МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт энергетики и электротехники

Кафедра «Электроснабжение и электротехника»

13.03.02 Электроэнергетика и электротехника

(код и наименование направления подготовки, специальности)

Электроснабжение

(направленность (профиль))

БАКАЛАВРСКАЯ РАБОТА

на тему «Электроснабжение поселка «Поволжский»»»

Студент(ка)	С.Н. Потапенко	
	(И.О. Фамилия)	(личная подпись)
Руководитель	Д.А. Нагаев	
	(И.О. Фамилия)	(личная подпись)
Консультанты		
	(И.О. Фамилия)	(личная подпись)
	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
Зарадиний кафадрой д	г.н., профессор В.В. Вахнина	
заведующий кафедрой д.	г.н., профессор Б.Б. Бахнина	
	017	
« <u></u> »2	016 г.	

Аннотация

Темой выпускной квалификационной работы бакалавра является «Электроснабжение поселка Поволжский».

Исходя из исходных данных (план поселка, сведения об источнике питания и потребителях электроэнергии) выполнен расчет электрических нагрузок, выбор числа и мощности трансформаторов поселковых подстанций и ГПП, произведен выбор схемы и расчет параметров распределительной сети, рассчитаны токи короткого замыкания, выбрано основное оборудование на ТП и ГПП. Рассмотрены вопросы тепловизионного контроля и диагностики электрооборудования. Рассмотрены вопросы безопасности и экологичности электроснабжения поселка «Поволжский», выполнен расчет заземления и молниезащиты ГПП.

Выпускная квалификационная работа бакалавра выполнена в объеме 60 страниц, содержит 4 таблицы и 4 рисунка.

Содержание

Введение	5
1. Расчет нагрузок поселка	7
2. Выбор оптимального напряжения распределительной	
сети поселка	14
3. Определение числа и мощности силовых трансформаторов	
главной понизительной подстанции	15
4. Выбор схемы распределительной сети поселка	28
5. Расчет параметров распределительной сети поселка	29
6. Расчёт токов короткого замыкания	33
7. Выбор и проверка электрических аппаратов	40
8. Собственные нужды ГПП	51
9 Молниезащита	53
10 Тепловизионныи контроль и диагностика электрооборудования	
подстанции	54
Заключение	57
Список использованных источников	58

Введение

Большинство электроприемников поселковых сетей электроснабжения предназначены для эксплуатации при напряжении до 1 кВ [1-3, 6, 12]. Понижение напряжения происходит на главных понизительных подстанциях 110/10(6) кВ, трансформаторных подстанциях 10(6)/0,4 кВ, а распределение электроэнергии выполняется по электрическим сетям при напряжении 10(6) кВ от ГПП до ТП и на напряжении 0,4 кВ от ТП до жилых домов, зданий и сооружений. Наиболее распространенной является схема электроснабжения районов города от энергосистемы, представленной ТЭЦ.

Грамотно выполненный расчет нагрузок подстанции дает возможность расчетные величины определить оптимальные электрических позволяющие осуществлять их перспективное развитие и в то же время не допускать перерасхода проводникового материала, выбора трансформаторов, работающих с большой недогрузкой или перегрузкой в нормальном режиме. Электрические сети городов должны отвечать следующим требованиям: обеспечивать высокую надежность электроснабжения потребителей; соответствие передаваемой электроэнергии требованиям ГОСТ на качество электрической энергии; безопасность эксплуатирующего персонала; экономичность при сооружении и последующей эксплуатации; возможность сетей последующего изменения вместе cрасширением жилых производственных районов города; минимальные потери электроэнергии; отсутствие вредного воздействия на экологию и окружающую среду.

Систему электроснабжения (СЭС) можно разделить на три системы: систему внешнего электроснабжения города; систему внутреннего электроснабжения; систему электроснабжения и электропотребления на напряжении 0,4 кВ. Вместе с тем, СЭС города является подсистемой общей энергосистемы и одной из подсистем инфраструктуры города. К системе внешнего электроснабжения города относятся электроустановки и устройства между узловым распределительным пунктом энергосистемы (УРП) и главной

понизительной подстанцией (ГПП). В качестве номинальных напряжений в системе внешнего электроснабжения городов применяются напряжения 35, 110, 220 кВ. Внутренняя система электроснабжения городов характеризуется разветвленностью и протяженностью распределительной сети, большой включающей воздушные линии и кабельные, распределительные пункты (РП), трансформаторные $(T\Pi),$ подстанции коммутационные аппараты. Распределение электрической энергии внутреннего В системе электроснабжения города выполняется при U = 6, 10 кB, а в крупных городах с высокой плотностью застройки при U = 20 кВ.

Целью выпускной квалификационной работы бакалавра является разработка надежной и экономичной системы электроснабжения поселка Поволжский. Задан генплан поселка и перечень потребителей электроэнергии.

Задачами выпускной квалификационной работы являются:

- расчет электрических нагрузок поселка;
- выбор напряжения распределительной сети;
- технико-экономический расчет мощности силовых трансформаторов на главной понизительной подстанции (ГПП).
 - выбор схемы и определение параметров распределительной сети города;
 - расчет токов короткого замыкания;
 - выбор электрической аппаратуры и токоведущих частей;
 - выбор основных конструктивных решений по ТП и ГПП.

1 Расчет нагрузок поселка

Согласно СП 31-110-2003 [1] нагрузки для питающих линий квартир $P_{\mbox{\tiny KB}}$, кВт, вычисляют по формуле

$$P_{\kappa e} = P_{\kappa e. \nu \partial} \cdot n$$
,

Расчетная электрическая нагрузка двух жилых девятиэтажных домов на 126 и 144 квартиры с электрическими плитами

$$P_{\kappa 6126} = 1,11 \cdot 126 = 140 \text{ kBT},$$

$$P_{\kappa e 144} = 1,11 \cdot 144 = 160$$
 кВт.

Реактивную мощность вычисляем по формуле

$$Q = P_{\kappa 6} \cdot \text{tg} \varphi$$
,
 $Q_{126} = 140 \cdot 0, 2 = 28 \text{ кВАр},$
 $Q_{144} = 140 \cdot 0, 2 = 32 \text{ кВАр},$

На каждый дом приходится по 4 лифта. Мощность лифтовых установок $P_{\text{вл}}$, кВт, вычисляем по формуле:

$$P_{p\pi} = K_c \cdot P_{ni} \cdot n_{\pi},$$
 $P_{p\pi 126} = 0,7 \cdot 15,7 \cdot 4 = 44 \text{ кВт},$ $P_{p\pi 144} = 0,7 \cdot 15,7 \cdot 4 = 44 \text{ кВт}$

Реактивная мощность лифтовых установок при $tg\phi = 1,335$ [1, таблица 2.3.1]:

$$Q = K_c \cdot n_{\pi} \cdot P_{ni} \cdot tg \varphi,$$

$$Q_{126} = 0.7 \cdot 4 \cdot 15.7 \cdot 1.335 = 58.7 \text{ кВАр},$$

$$Q_{144} = 0.7 \cdot 4 \cdot 15.7 \cdot 1.335 = 58.7 \text{ кВАр}$$

Коэффициент одновременности K_o для лифтов и коэффициент участия в максимуме $K_{\text{у.м.}}$ жилых домов находим их [1, таблица 4.1.2]

$$K_o = 0.7$$
; $K_{y.m.} = 0.9$

Активную нагрузку на шинах силовых трансформаторов вычисляем по формуле:

$$\begin{split} P_p = & P_{\kappa s} \cdot K_o \cdot K_{y.m.}, \\ P_{p126} = & 44 \cdot 0.7 \cdot 0.9 = 27.7 \, \text{кBT}, \\ P_{p144} = & 44 \cdot 0.7 \cdot 0.9 = 27.7 \, \text{кBT}. \end{split}$$

Реактивную нагрузку на шинах силовых трансформаторов вычисляем по формуле:

$$Q_p = Q \cdot K_o \cdot K_{y.м.},$$

$$Q_{p126} = 58,7 \cdot 0,7 \cdot 0,9 = 36,9 \text{ кВАр},$$

$$Q_{p144} = 58,7 \cdot 0,7 \cdot 0,9 = 36,9 \text{ кВАр},$$

Аналогично распределяем и подсчитываем нагрузки по ТП-61 и ТП-62 остальных жилых и общественных зданий. Результаты сводим в таблицу 1.1.

Результаты выбора мощности силовых трансформаторных подстанций для поселка Поволжский сводим в таблицу 1.2.

Таблица 1.1 - Расчет силовых нагрузок

					Жил	ые дома			
<u>№</u> п/	Наименование	Адрес		чество ных квартир	Нагрузка	Силовая	нагрузка	Коэффициент одновременности	
П	Патменование	Пдрес	трансформа тор 1	трансформа тор 2	одной квартиры	актив ная, кВт	реактив ная, кВАр	трансфор матор 1	трансфор матор 2
		60 лет СССР 16	60		1,3				
1	MANAN IO HOMO	60 лет СССР 18		60	1,3				
1	жилые дома	60 лет СССР 20		60	1,3				
		Полевая 27		60	1,3				
		Полевая 21	90		1,2				
2	лифты в жилых домах	Полевая 21				33	44,3	0,8	
3	средняя школа	Олимпийская 11 (1 ввод)							
3	№83	Олимпийская 11 (2 ввод)							
4	продуктовый магазин	Полевая 25							
5	промтоварный магазин	Полевая 23							

Продолжение таблицы 1.1

6	КБО	Полевая 19 (1 ввод) Полевая 19							
7	освещение хоккейной площадки	(2 ввод)							
8	уличное освещение								
9	итого на шинах 380В								
10	жилые дома	Олим-кая 28 Тенистый 11 Олим-кая 30 Тенистый 13 Олим-кая 32	144	126 126 126	1,11 1,1 1,11 1,1 1,11				
11	лифты в жилых домах	Олим-кая 28 Тенистый 11 Олим-кая 30 Тенистый 13 Олим-кая 32				44 44 44 44 44	58,7 58,7 58,7 58,7 58,7	0,7 0,7 0,7	0,7
12	ЦТП								
13	итого на шинах 380В								

Продолжение таблицы 1.1

		Обществе	нные здані	Я	F	Нагрузка на трансфор			D	Коэффициент загрузки трансформаторов %	
№ п/п	Нагрузка	Силовая	нагрузка	Коэффи- циент	Трансфо	рматор 1	Трансф	орматор 2	Выбран ная мощнос		
	освеще- ния	акти- вная, кВт	реакти- вная, кВАр	участия в максимуме	акти- вная, кВт	реакти- вная, кВАр	акти- вная, кВт	Реакти- вная, кВАр	ть ТП, кВА	Транс- форма- тор 1	Транс- форма- тор 2
					78	15,6					
1							78	15,6			
							78	15,6			
							78	15,6			
					108	21,6					
2				0,9	23,8	31,7					
3		70,5	36,1	0,6	43	21,96					
3		74,5	46,2	0,6			44,7	27,72			
4		25	15,5	0,8	20	12,4					
5		25	15,5	0,8			20	12,4			

Продолжение таблицы 1.1

	53,5	25,9	0,7	35,16	18,1					
6	50	22,8	0,7			35,16	16			
7				36	17,4					
8						8,4	5,2			
9				389,3 S = 410	130,94 ,73 кВА	411,9 S = 4	166,02 44 кВА	TΠ – 61 2x630	65	70
						120	23			
				138,4	26,6					
10						120	23			
				138,4	26,6					
						120	23			
			0,9	27,7	31,9					
			0,9			27,7	31,9			
11			0,9	27,7	31,9					
			0,9			27,7	31,9			
			0,9	27,7	31,9					
12	33	16	0,7			23,1	11,2			
12	31,9	15,4	0,7	22,3	10,8					
13				382	150,1	430,1	132,9	TΠ – 62	65.1	71.4
13				S = 410	,43 кВА	$S = \overline{45}$	0,24 кВА	2x630	65,1	71,4

Таблица 1.2 - Результаты выбора силовых трансформаторов

№ п/п	№ ТП	Кол-во установленных трансформаторов, шт	Мощность одного трансформатора, кВА
1	ТП - 14	1	400
2	ТП - 34	1	400
3	ТП - 43	1	250
4	ТП - 32	2	400
5	ТП - 35	2	250
6	ТП - 36	1	630
7	ТП - 40	1	160
8	ТП - 60	2	400
9	ТП - 59	1	400
10	ТП - 58	1	250
11	ТП - 50	1	250
12	ТП - 48	1	100
13	ТП - 30	1	160
14	ТП - 37	2	250
15	ТП - 41	1	160
16	ТП - 30	2	400
17	ТП - 31	2	400
18	ТП - 38	2	160
19	ТП - 61	2	630
20	ТП - 62	2	630
21	ТП - 63	1	400
22	TII - 53	2	160
23	ТП - 39	2	250
24	ТП - 54	1	250
25	ТП - 55	1	160

2 Выбор оптимального напряжения распределительной сети поселка

Для большинства городов в настоящее время предпочтительной является шкала напряжений 220-110/10 кВ, для крупнейших городов 500/220-110/10 кВ или 330/110/10 кВ. В существующих сетях городов и поселков следует стремиться к снижению доли напряжения 35 кВ и переводу сетей 35 кВ на повышенное напряжение 110 кВ [6]. Напряжение 35 кВ должно сохраняться только при наличии технико-экономических обоснований. Число городских ГПП с высшим напряжением 35 кВ должно быть максимально сокращено. электроснабжения Выбор напряжения внешнего обычно определяется техническими ограничениями (предельной передаваемой мощностью, наличием стандартных трансформаторов нужной мощности с конкретным высшим напряжением), возможностью применения нескольких уровней напряжения [6]. Но главным фактором, определяющим экономичность варианта, является наличие желаемого уровня напряжения в энергосистеме (районная подстанция, электростанция и т.д.). В настоящее время имеется две системы напряжений высоковольтных сетей: 110-220-500 кВ и 150-330-750 кВ. Увеличение напряжения уменьшает протекающие нагрузочные токи, следовательно, и потери мощности и энергии, и сечения токоведущих частей. Однако выбор напряжения ограничен номинальным напряжением электроприемников, и параметрами электрической системы, питающей город. Распространенным ранее было напряжение распределительной сети 6 кВ, затем 10 кВ, перспективным считается 20 кВ. Для распределительной сети поселка принимаем номинальное напряжение U = 10 кB.

3 Определение числа и мощности силовых трансформаторов главной понизительной подстанции

3.1 Выбор трансформаторов с учетом категории потребителей и приближенный расчет номинальной мощности

Так как присутствуют потребители I категории выбираются два трансформатора. $S_{\text{ном T}}$ определяется с учетом 40% перегрузки в нормальном режиме и с учетом коэффициента участия потребителей первой категории

$$S_{_{HOM\ m}} = \frac{S_{_{\max.\Pi C}} \cdot K_{_{1-2}}}{K_{_{nep}} \cdot (n-1)},$$

$$S_{_{HOM\ m}} = \frac{27,0\cdot0,8}{1.4\cdot1} = 15,4\ MBA.$$

где $S_{\rm max.\it{\Pi}\it{C}}$ - суммарная нагрузка подстанции, которая складывается из нагрузки поселка Поволжский (10500 кВА) и нагрузки сторонних потребителей (16500 кВА).

Применительно к полученному значению $S_{\text{ном.т.}}$ по шкале мощности трансформаторов из справочника [7] выбираем два ближайших по мощности трансформатора из условия

$$S_{_{HOM.m2}} > S_{_{HOM.m1}} > S_{_{HOM.m}},$$
 25 MBA > 16 MBA > 15.4 MBA.

Выбираем по справочнику трансформаторы марок:

ТДТН - 16000/110/35/10

ТДТН - 25000/110/35/10

3.2 Технико-экономический расчёт выбора трансформаторов

3.2.1 Вариант ГПП с установкой двух силовых трансформаторов ТДТН - 16000/110/35/10

Технические данные силового трансформатора ТДТН - 16000/110/35/10:

$$\Delta P_{XX} = 21 \ \kappa Bm;$$

$$I_{XX\%} = 0.8\%;$$

$$\Delta P_{K3} = 100 \ \kappa Bm;$$

$$U\kappa_{BH-CH} = 10.5\%$$
,

$$U\kappa_{BH-HH} = 17.5\%$$
,

$$U\kappa_{CH-HH} = 6.5\%$$
.

Определим потери реактивной мощности в трансформаторе на XX:

$$Q_{xx} = \frac{I_{xx\%}}{100} \cdot S_{\text{\tiny HOM } m} ,$$

$$Q_{xx} = \frac{0.8}{100} \cdot 16000 = 128 \ \kappa eap.$$

Определим потери активной мощности в трансформаторе на XX:

$$P'_{xx} = P_{xx} + K_{un} \cdot Q_{xx}$$
,
 $P'_{xx} = 21 + 0.05 \cdot 128 = 27.4 \,\kappa Bm$.

Определим напряжение КЗ обмоток трёхфазного трансформатора:

$$\begin{split} U_{ke} &= 0.5 \cdot (U_{kBH-CH} + U_{kBH-HH} - U_{kCH-HH}), \\ U_{ke} &= 0.5 \cdot 10,5 + 17,5 - 6,5 = 10,75\%, \\ U_{kc} &= 0.5 \cdot (U_{kBH-CH} + U_{kCH-HH} - U_{kBH-HH}), \\ U_{kc} &= 0.5 \cdot 10,5 + 6,5 - 17,5 = 0\%. \\ U_{kH} &= 0.5 \cdot (U_{kBH-HH} + U_{kCH-HH} - U_{kBH-CH}), \\ U_{kCH} &= 0.5 \cdot 17,5 + 6,5 - 10,5 = 6,75\%. \end{split}$$

Определим потери реактивной мощности в трансформаторе в режиме КЗ:

$$\begin{aligned} Q_{\kappa.\textit{bH}} &= \frac{\mathbf{U}_{\kappa.\textit{BH}}}{100} \cdot \mathbf{S}_{\text{Hom.t}}, \\ Q_{\kappa.\textit{bH}} &= \frac{10,75}{100} \cdot 16000 = 1720 \; \textit{kbap}; \\ Q_{\kappa.\textit{c}} &= \frac{\mathbf{U}_{\kappa.\textit{c}}}{100} \cdot \mathbf{S}_{\text{Hom.t}}, \\ Q_{\kappa.\textit{c}} &= \frac{0}{100} \cdot 16000 = 0 \; \textit{kbap}. \\ Q_{\kappa.\textit{H}} &= \frac{\mathbf{U}_{\kappa.\textit{H}}}{100} \cdot \mathbf{S}_{\text{Hom.t}}, \\ \end{aligned}$$

$$Q_{\kappa.H} = \frac{6,75}{100} \cdot 16000 = 1080 \ \kappa ap.$$

Определим приведённые потери активной мощности в режиме КЗ трансформатора:

$$\Delta P_{\kappa B} = \Delta P_{\kappa C} = \Delta P_{\kappa H} = 0, 5 \cdot \Delta P_{\kappa},$$

$$\Delta P_{\kappa B} = \Delta P_{\kappa C} = \Delta P_{\kappa H} = 0, 5 \cdot 100 = 50 \text{ kBm};$$

$$P_{\kappa . BH}' = P_{\kappa . BH} + K_{un} \cdot Q_{\kappa . BH};$$

$$P_{\kappa . BH}' = 50 + 0, 05 \cdot 1720 = 136 \text{ kBm};$$

$$P_{\kappa . CH}' = P_{\kappa . CH} + K_{un} \cdot Q_{\kappa . CH};$$

$$P_{\kappa . CH}' = 50 + 0, 05 \cdot 0 = 50 \text{ kBm};$$

$$P_{\kappa . CH}' = P_{\kappa . HH} + K_{un} \cdot Q_{\kappa . HH};$$

$$P_{\kappa . HH}' = P_{\kappa . HH} + K_{un} \cdot Q_{\kappa . HH};$$

$$P_{\kappa . HH}' = 50 + 0, 05 \cdot 1080 = 104 \text{ kBm};$$

$$P_{\kappa . HH}' = F_{\kappa . HH}' + F_{\kappa . CH}' + F_{\kappa . HH}';$$

$$P_{\kappa}' = P_{\kappa . HH}' + P_{\kappa . CH}' + P_{\kappa . HH}';$$

Коэффициент загрузки обмотки высокого напряжения трансформатора на i-ой ступени годового графика нагрузки определим по формуле:

$$K_{_{36}} = \frac{S_{\text{BHi}}}{S_{_{\text{HOM.T}}}},$$

$$K_{_{36}} = \frac{13500}{16000} = 0.844.$$

Коэффициент загрузки обмотки среднего напряжения трансформатора на і-ой ступени годового графика нагрузки определим по формуле:

$$K_{36} = \frac{S_{\text{CHi}}}{S_{\text{HOM.T}}},$$

$$K_{36} = \frac{6250}{16000} = 0,391.$$

Коэффициент загрузки обмотки низкого напряжения трансформатора на i-ой ступени годового графика нагрузки определим по формуле:

$$K_{36} = \frac{S_{\text{HHi}}}{S_{\text{HOM T}}},$$

$$K_{36} = \frac{7250}{16000} = 0,453.$$

Определим приведённые потери мощности в силовом трансформаторе:

$$P_{m}' = P_{x}' + K_{3azp.e}^{2} \cdot P_{\kappa.eh}' + K_{3azp.ch}^{2} \cdot P_{\kappa.ch}' + K_{3azp.hh}^{2} \cdot P_{\kappa.hh}';$$

$$P_m' = 27.4 + 0.844^2 \cdot 136 + 0.391^2 \cdot 50 + 0.453^2 \cdot 104 = 153.2 \,\kappa Bm.$$

Определим потери электрической энергии в режиме холостого хода на i-й ступени годового графика нагрузки:

$$\Delta W_{xx} = n_m \cdot P_x \cdot T_i;$$

Суммарные потери в режиме холостого хода найдем по формуле:

$$\Delta W_{rr} = \Sigma \Delta W_{rri};$$

Определим потери электрической энергии в режиме короткого замыкания на i-й ступени годового графика нагрузки:

$$\Delta W_{\kappa_3} = \frac{1}{n_{_{\mathrm{T}}}} \cdot P_{_{\mathrm{K,BH}}} \cdot K_{_{3\mathrm{B}}}^2 \cdot T_{_{\mathrm{i}}} + \frac{1}{n_{_{\mathrm{T}}}} \cdot P_{_{\mathrm{K,CH}}} \cdot K_{_{3\mathrm{CH}}}^2 \cdot T_{_{\mathrm{i}}} + \frac{1}{n_{_{\mathrm{T}}}} \cdot P_{_{\mathrm{K,HH}}} \cdot K_{_{3\mathrm{HH}}}^2 \cdot T_{_{\mathrm{i}}};$$

Суммарные потери в режиме короткого замыкания найдем по формуле:

$$W_{\kappa_3} = \Sigma \Delta W_{\kappa_3.i};$$

Суммарные потери электрической энергии в силовых трансформаторах ГПП:

$$\Delta W_{nc} = \Sigma \Delta W_{xi} + \Sigma \Delta W_{\kappa gi} + \Sigma \Delta W_{\kappa ci} + \Sigma \Delta W_{\kappa Hi}$$

Определим экономическую нагрузку ниже которой целесообразно отключать один из силовых трансформаторов ГПП:

$$S_{_{9.nc}} = S_{_{HOM.m}} \cdot \sqrt{n_{_{\rm T}} \cdot (n_{_{\rm T}} - 1) \cdot \frac{\dot{P_{_{\rm X}}}}{\dot{P_{_{\rm K}}}}};$$

$$S_{9.nc} = 16000 \cdot \sqrt{2 \cdot (2-1) \cdot \frac{27,4}{290}} = 6,955 MBA.$$

Результаты расчетов потерь электрической энергии сведем в таблицу 3.1.

Таблица 3.1 - Расчёт потерь электроэнергии в трансформаторе ТДТН - 16000/110/35/10

N	Ѕвні,	Scнi,	Ѕнні,	ni,	Ti,	ΔWxi ,	Кзві	Кзсі	Кзні	ΔW к. $arepsilon i$	$\Delta W \kappa.c$	ΔW к.н
	MBA	MBA	MBA	шт	ч	кВт∙ч				кВт∙ч	кВт∙ч	кВт∙ч
1	13,5	6,264	7,236	2	213	11670	0,844	0,392	0,452	10000	816	2300
2	13,199	6,124	7,075	2	426	23340	0,825	0,383	0,442	20000	1600	4300
3	12,871	5,972	6,899	2	319	17510	0,804	0,373	0,431	14000	1100	3100
4	11,68	5,42	6,26	2	517	28330	0,73	0,339	0,391	19000	1500	4100
5	11,238	5,214	6,024	2	213	11670	0,702	0,326	0,376	7100	566	1600
6	10,367	4,81	5,556	2	547	30000	0,648	0,301	0,347	16000	1200	3400
7	9,969	4,625	5,343	2	973	53350	0,623	0,289	0,334	26000	2000	5600
8	9,36	4,343	5,017	2	213	11670	0,585	0,271	0,314	5000	392	1100
9	8,916	4,137	4,779	2	365	20000	0,557	0,259	0,299	7700	610	1700
10	8,454	3,923	4,531	2	912	50000	0,528	0,245	0,283	17000	1400	3800
11	7,747	3,595	4,153	2	912	49980	0,484	0,225	0,26	15000	1200	3200
12	7,009	3,252	3,757	2	182	10000	0,438	0,203	0,235	2400	189	523
13	6,327	2,936	3,392	2	106	5836	0,395	0,183	0,212	1100	90	249
14	5,417	2,513	2,903	2	289	15840	0,339	0,157	0,181	2300	178	495
15	4,884	2,266	2,618	2	182	10000	0,305	0,142	0,164	1200	92	254
16	4,571	2,121	2,45	2	213	11670	0,286	0,133	0,153	1200	94	260

Продолжение таблицы 3.1

N	Ѕвні,	Scнi,	Ѕнні,	ni,	Ti,	ΔWxi ,	Кзві	Кзсі	Кзні	ΔWκ.ві	$\Delta W \kappa$.c	ΔW к.н
	MBA	MBA	MBA	шт	q	кВт∙ч				кВт∙ч	кВт∙ч	кВт∙ч
17	4,295	1,993	2,302	2	152	8330	0,268	0,125	0,144	745	59	164
18	3,517	1,632	1,885	2	654	35840	0,22	0,102	0,118	2100	170	472
19	2,493	1,157	1,336	1	228	6245	0,156	0,072	0,084	753	60	165
20	2,083	0,967	1,116	1	608	16680	0,13	0,06	0,07	1400	111	308
21	1,757	0,815	0,942	1	152	4165	0,11	0,051	0,059	249	20	55
22	1,296	0,601	0,695	1	380	10410	0,081	0,038	0,043	339	27	75
		того поте	ери по ГП	П.		442531				169550,7	13420,9	37252,1
	Итого потери по ГПП:						662755					

 $\Delta Wnc = 662755 \, \kappa Bm \cdot u \,, \, \Sigma \Delta Wxx = 442531 \, \kappa Bm \cdot u \,, \, \Sigma \Delta W\kappa_3 = 220223,7 \, \kappa Bm \cdot u \,$

Стоимость потерь электрической энергии в силовом трансформаторе за год:

$$\begin{split} & M_{\Delta Wnc} = \ C_{_{9X}} \ T_{_{X}} \ \Delta W_{_{XX}} + C_{_{9K}}(t) \Delta W_{_{K3}}, \\ \\ & M_{_{\Delta Wnc}} = \ 0.648 \cdot 442531 + \ 0.918 \cdot 220223, 7 = \ 448925, 4 \ py 6. \end{split}$$

Приведённые затраты:

$$\begin{split} 3_{np} &= E_{_H} \cdot K + \mathcal{U} = E_{_H} \cdot K + \mathcal{U}_{\ni} + \mathcal{U}_{Wnc}, \\ 3_{np} &= 0.33 \cdot 15.1 \cdot 10^6 + 1.419 \cdot 10^6 + 0.449 \cdot 10^6 = 6.891 \cdot 10^6 \ py 6. \end{split}$$

3.2.2 Вариант ГПП с установкой двух силовых трансформаторов ТДТН - 25000/110/35/10

Технические данные силового трансформатора ТДТН 25000/110/35/10:

$$\Delta P_{xx} = 28,5 \,\kappa Bm;$$

$$I_{XX\%} = 0.7\%;$$

$$\Delta P_{\kappa^3} = 140 \ \kappa Bm;$$

$$U\kappa_{BH-CH} = 10.5\%$$
,

$$U\kappa_{BH-HH} = 17.5\%$$
,

$$U\kappa_{CH-HH} = 6.5\%$$
.

Определим потери реактивной мощности в трансформаторе на XX:

$$Q_{xx} = \frac{I_{xx\%}}{100} \cdot S_{\text{\tiny HOM } m} ,$$

$$Q_{xx} = \frac{0.7}{100} \cdot 25000 = 175 \text{ } \kappa \text{ } \epsilon \text{ } ap.$$

Определим потери активной мощности в трансформаторе на XX:

$$P'_{xx} = P_{xx} + K_{un} \cdot Q_{xx}$$
,
$$P'_{xx} = 28.5 + 0.05 \cdot 175 = 37.25 \kappa Bm.$$

$$U_{kg} = 0.5 \cdot (U_{kBH-CH} + U_{kBH-HH} - U_{kCH-HH}),$$

$$\begin{split} &U_{kg} = 0.5 \cdot 10,5 + 17,5 - 6,5 = 10,75\%, \\ &U_{kc} = 0.5 \cdot (U_{kBH-CH} + U_{kCH-HH} - U_{kBH-HH}), \\ &U_{kc} = 0.5 \cdot 10,5 + 6,5 - 17,5 = 0\%. \\ &U_{kH} = 0.5 \cdot (U_{kBH-HH} + U_{kCH-HH} - U_{kBH-CH}), \\ &U_{kCH} = 0.5 \cdot 17,5 + 6,5 - 10,5 = 6,75\%. \end{split}$$

Определим потери реактивной мощности в трансформаторе в режиме К3:

$$\begin{split} Q_{\text{к.вн}} &= \frac{\text{U}_{\text{к.вн}}}{100} \cdot \text{S}_{\text{ном.т}}, \\ Q_{\text{к.вн}} &= \frac{10,75}{100} \cdot 25000 = 2687 \; \text{квар}; \\ Q_{\text{к.с}} &= \frac{\text{U}_{\text{к.с}}}{100} \cdot \text{S}_{\text{ном.т}}, \\ Q_{\text{к.с}} &= \frac{0}{100} \cdot 25000 = 0 \; \text{квар}. \\ Q_{\text{к.н}} &= \frac{\text{U}_{\text{к.н}}}{100} \cdot \text{S}_{\text{ном.т}}, \\ Q_{\text{к.н}} &= \frac{6,75}{100} \cdot 25000 = 1687,5 \; \text{квар}. \end{split}$$

Определим приведённые потери активной мощности в режиме КЗ трансформатора:

$$\Delta P_{\kappa B} = \Delta P_{\kappa C} = \Delta P_{\kappa H} = 0, 5 \cdot \Delta P_{\kappa},$$

$$\Delta P_{\kappa B} = \Delta P_{\kappa C} = \Delta P_{\kappa H} = 0, 5 \cdot 140 = 70 \, \kappa Bm;$$

$$P_{\kappa . 6H}' = P_{\kappa . 6H} + K_{un} \cdot Q_{\kappa . 6H};$$

$$P_{\kappa . 6H}' = 70 + 0, 05 \cdot 2687, 5 = 204, 4 \, \kappa Bm;$$

$$P_{\kappa . cH}' = P_{\kappa . cH} + K_{un} \cdot Q_{\kappa . cH};$$

$$P_{\kappa . cH}' = 70 + 0, 05 \cdot 0 = 70 \, \kappa Bm;$$

$$P_{\kappa . cH}' = P_{\kappa . H} + K_{un} \cdot Q_{\kappa . H};$$

$$P_{\kappa . HH}' = P_{\kappa . H} + K_{un} \cdot Q_{\kappa . H};$$

$$P_{\kappa . HH}' = 70 + 0, 05 \cdot 1687, 5 = 154, 4 \, \kappa Bm;$$

$$P_{\kappa}' = P_{\kappa.6H}' + P_{\kappa.CH}' + P_{\kappa.HH}';$$

$$P_{\kappa}' = 204, 4 + 70 + 154, 4 = 428, 8 \kappa Bm.$$

Коэффициент загрузки обмотки высокого напряжения трансформатора на і-ой ступени годового графика нагрузки определим по формуле:

$$K_{_{36}} = \frac{S_{BHi}}{S_{_{HOM,T}}},$$

$$K_{36} = \frac{13500}{25000} = 0.54.$$

Коэффициент загрузки обмотки среднего напряжения трансформатора на i-ой ступени годового графика нагрузки определим по формуле:

$$K_{36} = \frac{S_{\text{CHi}}}{S_{\text{HOM.T}}},$$

$$K_{36} = \frac{6250}{25000} = 0,25.$$

Коэффициент загрузки обмотки низкого напряжения трансформатора на i-ой ступени годового графика нагрузки определим по формуле:

$$K_{36} = \frac{S_{\text{HHi}}}{S_{\text{HOM T}}},$$

$$K_{36} = \frac{7250}{25000} = 0,29.$$

Определим приведённые потери мощности в силовом трансформаторе:

$$P_{m}' = P_{x}' + K_{3azp.8}^{2} \cdot P_{\kappa.6H}' + K_{3azp.cH}^{2} \cdot P_{\kappa.cH}' + K_{3azp.HH}^{2} \cdot P_{\kappa.HH}';$$

$$P_m' = 27.4 + 0.844^2 \cdot 136 + 0.391^2 \cdot 50 + 0.453^2 \cdot 104 = 153.2 \,\kappa Bm.$$

Определим потери электрической энергии в режиме холостого хода на i-й ступени годового графика нагрузки:

$$\Delta W_{xx} = n_m \cdot P_x \cdot T_i;$$

Суммарные потери в режиме холостого хода найдем по формуле:

$$\Delta W_{xx} = \Sigma \Delta W_{xx.i};$$

Определим потери электрической энергии в режиме короткого замыкания на і-й ступени годового графика нагрузки:

$$\Delta W_{_{\mathit{K3}}} = \frac{1}{n_{_{\mathrm{T}}}} \cdot P_{_{_{\mathit{K,BH}}}} \cdot K_{_{_{3\mathit{B}}}}^2 \cdot T_{_{i}} + \frac{1}{n_{_{_{\mathrm{T}}}}} \cdot P_{_{_{\mathit{K,CH}}}} \cdot K_{_{3\mathit{CH}}}^2 \cdot T_{_{i}} + \frac{1}{n_{_{_{\mathrm{T}}}}} \cdot P_{_{_{\mathit{K,HH}}}} \cdot K_{_{3\mathit{HH}}}^2 \cdot T_{_{i}};$$

Суммарные потери в режиме короткого замыкания найдем по формуле:

$$W_{\kappa_3} = \Sigma \Delta W_{\kappa_3,i};$$

Суммарные потери электрической энергии в силовых трансформаторах ГПП:

$$\Delta W_{nc} = \Sigma \Delta W_{xi} + \Sigma \Delta W_{\kappa \kappa i} + \Sigma \Delta W_{\kappa \kappa i} + \Sigma \Delta W_{\kappa \kappa i}.$$

Определим экономическую нагрузку ниже которой целесообразно отключать один из силовых трансформаторов ГПП:

$$S_{_{9.nc}} = S_{_{HOM.m}} \cdot \sqrt{n_{_{\rm T}} \cdot (n_{_{\rm T}} - 1) \cdot \frac{\dot{P_{_{\rm X}}}}{\dot{P_{_{\rm K}}}}};$$

$$S_{_{9.nc}} = 25000 \cdot \sqrt{2 \cdot (2 - 1) \cdot \frac{37,25}{428,8}} = 10,421 \, MBA.$$

Результаты расчетов потерь электрической энергии сведем в таблицу 3.2.

Таблица 3.2 - Расчёт потерь электроэнергии в трансформаторе ТДТН - 25000/110/35/10

N	Ѕвні,	Scнi,	Ѕнні,	ni,	Ti,	ΔWxi ,	Кзві	Кзсі	Кзні	ΔW к. $arepsilon i$	$\Delta W \kappa$.c	ΔW к.н
	MBA	MBA	MBA	шт	ч	кВт∙ч				кВт∙ч	кВт∙ч	кВт∙ч
1	13,5	6,264	7,236	2	213	11670	0,54	0,251	0,289	10000	816	2300
2	13,199	6,124	7,075	2	426	23340	0,528	0,245	0,283	20000	1600	4300
3	12,871	5,972	6,899	2	319	17510	0,515	0,239	0,276	14000	1100	3100
4	11,68	5,42	6,26	2	517	28330	0,467	0,217	0,25	19000	1500	4100
5	11,238	5,214	6,024	2	213	11670	0,45	0,209	0,241	7100	566	1600
6	10,367	4,81	5,556	2	547	30000	0,415	0,192	0,222	16000	1200	3400
7	9,969	4,625	5,343	2	973	53350	0,399	0,185	0,214	26000	2000	5600
8	9,36	4,343	5,017	2	213	11670	0,374	0,174	0,201	5000	392	1100
9	8,916	4,137	4,779	2	365	20000	0,357	0,165	0,191	7700	610	1700
10	8,454	3,923	4,531	2	912	50000	0,338	0,157	0,181	17000	1400	3800
11	7,747	3,595	4,153	2	912	49980	0,31	0,144	0,166	15000	1200	3200
12	7,009	3,252	3,757	2	182	10000	0,28	0,13	0,15	2400	189	523
13	6,327	2,936	3,392	2	106	5836	0,253	0,117	0,136	1100	90	249
14	5,417	2,513	2,903	2	289	15840	0,217	0,101	0,116	2300	178	495
15	4,884	2,266	2,618	2	182	5000	0,195	0,091	0,105	2300	183	508
16	4,571	2,121	2,45	2	213	5835	0,183	0,085	0,098	2400	187	519

Продолжение таблицы 3.2

N	Ѕвні,	<i>Sсні</i> ,	Ѕнні,	ni,	Ti,	ΔWxi ,	Кзві	Кзсі	Кзні	ΔW к. $arepsilon i$	$\Delta W \kappa.c$	ΔW к.н
	MBA	MBA	MBA	шт	q	кВт∙ч				кВт∙ч	кВт∙ч	кВт∙ч
17	4,295	1,993	2,302	2	152	4165	0,172	0,08	0,092	1500	118	327
18	3,517	1,632	1,885	2	654	17920	0,141	0,065	0,075	4300	340	944
19	2,493	1,157	1,336	1	228	6245	0,1	0,046	0,053	753	60	165
20	2,083	0,967	1,116	1	608	16680	0,083	0,039	0,045	1400	111	308
21	1,757	0,815	0,942	1	152	4165	0,07	0,033	0,038	249	20	55
22	1,296	0,601	0,695	1	380	10410	0,052	0,024	0,028	339	27	75
	M	того пот	ери по ГП	п.		409611				174782.7	13835	38401.5
	Итого потери по ГПП:					636630					<u> </u>	

 $\Delta Wnc = 636630 \ \kappa Bm \cdot v, \ \Sigma \Delta Wxx = 409611 \ \kappa Bm \cdot v, \ \Sigma \Delta W\kappa = 227019, 2 \ \kappa Bm \cdot v$

Стоимость потерь электрической энергии в силовом трансформаторе за год:

$$\begin{split} & M_{\Delta Wnc} = \ C_{_{9X}} \ T_{_{X}} \ \Delta W_{_{XX}} + C_{_{9K}}(t) \Delta W_{_{K3}}, \\ \\ & M_{\Delta Wnc} = \ 0,648 \cdot 409611 + \ 0,918 \cdot 227019, 2 = \ 473831,6 \ py 6. \end{split}$$

Приведённые затраты:

$$3_{np} = E_{n} \cdot K + M = E_{n} \cdot K + M_{9} + M_{wnc},$$

$$3_{np} = 0.33 \cdot 23.6 \cdot 10^{6} + 2.218 \cdot 10^{6} + 0.474 \cdot 10^{6} = 10.480 \cdot 10^{6} \text{ pyb.}$$

Окончательно выбираем вариант где меньше приведенные затраты, т.е. вариант с двумя силовыми трансформаторами ТДТН - 16000/110/35/10.

4 Выбор схемы распределительной сети поселка

При проектировании системы электроснабжения микрорайонов города с ЭП, относящимися к 1й и 2й категории по надежности электроснабжения, рекомендованной схемой сети 10 кВ является комбинированная петлевая двухлучевая схема с двухсторонним питанием [3, 6].

Согласно руководящим документам при проектировании распределительной сети города напряжением 10 кВ для питания ЭП, относящихся к 1й категории по надежности электроснабжения является двухлучевая схема с двухсторонним питанием от независимых источников питания. На шинах низкого напряжения трансформаторных подстанций с двумя трансформаторами и у самих потребителей с ЭП, относящимися к 1й категории должен быть предусмотрен автоматический ввод резерва. По возможности питание ЭП 1й по сети напряжением 0.38 кВ следует трансформаторных осуществлять OT разных городских подстанций, подключенных независимым источникам питания. В этом случае должны быть предусмотрены резервы в пропускной способности всех элементов схемы в соответствии величиной нагрузки ЭП 1й категории надежности электроснабжения.

В жилых многоквартирных зданиях с электроплитами, а также во всех зданиях этажностью более 9 этажей при осуществлении питании от трансформаторных подстанций с 1 трансформатором должно быть предусмотрено резервное питание по сети напряжением 0.38 кВ от других трансформаторных подстанций.

Таким образом, для электроснабжения поселка «Поволжский» применим двухлучевую схему электроснабжения с двухсторонним питанием от разных секций сборных шин ГПП «Матюшкино».

5 Расчет параметров распределительной сети поселка

Найдем параметры распределительной сети города и произведем выбор КЛ 10 кВ:

$$I_{ipacq.} = \frac{S_{p.\pi}}{\sqrt{3}U_{H}};$$

$$S_{p.n.} = S_{HOM.T} \cdot n \cdot K_3 \cdot K_{yM}.$$

Для линии от главной понизительной подстанции до трансформаторной подстанции №31:

$$I_{1 \text{ pac}^{4}} = \frac{0.85 \cdot (400 + 630 + 630 + 160 + 250) \cdot 0.85}{\sqrt{3} \cdot 10} = 86 \text{ A}.$$

Для линии от трансформаторной подстанции №31 до трансформаторной подстанции №61:

$$I_{2 \text{ pact.}} = \frac{0.85 \cdot (630 + 630 + 160 + 250) \cdot 0.85}{\sqrt{3} \cdot 10} = 70 \text{ A}.$$

Для линии от трансформаторной подстанции №61 до трансформаторной подстанции №62:

$$I_{3 \text{ pacq.}} = \frac{0.85 \cdot (630 + 160 + 250) \cdot 0.85}{\sqrt{3} \cdot 10} = 43 \text{ A};$$

Для линии от трансформаторной подстанции №62 до трансформаторной подстанции №53:

$$I_{4 \text{ pac4.}} = \frac{0.85 \cdot (160 + 250) \cdot 0.85}{\sqrt{3} \cdot 10} = 17 \text{ A}.$$

Для линии от трансформаторной подстанции №53 до трансформаторной подстанции №42:

$$I_{5 \text{ pac}^4} = \frac{0.85 \cdot 250 \cdot 0.85}{\sqrt{3} \cdot 10} = 11 \text{ A}.$$

Токи в послеаварийном режиме:

$$I_{i.ab} = \frac{S_{ab.\pi}}{\sqrt{3}U_{H}};$$

$$\begin{split} I_{\text{lab.}} &= \frac{0.85 \cdot (400 + 2 \cdot 630 + 2 \cdot 630 + 2 \cdot 160 + 250) \cdot 0.8}{\sqrt{3} \cdot 10} = 146 \text{ A}; \\ I_{\text{2 ab.}} &= \frac{0.85 \cdot (2 \cdot 630 + 2 \cdot 630 + 2 \cdot 160 + 250) \cdot 0.8}{\sqrt{3} \cdot 10} = 129 \text{ A}; \\ I_{\text{3 ab.}} &= \frac{0.85 \cdot (2 \cdot 630 + 2 \cdot 160 + 250) \cdot 0.8}{\sqrt{3} \cdot 10} = 76 \text{ A}; \\ I_{\text{4 ab.}} &= \frac{0.85 \cdot (2 \cdot 160 + 250) \cdot 0.8}{\sqrt{3} \cdot 10} = 24 \text{ A}; \\ I_{\text{5 ab.}} &= \frac{0.85 \cdot 250 \cdot 0.8}{\sqrt{3} \cdot 10} = 11 \text{ A}. \end{split}$$

Производим выбор сечения жил кабелей по экономической плотности тока:

$$F_{\mathfrak{I}} = \frac{I_{\mathfrak{p}.\pi}}{j_{\mathfrak{I}_{\mathfrak{K}}}},$$

Учитывая рекомендации использовать для линий напряжением 10 кВ сечение кабеля не ниже 70 мм²:

 $F_{91}=86/1,4=61\,\mathrm{mm}^2,I_{_{\mathrm{ДЛ ДОП}}}=171\,\mathrm{A},\;$ выбираем кабель АПвЭКВ 3х70. $F_{92}=70/1,4=50\,\mathrm{mm}^2,I_{_{\mathrm{ДЛ ДОП}}}=171\,\mathrm{A},\;$ выбираем кабель АПвЭКВ 3х70. $F_{93}=43/1,4=31\,\mathrm{mm}^2,I_{_{\mathrm{ДЛ ДОП}}}=171\,\mathrm{A},\;$ выбираем кабель АПвЭКВ 3х70. $F_{94}=17/1,4=12\,\mathrm{mm}^2,I_{_{\mathrm{ДЛ ДОП}}}=171\,\mathrm{A},\;$ выбираем кабель АПвЭКВ 3х70. $F_{95}=11/1,4=8\,\mathrm{mm}^2,I_{_{\mathrm{ДЛ ДОП}}}=171\,\mathrm{A},\;$ выбираем кабель АПвЭКВ 3х70.

Выполним проверку выбранных кабелей по допустимому нагреву:

$$\begin{split} I_{_{1\text{ДОП}}} = & k_{_{1}} \cdot k_{_{2}} \cdot I_{_{\text{ДОП}}}, \\ I_{_{1\text{ДОП}}} > & I_{_{\text{РАСЧ}}}, \\ I_{_{1\text{ДОП}}} = & 1,2 \cdot 0,9 \cdot 171 = 185 \text{ A}, \\ 185 \text{ A} > & 86 \text{ A}, \\ I_{_{2\text{ДОП}}} = & 1,2 \cdot 0,9 \cdot 171 = 185 \text{ A}, \\ 185 \text{ A} > & 70 \text{ A}, \end{split}$$

$$I_{3 \text{ доп}} = 1, 2 \cdot 0, 9 \cdot 171 = 185 \text{ A},$$
 $185 \text{ A} > 43 \text{ A},$
 $I_{4 \text{ доп}} = 1, 2 \cdot 0, 9 \cdot 171 = 185 \text{ A},$
 $185 \text{ A} > 17 \text{ A},$
 $I_{5 \text{ доп}} = 1, 2 \cdot 0, 9 \cdot 171 = 185 \text{ A},$
 $185 \text{ A} > 11 \text{ A}.$

Все выбранные кабели подходят проверку по нагреву.

Выполним проверку выбранных сечений кабелей по току в послеаварийном режиме:

$$\begin{split} I_{_{\mathrm{IДO\Pi.AB.}}} =& 1, 3 \cdot I_{_{\mathrm{IДO\Pi.}}} \,, \\ I_{_{\mathrm{IДO\Pi.AB.}}} >& I_{_{\mathrm{IAB}}}, \\ I_{_{1\,\mathrm{ДO\Pi.AB.}}} =& 1, 3 \cdot 171 \, = \, 241 \, \mathrm{A}, \\ 241 \, \mathrm{A} >& 146 \, \mathrm{A}, \\ I_{_{2\,\mathrm{ДO\Pi.AB.}}} =& 1, 3 \cdot 171 \, = \, 241 \, \mathrm{A}, \\ 241 \, \mathrm{A} >& 129 \, \mathrm{A}, \\ I_{_{3\,\mathrm{ДO\Pi.AB.}}} =& 1, 3 \cdot 171 \, = \, 241 \, \mathrm{A}, \\ 241 \, \mathrm{A} >& 76 \, \mathrm{A}, \\ I_{_{4\,\mathrm{ДO\Pi.AB.}}} =& 1, 3 \cdot 171 \, = \, 241 \, \mathrm{A}, \\ 241 \, \mathrm{A} >& 24 \, \mathrm{A}, \\ I_{_{5\,\mathrm{ДO\Pi.AB.}}} =& 1, 3 \cdot 171 \, = \, 241 \, \mathrm{A}, \\ 241 \, \mathrm{A} >& 11 \, \mathrm{A}. \end{split}$$

Все выбранные кабели подходят проверку по нагреву в послеаварийном режиме.

Выполним проверку выбранного сечения жил кабельных линий по потерям напряжения для линии с наибольшей длиной.

Потери напряжения определим по формуле:

$$\Delta U = I_{aB} \cdot r \cdot \cos\varphi,$$

$$\Delta U_{\pi I} = 146 \cdot 0,443 \cdot 2,58 \cdot 0,95 = 159 B B;$$

$$\Delta U_{\pi 2} = 159 + 129 \cdot 0,443 \cdot 0,79 \cdot 0,95 = 202 \text{ B};$$

$$\Delta U_{\pi 3} = 202 + 76 \cdot 0,443 \cdot 0,72 \cdot 0,95 = 225 \text{ B};$$

$$\Delta U_{\pi 4} = 225 + 24 \cdot 0,443 \cdot 0,65 \cdot 0,95 = 232 \text{ B};$$

$$\Delta U_{\pi 5} = 232 + 11 \cdot 0,443 \cdot 0,76 \cdot 0,95 = 235 \text{ B}.$$

Таким образом, максимальные потери напряжения в кабельной линии максимальной протяженности не превышают 2,3%, т.е. выбранные кабельные линии проходят проверку по потерям напряжения.

6 Расчёт токов короткого замыкания

Для нахождения токов короткого замыкания (КЗ) составляем расчетную схему, приведенную на рисунке 6.1 и схему замещения, приведенную на рисунке 6.2. Для каждой из выбранных точек расчета токов короткого замыкания определяем результирующие сопротивления.

Исходные данные для расчета токов КЗ:

$$S_6 = 1000 \text{ MBA};$$

Система:

$$U_{H} = 110 \text{ kB}, \quad S_{K3} = 3000 \text{ MBA};$$

Воздушная линия:

$$x_0 = 0.4 \text{ Om} / \text{ km}, l = 10 \text{ km}, U_H = 110 \text{ kB};$$

Кабельные линии:

от ГПП до ТП-31:

$$x_0 = 0,443 \text{ Om} / \text{км} \ 1 = 2,58 \text{ км} \ U_H = 10 \text{ kB}$$

от ТП-32 до ТП-61:

$$x_0 = 0.443 \text{ Om} / \text{km} \quad l = 0.79 \text{ km} \quad U_H = 10 \text{ kB}$$

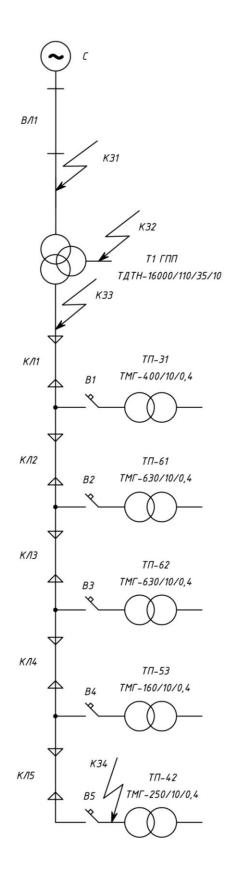
от ТП-61 до ТП-62:

$$x_{_0}\!=\!0,443~Om\,/\,\kappa m~l\!=\!0.72~\kappa m~U_{_H}\!=\!10~\kappa B$$

от ТП-62 до ТП-53:

$$x_0 = 0,443 \text{ Om} / \text{км} \ 1 = 0,65 \text{ км} \ U_H = 10 \text{ kB}$$

от ТП-53 до ТП-42:


$$x_0 = 0,443 \; \text{Om} \, / \, \text{км} \quad l = 0,76 \; \text{км} \quad \ U_H = \, 10 \; \kappa B$$

Силовой трансформатор:

$$S_H = 16 \text{ MBA}.$$

Найдем сопротивления схемы замещения при $S_{\rm 6} = 1000~{\rm MBA}$:

$$x_C = \frac{S_{\tilde{o}}}{S_{\kappa_3}},$$

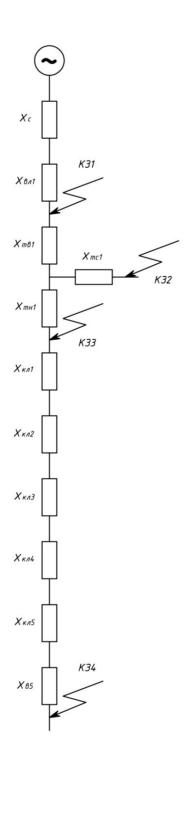


Рисунок 6.2 - Схема

Рисунок 6.1 - Электрическая схема для расчета токов K3

замещения
1000 – 0 333:

$$x_C = \frac{1000}{3000} = 0,333;$$

$$x_{\pi} = x_{0} \cdot l \cdot \frac{S_{6}}{U_{H}^{2}},$$

$$x_{\pi} = 0.4 \cdot 10 \cdot \frac{1000}{115^{2}} = 0.302;$$

$$x_{TB} = \frac{U_{K.B.}}{100} \cdot \frac{S_{6}}{S_{HT}},$$

$$x_{TB} = \frac{10.75}{100} \cdot \frac{1000}{16} = 6.718;$$

$$x_{TC} = 0$$

$$x_{TH} = \frac{U_{K.H.}}{100} \cdot \frac{S_{6}}{S_{HT}},$$

$$x_{TH} = \frac{7.25}{100} \cdot \frac{1000}{16} = 4.531;$$

$$x_{\kappa\eta} = x_{0} \cdot l \cdot \frac{S_{6}}{U_{H}^{2}},$$

$$x_{\kappa\eta 1} = 0.443 \cdot 2.58 \cdot \frac{1000}{10.5^{2}} = 10.367,$$

$$x_{\kappa\eta 2} = 0.443 \cdot 0.79 \cdot \frac{1000}{10.5^{2}} = 3.174,$$

$$x_{\kappa\eta 3} = 0.443 \cdot 0.72 \cdot \frac{1000}{10.5^{2}} = 2.893,$$

$$x_{\kappa\eta 4} = 0.443 \cdot 0.65 \cdot \frac{1000}{10.5^{2}} = 2.611,$$

$$x_{\kappa\eta 5} = 0.443 \cdot 0.76 \cdot \frac{1000}{10.5^{2}} = 3.054.$$

Для точки К1:

$$x_{\Sigma 1} = x_{\Sigma 2} = x_c + x_n;$$

$$x_{\Sigma 1} = x_{\Sigma 2} = 0.333 + 0.302 = 0.635.$$

$$X_{0\Sigma} = x_c + 3 \cdot x_n;$$

$$X_{0\Sigma} = 0.333 + 3 \cdot 0.302 = 1.239.$$

Ток трехфазного короткого замыкания:

$$I^{3}_{\kappa_{3}} = \frac{E}{X_{\Sigma 1}}, \; \text{где} \; E \; = \; 1.$$

$$I^{3}_{\kappa_{3}} = \frac{1}{0.635} = 1,575.$$

Сверхпереходной ток:

$$I^{(3)}_{\kappa_3} = I^{(3)}_{\kappa_3} \cdot I_{\delta} = I^{(3)}_{\kappa_3} \cdot \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}};$$

$$I^{(3)}_{\kappa_3} = 1,575 \cdot \frac{1000}{\sqrt{3} \cdot 115} = 7,9 \text{ KA}.$$

Ударный ток:

$$i_{y\kappa 1} = \sqrt{2} \cdot k_{y\partial} \cdot I^{(3)}_{\kappa_3},$$

$$i_{y\kappa 1} = \sqrt{2} \cdot 1.8 \cdot 7.9 = 20.1 \text{ kA},$$

Действующее значение ударного тока:

$$I_{y \kappa 1} = I^{3}_{\kappa 3} \cdot \sqrt{1 + 2 \cdot (k_{y0} - 1)^{2}};$$

 $I_{y \kappa 1} = 7.9 \cdot \sqrt{1 + 2 \cdot (1.8 - 1)^{2}} = 11.9 \text{ KA}.$

Мощность КЗ для точки К1:

$$S_{k_1} = \sqrt{3} \cdot I^3_{\kappa_3} \cdot U_{\kappa_3};$$

 $S_{k_1} = \sqrt{3} \cdot 7, 9 \cdot 115 = 1574 \text{ MBA}.$

Для точки К2:

$$x_{\Sigma 2} = x_c + x_n + x_{ms} + x_{mc};$$

$$x_{\Sigma 2} = 0.333 + 0.302 + 6.718 + 0 = 7.353;$$

$$X_{0S} = x_c + 3 \cdot x_n + x_m;$$

$$X_{0S} = 0.333 + 3 \cdot 0.302 + 6.718 + 0 = 7.957;$$

$$I^{3}_{\kappa 3} = \frac{E}{X_{\Sigma 2}},$$

$$I^{3}_{\kappa 3} = \frac{1}{12.939} = 0.126;$$

Сверхпереходной ток:

$$I^{(3)}_{\kappa_3} = I^{(3)}_{\kappa_3} \cdot I_{\delta} = I^{(3)}_{\kappa_3} \cdot \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}};$$

$$I^{(3)}_{\kappa_3} = 0.126 \cdot \frac{1000}{\sqrt{3} \cdot 37} = 2 \text{ kA}.$$

Ударный ток:

$$i_{y \kappa 2} = \sqrt{2} \cdot k_{y \delta} \cdot I^{3}_{\kappa 3},$$

$$i_{y \kappa 2} = \sqrt{2} \cdot 1,92 \cdot 2 = 5,43 \text{ KA},$$

Действующее значение ударного тока:

$$I_{y \kappa 2} = I^{3}_{\kappa 3} \cdot \sqrt{1 + 2 \cdot (k_{y\partial} - 1)^{2}}.$$

$$I_{y \kappa 2} = 2 \cdot \sqrt{1 + 2 \cdot (1,92 - 1)^{2}} = 3,4 \text{ kA}.$$

Мощность КЗ для точки К2:

$$S_{k_2} = \sqrt{3} \cdot I^3_{\kappa_3} \cdot U_{\mu};$$

 $S_{k_2} = \sqrt{3} \cdot 2 \cdot 37 = 128, \text{ MBA}.$

Для точки К3:

$$x_{\Sigma 3} = x_c + x_n + x_{me} + x_{m\mu};$$

$$x_{\Sigma 3} = 0,333 + 0,302 + 6,718 + 4,531 = 11,884;$$

$$X_{0\Sigma} = x_c + 3 \cdot x_n + x_m,$$

$$X_{\Sigma S} = 0,333 + 3 \cdot 0,302 + 6,718 + 4,531 = 12,488,$$

$$I^{3}_{\kappa 3} = \frac{E}{X_{\Sigma 3}},$$

$$I^{3}_{\kappa 3} = \frac{1}{11,884} = 0,084.$$

Сверхпереходной ток:

$$I^{(3)}_{\kappa_3} = I^{(3)}_{\kappa_3} \cdot I_{\delta} = I^{(3)}_{\kappa_3} \cdot \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}};$$

$$I^{(3)}_{\kappa_3} = 0.084 \cdot \frac{1000}{\sqrt{3} \cdot 10.5} = 4.6 \text{ kA}.$$

37

Ударный ток:

$$i_{y\kappa 3} = \sqrt{2} \cdot k_{y\delta} \cdot I^{(3)}_{\kappa 3},$$

$$i_{y\kappa 3} = \sqrt{2} \cdot 1,92 \cdot 4,6 = 11,8 \text{ KA}.$$

Действующее значение ударного тока:

$$I_{y \kappa 3} = I_{\kappa 3}^{3} \cdot \sqrt{1 + 2 \cdot (k_{y \partial} - 1)^{2}};$$

$$I_{y \kappa 3} = 4.6 \cdot \sqrt{1 + 2 \cdot (1.92 - 1)^{2}} = 7.2 \text{ kA}.$$

Мощность КЗ для точки КЗ:

$$S_{k_3} = \sqrt{3} \cdot I_{\kappa_3}^3 \cdot U_{\kappa};$$

 $S_{k_2} = \sqrt{3} \cdot 4, 6 \cdot 10, 5 = 79 \text{ MBA}.$

Для точки К4:

$$x_{\Sigma 1} = x_c + x_n + x_m + x_{\kappa n1} + x_{\kappa n2} + x_{\kappa n3} + x_{\kappa n4} + x_{\kappa n5};$$

$$x_{\Sigma 4} = 0,333 + 0,302 + 12,304 + 10,367 + 3,174 + 2,893 + 2,611 + 3,054 = 35,038;$$

$$X_{0\Sigma} = x_c + 3 \cdot x_n + x_m,$$

$$X_{0\Sigma} = 0,333 + 3 \cdot 0,302 + 12,304 + 3 \cdot 22,099 = 79,934,$$

$$I^{3}_{\kappa 3} = \frac{E}{X_{\Sigma 4}},$$

$$I^{3}_{\kappa 3} = \frac{1}{35,038} = 0,029.$$

Сверхпереходной ток:

$$I^{(3)}_{\kappa_3} = I^{(3)}_{\kappa_3} \cdot I_{\delta} = I^{(3)}_{\kappa_3} \cdot \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}};$$
$$I^{(3)}_{\kappa_3} = 0,029 \cdot \frac{1000}{\sqrt{3} \cdot 10.5} = 1,6 \text{ kA}.$$

Ударный ток:

$$i_{y\kappa 3} = \sqrt{2} \cdot k_{y\delta} \cdot I^{(3)}_{\kappa 3},$$

 $i_{y\kappa 3} = \sqrt{2} \cdot 1,92 \cdot 1,6 = 4,3 \text{ KA}.$

Действующее значение ударного тока:

$$I_{y \kappa 3} = I^{3}_{\kappa 3} \cdot \sqrt{1 + 2 \cdot (k_{y0} - 1)^{2}};$$

$$I_{y \kappa 3} = 1, 6 \cdot \sqrt{1 + 2 \cdot (1,92 - 1)^{2}} = 2,7 \text{ KA}.$$

Мощность КЗ для точки К4:

$$S_{k_3} = \sqrt{3} \cdot I_{\kappa_3}^3 \cdot U_{\kappa};$$

 $S_{k_3} = \sqrt{3} \cdot 1, 6 \cdot 10, 5 = 30 \text{ MBA}.$

7 Выбор и проверка электрических аппаратов

7.1 Выбор разъединителей

Определим рабочий ток:

$$I_{pa\delta} = \frac{K_{nep} \cdot S_T}{\sqrt{3} \cdot U_{_H}}.$$

На стороне 110 кВ:

$$I_{pa\delta} = \frac{1, 4 \cdot 16000}{\sqrt{3} \cdot 115} = 113 \text{ A}.$$

Условие выбора по напряжению:

$$U_{ycm} \leq U_{HOM}$$
,

110 κB≤110 κB.

Условие выбора по номинальному длительному току:

$$I_{\text{pa}\delta} \leq I_{\text{hom}},$$

$$113 A \le 1000 A$$
.

Условие проверки по электродинамической стойкости:

$$i_{y\partial} \leq i_{np.c}$$

20,1
$$\kappa$$
A ≤ 80 κ A.

Условие проверки по термической стойкости:

$$B_{\kappa} \leq I_{t}^{2} \cdot t_{t}$$

$$7,4 \text{ KA}^2 \cdot \text{c} \leq 1600 \text{ KA}^2 \cdot \text{c}.$$

K установке на подстанции принимаем разъединитель типа PЛHД3-2-110/1000УХЛ1.

На стороне 35 кВ:

$$I_{pa6} = \frac{1,4 \cdot 16000}{\sqrt{3} \cdot 35} = 370 \text{ A}.$$

Условие выбора по напряжению:

$$U_{ycm} \leq U_{HOM}$$
,

$$35 \text{ kB} \le 35 \text{ kB}$$
.

Условие выбора по номинальному длительному току:

$$I_{\textit{pa}\delta} \leq I_{\textit{hom}},$$

$$370 A \le 630 A$$
.

Условие проверки по электродинамической стойкости:

$$i_{y\partial} \leq i_{np.c}$$
,

5,4
$$\kappa$$
A ≤ 60 κ A.

Условие проверки по термической стойкости:

$$B_{\kappa} \leq I_{t}^{2} \cdot t_{t},$$

$$5.8 \,\mathrm{KA}^2 \cdot \mathrm{c} \leq 1200 \,\mathrm{KA}^2 \cdot \mathrm{c}$$
.

K установке на подстанции принимаем разъединитель типа $PH \Box 3 - 1-35/630 \lor 1$.

7.2 Выбор выключателей

На стороне 110 кВ.

Условие выбора по напряжению:

$$U_{ycm} \leq U_{HOM}$$
,

Условие выбора по номинальному длительному току:

$$I_{pa\delta} \leq I_{hom},$$

$$113 A \le 1600 A$$
.

Условие проверки по отключающей способности:

$$I_{n.t} \leq I_{\text{ном.откл}},$$

11,9
$$\kappa$$
A ≤ 40 κ A.

Условие проверки по электродинамической стойкости:

$$i_{y\partial} \leq i_{np.c}$$

20,1
$$\kappa$$
A ≤ 60 κ A.

Условие проверки по термической стойкости:

$$B_{\kappa} \le I_{t}^{2} \cdot t_{t},$$

$$28 \, \kappa A^{2} \cdot c \le 1670 \, \kappa A^{2} \cdot c.$$

Выбираем элегазовый высоковольтный выключатель типа ВЭБ-110-40/1600 УХЛ.

На стороне 35 кВ.

Условие выбора по напряжению:

$$U_{vcm} \leq U_{HOM}$$
,

35 kB ≤ 35 kB.

Условие выбора по номинальному длительному току:

$$I_{pa\delta} \leq I_{_{HOM}},$$

$$370 A \le 630 A$$
.

Условие проверки по отключающей способности:

$$I_{n.t} \leq I_{\text{ном.откл}},$$

$$3,4 \text{ kA} ≤ 25 \text{ kA}$$
.

Условие проверки по электродинамической стойкости:

$$i_{vo} \leq i_{np.c}$$

$$5,4 \text{ KA} \le 63 \text{ KA}.$$

Условие проверки по термической стойкости:

$$B_{\kappa} \leq I_{t}^{2} \cdot t_{t},$$

$$35 \,\mathrm{KA}^2 \cdot \mathrm{c} \leq 1875 \,\mathrm{KA}^2 \cdot \mathrm{c}$$
.

Выбираем высоковольтный выключатель типа ВБЭТ-35-25/630УХЛ1.

На стороне 10 кВ.

Условие выбора по напряжению:

$$U_{ycm} \leq U_{_{HOM}},$$

Условие выбора по номинальному длительному току:

$$I_{pa\delta} \leq I_{hom}$$
,

$1295 A \le 1600 A$.

Условие проверки по отключающей способности:

$$I_{n.t} \leq I_{\text{ном.откл}},$$

7,2
$$\kappa$$
A ≤ 20 κ A.

Условие проверки по электродинамической стойкости:

$$i_{v\partial} \leq i_{np.c}$$

11,8
$$\kappa$$
A ≤ 51 κ A.

Условие проверки по термической стойкости:

$$B_{\kappa} \leq I_{t}^{2} \cdot t_{t}$$

$$62.8 \,\mathrm{KA}^2 \cdot \mathrm{c} \le 3970 \,\mathrm{KA}^2 \cdot \mathrm{c}$$

Выбираем высоковольтный выключатель типа ВБЭ-10-20/1600УХЛ2.

В качестве секционных высоковольтных выключателей и высоковольтных выключателей на отходящих линиях выбираем выключатели ВБЭ-10-20/1600УХЛ2, ВБЭ-10-20/630УХЛ2 рассчитанные на номинальный ток 1600 A и 630 A соответственно.

Выключатели размещаем в ячейках типа КРУ 2 - 10 - 20УЗ.

7.3 Выбор заземлителя

Для заземления нейтрали силового трансформатора используется однополюсный заземлитель.

Условие выбора по напряжению:

$$U_{ycm} \leq U_{HOM},$$

Условие проверки по электродинамической стойкости:

$$i_{y\partial} \leq i_{np.c},$$

20,1
$$\kappa$$
A ≤ 32 κ A.

Условие проверки по термической стойкости:

$$B_{\kappa} \le I_{t}^{2} \cdot t_{t},$$

$$85 \, \kappa A^{2} \cdot c \le 468 \, \kappa A^{2} \cdot c.$$

Выбираем однополюсный заземлитель ЗОН-110М-УХЛ1.

7.4 Выбор трансформаторов тока

Рабочий ток на стороне 110 кВ:

$$I_{pa\delta} = \frac{K_{nep} \cdot S_T}{\sqrt{3 \cdot U_{_H}}}.$$

$$I_{pa6} = \frac{1,4 \cdot 16000}{\sqrt{3} \cdot 115} = 113 \text{ A}.$$

Приборы, устанавливаемые на стороне 110 кВ - амперметр типа Э-377 с полной мощностью $S=0.1~\mathrm{BA}$.

Условие выбора по напряжению:

$$U_{ycm} \leq U_{HOM}$$
,

110 кВ ≤110 кВ.

Условие выбора по номинальному длительному току:

$$I_{\it paar{o}} \leq I_{\it hom},$$

$$113 A \le 200 A$$
.

Условие проверки по электродинамической стойкости:

$$i_{y\partial} \leq i_{np.c}$$

$$20,1 \text{ kA} \le 22,4 \text{ kA}.$$

Условие проверки по термической стойкости:

$$B_{\kappa} \leq I_{t}^{2} \cdot t_{t}$$

$$28 \, \kappa A^2 \cdot c \leq 1670 \, \kappa A^2 \cdot c.$$

Условие проверки по величине вторичной нагрузки:

$$Z_2 \leq Z_{2\text{HOM}}$$
,

$$1,2 \text{ Om} \le 1,2 \text{ Om}.$$

Определим сопротивление приборов:

$$R_{\text{приб}} = \frac{S_{\text{пр}}}{I_2^2},$$

$$R_{\text{приб}} = \frac{0.1}{25} = 0.004 \text{ Om.}$$

Найдем полное вторичное сопротивление:

$${
m R}_{
m пров} = {
m Z}_{
m 2 HOM} - {
m R}_{
m приб} - {
m R}_{
m конт},$$
 ${
m R}_{
m пров} = 1,2~-~0,004~-~0,1~=~1,096~{
m Om}.$

По расчетному сечению $q = \frac{2,83}{1.096} = 2,6\,\mathrm{mm}^2$ выбираем алюминиевые провода сечением $q = 4\mathrm{mm}^2$.

Выбираем трансформатор тока ТВТ 110-III-200/5.

Рабочий ток на стороне 35 кВ:

$$I_p = \frac{K_n \cdot S_T}{\sqrt{3} \cdot U_{_H}},$$

$$I_p = \frac{1,4 \cdot 40000}{\sqrt{3} \cdot 35} = 370 \,\text{A}.$$

Условие выбора по напряжению:

$$U_{ycm} \leq U_{HOM},$$

$$35 \text{ kB} \le 35 \text{ kB}.$$

Условие выбора по номинальному длительному току:

$$I_{\textit{pa}\delta} \leq I_{\textit{hom}},$$

$$370 A \le 400 A$$
.

Условие проверки по электродинамической стойкости:

$$i_{y\partial} \leq i_{np.c}$$

5,4
$$\kappa$$
A ≤10 κ A.

Условие проверки по термической стойкости:

$$B_{\kappa} \leq I_{t}^{2} \cdot t_{t}$$

$$35 \, \kappa A^2 \cdot c \le 1875 \, \kappa A^2 \cdot c.$$

На стороне 35 кВ ГПП устанавливаются амперметр, ваттметр, варметр, счетчик активной энергии и счетчик реактивной энергии.

Определим сопротивление приборов:

$$R_{\text{приб}} = \frac{S_{\text{пр}}}{I_2^2},$$

$$R_{\text{приб}} = \frac{64,1}{5^2} = 0.16 \text{ Om.}$$

Найдем полное вторичное сопротивление:

$$R_{\text{пров}} = Z_{2\text{ном}} - R_{\text{приб}} - R_{\text{конт}},$$

$$R_{\text{mob}} = 1,2 - 0,16 - 0,1 = 0,96 \text{ Om}.$$

По расчетному сечению провода $q = \frac{2,83}{0,96} = 3,02 \text{ мм}^2$ выбираем алюминиевые провода сечением $q = 4\text{мм}^2$.

$$R_2 \approx Z_2 = R_{\text{приб}} + R_{\text{пров}} + R_{\text{конт}},$$

$$R_2 \approx Z_2 = 0.14 + 0.96 + 0.1 = 1.2 \text{ Om.}$$

Выбираем трансформатор тока TB - 35-I- 400/5.

Рабочий ток на стороне 10 кВ:

$$I_p = \frac{K_n \cdot S_T}{\sqrt{3} \cdot U_{_H}},$$

$$I_p = \frac{1,4 \cdot 16000}{\sqrt{3} \cdot 10} = 1295 \,\mathrm{A}.$$

Условие выбора по напряжению:

$$U_{ycm} \leq U_{HOM}$$
,

$$10 \text{ kB} \le 10 \text{ kB}$$
.

Условие выбора по номинальному длительному току:

$$I_{paar{o}} \leq I_{{\scriptscriptstyle HOM}},$$

$$1295 A \le 1500 A$$
.

Условие проверки по электродинамической стойкости:

$$i_{y\partial} \le i_{np.c},$$
 11,8 kA \le 254 kA.

Условие проверки по термической стойкости:

$$B_{\kappa} \le I_{t}^{2} \cdot t_{t},$$

$$62.8 \, \kappa A^{2} \cdot c \le 3970 \, \kappa A^{2} \cdot c.$$

На стороне 10 кВ ГПП устанавливаются амперметр, ваттметр, варметр, счетчик активной энергии и счетчик реактивной энергии.

Определим сопротивление приборов:

$$R_{\text{приб}} = \frac{S_{\text{пр}}}{I_2^2},$$
 $R_{\text{приб}} = \frac{64,1}{5^2} = 0,16 \text{ Ом.}$

Найдем полное вторичное сопротивление:

$${
m R}_{
m пров} = {
m Z}_{
m 2 HOM} - {
m R}_{
m приб} - {
m R}_{
m конт},$$
 ${
m R}_{
m пров} = 1,2~-~0,16~-~0,1~=~0,96~{
m Om}.$

По расчетному сечению провода $q = \frac{2,83}{0,94} = 3,02 \text{ мм}^2$ выбираем алюминиевые провода сечением $q = 4\text{мм}^2$.

$$R_2 \approx Z_2 = R_{\text{приб}} + R_{\text{пров}} + R_{\text{конт}},$$
 $R_2 \approx Z_2 = 0.14 + 0.96 + 0.1 = 1.2 \text{ Om}.$

Выбираем трансформатор тока $T\Pi O\Pi - 10 - 1500/5$.

7.5 Выбор трансформаторов напряжения

На стороне 35 кВ:

K трансформатору напряжения (TH) подключаются 2 вольтметра, ваттметр, варметр, 7 счётчиков активной и реактивной энергии суммарной мощностью $S_{\text{приб}} = 35 \; \text{BA}$.

Условие выбора по напряжению:

$$U_{vcm} \leq U_{HOM}$$
,

 $35 \text{ kB} \le 35 \text{ kB}$.

Условие выбора по вторичной нагрузке:

$$S_{2\Sigma} \leq S_{\mu_{OM}}$$

35 BA ≤120 BA.

Выбираем трансформатор напряжения НАМИ-35УХЛ1, класса точности 0,5.

На стороне 10 кВ:

Условие выбора по напряжению:

$$U_{vcm} \leq U_{HOM}$$

10 κB≤10 κB.

Условие выбора по вторичной нагрузке:

$$S_{2\Sigma} \leq S_{HOM}$$
,

35 BA ≤120 BA.

Выбираем трансформатор напряжения НАМИ-10-95УХЛ2, класса точности 0,5.

7.6 Выбор ограничителей перенапряжений

Условие выбора по напряжению:

$$U_{vcm} \leq U_{HOM}$$

110 кВ≤110 кВ.

Выбираем ограничители перенапряжений на стороне 110 kB - ОПН-110У1; на стороне 35 kB - ОПН-35У1; на стороне 10 kB - ОПН-10У1.

7.7 Выбор предохранителей

Предохранители необходимы для защиты измерительных ТН.:

Условие выбора по напряжению:

$$U_{vcm} \leq U_{HOM}$$
,

$$10 \text{ kB} \le 10 \text{ kB}$$
.

Условие выбора по номинальному току:

$$I_n \le I_{\text{HOM}},$$

$$I_n = \frac{\sum S_{\text{приб.}}}{\sqrt{3}U_M},$$

$$I_n = \frac{0.035}{1.73 \cdot 10.5} = 3.4 \cdot 10^{-3} \text{ A},$$

$$3.4 \cdot 10^{-3} \text{ A} \le 2 \text{ A}.$$

Выбираем предохранитель ПКТ – 10 - 8/2 - 12,5 УЗ.

7.8 Выбор гибких шин

Выбираем гибкие шины на стороне 110 кВ. В качестве гибких шин используем провода марки АС.

1. Определяем сечение по экономической плотности тока:

$$q = \frac{I_{pa6.\text{Hom}}}{\dot{j}_{_{3K}}},$$
 $q = \frac{113}{11} = 103 \text{ mm}^2.$

Выбираем провод марки АС –120.

2. Проверяем по длительно допустимому току

$$I_{pa\delta.max} < I_{\partial on},$$

$$113 A < 400 A.$$

Голые провода, проложенные на открытом воздухе, на термическую и электродинамическую стойкость к токам короткого замыкания не проверяются.

3. Выполним проверку на коронирование:

$$1,07E \leq 0,9E_0,$$

$$E_0 = 24.8 \left(1 + \frac{0.299}{\sqrt{r_0}} \right) = 30.83 \text{ kB/cm},$$

$$E = 0.354 \frac{U}{r_0 \cdot \lg \frac{D_{cp}}{r_0}},$$

$$E = \frac{0,354 \cdot 115}{1,51 \cdot lq \frac{500}{1,51}} = 15,08 \text{ kB/cm},$$

Данное условие выполняется:

$$1,07E \le 0,9E_0,$$

$$16,14 \le 27,75.$$

Провод марки AC - 120 проходит проверку и может быть использован на ΠC в качестве гибкой ошиновки.

7.9 Выбор изоляторов

На стороне ВН для крепления гибких шин используются подвесные изоляторы, количество которых находится в зависимости от номинального напряжения $U_{_{\scriptscriptstyle H}}=110~\mathrm{kB}$.

Выбираем подвеску из 8 изоляторов типа ПС-СА.

На стороне 35 кВ выбираем опорные изоляторы ОНШ – 35 - 20 УХЛ1.

На стороне 10 кB выбираем опорные изоляторы OHUI - 10 - 5 УХЛ1.

8 Собственные нужды ГПП

К наиболее ответственным потребителям подстанции относятся устройства управления, релейной защиты и автоматики, сигнализации и телемеханики [7]. От этих устройств зависит работа основного оборудования ГПП и кратковременное прекращение их электроснабжения может привести к частичному ИЛИ полному отключению подстанции. Электроприемники собственных нужд, перерыв в электроснабжении которых не вызывает отключения основного оборудования ГПП или снижения передаваемой мощности, относят к неответственным. Для надежного электроснабжения потребителей собственных нужд ГПП предусматривается установка не менее двух трансформаторов собственных нужд (СН). Согласно схемам собственных нужд ГПП предусматривают присоединение трансформаторов СН к различным источникам питания (вводам силовых трансформаторов или секциям РУ). На стороне низкого напряжения трансформаторы собственных нужд должны работать раздельно с взаимным резервированием с помощью устройства автоматического ввода резерва. На ГПП с напряжением на стороне ВН 330 кВ и выше должно быть предусмотрено резервное питание СН от независимого источника питания. Мощность трансформаторов собственных нужд выбирается по нагрузке в разных режимах работы подстанции с учетом коэффициентов одновременности их загрузки и перегрузочной способности трансформаторов, но при этом не должна превышать мощности 630 кВА для подстанций 110-220 кВ.

На ГПП с постоянным оперативным током трансформаторы собственных нужд присоединяются через предохранители или выключатели к сборным шинам РУ 6-35 кВ, а при их отсутствии - к обмотке НН основных силовых трансформаторов подстанции. На ГПП с переменным и выпрямленным оперативным током трансформаторы СН присоединяются через предохранители в промежутке между вводами низкого напряжения основного силового трансформатора и его вводным выключателем.

Потребителями собственных нужд на реконструируемой подстанции являются:

- Электродвигатели охлаждения трансформаторов с $P_{\text{ном}} = 5 \text{ кBt}$;
- Подогрев шкафов КРУ с $P_{\text{ном}} = 1 \text{ кBT}$;
- Подогрев приводов с $P_{\text{ном}} = 0.7 \text{ кBT}$;
- Подогрев релейного шкафа с $P_{\text{ном}} = 1 \text{ кBT}$;
- Освещение, вентиляция ЗРУ с $P_{\text{ном}} = 6 \text{ кBT}$;
- Освещение ОРУ с $P_{\text{ном}} = 7 \text{ кBT}$;
- Отопление с $P_{\text{ном}} = 22 \text{ кBT}$;
- Эксплуатационные и ремонтные нагрузки с $P_{\text{ном}} = 31 \text{ кBt}$;
- ОПУ с $P_{HOM} = 40 \text{ кBT}$.

Суммарная нагрузка собственных нужд равна $P_{ch} = 113,7 \text{ кВт.}$

Суммарная нагрузка собственных нужд с учетом коэффициента загрузки 0.7 равна $P_{cu}=79.6$ кВт.

Таким образом, к установке на подстанции принимаем два трансформатора собственных нужд типа TM-40/10.

Для защиты трансформатора собственных нужд выбираем предохранители:

Условие выбора по напряжению:

$$U_{ycm} \leq U_{HOM},$$

Условие выбора по номинальному току:

$$I_n \leq I_{_{HOM}},$$

$$2,19 A \le 3,2 A$$
.

Выбираем предохранитель ПКТ-10-3,2-31,5УЗ.

9 Молниезащита

Для защиты здания ТП от прямых ударов молнии на крыше здания ТП выполняется молниезащитная сетка, которая присоединяется к заземляющему устройству двумя спусками.

Здания и сооружения ГПП защищаются молниеотводами от попадания молний.

Расчет защиты от попаданий молний заключается в определении зоны защиты и параметров молниеотвода.

Порядок расчета стержневого молниеотвода:

- 1. Найдем активную высоту молниеотвода, приняв его высоту равной h = 30 m;
 - 2. Определим активную высоту молниеотвода:

$$h_a = h - h_x$$
;
 $h_a = 30 - 12 = 18 \text{ M}.$

- 3. Найдем максимальную высоту защищаемого объекта $h_x = 12 \text{ м}$;
- 4. Найдем максимальную полуширину зоны r_x в горизонтальном сечении на высоте h_x :

$$r_{x} = \frac{1, 6 \cdot h_{0} \cdot p}{1 + \frac{h_{X}}{h}},$$

$$r_{x} = \frac{1, 6 \cdot 18 \cdot 1}{1 + \frac{12}{30}} = 21 \text{ M}.$$

Принимаем к установке 4 молниеотвода.

10 Тепловизионныи контроль и диагностика электрооборудования подстанции

Современным и высокоэффективным способом диагностики является тепловизионное обследование оборудования, которое позволяет определить дефекты на стадии их появления. Весьма эффективными являются тепловизионные обследования по обнаружению дефектов в действующем электрооборудовании, таком как: контактные соединения, перегруженные участки кабелей; оценка температурного режима силовых трансформаторов, ЭД, реакторов и много другого электротехнического оборудования при его эксплуатации и что важно без снятия напряжения.

Использование тепловизионных обследований позволяет организовать мониторинг технического состояния электрооборудования и проведение ремонта по результатам этого мониторинга.

Тепловизионный метод диагностики заключается в дистанционной регистрации температурного поля на поверхности оборудования с помощью измерительной последующем аппаратуры, анализе термограмм использованием персонального компьютера с целью обнаружения дефектов и выработки решения ПО возможности эксплуатации оборудования дальнейшем. Присутствие дефекта определяется по аномальному повышению температуры в дефектной зоне по сравнению с другими областями.

В качестве средства измерения используется тепловизор, регистрирующий инфракрасное излучение.

Основными преимуществами тепловизионной диагностики электрооборудования являются:

- возможность обследования объектов электрохозяйства в процессе эксплуатации оборудования без снятия напряжения;
 - классификация выявленных дефектов по степени их опасности;
- возможность документирования обнаруженных дефектов и сохранение результатов замеров.

Получаемые расчетным путем значения превышения температуры позволяют для контактов и болтовых контактных соединений оценить степень неисправности (рисунок 10.1).

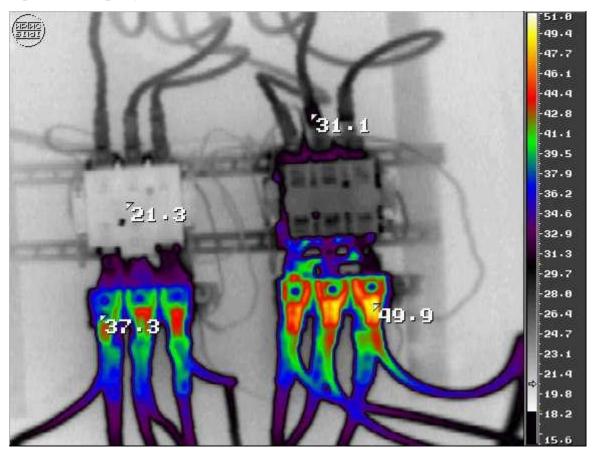


Рисунок 10.1 - Перегрев контакта из-за нарушения болтового соединения

Если избыточная температура находится в пределах 5°C-10°C, то это является начальной стадией неисправности и меры по ее устранению принимают в ходе запланированного ремонта.

Избыточная температура в 10°C-30°С является развившимся дефектом, который устраняют при плановом выводе электрооборудования из работы.

Если избыточная температура превышает 30°C, то это является аварийной ситуацией, требующей немедленного устранения дефекта.

Тепловизионное обследование силовых трансформаторов позволяет оценить его тепловое состояние и исправность входящих в него систем и узлов (рисунок 10.2).

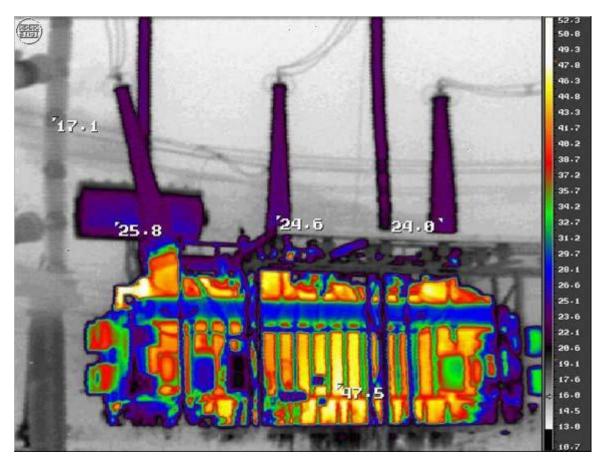


Рисунок 10.2 - Локальный перегрев трансформатора

Основными преимуществами тепловизионного метода диагностики являются:

- 1. Дистанционность, объективность, производительность и оперативность по сравнению с традиционными методами диагностики электрооборудования при обследовании электрооборудования в пределах одного предприятия.
- 2. Диагностика проводится в процессе эксплуатации электрооборудования без снятия напряжения, что позволяет обнаруживать дефекты на ранней стадии.

Заключение

Разработка выпускной квалификационной работы по электроснабжению поселка «Поволжский» направлена на оптимизацию схемы электроснабжения, снижение потерь электроэнергии и повышение надежности электроснабжения.

выполнения работы были произведены: расчет нагрузок по В ходе технико-экономический расчет мощности числа силовых трансформаторов на главной понизительной подстанции; выбор и обоснование электроснабжения; расчет токов короткого замыкания; выбор электрических аппаратов на ГПП на напряжениях 110, 35 и 10 кВ; выбор и кабельных линий и др. Рассмотрены актуальные тепловизионного контроля и диагностики электрооборудования. Произведен расчет молниезащиты ГПП.

Список использованных источников

- 1. СП 31-110-2003. Свод правил по проектированию и строительству. Проектирование и монтаж электроустановок жилых и общественных зданий. М.: Госстрой РФ, 2003.
- 2. Правила устройства электроустановок (ПУЭ), 7-е издание. М.: ДЕАН, 2014.
- 3. Анчарова, Т.В. Электроснабжение и электрооборудование зданий и сооружений. Учебник / Т.В. Анчарова, М.А. Рашевская, Е.Д. Стебунова Москва: Форум, 2014.
- 4. Щербаков, Е.Ф. Электроснабжение и электропотребление на предприятиях. Учебное пособие / Е.Ф. Щербаков Москва: Форум, 2014.
- 5. Гвоздев, С.М. Энергоэффективное электрическое освещение. Учебное пособие / С.М. Гвоздев, Д.И. Панфилов, Т.К. Романова М.: Издательский дом МЭИ, 2013.
- 6. Кудрин, Б.И. Электроснабжение: Учебник / Б.И. Кудрин М.: Academia, 2015.
- 7. Старшинов, В.А. Электрическая часть электростанций и подстанций. Учебное пособие / В.А. Старшинов, М.В. Пираторов, М.А. Козинова. – М.: Издательский дом МЭИ, 2015.
- 8. Сибикин, Ю.Д. Пособие к курсовому и дипломному проектированию электроснабжения промышленных, сельскохозяйственных и городских объектов. Учебное пособие / Ю.Д. Сибикин Москва: Форум, 2015.
- 9. Хорольский, В.Я. Прикладные методы для решения задач электроэнергетики. Учебное пособие / В.Я. Хорольский Москва: Форум, 2015.
- 10. Дьяков, А.Ф. Электромагнитная совместимость и молниезащита в электроэнергетике: учебник для вузов / А.Ф. Дьяков Москва: МЭИ, 2015.
- 11.Сибикин, Ю.Д. Электроснабжение промышленных предприятий и установок. Учебное пособие / Ю.Д. Сибикин Москва: Форум, 2015.
 - 12. Электроэнергетика. Учебное пособие / под ред. Ю.В. Шарова. М.:

- Форум, 2013.
- 13. Дьяков, А.Ф. Электромагнитная совместимость и молниезащита в электроэнергетике: учебник для вузов / А.Ф. Дьяков Москва: МЭИ, 2015.
- 14. Электротехнический справочник: В 4 т. Т.3. Производство, передача и распределение электрической энергии/ под общ. ред. В.Г. Герасимова и др. М.: МЭИ, 2002.
- 15. Шеховцов, В.П. Расчет и проектирование ОУ и электроустановок промышленных механизмов. Учебное пособие / В.П. Шеховцов М.: Форум, Инфра-М, 2015.
- 16.Алиев, И.И. Кабельные изделия: Справочник/ И.И. Алиев. М.: ИП РадиоСОФТ, 2011.
- 17. Соколов, Б.А. Монтаж электрических установок/ Б.А. Соколов, Н.Б. Соколова. М.: Энергоатомиздат, 2012.
- 18. Киреева, Э.А. Электроснабжение и электрооборудование цехов промыш. предприятий / Э.А. Киреева М.: КноРус, 2013.
- 19.Кудрин, Б.И. Электроснабжение потребителей и режимы. Учебное пособие для вузов / Б.И. Кудрин, Б.В. Жилин, Ю.В. Матюнина М.: Издательский дом МЭИ, 2013.
- 20.Шведов, Г.В. Потери электроэнергии при ее транспорте по электрическим сетям: расчет, анализ, нормирование и снижение. Учебное пособие / Г.В. Шведов, О.В. Скрипачева, О.В. Савченко М.: Издательский дом МЭИ, 2013.
- 21. Объем и нормы испытаний электрооборудования. РД 34.45-51.300-97, 6-е изд.
- 22. Будадин, О.Н. Тепловой неразрушающий контроль изделий / О.Н. Будадин, А.И. Потапов, В.И. Колганов, Т.Е. Троицкий-Марков, Е.В. Абрамова. М.: Наука, 2002.
- 23. Технологический регламент по теплотехническим обследованиям, неразрушающему контролю и диагностике технического состояния тепловыделяющих объектов автоматизированным бесконтактным

- тепловизионным методом, ВЕМО 03.00.00.000 ДМ, 2001.
- 24. Методика проведения сбора и съема информации для определения теплотехнических характеристик наружных ограждающих конструкций объекта, BEMO 07.00.00.000 ДМ, 2003.
- 25. Бажанов, С.А. ИК-диагностика электрооборудования распределительных устройств / С.А. Бажанов // Библиотечка электротехника. вып. 4(16), М., 2000.
- 26. Озерницкий, И.М. Новые решения в тепловизионных системах диагностики промышленного оборудования / И.М. Озерницкий // Энергетик, №11, 2000.
- 27. Hou, W. Solutions of Electrical Control and Management System for thermal power plant based on IEC61850 / W. Hou, Y. Yang, W. Yan, C. Zhang // Power Engineering and Renewable Energy (ICPERE), 2014 International Conference on, Bali, 2014, pp. 198-202.
- 28.Yip, H. T. Dynamic thermal rating and active control for improved distribution network utilisation / H. T. Yip // Developments in Power System Protection (DPSP 2010). Managing the Change, 10th IET International Conference on, Manchester, 2010, pp. 1-5.
- 29. Yang, X The influence and control measures of distributed photovoltaic generation on the voltage in distribution system / X. Yang, W. Wang, W. Jin // Electricity Distribution (CICED), 2012 China International Conference on, Shanghai, 2012, pp. 1-4.
- 30.Funnell, I. R. Aspects of thermal monitoring of substation equipment / I. R. Funnell // Developments Towards Complete Monitoring and In-Service Testing of Transmission and Distribution Plant, IEE Colloquium on, Chester, 1990, pp. 2/1-2/2.
- 31.Moongilan, D. Corona noise considerations for smart grid wireless communication and control network planning / D. Moongilan // Electromagnetic Compatibility (EMC), 2012 IEEE International Symposium on, Pittsburgh, PA, 2012, pp. 357-362.