МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт химии и энергетики

(наименование института полностью)

Центр медицинской химии (наименование)

04.03.01 Химия

(код и наименование направления подготовки, специальности)

Медицинская и фармацевтическая химия

(направленность (профиль) / специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Панельный докинг ингибиторов киназ

Студент

В.О. Чикалкин (И.О. Фамилия)

Руководитель

(личная подпись)

А.С. Бунев (ученая степень, звание, И.О. Фамилия)

Аннотация

Целью данной работы стало создание киназной виртуальной панели для докинга и вирутального скрининга различных соединений. Киназы являются важнейшим элементом многих синальных путей в клетке и регулируют широкий спектр клеточных функций, в том числе апоптоз и пролиферацию.

Данная панель призвана служить мощной и качественной основой для дальнейших скрининговых кампаний Центра медицинской химии. В рамках данной работы необоходимо было идентифицировать механизм цитотоксичности соединений, обладающих анти-ММ активностью.

В литературном обзоре описаны подходы к компьютерному дизайну лекарств, молекулярному докингу, типы и способы проведения виртуального скрининга и, в частности, панельного докинга. Большое внимание уделено публикациям по данной теме за последние 10 лет.

В экспериментальной части описана методика проведенных расчетных исследований, заключающаяся в подборе кристаллических структур, загрузке этих структур в программу Maestro (программный пакет Schrodinger Suite), подготовке структур, а также в нативном и молекулярном панельном докинге.

На основе проделанной работы были сделаны выводы об истинном механзиме цитотоксичности. Установлены мишени, обуславливающие данный эффект на клетках MM-человека.

Работы изложена на 55 страницах, содержит 7 таблиц, 14 рисунков и приложение.

Abstract

The title of the graduation work is "Panel docking of kinase's inhibitors". The aim of this work is to development and construct of kinase virtual docking panel in Schrödinger Suite software and the panel docking of a virtual library of antimyeloma agents aimed at identifying the mechanism of their cytotoxic effect.

The object of the diploma paper is inverse virtual screening as an universal approach to search for targets of cytotoxicity, off-target binding, and preventing potential side effects. The subject of the diploma paper is a panel docking of library of antimyeloma agents. The graduation work consists of an explanatory note, tree base parts, including 55 pages, 14 figures, 7 tables, a list of 64 references, 63 of which are foreign sources.

The first part describes the base methods of the computer aided drug design, including scoring functions, molecular docking, virtual screening, inverse virtual screening.

The second part describes the methodology of search of target crystallographic structures, their preparation, native docking and validation. This part also describes panel validation methods, ligand preparation protocols, and panel docking results. The results of this screening did not identify kinases as targets of toxicity in the study library. For this reason, additional molecular docking into Cereblon complexes was carried out, since all compounds are potential ligands of this protein.

The third part consists of all formal docking protocol details, such as type of scoring functions and force field, some information about docking precision etc.

Based on the data obtained, we can conclude that a powerful panel docking platform has been successfully created. This panel has been approved by validation docking assay and can be used in further studies of Medicinal chemistry center.

Содержание

Введение
1 Литературный обзор9
1.1 CADD – in silico дизайн лекарств9
1.1.1 SBDD – дизайн лекарств, основывающийся на структуре9
1.1.2 LBDD – дизайн лекарств, основывающийся на лиганде
1.2 Реальные кейсы
1.2.1 Панельный докинг24
2 Результаты и их обсуждение
2.1 Сборка киномной панели
2.1.1 Выбор и подготовка мишеней 32
2.1.2 Валидация панели
2.2 Панельный докинг
3 Экспериментальная часть 44
3.1 Подготовка белковых молекул 44
3.2 Подготовка лигандов 44
3.3 Молекулярный докинг 45
3.3.1 Нативный докинг45
3.3.2 Панельный докинг45
Заключение46
Список используемых источников47
Приложение А.Результаты нативного докинга55
Приложение Б.Результаты валидации67
Приложение В.Результаты панельного докинга75

Определения, обозначения и сокращения

В данной работе используются следующие термины с соответствующими определениями:

ΑΤΦ	аденозинтрифосфат		
ВИЧ	вирус иммунодефицита человека		
днк	дезоксирибонуклеиновая кислота		
BRAF	серин/треониновая протеинкиназа быстро прогрессирующей фибросаркомы В (B-Raf)		
CDK	циклинзависимая киназа		
CHEK/Chk2	киназа контрольной точки 2		
COX1	субъединица 1 цитохром С оксидазы		
CRBN	белок цереблон		
DDB1	белок, связывающий повреждения дезоксирибонуклеиновой кислоты 1		
EEF1A	фактор элонгации трансляции эукариот 1-а		
ERK	внеклеточная регуляторная киназа		
FDA	Управление по санитарному надзору за качеством пищевых продуктов и медикаментов		
FLT	рецептор сосудистого эндотелиального фактора роста		
HIV-1	протеаза 1 вируса иммунодефицита человека		
IKZF1	содержащий домен цинкового пальца белок Икарос, связыва- ющий дезоксирибонуклеиновую кислоту		
МАРК	митоген-активируемая протеинкиназа		

- ММ множественная миелома
- **РРАК** рецептор, активируемый пероксисомными пролифераторами
- **RMSD** среднеквадратичное отклонение атомных координат
- **RSA** рентгеноструктурный анализ
- **RTK** рецепторная тирозиновая протеинкиназа
- **ST/TK** серин/треониновая/тирозиновая протеинкиназа
- **STK** серин/треониновая протеинкиназа
- ТК тирозиновая протеинкиназа
- **ТКL** мелок, подобный тирозиновым протеинкиназам
- vdW ван-дер-Ваальсовы взаимодействия
- **ZF** домен цинкового пальца

Введение

Методы *in silico* дизайна лекарств в настоящий момент являются важнейшим этапом практически любого проекта в области медицинской химии [1].

Молекулярный докинг - однин из фундаментальных инструментов компьютерной химии – представляет собой способ молекулярного моделирования, позволяющий предсказать конформацию связывания малой молекулы в активном сайте белковой мишени и определить энергию их взаимодействия с помощью скоринговой функции [10].

Методология энергетического скоринга и молекулярной стыковки лежит в основе виртуального скрининга (VS) – *in silico* альтернативы *in vitro* высокопроизводительного скрининга (HTS) [25].

VS дешевле, проще и быстрее своего классического аналога. К тому же позволяют охватить гораздо большее химическое пространство скринируемых соединений. Безусловно, *in silico* вычисления все еще не могут продемонстрировать должный уровне точности и воспроизводимости, однако повсеместно используются в качестве хорошего дополнения к методам *in vitro* [25].

Потребность в скрининге виртуальной библиотеки соединений не на одной мишени, а на некоторой группе – панели – позволяет удовлетворить иная методология – обратный виртуальный скрининг (IVS), также именуемый панельным докингом [26, 27].

IVS используется для идентификации нецелевых взаимодействий биоактивного агента и может позволить предсказать нежелательные токсические и побочные эффекты или обеспечить новое направление для развития какоголибо соединения [49, 59].

Цель работы:

Сборка виртуальной панели протеинкиназ и проведение на ее основе палнельного докинга библиотеки соединений, обладающих анти-MM активностью, с целью идентифицировать механизм их цитотоксичности.

Задачи:

 – подбор и ранжирование мишеней; подготовка белковых комплексов и финальная проверка качества структур с помощью нативного докинга;

– подготовка стандартной библиотеки и проведение валидации панели;

- проведение панельного докинга исследуемых соединений;

- анализ результатов панельного докинга.

1 Литературный обзор

Одним из подходов, используемых для повышения эффективности, снижения количеств неудач и стоимости разработки новых лекарственных средств является использование методов дизайна лекарственных средств *in silico*, в которых для идентификации мишеней или биоактивных структур, дальнейшего дизайна и оптимизации используется широкий инструментарий методов вычислительной компьютерной химии. CADD (Computer-aided drug design) - это процесс разработки новых лекарственных средств, в котором все этапы проектирования и анализа выполняются компьютерными программами, управляемыми медицинскими химиками [1].

1.1 CADD – in silico дизайн лекарств

Стратегии для CADD могут варьироваться в зависимости от того, какая информация о мишени или лиганде доступна. На ранней стадии процесса разработки в зависимости от наличия информации о протеинах-таргетах или уже известных биоактивных соединениях выбирается та или иная стратегия дизайна – SBDD (дизайн лекарств, основывающийся на структуре) – подход, основанный на известных белковых структурах, или LBDD (дизайн лекарств, основывающийся на лиганде) - методология, базирующаяся наоборот на лигандах (обычно использующаяся при отсутствии информации о протеине или известной кристаллической структуры) [2].

1.1.1 SBDD – дизайн лекарств, основывающийся на структуре

Когда известны трехмерные структурные данные мишеней (ферментов, белков или рецепторов), которые обычно получают экспериментально [3] или с помощью компьютерного моделирования (по гомологии) [4], методы SBDD могут визуализировать процесс связывания лигандов с мишенью и

предсказывать ключевые сайты связывания и аффинность лигандов к их макромолекулам-мишеням [5].

С начала 1990-х гг. многие лаборатории проводят полный анализ геномов организмов, таких как бактерии, дрожжи, мыши и человек. Благодаря этим усилиям в общедоступных базах данных хранится огромное количество информации. Главной задачей этих баз данных является не сколько хранение, сколько предоставление исследователям возможности сравнения нуклеотидных или аминокислотных последовательностей для выявления подобий и различий. Поскольку количество опубликованных последовательностей и объем информации о структурах быстро увеличиваются, эффективный поиск может быть выполнен лишь с использованием специализированного программного обеспечения [6].

Одна из широко известных программ такого рода является GCG [7]. Эта программа позволяет работать с несколькими базами данных, которые могут быть использованы для поиска структуры индивидуального белка или ДНК.

Центральное хранилище данных о последовательностях и функциях белков – база данных универсального белкового ресурса (Universal Protein Resource, UniProt,) [8]. В ней содержатся точно аннотированные белковые последовательности.

Наиболее важной базой данных о трехмерных структурах макромолекул является банк белковых данных (Protein Data Bank, PDB) [9] доступной через интернет. В нем содержатся атомные координаты структур белков и нуклеиновых кислот. Поскольку число экспериментально определенных структур постоянно увеличивается, база данных непрерывно обновляется. В ней возможен поиск информации по ключевым словам, таким как имя автора, название журнала или часть последовательности.

Сам процесс стыковки желаемого соединения с белком интереса называется молекулярным докингом.

1.1.1.1Молекулярный докинг

На рисунке 1 показана визуализация процесса докиннга. Процедура стыковки в конечном итоге дает очень важную информацию об энергетической целесообразности существования комплекса лиганд-мишень с точки зрения величины свободной энергии и также о геометрической составляющей этого связывания (геометрии лиганда в сайте проетина, ключевых взаимодействиях и тд.) [10].

Рисунок 1 – Визуализация процесса докинга.

Первые упоминания о молекулярном моделировании относятся к началу XX века. Появление первых удачных представлений пространственной структуры молекул связано со значительным прогрессом в области ядерной физики.

Достижения кристаллографии имели решающее значение для развития молекулярного моделирования. Сложность исследуемых кристаллических структур очень быстро возрастала, и их решение было связано с большим объёмом вычислений и неадекватностью двумерного представления на бумаге. Единственной альтернативой позволяющей получить трехмерное представление структуры кристалла, оказались наборы молекулярных моделей. Наиболее известными для них стали модели Дрейдинга, в которых были обобщены все накопленные к тому времени знания в области структурной химии. Изготовленные заранее модульные элементы, например атомы азота с правльной числом связей и углами, соответствующими состоянию их гибридизации, или ароматические остатки, сделали возможным построение почти точных практически точных пространственных моделей кристаллических структур. Размеры моделей определялись путем линейного увеличения реальных молекулярных размеров. Эти модели достаточно хорошо описывали стерические затруднения при введении заместителей, образование водородных связей и многое другое [11].

Упомянем, что перед непосредственной стыковкой требуется большое число вспомогательных операций, в том числе подготовка, уточнение и минимизация структур белка и лигандов, генерация сетки свойств рецептора и т. д [12].

Алгоритм молекулярного докинга включает в себя несколько последовательных шагов, среди которых в качестве основных можно выделить следующие:

- генерация различных конформаций лиганда;

- их стыковка в пространство сайта;

– процесс минимизации, то есть отбор наиболее низкоэнергетичных.

Более подробно предлагаем рассмотреть данную последовательность на примере стыковочного алгоритма Glide, включенного в пакет программного обеспечения Maestro SchrodingerSuite[™] [12] (рисунок 2).

Финальное положение

Рисунок 2 – Стыковочная воронка Glide

На первом этапе реализуется грубая оценка конформационного массива на основе полученной ранее сетки свойств заданного для докинга пространства сайта (в основном с точки зрения совместимости геометрий лигандов с доступным объемом полости скоринга); на следующих двух этапах происходит более тщательный анализ на базе данных силовых полей [12], Ван-Дер-Ваальсовых радиусов, электростатических свойств [13] с отбором ограниченного количества поз. Финальная стадия включает минимизацию энергии конформаций, реализуемую по методу Монте-Карло так же именуемого «методом случайного поиска». Этот метод имеет стохастическую природу [14]: на каждом шаге поиска рассматриваемая конформация изменяется случайным образом, превращаясь в другую.

Случайный поиск начинается с оптимизированной структуры. На каждом шаге итерационной процедуры молекуле случайным образом присваиваются новые значения торсионных углов [15] или декартовых координат [16,17]. Получившаяся конформация минимизируется, и итерация повторяется вновь.

Минимизированная конформация сравнивается с предыдущими и отбирается лишь в том случае, если она уникальна. Теоретически, случайный процесс покрывает все конформационное пространство, но в действительности это происходит после длительных вычислений, поскольку вероятность обнаружить новую конформацию резко падает с ростом числа обнаруженных конформеров. Кроме того, даже при длительном расчете невозможно гарантировать полноту исследования конформационного пространства, поэтому очень важно иметь способ проверки полноты анализа. Эффективным может оказаться запуск в параллельном режиме нескольких расчетных задач с различными начальными конформациями. Если результаты одинаковы или очень близки, тогда можно предположить, что поиск был исчерпывающим. Другая мера оценки полноты исследования основана на частоте возвращения к любой из низкоэнергетических конформаций, поскольку случайный процесс такого рода обязан многократно производить это возвращение.

Главным преимуществом метода Монте-Карло является принципиальная возможность исследовать молекулы любого размера. На практике в исследованиях высокоподвижных молекул часто отсутствует сходимость результатов из-за очень большого объема соответствующего конформационнго пространства. Метод случайного поиска успешно применяется для иследования молекул, содержащих циклы, поскольку циклические системы в общем случае трудно исследовать с помощью систематического поиска.

Эффективность методов случайного поиска была показана на следущем примере. Молекулу циклогептадекана изучали изучали с использованием нескольких методов, включаю методы случайного поиска [18]. Сопоставление результатов позволило выявить 262 различные конформации с минимальной энергией. Ни один из методов не позволил выявить все конформеры, одна один из вариантов случайного поиска позволил найти 260 из них. Таким

образом, можно с уверенностью сказать, что методы случайного поиска могут быть крайне полезными для анализа конформационнго поведения, хотя могут при этом потребовать значительного расчетного времени для обеспечения полноты покрытия конформационнго пространства [19].

Математическое выражение, позволяющее оценить энергию какоголибо результата стыковки получило название «скоринговая функция». В общем случае это набор дескрипторов (энергетических терм), каждый из которых позволяет косвенно определить тот или иной вклад в энергетику позы. На формуле ниже – пример на основе оценочной функции Emodel GlideScore [12] Отправной точкой для оценки Glide является эмпирически основанная функция ChemScore [20], которая может быть записана как:

$$\Delta G_{\text{bind}} = C_0 + C_{\text{lipo}} \sum f(r_{\text{lr}}) + C_{\text{hbond}} \sum g(\Delta r) h(\Delta R) + C_{\text{metal}} \sum f(r_{\text{lm}}) + C_{\text{rotb}} H_{\text{rotb}}$$
(1)

где f, g и h являются функциями, которые дают полную оценку (1.00) для расстояний или углов, которые находятся в номинальных пределах, и частичную оценку (1.00-0.00) для расстояний или углов, которые находятся вне этих пределов, но внутри больших пороговые значения.

Сумма во втором члене распространяется на все пары лигандатом/рецептор-атом, определяемые ChemScore как липофильные, тогда как сумма в третьем члене распространяется на все взаимодействия водородных связей лиганд-рецептор. Например, $g(\Delta r)$ равно 1.00, если расстояние H,,,X водородной связи находится в пределах 0.25 Å от номинального значения 1.85 Å, но падает до нуля линейным образом, если расстояние находится между 2.10 и 2.50 Å. Точно так же $h(\Delta R)$ равно 1.00, если угол Z-H,,,X находится в пределах 30° от 180° и уменьшается до нуля между 150° и 120° [12].Glide 2.5 использует две формы GlideScore: (i) GlideScore 2.5 SP, используемую Standard-Precision Glide; (ii) GlideScore 2.5 XP, используемый Extra-Precision Glide. Эти функции используют схожие термины, но сформулированы с учетом разных целей. В частности, GlideScore 2.5 SP представляет собой «более мягкую», более щадящую функцию, которая хорошо подходит для идентификации лигандов, имеющих разумную склонность к связыванию, даже в тех случаях, когда поза Glide имеет значительные недостатки.

Эта версия направлена на минимизацию ложноотрицательных результатов и подходит для многих приложений для проверки баз данных. Напротив, GlideScore 2.5 XP представляет собой более сложную функцию, которая требует суровых наказаний за позы, нарушающие установленные принципы физической химии, например, заряженные и сильно полярные группы должным образом подвергаться воздействию растворителя.

Эта версия GlideScore более приспособлена к минимизации ложных срабатываний и может быть особенно полезна при оптимизации лидов или других исследованиях, в которых экспериментально рассматривается только ограниченное количество соединений, и каждое идентифицированное с помощью вычислений соединение должно иметь как можно более высокие максимально возможное качество. Далее мы обсудим разработку и параметризацию Glide 2.5 SP [21]; GlideScore 2.5 модифицирует и расширяет функцию ChemScore по формуле:

$$\Delta G_{bind} = C_{lipo-lipo} \sum f(r_{lr}) + C_{hbond-neut-neut} \sum g(\Delta r)h(\Delta a) C_{hbond-neut-charged} \sum g(\Delta r)h(\Delta a) + C_{hbond-charged-charged} \sum g(\Delta r)h(\Delta a) + C_{max-metal-ion} \sum f(r_l) + C_{rotb} H_{rotb} + C_{polar-phob} V_{polar-phob} + C_{coul} E_{coul} + C_{vsW} E_{vsW} + solvation terms$$
(2)

где липофильно-липофильный терм определяется как в ChemScore. Терм водородной связи также использует форму ChemScore, но разделен на компоненты с разным весом, которые зависят от того, являются ли донор и акцептор нейтральными, один нейтрален, а другой заряжен, или оба заряжены. В оптимизированном скоринге функции, первый из этих вкладов оказывается наиболее стабилизирующим, а последний, заряженный член, является наименее важным. Терм взаимодействия металл-лиганд использует ту же функциональную форму, что и в ChemScore, но различается тремя основными способами. Во-первых, этот терм рассматривает только взаимодействия с анионными акцепторными атомами (такими как любой из двух атомов кислорода карбоксилатной группы). Эта модификация позволяет Glide распознать очевидное сильное предпочтение координации функциональности анионного лиганда с металлическими центрами в металлопротеазах [22, 23].

Кроме того, Glide 2.5 подсчитывает только одно лучшее взаимодействие, когда обнаруживаются два или более лигирования металлов. Мы установили коэффициент равным -2.0 ккал/моль, значение, которое мы считаем разумным, хотя уточнение параметра предпочло бы еще более сильное отрицательное значение. В-третьих, мы оцениваем суммарный заряд иона металла в нелигированном апобелке (обычно прямо через исследование непосредственно скоординированных боковых цепей белка). Если суммарный заряд положительный, предпочтение анионному лиганду включается в функцию подсчета очков. С другой стороны, если ион является нейтральным (как, например, в случае фарнезилпротеинтрансферазы металлопротеина цинка, которая принимает нейтральные лиганды, такие как замещенные имидазолы [24]), предпочтение подавляется. Седьмой термин, полученный от Шрёдингера в системе активного картографирования, вознаграждает за экземпляры. в котором полярный, но не имеющий водородной связи атом (по классификации ChemScore) находится в гидрофобной области.

Вторым важным компонентом является включение вкладов энергий кулоновского и vdW-взаимодействия между лигандом и рецептором. Чтобы сделать энергию кулоновского взаимодействия в газовой фазе лучшим предсказателем связывания (и лучшим вкладом в составную оценочную функцию), мы уменьшили примерно на 50% суммарный ионный заряд на формально заряженных группах, таких как карбоксилаты и гуанидинии; мы также уменьшаем энергии vdW-взаимодействия для непосредственно вовлеченных атомов [24].

Третьим важным компонентом является введение модели сольватации. Как и другие функции оценки этого типа, предыдущие версии GlideScore не учитывали должным образом строгие ограничения на возможные положения лиганда, возникающие из-за требования адекватной сольватации заряженных и полярных групп как лиганда, так и белка. Заряженные группы, в частности, требуют очень тщательной оценки их доступа к растворителю. Кроме того, молекулы воды могут быть захвачены лигандом в гидрофобных карманах, что также является неблагоприятной ситуацией.

1.1.1.2 HTVS – Виртуальный скрининг

Выше уже описывались очевидные достоинства виртуального скрининга по сравнению с классическим биологическим. Повторим, что использование методов виртуального скрининга является отличной альтернативой скринингу с высокой пропускной способностью, особенно с точки зрения экономической эффективности и вероятности нахождения наиболее подходящего результата с помощью большой виртуальной базы данных [25].

Среди недостатков стоит отметить все еще недостаточную точность получаемых результатов и часто необходимость выявления корреляции с какими-либо экспериментальными данными [26-28].

Первые методы виртуального скрининга возникли в 1980-х годах, но первая публикация о нем появилась только в 1997 году [29].

Виртуальный скрининг - это технология молекулярного моделирования, используемая в процессе поиска лекарств. Во время виртуального скрининга большие базы данных известных 3D-структур автоматически оцениваются с использованием вычислительных методов [30].

Принципиально любой виртуальный скрининг представляет собой многократное повторение процедур классического молекулярного докинга [12], однако о некоторых особенностях речь пойдет ниже.

1.1.1.3 SBVS – Виртуальный скрининг на основе структуры

Виртуальный скрининг на основе структуры (SBVS), также известный как виртуальный скрининг на основе мишени (TBVS), пытается предсказать

наилучшее взаимодействие лигандов с таргетом для образования комплекса. Методы SBVS требуют, чтобы была известна трехмерная структура целевого белка, чтобы можно было предсказать взаимодействия между мишенью и каждым химическим соединением в компьютерном моделировании. В этом методе соединения выбираются из базы данных и классифицируются в соответствии с их сродством к сайту связывания [31].

Среди методов SBVS заслуживает внимания из-за его низких вычислительных затрат и достигнутых хороших результатов [32]. Этот метод появился в 1980-х годах, когда Кунц [33] разработал и протестировал набор алгоритмов, которые могли бы исследовать геометрически выполнимые выравнивания лиганда и мишени. Однако, хотя этот подход был многообещающим, он получил широкое распространение только в 1990-х годах после улучшения используемых методов в сочетании с увеличением вычислительной мощности и расширением доступа к структурным данным молекулмишеней. Во время выполнения SBVS оцениваемые молекулы сортируются в соответствии с их сродством к участку рецептора.

Следовательно, можно идентифицировать лиганды, которые с большей вероятностью будут проявлять некоторую фармакологическую активность в отношении молекулярной мишени. Функции оценки используются для проверки вероятности наличия сайта связывания, описывающего сродство между лигандом и мишенью. В этом процессе надежная функция подсчета очков является важнейшим компонентом процесса стыковки [34].

Однако не стоит забывать, что для приемлемой скорости расчета придется принимать некоторые упрощения и допущения в самой структуре оценки [35].

Два основных параметра характеризуют эффективность протокола виртуального скрининга [36]: (i) обогащение, которое выражает вероятность идентификации активного соединения по сравнению с чисто случайным выбором, и (ii) идентификация лидера, который информирует о том, сколько

соединений необходимо подвергнуть скринингу, пока не будет идентифицирован хотя бы один представитель каждого класса активных соединений.

1.1.1.4 IVS – Обратный виртуальный скрининг

В отличие от обычного виртуального скрининга, в котором используется одна белковая мишень и библиотека низкомолекулярных лигандов, эта ситуация меняется в обратном виртуальном подходе к скринингу. Концептуально, один лиганд соединяется с множеством различных белковых мишеней. Обратный виртуальный скрининг получил некоторое внимание в недавнем прошлом из-за его потенциала для идентификации новых целевых белков для данного продукта. Эта методология основана на том факте, что белки принимают конечное число складок (~ 10000) [37] и что распознавание любого природного лиганда с малой молекулой кодируется в конкретной белковой складке посредством трехмерных конформаций малой молекулы, а также ее возможных взаимодействий с остатками белка. Поскольку низкомолекулярные натуральные продукты производятся биосинтетически в природе определенным ферментом, отпечаток взаимодействия с белками должен быть доступен из этих синтетических ферментов, и, когда он будет расшифрован, может быть использован для идентификации других целевых белков для этого конкретного натурального продукта [38, 39].

Важное применение этого подхода заключается в прогнозировании отклонений от мишеней для отдельного лиганда, что продемонстрировано обратным подходом, который идентифицировал микобактериальную еноилацил-переносящую белковую редуктазу в качестве мишени для ингибиторов катехол-О-метилтрансферазы человека [40] и проверили распознавание стауроспорина в библиотеке из примерно 6400 сайтов связывания белковых лигандов [41]. Эти исследования продемонстрировали, что концепции, применяемые в обратном скрининге, необязательно могут применять те же протоколы, что и при обычном скрининге. В обоих случаях протоколы скрининга не использовали атомарный подход [42], а представляли сайты связывания белков в виде абстрактных объектов, состоящих из трехмерных координат

атомов Сα и выбранных физико-химических и геометрических свойств. Эта концепция была принята в недавно предложенной топологии белковой складки, но на сегодняшний день установлено лишь несколько примеров таких топологий, главным образом потому, что современные вычислительные методы неадекватно решают сложную проблему сходство складок в противоположность идентичности складок [39].

В то же время методология обратного виртуального скрининга, основанная на традиционных (полностью атомных) протоколах докинга, была быстро расширена для тестирования библиотек соединений с панелью целевых белков, чтобы оценить режим связывания нескольких конкретных соединений (небольшие библиотеки соединений с 20–300 молекулами), чтобы добиться снижения затрат и времени на проект по открытию лекарств. Однако, хотя этот подход концептуально прост, построение панели белковмишеней представляет собой критический шаг, потому что мишени должны быть тщательно выбраны, если они не принадлежат одной и той же складке. Кроме того, анализ результатов является сложной задачей, и были предложены некоторые сложные стратегии постобработки [43].

1.1.2 LBDD – дизайн лекарств, основывающийся на лиганде

Стоит коротко упомянуть и о той ситуации, когда по каким-либо причинам исследователи не могут работать с трехмерной структурой белка. Такие способы дизайна лекарств получили название лиганд-ориентированных методов [44].

Наиболее популярными подходами к дизайну лекарств на основе лигандов являются метод QSAR (построения моделей на основе соотношения структура-свойство) и моделирование фармакофоров. QSAR — это вычислительный метод для количественной оценки корреляции между химическими структурами ряда соединений и конкретными химическими или биологическими процессами. Гипотеза, лежащая в основе метода QSAR, заключается в том, что сходные структурные или физико-химические свойства приводят к одинаковой активности [45, 46]. Первоначально идентифицируется группа

химических соединений или лидов, которые проявляют интересующую желаемую биологическую активность.

Установлена количественная связь между физико-химическими свойствами активных молекул и биологической активностью. Разработанная модель QSAR затем используется для оптимизации активных соединений, чтобы максимизировать соответствующую биологическую активность. Предсказанные соединения затем экспериментально проверяют на желаемую активность. Таким образом, метод QSAR можно использовать в качестве руководящего инструмента для идентификации модификаций соединений с повышенной активностью [44].

Общая методология QSAR построена на серии последовательных шагов (рисунок 3).

Рисунок 3 – Процесс методов QSAR

В начале лиганды иденцифицируют с экспериментально измеренными значениями желаемой биологической активности. В идеале эти лиганды относятся к родственному ряду, но должны иметь адекватное химическое разнообразие, чтобы иметь большую вариацию активности.

Дальше идентифицируют и определяют молекулярные дескрипторы, связанные с различными структурными и физико-химическими свойствами изучаемых молекул. Потом обнаруживают взаимосвязь между молекулярными дескрипторами и биологической активностью, которые могут объяснить изменение активности в наборе данных и проверяют статистическую стабильность и предсказательную силу модели QSAR [44].

1.2 Реальные кейсы

Благодаря доступности постоянно растущего числа трехмерных белковых структур и появлению высокопроизводительных вычислительных систем, молекулярный докинг обеспечивает быструю и недорогую альтернативу экспериментальному скринингу больших библиотек соединений [47]. При молекулярном стыковке многие небольшие молекулы обычно состыкованы с данным белком, и их свободная энергия связывания оценивается с целью сократить время и усилия, необходимые для идентификации новых молекулкандидатов в лекарственные препараты для дальнейшей разработки [48].

Расчет свободных энергий связывания упрощается с использованием различных предположений и оценивается величиной, также известной как «балл», присваиваемой стыкованным конформациям связывания [50]. Однако низкомолекулярное лекарство может взаимодействовать со многими другими белками (нецелевыми), что может оказывать значительное влияние на общую биологическую активность, эффективность и побочные эффекты лекарства.

При обратном докинге отдельная малая молекула стыкуется с набором белковых структур, что позволяет на раннем этапе прогнозировать побочные

эффекты лекарств, а также их токсичность. Таким образом, обратная стыковка играет важную роль в открытии и разработке современных лекарств.

1.2.1 Панельный докинг

Экспериментально определенные трехмерные структуры киназных доменов были извлечены из PDB. Модели визуально проверяли на наличие связанных лигандов, позиционировали и ориентировали относительно эталонного киназного домена, и из моделей удаляли все небелковые компоненты. Библиотека из 55 отдельных структур включает 48 различных киназ. *In silico* скрининг библиотеки в отношении сайта связывания АТФ 55 структур из панели киназ был проведен с использованием AutoDock Vina. Полученные оценки были проанализированы с помощью анализа гистограмм, в котором учитывались пять лучших соединений с оценками для любой киназы на основе среднего балла каждого лиганда для предсказанных поз для каждой отдельной киназы. Из этой гистограммы было идентифицировано 106 соединений, которые были подвергнуты кластерному анализу, чтобы можно было сгруппировать их на основе подобия Танимото.

Кластеризация была выполнена как для выбора стыковки «средний балл», так и для «наивысшего балла». Поскольку было обнаружено, что результаты, основанные на «среднем балле», при визуальном осмотре генерируют более структурно несходные кластеры, именно эта стратегия кластеризации использовалась при окончательной номинации конкретных кластеров для дальнейшего изучения. Получившиеся 19 кластеров с населением N 5 были оценены, и последние пять соединений были выбраны, которые (i) представляют их кластеры и (ii) предоставляют широкий спектр различных хемотипов.

1.2.1.1 Идентификация целей природных соединений

Натуральные продукты могут служить хорошей отправной точкой для открытия новых лекарств из-за многолетней истории медицинских и биологических наблюдений, исследований и открытий [49]. Замечательным инструментом в данном приложении служит панельный докинг.

Do и коллеги использовали данный подход в своей работе [50] для поиска мишеней для двух натруальных соединений: є-виниферин, обладающий противоопухолевым и антиоксидантным воздействием [51], и меранзин [52] (рисунок 4)

Рисунок 4 – є-виниферин и меранзин

Скрининг в обоих случаях проводился на основе стыковочного движка FLex. Цель - обнаружить еще не известные мишени - была в той или иной степени достигнута: для виниферина была идентифицирована циклическая нуклеотидфосфодиэстераза 4 (PDE4), а COX1, COX2 и PPARγ, были определены как цель для меранзина [51, 52]. Белковая панель, состоящая из 400 белков, была собрана и подготовлена вручную [50]. Результаты стыковки и расчета величин аффинности для виниферина представлены в таблице 1.

С учетом того, что в процессе стыковки авторы допускали связывание с аллостерическими сайтами, только результат для циклической фосфодиэстеразы 4D, где связывание происходит в каталитическом сайте, можно считать за удовлетворяющий задачам исследования результат.

Соединение	Код PDB	E ₁ -E ₂ , ккал/моль	Белок	
	1STP	-0.98	Стрептавидин	
<i>(Z</i>)-ε-виниферин	4DFR	-0.82	Дигидрофолат редуктаза	
	121P	-0.67	H-RAS P21 белок	
	6RSA	-0.62	Рибонуклеаза	
	1ELA	-1.55	Эластаза	
	1HVR	-1.47	HIV-1 протеаза	
(Е)-є-виниферин	1M7Q	-1.41	РЗ8МАР киназа	
	121P	-1.02	H-RAS P21 белок	
	10YN	-0.85	Фосфодиэстераза 4D	

Таблица 1 – Предсказание аффиности для SelnergyTM

Lauro и коллеги в 2012 провели IVS небольшой библиотеки фенолсодержащих природных соединений, полученных из различных растений в панель, содержащую 163 протеина, опорседующих опухолевую активность [53]. Полученные результаты представляли собой матрицу, содержащую рассчитанные энергии связывания каждого лиганда против каждого протеина. Данные были подвергнуты некоторой нормализации относительно средних значений энергий связывания для соединений и белков. Коллеги заметили, что два лучших нормализованных результата выявили корреляцию между изоксантогумолом (11) и PKC-а35 (протеинкиназа C а, позиция № 1 в финальном рейтинге по 1630 общим расчетам) и ксантогумолом (12) (рисунок 5) с PDK136 (фосфоинозитид-зависимая киназа 1, позиция № 2 в окончательном рейтинге) [53].

Рисунок 5 – Библиотека из 10 природных соединений, используемых для скрининга

1.2.1.2 Выявление побочных действий и токсичности

Достаточно большое число соединений не проходят стадию клинических испытаний из-за выявления неожиданных побочных эффектов [54, 55]. Несомненно, существуют способы *in vitro* тестирования соединений, например, на кардиотоксичность, в случае ряда противоопухолевых препаратов, на этапе разработки [56], однако возможность проведения более дешевого и быстрого *in silico* скрининга на панели основных белков, опосредующих те или иные нежелательные эффекты, является привлекательной стратегией.

Одним из пионерских является исследование коллег Chen и Zhi, в котором они, используя стыковочную IVS программу INVDOCK [57], протестировали восемь клинических агентов (аспирин, гентамицин, ибупрофен, индинавир, неомицин, пенициллин G, 4H-тамоксифен и витамин C) на белковой библиотеке и предсказали 83% мишеней, ответственных за проявления токсичности и побочных эффектов [58].

Данная работа демонстрирует впечатляющий потенциал IVS для применения в данной области. Позже те же авторы применяли данный подход к 11 продаваемым препаратам против ВИЧ, включая протеазу, нуклеозидобратную транскриптазу и ненуклеозидные ингибиторы обратной транскриптазы. Результаты показали, что более 86% побочных лекарственных реакций, предсказанных INVDOCK, соответствовали побочным реакциям, о которых сообщалось в литературе [59].

Недавняя работа 2021 описывает обратную стыковку двух препаратов тиазолидиндионового (TZD) ряда в панель из 67 тысяч как человеческих, так и животных белков [60]. TZD активируют гамма- рецепторы, активированные пероксисомами-пролифератором (PPARγ), который является ядерным рецептором, регулирующим экспрессию нескольких генов, связанных с метаболизмом. PPARγ представляет собой один из трех PPAR, которые являются ядерными рецепторами, регулирующими метаболизм липидов и гомеостаз глюкозы, последний из которых контролирует дифференциацию адипоцитов, хранение липидов и сенсибилизацию инсулина [60].

Традиционно TZD применяют для лечения диабета 2-ого типа [61], однако некоторые препараты данной группы были отозваны из-за возникающих побочных эффектов, связанных с нарушением работы печени и сердца [61]. Результаты обратного скрининга подтвердили повышенную потенцию Троглитазона (TZG) (рисунок 6) к ферментам, ответственным за работу данных органов и систем [62] (таблица 2).

Рисунок 6 – Структура троглитазона ТZG

Таблица 2 - Докинг троглитазона в протеоме человека

Оценка стыков- ки, ккал/моль	Белок		
-68.2	5-оксо-5-бета-стероид 4-дегидрогеназа		
-68.0	лизин-специфическая деметилаза 5В		
-66.1	киназа Aurora A		
-64.7	α-тубулин N-ацетилтрансфераза		
-64.0	нейтрофильная коллагеназа		
-63.5	налфа-ацетилтрансфераза 60		
-62.7	оксидаза D-аминокислот		
-62.3	стромелизин 1		
-60.3	ацил-КоА-дегидрогеназа жирных кислот с очень длинной це- пью (VLCAD)		

Например, лидер списка — фермент 3-оксо-5-бета-стероид 4дегидрогеназа контролирует экспрессию и активность семейства цитохром P450. С его ингибированием экспрессия P450s снижается, что напрямую влияет на метаболизм лекарств и токсинов в печени человека [63, 60]. При связывании TGZ с альфа-тубулином N-ацетилтрансферазой 1 дисрегуляция функции белка может произойти, что приведет к аномальному уровню ацетилирования тубулина, которые уже связаны с различными неврологическими расстройствами, сердечными заболеваниями и раком [64] [60]. Интерес-

нее выглядят результаты докинга аналога TZG — розиглитазона (RSG) (рисунок 7) — одобренного FDA [60], которые представлены в таблице 3.

≻⁰ -NH

14

Рисунок 7 – Структура RSG 14

Таблица 3 – Докинг роз	зиглитазона
------------------------	-------------

Оценка				
стыковки,	Белок			
ккал/моль				
-60.5	матриксная металлопротеиназа 9			
-59.9	UDP-глюкуроновая кислота декарбоксилаза 1			
-59.8	<i>N</i> -лизинметилтрансфераза КМТ5А			
-58.8	ДНК (цитозин-5)-метилтрансфераза ЗА			
-58.6	кологеназа 3			
-58.4	эстрадиол 17 β-дегидрогеназа			
-58.0	гуаниннуклеотидсвязывающий белок G(i) субъединица альфа-1			
-57.6	UDP-галактоза-4-эпимераза			
-57.6	EEF1А лизин метилтрансфераза 4			

2 Результаты и их обсуждение

Без сомнения, *in silico* методы дизайна лекарств являются важным и необходимым этапом разработки лекарств. Виртуальный скрининг, в частности, служит прекрасным инструментом для первичной оценки способности библиотеки соединений связываться с той или иной мишенью. Методология VS, по сравнению с классическим *in vitro* HTS, позволяет сократить физические, материальные и временные ресурсы [25].

Вместе с тем часто возникает потребность в скрининговой кампании того или иного набора соединений не на одном белке, а на группе мишеней. Данный подход известен как панельный докинг или инвертированный виртуальный скрининг [37]. Обязательно стоит отметить, что в случае панельной стыковки речь идет, как правило, о библиотеках гораздо меньшего размера, чем в случае VS. IVS может применяться, например, для идентификации неспецифического для конкретной малой молекулы связывания в целях выявления возможных побочных эффектов или нежелательной токсичности. Часто обнаружение нового партнера для связывания может положить начало новому вектору развития для уже применяемых препаратов [57, 58, 60].

Данная работа посвящена конструированию рабочей киномной панели, которая может успешно применяться в будущих проектах Центра медицинской химии ТГУ, а также панельному докингу библиотеки соединений, обладающих противомиеломной активностью в целях идентификации механизма их цитотоскичности.

2.1 Сборка киномной панели

Киназы – ферменты, относящиеся к группе фосфотрансфераз и катализирующие перенос фосфатной группы с молекулы АТФ на те или иные субстраты.

Белковые киназы регулируют широкий спектр клеточных процессов, в частности, рост и пролиферацию, индукцию апопотоза, имунный ответ. Кроме того, киназы являются важнейшим компонентом путей сигнальной трансдукции. Нарушения в работе этих ферментов опосредует множество заболеваний, в том числе несколько видов рака [65].

Признано, что белковые и липидные киназы представляют собой важный целевой класс для лечения расстройств человека [66].

2.1.1 Выбор и подготовка мишеней

Все комплексы протеинкиназ были загружены из открытого банка данных белковых структур Protein Data Bank (PDB) [9] при этом нами отбирались только структуры, решенные с помощью PCA с разрешением не более 2 Å.

Суммарно было импортировано 345 комплексов, содержащих 145 киназ. В таблице ниже отражена принадлежность киназ к киназным семействам, включенным для формирования панели (рисунок 8).

Рисунок 8 – Количество комплексов каждого киназного семейства, загруженные для формирования панели

Затем импортированные комплексы были подготовлены с помощью модуля подготовки белка Maestro ProteinPreparationWizard [67]. В рамках данной процедуры структуры киназ были доработаны: восстановлены порядки связей и отсутствующие боковые радикалы аминокислот, уточнены типы атомов и произведено протонирование; дополнительно нами были удалены молекулы растворителя. Проведена оптимизация и минимизация структур комплексов.

Активный сайт во всех случаях был определен по местоположению лиганда, область докинга рассчитана с помощью модуля ReceptorGridGeneration как куб с длиной грани в 20 Å и центром, совпадающим с центром масс сайта.

После чего структуры лигандов были удалены из сайтов связывания и проведена процедура нативной стыковки в целях оценить качество структур и правильность их подготовки с помощью среднеквадратичного отклонения атомных координат между позами закристаллизованных лигандов и позами, полученными при докинге. Grid-карты 312 комплексов со значениями RMSD менее 1.8 Å были собраны в панель. Результаты нативного докинга представлены в таблице А.1 (приложение А).

2.1.2 Валидация панели

Процедура валидации киназной панели заключалась в относительном воспроизведении результатов киномного *in-vitro* скрининга, представленного в работе [68], авторы которой сообщили о проведении масштабной скрининговой кампании 183 известных киназных ингибиторов на панели, содержащей 76 киназ, на основе HotSpot радиометрического киназного анализа [69].

Для проведения валидации нами был выбран стауроспорин, являющийся известным мультикиназным ингибитором [70], и селективный в отношении СНЕК2 киназы Chk2 ингибитор II [71]. Структуры соединений представлены на рисунке 9.

Рисунок 9 – Структуры соединений, выбранных в качестве положительного контроля

Структуры лигандов были подготовлены с помощью модуля LigPrep [67], а затем нами был проведен молекулярный докинг на панели, первоначально содержащей 311 комплексов с помощью модуля Glide LigandDocking [21] на протоколе точности XP. Результаты стыковки для каждой киназы были проранжированы относительно величины рассчитанной энергии связывания и оставлены только лучшие. Таблицы с результатами нативного докинга представлены в приложении Б (таблицы Б.1 и Б.2).

Способность каждого соединения к связыванию с конкретным белком определена как разность между значениями XP GScore нативного лиганда и соединения библиотеки по формуле ниже (формула 3):

$$\Delta XP GScore = XP GScore_{(native)} - XP GScore_{(ligand)}$$
(3)

где XP Gscore_(native) и XP Gscore_(ligand) — значения скоринга для нативного лигадна и соединения библиотеки соответственно, взятые по абсолютной величине, ккал/моль. Сумма значений ΔХР GScore каждого лиганда позволяет судить о киномной селективности.

Действительно, согласуясь с результатами киномного скрининга, стауроспорин демонстрирует более низкие значения XP GScore в целом по панели и, соответственно, более низкое значение суммы □XP GScore, по сравнению с Chk2 ингибитором II **15** (таблица 4).

Соединение	Группа	ΔХР GScore (груп- па), ккал/моль	ΔXP GScore (суммар- но), ккал/моль	
	ТК	71.786		
	STK	298.066		
	ST/TK	28.133		
BML-277	ERK	9.440	562 142	
16	Lipid	5.990	303.145	
	RTK	14.365		
	TKL	40.489		
	Другие	94.874		
	TK	56.416		
Staurosporine	STK	122.344		
	ST/TK	16.295		
	ERK	5.446	280 616	
15	Lipid	2.719	289.010	
	RTK	10.129		
	TKL	39.442		
	Другие	36.825		

Таблица 4 – Результаты валидационного докинга

В частности, Chk2 ингибитор демонстрирует, очевидно, низкие значения энергии при связывании с комплексом, содержащим CHEK2 киназу, и, что также подтверждается результатами *in vitro* скрининга, высокое сродство к структкурам, содержащим FLT3 (таблица 5).

Таблица 5 – Результаты валидационного докинга для некоторых комплексов

Соединение	Киназа	PDB	XP GScore (нативный), ккал/моль	XP GScore (со- единение), ккал/моль	ΔХР GScore, ккал/моль
	CHEK2	2W0J	-8.673	-8.254	0.509
BML-277	CHEK1	2R0U	-11.449	-3.298	8.151
16	CDK2	3R8L	-8.981	-6.125	2.856
	FLT3	6IL3	-7.440	-7.101	0.311

Вместе с тем, данное соединение хуже связывается с CDK киназами (представлены результаты только для CDK2) и CHEK1.

На рисунке 10 изображены некоторые позы связывания соединения 16 с упомянутыми выше комплексами.

Как видно из рисунка 10, нативный лиганд представляет собой вытянутую структуру с большим числом подвижных связей.

Нативный лиганд образует обширные водородные взаимодействия с остатками Ser, Glu, Cys, Asp и Tyr в активном сайте.

Соединение 16 не демонстрирует образования сильных водородных связей вообще и значение его энергии связывания обусловлено лишь вкладами гидрофобных и ван-дер-Ваальсовых взаимодействий.

А – Связывание нативного лиганда (голубой) и 16 (зеленый); Б – наложение структур нативного лиганда и 16; В – нативного лиганда; желтый пунктир – сильные водородные связи, оранжевый пунктир – слабые водородные связи.

Рисунок 10 – Связывание соединения **16** в комплексе CHEK1 (PDB ID: 2R0U)

На рисунке ниже представлена визуализация результата стыковки все того же соединения **16**, но уже в комплексе CHEK2 (рисунок 11). Результаты панельного докинга указывают на значительную селективность соединения **16** ко 2-ой изоформе Chk-киназы по сравнению с 1-ой. Действительно – соединение **16** образует многочисленные сильные водородные связи с Glu, Asn

и Asp, к тому же структура данного лиганда позволяет выгодно занять положение в активном сайте, ориентируя пара-хлор-замещенное бензольное кольцо в гидрофобную область сайта

А – Связывание нативного лиганда (фиолетовый) и 16 (зеленый); Б – наложение структур нативного лиганда и 16; В – нативного лиганда; желтый пунктир – сильные водородные связи, оранжевый пунктир – слабые водородные связи, лиловый пунктир – солевые мостики.

Рисунок 11 – Связывание соединения 16 в комплексе CHEK2 (PDB ID: 2W0J)

Стауроспорин, в свою очередь, демонстрирует достаточно плохую способность к связыванию с BRAF и p38/MAPK, также согласуясь с результатами скрининга в статье (таблица 6).

Таблица 6 – Результаты валидационного докинга для некоторых комплексов

Соединение	Киназа	PDB	XP GScore (нативный), ккал/моль	XP GScore (со- единение), ккал/моль	ΔХР GScore, ккал/моль
Staurosporine	BRAF	6XFP	-17.012	-3.011	14.001
	MAPK13 p38-delta	5EKO	-10.471	-6.538	3.933

2.2 Панельный докинг

В ходе скрининга Open HTS совместно с нашими коллегами из СПбГУ разрабатываются глутаримид-содержащие сульфоны и сульфиды, призванные обладать анти-ММ свойствами. Несколько таких структур представлены на рисунке 12.

Рисунок 12 – Соединения библиотеки

В попытках идентифицировать природу и механизм цитотоксического эффекта соединений **17** и **18** нами был осуществлен панельный докинг в собранную киназную панель. Результаты представлены в приложении В.

В таблице 7 – значения суммарного ∆ XP GScore, демонстрирующие относительно низкую способность данных соединений связываться с киназами. Соответственно, цитотоксичность на клетках ММ человека нельзя связать с киназным ингибированием.

Таблица 7 – Результаты панельного докинга для соединений и помалидомида

Соединение	ΔХР GScore (суммарно), ккал/моль
17	450.256
18	467.354
Pomalidomide	630.862

Дополнительно нами был проведен панельный докинг помалидомида – известного и высокоаффинного лиганда к ферменту, относящемуся к классу убиквитинлигаз – CRBN [72]. Структура помалидомида представлена на рисунке ниже. Обратите внимание на схожесть глутаримидного мотива в структуре помалидомида и соединений **17** и **18**.

Отметим, что именно этот мотив образует ключевые взаимодействия с Ub-лигазой [73]. Известно, что аналоги талидомида (в частности, помалидомид) могут действовать как молекулярные клеи: связываясь с цереблоном такие соединения изменяют его субстратную специфичность, способствуя взаимодействию комплекса CRBN-DDB1 с важным для развития MM фактором транскрипции – IKZF1, вызывая убиквитинилирование и протеосомальную деградацию последнего. Истощение IKZF1 CRBN-зависимым образом является мощной терапевтической стратегией для борьбы с MM [74, 75].

Мы предположили, что соединения **17-22** могут действовать в качестве молекулярных клеев и опосредовать цитотоскический эффект на клетках ММ

именно путем индуцирования взаимодействий между IKZF1 и CRBN (рисунок 13).

19

Рисунок 13 - Структура помалидомида

Для первичного подтверждения данной гипотезы нами был проведен докинг в предварительно подготовленный тройной комплекс CRBN-DDB1-IKZF1(ZF). Помалидомид **19**, **17** и **18** были загружены и подготовлены так, как сообщалось ранее.

На рисунке 14 представлены результаты докинга **17** в тройной комплекс. Значения XP GScore рассчитаны как –10.258 ккал/моль и – 11.737 ккал/моль для соединения **17** и помалидомида **23** соответственно.

А – Связвание соединения **17** в сайте CRBN (DDB1-CRBN-IKZF1(ZF) PDB ID: 6H0F [73]); желтый пунктир – водородные связи; красным цветом – CRBN; Б – структура комплекса DDB1 (красный)-CRBN (зеленый)-ZF IKZF1 (синий); В – наложение поз связывания помалидомида **19** (розовый) и **17** (зеленый).

Рисунок 14 – Связывание соединения 17 в активном сайте CRBN

Наложение структур 17 и помалидомида в конформациях, соответствующих позам в активных сайтах по результатам стыковки, указывает на схожесть режимов связывания данных молекул.

Действительно, и 1 и помалидомид демонстрируют одинаковые ключевые взаимодействия, возникающие при участии глутаримидного мотива. Один карбонильный кислород образует водородную связь с водородом имидазольного кольца His 378, другой – с амино-группой Trp 386. Атом азота глутаримида в свою очередь служит донором водородной связи, образованной с карбонилом амидной группы His 378.

Остальной структурный мотив соединения **17** ориентирован во внешнюю область и не образует значимых взаимодействий. Значения скоринговой функции указывают на незначительную разницу в сродстве помалидомида и соединения 1 к CRBN. Таким образом, цитотоксический эффект соединений 1-6 на клетках MM человека можно первично связать с CRBN-зависимой деградацией фактора IKZF1.

3 Экспериментальная часть

Все расчеты в рамках данной ВКР проводили с помощью программного пакета Schrodinger Suite, интегрированного в графический интерфейс Maestro 2021-4.

3.1 Подготовка белковых молекул

Кристаллические структуры киназ, представленные в панели и использованные нами для докинга, были загружены из Protein Data Bank [9] — открытой базы данных белковых структур. Трехмерные структуры всех загруженных комплексов определены с помощью рентгено-структурного анализа с разрешением менее 3 Å.

Всего было загружено 347 комплексов, содержащих суммарно 145 киназ.

Кристаллическая структура комплекса DDB1-CRBN-IKZF1 (ZF) также загружена из PDB, решена методом RSA с разрешением 3.25 Å.

Все комплексы были подготовлены и оптимизированы с помощью модуля подготовки белка Maestro ProteinPrerparationWizard [67]: произведено протонирование, уточнение типов атомов и порядков связей, в некоторых случаях добавлены остатки боковых цепей аминокислот. Структуры очищены от молекул растворителя, их энергии подвергнуты минимизации.

3.2 Подготовка лигандов

Все соединения были подвергнуты генерации трехмерной структуры с помощью панели сборки лигандов Maestro, а также оптимизации и минимизации потенциальной энергии (с учетом состояний протноирова-

ния/депротонирования в условиях физиологического pH в диапазоне pH 7 ± 2) с помощью модуля LigPrep [67]

3.3 Молекулярный докинг

3.3.1 Нативный докинг

Для валидации загруженных комплексов относительно качества кристаллографических структур и правильности их подготовки была выполнена процедура нативного докинга с оценкой точности воспроизведения интактной конформации лиганда на основе RMSD и расчета энергии связывания на основе скоринговой функции Glide XP GScore [76].

Первоначально нами были сгенерированы области докинга (гридбоксы) с указанием ключевых взаимодействий между нативным лигандом и рецептором с помощью модуля Receptor grid generation.

Нативный докинг выполнялся в модуле Glide [21] на протоколе точности стыковки XP.

Результаты нативного докинга представлены в Приложении A (таблица A1). На основе RMSD из 347 первоначальных комплексов киназ нами было отобрано 312, которые обладали удовлетворительным RMSD менее 1.8 Å.

3.3.2 Панельный докинг

Панельный докинг соединений валидационной библиотеки был выполнен в активные сайты 311 комплексов 138 киназ с помощью модуля CrossDocking на протоколе точности XP. Результаты докинга для каждого комплекса соответствующей киназы проранжированы относительно величины XP GScore, выбраны лучшие.

Панельный докинг библиотеки соединений **17, 18** и помалидомида **19** выполнен в активные сайты 138 комплексов 138 киназ с помощью модуля CrossDocking на протоколе точности XP. Результаты панельного докинга представлены в приложении В (таблицы B1,2 и 3).

Заключение

По результатам проделанной работы можно сделать следующие выводы:

 – Был проведен подбор комплексов, содержащих различные киназы, их подготовка и оценка с помощью нативного докинга. Суммарно было подготовлено более 300 комплексов, содержащих 145 киназ;

 Проведена валидация и финальная оптимизация комплексов в составе панели. Киназная панель в таком виде может использоваться во всех дальнейших проектах Центра медицинской химии;

– Для соединений, обладающих анти-ММ активностью был проведен докинг на подготовленной панели с целью идентификации механизма и мишеней цитотоксичности. Его результаты указывают на низкие значения сродства к киназам.

– Дополнительно был подготовлена структура, содержащая CRBN-IKZF1(ZF). Был проведен докинг библиотеки исследуемых соединений в данный комплекс, значения скоринга указывают на отличные значения сродства. Таким образом, механизм цитотоксичности на клетках MM человека можно предварительно объяснить деградацией IKZF1, то есть действием соединений 17, 18 в качестве лигандов CRBN и молекулярных клеев. Подтверждение данной гипотезы необходимо подтвердить в дальнейшем в тестах на истощение уровней IKZF в присутствие данных соединений.

Список используемых источников

 Oglic D. Active Search for Computer-aided Drug Design / D. Oglic // Molecular Informatics. – 2018. – № 37. – P. 1-

 Kapetanovic I. M. Computer aided darug discovery and development: in silico-chemico-biological approach / I.M. Kapetanovic // Chem. Biol. Interact. – 2008. – № 171. – P. 165-176.

3. Seifollah N. Modern analytical techniques in failure analysis of aerospace, chemical, and oil and gas industries / N. Seifollah // Handbook of Materials Failure Analysis with Case Studies from the Oil and Gas Industry. – 2016. – N_{2}

Jumper J. Highly accurate protein structure prediction with AlphaFold
/J. Jumper, R. Evans // Nature. – 2021. – № 596. – P. 583-589.

Wang X. Structure-Based Drug Design Strategies and Challenges / X.
 Wang // Current Topics in Medicinal Chemistry. – № 18. – P. 998-1006.

6. Хёльтье Х.-Д., Зиппль В., Фолькерс Г., Роньян Д. Молекулярное моделирование. М.: БИНОМ. Лаборатория знаний, 2010, 124 с.

7. Devereux J. A comprehensive set of sequence analysis programs for the VAX / J. Devereux, P. Haeberli, O. Smithies // Nucleic Acids Research. – $1984. - N_{2} 12. - P. 387-395.$

The universal protein resource / A. Bairoch, R. Apweiler, C. Wu et al.
 // Nucleic Acids Research. – 2005. – № 33. – P. 59-154.

 The Protein Data Bank / H.M. Berman, J. Westbrook, Z. Feng et al. // Nucleic Acids Research. – 2000. – № 28. – P. 235–242.

10. Yan C. Comprehensive Medicinal Chemistry III. - 3rd ed. - University of Missouri, Columbia, MO, United States, 2017, 319–328 p.

11. Хёльтье Х.-Д., Зиппль В., Фолькерс Г., Роньян Д. Молекулярное моделирование. М.: БИНОМ. Лаборатория знаний, 2010, 11 с.

 Friesner R. A. A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy / R.A. Friesner // J. Med. Chem. – 2004. – № 47. – P. 1739-1749.

13. Хёльтье Х.-Д., Зиппль В., Фолькерс Г., Роньян Д. Молекулярное моделирование. М.: БИНОМ. Лаборатория знаний, 2010, 25 с.

14. Equation of state calculations by fast computing machines / N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth et al. // J. Chem. Physic. $-1953. - N_{\odot}$ 21. -P. 1087-1092.

15. Chang G. An internal coordinate Monte-Carlo method for searching conformational space / G. Chang // J. Am. Chem. Soc. – 1989. – № 111. – P. 4879-4886.

16. Saunders M. Stochastic exploration of molecular mechanics energy SU faces - hunting for the global minimum / M. Saunders // J. Am. Chem. Soc. – 1987. – № 109. – P. 3150-3152.

17. Saunders M. Stochastic Search for the Conformations of Bicyclic Hydrocarbons / M. Saunders // J. Comp. Chem. – 1989. – № 10. – P. 203-208.

18. Saunders M. Conformations of cyclohepta-decane-a comparison of methods for conformational searching / M. Saunders, K.N. Houk // J. Am. Chem. Soc. $-1990. - N_{2} 112 - P. 1419-1427.$

Smellie A. Analysis of conformational coverage. Applications of conformational models. / A. Smellie // J. Chem. Inf. Comput. Sci. – 1995. – № 35. –
 P. 295-304.

20. Eldridge M. D. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes / M.D. Eldridge // J. Comput.-Aided Mol. Des. – 1997. – N 11. – P. 425-445.

21. Murphy R. B. Glide: A New Approach for Rapid, Accurate Docking and Scoring.
2. Enrichment Factors in Database Screening / R.B. Murphy // J. Med. Chem. – 2004. – № 47. – P. 1750-1759.

22. Babine R. E. Molecular recognition of proteinligand complexes: Applications to drug design / R.E. Babine, S.L. Bender // Chem. Rev. – 1997. – № 97. – P. 1359-1472.

23. Whittaker M. Design and therapeutic application of matrix metalloproteinase inhibitors / M. Whittaker // Chem. Rev. – 1999. – № 99. – P.2735-2776.

24. Bell I. M. 3-Aminopyrrolidinone farnesyltransferase inhibitors: design of macrocyclic compounds with improved pharmacokinetics and excellent cell potency / I.M. Bell // J. Med. Chem. $-2002. - N_{2} 45. - P. 2388-2409.$

Surabhi S. Computer aided drug design: an overview / S. Surabhi, B.
Singh // J. Drug Deliv. Ther. – 2018. – № 8. – P. 504-509.

26. Hamza A. Ligand-Based Virtual Screening Approach Using a New Scoring Function / A. Hamza , N.-N. Wei, C.-G. Zhan // J. Chem. Inf. Model. – 2012. – № 52. – P. 963-974.

27. Sass P. Antibiotics. Methods and Protocols. - 1st ed. - New York: Springer, 2017, 85–106 p.

28. Santana K. Applications of Virtual Screening in Bioprospecting: Facts, Shifts, and Perspectives to Explore the Chemo-Structural Diversity of Natural Products/ K. Santana // Front. Chem. $-2021. - N_{\odot} 9. - P. 662-688.$

29. Horvath D. A virtual screening approach applied to the search for trypanothione reductase inhibitors. / D. Horvath // J. Med. Chem. – 1997. – № 2623. – P. 2412-2423.

30. Octopus: a platform for the virtual high-throughput screening of a pool of compounds against a set of molecular targets. / E.H. Maia, V.A. Campos,
B. dos Reis Santos B et al. // J. Mol. Model. – 2017. – № 23. – P. 23-26.

31. Liu J. On classification of current scoring functions. / J. Liu, R. Wang
// J. Chem. Inf. Model. – 2015. – № 55. – P. 475-482.

32. Molecular docking: a powerful approach for structure-based drug discovery / X.-Y. Meng, H.-X. Zhang, M. Mezei et al. // Curr. Comput. Aided. Drug Des. – 2011. – № 7. – P. 146-157.

33. Kuntz I. A geometric approach to macromolecule-ligand interactions
/ I. Kuntz // J. Mol. Biol. – 1982. – № 161. – P. 269-288.

34. Leelananda S. P. Computational methods in drug discovery. Beilstein
 / S.P. Leelananda, S. Lindert // J. Org. Chem. – 2016. – № 12. – P. 2694-2718.

35. Gore M. Computational Drug Discovery and Design. - 1st ed. - New York: Springer, 2018 31–50 p.

36. A critical assessment of docking programs and scoring functions /
G.L. Warren, C.W. Andrews, A. Capelli et al. // J. Med. Chem. – 2006. – № 49. –
P. 5912-5931.

37. Koonin E.V. The structure of the protein universe and genome evolution / E.V. Koonin, Y.I. Wolf, G.P. Karev // Nature. – 2002. – № 420. – P. 218-223.

Blom N.S. High resolution fast quantitative docking using Fourier domain correlation techniques / N.S. Blom, J. Sygusch // Proteins. – 1997. – № 27. – P. 493-506.

39. Kellenberger E. Similar interactions of natural products with biosynthetic enzymes and therapeutic targets could explain why nature produces such a large proportion of existing drugs. / E. Kellenberger, A. Hofmann, R.J. Quinn // Nat. Prod. Rep. – 2011. – No 28. – P. 1483-1492.

40. Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis / S.L. Kinnings, N. Liu, N. Buchmeier et al. // PLoS Comput. Biol. – 2009. – N_{2} 5. – P. 1-8.

41. Binding of protein kinase inhibitors to synapsin I inferred from pairwise binding site similarity measurements / E. Defranchi, C. Schalon, M. Messa et al. // PLoS ONE. – 2010. – N_{25} . – P. 1-9

42. McArdle B. A common protein fold topology shared by flavonoid biosynthetic enzymes and therapeutic targets / B. McArdle, M. Campitelli, R.J. Quinn // J. Nat. Prod. – 2006. – N_{2} 69. – P. 14-17.

43. Inverse virtual screening of antitumor targets: pilot study on a small database of natural bioactive compounds / G. Lauro, A. Romano, R. Riccio et al. // J. Nat. Prod. – 2011. – № 74. – P. 1401-1407.

44. Recent Advances in Ligand-Based Drug Design: Relevance and Utility of the Conformationally Sampled Pharmacophore Approach / C. Acharya, A. Coop, E.J. Polli et al. // Curr. Comp. Aided-Drug Design. – $2011. - N \ge 7. - P. 10-22.$

45. Akamatsu M. Current state and perspectives of 3D-QSAR. / M. Akamatsu // Curr. Top. Med. Chem. – 2002. – № 2. – P. 1381-1394.

46. Verma R. P. Camptothecins: A SAR/QSAR Study / R. P. Verma, C. Hansch // Chem. Rev. – 2009. – №109. – P. 213-235.

47. Klebe G. Virtual ligand screening: Strategies, perspectives and limitations / G. Klebe // Drug Discov. Today. – 2006. – № 11. – P. 580-594.

48. Docking and scoring in virtual screening for drug discovery: Methods and applications / D.B. Kitchen, H. Decornez, J.R. Furr et al // Nat. Rev. Drug Discov. -2004. $- N_{2}$ 3. - P.935-949.

49. Ji H.-F. Natural products and drug discovery. Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? / H.-F. Ji, X.-J. Li, H.-Y. Zhang // Viewpoint. – 2009. – \mathbb{N} 10. – P. 194–200.

50. Do Q.-T. Pharmacognosy and reverse pharmacognosy: a new concept for accelerating natural drug discovery / Q.-T. Do, P. Bernard // IDrugs. 2004. № 7. P. 1017–1027.

51. Reverse pharmacognosy: application of selnergy, a new tool for lead discovery. The example of epsilon-viniferin/ Q.-T. Do, I. Renimel, P. Andre et al. // Curr. Drug Discov. Technol. – 2005. – N_{2} 2. P. 161-167.

52. Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin / Q.-T. Do, I. Renimel, P. Andre et al. // Planta Med. $-2007. - N_{\odot} 73. - P. 1235-1240.$

53. Inverse Virtual Screening allows the discovery of the biological activity of natural compounds / G. Lauro, M. Masullo, S. Piacente et al. // Bioorg. Med. Chem. $-2012. - N_{2} 20. - P. 3596-3602.$

54. Fogel D. B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review / D.B. Fogel // Contemporary Clinical Trials Communications. – 2018. – N_{2} 11. – P. 156-164.

55. Failure of Investigational Drugs in Late-Stage Clinical Development and Publication of Trial Results / T. J. Hwang, D. Carpenter, J. C. Lauffenburger et al. // JAMA Internal Medicine. – 2016. – № 176. – P. 18-26.

56. Development of In Vitro Drug-Induced Cardiotoxicity Assay by Using Three-Dimensional Cardiac Tissues / T. Maki, M. Shigeru, F. Satsuki et al. // Tissue Engineering Part C: Methods. – 2018. – № 24. – P. 56-67.

57. Chen Y.Z. Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule / Y.Z. Chen, D.G. Zhi// Proteins. 2001. – N_{2} 43. – P. 217-226.

58. Chen Y.Z. Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach / Y.Z. Chen, C.Y. Ung // J. Mol. Graph. Model. $-2001. - N_{\odot} 20$ - P. 199-218.

59. In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction / Z.L. Ji, Y. Wang, L. Yu et al. // Toxicol Lett- 2006. – \mathbb{N} 164. – P. 104-112.

60. Kores K. Mechanistic Insights into Side Effects of Troglitazone and Rosiglitazone Using a Novel Inverse Molecular Docking Protocol / K. Kores, J. Konc, U. Bren // Pharmaceutics. $-2021. - N_{2} 13. - P. 3-15.$

61. Lebovitz H. E. Thiazolidinediones: the Forgotten Diabetes Medications / H.E. Lebovitz // Curr. Diabetes Reports. – 2019. – №19. – P. 2-11.

62. Troglitazone Exerts Metabolic and Antitumor Effects on T47D Breast Cancer Cells by Suppressing Mitochondrial Pyruvate Availability / K.-H. Jung, J.H. Lee, J.-W. Park et al. // Oncol. Rep. – 2020. – № 43. – P. 711-717.

63. Zanger U. M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation / U.
M. Zanger, M. Schwab // Pharmacology & Therapeutics. – 2013. – № 138. – P. 103-141.

64. Kim S. S. Improving inverse docking target identification with *Z*-score selection / S. S. Kim, M. L. Aprahamian, S. Lindert // Chemical Biology & Drug Design. – 2019. – P. 2-10.

65. Cohen P. Kinase drug discovery 20 years after imatinib: progress and future directions / P. Cohen, D. Cross, P. A. Janne // Nat. Rev. Drug Discov. – 2021. – Vol. 20. – P. 551-569.

66. Fabbro D. Ten things you should know about protein kinases / D.
Fabbro, S. W. Cowan-Jacob, H. Moebitz // Br. J. Pharmacol. – 2015. – Vol. 172. –
P. 2675-2700.

67. Madhavi Sastry G. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments / G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman // J. Comp. Aided. Mol. Des. – 2013. – Vol. 27. № 3. – P. 221-234.

68. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutantkKinases / K. C. Duong-Lu, K. Devarajan, S. Liang et al. // Cell Rep. – 2016. – Vol. 14, № 4. – P. 772-781.

69. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity / T. Anastassiadis, S. W. Deacon, K. Devarajan et al. // Nat. Biotech. – 2011. – Vol. 29. – P. 1039-1045.

70. Omura S. Staurosporine: new lease of life for parent compound of today's novel and highly successful anti-cancer drugs / S. Omura, Y. Asami, A. Crump // J. Antibiot. – 2018. – Vol. 71. – P. 688-701.

71. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles / K. L. Arienti, A. Brunmark, F. U. Axe et al. // J. Med. Chem. -2005. - Vol. 48, No 6. - P. 1873-1885.

72. Ito T. Molecular mechanisms of thalidomide and its derivatives / T.
Ito, H. Handa // Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. — 2020. — Vol. 96, №
6. — P. 89-203.

73. Defining the human C_2H_2 zinc-finger degrome targeted by thalidomide analogs through CRBN / Q. L. Sievers, G. Petzold, R. D. Bunker et al // Science. — Vol. 362, No 6414. — P. 1-9.

74. Asatsuma-Okumura T. Molecular mechanisms of cereblon-based drugs / T. Asatsuma-Okumura, T. Ito, H. Handa // Pharmacol. Ther. — 2019. — Vol. 202. — P. 132-139.

75. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells / J. Kronke, N. D. Uteshi, A. Narla et al // Scince. — 2013.
— Vol. 343, № 6168. — P. 301-305.

76. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes / R.A. Friesner, R.B. Murphy,
M.P. Repasky et al. // J. Med. Chem. – 2006. – Vol. 49, № 21. – P. 6177-6196.

Приложение А

Результаты нативного докинга

Таблица А.1 – Результаты нативного докинга

Группа	Белок	PDB	XP GScore, ккал/моль	RMSD, Å
1	2	3	4	5
		4BGG	-10.909	0.795
		6Z36	-9.311	1.253
	ACVR1	3MTF	-11.258	0.316
		3Q4U	-10.188	0.930
		7NNS	-9.069	0.847
		4ASX	-6.524	0.408
	ACVK2A	3Q4T	-7.640	2.682
		5VO2	-10.614	4.303
		5VO1	-10.510	2.013
	DLK	5CEQ	-10.231	1.031
		5CEO	-9.136	1.779
		5CEP	-10.471	0.473
TVI	TNNI3K	4YFI	-8.585	0.313
IKL		4YFF	-8.810	0.625
		6B5J	-8.331	1.273
	IRAK1	6BFN	-7.388	0.770
	IRAK4	6F3D	-12.361	0.593
		7ATS	-11.671	0.305
		5NXC	-11.283	1.140
		5NXD	-8.791	0.274
		4TPT	-9.121	0.294
	LRRK2(G2019S)	7LI3	-10.189	2.229
	MILK1	3DTC	-10.933	0.663
	RIPK1	4ITH	-9.346	0.385
	RIPK2	6UL8	-10.074	0.263

1	2	3	4	5
	BRAF	6XFP	-17,012	0.856
	PTK6	5H2U	-11.043	4.994
		5IA5	-12.919	0.825
	EPHA2	5I9X	-9.499	1.462
		5I9Z	-10.342	1.017
	EPHA3	3DZQ	-10.087	0.656
	ERBB2	3RCD	-10.483	1.269
	ERBB3	6OP9	-11.062	2.609
TK	TIE2	2008	-15.704	0.972
		3MJ1	-9.467	0.832
		3MJ2	-10.948	2.718
	ITK	4M12	-14.664	0.173
		4HCT	-14.234	0.761
		4M0Y	-14.236	0.170
	JAK3	7C3N	-8.394	0.618
	FLT3	6IL3	-7,44	0.345
	RET	6NEC	-13,032	0.411
	AKT1	30CB	-10.264	1.033
		3MV5	-9.022	1.246
	AKT2	3D0E	-7.939	0.236
		3E8D	-5.122	0.667
		3 E 88	-8.719	0.363
		2JDR	-12.459	0.435
STK	AMDV alpha?	6BX6	-9.006	2.444
	AMPK-alpha2	3AQV	-9.032	0.939
		2CLQ	-12.096	0.409
	A SV 1	5VIO	-8.819	0.289
	ASKI	5VIL	-7.273	3.230
		6VRE	-6.860	0.981
	QTV 1	6CCF	-10.488	2.629
	STKI	6CD6	-14.761	0.739

1	2	3	4	5
	STK2A	2VZ6	-13.021	1.580
	STK2B	5VT1	-9.022	0.484
	STK2D	6BAB	-9.528	1.004
	STK2D	2W4O	-7.926	2.033
		3UNK	-12.344	0.490
		3R7Y	-7.181	0.674
	CDV2	3R8P	-8.926	0.566
	CDK2	3R8L	-8.981	0.468
		3QWK	-6.782	0.473
		6GUE	-10.052	0.442
		4F70	-8.617	2.060
	CDK8	6Y0A	-8.954	0.258
		5XQX	-7.068	5.870
		5XS2	-9.802	0.298
STK	CDK9	4BCF	-8.722	1.617
		6Z45	-8.928	0.467
	CHEK1	2E9V	-7.913	1.670
		2QHM	-10.033	0.363
		2R0U	-11.449	0.725
		2XM9	-8.228	0.435
	CHERS	4A9R	-3.892	0.835
	CHEK2	2YCQ	-7.650	0.257
		2W0J	-8.673	1.701
		5AUW	-13.480	0.767
		4TXC	-11.299	0.900
	DAPK3	5A6N	-3.537	1.570
	CSNK1			
	CASEIN	1EH4	-7.145	5.787
	KINASE-1			
	CSNK1E	4HNI	-10.679	0.939

1	2	3	4	5
	00000000	2CMW	-10.711	0.342
		4G16	-11.059	0.935
	CSINKIGI	4G17 S2	-10.148	2.678
		2CHL	-10.205	0.745
	CONK1C2	2IZU	-10.434	0.849
	CSINKIG3	2IZS	-10.485	0.394
	CSNK1G2	2C47	-10.067	0.734
	CONTROL 1	5CSV	-7.022	0.905
	CSNK2A1	5M4U	-6.893	0.482
	DCLK1	5JZN	-11.157	1.066
		4YU2	-9.048	0.384
	DIKKIA	7AKB	-10.568	1.713
	DVDV2	4AZF	-10.429	0.448
	DIRK2	3KVW	-11.715	0.749
	GRK1	4WBO	-6.133	0.624
	HIPK2	6P5S	-12.098	0.413
STK		3R04	-8.989	0.753
		3R02	-8.674	1.921
	PIM1	3R01	-7.510	0.703
		3R00	-7.692	0.182
		2XJ2	-9.648	1.662
	PIM2	4X7Q	-5.151	0.905
	DVAN	40TH	-12.525	0.289
	PKNI	40TI	-8.939	0.464
		1TVO	-7.193	0.410
		4XNE	-7.997	0.513
	EDVA	4XOY	-5.115	0.756
	EKK2	4XOZ	-8.001	0.371
		4XP0	-7.719	0.402
		4XP2	-7.719	0.542
	ED V2	6YLL	-8.376	0.913
	ERK3	6YLC	-10.284	0.964

1	2	3	4	5
	EDV/	4B99	-11.355	5.344
		4ZSG	-7.323	0.506
	EKKS	4ZSJ	-6.333	0.974
		5BYY	-8.164	0.932
	ERK5	6HKN	-9.845	0.536
	CDK2	5UVC	-10.060	2.196
	UKK2	5UUU	-10.750	1.290
	VRK2	5UU1	-10.982	0.434
		6NCG	-7.995	0.818
	TNIK	2X7F	-15.761	0.279
	IINIK	6RA5	-8.956	1.556
		5D7A	-11.141	0.581
	PRKCI	6ILZ	-13.409	0.991
	MST1	6YAT	-10.114	0.620
	MST3	7B32	-11.423	1.843
STK		7B33	-14.082	1.162
	MST4	3GGF	-10.720	0.965
	PAK1	4ZJJ	-9.359	0.505
	PPKCO	1XJD	-11.618	0.419
	PKKCQ	2JED	-14.447	0.445
		2J7T	-10.933	0.722
		50WQ	-7.390	2.017
	STK10	5AJQ	-10.857	0.892
	SIKIO	4BC6	-9.654	1.443
		6GTT	-11.404	0.422
		6I2Y	-16.288	1.769
	MKNK1	5WVD	-13.680	0.758
	PAK1	4ZJJ	-9.171	1.775
	MKNK2	6CK6	-8.621	0.646
		6CJW	-7.849	0.827
	MRCKB	3QFV	-7.036	0.657

1	2	3	4	5
		3TKU	-9.593	0.539
	MRCKB	50TE	-10.070	1.797
		50TF	-11.939	1.752
	DGK2	3G51	-12.062	1.928
	KSK2	3UBD	-10.067	3.065
	RSK2	4EL9	-11.969	0.367
	CCV1	3HDM	-11.366	0.507
	SGKI	3HDN	-11.400	0.549
		4U41	-10.910	1.555
	MAP4K4	4OBO	-11.559	0.316
		4OBP	-11.992	0.173
		4OBQ	-12.963	1.033
	MADAKA	5J95	-13.230	0.908
	MAP4K4	5DI1	-13.330	0.881
		4ZP5	-11.446	0.780
STK		5W5Q	-13.151	0.312
	MAP4K3	5J5T	-8.642	0.700
	MARK4	5ES1	-11.740	0.523
	MARK3	7P1L	-9.244	0.936
	PAK6	4KS7	-11.823	4.341
		4KS8	-10.109	0.460
	GSK3B	6TCU	-9.321	1.765
	MAPK11	3GC8	-13.522	0.554
	p38-beta	3GC9	-13.061	0.297
		1Q4L	-11.237	0.291
	CSK3B	1Q5K	-7.925	0.812
	USK3D	20W3	-10.149	0.309
		7B6F	-10.861	3.928
		7M0L	-10.220	0.264
	HPK1	7M0M	-12.745	0.574
		7M0K	-11.267	0.268

1	2	3	4	5
		7L26	-6.871	1.745
	ПРКІ	6CQF	-8.242	1.479
	INIZ 1	3ELJ	-13.410	0.562
	JINKI	3PZE	-6.905	0.354
	INUZ 1	4L7F	-10.195	0.241
	JINKI	4AWI	-11.362	0.772
	INIKO	3NPC	-13.202	0.553
	JINK2	3E7O	-11.137	0.803
		2ZDU	-12.178	0.875
	DW2	6EKD	-10.891	0.371
	JINK3	6EMH	-10.081	0.720
		7KSJ	-6.317	2.011
		6VXR	-8.900	0.253
	MELK	4D2V	-6.435	1.102
		5TVT	-11.513	1.162
STK		5MAH	-9.686	1.233
	MYLK4	2X4F	-10.400	1.220
		6T8X	-9.536	0.268
		3M42	-8.715	0.727
		3R2Y	-7.153	0.532
		3WI6	-7.679	0.308
	MAF KAF KZ	3KGA	-9.789	1.317
		3KC3	-10.343	0.427
		3FYJ	-7.408	0.464
		2P3G	-7.302	1.600
		4EYJ	-10.226	0.843
	MAPK13	4EYM	-9.563	0.692
	p38-delta	5EKO	-10.471	1.051
		5EKN	-11.355	0.746
	DAVA	7CMB	-12.258	0.448
	rak4	7CP4	-13.099	1.372

1	2	3	4	5
	PAK4	2X4Z	-12.188	0.460
	CDV1C	5G6V	-14.223	1.311
	CDK10	3MTL	-9.451	0.962
	DDDI/ 1	10KZ	-12.526	0.314
	PDPK1	2XCH	-9.195	0.297
	PRKCH	3TXO	-10.633	0.813
		2JFL	-10.145	0.466
	OL V	2J51	-10.090	2.073
	SLK	6HVD	-6.160	0.445
		4USF	-11.512	0.658
	CDDV/1	5XV7	-8.113	1.555
	SRPK1	5MXX	-9.899	0.397
	SRPK2	5MYV	-9.097	1.117
	PRKG1	5L0N	-7.306	0.170
	PRKG1	4Z07	-9.841	0.271
STK	PRKG2	5C8W	-8.326	0.422
		2ETR	-7.257	0.383
		3TWJ	-8.712	1.054
		2ESM	-9.843	1.416
		4YVE	-10.319	0.478
		5HVU	-11.697	0.987
		5KKT	-15.550	1.957
	DOCK1	7JOU	-10.584	0.386
	KOCKI	3NCZ	-11.551	1.155
		3D9V	-9.640	0.711
		5WNG	-9.148	0.764
		3V8S	-10.247	0.582
		5WNE	-7.710	0.722
		2ESM	-9.843	1.416
		3TJW	-8.694	1.015
	ROCK2	6ED6	-11.212	0.218

1	2	3	4	5
	DOCK1	7JOV	-10.982	0.510
STK	ROCKI	4L6Q	-6.549	0.311
	DOCKA	4WOT	-12.657	0.779
	ROCK2	6P5M	-7.972	0.386
		6RAA	-14.896	0.953
	CLK1	6I5H	-11.127	5.387
		6I5K	-9.072	0.282
ST/TK		5UNP	-12.692	0.699
	CLK2	6FYL	-11.397	2.315
		6KHE	-11.716	1.154
	CLK3	6KHF	-9.080	0.995
		3I81	`-11.101	1.015
	IGF1R	3023	-12.012	0.574
DTV		3D94	-12.668	0.533
KIK	C-Kit	6GQK	-11,518	0.145
	EGFR	5XGN	-8.858	0.987
	FGFR			1.002
STV	CSNIV1D	6F1W	-12.678	0.969
SIK	CSINKID	6RCG	-11.470	3.844
		6PYR	-10.118	0.382
		7JIS	-8.567	0.444
		6PYU	-9.675	0.576
	PI3KD	6G6W	-13.504	0.958
		6OCU	-8.165	1.312
STK		5M6U	-8.215	0.364
		5UBT	-9.559	0.962
	DISKY	5XGI	-8.829	0.289
	113KA	60AC	-6.365	0.564
	DISKC	5JHB	-7.136	0.977
	FIJKU	50Q4	-7.290	0.420
ST/TK	CDPK1	3MA6	-8.389	0.451

1	2	3	4	5
		3T3U	-12.866	0.600
	CDPK1	4M84	-10.144	0.660
ST/TK		4MX9	-12.044	0.865
	PKNB	3F69	-11.430	0.947
		7LVH	-9.474	0.395
	AAK1	4WSQ	-12.851	0.326
		5TE0	-11.174	1.067
		4ZS0	-8.325	0.902
	Aurora A	4ZTQ	-10.775	0.913
		3UOH	-10.894	1.809
	Aurone D	2VGO	-9.144	1.505
	Autora D	2VGP	-8.978	0.454
	DIVE	4W9X	-10.476	0.579
	BIKE	4W9W	-4.816	0.838
	NEK1	4B9D	-8.476	0.523
	GAK	4Y8D	-8.214	0.992
		5Y80	-8.867	1.974
Другие	PLK1	20WB	-13.287	0.805
	ERN1/IRE1	4YZ9	-7.889	0.462
		4YZC	-10.299	0.749
		6XDF	-10.722	0.526
		3LJ2	-10.123	0.440
		6URC	-14.057	0.386
	eIF2-alpha	6N3N	12 440	0.340
	Kinase 4	ONSIN	-12.440	0.349
	GCN2	6N3L	-16.002	0.300
	WNIK 1	5WDY	-10.184	2.138
	¥¥1¥IX1	6OL2	-12.979	0.591
	WNK3	5O2B	-10.651	0.389
	WEE1	3CR0	-12.623	0.468
	ТТК	5N93	-10.776	0.510

1	2	3	4	5
	TTV	5N9S	-11.513	0.864
	IIK	4BHZ	98 -11.513 HZ -6.965 75 -7.616 5H -9.160 40 -10.371 42 -8.416 PS -10.100 5B -10.126 5C -11.553 2N -10.566 MD -9.763 35 -11.351 AV -8.770 KC -11.472 K6 -8.291 NM -7.451 157 -7.878 153 -10.467 3E -15.313 3F -10.160 3G -7.750 DT -10.493 DV -11.950 8Q -5.799 8P -5.446 1Q -12.054 PP -9.037 D3 -9.166 6L -5.244 UR -9.921	4.891
	NEK7	SN9S -11.513 K SN9S -11.513 4BHZ -6.965 6 K7 6S75 -7.616 6 K1 4IM0 -10.371 6 K1 4IM0 -10.371 6 K1 4IM2 -8.416 6 GZ5B -10.100 6 6 GZ5C -11.553 6 6 3F2N -10.566 7 6 3FMD -9.763 6 6 3FMD -9.763 6 6 2JAV -8.770 7 2 2XKC -11.472 2 2 K2 2XK6 -8.291 2 2XNM -7.451 7 7 5M53 -10.467 4 4 4G3G -7.750 1 4 4G3G -7.750 1 1 4G3G -7.750 1 1 4IDV -1	1.019	
	PLK2	4I6H	-9.160	1.073
		4IM0	-10.371	1.464
	IBKI	SN9S -11.513 4BHZ -6.965 6S75 -7.616 4I6H -9.160 4IM0 -10.371 4IM2 -8.416 70PS -10.100 6Z5B -10.126 6Z5C -11.553 3F2N -10.566 3FMD -9.763 6G35 -11.351 2JAV -8.770 2XKC -11.472 2XK6 -8.291 2XK6 -8.291 2XK6 -7.451 5M53 -10.467 4G3E -15.313 4G3F -10.160 4G3G -7.750 4IDT -10.493 4IDV -11.950 5T8Q -5.799 5T8Q -5.799 5T8P -5.446 6Z1Q -12.054 6WPP -9.037 1 5VD3 -9.166 4B6L -5.244 4YUR -9.921 </td <td>1.232</td>	1.232	
		70PS	-10.100	3.234
		6Z5B	-10.126	0.349
	GSG2	2 3 4 TTK 5N9S -11.513 4BHZ -6.965 1 NEK7 6S75 -7.616 PLK2 416H -9.160 TBK1 4IM0 -10.371 TBK1 4IM2 -8.416 7OPS -10.100 6Z5B 6Z5C -11.553 1 3F2N -10.566 1 3F2N -10.566 1 3F2N -9.763 1 6G35 -11.351 1 2JAV -8.770 1 2XKC -11.472 1 2XKC -11.472 1 2XKC -11.472 1 2XK6 -8.291 1 2XK6 -8.291 1 5M53 -10.467 1 4G3E -15.313 1 4G3G -7.750 1 4G3G -7.750 1 4IDT -10.493 1 <t< td=""><td>0.118</td></t<>	0.118	
			0.412	
		3FMD	-9.763	1.268
		6G35	-11.351	0.580
		2JAV	-8.770	0.954
	NEK2	2XKC	-11.472	0.457
Притие		2XK6	-8.291	1.507
другие		2XNM	-7.451	1.002
		5M57	-7.878	0.927
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.807	
		4G3E	-15.313	0.276
		4G3F	-10.160	0.308
		4G3G	-7.750	0.413
		4IDT	-10.493	0.146
	NIK	4IDV	-11.950	0.486
		5T8Q	-5.799	0.237
		5T8P	-5.446	0.394
		6Z1Q	-12.054	0.668
		6WPP	-9.037	0.815
	PKMYT1	5VD3	-9.166	1.011
	PLK3	4B6L	-5.244	0.781
	PLK4	4YUR	-9.921	1.013

1	2	3	4	5
		4JXF	-10.163	0.793
		6QAS	-9.995	0.689
	ULK1	4WNO	-10.107	0.431
Другие		4WNP	-9.033	0.635
		6YID	-9.132	0.453
	ULK2	6QAV	-9.673	1.295
		6QUA	-8.293	0.873
I :n:d	VDS24	40YS	-7.628	1.972
Lipid	VF354	5ENN	-13.230	0.326
	MEK 1	3E8N	-11.637	2.035
ERK	MERI	3ZLX	-9.842	1.042
	MEK6	3FME	-11.552	0.632
Притио	RIOK1	3RE4	-12.838	0.750
другие	RIOK2	6HK6	-9.938	1.270

Приложение Б

Результаты валидации

Таблица Б.1 – Результаты панельного докинга стауроспорина 15

Группа	Белок	PDB	XP GScore _(native) , ккал/моль	XP GScore _(comp) , ккал/моль	ΔХР GScore, ккал/моль
1	2	3	4	5	6
Другие	AAK1	4WSQ	-12.851	-11.865	0.986
	ACVR1	3Q4U	-10.188	-10.805	-0.617
	ACVR2A	4ASX	-6.524	-7.626	-1.102
	CDK2	3R8L	-8.981	-9.201	-0.22
	DLK	5CEO	-9.136	-8.803	0.333
	IRAK1	6BFN	-7.388	-11.077	-3.689
	IRAK4	6F3D	-12.361	-10.92	1.441
TKL	LIMK1	7ATS	-11.671	0	11.671
	LIMK2	5NXD	-8.791	0	8.791
	LRRK2	7LI3	-10.189	-9.09	1.099
	MILK1	3DTC	-10.933	-12.569	-1.636
	RIPK1	4ITH	-9.346	0	9.346
	RIPK2	6UL8	-10.074	-10.986	-0.912
	BRAF	6XFP	-17.012	-3.011	14.001
	EPHA2	519Z	-10.342	-10.042	0.3
	EPHA3	3DZQ	-10.087	0	10.087
	ERBB2	3RCD	-10.483	-6.056	4.427
	ERBB3	60P9	-11.062	0	11.062
ΤV	TIE2	2008	-15.704	0	15.704
IK	ITK	4HCT	-14.234	-9.525	4.709
	JAK3	7C3N	-8.394	-7.552	0.842
	FLT3	6IL3	-7.44	-8.159	-0.719
	RET	6NEC	-13.032	-14.479	-1.447
	PTK6	5H2U	-11.043	0	11.043
	AKT1	3OCB	-10.264	-4.548	5.716
	AKT2	2JDR	-12.459	-6.988	5.471
	AMPK-alpha2	3AQV	-9.032	-4.524	4.508
STK	ASK1	2CLQ	-12.096	-12.164	-0.068
	CAMK1	6CD6	-14.761	-13.696	1.065
	CAMK2A	2VZ6	-13.021	-9.641	3.38
	CAMK2B	5VT1	-8.689	-11.051	-2.362

1	2	3	4	5	6
	CAMK2D	6BAB	-9.528	-12.183	-2.655
	CDK8	5XS2	-9.802	-8.427	1.375
	CDK9	6Z45	-8.928	-10.12	-1.192
	CHEK1	2R0U	-11.449	-10.334	1.115
	CHEK2	2W0J	-8.673	-3.694	4.979
	CSNK1D	6F1W	-12.678	-8.227	4.451
	DAPK1	5AUW	-13.48	-11.529	1.951
	DAPK3	5A6N	-3.537	0	3.537
	CSNK1	1EH4	-7.145	0	7.145
	CSNK1E	4HNI	-10.679	0	10.679
	CSNK1G1	2CMW	-10.711	-10.243	0.468
	CSNK1G3	4G16	-11.059	-10.552	0.507
	CSNK1G2	2C47	-10.067	-10.391	-0.324
	CSNK2A1	5M4U	-6.893	-6.443	0.45
	DCLK1	5JZN	-11.157	-7.287	3.87
	DYRK1A	4YU2	-9.048	-13.234	-4.186
	DYRK2	4AZF	-10.429	-12.772	-2.343
ст <i>и</i>	GRK1	4WBO	-6.133	-9.202	-3.069
31K	HIPK2	6P5S	-12.098	-11.028	1.07
	PIM1	3R04	-8.989	-10.982	-1.993
	PIM2	4X7Q	-5.151	-10.876	-5.725
	PKN1	40TH	-12.525	-12.103	0.422
	ERK2	4XOZ	-8.001	-8.076	-0.075
	ERK3	6YLC	-10.284	-10.144	0.14
	ERK5	5BYY	-8.164	-9.432	-1.268
	GRK2	5UUU	-10.75	-6.074	4.676
	VRK2	6NCG	-7.995	-8.123	-0.128
	TNNI3K	4YFI	-8.585	-9.204	-0.619
	TNIK	2X7F	-15.761	-17.201	-1.44
	PRKCI	6ILZ	-13.409	-9.943	3.466
	<u>MST1</u>	6YAT	-10.114	-12.491	-2.377
	MST3	7B33	-14.082	-8.444	5.638
	MST4	3GGF	-10.72	-9.445	1.275
	NEK7	6S75	-7.616	0	7.616
	PAK1	4ZJJ	-9.359	-6.064	3.295
	PRKCQ	1XJD	-11.618	-12.166	-0.548

1	2	3	4	5	6
	STK10	6I2Y	-16.288	-15.989	0.299
	MKNK1	5WVD	-13.68	-4.51	9.17
	PAK1	4ZJJ	-9.171	0	9.171
	MKNK2	6CJW	-7.849	-10.334	-2.485
	MRCKB	3TKU	-9.593	-8.826	0.767
	RSK2	3G51	-12.062	-6.384	5.678
	SGK1	3HDM	-11.366	-11.177	0.189
	MAP4K4	5DI1	-13.33	-3.093	10.237
	MAP4K3	5J5T	-8.642	-11.301	-2.659
	MARK4	5ES1	-11.74	-9.407	2.333
	MARK3	7P1L	-9.244	-6.216	3.028
	PAK6	4KS8	-10.109	-11.581	-1.472
	GSK3B	6TCU	-9.321	-9.839	-0.518
	MAPK11b	3GC9	-13.061	-8.652	4.409
	GSK3B	1Q5K	-7.925	-9.906	-1.981
	GSG2	6Z5B	-10.126	-12.556	-2.43
	HPK1	7M0L	-10.22	-10.893	-0.673
STK	JNK1	4AWI	-11.362	-11.714	-0.352
	JNK2	3NPC	-13.202	-12.969	0.233
	JNK3	2ZDU	-12.178	-9.808	2.37
	MELK	6VXR	-8.9	-9.268	-0.368
	MYLK4	2X4F	-10.4	-5.503	4.897
	MAPKAPK2	3WI6	-7.679	-7.365	0.314
	MAPK13d	5EKO	-10.471	-6.538	3.933
	PAK4	7CMB	-12.258	-9.919	2.339
	CDK16	5G6V	-14.223	-4.894	9.329
	PDPK1	10KZ	-12.526	-11.199	1.327
	PRKCH	3TXO	-10.633	-6.526	4.107
	SLK	4USF	-11.512	-11.521	-0.009
	SRPK1	5MXX	-9.899	-11.272	-1.373
	SRPK2	5MYV	-9.097	-11.01	-1.913
	PRKG1	4Z07	-9.841	-3.6	6.241
	PRKG2	5C8W	-8.326	-3.985	4.341
	ROCK1	5HVU	-11.697	-8.018	3.679
	ROCK2	4WOT	-12.657	-5.97	6.687
Другие	ULK1	6QAS	-9.995	-10.256	-0.261

1	2	3	4	5	6
STK	PI3KD	6PYR	-10.118	-10.513	-0.395
	PI3KA	60AC	-6.365	-9.315	-2.95
	PI3KG	5JHB	-7.136	-11.185	-4.049
	CLK1	6RAA	-14.896	-12.978	1.918
	CLK2	5UNP	-12.692	-11.32	1.372
ST/TK	CLK3	6KHF	-9.08	0	9.08
	CDPK1	3T3U	-12.866	-7.323	5.543
	PKNB	3F69	-11.43	-13.048	-1.618
	EGFR	5XGN	-8.858	-9.001	-0.143
DTV	FGFR	4V05	-7.657	-6.998	0.659
KIK	IGF1R	3I81	-11.101	-8.062	3.039
	C-Kit	6GQK	-11.518	-10.944	1.574
Lipid	VPS34	5ENN	-13.23	-10.511	2.719
EDV	MEK1	3E8N	-11.637	-6.191	5.446
EKK	MEK6	3FME	-11.552	-11.552	0
	Aurora A	4ZTQ	-10.775	-9.603	1.172
	Aurora B	2VGO	-9.144	-10.77	-1.626
	BIKE	4W9W	-4.816	-9.275	-4.459
	NEK1	4B9D	-8.476	-9.533	-1.057
	GAK	4Y8D	-8.214	-9.319	-1.105
	PLK1	20WB	-13.287	-11.059	2.228
	ERN1/IRE1	6XDF	-10.722	-11.017	-0.295
	GCN2	6N3L	-16.002	-4.77	11.232
	WNK1	60L2	-12.979	-6.16	6.819
	WNK3	502B	-10.651	0	10.651
Другие	WEE1	3CR0	-12.623	-9.712	2.911
	PLK2	4I6H	-9.16	-8.957	0.203
	TBK1	4IM0	-10.371	-8.698	1.673
	NEK2	2XNM	-7.451	-9.522	-2.071
	NIK	5T8P	-5.446	0	5.446
	PKMYT1	5VD3	-9.166	-10.09	-0.924
	PLK3	4B6L	-5.244	-10.241	-4.997
	PLK4	4YUR	-9.921	-9.906	0.015
	RIOK1	3RE4	-12.838	-5.343	7.495
	RIOK2	6HK6	-9.938	-6.295	3.643
	ULK2	6YID	-9.132	-9.000	0.132

Группа	Белок	PDB	XP GScore _(native) , ккал/моль	XP GScore _(comp) , ккал/моль	ΔХР GScore, ккал/моль
1	2	3	4	5	6
	AAK1	4WSQ	-12.851	-9.027	3.824
	Aurora A	4ZTQ	-10.775	-7.349	3.426
	Aurora B	2VGO	-9.144	-6.506	2.638
	BIKE	4W9W	-4.816	-6.209	-1.393
	NEK1	4B9D	-8.476	-5.847	2.629
	GAK	4Y8D	-8.214	-8.781	-0.567
	PLK1	20WB	-13.287	-7.222	6.065
	ERN1/IRE1	6XDF	-10.722	-7.879	2.843
	GCN2	6N3L	-16.002	-10.658	5.344
	WNK1	6OL2	-12.979	0	12.979
	WNK3	5O2B	-10.651	0	10.651
Другие	WEE1	3CR0	-12.623	0	12.623
	PLK2	4I6H	-9.16	-6.744	2.416
	TBK1	4IM0	-10.371	-5.115	5.256
	NEK2	2XNM	-7.451	-6.786	0.665
	NIK	5T8P	-5.446	-5.124	0.322
	PKMYT1	5VD3	-9.166	-6.356	2.81
	PLK3	4B6L	-5.244	-6.209	-0.965
	PLK4	4YUR	-9.921	-8.253	1.668
	RIOK1	3RE4	-12.838	-6.477	6.361
	RIOK2	6HK6	-9.938	0	9.938
	ULK1	6QAS	-9.995	-7.056	2.939
	ULK2	6YID	-9.132	-6.73	2.402
EDV	MEK1	3E8N	-11.637	-7.447	4.19
EKK	MEK6	3FME	-11.552	-6.302	5.25
Lipid	VPS34	5ENN	-13.23	-7.24	5.99
	EGFR	5XGN	-8.858	-3.057	5.801
RTK	FGFR	4V05	-7.657	-2.698	4.959
	IGF1R	3I81	-11.101	-3.491	7.61
	C-Kit	6GQK	-11.518	-7.523	3.995
	RIPK1	4ITH	-9.346	0	9.346
TKL	RIPK2	6UL8	-10.074	-7.713	2.361
	BRAF	6XFP	-17.012	-3.638	13.374

Таблица Б.2 – Результаты панельного докинга Chk2 inhibitor II 16

1	2	3	4	5	6
	CLK1	6RAA	-14.896	-8.81	6.086
	CLK2	5UNP	-12.692	-7.839	4.853
ST/TK	CLK3	6KHF	-9.08	0	9.08
	CDPK1	3T3U	-12.866	-8.167	4.699
	PKNB	3F69	-11.43	-8.025	3.405
	AKT1	3OCB	-10.264	0	10.264
	AKT2	2JDR	-12.459	-6.837	5.622
	AMPK-alpha2	3AQV	-9.032	-8.325	0.707
	ASK1	2CLQ	-12.096	-7.3	4.796
	CAMK1	6CD6	-14.761	-8.665	6.096
	CAMK2A	2VZ6	-13.021	-7.311	5.71
	CAMK2B	5VT1	-8.689	-7.401	1.288
	CAMK2D	6BAB	-9.528	-6.096	3.432
	CDK8	5XS2	-9.802	-7.783	2.019
	CDK9	6Z45	-8.928	-5.587	3.341
	CHEK1	2R0U	-11.449	-3.298	8.151
	CHEK2	2W0J	-8.673	-10.254	-1.581
	CSNK1D	6F1W	-12.678	-8.692	3.986
	DAPK1	5AUW	-13.48	-6.815	6.665
STK	DAPK3	5A6N	-3.537	0	3.537
	CSNK1	1EH4	-7.145	0	7.145
	CSNK1E	4HNI	-10.679	-8.838	1.841
	CSNK1G1	2CMW	-10.711	-7.836	2.875
	CSNK1G3	4G16	-11.059	-7.833	3.226
	CSNK1G2	2C47	-10.067	-7.343	2.724
	CSNK2A1	5M4U	-6.893	-9.357	-2.464
	DCLK1	5JZN	-11.157	-5.463	5.694
	DYRK1A	4YU2	-9.048	-8.323	0.725
	DYRK2	4AZF	-10.429	-6.989	3.44
	GRK1	4WBO	-6.133	-6.38	-0.247
	HIPK2	6P5S	-12.098	-6.648	5.45
	PIM1	3R04	-8.989	-8.395	0.594
	PIM2	4X7Q	-5.151	-7.425	-2.274
	PKN1	40TH	-12.525	-5.791	6.734
	ERK2	4XOZ	-8.001	-6.94	1.061
1	2	3	4	5	6
-----	--------	-------------	---------	---------	-------
	ERK3	6YLC	-10.284	-6.523	3.761
	ERK5	6HKN	-9.845	-7.378	2.467
	GRK2	5UUU	-10.75	-5.942	4.808
	VRK2	6NCG	-7.995	-6.312	1.683
	TNNI3K	4YFI	-8.585	-6.01	2.575
	TNIK	2X7F	-15.761	-9.67	6.091
	PRKCI	6ILZ	-13.409	-7.647	5.762
	MST1	<u>6YAT</u>	-10.114	-6.299	3.815
	MST3	7B33	-14.082	-6.663	7.419
	MST4	3GGF	-10.72	-8.792	1.928
	NEK7	6S75	-7.616	0	7.616
	PAK1	4ZJJ	-9.359	-6.247	3.112
	PRKCQ	1XJD	-11.618	-5.659	5.959
	STK10	6I2Y	-16.288	-8.504	7.784
	MKNK1	5WVD	-13.68	-6.268	7.412
	PAK1	4ZJJ	-9.171	0	9.171
	MKNK2	6CJW	-7.849	-6.199	1.65
STK	MRCKB	3TKU	-9.593	-5.779	3.814
	RSK2	3G51	-12.062	-5.078	6.984
	SGK1	3HDM	-11.366	-6.571	4.795
	MAP4K4	5DI1	-13.33	-8.865	4.465
	MAP4K3	5J5T	-8.642	-5.707	2.935
	MARK4	5ES1	-11.74	-6.141	5.599
	MARK3	7P1L	-9.244	-5.795	3.449
	PAK6	4KS8	-10.109	-5.83	4.279
	GSK3B	6TCU	-9.321	-6.108	3.213
	MAPK11	3GC9	-13.061	-7.934	5.127
	GSK3B	1Q5K	-7.925	-6.318	1.607
	GSG2	6Z5B	-10.126	-8.518	1.608
	HPK1	7M0L	-10.22	-7.723	2.497
	JNK1	4AWI	-11.362	-7.868	3.494
	JNK2	3NPC	-13.202	-11.037	2.165
	JNK3	2ZDU	-12.178	-7.693	4.485
	MELK	6VXR	-8.9	-4.037	4.863
	MYLK4	2X4F	-10.4	-5.928	4.472

1	2	3	4	5	6
	МАРКАРК2	3WI6	-7.679	-5.576	2.103
	MAPK13d	5EKO	-10.471	-8.768	1.703
	PAK4	7CMB	-12.258	-6.488	5.77
	CDK16	5G6V	-14.223	-10.074	4.149
	PDPK1	10KZ	-12.526	-5.531	6.995
	PRKCH	3TXO	-10.633	-7.311	3.322
	SLK	4USF	-11.512	-9.505	2.007
CTV	SRPK1	5MXX	-9.899	-10.282	-0.383
SIK	SRPK2	5MYV	-9.097	-8.928	0.169
	PRKG1	4Z07	-9.841	-5.87	3.971
	PRKG2	5C8W	-8.326	-4.546	3.78
	ROCK1	5HVU	-11.697	-7.777	3.92
	ROCK2	4WOT	-12.657	-7.6	5.057
	PI3KD	6PYR	-10.118	-8.648	1.47
	PI3KA	60AC	-6.365	-5.826	0.539
	PI3KG	5JHB	-7.136	-7.063	0.073
	PTK6	5H2U	-11.043	0	11.043
	EPHA2	519Z	-10.342	-6.714	3.628
	EPHA3	3DZQ	-10.087	0	10.087
	ERBB2	3RCD	-10.483	-7.384	3.099
тν	ERBB3	60P9	-11.062	0	11.062
IK	TIE2	2008	-15.704	0	15.704
	ITK	4HCT	-14.234	-7.478	6.756
	JAK3	7C3N	-8.394	-5.054	3.34
	FLT3	6IL3	-7.44	-7.101	0.339
	RET	6NEC	-13.032	-5.246	7.786
	ACVR1	3Q4U	-10.188	-7.376	2.812
	ACVR2A	4ASX	-6.524	-5.197	1.327
	CDK2	3R8L	-8.981	-6.125	2.856
	DLK	5CEO	-9.136	-6.995	2.141
TVI	IRAK1	6BFN	-7.388	-8.064	-0.676
IKL	IRAK4	6F3D	-12.361	-8.822	3.539
	LIMK1	7ATS	-11.671	-9.702	1.969
	LIMK2	5NXD	-8.791	-8.261	0.53
	LRRK2(G2019S)	7LI3	-10.189	-7.654	2.535
	MILK1	3DTC	-10.933	-8.558	2.375

Приложение В

Результаты панельного докинга

Таблица В.1 – Результаты панельного докинга соединения 17

Белок	PDB	XP GScore _(native) , ккал/моль	XP GScore _(comp) , ккал/моль	ΔXP GScore, ккал/моль
1	2	3	4	5
AAK1	4WSQ	-12,851	0	0
ACVR1	3Q4U	-10,188	-7,192	2,996
ACVR2A	4ASX	-6,524	-6,514	0,01
AKT1	3OCB	-10,264	-6,245	4,019
AKT2	2JDR	-12,459	-6,113	6,346
AMPK-alpha2	3AQV	-9,032	-9,53	-0,498
ASK1	6VRE	-6,86	-9,087	-2,227
Aurora A	3UOH	-10,894	-8,139	2,755
Aurora B	2VGO	-9,144	-7,183	1,961
BIKE	4W9W	-4,816	-7,948	-3,132
PTK6	5H2U	-11,043	0	11,043
CAMK1	6CD6	-14,761	0	14,761
CAMK2A	2VZ6	-13,021	-7,481	5,54
CAMK2B	5VT1	-8,689	-7,297	1,392
CAMK2D	6BAB	-9,528	-7,404	2,124
CDK2	3R8L	-8,981	-8,808	0,173
CDK8	5XS2	-9,802	-6,912	2,89
CDK9	6Z45	-8,928	-8,856	0,072
CHEK1	2R0U	-11,449	-5,739	5,71
CHEK2	2W0J	-8,673	-4,738	3,935
CLK1	6I5K	-9,072	-6,655	2,417
CLK2	5UNP	-12,692	-7,968	4,724
CLK3	6KHF	-9,08	-8,964	0,116
CSNK1D	6F1W	-12,678	-10,687	1,991
DAPK1	4TXC	-11,299	-5,644	5,655
DAPK3	5A6N	-3,537	0	3,537
CSNK1 CASEIN KINASE-1	1EH4	-7,145	0	7,145
CSNK1E	4HNI	-10,679	-10,404	0,275
CSNK1G1	2CMW	-10,711	-6,704	4,007

1	2	3	4	5
CSNK1G3	4G16	-11,059	-6,876	4,183
CSNK1G2	2C47	-10,067	-8,872	1,195
CSNK2A1	5M4U	-6,893	-10,35	-3,457
DCLK1	5JZN	-11,157	0	11,157
DLK	5CEQ	-10,231	-5,539	4,692
DYRK1A	7AKB	-10,568	-8,214	2,354
DYRK2	4AZF	-10,429	-9,883	0,546
NEK1	4B9D	-8,476	-5,837	2,639
GAK	4Y8D	-8,214	-8,883	-0,669
GRK1	4WBO	-6,133	-6,129	0,004
HIPK2	6P5S	-12,098	-9,314	2,784
PIM1	3R02	-8,674	-6,098	2,576
PIM2	4X7Q	-5,151	-5,27	-0,119
PKN1	40TH	-12,525	-8,957	3,568
PLK1	20WB	-13,287	-8,168	5,119
ERK2	4XP0	-7,719	-7,953	-0,234
ERK3	6YLC	-10,284	-7,776	2,508
ERK5	6HKN	-9,845	-8,825	1,02
ERN1/IRE1	6XDF	-10,722	-8,832	1,89
GCN2	6N3L	-16,002	-7,631	8,371
GRK2	5UUU	-10,75	-5,968	4,782
EPHA2	5I9Z	-10,342	-7,465	2,877
EPHA3	3DZQ	-10,087	0	10,087
ERBB2	3RCD	-10,483	-4,907	5,576
ERBB3	6OP9	-11,062	0	11,062
WNK1	6OL2	-12,979	-9,77	3,209
WNK3	5O2B	-10,651	-9,546	1,105
EGFR	5XGN	-8.858	-5,021	3,837
FGFR	4V05	-7.657	-2,304	5,353
VPS34	5ENN	-13,23	-9,284	3,946
VRK2	6NCG	-7,995	-6,81	1,185
WEE1	3CR0	-12,623	-8,276	4,347
TNNI3K	4YFI	-8,585	-8,283	0,302
TNIK	2X7F	-15,761	-10,481	5,28
TIE2	2008	-15,704	0	15,704
PRKCI	6ILZ	-13,409	-9,413	3,996
MST1	6YAT	-10,114	-7,589	2,525

1	2	3	4	5
MST3	7B33	-14,082	-8,138	5,944
MST4	3GGF	-10,72	-7,331	3,389
NEK7	6S75	-7,616	0	7,616
PAK1	4ZJJ	-9,359	-6,817	2,542
PRKCQ	1XJD	-11,618	-7,273	4,345
PLK2	4I6H	-9,16	-5,213	3,947
IRAK1	6BFN	-7,388	-9,481	-2,093
IRAK4	6F3D	-12,361	-6,263	6,098
LIMK1	7ATS	-11,671	0	11,671
LIMK2	5NXD	-8,791	-9,674	-0,883
STK10	6I2Y	-16,288	-8,578	7,71
LRRK2(G2019S)	7LI3	-10,189	0	10,189
MKNK1	5WVD	-13,68	-9,922	3,758
MKNK2	6CJW	-7,849	-7,298	0,551
MILK1	3DTC	-10,933	-8,71	2,223
MRCKB	3TKU	-9,593	-8,087	1,506
RSK2	3G51	-12,062	-8,163	3,899
SGK1	3HDM	-11,366	-7,251	4,115
MAP4K4	5DI1	-13,33	-9,39	3,94
MAP4K3	5J5T	-8,642	-6,736	1,906
MARK4	5ES1	-11,74	-8,141	3,599
MARK3	7P1L	-9,244	-7,287	1,957
PAK6	4KS7	-11,823	-6,527	5,296
TBK1	4IM0	-10,371	-7,876	2,495
GSK3B	6TCU	-9,321	-8,013	1,308
MAPK11 p38-beta	3GC9	-13,061	-7,273	5,788
GSK3B	1Q5K	-7,925	-7,434	0,491
GSG2	3FMD	-9,763	-9,003	0,76
HPK1	7M0K	-11,267	-5,598	5,669
IGF1R	3I81	1,015	-8,766	-7,751
ITK	4M12	-14,664	-11,569	3,095
JAK3	7C3N	-8,394	-5,719	2,675
JNK1	3ELJ	-13,41	-6,754	6,656
JNK2	3NPC	-13,202	-10,154	3,048
JNK3	2ZDU	-12,178	-6,834	5,344
MELK	6VXR	-8,9	-6,317	2,583
MYLK4	2X4F	-10,4	-8,449	1,951

1	2	3	4	5
NEK2	2XK6	-8,291	-5,893	2,398
NIK	5T8P	-5,446	-3,242	2,204
MAPKAPK2	8	-7,679	-6,81	0,869
MEK1	3E8N	-11,637	-6,381	5,256
MEK6	3FME	-11,552	-7,773	3,779
MAPK13 p38-delta	4EYJ	-10,226	-9,725	0,501
PAK4	2X4Z	-12,188	-6,799	5,389
CDK16	3MTL	-9,451	-6,782	2,669
PDPK1	2XCH	-9,195	-6,926	2,269
CDPK1	3T3U	-12,866	-10,372	2,494
PKMYT1	5VD3	-9,166	-7,804	1,362
PKNB	3F69	-11,43	-8,522	2,908
PLK3	4B6L	-5,244	-5,725	-0,481
PLK4	4YUR	-9,921	-7,467	2,454
PRKCH	3TXO	-10,633	-6,632	4,001
SLK	4USF	-11,512	-9,535	1,977
SRPK1	5MXX	-9,899	-9,556	0,343
SRPK2	5MYV	-9,097	-7,481	1,616
RIOK1	3RE4	-12,838	-6,462	6,376
RIOK2	6HK6	-9,938	-6,76	3,178
RIPK1	4ITH	-9,346	-3,67	5,676
RIPK2	6UL8	-10,074	-8,929	1,145
PRKG1	4Z07	-9,841	-4,129	5,712
PRKG2	5C8W	-8,326	-5,841	2,485
ULK1	6QAS	-9,995	-5,098	4,897
ULK2	6YID	-9,132	-6,166	2,966
ROCK1	5HVU	-11,697	0	11,697
ROCK2	4WOT	-12,657	-6,29	6,367
PI3KD	6PYR	-10,118	-9,313	0,805
PI3KA	60AC	-6,365	-8,687	-2,322
PI3KG	5JHB	-7,136	-6,694	0,442
C-Kit	6GQK	-11,518	-9,705	1,813
BRAF	6XFP	-17,012	-10,11	6,902
FLT3	6IL3	-7,44	-6,479	0,961
RET	6NEC	-13,032	-7,068	5,964
			Сумма	459,446

Белок	PDB	XP GScore _(native) , ккал/моль	XP GScore _(comp) , ккал/моль	ΔХР GScore, ккал/моль
1	2	3	4	5
AAK1	4WSQ	-12,851	-7,321	5,53
ACVR1	3Q4U	-10,188	-5,989	4,199
ACVR2A	4ASX	-6,524	-6,987	-0,463
AKT1	3OCB	-10,264	-2,74	7,524
AKT2	2JDR	-12,459	-6,992	5,467
AMPK-alpha2	3AQV	-9,032	-9,69	-0,658
ASK1	6VRE	-6,86	-8,819	-1,959
Aurora A	3UOH	-10,894	-6,3	4,594
Aurora B	2VGO	-9,144	-7,213	1,931
BIKE	4W9W	-4,816	-5,581	-0,765
PTK6	5H2U	-11,043	0	11,043
CAMK1	6CD6	-14,761	-6,388	8,373
CAMK2A	2VZ6	-13,021	-8,711	4,31
CAMK2B	5VT1	-8,689	-7,669	1,02
CAMK2D	6BAB	-9,528	-7,039	2,489
CDK2	3R8L	-8,981	-6,891	2,09
CDK8	5XS2	-9,802	-7,109	2,693
CDK9	6Z45	-8,928	-6,736	2,192
CHEK1	2R0U	-11,449	-5,631	5,818
CHEK2	2W0J	-8,673	-5,724	2,949
CLK1	6I5K	-9,072	-8,595	0,477
CLK2	5UNP	-12,692	-8,886	3,806
CLK3	6KHF	-9,08	-7,871	1,209
CSNK1D	6F1W	-12,678	-6,283	6,395
DAPK1	4TXC	-11,299	-3,702	7,597
DAPK3	5A6N	-3,537	0	3,537
CSNK1 CASEIN KINASE-1	1EH4	-7,145	0	7,145
CSNK1E	4HNI	-10,679	-11,476	-0,797
CSNK1G1	2CMW	-10,711	-6,701	4,01
CSNK1G3	4G16	-11,059	-7,834	3,225
CSNK1G2	2C47	-10,067	-8,64	1,427
CSNK2A1	5M4U	-6,893	-8,505	-1,612
DCLK1	5JZN	-11,157	-6,889	4,268
DLK	5CEQ	-10,231	-5,734	4,497

1	2	3	4	5
DYRK1A	7AKB	-10,568	-9,133	1,435
DYRK2	4AZF	-10,429	-10,609	-0,18
NEK1	4B9D	-8,476	-6,124	2,352
GAK	4Y8D	-8,214	-7,713	0,501
GRK1	4WBO	-6,133	-6,583	-0,45
HIPK2	6P5S	-12,098	-8,208	3,89
PIM1	3R02	-8,674	-5,876	2,798
PIM2	4X7Q	-5,151	-4,529	0,622
PKN1	40TH	-12,525	-8,049	4,476
PLK1	20WB	-13,287	-8,933	4,354
ERK2	4XP0	-7,719	-6,954	0,765
ERK3	6YLC	-10,284	-6,77	3,514
ERK5	6HKN	-9,845	-9,322	0,523
ERN1/IRE1	6XDF	-10,722	-8,388	2,334
eIF2-alpha Kinase 4 GCN2	6N3L	-16,002	-8,044	7,958
GRK2	5UUU	-10,75	-5,075	5,675
EPHA2	5I9Z	-10,342	-7,311	3,031
EPHA3	3DZQ	-10,087	0	10,087
ERBB2	3RCD	-10,483	-4,832	5,651
ERBB3	6OP9	-11,062	0	11,062
WNK1	6OL2	-12,979	-10,214	2,765
WNK3	5O2B	-10,651	-7,64	3,011
EGFR	5XGN	-8.858	-4,954	3,904
FGFR	4V05	-7.657	-3,081	4,576
VPS34	5ENN	-13,23	-9,878	3,352
VRK2	6NCG	-7,995	-5,667	2,328
WEE1	3CR0	-12,623	-8,618	4,005
TNNI3K	4YFI	-8,585	-6,436	2,149
TNIK	2X7F	-15,761	-9,24	6,521
TIE2	2008	-15,704	0	15,704
PRKCI	6ILZ	-13,409	-8,672	4,737
MST1	6YAT	-10,114	-7,51	2,604
MST3	7B33	-14,082	-6,542	7,54
MST4	3GGF	-10,72	-8,003	2,717
NEK7	6\$75	-7,616	0	7,616
PAK1	4ZJJ	-9,359	-9,623	-0,264

1	2	3	4	5
PRKCQ	1XJD	-11,618	-5,715	5,903
PLK2	4I6H	-9,16	-7,89	1,27
IRAK1	6BFN	-7,388	-7,782	-0,394
IRAK4	6F3D	-12,361	-5,968	6,393
LIMK1	7ATS	-11,671	-8,782	2,889
LIMK2	5NXD	-8,791	-6,792	1,999
STK10	6I2Y	-16,288	-10,398	5,89
LRRK2(G2019S)	7LI3	-10,189	0	10,189
MKNK1	5WVD	-13,68	-4,22	9,46
MKNK2	6CJW	-7,849	-8,085	-0,236
MILK1	3DTC	-10,933	-8,769	2,164
MRCKB	3TKU	-9,593	-6,365	3,228
RSK2	3G51	-12,062	-5,617	6,445
SGK1	3HDM	-11,366	-8,48	2,886
MAP4K4	5DI1	-13,33	-7,823	5,507
MAP4K3	5J5T	-8,642	-6,211	2,431
MARK4	5ES1	-11,74	-7,183	4,557
MARK3	7P1L	-9,244	-8,151	1,093
PAK6	4KS7	-11,823	-6,547	5,276
TBK1	4IM0	-10,371	-5,828	4,543
GSK3B	6TCU	-9,321	-8,082	1,239
MAPK11 p38-beta	3GC9	-13,061	-7,145	5,916
GSK3B	1Q5K	-7,925	-8,516	-0,591
GSG2	3FMD	-9,763	-8,482	1,281
HPK1	7M0K	-11,267	-5,73	5,537
IGF1R	3I81	1,015	-8,229	-7,214
ITK	4M12	-14,664	-11,872	2,792
JAK3	7C3N	-8,394	-4,379	4,015
JNK1	3ELJ	-13,41	-6,877	6,533
JNK2	3NPC	-13,202	-10,741	2,461
JNK3	2ZDU	-12,178	-6,029	6,149
MELK	6VXR	-8,9	-5,194	3,706
MYLK4	2X4F	-10,4	-10,085	0,315
NEK2	2XK6	-8,291	-6,427	1,864
NIK	5T8P	-5,446	-0,566	4,88
MAPKAPK2	3WI6	-7,679	-7,642	0,037
MEK1	3E8N	-11,637	-5,719	5,918
MEK6	3FME	-11,552	-7,125	4,427

1	2	3	4	5
MAPK13 p38-delta	4EYJ	-10,226	-8,426	1,8
PAK4	2X4Z	-12,188	-7,81	4,378
CDK16	3MTL	-9,451	-6,506	2,945
PDPK1	2XCH	-9,195	-7,157	2,038
CDPK1	3T3U	-12,866	-7,583	5,283
PKMYT1	5VD3	-9,166	-5,903	3,263
PKNB	3F69	-11,43	-8,624	2,806
PLK3	4B6L	-5,244	-7,036	-1,792
PLK4	4YUR	-9,921	-7,862	2,059
PRKCH	3TXO	-10,633	-5,819	4,814
SLK	4USF	-11,512	-10,309	1,203
SRPK1	5MXX	-9,899	-9,933	-0,034
SRPK2	5MYV	-9,097	-7,396	1,701
RIOK1	3RE4	-12,838	-7,908	4,93
RIOK2	6HK6	-9,938	-5,134	4,804
RIPK1	4ITH	-9,346	-4,15	5,196
RIPK2	6UL8	-10,074	-6,275	3,799
PRKG1	4Z07	-9,841	-6,36	3,481
PRKG2	5C8W	-8,326	-4,735	3,591
ULK1	6QAS	-9,995	-5,431	4,564
ULK2	6YID	-9,132	-7,58	1,552
ROCK1	5HVU	-11,697	-6,149	5,548
ROCK2	4WOT	-12,657	-6,946	5,711
PI3KD	6PYR	-10,118	-9,405	0,713
PI3KA	60AC	-6,365	-9,283	-2,918
PI3KG	5JHB	-7,136	-7,374	-0,238
C-Kit	6GQK	-11,518	-9,306	2,212
BRAF	6XFP	-17,012	-10,267	6,745
FLT3	6IL3	-7,44	-5,774	1,666
RET	6NEC	-13,032	-7	6,032
			Сумма	475,834

Белок	PDB	XP GScore _(native) , ккал/моль	XP GScore _(comp) , ккал/моль	ΔXP GScore, ккал/моль
1	2	3	4	5
AAK1	4WSQ	-12,851	-6,104	6,747
ACVR1	3Q4U	-10,188	-5,626	4,562
ACVR2A	4ASX	-6,524	-6,097	0,427
AKT1	30CB	-10,264	-4,621	5,643
AKT2	2JDR	-12,459	-5,85	6,609
AMPK-alpha2	3AQV	-9,032	-8,355	0,677
ASK1	6VRE	-6,86	-5,862	0,998
Aurora A	3UOH	-10,894	-9,997	0,897
Aurora B	2VGO	-9,144	-1,349	7,795
BIKE	4W9W	-4,816	-5,536	-0,72
PTK6	5H2U	-11,043	0	11,043
CAMK1	6CD6	-14,761	-7,495	7,266
CAMK2A	2VZ6	-13,021	-5,933	7,088
CAMK2B	5VT1	-8,689	-6,329	2,36
CAMK2D	6BAB	-9,528	-6,353	3,175
CDK2	3R8L	-8,981	0	8,981
CDK8	5XS2	-9,802	-6,556	3,246
CDK9	6Z45	-8,928	-6,665	2,263
CHEK1	2R0U	-11,449	-4,854	6,595
CHEK2	2W0J	-8,673	-4,948	3,725
CLK1	6I5K	-9,072	-8,147	0,925
CLK2	5UNP	-12,692	-8,997	3,695
CLK3	6KHF	-9,08	0	9,08
CSNK1D	6F1W	-12,678	-7,914	4,764
DAPK1	4TXC	-11,299	-5,35	5,949
DAPK3	5A6N	-3,537	0	3,537
CSNK1 CASEIN KINASE-1	1EH4	-7,145	0	7,145
CSNK1E	4HNI	-10,679	-8,735	1,944
CSNK1G1	2CMW	-10,711	-6,537	4,174
CSNK1G3	4G16	-11,059	-7,402	3,657
CSNK1G2	2C47	-10,067	-7,655	2,412
CSNK2A1	5M4U	-6,893	0	6,893
DCLK1	5JZN	-11,157	-5,441	5,716
DLK	5CEQ	-10,231	-5,632	4,599

Таблица В.3 – Результаты панельного докинга для помалидомида 19

1	2	3	4	5
DYRK1A	7AKB	-10,568	-8,175	2,393
DYRK2	4AZF	-10,429	-9,172	1,257
NEK1	4B9D	-8,476	-5,093	3,383
GAK	4Y8D	-8,214	-4,971	3,243
GRK1	4WBO	-6,133	-6,852	-0,719
HIPK2	6P5S	-12,098	-6,749	5,349
PIM1	3R02	-8,674	-6,162	2,512
PIM2	4X7Q	-5,151	-5,414	-0,263
PKN1	40TH	-12,525	-7,411	5,114
PLK1	20WB	-13,287	-7,931	5,356
ERK2	4XP0	-7,719	-5,185	2,534
ERK3	6YLC	-10,284	-6,776	3,508
ERK5	6HKN	-9,845	-5,853	3,992
ERN1/IRE1	6XDF	-10,722	-6,198	4,524
eIF2-alpha Kinase 4 GCN2	6N3L	-16,002	-5,294	10,708
GRK2	5UUU	-10,75	-6,377	4,373
EPHA2	5I9Z	-10,342	-5,982	4,36
EPHA3	3DZQ	-10,087	0	10,087
ERBB2	3RCD	-10,483	-5,254	5,229
ERBB3	6OP9	-11,062	0	11,062
WNK1	6OL2	-12,979	-5,883	7,096
WNK3	5O2B	-10,651	-7,273	3,378
EGFR	5XGN	-8.858	-4,078	4,78
FGFR	4V05	-7.657	-2,992	4,665
VPS34	5ENN	-13,23	-7,452	5,778
VRK2	6NCG	-7,995	-6,463	1,532
WEE1	3CR0	-12,623	-5,787	6,836
TNNI3K	4YFI	-8,585	-5,814	2,771
TNIK	2X7F	-15,761	-7,747	8,014
TIE2	2008	-15,704	0	15,704
PRKCI	6ILZ	-13,409	0	13,409
MST1	6YAT	-10,114	-6,342	3,772
MST3	7B33	-14,082	-5,678	8,404
MST4	3GGF	-10,72	-4,936	5,784
NEK7	6S75	-7,616	0	7,616
PAK1	4ZJJ	-9,359	-7,261	2,098
PRKCQ	1XJD	-11,618	0	11,618

1	2	3	4	5
PLK2	4I6H	-9,16	-5,858	3,302
IRAK1	6BFN	-7,388	-8,009	-0,621
IRAK4	6F3D	-12,361	-5,745	6,616
LIMK1	7ATS	-11,671	0	11,671
LIMK2	5NXD	-8,791	-6,262	2,529
STK10	6I2Y	-16,288	-7,877	8,411
LRRK2(G2019S)	7LI3	-10,189	0	10,189
MKNK1	5WVD	-13,68	-4,739	8,941
MKNK2	6CJW	-7,849	-5,708	2,141
MILK1	3DTC	-10,933	-8,074	2,859
MRCKB	3TKU	-9,593	-6,218	3,375
RSK2	3G51	-12,062	-5,897	6,165
SGK1	3HDM	-11,366	-7,405	3,961
MAP4K4	5DI1	-13,33	-5,622	7,708
MAP4K3	5J5T	-8,642	-6,451	2,191
MARK4	5ES1	-11,74	-8,176	3,564
MARK3	7P1L	-9,244	-5,254	3,99
PAK6	4KS7	-11,823	-6,755	5,068
TBK1	4IM0	-10,371	-5,31	5,061
GSK3B	6TCU	-9,321	-6,324	2,997
MAPK11 p38-beta	3GC9	-13,061	-7,22	5,841
GSK3B	1Q5K	-7,925	-4,972	2,953
GSG2	3FMD	-9,763	-8,8	0,963
HPK1	7M0K	-11,267	-6,541	4,726
IGF1R	3I81	1,015	-7,232	-6,217
ITK	4M12	-14,664	-11,612	3,052
JAK3	7C3N	-8,394	-6,129	2,265
JNK1	3ELJ	-13,41	-6,738	6,672
JNK2	3NPC	-13,202	-7,739	5,463
JNK3	2ZDU	-12,178	-8,795	3,383
MELK	6VXR	-8,9	-6,456	2,444
MYLK4	2X4F	-10,4	0	10,4
NEK2	2XK6	-8,291	-7,133	1,158
NIK	5T8P	-5,446	-4,567	0,879
MAPKAPK2	3WI6	-7,679	-5,427	2,252
MEK1	3E8N	-11,637	-6,864	4,773
MEK6	3FME	-11,552	-6,743	4,809

1	2	3	4	5
MAPK13 p38-delta	4EYJ	-10,226	-3,82	6,406
PAK4	2X4Z	-12,188	-6,537	5,651
CDK16	3MTL	-9,451	-6,123	3,328
PDPK1	2XCH	-9,195	-5,023	4,172
CDPK1	3T3U	-12,866	-6,063	6,803
PKMYT1	5VD3	-9,166	-6,625	2,541
PKNB	3F69	-11,43	-6,649	4,781
PLK3	4B6L	-5,244	-7,834	-2,59
PLK4	4YUR	-9,921	-5,356	4,565
PRKCH	3TXO	-10,633	-6,813	3,82
SLK	4USF	-11,512	-8,045	3,467
SRPK1	5MXX	-9,899	-8,567	1,332
SRPK2	5MYV	-9,097	-7,708	1,389
RIOK1	3RE4	-12,838	-6,868	5,97
RIOK2	6HK6	-9,938	-7,156	2,782
RIPK1	4ITH	-9,346	-6,513	2,833
RIPK2	6UL8	-10,074	-7,92	2,154
PRKG1	4Z07	-9,841	0	9,841
PRKG2	5C8W	-8,326	0	8,326
ULK1	6QAS	-9,995	-6,3	3,695
ULK2	6YID	-9,132	-6,047	3,085
ROCK1	5HVU	-11,697	-6,341	5,356
ROCK2	4WOT	-12,657	-6,279	6,378
PI3KD	6PYR	-10,118	-4,846	5,272
PI3KA	60AC	-6,365	-8,793	-2,428
PI3KG	5JHB	-7,136	-6,814	0,322
C-Kit	6GQK	-11,518	-6,415	5,103
BRAF	6XFP	-17,012	-7,195	9,817
FLT3	6IL3	-7,44	-5,394	2,046
RET	6NEC	-13,032	0	13,032
			Сумма	640,307