МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт химии и инженерной экологии

(наименование института полностью)

Кафедра <u>«Химия, химические процессы и технологии»</u> (наименование кафедры)

18.03.01 Химическая технология

(код и наименование направления подготовки, специальности)

Химическая технология органических веществ

(направленность (профиль)/специализация)

БАКАЛАВРСКАЯ РАБОТА

на тему <u>«Разработка технологии получения дизельного топлива с</u> улучшенными низкотемпературными свойствами для обеспечения железнодорожного транспорта ПАО ТОАЗ»

Студент

В.М. Тужилкин

(И.О.Фамилия)

(личная подпись)

Руководитель

Ю.В. Чариков

(И.О.Фамилия)

(личная подпись)

Допустить к защите

Заведующий кафедрой д.х.н., профессор Г.И. Остапенко

(ученая степень, звание, И.О. Фамилия)

(личная подпись)

«__»___2019 г.

Тольятти 2019

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	4
1.1 Физико-химические основы процесса	6
1.2.1 Катализаторы процесса	14
1.2.2 Механизм процесса	15
1.2.3 Кинетика процесса	17
2 Характеристика сырья и продуктов	21
2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ	23
2.1 Выбор технологической схемы установки	23
2.2 Описание технологической схемы установки	23
3 РАСЧЕТНАЯ ЧАСТЬ	28
3.1 Материальный баланс реактора гидроочистки	28
3.2 Тепловой баланс реактора гидроочистки	35
3.3 Материальный баланс реактора гидродепарафинизации	38
3.4 Тепловой баланс реактора гидродепарафинизацииЗаключение	41
Список использованной литературы	42

ВВЕДЕНИЕ

В России рынок дизельного топлива до настоящего момента оставался стабильным. Дизельное топливо производилось в избытке, а экспортный потенциал оставался высоким. Дизельное топливо производится с избытком в два раза, чем необходимо в России для внутреннего потребления, поэтому экспорт составляет около половины всего производимого объема.

Предприятия в России производят летнее, зимнее и арктическое дизельное топливо. Выпуск летнего дизельного топлива составляет около 80% от общего объема производства. Серьезной проблемой является стабильный выпуск достаточных объемов качественного зимнего дизельного топлива.

Зимнее дизельное топливо является дефицитным продуктом и нередко производится из летнего путем смешения с авиационным керосином, который, в силу сезонности авиаперевозок, зимой не пользуется большим спросом и дешевеет.

Дефицит зимних сортов на внутреннем рынке связан, в первую очередь, с недостатком их выпуска из-за соответствующего уровня технического оснащения производства – нехватки вторичных и облагораживающих процессов.

Для того, чтобы низкотемпературные характеристики дизельного топлива соответствовали требованиям, необходимо снижать содержание н-парафинов при соблюдаться высококипящих C_{18+} ЭТОМ должно н-парафинами оптимальное соотношение С С₁₀-С₁₅, углеводородами моноциклическими аренами (растворители изостроения, а также высококипящих алканов).

Улучшение низкотемпературных свойств дизельного топлива достигается в процессе каталитической депарафинизации. Часто этот процесс объединяют с процессом гидроочистки прямогонной фракции.

Целью бакалаврской работы является разработка технологической схемы гидродепарафинизации с получением дизельного топлива с улучшенными низкотемпературными свойствами.

Задачи:

1. Изучить физико-химические основы процесса депарафинизации, в т.ч. механизм, кинетику и применяемые в процессе катализаторы;

2. Предложить технологическую схему процесса гидодепарафинизации;

3. Выполнить технологические расчеты реакторного блока установки.

1 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

Основными процессами, которые помогают уменьшить количество парафинов н-строения в составе дизельных топливах, являются:

каталитическая депарафинизация или гидродепарафинизация;

изодепарафинизация или изомеризационная депарафинизация, гидроизомеризация.

Отличия процессов заключаются составе применяемых В катализаторов, а, следовательно, и в механизме по которым протеканиют [1]. Фракционный химические реакции состав продуктов при изодепарафинизации практически неизменен, сохраняется высокий выход (дизельного топлива), целевого продукта a его цетановое число существенного не снижается. Сохранение молекулярной массы длинных цепочек парафинов достигается благодаря использованию катализаторов изомеризации [2].

Депарафинизация используется чаще всего при производстве минеральных масел. Реже для производства зимнего и арктического дизельного топлива.

Применяют два метода депарафинизации:

1. Сольвентную. Определенный растворитель перемешивают с сырьем. Смесь охлаждается до требуемой температуры застывания. Например, в случае, когда целевой продукт должен обладать температурой застывания не ниже -40°С, исходную фракцию охлаждают до данной температуры, а выпадающие в осадок н-парафины фильтруют, растворитель отделяют от целевого продукта. 2. Каталитическая. Длинные молекулы н-парафинов расщепляются и изомеризуются в условиях высокого давления, температуры и при избытке водорода на избирательных катализаторах.

Необходимость процесса депарафинизации обусловлена замерзанием парафина в составе дизельного топлива в баке и топливной аппаратуре, что приводит к отказу дизеля. Дизельное топливо, освобожденное от парафина, работает при температурах -70°C и ниже. В странах с холодным климатом таких, как например Норвегия, Финляндия и Белоруссия производство парафиносодержащего дизельного топлива запрещено. В России ведется работа над подобным законопроектом.

Процесс каталитической депарафинизации, который углубляет переработку нефти, востребован для получения дизельных топлив с улучшенными низкотемпературными свойствами.

В процессе каталитической депарафинизации происходит уменьшение количества н-парафиновых углеводородов в дизельной фракции, за счет их избирательного гидрокрекинга на цеолитном катализаторе С преобразованием в более низкокипящие компоненты, такие как газ и бензин [1]. Основное направление развития процесса каталитической депарафинизации связано с разработкой и внедрением новых процессов, выбором оптимальных схем процессов, зависящих от состава сырья и количества в нем серу- и азосотдержащих соединений [3], разработкой новых высокоактивных и селективных катализаторов, а также продлением срока их службы.

Важнейшие характеристики дизельного топлива, которые обеспечивают хорошую работу двигателя при низких температурах, это низкотемпературные свойства. Они зависят от химического состава топлива: температура помутнения, предельная температура фильтруемости, температура застывания. Температура помутнения на прямую зависит от

распределения н-парафиновых углеводородов по молекулярным массам и соотношений их с углеводородами изостроения, низкокипящими нормальными парафинами C₁₀–C₁₅ и ароматическими углеводородами, являющиеся растворителями.

В работе [4] показано, если увеличить суммарное содержание твердых углеводородов в летнем дизельном топливе с 5 до 30 % мас. температура застывания повысится с $-15\Box C$ до $-2^{\circ}C$. В зимнем и арктическом дизельном топливе даже малое количество нормальных парафинов C_{15} - C_{18} (2 % мас.) заметно увеличивает температуру помутнения и незначительно сказывается на температуре застывания и предельной температуре фильтруемости.

1.2 Физико-химические основы процесса

На процесс каталитической депарафинизации влияние оказывает ряд факторов: температура, расход сырья, расход водородсодержащего газа, состав сырья. Рассмотрим влияние каждого из них на процесс.

Влияние температуры на процесс депарафинизации дизельного топлива представлено на рис. 1-5.

Рисунок 1 - Зависимость степени превращения н-парафинов C₁₀-C₂₇ от температуры.

Из рис. 1 видно, что при повышении в реакторе депарафинизации температуры от 335 С до 365 С увеличивается степень превращения высокомолекулярных парафинов нормального строения на 50,8% - от 32,0 до 83,0%.

Рисунок 2 - Зависимость выхода н-парафинов С₅-С₉ от температуры

По рис. 2 видно, что при повышении температуры от 335 С до 355 С выход парафинов нормального строения увеличивается примерно на 0,45% от 2,0% до 2,45%. Увеличение же температуры выше 355 С влечет за собой снижение выхода н-парафинов, это связанно с возрастающей скоростью реакции крекинга парафинов с образованием газов.

Рисунок 3 - Зависимость выхода олефинов от температуры

При повышении температуры, выход олефинов, изопарафинов, нафтенов и сероводорода возрастает.

Рисунок 4 - Зависимость выхода и-парафинов и нафтенов от температуры.

Рисунок 5 - Зависимость выхода сероводорода от температуры

Увеличение температуры в реакторе депарафинизации приводит к тому, что скорость реакции гидрокрекинга высокомолекулярных парафинов нормального строения повышается, и увеличивается степень их конверсии, что приводит к росту числа низкомолекулярных н-парафинов и олефинов в продукте депарафинизации, а также увеличению выхода и-парафинов и нафтенов. Так как реакция гидрокрекинга и гидроизомеризации протекают стадии образования, изомеризации и гидрирования олефинов, через повышение температуры влечет за собой увеличение количества олефинов в реакционной смеси, а также повышение скорости их взаимодействия с сероводородом на катализаторе депарафинизации. В результате реакции которые образуются меркаптаны, В свою очередь гидрируются на катализаторе гидроочистки и образуют сероводород.

Таким образом, при увеличении температуры увеличивается степень превращения н-парафинов C₁₀-C₂₇, но и увеличивается образование сероводорода.

Влияние расхода исходной углеводородной фракции и водородсодержащего газа (ВСГ) на процесс депарафинизации представлен на рис. 6-10.

Увеличение расхода сырья приводит к уменьшению степени превращения олефинов. Это объясняется повышением объемной скорости подачи сырья, что ведет к уменьшению времени контакта сырья и катализатора.

Выход сероводорода снижается, при увеличении расхода сырья из-за уменьшения контакта катализатора и сырья.

Рисунок 6 - Зависимость степени превращения н-парафинов C₁₀-C₂₇ от расхода сырья.

Рисунок 7 - Зависимость выхода сероводорода от расхода сырья

Степень превращения высокомолекулярных н-парафинов увеличивается, при увеличении расхода ВСГ в реакторе депарафинизации. Так как водород является ключевым реагентом в процессе каталитической депарафинизации реакциях гидрокрекинга и гидроизомеризации при увеличении расхода водород содержащих газов, гидрокрекинг проходит с увеличенной конверсией.

Рисунок 8 - Зависимость степени превращения н-парафинов C₁₀-C₂₇ от расхода ВСГ

Нормальные парафины C_5 - C_9 и олефины вступают в реакции дегидрирования и гидрирования, и в то же время они являются промежуточными продуктами реакций гидрокрекинга и гидроизомеризации, следовательно, их выход практически не меняется при увеличении расхода ВСГ в реакторе депарафинизации (рис. 9).

Выход сероводорода снижается, при повышении расхода ВСГ в реакторе депарафинизации. Это происходит за счет незначительного снижения содержания олефинов в ходе реакций их изомеризации и гидрирования.

Рисунок 9 - Зависимость выхода н-парафинов C₅-C₉ и олефинов от расхода ВСГ

Рисунок 10 - Зависимость выхода сероводорода от расхода ВСГ

При переработке сырья, в котором содержится большое количество нпарафинов C₁₀-C₂₇, повышение температуры выше оптимальной приводит к уменьшению выхода дизельных фракций. Таким образом, увеличение температуры выше оптимальной не целесообразной. [5]

1.1.1 Катализаторы процесса

Процесс проводят на бифункциональных катализаторах, в их составе находится металл, который выполняет гидрирующую функцию, а также носитель цеолит или цеолитоподобные структуры, которые являются кислотными центрами катализатора. Он обеспечивает функцию избирательного гидрокрекинга парафинов нормального строения [1].

Также структурированные мезопористые алюмосиликаты, являются перспективными компонентами катализаторов [6]. Например, катализатор на основе мезопористых молекулярных сит типа AlSBA-15 (PtMo/AlSBA-15) проявляет лучшую активность в сравнении с платиновым катализатором на основе SiO₂Al₂O₃[7].

В последнее десятилетие в процессах гидроконверсии н-парафинов были изучены мезопористые молекулярные сита, такие как ZSM-5, ZSM-23, ZSM-22, SAPO-11, MCM-22, BEA, MCM-41 [8].

В процессах гидроизомеризации распространены катализаторы превращения н-парафинов основой которых, являются высококремнеземные цеолиты ZSM, обладающие ярковыраженными молекулярно-ситовыми свойствами.

Введение платины (Pt 0,5 % мас.) на пористый носитель на основе цеолита SAPO-11, (Pt/SAPO-11) помогает повысить конверсию н-додекана и улучшить каталитическую активность, а также снизить выход продуктов крекинга, это объясняется наличием иерархической пористости и благоприятно влияет на доступ реагентов на активные центры катализатора [9]. При этом каталитическая активность SAPO-11 катализаторов, уменьшается в порядке Pt/SAPO-11 > Pd/SAPO-11 > Ni/SAPO-11 > Ru/SAPO-11 что объясняется разной гидрирующей-дегидрирующей способностью этих металлов [10].

Оптимальной активности и стабильности алюмосиликатный катализатор достигается при содержании Pt 0,2 % мас., при t=250 °C и составе катализатора 12 % Ni, 10 % W и 0,2 % Pt. Степень конверсии в процессе гидроизомеризации н-декана составила 47 %.

В России В качестве катализатора процесса депарафинизации дизельного топлива применяется катализатор селективного гидрокрекинга СГК-1, составом: оксид алюминия - 12,5–27,7 %; оксид магния - 2,0–5,0 %; оксид кальция; оксид бора; гидрирующий компонент - 0,9–15,1 % и цеолит НЦВМ. Также разработан катализатор депарафинизации ДЕП на основе цеолита ЦВМ, составом: оксид кремния - 62,8-63,8 %, оксид алюминия -26,5-28,2 %, оксид молибдена - 5,0-6,0 % и промотора (Zn2⁺и La2⁺) 1,3-3,0 %. Данный катализатор помогает получить продукт, сопоставимый с продуктом, который получается при использовании катализатора СГК-1, но при более низкой температуре и с более высоким выходом дизельной фракции (90,1 %), предельная температура фильтруемости дизельной фракции составляет -38 °C. Кроме того, предложена система катализаторов (гидроочистки 70 % АГКД-400 марок БК и БН и депарафинизации ДЕП 30 %) для получения дизельного топлива для холодного и арктического климата, которая соответствует современным требованиям.

1.1.2 Механизм процесса

Каталитическая депарафинизация осуществляется бифункциональных цеолитных катализаторах в составе которых есть никель. На них проходит селективный гидрокрекинг высокомолекулярных парафинов нормального и слаборазветвленного строения с последующей гидроизомеризацией. На металлических центрах катализатора проходит гидрирование и дегидририрование, а на кислотных центрах - изомеризация [11].

Механизм реакций на катализаторе состоит из нескольких стадий. Сначала на металлических центрах проходит дегидрирование с образованием промежуточных олефинов:

$$R \xrightarrow{H_2}_{C} \xrightarrow{H_2}_{C} \xrightarrow{CH_3}_{H} \xrightarrow{M}_{CH_3} \xrightarrow{R}_{H} \xrightarrow{CH_3}_{H} \xrightarrow{CH_3}_{H} \xrightarrow{H_2}_{H} \xrightarrow{H_2$$

Олефины быстро присоединяют протоны на кислотных центрах, образуя при этом карбениевые ионы. После этого протекает ряд реакций изомеризации и образуются более стабильные третичные карбениевые ионы:

Затем крекинг до парафинов:

Карбениевый ион отдает протон и образует промежуточный олефиновый продукт:

Он гидрируется на металлических центрах или непосредственно отнимает ион водорода у компонента сырья с образованием парафина и десорбцией с поверхности катализатора [12]:

где М и К - металлический и кислотный центр катализатора соответственно.

Механизм целевой реакции показывает, что селективность зависит от количества водорода. Избыток водорода замедляет реакцию дегидрирования нормальных парафинов, а недостаток - смещает равновесие реакции в сторону образования олефинов.

Поэтому, при разработке схемы превращений углеводородов в процессе депарафинизации необходимо учесть промежуточные стадии образования и гидрирования олефинов с целью исследования влияния расхода водородсодержащего газа на избирательность реакций гидрокрекинга и гидроизомеризации с применением модели процесса.

1.2.3 Кинетика процесса

Схема химических превращений в процессе каталитической депарафинизации с учетом реакционной способности углеводородов приведена на рис. 11.

МАУ – моноароматические углеводороды; ПАУ – полиароматические углеводороды; *kj* – константа скорости *j*-й прямойреакции; *k*-*j* – константа скорости *j*-й обратной реакции.

Рисунок 11 – Схема превращений углеводородов в процессе депарафинизации

Сплошными линиями показаны реакции на катализаторе депарафинизации, пунктирными – реакция на катализаторе гидроочистки.

Скорости реакций процесса каталитической депарафинизации согласно схеме (рис. 11) записаны согласно закону действующих масс и представлены в табл. 1.

Реакция	Прямая реакция	Обратная реакция
Процесс депарафинизации		
Гидрокрекинг н-	$W_1 = k_1 \cdot C_{n - PC_{10} - C_{27}}$	-
парафинов С ₁₀ -С ₂₇	$\cdot C_v$	
Дегидрирование н-	$W_2 = k_2 \cdot C_{n - PC_5 - C_9}$	$W_{-2} = k_{-2} \cdot C_{ol} \cdot C_{v}$
парафинов С5-С9		
Изомеризация олефинов	$W_3 = k_3 \cdot C_{ol} \cdot C_{v}$	$W_{-3} = k_{-3} \cdot C_{i-P}$
Циклизация и-	$W_4 = k_4 \cdot C_{i-P}$	$W_{-4} = k_{-4} \cdot C_{Naft}$
парафинов		$\cdot C_v$

Таблица 1 – Уравнения скоростей реакций процесса депарафинизации

Продолжение таблицы 1.

Гидрирование	$W_5 = k_5 \cdot C_{MAY} \cdot C_V^3$	$W_{-5} = k_{-5} \cdot C_{Naft}$
моноароматических		
углеводородов		
Гидрирование	$W_6 = k_6 \cdot C_{PAY} \cdot C_V$	$W_{-6} = k_{-6} \cdot C_{MAY}^2$
полиароматических		
углеводородов		
Образование кокса	$W_7 = k_7 \cdot C_{PAY}$	-
Образование	$W_8 = k_8 \cdot C_{ol} \cdot C_{SV}$	-
меркаптанов		
Процесс гидроочистки		
Гидрирование	$W_9 = k_9 \cdot C_{Merk} \cdot C_V^2$	-
меркаптанов		

Тогда система уравнений кинетической модели запишется:

- процесс гидроочистки

$$\frac{dC_{n-PC_{10}} - C_{27}}{dt} = W_9$$
$$\frac{dC_{Merk}}{dt} = -W_9$$
$$\frac{dC_{SV}}{dt} = 2 \cdot W_9$$
$$\frac{dC_V}{dt} = -2 \cdot W_9$$

-процесс депарафинизации

$$\frac{dC_{n-PC_{10}-C_{27}}}{dt} = -W_{1}$$

$$\frac{dC_{n-PC_{5}-9}}{dt} = W_{1} + W_{2} + W_{-2}$$

$$\frac{dC_{oi}}{dt} = W_{2} - W_{-2} - W_{8}$$

$$\frac{dC_{i-P}}{dt} = W_{3} - W_{-3} - W_{4} + W_{-4}$$

$$\frac{dC_{Naft}}{dt} = W_{4} - W_{-4} + W_{5} - W_{-5}$$

$$\frac{dC_{MAY}}{dt} = -W_{5} + W_{-5} + 2 \cdot W_{6} - 2 \cdot W_{-6}$$

$$\frac{dC_{PAY}}{dt} = -W_{6} + W_{-6} - W_{7}$$

$$\frac{dC_{K}}{dt} = W_{7}$$

$$\frac{dC_{Merk}}{dt} = W_{8}$$

$$\frac{dC_{SV}}{dt} = -W_{8}$$

В табл. 2 приведены кинетические параметры для реакций процесса каталитической депарафинизации для Ni-содержащего цеолитного катализатора, эксплуатируемого на промышленной установке и Co-Mo катализатора гидроочистки.

Таблица 2 – Кинетические параметры модели процесса каталитическойдепарафинизации (при температуре 355 °C) [13]

Реакция	$E_{a, \frac{\kappa Д \pi}{MOЛL}}$	k ₀	k _j
Гидрокрекинг н-парафинов	140	5,12·10 ⁹ л·с ⁻	1,16·10 ⁻² л·с ⁻¹ ·моль ⁻¹
C_{10} - C_{27}		¹ ·моль ⁻¹	
Дегидрирование н-	110	$1,04 \cdot 10^{6} c^{-1}$	$7,37 \cdot 10^{-4} c^{-1}$
парафинов С5-С9			
Изомеризация олефинов	130	6,07·10 ⁸ л·с ⁻¹ ·моль ⁻	9,33·10 ⁻³ л·с ⁻¹ ·моль ⁻¹
		1	
Циклизация и-парафинов	180	$6,47 \cdot 10^{10} c^{-1}$	$6,90\cdot10^{-5}c^{-1}$
Гидрирование	140	5,00·10 ⁵ л·с ⁻¹ ·моль ⁻	7,34·10 ⁻⁷ л·с ⁻ 1·моль ⁻¹
моноароматических		1	
углеводородов			
Гидрирование	140	3,28·10 ⁷ л·с ⁻¹ ·моль ⁻	7,45·10 ⁻⁵ л·с ⁻¹ ·моль ⁻¹
полиароматических		1	
углеводородов			
Образование кокса	190	$2,39 \cdot 10^{12} \text{c}^{-1}$	$3,75 \cdot 10^{-4} c^{-1}$
Образование меркаптанов	120	2,95·10 ⁶ л·с ⁻¹ ·моль	3,08·10 ⁻⁴ л·с ⁻¹ ·моль ⁻¹
		- 	
Гидрирование меркаптанов	80	3,67·10′л·с ⁻¹ ·моль	8,14л·с ⁻¹ ·моль ⁻¹
		1	

1.3 Характеристика сырья и готовой продукции

Сырьем процесса является смесь прямогонной дизельной фракции (ДФ) и атмосферного газойля (АГ), характеристики которых показаны в табл. 3.

Таблица 3. Характеристика сырья процесса каталитической депарафинизации

Показатели	Фракционный состав	Сырье ДФ+АГ
Плотность при 20 С		843,7
Температура	НК	112
выкипания, $\Box C$	10%	232
	30%	274
	50%	299
	70%	323
	90%	352
	КК	370
Температура помутнения, ПС		+1
Предельная температура фильтруемости, ПС		-
Температура застывания	$, \Box C$	-
Содержание н-парафинов, %мас.		17,0

Продуктами процесса являются: стабильный бензин (СБ); фракция 180-240 С, фракция 240-340 С, являющиеся компонентами дизельных топлив; фракция >340 С (табл. 4).

Таблица 4. Характеристика продуктов процесса каталитической депарафинизации.

Показатели		Продукты			
	Фракционный	СБ	Фракция	Фракция	
	состав		180-240+240-	>340 🗆 C	
			340 □ C		
Плотность при		738,0	829,5	860,5	
20□C					
Температура	НК	104	171	279	
выкипания, 🗆 С	10%	110	204	317	
	30%	114	236	330	
	50%	120	259	344	
	70%	128	278	360	
	90%	140	305	383	
	КК	154	328	413	
Температура помутнения, С		-	-26	-16	
Предельная	температура	-	-28	-17	
фильтруемости, 🗆	С				
Температура засты	івания, □С	-	-35	-25	

2ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

3.1 Выбор технологической схемы установки

Технологическая схема должна:

- отвечать современному уровню развития процесса гидрокрекинга;

- соответствовать качеству сырья, поступающего на установку;

- учитывать качество и ассортимент получаемой продукции.

В соответствии с заданием нужно спроектировать и рассчитать установку гидродеарафинизацию вакуумного газойля с максимальным получением дизельного топлива с улучшенными низкотемпературными свойствами. В результате научно-технического обзора, в качестве прототипа нами выбрана двухступенчатая установка гидрокрекинга вакуумных дистиллятов(68-3К). Для проведения сравнительных расчетов в качестве базовой установки выбрана установка гидроочистки.

3.2 Описание технологической схемы установки

Исходное сырье - вакуумный газойль из промежуточного парка (ПП) забирается насосом H-1,2 и направляется в емкость свежего сырья и рециркулята E-1 через сырьевые фильтры Ф-1,2,3.

Рециркулят (рециркулируемый кубовый остаток колонны К-2, подаваемый насосом Н-10) из емкости Е-2 насосом Н-3,4 подается в емкость свежего сырья Е-1.

Свежее сырье из ёмкости Е-1 в смеси с рециркулятом поступает тремя потоками на прием сырьевых насосов Н-5,6. Далее сырье с насосов Н-5,6 сырьё тремя автономными потоками подается в тройники смешения, там смешивается с водородсодержащим газом, который подается компрессором ПК-2 и подпиточным водородом от компрессора ПК-1.

Далее смесь из тройников смешения направляетсяв трубное пространство теплообменников Т-1,2,3, там нагревается теплом от продуктов реакции из реакторов Р-1,2,3. Затем газосырьевая смесь подается в печь П-1 и направляется двумя потоками в камеры конвекции и радиации, где происходит нагрев до температуры 370 °C теплом сжигаемого топливного газа.

Далее смесь, пройдя печь П-1, направляется в верхнюю часть реакторов P-1,2,3.

Реакция гидроочистки протекает с выделением тепла и поэтому катализатор в каждом реакторе P-1,2,3 разделен на четыре слоя. Для того чтобы ограничить рост температуры между слоями. На вход в каждый слой подается холодный циркулирующий ВСГ (далее "квенч") из трубопровода нагнетания компрессора ПК-3.

Из реакторов P-1,2,3 продукты реакции первой ступени проходят через межтрубное пространство сырьевых теплообменников T-1,2,3, отдавая тепло газо-сырьевым потокам.

Далее продукты реакции первой ступени и ВСГ охлаждаются в воздушных конденсаторах-холодильниках ХК-1,2,3 до 400 °С.

Смесь продуктов после конденсаторов-холодильников XK-1,2,3 поступает в сепаратор высокого давления C-1, разделяя поток на циркулирующий ВСГ и гидрогенизат первой ступени.

Циркулирующий ВСГ с верха газосепаратора С-1 подают в секцию 200 на аминовую очистку.

Гидрогенизат первой ступени из сепаратора высокого давления C-1 перетекает в газосепаратор низкого давления C-2.

В газосепараторе С-2 отделяется сухой газ от гидрогенизата.

Гидрогенизат первой ступени из сепаратора С-2 насосом Н-7 направляется в тройник смешения, смешивается с ВСГ, который подавается компрессором ПК-3 и подпиточным водородом от компрессора ПК-4.

Гидрогенизат первой ступени, смешанный с ВСГ и подпиточным водородом из тройников смешения подается в трубное пространство теплообменников Т-4,5,6, там нагревается теплом продуктов реакции из реакторов Р-4,5,6. Затем газосырьевая смесь пройдя печь П-2 проходит двумя потоками в камеры конвекции и радиации, нагреваясь до температуры 400 °С теплом сжигаемого топливного газа.

После печей П-4,5,6 газопродуктовая смесь направляется в верхнюю часть реакторов Р-4,5,6.

Реакция гидрокрекинга протекает с выделением тепла и поэтому катализатор в каждом реакторе Р-4,5,6 разделен на пять слоев. В целях ограничения роста температуры между слоями на вход в каждый слой подается "квенч" из трубопровода нагнетания компрессора ПК-3.

Из реакторов P-4,5,6 продукты реакции второй ступени проходят через межтрубное пространство сырьевых теплообменников T-1,2,3, отдавая тепло газо-сырьевым потокам.

Далее продукты реакции второй ступени и ВСГ охлаждаются в воздушных конденсаторах-холодильниках ХК-1,2,3 до 430 °С.

Смесь продуктов после конденсаторов-холодильников XK-1,2,3 поступает в сепаратор высокого давления C-3, разделяясь на циркулирующий ВСГ и гидрогенизат второй ступени.

Циркулирующий ВСГ с верха газосепаратора С-3 подается на секцию 200 на аминовую очистку.

Гидрогенизат второй ступени из сепаратора высокого давления C-3 перетекает в газосепаратор низкого давления C-4.

В газосепараторе С-4 отделяется сухой газ от гидрогенизата.

ВСГ после аминовой очистки делится на два потока:

один поток направляется в тройники смешения;

второй поток направляется по квенчинговым коллекторам в реакторы P-1 – P-6.

Для того чтобы компенсировать водород, который расходуется на реакцию гидрокрекинга и с газами отдува, для поддержки давления в системе реакторного блока, с секции 1000 комплекса «Гидрокрекинг» поступает подпиточный водород на прием компрессоров ПК-1,4.

Гидрогенизат второй ступени из сепаратора С-4 насосом H-11 подаётся в теплообменник T-7, где нагревается за счет тепла кубового остатка колонны К-2.

После нагрева гидрогенизат второй ступени поступает в стабилизационную колонну К-1.

С низа К-1 гидрогенизат насосом Н-8 возвращается в К-1 под первую тарелку для поддержания температуры в низу колонны, пройдя печь П-7, где нагрелся до температуры 310-340 °C.

Углеводородный газ с верха колонны К-1 через воздушный конденсатор-холодильник ХК-7 направляется в газосепаратор С-5. Несконденсированный газ из С-5 направляется на аминовую очистку от сероводорода на секцию 200.

Отстоявшаяся вода из C-5 сбрасывается на секцию 800 для очистки от сероводорода и аммиака.

Стабильный гидрогенизат самотёком из колонны К-1 поступает в ректификационную колонну К-2.

Из колонны К-2 в качестве бокового погона выводится фракция дизельного топлива через отпарную колонну (стриппинг) К-3. В низ колонны К-3 для улучшения отпарки легких углеводородов подается перегретый водяной пар.

Рециркулят (кубовый продукт) с низа колонны К-2 насосом Н-10 прокачивается через теплообменники Т-7, отдавая тепло сырью,

поступающему в колонну К-1. Далее рециркулят поступает в ёмкость Е-2. Балансовое количество рециркулята выводится с установки.

В случае аварийной остановки и переводе установки на циркуляцию схемой предусмотрена подача рециркулята в качестве сырья установки.

В присутствии перегретого водяного пара в колонне К-3 происходит дополнительная отпарка более легких углеводородов, которые поступают обратно в колонну К-2 пройдя через ХК-10.

Дизельное топливо (ДТ) из К-3 откачивается насосом H-12 через конденсатор-холодильник ХК-8 в резервуарный парк.

Пары бензина и воды с верха колонны К-2 через воздушный конденсатор-холодильник ХК-11 направляются в газосепаратор С-6.

Углеводорные газы с верха С-6 направляются на аминовую очистку секции 200.

Бензиновая фракция из C-6 насосом H-13 подаётся на холодное орошение в K-2, пройдя через XK-9. Избыток фракции бензина откачивается с установки в товарный парк.

Отстоявшаяся вода из отстойника С-6 сбрасывается на очистку в секцию 800.

3 РАСЧЕТНАЯ ЧАСТЬ

3.1 Материальный баланс реактора гидроочистки

Схема материальных потоков процесса приведена на рис. 4.

G1 – Дизельная фракция, G2 – ВСГ, G3 – продукт гидроочистки

Рисунок 4 – Схема материальных потоков процесса

Исходные данные к расчету:

1. Исходная дизельная фракция с пределами выкипания 180-320°С;

2. Содержание сернистых соединений в табл. 3. [17];

3. Остаточное содержание серы в дизеле не должно превышать 350 мг/кг или 0,035 % масс.

4. Расход свежей дизельной фракции составляет 200 тыс. т/г.

Таблица 3 – Содержание сернистых соединений в дизельной фракции в пересчете на серу

Фракция	Содержание, % масс.
180-200	0,041
200-250	0,300
250-320	0,800

Часовая производительность установки по сырью:

$$G_1 = \frac{\Pi \cdot 1000}{n \cdot 24} = \frac{200000 \cdot 1000}{330 \cdot 24} = 25252,53 \, \mathrm{kr/y}$$

где n – число рабочих дней установки в год;

П – производительность по сырью, кг/год.

Состав дизельной фракции представлен в табл. 4.

Таблица 4 – Состав исходной дизельной фракции

Фракция	Содержание
180-200	12,1
200-250	36,3
250-320	51,6
Итого:	100%

Рассчитаем расходы компонентов потока G1.

$$G_{180-200}^{1} = \frac{G_{1} \cdot 12,1\%}{100\%} = \frac{25252,53 \cdot 12,1}{100} = 3055,556 \text{ Kr/y}$$
$$G_{200-250}^{1} = \frac{25252,53 \cdot 36,3\%}{100\%} = 9166,668 \text{ Kr/y}$$
$$G_{250-320}^{1} = \frac{25252,53 \cdot 51,6\%}{100\%} = 13030,306 \text{ Kr/y}$$

Для расчета мольного расхода дизельной фракции используется формула:

$$g_{\rm pp} = \frac{G_{\rm pp}}{M_{\rm pp}},$$

где $G_{\rm dp}$ – массовый расход фракции кг/ч;

 $M_{\rm dp}$ – молярная масса фракции, кг/кмоль.

Молекулярная масса нефтяных фракций рассчитывается по формуле:

$$M_{\rm dp} = \frac{44,29 \cdot \rho_{15}^{15}}{1,03 - \rho_{15}^{15}},$$

где ρ_{15}^{15} – относительная плотность нефтяных фракций.

Взаимный пересчет ρ_4^{20} и ρ_{15}^{15} производится по формуле [18]:

$$\rho_{15}{}^{15} = \rho_4{}^{20} + 0,0035/\rho_4{}^{20}$$

Значения ρ_4^{20} для нефтяных фракций Самарской (Куйбышевской) области находим в литературе [17]. Результаты расчета молекулярной массы нефтяных фракций представлены в табл. 5.

Таблица 5 – Расчет молекулярной массы нефтяных фракций

Пределы выкипания	$\rho_4^{20}, \mathrm{KG}/\mathrm{M}^3$	р ₁₅ ¹⁵ , кг/м ³	$M_{ m dp},$ кг/моль
180-200	0,7951	0,800	153,624
200-250	0,8095	0,814	166,735
250-320	0,8417	0,846	203,447

Мольный расход компонентов дизельного топлива:

$$g_{180-200}^1 = rac{G_{180-200}^1}{M_{180-200}} = rac{3055,556}{153,624} = 19,889$$
 кмоль/ч $g_{200-250}^1 = rac{9166,668}{166,735} = 54,977$ кмоль/ч

$$g_{200-250}^1 = \frac{13030,306}{203,447} = 64,047$$
 кмоль/ч

Рассчитаем количество серы в компонентах дизельной фракции:

$$G_{S\,180-200}^{1} = \frac{G_{180-200}^{1} \cdot W_{S\,180-200}^{1}}{100\%},$$

где $W_{S\,180-200}^1$ – содержание серы в исходной фракции.

$$G_{S\,180-200}^{1} = \frac{3055,556 \cdot 0,041}{100} = 1,253 \text{ kg/y}$$

$$g_{S\,180-200}^{1} = \frac{G_{S\,180-200}^{1}}{M_{s}} = \frac{1,253}{32} = 0,039$$
 кмоль/ч

$$G_{S\,200-250}^1 = \frac{9166,668\cdot 0,3}{100} = 27,5 \,\mathrm{кг/ч}$$

$$g_{S\,200-250}^1 = \frac{27,5}{32} = 0,859$$
 кмоль/ч

$$G_{S\,250-320}^{1} = \frac{13030,306\cdot 0,8}{100} = 104,242 \text{ kr/y}$$

$$g_{S\,250-320}^1 = \frac{104,242}{32} = 3,257$$
 кмоль/ч

Общее содержание серы в дизельной фракции:

$$G_{S}^{1} = G_{S\,180-200}^{1} + G_{S\,200-250}^{1} + G_{S\,250-320}^{1}$$

$$G_{S}^{1} = 1,253 + 27,5 + 104,242 = 132,995 \text{ кг/ч}$$

$$g_{S}^{1} = g_{S\,180-200}^{1} + g_{S\,200-250}^{1} + g_{S\,250-320}^{1}$$

$$g_{S}^{1} = 0,039 + 0,859 + 3,257 = 4,155 \text{ кмоль/ч}$$

Таким образом содержание серы в исходной дизельной фракции составляет 132,995 кг/25252,53 кг или 5266 мг/кг. Конечная концентрация серы в дизельной фракции составляет 350 мг/кг. Значит степень извлечения серы составит:

$$\Delta S = \frac{5266 - 350}{5266} = 93.35\%$$

Количество удаляемой серы:

$$G_S^{
m yd}=132,995\cdot 0,9335=124,151$$
кг/ч $g_S^{
m yd}=rac{124,151}{32}=3,879$ кмоль/ч

Вся удаляемая сера уходит из реактора в виде сероводорода. Количество водорода, необходимого на образование сероводорода в процессе гидроочистки:

$$S + H_2 \rightarrow H_2 S$$

 $g_{H2} = g_S = g_{H2S} = 3,879$ кмоль/ч $G_{H2} = 3,879 \cdot 2 = 7,756$ кг/ч

Количество образовавшегося сероводорода:

$$G_{H2S} = 3,879 \cdot 34 = 131,886 \, \mathrm{кг/ч}$$

В процессе гидроочистки часть водорода тратится на гидрирование непредельных соединений. По данным [4] при гидроочистке дизельного топлива, содержащего около 0,6% масс. сернистых содинений, расход водорода на гидрирование составляет 0,16% в пересчёте на сырье.

Количество водорода на гидрирование:

$$G_{H2}^{\text{гидр}} = 0,0016 \cdot 25252,53 = 40,404 \, \mathrm{кг/ч}$$

Общее количество водорода, затрачиваемого на связывание серы и гидрирование непредельных углеводородов:

$$G_{H2 \text{ MCX}} = G_{H2}^{\text{гидр}} + G_{H2} = 7,756 + 40,404 = 48,16 \text{ Kr/y}$$

$$g_{H2 \text{ исх}} = \frac{48,16}{2} = 24,08 \text{ кмоль/ч}$$

Состав ВСГ представлен в табл. 6.

Таблица 6 - Состав ВСГ

Содержание	H.	CH	C.H.	C.H.	ΣC.H.
компонента	112		$C_{2}II_{6}$	C3118	204110
%(об.)	80,0	7,0	5,0	2,0	1,0
%(масс.)	29,4	19,4	26,0	15,2	10,0

Расчет расхода компонентов ВСГ представлен в табл. 7.

Таблица 7 – Расчет количественного состава ВСГ

	Wi, % масс.	Gi, кг/ч	Мі, кг/кмоль	gi, кмоль/ч
H ₂	29,4	48,160	2	24,080
CH ₄	19,4	31,779	16	1,986
C_2H_6	26	42,590	30	1,420
C_3H_8	15,2	24,899	44	0,566
$\Sigma C_4 H_{10}$	10	16,381	58	0,282
	100	163,810		28,334

Углеводороды, содержащиеся в ВСГ переходят в состав сухого газа процесса.

Согласно основному уравнению материального баланса найдем количество гидроочищенной органической фазы:

$$G_{0.\phi.} = G_1 + G_2 - G_{H2S} - G_{yB ras}$$

где $G_{yB ras}$ – углеводородные газ, входящие в состав ВСГ.

$$G_{\text{o.ф.}} = 25252,53 + 163,810 - 131,886 - 115,650 = 25168,804$$
 кг/ч

В процессе гидроочистки образуется некоторое число бензина и газа. Бензин образуется преимущественно при гидрогенолизе сернистых соединений. Выход бензина [18]:

$$W_6 = \Delta W_S = 0,526 - 0,035 = 0,491\%$$

Выход газа:

$$W_{\Gamma} = 0.3 \cdot \Delta W_S = 0.3 \cdot 0.491 = 0.1473 \%$$

Выход дизельного топлива:

 $W_{\text{g.t.}} = 100 - W_6 - W_{\Gamma} - \Delta W_S = 100 - 0,491 - 0,1473 - 0,491 = 98,871 \%$

В пересчете на 100% органической фазы: 99,359% дизельной фракции, 0,493% бензиновой и 0,148% сухого газа.

Состав органической фазы на выходе представлен в табл. 8.

Таблица 8 – Состав органической фазы на выходе из реактора

Компонент	% macc	кг/ч
Дизельное топливо	99,359	25007,359
Бензин	0,493	124,188
Сухой газ	0,148	37,256

Общее количество сухого газа на выходе из реактора складывается из газа, образованного в результате реакции и газа, поступившего в составе ВСГ. Материальный баланс процесса представлен в табл. 9.

Таблица 9 – Материальный баланс процесса

Приход	кг/ч	кмоль/ч	%	Расход	кг/ч	кмоль/ч	%
Дизельная фракция	25252,53	138,913	99,36	H ₂ S	131,886	3,879	0,52
ВСГ, в т.ч	163,810	28,331	0,64	Сухой газ	152,906	3,922	0,60
H ₂	48,16	24,077	0,19	Бензин	124,188	1,035	0,49
				Дизельное топливо	25007,359	137,569	98,39
Итого:	25416,34	167,244	100	Итого:	25416,34	146,41	100

3.2 Тепловой баланс реактора гидроочистки

Исходные данные к расчету:

1. Температура на входе в реактор 330°С;

2. Температура на выходе из реактора 350°С.

Уравнение теплового баланса процесса:

$$Q_1 + Q_2 = Q_2 + Q_4 + Q_5$$

где *Q*₁ – теплота реакции гидроочистки;

 Q_2 , Q_3 - физическое тепло сырья и продуктов процесса;

 Q_4 – потери тепла;

 Q_5 – тепло от теплоносителя.

$$Q_1 = G_1 \cdot q,$$

где q – тепловой эффект реакции гидроочистки.

$$q = 105 \frac{\kappa \#}{\kappa \Gamma} [19]$$
 $Q_1 = 25252,53 \cdot 105 = 2651515,65 \kappa \#/ ч$

Для определения теплоемкости нефтей и фракций любого состава предложена следующая формула [20]:

$$C_{\text{p}i} = 1,5072 + \frac{T - 223}{100} \cdot (1.7182 - 1.5072 \cdot \rho_4^{20})$$

Результаты расчета теплоемкостей и физического тепла компонентов органических компонентов сырья и продуктов процесса представлены в табл. 10.

Компонент	$ ho_4^{20},$ кг/м 3	$C_{\mathrm{p}i}$,	<i>G</i> _{<i>i</i>} , кг/ч	<i>Q</i> _{<i>i</i>} , кДж/ч
		кДж/кг*К		
Сырье процесса п	ри Т=573К			•
Прямогонная				
дизельная	0,818	3,204	25252,530	80903,458
фракция				
Продукт процесса	а при Т=593К			
Сухой газ	0,636	4,317	152,906	660,147
Бензин	0,762	3,613	124,188	448,692
Дизельное	0.818	3 301	25007 359	82542 236
топливо	0,010	5,501	20001,000	02012,200
Итого:				83651,075

Таблица 10 – Расчет физического тепла процесса

Физическое тепло компонентов ВСГ и сероводорода рассчитывается по формуле:

$$Q_i = g_i \cdot c_i \cdot T,$$

где Qi – теплота i-го компонента, кДж/ч;

gi – мольный расход i-го компонента, кмоль/ч;

сі – молярная теплоемкость і-го компонента, кДж/кмоль·К;

Т – температура, К.

Мольная теплоемкость рассчитывается по формулам [21]:

$$C_p = a + bT + c/T^2$$

ИЛИ

$$C_p = a + bT + cT^2 + dT^3,$$

где a, b, c, d – коэффициенты для данного вещества.

Расчет представлен в табл. 11.

Таблица 11 – Расчет теплоемкостей и физического тепла компонентов ВСГ и сероводорода

Компонент	a	$b \cdot 10^3$	c·10 ⁶ /	$d \cdot 10^9$	gi,	ср, кДж/	Qi, кДж/ч
			c·10 ⁻⁵ *		кмоль/ч	кмоль*К	
Входящий п	юток пр	и T=573I	К				
H ₂	27,28	3,26	0,502		785,539	29,15	402182,85
CH ₄	17,45	60,46	-1,117	-7,20	64,691	50,37	57322,55
C ₂ H ₆	4,494	182,26	-74,86	10,8	46,208	86,38	70285,66
C ₃ H ₈	-4,8	307,3	- 160,16	32,75	18,483	124,86	40494,04
$\sum C_4 H_{10}$	0,469	385,4	-198,9	39,97	9,242	163,52	26422,25
Итого:					924,164		596707,35
Выходящий поток при Т=593К							
H ₂ S	29,37	15,40			63,018	3,879	88564,57

* с·10⁶ – для органических веществ; с·10⁻⁵ – для неорганических веществ;

Физическое тепло исходных компонентов:

*Q*₂ = 80903,458 + 596707,35 = 677610,808 кДж/ч

Физическое тепло продуктов:

*Q*₃ = 83651,075 + 88564,57 = 172215,645 кДж/ч

Потери тепла процесса примем 3% от прихода. Тогда:

$$Q_4 = 0,03 \cdot Q_1 + Q_2 = 0,03 \cdot 2651515,65 + 677610,808$$

= 99873,79 кДж/ч

Количество подводимого тепла:

$$Q_5 = Q_1 + Q_2 - Q_3 - Q_4$$

Количество теплоносителя – воды, необходимой для поддержания требуемого температурного режима:

$$G_{H20} = \frac{3140688,09}{4.19 \cdot 50} = 14991,35 \,\mathrm{кг/ч}$$

Тепловой баланс процесса представлен в табл. 12.

Таблица 12 – Тепловой баланс процесса

Приход	кДж/ч	%	Расход	кДж/ч	%
Тепло	2651515,65	79,65	Физическое	88564,57	2,66
реакции			тепло		
гидроочистки			продуктов		
			процесса		
Физическое	677610,808	20,35	Потери	99873,79	3,00
тепло сырья					
процесса					
			Тепло от	3140688,09	94,34
			теплоносителя		
Итого:	3329126,45	100	Итого:	3329126,45	100

3.3 Материальный баланс реактора гидродепарафинизации

В расчете рассмотрен реакционный блок установки гидродепарафинизации Л-24-10/2000. Схема материальных потоков процесса представлена на рис. 13.

G1 – Прямогонная дизельная фракция; G2 – атмосферный газойль; G3 – бензин висбрекинга и бензин-отгон с установки гидроочистки (далее бензин);

G4 – ВСГ; G5 – продукт гидродепарафинизации

Рисунок 13 – Схема материальных потоков процесса

гидродепарафинизации

Исходные данные к расчету [15]:

1. Производительность установки 900 000 т/г дизельного топлива с улучшенными низкотемпературными свойствами (зимнего дизельного топлива);

2. Массовое соотношение потоков G1:G2:G3 = 21:17:1;

3. Массовое соотношение ВСГ к исходном сырью 1:15;

4. Состав продукта процесса, представлен в табл. 6.

5. Количество рабочих дней установки в год n=330.

Таблица 6 –	Состав потока	G5
-------------	---------------	----

Компонент	Содержание (W), % мас.
ВСГ	2,02
H_2S	1,39
Углеводородный газ	5,24
Легкий бензин	4,26
Стабильный бензин	6,43
фр. 180-240°С	12,42
фр. 240-340°С	60,20
фр. >340°С	8,04

Часовая производительность реакторного блока:

$$G_{3.\text{ДT}} = \frac{\Pi}{n \cdot 24},$$

где П – производительность установки, кг/г;

n – число рабочих дней установки в году.

$$G_{3.\text{ДT}} = \frac{900000000}{335 \cdot 24} = 111940,298 \,\text{кг/ч}$$

Зимнее дизельное топливо представляет собой смесь фракций, выкипающих в пределах 180-340°С. Таким образом, общее содержание дизельного топлива с улучшенными низкотемпературными свойствами в продукте гидродепарафинизации составляет:

$$W_{3,\text{DT}} = W_{180-240} + W_{240-340}$$

 $W_{3,\text{DT}} = 12,42 + 60,20 = 72,62 \%$

Общее количество продуктов депарафинизации выражаем из формулы:

$$W_{3.\text{ДT}} = \frac{G_{3.\text{ДT}}}{G_5} \cdot 100\%$$
$$G_5 = \frac{G_{3.\text{ДT}}}{W_{3.\text{ДT}}} \cdot 100\%$$
$$G_5 = \frac{111940,298 \cdot 100\%}{72,62\%} = 154145,274 \text{ кг/ч}$$

Количество компонентов в составе потока G5 найдем из пропорции:

$$154145,274 - 100\%$$
$$G_{i} - W_{i}$$
$$G_{i} = \frac{154145,274 \cdot W_{i}}{G_{i}},$$

где G_i – содержание i-го компонента в составе смеси продуктов процесса, кг/ч;

W_i - содержание і-го компонента, % мас. (см. табл. 6.).

Расчет состава потока G5 представлен в табл. 7.

Таблица 7 – Состав G5

Компонент	Gi, кг/ч	Wi, % мас.
ВСГ	3113,735	2,02
H_2S	2142,619	1,39
Углеводородный газ	8077,212	5,24
Легкий бензин	6566,589	4,26
Стабильный бензин	9911,541	6,43
Зимнее диз. топливо	111940,298	72,62
фр. >340°С	12393,280	8,04
Итого:	154145,274	100

Для определения мольного расхода компонентов пользуются следующей формулой:

$$g_i = \frac{G_i}{M_i}$$

где g_i – мольный расход компонента, кмоль/ч;

M_i – молярная масса компонента, кг/кмоль.

Мольный расход сероводорода, образовавшегося в процессе:

$$g_{H2S} = \frac{2142,619}{34} = 63,018$$
 кмоль/ч

Молекулярная масса ВСГ рассчитывается по формуле [16]:

$$M_{\rm BC\Gamma} = M_j \cdot \chi_j,$$

где *M_i* – молярная масса компонента ВСГ, кг/кмоль;

χ_{*i*} – мольная доля компонента ВСГ (или объемная доля).

Состав ВСГ на выходе из реакционной зоны представлен в табл. 8.

Таблица 8 – Состав ВСГ на выходе из зоны реакции [16]

	H ₂	CH ₄	C ₂ H ₆	C ₃ H ₈	$\sum C_4 H_{10}$
% об.	72,0	20	5,0	2,0	1,0
% мас.	19,2	42,7	20,1	10,3	7,7

 $M_{\rm BC\Gamma} = 0,72 \cdot 2 + 0,20 \cdot 16 + 0,05 \cdot 30 + 0,02 \cdot 44 + 0,01 \cdot 58 = 7,6$ кг/кмоль

Тогда, мольный расход ВСГ на процесс:

$$g_i = \frac{3113,735}{7,6} = 409,702$$
 кмоль/ч

Молекулярная масса нефтяных фракций рассчитывается по формуле:

$$M_{\rm pp} = \frac{44,29 \cdot \rho_{15}^{15}}{1,03 - \rho_{15}^{15}},$$

где ρ_{15}^{15} – относительная плотность нефтяных фракций.

Взаимный пересчет ρ_4^{20} и ρ_{15}^{15} производится по формуле [17]:

$$\rho_{15}{}^{15} = \rho_4{}^{20} + 0,0035/\rho_4{}^{20}$$

Значения ρ_4^{20} для нефтяных фракций Самарской (Куйбышевской) области находим в литературе [17]. Результаты расчета молекулярной массы нефтяных фракций представлены в табл. 9.

Таблица 9 – Расчет молекулярной массы нефтяных фракций

Компонент	Пределы	${\rho_4}^{20}$,	ρ_{15}^{15} ,	$M_{\rm \phi p},$	
	выкипания	кг/м ³	кг/м ³	кг/моль	
Углеводородный газ (УГ)	до 50°С	0,6361	0,6416	73,16	
Легкий бензин (ЛБ)	50-100°C	0,7624	0,7670	129,16	
Стабильный бензин (СБ)	100-180°C	0,7662	0,7708	131,69	
Дизельное топливо (з.ДТ)	180-340°C	0,8208	0,8251	178,31	
Тяжелый остаток (ТО)	выше 340°С	0,8730	0,8770	253,89	

Таким образом, количественный расход компонентов получаемой смеси:

$$g_{\rm YF} = \frac{8077,212}{73,16} = 110,405$$
 кмоль/ч

$$g_{\rm ЛБ} = \frac{6566,589}{129,16} = 50,840$$
 кмоль/ч

*g*_{СБ} =
$$\frac{9911,541}{131,69}$$
 = 75,264 кмоль/ч

$$g_{3,\text{ДT}} = \frac{111940,298}{178,31} = 627,785$$
 кмоль/ч $12393,280$

$$g_{\rm TO} = \frac{12533,253}{253,89} = 48,813$$
 кмоль/ч

Т.к. в исходных данных нет информации о потерях процесса, основное уравнение материального баланса имеет вид:

$$G_{\Pi \mu \mu \chi} = G_{\mu a c \chi}$$

где $G_{\text{прих}} = G_1 + G_2 + G_3 + G_4 - суммарный массовый расход потоков, поступающих в реактор, кг/ч;$

 $G_{\text{pacx}} = G_5$ - массовый расход продукта процесса, кг/ч.

$$G_{\rm прих} = 154145,274$$
кг/ч

Приняв $G_3 = x$, получим следующее уравнение:

$$21 \cdot x + 17 \cdot x + x + \frac{21}{15} \cdot x = 154145,274$$

 $x = G_3 = 3815,477 \ \kappa \Gamma/\Psi$
 $G_1 = 21 \cdot x = 21 \cdot 3815,477 = 80125,019 \ \kappa \Gamma/\Psi$
 $G_2 = 17 \cdot 3815,477 = 64863,109 \ \kappa \Gamma/\Psi$
 $G_4 = 1,4 \cdot 3815,477 = 5341,669 \ \kappa \Gamma/\Psi$

Состав свежего ВСГ (поток G4) представлен в табл. 10. [16]

Таблица 10 – Состав свежего ВСГ

	H_2	CH ₄	C_2H_6	C ₃ H ₈	$\sum C_4 H_{10}$
% об.	85,0	7,0	5,0	2,0	1,0
% мас.	29,4	19,4	26,0	15,2	10,0

 $M_{G4} = 0,85 \cdot 2 + 0,07 \cdot 16 + 0,05 \cdot 30 + 0,02 \cdot 44 + 0,01 \cdot 58 = 5,78$ кг/кмоль

$$g_i = {5341,669 \over 5,78} = 924,164$$
 кмоль/ч

Расчет молекулярной массы исходных компонентов реакционной смеси представлены в табл. 11.

Таблица 11 – Расчет молекулярной массы исходных компонентов сырья

Поток	Название	${\rho_4}^{20}$,	ρ_{15}^{15} , KG/m ³	$M_{\rm \phi p},$
		кг/м ³		кг/моль
G1	Прямогонная дизельная фр.	0,8291	0,833	187,655
G2	Атмосферный газойль	0,9018	0,906	322,659
G3	Бензин	0,7360	0,741	113,427

$$g_1 = \frac{80125,019}{187,655} = 426,980$$
 кмоль/ч

*g*₂ =
$$\frac{64863,109}{322,659}$$
 = 207,027 кмоль/ч

$$g_3 = rac{3815,477}{113,427} = 33,638$$
 кмоль/ч

Материальный баланс процесса представлен в табл. 12.

Приход	кг/ч	кмоль/ч	% мас.	Расход	кг/ч	кмоль/ч	% мас.
Свежий ВСГ	5341,669	924,164	3,47	Отдув ВСГ	3113,735	409,702	2,02
Бензин	3815,477	33,638	2,48	Сероводород	2142,619	63,018	1,39
Прямогонная	80125,019	426,980	51,98	Углеводородный газ	8077,212	110,405	5,24
дизельная фракция							
Атмосферный	64863,109	207,027	42,08	Легкий бензин	6566,589	50,840	4,26
газойль							
				Стабильный бензин	9911,541	75,264	6,43
				Дизельное топливо	111940,298	627,785	72,62
				Тяжелый остаток	12393,280	48,813	8,04
ИТОГО:	154145,274	1591,809	100	ИТОГО:	154145,274	1385,827	100

Таблица 12 – Материальный баланс реакторного блока установки гидродепарафинизации дизельного топлива

3.4 Тепловой баланс реактора гидродепарафинизации

1. Температура сырья на входе в реактор t_{вх}=322°C;

2. Температура потока на выходе из реакторного блока t_{вых}=350°C\$

3. Данные материального баланса (табл. 12).

Уравнение теплового баланса процесса представлено следующим образом:

$$Q_{\rm p} + Q_{\rm сырье} = Q_{\rm прод} + Q_{\rm потерь} + Q_{\rm т/н}$$

где *Q*_p – суммарный тепловой эффект реакций, протекающих в процессе гидродепарафинизаци, кДж/ч;

 $Q_{\text{сырье}}$ – физическое тепло компонентов сырья процесса, кДж/ч;

*Q*_{потерь} – потери тепла в окружающую среду, кДж/ч;

 $Q_{{}_{{}_{{}_{{}}}{}_{{}_{{}}{}_{{}}{}_{{}}{}_{{}}}}}$ – тепло от теплоносителя, кДж/ч.

Тепловой эффект процесса гидроочистки составляет от 20 до 87 кДж/кг [18]. Тепловой эффект реакций гидрокрекинга может принимать значения в диапазоне от 200 до 420 кДж/кг сырья [19]. Для расчета примем средние значения и получим тепловой эффект процесса гидродепарафинизации, равный q=365 кДж/кг.

Количество углеводородного сырья (без ВСГ), поступающего в реактор:

Тепловой эффект реакции:

$$Q_{\rm p} = G \cdot q = 148803,605 \cdot 365 = 54313315,825$$
 кДж/ч

Физическое тепло компонентов сырья и продукта процесса рассчитывается по формуле:

$$Q_i = C_{\mathrm{p}i} \cdot G_i \cdot T_i,$$

где *C*_{pi} – массовая теплоемкость компонента, кДж/кг*К;

 G_i – массовый расход компонента, кг/ч;

*Т*_{*i*} – температура потока, К.

Для определения теплоемкости нефтей и фракций любого состава предложена следующая формула[20]:

$$C_{\rm pi} = 1,5072 + \frac{T - 223}{100} \cdot (1.7182 - 1.5072 \cdot \rho_4^{20})$$

Результаты расчета теплоемкостей и физического тепла компонентов сырья и продукта процесса представлены в табл. 13.

Таблица 13 – Теплоемкости и физическое тепло компонентов реакционной смеси

Компонент	$ ho_4^{20}$, кг/м 3	$C_{\mathrm{p}i}$,	<i>G</i> _{<i>i</i>} , кг/ч	<i>Q_i</i> , кДж/ч						
		кДж/кг*К								
Сырье процесса при Т=595К										
Бензин	0,7360	3,772	3815,477	8563933,631						
Прямогонная	0,8291	3,250	80125,019	154956982,004						
дизельная										
фракция										
Атмосферный	0,9018	2,843 64863,109		109710123,021						
газойль										
Итого:				273231038,655						
Продукт процесса при Т=623К										
Углеводородный	0,6361	4,545	8077,212	22871312,659						
газ										
Легкий бензин	0,7624	3,784	6566,589	15478826,067						
Стабильный	0,7662	3,761	9911,541	23222115,473						

бензин				
Дизельное	0,8208	3,432	111940,298	239312962,879
топливо				
Тяжелый	0,8730	3,117	12393,280	24065299,420
остаток				
Итого:				324950516,498

Физическое тепло компонентов ВСГ и сероводорода рассчитывается по формуле:

$$Q_i = g_i \cdot c_i \cdot T,$$

где Qi – теплота i-го компонента, кДж/ч;

gi – мольный расход i-го компонента, кмоль/ч;

сі –молярная теплоемкость і-го компонента, кДж/кмоль К;

Т-температура, К.

Мольная теплоемкость рассчитывается по формулам [21]:

$$C_p = a + bT + c/T^2$$

или

$$C_p = a + bT + cT^2 + dT^3,$$

где a, b ,c, d – коэффициенты для данного вещества.

Расчет представлен в табл. 5.14.

Таблица 5.14 – Расчет теплоемкостей и физического тепла компонентов ВСГ и сероводорода

Компонент	а	b·10 ³	c·10 ⁶ /	$d \cdot 10^9$	χ,	gi,	ср, кДж/	Qi, кДж/ч
			c·10 ⁻⁵ *		доли	кмоль/ч	кмоль*К	
Входящий поток при T=595К								
H ₂	27,28	3,26	0,502		0,85	785,539	30,997	14487827,876

CH ₄	17,45	60,46	-1,117	-7,20	0,07	64,691	51,512	1982755,599
C ₂ H ₆	4,494	182,26	-74,86	10,8	0,05	46,208	88,711	2439019,209
C ₃ H ₈	-4,8	307,3	- 160,16	32,75	0,02	18,483	128,241	1410342,246
$\sum C_4 H_{10}$	0,469	385,4	- 198,9	39,97	0,01	9,242	167,786	922617,064
Итого:					1	924,164		21242561,994
Выходящий поток при Т=623К								
H_2S	29,37	15,40				63,018	38,964	1529742,830
H ₂	27,28	3,26	0,502		0,72	294,985	31,259	5744722,996
CH ₄	17,45	60,46	-1,117	-7,20	0,20	81,940	52,942	2702631,707
C ₂ H ₆	4,494	182,26	-74,86	10,8	0,05	20,485	91,598	1168995,242
C ₃ H ₈	-4,8	307,3	- 160,16	32,75	0,02	8,194	132,404	675908,736
$\sum C_4 H_{10}$	0,469	385,4	-198,9	39,97	0,01	4,097	173,039	441672,934
Итого:					1	409,702		12263674,446

* с·10⁶ – для органических веществ; с·10⁻⁵ – для неорганических веществ;

Таким образом:

 $Q_{
m сырье} = 273231038,655 + 21242561,994 = 294473600,649$ кДж/ч $Q_{
m прод} = 324950516,498 + 12263674,446 = 337214190,944$ кДж/чПриход тепла:

$$Q_{\text{прих}} = Q_{\text{p}} + Q_{\text{сырье}} = 54313315,825 + 294473600,649$$

= 348786916,474 кДж/ч

Потери тепла в процессе гидродепарафинизации примем равными 3%, тогда:

 $Q_{\text{потерь}} = 0,03 * Q_{\text{прих}} = 0,03 \cdot 348786916,474 = 10463607,494 кДж/ч$

Количество теплоты, отводимое теплоносителем:

$$Q_{\text{т/н}} = Q_{\text{прих}} - Q_{\text{прод}} - Q_{\text{потерь}}$$
 $Q_{\text{т/н}} = 348786916,474 - 337214190,944 - 10463607,494$ $= 1109118,036 \, \kappa ext{Д} ext{ж/ч}$

Количество теплоносителя (воды), необходимого для снятия избыточного тепла процесса:

$$G_{H2O} = \frac{Q_{\rm T/H}}{C_{H2O}(T_{\rm KOH} - T_{\rm Hay})},$$

где *Т*_{кон}, *Т*_{нач} – конечная и начальная температура воды, К;

C_{H2O} – средняя теплоемкость воды для выбранного интервала температур, кДж/кг·К.

$$G_{H20} = \frac{1109118,036}{4,182 \cdot (363 - 293)} = 3788,747 \text{ kg/y}$$

$$g_{H20} = \frac{3788,747}{18} = 210,486$$
 кмоль/ч

Тепловой баланс процесса представлен в табл. 15.

Таблица 15 – Энергетический баланс процесса

Приход	кДж/ч	%	Расход	кДж/ч	%
Тепло	54313315,825	15,572	Физиеское тепло	337214190,944	96,682
экзотермической			продуктов, Q _{прод}		
реакции, Q _р					
Физическое тепло	294473600,649	84,428	Теплопотери,	10463607,494	3,000
компонентов			Q _{потерь}		
сырья, Q _{сырье}					
			Отводимое	1109118,036	0,318
			теплоносителем		
			тепло, Q _{т/н}		
Итого:	348786916,474	100		348786916,474	100

ЗАКЛЮЧЕНИЕ

Основные выводы и результаты проделанной работы заключаются в следующем:

1. Рассмотрены физико-химические основы процесса депарафинизации дизельной фракции (катализаторы, механизм и кинетика процесса), характеристики сырья и продуктов процесса гидродепарафинизации;

2. Предложен вариант модернизации технологической схемы гидроочистки с целью получения компонентов зимнего дизельного топлива.

3. Модернизация реакторного блога установки гидроочистки заключается в следующем: первый реактор установки используется с целью очистки фракции дизельного топлива от содержащихся в нем гетероатомных соединений серы и азота. А второй реактор предназначен для гидрокрекинга тяжелых парафинов с целью улучшения низкотемпературных свойств дизельного топлива.

4. Произведены расчеты материального и теплового балансов реакторного блока проектируемой установки. Определен расход ВСГ на процесс гидродепарафинизации.

Предложенная схема отличается от существующих схем каталитической депарафинизации меньшей металлоемкостью за счет объединения стадий гидроочистки и гидрокрекинга.

8

8

СПИСОК ИСПОЛЬЗОВАННЫ ИСТОЧНИКОВ

- А.И. Груданова, В.А. Хавкин, Л.А.Гуляева Перспективные процессы производства дизельных топлив для холодного и арктического климата с улучшенными экологическими и эксплуатационными характеристиками, Мир нефтепродуктов. Вестник нефтяных компаний.2013.№12.-3-7с.
- В. Хавкин, Л. Гуляева, Н. Виноградова, Б. Винокуров. Совершенствование производства дизельного топлива.-OilandGasJournalRussia.-2011-№4-62-64с.
- Б.Л. Лебедев, И.П. Афанасьев, А.В.Ишмурзин, С.Ю. Талаев. Производство зимнего дизельного топлива в России. Нефтепереработка и нефтехимия-2015-№4- 19-27с.
- С.Г.Агаев, А.М.Глазунов, С.В. Гультяев, Н.С. Яковлев. Улучшение низкотемпературных свойств дизельных топлив: монография. ТюмГНГУ-2009г-145с.
- 5. Б.А. Энглин. Применение жидких топлив при низких температурах. Химия,1980г-208с.
- В.А.ОстроумоваГидроизомеризация высших н-алканов и дизельных фракций на бифункциональных катализаторах, содержащих мезопористые алюмосиликаты-МГУ имени Ломоносова-Москва, 2012г.-132с.
- Jaroszewska K., MasalskaA., Marek D. Effect of support composition on the activity of Pt and Pt Mo catalysts in the conversion of n-hexadecane // Catalysis Today. -2014- Vol.223-P.76-86.
- Eswaramoorthi I., Sundaramurthy V., Lingappan N. Hydroisomerisation of C₆-C₇ n-alkanes over Pt Loaded zirconium containing Al-MCM-41 molecular sieves // Microporous and Mesoporous Materials/ -2004. Vol.71/ -Issue 1-3. P. 109-115.
- Liu Y., Qu W., Chang W., Pan S., Tian Z. Catalytically active and hierarchically porous SAPO-11 zeolite synthesized in the presence of

polyhexamethylenebiguanidine // Journal of Cjlloid and Interface Science.-Vol.418. -2014. P.193-199.

- 10.Gong S., Chen N., Nakayama S., Qian E. Isomerization of n-alkanes derived from jatropha oil over bifunctional catalysts // Journal Molecular Catalysis, Chemical-2013. Vol.370.-P.14-21
- 11.Mihalyi R.M., Lonyi F., Beyer H.K., Szegedi A., Kollar M., n-Hertanehydroconversion over nickel-loaded aluminum-and/or boron-containing BEA zeolites prepared by recrystallization of magadiite varieties// Journal Molecular Catalysis, Chemical-Vol.367.-2013.-P.77-88
- 1. 12. Мейерс Р.А. Основные процессы нефтепереработки. Справочник под.ред. Глагольевой О.Ф.- СПб: ЦОП «Профессия».-2011-944с.
- 12.Белинская Н.С. Совершенствование работы сопряженной системы «реактор – колонна стабилизации» процесса каталитической депарафинизации дизельных фракций нефти методом математического моделирования/Диссертация на соискание ученой степени кандидата технических наук. Томск, 2015.
- 13. Технологический регламент установки Л-24-10/2000 "Установка гидродепарафинизации смеси атмосферного газойля с бензином висбрекинга"-2013г.-531с.
- 14.Камешков А.В., Гайле А.А. Получение дизельных топлив с улучшенными низкотемпературными свойствами (обзор). Известия СПбГТИ(ТУ) №29, 2015.
- 15. Танатаров М.А, Ахметшина М.Н., Фасхудтдинов Р.А. Технологические расчеты установок переработки нефти. –М.:Химия, 1987.
- 16.Баринова З.Н., Дриацкая З.В., Жмыхова Н.М. и др. Нефти СССР. Справочник. Том 2. Нефти среднего и нижнего Поволжья. –М.: Химия, 1972 г., 392 стр.
- 17.Кретинин М.В. Проектирование установок замедленного коксования.–М.: Химия, 1982 г.

- 18.Богомолов А.И. и др. Химия нефти и газа/Под ред. Проскурякова В. А. -СПб, Химия, 1995г. - 446 стр.
- 19. Судаков Е.Н. (ред.). Расчеты основных процессов и аппаратов нефтепереработки/ Справочник. 3-е изд., перераб. и доп. М.; Химия, 1979. 568 с.: ил.
- 20.Мищенко К.П., Равдель А.А.. Краткий справочник физико-химических величин/под ред. Мищенко К.П., Равдель А.А./Седьмое издание, Л.: Химия, 1974 г. – 200 стр.
- 21. Технологический регламент установки гидродпарафинизации дизельного топлива. Казахстан, 2008 г.
- 22.Паспорт безопасности. Дизельное топливо.
- 23.Паспорт безопасности. Водород.
- 24.Паспорт безопасности. Сжиженные углеводолродные газы.
- 25.Методические указания по курсовому проектированию/ ТГУ; Сост.: В. Е. Стацюк, И. В. Цветкова. Тольятти, 2006. 17с.
- 26. Гутник С.П. Расчеты по технологии органического синтеза. М: Химия, 1988. 272 с.
- 27.Основные процессы и аппараты химической технологии. Пособие по проектированию. Под ред. Ю.И. Дытнерского М: Химия 1991. 496 с.