

 $C_{\text{земл}}$ – стоимость земляных работ (включает разработку грунта 800 руб/м³ и обратную засыпку 350 руб/м³ [14]), руб/м³» [6].

Выводы по разделу

При проведении технико-экономического обоснования были получены следующие результаты: КТП 1000/10/0,4 оказались выгоднее КТП 1250/6/0,4 для электроснабжения района города Самарской области.

Капиталовложения необходимые для постройки системы электроснабжения с трансформаторами ТМГ-1000 составили 4,808 млн. руб, а с трансформаторами ТМГ-1250 — 6,099 млн. руб. Постройка КТП на базе двух трансформаторов ТМГ-1000 также требует меньших капиталовложений.

6 Расчет токов короткого замыкания

«Мощность трехфазного короткого замыкания сети с S_c =500 MBA, U_6 =10,5 кВ, S_6 =1000 MBA.» [15]

Для проведения расчета ТКЗ необходимо воспользоваться расчетными формулами и методиками нормативно-технических документов, и требованиями ГОСТ. Расчёт проведем в относительных единицах (о.е.).

Ток от системы до КТП:

$$I_{\text{c/Tp}} = \frac{S_{\text{H.Tp}}}{\sqrt{3} \cdot U}$$
 (21)
 $I_{\text{c/Tp}} = \frac{1000}{\sqrt{3} \cdot 10.5} = 55 \text{ A}$

«Сечение по экономической плотности тока $J_{3K}=1,1$ А/мм²» [13]:

$$s_{\text{c/Tp}} = \frac{I_{\text{c/Tp}}}{J_{\text{эк}}}$$
 (22)
 $s_{\text{c/Tp}} = \frac{55}{1.1} = 50 \text{ mm}^2$

Ближайшим номинальным сечением является 50 мм². Согласно ПУЭ, для ААБл 3х50-10 допустимый ток составляет 134 А. При аварийном отключении одного трансформатора кабель выдержит проходящий ток. [18]

«Активное сопротивление кабеля $r_{yд.1}$ =0,62 Ом/км и индуктивное сопротивление кабеля $x_{yд.1}$ =0,09 Ом/км» [15]. Длина кабельной линии от точки питания до КТП равна $l_{кл.1}$ =1000 м. [14]

Активное и индуктивное сопротивление кабеля:

$$r_{\mathrm{K}\Pi.1} = r_{\mathrm{V}\Pi.1} \cdot l_{\mathrm{K}\Pi.1} \tag{23}$$

$$x_{\text{KJ},1} = x_{\text{VJ},1} \cdot l_{\text{KJ},1} \tag{24}$$

Получаем: $r_{\text{КЛ.1}}$ =90 Ом, $x_{\text{КЛ.1}}$ =620 Ом.

Сопротивление системы:

$$x_{\rm c} = \frac{U_6^2}{S_{\rm cucr}}$$

$$x_{\rm c} = \frac{10.5^2}{500} = 0.22 \text{ Om}$$
(25)

В результате по формулам получаем, что для точки К1: $r_{\text{K.1}}$ =310,5 мОм; $x_{\text{K.1}}$ =620 мОм. Составим расчетную схему и схему замещения цепи с указанием точек К3 (рисунок 4).

«Сопротивления катушек и контактов автоматических выключателей примем равными $r_{\text{кв}}$ =1,1 мОм, $x_{\text{кв}}$ =0,5 мОм. Активные и индуктивные сопротивления трансформаторов тока первого класса точности r_{TA} =0,2 мОм, x_{TA} =0,3 мОм. Активное сопротивление контактов $r_{\text{к}}$ =0,1 мОм» [10].

Сопротивление системы для ступени НН:

$$x_{\text{c.HH}} = \frac{U_{\text{HH}}^2}{S_{\text{сист}}}$$

$$x_{\text{c.HH}} = \frac{400^2}{500} \cdot 10^{-3} = 0,32 \text{ MOM}$$
(26)

Реактивное сопротивление ТМГ1000/10/0,4;

$$x_{\rm T} = \sqrt{u_{\rm K3.T}^2 - (\frac{100 \cdot P_{\rm K3.T}}{S_{\rm H.Tp}})^2 \cdot \frac{u_{\rm HH}^2}{S_{\rm H.Tp}}} \cdot 10^4$$

$$x_{\rm T} = \sqrt{5,5^2 - (\frac{100 \cdot 10,8}{1000})^2 \cdot \frac{0,4^2}{1000}} \cdot 10^4 = 8,63 \text{ MOM}$$
(27)

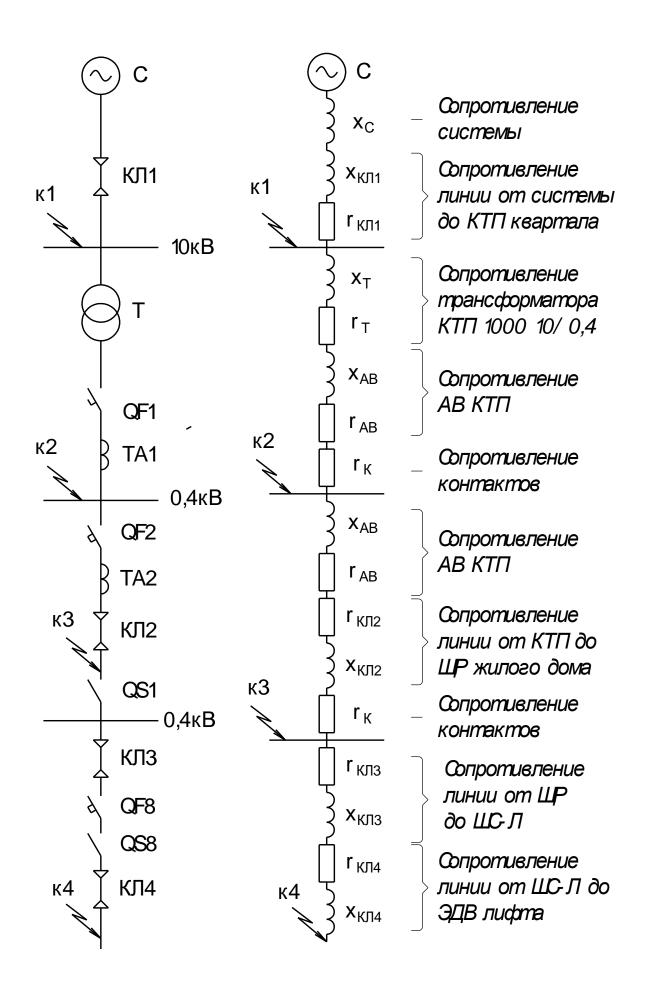


Рисунок 4 – Расчетная схема и схема замещения

Активное сопротивление ТМГ1000/10/0,4:

$$r_{\rm T} = \frac{P_{\rm K3.T} \cdot U_{\rm HH}^2}{S_{\rm H.Tp}^2} \cdot 10^6$$

$$r_{\rm T} = \frac{10.8 \cdot 0.4^2}{1000^2} \cdot 10^6 = 1.73 \text{ MOM}$$
(28)

Сопротивление цепи от системы до точки К2:

$$r_{\text{pe3.2}} = r_{\text{KJI.1}} + r_{\text{T}} + r_{\text{K}} + r_{\text{KB}} + r_{\text{TT}}$$
 (29)

$$x_{\text{pes.2}} = x_{\text{KJI.1}} + x_{\text{T}} + x_{\text{KB}} + x_{\text{TT}} + x_{\text{C}}$$
 (30)

Получаем следующие значения сопротивлений цепи: $r_{\rm pes.2}=24,\!82\,$ мОм, $x_{\rm pes.2}=29,\!49\,$ мОм.

«Начальное действующее значение периодической составляющей трехфазного ТКЗ без учета подпитки от электродвигателей» [7]:

$$I_{\text{п.0}} = \frac{U_{\text{ном}}}{\sqrt{3 \cdot (r_{\text{pes.2}}^2 + x_{\text{pes.2}}^2)}}$$
(31)

«Угол сдвига по фазе напряжения (ЭДС источника) и периодической составляющей ТКЗ» [7]:

$$\psi = \arctan(\frac{x_{\text{CYMM2}}}{r_{\text{CYMM2}}}) \tag{32}$$

«Время от начала КЗ до появления ударного тока» [7]:

$$\zeta = 0.01 \cdot \frac{\frac{\pi}{2} + \psi}{\pi} \tag{33}$$

«Постоянная времени затухания апериодической составляющей ТКЗ» [7]:

$$T_{\text{a.K}} = \frac{x_{\text{pes.2}}}{r_{\text{pes.2}} \cdot \omega} \tag{34}$$

«Ударный коэффициент» [7]:

$$K_{\rm yg,K} = (1 + \sin\psi \cdot e^{\frac{-\zeta}{T_a}}) \tag{35}$$

Ударный ток рассчитывается по ранее приведенной формуле.

Расчет для точек K3 и K4 проводится аналогично, результаты которого приведены в таблице 17.

Таблица 17 – Расчет трехфазных КЗ корпуса района города Самарской области

Точка	Drayesya warv	Х	r	$I_{\Pi.0}$	Ψ	ζ	$K_{ m y_{ m J}}$	$i_{ m yд.K}$
	Элемент цепи	мОм	мОм	кА	рад	10 ⁻³ с	_	кА
	Система (ВН)	220,50	_	ĺ	_	ı	_	_
К1	КЛ от системы до КТП	90	620	I	_	ı	_	_
	Общее сопротивление	310,50	620	8,74		_	1,4	17,3
K2	Перерасчет сопротивления К1 к НН	0,45	0,90	I	_	I	_	_
	Силовой трансформатор	8,63	1,73	_	_	-	_	_
	КЛ от КТП до РУ	15,4	26	_				
	Контакты	_	0,1	_	_	_	_	_

Продолжение таблицы 17

Точка	Элемент цепи	Х	r	$I_{\Pi.0}$	Ψ	ζ	$K_{ m y_{ m J}}$	$i_{ m yд.K}$
ТОЧКа		мОм	мОм	кА	рад	10-3 с	_	кА
	Катушки выключателей	0,17	0,65	ı	_	l	_	_
	Трансформаторы тока	0,17	0,11	ı		ı	_	I
	Общее сопротивление	24,82	29,49	5,99	0,7	7,23	1,3	11,01
	КЛ от РУ до ЩС	7,7	13	_	_	_	_	_
	Контакты	_	0,1	_	_	_	_	_
К3	Катушки выключателей	0,5	1,1	-	_	_	_	_
RS	Трансформаторы тока	0,67	0,32	_	_	_	_	_
	Общее сопротивление	33,69	44,01	4,17	0,65	7,07	1,2	7,08
	КЛ от ЩС до ЭП	4,62	7,8	_	_	_	_	_
	Контакты	_	0,1	_	_	_	_	_
K4	Катушки выключателей	0,7	1,3	-	_	_	_	_
	Трансформаторы тока	1,2	0,75	-	_	_	_	_
	Общее сопротивление	40,21	53,96	3,43	0,64	7,04	1,2	5,82

Выводы по разделу

При расчете коротких замыканий было взято четыре точки: одна точка на стороне выше 1000 В, другие три — на стороне ниже 1000 В. Чем дальше точка возникновения КЗ, тем меньше ударный ток и начальное действующее значение периодической составляющей.

Данные результаты необходимы для выбора оборудования КТП.

7 Выбор оборудования трансформаторных подстанций

Проверим оборудование на примере нагрузок КТП-2 [21]. Проделаем расчет термической и электродинамической стойкостей.

Ток термической стойкости точки К2:

$$B_{K} = I_{\text{п.0}}^{2} (T_{\text{a}} + t_{\text{п.в}})$$

$$B_{K} = 5.99^{2} \cdot (2.65 + 30) \cdot 10^{-3} = 1.17 \text{ KA}^{2} \cdot \text{c}$$
(36)

«Рассчитаем время действия релейной защиты:

$$\gamma = t_{p3} + t_{cBO}$$
 (37)
 $\gamma = 0.01 + 0.04 = 0.05 \text{ c}$

где t_{p3} – время срабатывания релейной защиты с;

 $t_{\rm cвo}$ – время срабатывания выключателя на отключение, с» [19].

«Максимальное значение апериодической составляющей ТКЗ» [16]:

$$i_{a,\gamma} = \sqrt{2} \cdot I_{\pi,0} \cdot e^{\frac{-\gamma}{T_a}}$$

$$i_{a,\gamma} = \sqrt{2} \cdot 5,99 \cdot 2,72^{\frac{-0.05}{2.65}} = 8,31 \text{ KA}$$
(38)

«Номинальное значение апериодической составляющей» [19]:

$$i_{\text{a.H}} = \sqrt{2} \cdot I_{\delta} \cdot (1 + e^{-22,5 \cdot \gamma})$$

$$i_{\text{a.H}} = \sqrt{2} \cdot 10 \cdot (1 + 2,72^{-22,5 \cdot 0,05}) = 18,73 \text{ KA}$$
(39)

где I_{δ} –ток отключения выключателя, к ${\bf A}$.

Расчетные параметры занесем в таблицу 18.

Таблица 18 – Проверка параметров

Расчетный	Сравниваемый	Автоматический	Трансформатор	Разъединитель	
параметр	параметр	выключатель	тока		
<i>I_{max}</i> =1114 A	$I_{ m pa6}$	1250 A	1200 A	1250 A	
<i>I</i> _{п.0} =5,99 кА	I_{δ}	10 кА	_	_	
іαγ=8,31 кА	$i_{ m aH}$	13,11 кА	_	_	
<i>i</i> _{уд.К} =18,73 кА	$i_{ m np.c}$	20 кА	20 кА	20 кА	
$B_{\rm K}=1,17~{\rm кA}^2\cdot{\rm c}$	$B_{ m K.hom}$	10 кА ² ·с	10 кА ² ·с	10 кА ² ·с	

План КТП и компоновка оборудования представлены на рисунках 5 и 6 соответственно [8].

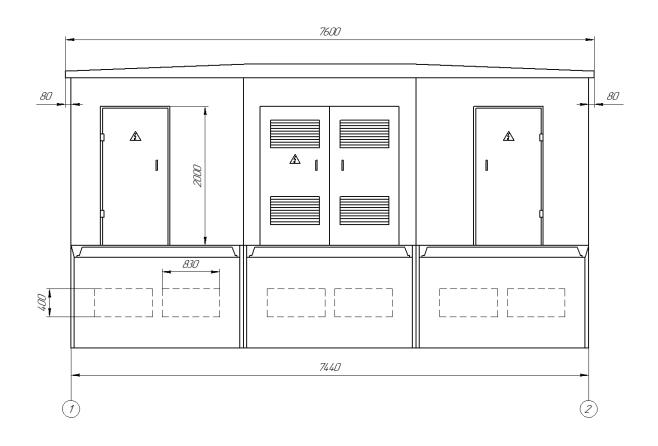


Рисунок 5 — План КТП с ТМГ1000/10/0,4

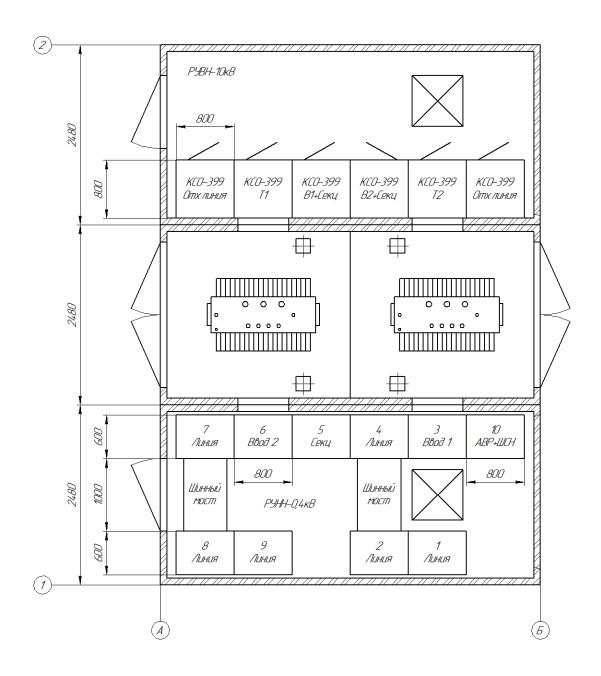


Рисунок 6 — Компоновка оборудования КТП с ТМГ1000/10/0,4

Теперь необходимо провести расчет заземления КТП.

Выводы по разделу

В данном разделе была определена компоновка оборудования для десяти КТП района города Самарской области.

8 Расчет заземления трансформаторных подстанций

Тип системы заземления на вводе в здания района Самарской области – TN-C-S, а в распределительных и групповых сетях – TN-S [10].

В КТП установить контур защитного заземления из металлической полосы 25х4 на высоте 0,4...0,6м от уровня пола» [21].

«Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине (1.7.119-1.7.120) при помощи проводников системы уравнивания потенциалов» [2].

Рассчитаем заземление по общеизвестным формулам.

Сопротивление вертикально расположенного заземлителя:

$$R_{\text{B.3}} = \frac{\rho_{\text{3.F}}}{2\pi L_{\text{B.3}}} \left(\ln \frac{2L_{\text{B.3}}}{d_{\text{B.3}}} + 0.5 \cdot \ln \frac{4 \cdot T_{\text{B.3}} + L_{\text{B.3}}}{4 \cdot T_{\text{B.3}} - L_{\text{B.3}}} \right)$$

$$R_{\text{B.3}} = \frac{98}{2 \cdot 3.14 \cdot 2.9} \left(\ln \frac{2 \cdot 2.9}{0.017} + 0.5 \ln \frac{8 + 2.9}{8 - 2.9} \right) = 33.5 \text{ OM}$$

$$(40)$$

где $\rho_{\text{-}\text{-}\text{-}}$ – величина удельного сопротивления земли, Ом · м;

 $L_{\text{в.3}}$ –длина вертикально расположенного заземлителя, м;

 $d_{\text{в.з}}$ –диаметр вертикально расположенного заземлителя, м;

 $T_{\text{в.з}}$ –заглубление, м.

Сопротивление горизонтально расположенного заземлителя:

$$R_{\Gamma.3} = \frac{\rho_{3.\Gamma}}{2 \cdot \pi \cdot L_{\Gamma.3}} \cdot \ln \frac{2L_{\Gamma.3}^2}{b_{\Gamma 3} \cdot h_{\Gamma.3}}$$

$$R_{\Gamma.3} = \frac{98}{2\pi \cdot 19.7} \cdot \ln \frac{2 \cdot 19.7^2}{0.06 \cdot 0.4} = 8,22 \text{ OM}$$
(41)

где $b_{\text{г.з}}$ –ширина горизонтально расположенного заземлителя, м;

 $h_{\Gamma.3}$ –заглубление горизонтальных заземлителей, м;

 $L_{\text{г.з}}$ –длина горизонтально расположенного заземлителя, м.

Полное сопротивление заземляющего устройства:

$$R_{3.y} = \sum_{i=1}^{n} \frac{1}{\frac{k_{Hi}n_{i}}{R_{i}}}$$

$$R_{3.y} = \frac{1}{\frac{25\cdot0.68}{33.5} + \frac{1\cdot0.68}{8.22}} = 1,69 \text{ Om}$$
(42)

где n_i — число комплектов;

 k_{ui} – коэффициент использования.

Сопротивление заземляющего устройства соответствует допустимому (менее 4 Ом).

«На входе в здание PEN проводник разделяется на N и PE проводники. Система заземления в распределительных и групповых сетях является более безопасной, имеет разделенные защитные проводники PE и нулевые N» [10].

«Токоведущие части электроустановки не должны быть доступны для случайного прикосновения, а доступные прикосновению открытые и сторонние проводящие части не должны находиться под напряжением, представляющим опасность поражения электрическим током как в нормальном режиме работы электроустановки, так и при повреждении изоляции» [2].

«Жилые здания относятся к обычным объектам по опасности ударов молнии для самого объекта и его окружения (к III категории по устройству молниезащиты). Кровля зданий выполнена плоской. В качестве молниеприемника применяется молниеприемная сетка из полосовой стали 25х4, которая располагается на кровле» [10],[20].

Выводы по разделу

Рассчитанное заземляющее устройство удовлетворяет требованиям ПУЭ. Молниезащита зданий района выполнена с соблюдением требований нормативных документов и правил.

Заключение

В работе была спроектирована система электроснабжения района города Самарской области.

Исходными данными являлись нагрузки электроприемников жилых домой, удельная производительность предприятий общественно-бытового назначения, расположение зданий на территории района города. Исходные данные позволили рассчитать суммарные нагрузки необходимые для электроснабжения потребителей района.

Затем был проведен технико-экономический расчет двух вариантов электроснабжения потребителей.

В ходе проведения технико-экономического обоснования были получены следующие результаты: 10 двухтрансформаторных КТП 1000/10/0,4 оказались выгоднее, чем 8 двухтрансформаторных КТП 1250/10/0,4 для электроснабжения района города Самарской области. Что касается стоимости прокладки кабельных линий, то монтаж сетей электроснабжения для КТП 1000/10/0,4 также является более выгодным, чем для КТП 1250/10,04. Поэтому, по данному обоснованию были выбраны КТП 1000/10/0,4 и соответствующая схема прокладки кабельных линий. Местоположения КТП определены в соответствии с расчетом ЦЭН.

Следующим этапом для проверки оборудования был проведен расчет ТКЗ. Расчет ТКЗ был проведен для четырех точек (первая точка на стороне 10 кВ, а остальные — на стороне ниже 1 кВ). Точки КЗ взяты на ступенях цепи до наиболее мощного электроприемника. Чем дальше точка КЗ, тем ниже ударные токи и их начальная периодическая составляющая.

С помощью расчета ТКЗ было проверено оборудование, предусмотренное в КТП. Оборудование прошло проверку на термическую и электродинамическую стойкость.

Заключительным пунктом проводился расчет заземления и молниезащиты оборудования КТП района города Самарской области.

Список используемых источников

- 1. Естественное и искусственное освещение [Электронный ресурс]: Свод правил 52.13330.2016. Актуализированная редакция СНиП 23-05-95 увт. Приказом Минстроя России от 07.11.2016 N 777/пр. URL: http://docs.cntd.ru/document/456054197 (дата обращения: 26.08.2022).
- 2. Защитные меры в электроустановках [Электронный ресурс] : Официальный сайт компании ООО «РесурсПромАльянс». URL: https://www.ess-ltd.ru/elektrobezopasnost/zashchitnye-mery-v-elektroustanovkakh/ (дата обращения: 26.08.2022).
- 3. Инструкция по проектированию городских электрических сетей [Электронный ресурс]: Руководящий документ 34.20.185-94 утв. приказом №213 от 07.07.1994. URL: http://docs.cntd.ru/document/1200004921 (дата обращения: 26.08.2022).
- 4. Кабели силовые с пропитанной бумажной изоляцией. Технические условия [Электронный ресурс] : ГОСТ 18410-73 утв. и введен в действие Приказом Госстандарта от 08.02.1973. URL: https://docs.cntd.ru/document/1200004968 (дата обращения: 26.08.2022).
- 5. Каталог светильников GALAD [Электронный ресурс] : Официальный сайт международной светотехнической корпорации GALAD. URL: https://galad.ru/catalog/ (дата обращения: 26.08.2022).
- 6. Комплексные поставки кабельно-проводниковой и электротехнической продукции [Электронный ресурс] : Официальный сайт ЭлектроКомплект-Сервис. URL: https://e-kc.ru/price/cable-apvbbshp (дата обращения: 26.08.2022).
- 7. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением ниже 1 кВ [Электронный ресурс] : ГОСТ 28249-93 утв. приказом от 21.10.1993. URL: http://docs.cntd.ru/document/gost-28249-93 (дата обращения: 26.08.2022).

- 8. Номенклатурный каталог электрооборудования высокого, среднего и низкого напряжения [Электронный ресурс] : Каталог ПКФ «Автоматика». URL: http://www.tulaavtomatika.ru/pdf/Nomenkl2014.pdf (дата обращения: 26.08.2022).
- 9. Освещение наружное утилитарное. Классификация и нормы (Переиздание) [Электронный ресурс] : ГОСТ 55706-2013 утв. и введен в действие Приказом Росстандарта от 08.11.2013 N 1360-ст. URL: http://docs.cntd.ru/document/1200105703 (дата обращения: 26.08.2022).
- 10. Правила устройства электроустановок. 7-е издание / Ред. Л.Л. Жданова, Н. В. Ольшанская. М.: НЦ ЭНАС, 2013. 104 с.
- 11. Проектирование и монтаж электроустановок жилых и общественных зданий [Электронный ресурс] : Свод правил по проектированию и строительству 31-110-2003 утв. приказом №194 от 26.10.2013. URL: http://docs.cntd.ru/document/1200035252 (дата обращения: 26.08.2022).
- 12. Расчет сетей по потерям напряжения [Электронный ресурс] : интернет-сайт. URL: http://electricalschool.info/main/elsnabg/905-raschet-setejj-po-poterjam-naprjazhenija.html (дата обращения: 26.08.2022).
- 13. Система проектной документации для строительства (СПДС). Правила выполнения рабочей документации наружного электрического освещения [Электронный ресурс]: ГОСТ 21.607-2014 введен в действие Приказом Росстандарта от 26.11.2014 N 1839-ст. URL: http://docs.cntd.ru/document/1200115054 (дата обращения: 26.08.2022).
- 14. Стоимость проведения электромонтажных работ [Электронный ресурс] : Официальный сайт группы компаний ЭнергоСнабСтрой. URL: https://04-110kv.ru/nashi-tseny (дата обращения: 26.08.2022).

- 15. Трансформаторы силовые. Общие технические условия [Электронный ресурс] : ГОСТ Р 52719-2007 утв. приказом №60-ст от 09.04.2007. URL: http://docs.cntd.ru/document/1200050072 (дата обращения: 26.08.2022).
- 16. Трансформаторы тока. Общие технические условия [Электронный ресурс]: ГОСТ 7746-2015 введен в действие Приказом Росстандарта от 23.06.2016 N 674-ст. URL: https://docs.cntd.ru/document/1200136399 (дата обращения: 26.08.2022).
- 17. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения [Электронный ресурс]: ГОСТ 32144-2013 введен в действие Приказом Росстандарта от 22.07.2013 N 400-ст. URL: http://docs.cntd.ru/document/1200104301 (дата обращения: 26.08.2022).
- 18. Устройства защитного отключения переносные бытового и аналогичного назначения, управляемые дифференциальным током, без встроенной защиты от сверхтоков (УЗО-ДП). Общие требования и методы испытаний [Электронный ресурс]: ГОСТ 31603-2012 утв. Федеральным агентством по техническому регулированию и метрологии от 15.11.2012. URL: https://docs.cntd.ru/document/1200102087 (дата обращения: 26.08.2022).
- 19. Электрооборудование переменного тока на напряжение от 1 до 750 кВ [Электронный ресурс] : ГОСТ 1516.3-96 утв. Государственным комитетом Российской Федерации по стандартизации, метрологии и сертификации от 07.04.1998. URL: https://docs.cntd.ru/document/1200011565 (дата обращения: 26.08.2022).
- 20. Shabdin N.H., Padfield R. Sustainable Energy Transition, Gender and Modernisation in Rural Sarawak. Chemical Engineering Transactions vol.56, 2017. p.259-264.

- 21. Donoso P., Schurch R., Ardila J., Orellana L. Analysis of Partial Discharges in Electrical Tree Growth Under Very Low Frequency (VLF) Excitation Through Pulse Sequence and Nonlinear Time Series Analysis. IEEE Access Vol. 8. 2020. p.673-684.
- 22. Benthaus M. A Coupled technological-sociological model for national electrical energy supply systems including sustainability. Energy, Sustainability and Society Vol. 9, №1. 2019. p.1-16.
- 23. Escrivá-Escrivá G., Roldán-Blay C., Roldán-Porta C., Serrano-Guerrero X. Occasional Energy Reviews from an External Expert Help to Reduce Building Energy Consumption at a Reduced Cost. Energies Vol. 12, №15. 2019. 14 p.
- 24. Xiao Han, Jing Qiu, Lingling Sun, Wei Shen, Yuan Ma, Dong Yuan. Low-carbon energy policy analysis based on power energy system modeling. Energy Conversion and Economics. Energy Conversion and Economics. 2020. p.34-44.