МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

	APXV	ТЕКТУРНО	-CTPO	ОИТЕЛЬНЫЙ И	ІНСТИТУТ	
				нститута полностью)		
Кафелра 🧸	«Теплога»	*		•	бжение и водоотведе	ние»
тафедра	<u> </u>			ание кафедры)	листи и водостведел	
		,		троительство		
	(ко			ения подготовки, спеці	иальности))	
	()		-	сение и вентиля	**	
				рофиль)/специализация		
		(manpabatem	iouis (iii	рофияв), оподназивация	•)	
		БАКАП	A RP	СКАЯ РАБОТ	ΓΔ	
		DAKAJI	ADI (
	D.				v (ФО	T(')
на тему	Г. Во	•		•	ьный комплекс (ФО	K)
		Спорти	вный	зал. Отопление	и вентиляция	
Студент		K		имушко		
_				Рамилия)	(личная подпись)	
Руководит	ель	E.		окиенко		
		_		Рамилия)	(личная подпись)	
Консульта	НТЫ			орчагин		
				Рамилия)	(личная подпись)	
		И.К		ирджанова		
			Ф.О.И)	Рамилия)	(личная подпись)	
П						
Допустить	ь к защит	'e				
И.о. зав	зедующег	о кафедрой		т.н., доцент, И.А.		
				(ученая степень, звание, И.О	. Фамилия) (личная п	одпись)
« »			20	Γ		

Тольятти 2019

АННОТАЦИЯ

В данной бакалаврской работе был выполнен теплотехнический расчет, определены теплопотери, подсчитаны теплопоступления, составлены тепловой и воздушные балансы, спроектированы системы отопления, кондиционирования, произведены вентиляции И гидравлический аэродинамический расчеты, выполнен подбор оборудования, выполнена автоматизация индивидуального теплового пункта, определены объемы и трудоемкость работ при монтаже системы подсчитана отопления, рассмотрена безопасность и экологичность технического объекта.

Бакалаврская работа состоит из 7 чертежей формата A1 и пояснительной записки.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ	6
1.1 Описание проектируемого объекта	6
1.2 Описание района строительства	7
1.3 Параметры внутреннего воздуха	7
1.4 Источник тепло- и холодоснабжения	8
2 ТЕПЛОТЕХНИЧЕКИЙ РАСЧЁТ	9
2.1 Теплотехнический расчёт ограждающих конструкций	9
2.2 Определение теплопотерь здания	0
2.3 Определение теплопоступлений здания	1
2.4 Тепловой баланс	2
3 ОТОПЛЕНИЕ	3
3.1Проектирование системы отопления	3
3.2 Гидравлический расчёт	4
3.3 Тепловой расчёт отопительных приборов	6
3.4 Расчёт и подбор оборудования	7
4 ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ ВОЗДУХА 1	9
4.1 Определение требуемых воздухообменов	9
4.2 Выбор принципиальных решений и конструирование2	2
4.3 Выбор и расчёт воздухораспределительных устройств	3
4.4Аэродинамический расчёт	5
4.5Расчёт и подбор оборудования	6
5 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ2	9
6 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ	2
7 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА 3	6
7.1 Конструктивно-технологическая и организационно-техническая	
характеристика рассматриваемого технического объекта	6
7.2 Идентификация профессиональных рисков	6
7.3 Методы и средства снижения профессиональных рисков	7

7.4 Обеспечение пожарной безопасности технического объекта	38
7.5 Обеспечение экологической безопасности технического объекта	39
7.6 Заключение по разделу «Безопасность жизнедеятельности»	40
ЗАКЛЮЧЕНИЕ	41
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	42
ПРИЛОЖЕНИЕ А	47
ПРИЛОЖЕНИЕ Б	50
ПРИЛОЖЕНИЕ В	55
ПРИЛОЖЕНИЕ Г	61
ПРИЛОЖЕНИЕ Д	62
ПРИЛОЖЕНИЕ Е	64
ПРИЛОЖЕНИЕ Ж	79
ПРИЛОЖЕНИЕ И	92
ПРИЛОЖЕНИЕ К	93

ВВЕДЕНИЕ

В последние несколько лет на территории России растёт количество физкультурных заведений. Это связано со стремлением повысить в стране уровень физической подготовки, поднять здоровье население, улучшить досуг граждан, приобщить молодое поколение к спорту.

Чтобы всё вышесказанное доступным необходимо стало запроектировать надёжные современные здания, хорошими долговечными коммуникациями, которые смогли бы обеспечить жизнедеятельность людей внутри ФОК.

Цель данной бакалаврской работы запроектировать и рассчитать системы, для поддержания заданных параметров микроклимата в помещениях физкультурно-оздоровительного комплекса, расположенного в городе Воронеж.

Для достижения цели бакалаврской работы необходимо решить следующие задачи:

- 1. Выполнить теплотехнический расчёт наружных ограждающих конструкций;
- 2. Определить теплопоступления и теплопотери помещений;
- 3. Запроектировать систему отопления;
- 4. Запроектировать систему вентиляции;
- 5. Разработать вопросы контроля и автоматизации систем ИТП;
- 6. Разработать раздел организации монтажных работ;
- 7. Разработать технику по безопасности жизнедеятельности.

1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

1.1 Описание проектируемого объекта

Здание, в котором проектируются системы отопления и вентиляции, располагается в городе Воронеж.

Здание является общественным и проектировалось под дом отдыха с физкультурно-оздоровительным комплексом и состоит из трёх частей пристроенных друг к другу: спортивный зал и столовая; бассейн, бани, душевые; помещения АБК и процедурные кабинеты.

Главный фасад ориентирован на северо-запад. В здании три этажа и подвал. Рассматриваемая часть здания имеет 2 этажа, использована под столовую и спортивный зал, подвальные помещения и находятся между осями 1-8 А-Д,.

Пол первого этажа находится на отметке -0,9 м, пол второго этажа на отметке +3,6м. Высота от пола первого этажа, до пола второго этажа 4,5 м. Высота спортивного зала 8,1 м. Общая высота здания от уровня земли 9,62 м. Размеры части здания в осях 24×40,1м.Спортивный зал и буфет имеют панорамное остекление, представленное в виде двухкамерного стеклопакета обычного В одинарном алюминиевом переплёте ИЗ стекла. подсобных административных помещениях И окна выполнены ИЗ двухкамерного стеклопакета в одинарном ПВХ переплёте из обычного стекла. Наружные стены в здании выполнены из железобетона в качестве утеплителя используется минерально-ватная плита, снаружи сайдингом. Кровля здания плоская выполнена из конструкции ТехноНиколь-Кровля Фикс Бетон. В заданных осях находятся запасные выходы на югозападе, северо-западе выполненные из глухого ПВХ профиля.

На первом этаже располагаются: спортивный зал, блок общепита, санузлы и вестибюли. На втором этаже находятся: кладовые, тренерские и вспомогательные помещения. В подвале находятся душевые, кладовые и гардероб.

1.2 Описание района строительства

Строительство происходит в городе Воронеж. По[1] находим параметры наружного воздуха. В комплексе проектируется кондиционирование, на основании этого для тёплого периода года берём значения в пределах параметров Б, для холодного так же в пределах параметров Б. Температура в тёплый период года берётся с коэффициентом обеспеченности 0,98, а в холодный 0,92.

Таблица 1 – Параметры наружного воздуха

Порион гоно		Параметры Б	
Период года	t _H , °C	I, кДж/кг	$v_{\rm H}$, m/c
Тёплый	29	54,8	1
Холодный	-24	-25,3	4

В городе Воронеж средняя температура отопительного периода (при $t \le 8^{\circ}$ C) $t_{ot} = -2.5^{\circ}$ C [1]. Продолжительность отопительного периода $Z_{ot} = 190$ дней [1].Средняя месячная относительная влажность воздуха наиболее холодного месяца $\phi_I = 82\%$ [1]. Средняя температура воздуха наиболее холодного месяца (январь) $t_I = -7.5^{\circ}$ C [1]. Зона влажности города Воронеж: 3 – сухая [2]. Условие эксплуатации ограждающих конструкций по параметру А. [2, табл.2]

1.3 Параметры внутреннего воздуха

Параметры внутреннего воздуха принимаются по [3], [4], [5], [6], [9]. Для спортивного зала параметры внутреннего воздуха принимаются:

- в холодный период $t_B=15^{\circ}\text{C}; \phi=45\%;$
- в тёплый период 23°С; φ=55%.

Температура внутреннего воздуха в остальных помещениях приведена в разделе Вентиляция в таблице 5.

Для спортивного зала подвижность воздуха принимается $0,5\,$ м/с, в административных и подсобных помещениях помещений $0,3\,$ м/с, в душевых и раздевалках $0,2\,$ м/с.

1.4 Источник тепло- и холодоснабжения

Источником теплоснабжения является местная котельная. Теплоноситель – сетевая вода с параметрами температуры 90-70°C.

Источником холодоснабжения для систем кондиционирования спортивного зала в тёплый период года является компрессорно-конденсатный блок расположенный на кровле здания.

2 ТЕПЛОТЕХНИЧЕКИЙ РАСЧЁТ

2.1 Теплотехнический расчёт ограждающих конструкций

Расчёт производится на основе методики изложенной в [2].

Условие теплотехнического расчёта заключается в том, чтобы приведённое сопротивление теплопередаче $R_0^{\Pi P}$, м².°С/Вт, было больше или равно требуемому сопротивлению теплопередачи R_0^{TP} , м².°С/Вт:

$$R_0^{TP} > R_0^{TP},$$
 (2.1)

Требуемое сопротивление теплопередачи определяется в зависимости от коэффициентов[2, табл. 3] и градусо-суток отопительного периода:

$$\Gamma CO\Pi = (t_B - t_{om}) \cdot z_{om}, \qquad (2.2)$$

где t_в –расчётная температура воздуха внутри помещения, °С;

 t_{or} — средняя температура наружного воздуха периода с температурой наружного воздуха меньше 8°C, °C;

 $z_{\mbox{\scriptsize ot}}$ – количество суток отопительного периода, сут.

$$\Gamma CO\Pi = (18 - (-2,5)) \cdot 190 = 3895 \,^{\circ}\text{C} \cdot \text{cyt.}$$

Условное сопротивление теплопередачи определяется по формуле:

$$R_0^{VCJI} = R_B + \sum_{i=1}^{n} R_S + R_H = \frac{1}{\alpha_B} + \sum_{i=1}^{n} \frac{\delta_i}{\lambda_i} + \frac{1}{\alpha_n}, \qquad (2.3)$$

где $R_{\scriptscriptstyle B}$ – сопротивление теплоотдачи внутренней поверхности ограждений, м². $^{\circ}$ С/Вт;

 $\sum R_s$ – сумма термических сопротивлений слоёв ограждающей конструкции, м². °C/Вт;

 $R_{\scriptscriptstyle H}$ — сопротивление теплоотдачи наружного поверхности ограждений, ${\rm M^2\cdot ^\circ C/BT};$

 $\alpha_{\scriptscriptstyle B}$ – коэффициент сопротивления теплоотдачи внутренней поверхности ограждений;

 $\alpha_{\scriptscriptstyle H}$ – коэффициент сопротивления теплоотдачи наружного поверхности ограж

По источникам [2], [7], [8]были подобраны состав перекрытий и определены их приведённые сопротивления теплопередачи. Расчёт представлен в Приложении А.

Результаты расчёта сведены в таблицу 2.

Таблица 2 – Результаты теплотехнического расчёта

Наименование ограждающей конструкции	Толщина δ, м	R_0^{TP} , $M^2 \cdot {}^{\circ} C/BT$	$R_0^{\it \Pi P},$ $M^2 \cdot {}^{\circ}C/BT$	Коэффициент теплопередачи, k, Bт/ м ² .°C
Наружная стена	0,502	2,37	2,48	0,403
Плоская кровля – ТехноНиколь- Кровля Фикс Бетон	0,42	3,158	3,427	0,291
Стены по грунту в подвале	-	_	5,225	0,191
Полы по грунту	_	l	I35,225 II37,425 III311,725 IV317,325	I30,191 II30,13 III30,085 IV30,057
Межэтажное перекрытие	0,22	1,495	1,495	0,668
Внутренние перегородки	0,12	0,49	0,49	2,04
Витражи спортзала и буфета	Двухкамерный стеклопакет в одинарном алюминиевом переплёте из обычного стекла (с межстекольным расстоянием 8 мм)	0,39	0,43	2,325
Окна вспомогательных помещений	Двухкамерный стеклопакет в одинарномПВХ переплёте из обычного стекла (с межстекольным расстоянием 8 мм)	0,39	0,50	2,00
Двери	ПФХ профиль глухая	0,613	0,613	1,631

2.2 Определение теплопотерь здания

Расчёт выполнен по методике, изложенной в [8].

Основные теплопотеридля здания Q, $BT/(M^2 \cdot C)$, определяются:

$$Q = k \cdot F \cdot (t_B - t_H) \cdot n, \qquad (2.4)$$

где k – коэффициент теплопередачи, $B_T/(M^2.°C)$;

n – коэффициент зависящий от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху [2, таб.6].

Теплопотери полов и стен, лежащих на грунте, производится по зонам. Разбивка полов по зонам представлены в Приложении Б.

Расчёт теплопотерь сводится в таблицу Б.1 в Приложение Б.

2.3 Определение теплопоступлений здания

1. Теплопоступления от людей

Количество тепла, поступающее от людей, $Q_{\scriptscriptstyle \Pi}$, $B_{\scriptscriptstyle T}$, определяется по формуле:

$$Q_n = q \cdot n, \tag{2.5}$$

где q- удельное выделение тепла одним человеком, Вт/чел;

п-количество человек, одновременно находящихся в зрительном зале.

Количество человек в спортивных залах рассчитывается как 5 м^2 площади на человека, но не менее 1,2 м^2 [9].

Определим количество человек и количество явного тепла:

$$n = \frac{556,34}{5} \approx 111$$
человек;

$$Q_{y}^{XII} = 133 \cdot 111 = 14763 \text{ BT}; \ Q_{y}^{TII} = 83 \cdot 111 = 9213 \text{ BT}.$$

2. Теплопоступления от источников искусственного освещения, $Q_{\text{осв}}$, $B_{\text{т}}$, определяются по формуле

$$Q_{ocs} = E \cdot F \cdot q_{ocs} \cdot \eta_{ocs}, \tag{2.6}$$

где Е – освещенность, Лк;

 $q_{\text{осв}}$ — удельные тепловыделения, $B \tau / M^2 \cdot J \kappa$;

 $\eta_{\text{осв}}$ — доля тепла, поступающего в помещение; $\eta_{\text{осв}} = 1$.

Количество теплоты от источников освещения:

$$Q_{ocs} = 200.556,34.0,077.1 = 8568 \text{ Bt.}$$

3. Теплопоступления от системы отопления, Q_{co} , B_{T} , рассчитывается по формуле:

$$Q_{co} = \frac{\sum Q_{oz}}{t_{g} - t_{H}} \cdot (t_{\partial e \varkappa c.om} - t_{H}). \tag{2.7}$$

Количество теплоты от системы отопления:

$$Q_{co} = \frac{26627}{15+24} \cdot (12+24) = 24579 \,\mathrm{Bt}.$$

4. Теплопоступления от солнечной радиации, Q_{ср}, Вт, находятся как

$$Q_{cp} = (q_{en} + q_{ep}) \cdot F_0 \cdot k_1 \cdot k_2 \cdot \beta_{c3}, \qquad (2.8)$$

где $q_{B\Pi}$ – поступление тепла от прямой солнечной радиации в июле;

 $q_{\mbox{\scriptsize вр}}-$ поступление тепла от рассеянной солнечной радиации в июле;

 F_0 – поверхность остекления, M^2 ;

 k_1 – коэффициент, учитывающий затенение остекление и загрязнение атмосферы;

k₂ – коэффициент, учитывающий загрязнение стекла;

 β_{c3} – коэффициент теплопропускания солнцезащитных устройств.

Географическая широта города Воронеж: 51° с.ш.

Расчёт сводится в таблицу 3.

Таблица 3 – Теплопоступления от солнечной радиации

								1	Часы с	уток						
						9-	10-	11-	12-	13-	14-	15-	16-		18-	19-
	4-5	5-6	6-7	7-8	8-9	10	11	12	13	14	15	16	17	17-18	19	20
								Cno	ртивн	ный зал	ı					
									C3	1						
qвп	-	-	-	-	-	-	-	-	-	8	119	281	418	449	342	108
двр	12	37	59	72	79	81	84	85	87	93	107	130	143	131	93	32
F,м ²									162,	.8						
k1	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	1,4	1,4	1,4	1,4	1,4	1,4	1,4
k2									0,9)						
βсз									0,5							
Qcp	527	1626	2593	3165	3473	3560	3692	3736	3824	10359	23179	42154	57538	59487	44615	14359

2.4 Тепловой баланс

Таблица 4 – Тепловой баланс спортивного зала

имен.	Период	Тепло- потери, Теплопоступления							Теплоизбытки/ Теплонедостатки
Ha	года	$Q_{0,}$ Вт	Q л, Вт	Q _{осв} , Вт	Q _{с,0} , Вт	Q _{cp} , B _T	Q _{проч} , Вт	ΣQ, Bτ	Q, Bt
CO	ΧП	26627	14763	8568	24579	_	4791	52701	26074
CS	ТΠ	_	9213	_	_	59487	6870	75570	75570

3 ОТОПЛЕНИЕ

3.1Проектирование системы отопления

Ввод в здание тепловой сети происходит с юго-восточной стороны между осями 13-14 в не рассматриваемой части здания. Подключение к системе отопления осуществляется в ИТП, находящемся в подвале здания.. Теплоноситель для системы отопления - вода с параметрами 90/70°C.

Система отопления в ФОК запроектирована двухтрубная, тупиковая, с горизонтальной разводкой.

Рассматриваемую часть здания обслуживает две системы отопления. Трубы приняты стальные водогазопроводные по ГОСТ [10]. Остальная часть системы смонтирована из полипропиленовых труб компании «Ekoplastik», все необходимые для расчёта величины брались по таблицам [11].

СО1 обогревает помещение спортивного зала. От распределительной гребёнки СО1 выходит из ИТП поднимаясь на отметку +3.170 и далее под подшивным потолком прокладывается до осей 8-9, где СО1 снова поднимается на отметку +6.710 и прокладывается непосредственно в спортивном зале до воздушно-отопительных агрегатов «VOLCANOVR1» в количестве 3 штук, установленных на отметке +4.000.

СО2 обогревает все остальные помещения в осях 1-9 А-Д. Все трубопроводы проложены под подшивными потолками, в полу или коробах для соблюдения интерьерных решений. В качестве отопительных приборов в этой системе приняты панельные радиаторы «PurmoRC11», которые крепятся к наружным стенам, и внутрипольные конвекторы с вентилятором «PurmoAQUILOF1T», которые монтируются в полу в помещениях с панорамным остеклением.

В СО1 и СО2 на подводке каждого прибора устанавливается терморегулирующий клапан на подающей подводке и запорнорегулирующий кран на обратном трубопроводе. Для удаления воздуха в верхних точках магистрали и на приборах устанавливают воздухоотводчики.

Уклон трубопроводов выполнен 0,003 в сторону ИТП для опорожнения системы.

Для регулирования системы на каждой подающей магистрали распределительной гребёнки и разветвлении на стояки устанавливают балансировочный клапан. На обратном трубопроводе устанавливают шаровые краны.

3.2 Гидравлический расчёт

Расчёт ведётся по удельным линейным потерям давления по методике изложенной в [13], [11]. Сумма потерь главного циркуляционного кольца не должна превышать 95% располагаемого давления:

$$\Sigma \Delta P_{cuc} = (0.9 - 0.95) \cdot \Delta P_p. \tag{3.1}$$

Так как естественное давление в трубопроводах систем невелико, то пренебрегаем ими и расчётное циркуляционное давление принимается равным давлению, создаваемым насосом ΔP_H , Πa :

$$\Delta P_p = \Delta P_H. \tag{3.2}$$

 $\Delta P_p = 44000 \, \Pi a$.

Находятся средние удельные потери давления на трение $R_{cp},\ \Pi a/M,\ no$ формуле:

$$R_{cp} = \frac{0.65 \cdot \Delta P_p}{\Sigma l},\tag{3.3}$$

где 0,65 — коэффициент учитывающий, что 65% располагаемого давления расходуется на преодоление линейных потерь.

Система отопления 1:

$$R_{cp} = \frac{0.65 \cdot 44000}{212.26} = 134,74 \,\text{Ta/m}.$$

Система отопления 2:

$$R_{cp} = \frac{0.65 \cdot 44000}{275,47} = 103,82 \,\text{Ta/m}.$$

Рассчитываются расходы воды на участках G_{yq} , кг/ч, по формуле:

$$G_{yq} = \frac{3.6 \cdot Q_{yq} \cdot \beta_1 \cdot \beta_2}{c \cdot (t_z - t_o)},$$
 (3.4)

где $Q_{y^{\text{u}}}$ – тепловая нагрузка соответствующего участка, BT;

 β_1 — коэффициент учета дополнительного теплового потока при округлении сверх расчётной величины;

 β_2 — коэффициент учета дополнительных потерь теплоты отопительными приборами у наружных ограждений;

с – удельная массовая теплоёмкость воды, равная 4,187 кДж/кг.°С.

Расход воды в CO1 принимается по каталогу воздушно-отопительных агрегатов «VOLCANOVR1» [12] при тепловой мощности Q=9,3кВт на один агрегат. Количество агрегатов 3 шт.

На подводках к прибору устанавливают термостатические клапаны.

Потери давления ΔP , Па, в термостатических клапанах на первых приборах в CO1 и в CO2 по формуле:

$$\Delta P = c_1 / (Kv^2), \qquad (3.5)$$

где c_1 – коэффициент, устраняющий несоответствие в размерностях, использованных в формуле аргументов. При d_y =15мм c_1 = 97,3 и при d_y =20мм c_1 =324 при условии, что расход теплоносителя определяется в кг/с, а перепад давления ΔP в Πa ;

Kv – пропускная способность клапана при определённой установки клапана.

В CO1 первый прибор – воздушный агрегат с термоклапаном NVMZ с $KVS=3.5 \text{ m}^3/\text{ч}=0.97$ кг/с, установленном на подводке $d_y=20$ мм.

$$\Delta P = 324/0.97^2 = 344.35\Pi a.$$

В CO2 первый прибор — напольный конвектор «PURMOAQUILO F1T261000901» с термоклапаном PTV-01 в комплекте установленном на подводке d_y =20мм.

$$\Delta P = 324/0,436^2 = 1703,62 \,\Pi a.$$

Остальные термостатические клапаны в СО подбираются аналогичным способом. Результаты расчётов приведёны на чертежах.

На магистралях трубопроводов выходящих из распределительной гребёнки и ответвлениях к стоякам устанавливаются балансировочные клапаны для увязки главного циркуляционного кольца с второстепенным, и СО с давлением, которое вырабатывает насос. Для увязывания потерь давления на ответвлениях так же устанавливаются балансировочные клапаны.

СО1:На перепад давления ΔP =21932 Πa =0,21 δap и расход G=0,299 m^3/v устанавливается балансировочный клапан фирмы DanfossMSV-F2[18]Dy=20мм, Kv=0,54 m^3/v , настройка 1.

На перепад давления $\Delta P=5280\Pi a=0,086$ ар и расход G=0,1м 3 /ч устанавливается балансировочный клапан фирмы BroenBallorexVenturiFODRV[19] Dy=15мм, Kv=0,63м 3 /ч, настройка 1.

СО 2:На перепад давления ΔP =4824 Πa =0,04 δap и расход G=1,259 M^3/Ψ устанавливается балансировочный клапан фирмы DanfossMSV-F2 [18]Dy=32MM, Kv=7,56 M^3/Ψ , настройка 2.

На перепад давления $\Delta P=25010\Pi a=0,25$ бар и расход G=0,1м 3 /ч устанавливается балансировочный клапан фирмы BroenBallorexVenturiFODRV [19]Dy=15мм, Kv=0,63м 3 /ч, настройка 1.

Остальные балансировочные клапаны подбираются аналогичным образом, результат подбора представлен на чертежах.

Результаты гидравлического расчёта и расчётные схема приводятся в Приложение В, таблица В.1, рисунок В.1, рисунок В.2.

3.3 Тепловой расчёт отопительных приборов

В рассматриваемом комплексе принимается к установке три типа приборов. Воздушно-отопительные агрегаты «VolcanoVR1» [12] в СО1, которые обеспечивают отопление в спортивном зале. Панельные радиаторы

«Ригто» [15] и внутрипольные конвекторы с принудительной конвекцией «Ригто Aquilo F1T» [16] в СО2 для отопления расчётных помещений.

Тепловая мощность радиаторов «Ригто» рассчитывается по методике, изложенной в каталоге[15]:

$$q_{\Pi P} = q_n \cdot \left[\frac{\Delta t}{\Delta t_n} \right]^n, \tag{3.6}$$

где q_n — тепловая мощность радиаторов Purmo на основании лабораторных измерений, $B\tau$;

n- показатель степени, характерный для данного типа радиатора;

 Δt_n — логарифмическая разность температур, рассчитанная для температур отнесения $75/65/20^{\circ}$ C; Δt_n =49,833 K;

 Δt – логарифмическая разность температур, К:

$$\Delta t = \frac{t_{ex} - t_{ebix}}{\ln((t_{ex} - t_{e})/(t_{ebix} - t_{e}))},$$
(3.7)

где $t_{\text{вх}}$ – температура воды, питающей радиатор, °C;

 $t_{вых}$ – температура воды, возвращаемой из радиатора, °С;

 $t_{\scriptscriptstyle B}$ – температура внутри помещения, °С.

Тепловая мощность внутрипольных конвекторов «PurmoAquiloF1T»рассчитывается по методике, изложенной в каталоге [16]:

$$q_{\Pi P} = q_n \cdot K_1, \tag{3.7}$$

где K_1 – корректировочный коэффициент.

Результат теплового расчёта приборов представлен в Приложении В, таблица В.2.

3.4 Расчёт и подбор оборудования

Насос в физкультурно-оздоровительном комплексе обеспечивает подачу воды во все системы отопления здания, в том числе и на системы отопления бассейна. По данным на СО бассейна, которые предоставили технологи потери давления там больше чем в проектируемой части здания.

Следовательно, подбор циркуляционного насоса происходит на основе следующих данных:

- расход тепла на всё здание Q=145485 BT;
- необходимое количество воды в CO здания G=6,83 м 3 /ч=6830 кг/ч;
- гидравлическое сопротивление ΔР=44кПа.

Результат подбора представлен в Приложении Г.

Подобран сдвоенный циркуляционный насос GrundfosUPSD 50-120F. Характеристика насоса представлена на рисунке Γ1.

4 ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ ВОЗДУХА

4.1 Определение требуемых воздухообменов

Расчёт воздухообмена в основном помещении производится графоаналитическим способом посредством I-d диаграммы о методике, которая представлена в Приложении Д.

Схема обработки воздуха в спортивном зале принимается с І-ой рециркуляцией.

1. В тёплый период года:

$$\begin{split} \mathbf{W}^{\text{тп}} = & \left(\frac{167}{1000}\right) \cdot 111 = 18,54 \, \text{кг/ч}; \\ \mathbf{Q}_{\text{п}}^{\text{тп}} = 3,6 \cdot 75570 + (2500 + 1,8 \cdot 23) \cdot 18,54 = 319162 \text{кДж/ч}; \\ \boldsymbol{\varepsilon}^{\text{тп}} = & \frac{319162}{18,54} = 17214,77 \, \text{кДж/кг}; \\ \mathbf{q}^{\text{тп}} = & \frac{75570}{4932,8} = 15,32 \, \text{Вт/м}^3; \\ \text{grad } t = 0,7 \, ^{\circ}\text{C/m}; \\ t_{\text{y}}^{\text{тп}} = 23 + 0,7 \cdot (8,1 - 2) = 27,27 \, ^{\circ}\text{C}; \\ t_{\text{п}}^{\text{тп}} = 23 - 2 = 21 \, ^{\circ}\text{C}; \end{split}$$

Рассчитывается расход приточного воздуха по полному теплу:

$$G_{\text{IIP}} = \frac{319162}{(52,5-45)} = 42554 \text{ kg/y}.$$

Для определения точки смеси составляется система уравнений: $G_{\mathit{ПP}} = G_{\mathit{H}} + G_{\mathit{pI}} \quad \text{и} \quad G_{\mathit{ПP}} \cdot I_{\mathit{C}} = G_{\mathit{H}} \cdot I_{\mathit{H}} + G_{\mathit{pI}} \cdot I_{\mathit{V}} \quad . \quad \text{Принимаем,} \quad G_{\mathit{H}} = 0,6 \cdot G_{\mathit{ПP}}$. Выводим из двух уравнений формулы по определению энтальпии точки $\mathrm{смесu:} I_{\mathit{C}} = \frac{0,6 \cdot G_{\mathit{\PiP}} \cdot I_{\mathit{H}} + (G_{\mathit{\PiP}} - 0,6 \cdot G_{\mathit{\PiP}}) \cdot I_{\mathit{V}}}{G_{\mathit{\PiP}}}.$

Проверяется условие расхода воздуха по санитарным нормам для $\text{ зрительных залов } (80 \cdot \mathbf{n}) \text{: } G_H \geq G_{H \min}$

25532≥880 условие выполняется, значит:

$$I_{C} = \frac{0.6 \cdot 42554 \cdot 54.8 + (42554 - 0.6 \cdot 42554) \cdot 52.9}{42554} = 54.04 \, \mathrm{кДж/кг};$$

Количество теплоты во втором воздухоподогревателе:

$$\mathbf{Q}_{\scriptscriptstyle \Pi}^{\scriptscriptstyle \Pi\Pi} = G_{\scriptscriptstyle \mathit{\PiP}} \cdot (I_{\scriptscriptstyle \mathit{\Pi}^{\scriptscriptstyle \circ}} - I_{\scriptscriptstyle O})$$
 ,кДж/ч;

$$Q_{II}^{TIT} = 42554 \cdot (43,9-38) = 251068 кДж/ч;$$

Количество холода в оросительной камере:

$$\mathbf{Q}_{\mathrm{X}}^{\mathrm{TII}} = G_{\mathit{\PiP}} \cdot (I_{\mathit{C}} - I_{\mathit{O}})$$
,кДж/ч;

$$Q_X^{\text{TII}} = 42554 \cdot (54, 2 - 38) = 689375 \, \text{кДж/ч}.$$

2. В холодный период года:

$$W^{XII} = \left(\frac{110}{1000}\right) \cdot 111 = 12,21 \text{ kg/y};$$

$$Q_{\Pi}^{X\Pi} = 3,6 \cdot 26074 + (2500 + 1,8 \cdot 15) \cdot 12,21 = 124721$$
кДж/ч;

$$\varepsilon^{\text{XII}} = \frac{124721}{12,21} = 10214$$
 кДж/кг;

$$q^{XII} = \frac{26074}{4932.8} = 5,28 \,\text{BT/m}^3;$$

grad $t = 0.4 \,^{\circ}\text{C/M}$;

$$t_y^{XII} = 15 + 0.3 \cdot (8.1 - 2) = 16.83 \,^{\circ}\text{C};$$

Из уравнения $G_{\mathit{\PiP}} = \frac{Q_{\mathit{\Pi}}}{I_{\scriptscriptstyle Y} - I_{\scriptscriptstyle \Pi}}$ выводится формула для определения

энтальпии приточного воздуха:
$$\mathbf{I}_{\Pi} = \frac{G_{\Pi P} \cdot I_{V} - Q_{\Pi}^{X\Pi}}{G_{\Pi P}}$$
 .

Энтальпия приточного воздуха:

$$I_{\Pi} = \frac{42554 \cdot 29, 2 - 124721}{42554} = 26,27 \, \text{кДж/кг};$$

$$t_{\text{TIP}} = 14.5^{\circ}\text{C}.$$

Энтальпия точки смеси:

$$I_{C} = \frac{0.6 \cdot 42554 \cdot (-25.3) + (42554 - 0.6 \cdot 42554) \cdot 29.7}{42554} = -3.3 \, \mathrm{кДж/кг};$$

Количество теплоты в первом воздухоподогревателе:

$$\mathbf{Q}_{\mathrm{I}}^{\mathrm{XII}} = G_{H} \cdot (I_{T} - I_{H})$$
,кДж/ч;

$$Q_I^{XII} = 25532 \cdot (6,4 + 25,3) = 809364 \, \text{кДж/ч};$$

Количество теплоты во втором воздухоподогревателе:

$$\mathbf{Q}_{\scriptscriptstyle \Pi}^{\scriptscriptstyle \mathrm{XII}} = G_{\scriptscriptstyle \mathit{\PiP}} \cdot (I_{\scriptscriptstyle \mathit{\Pi}^{\scriptscriptstyle \circ}} - I_{\scriptscriptstyle O})$$
,кДж/ч;

$$Q_{\text{II}}^{\text{XII}} = 42554 \cdot (25,2-14,9) = 438306$$
кДж/ч.

Расход вентилируемого воздуха по кратности, ${\rm M}^3/{\rm H}$, рассчитывается как

$$L = n \cdot V, \tag{4.8}$$

где n-кратность воздухообмена, ч⁻¹.

По действующим нормативам [3], [9], [20], [21], определяются кратности воздухообмена в помещениях комплекса.

Таблица 5 – Воздушный баланс

N₂	Наименование	ХΠ	ТΠ	Объём	Прито	к	Вытяжі	ка
пом	помещения	t _B ,°C	$t_{\rm B}$,°C	помещ., V, м ³	n, ч ⁻¹	L, м ³ /ч	n, ч ⁻¹	L, м ³ /ч
1	2	3	4	5	6	7	8	9
1	Кладовая уличного инвентаря	10	23	70,8	-	0	1	71
2	Душевая	25	23	6,5	-	0	75 м ³ /ч на 1 душ	75
3	Гардероб для персонала пищ.блока	25	23	18,4	5	92	5	92
4	Душевая	25	23	6,5	-	0	75 м ³ /ч на 1 душ	75
5	Гардероб для персонала пищ.блока	25	23	18,4	5	92	5	92
6	Кладовая инвентаря для зала	15	23	30,6	-	0	1	31
7	Кладовая	15	23	60,5	-	0	1	60
8	Сан.узел	19	23	6,9	-	0	100 м ³ /ч на 1 унитаз	200
9	Коридор	16	23	82,3	-	512	-	0
					того подвал:	696		696
104	Холодный цех	19	23	31,1	3	93	4	124
105	Доготовочная и раздаточная	19	23	134,2	По расчёту	2584	По расчёту	2584
106	Коридор	16	23	57,3	-	0		0
107	Сан.узел	19	23	4,2	-	0	100 м ³ /ч на 1 унитаз	100
108	Моечная	19	23	42,2	По расчёту	1478	По расчёту	1478
109	Спортивный зал	15	23	4932,8	По расчёту	35344	По расчёту	35344
110	Буфет	19	23	339,9	30 м3/ч на 1 чел	900	30 м3/ч на 1 чел	900
111	Вестибюль	16	23	90,0	2	188	-	0
112	Гардеробная	16	23	57,4	-	0	1	57
		1	ı		Ітого 1 этаж:	40587		40588
201	Тренерская	19	23	375,5	3	1239	2	751

202	Сервисная	16	23	52,2	-	0	-	0
203	Сан.узел	19	23	12,1	-	0	100 м ³ /ч на	100
204	Сан.узел	19	23	12,1	-	0	1 унитаз	100
205	Кладовая инвентаря	15	23	75,2	-	0	1	75
206	Кладовая инвентаря	15	23	159,5	-	0	1	160
207	Кладовая инвентаря	15	23	53,2	-	0	1	53
208	Венткамера	16	23	91,4	-	0	-	0
209	Галерея (коридор)	16	23	277,5	-	0	-	0
		•	•		Итого 2 этаж:	1239		1239

Воздушный баланс в здании уравнивается путём добавления расхода:

1 этаж — приток в вестибюль $188 \text{ м}^3/\text{ч}$, 2 этаж — приток в тренерскую $113 \text{ м}^3/\text{ч}$, подвал — приток в коридор $512 \text{ м}^3/\text{ч}$.

Таблица 6 – Местные отсосы от технологического оборудования столовой

Технологическое оборудование Наименование Кол, шт		Характеристика выделяющихся вредностей	Объём вытяжки, м ³ /ч	Обозначение местного отсоса	Обозна- чение систем ы
Местный отсос от пароконвектомата ПКА10-1/1ПМ	1	Пар, доля явных выделений от установленной мощности 120 Вт/кВт	760	Зонт ЭВП 1000×1000× 350(h)	B7/1
Местный отсос от котла КПЗ-60/7Т	1	Тепловыдления, доля явных выделений от установленной мощности 35Вт/кВт	254	Зонт ЭВП 1000×1000× 350(h)	B7/1
Местный отсос от плиты электрической ЭП-4П	1	Тепловыдления, доля явных выделений от установленной мощности 200Вт/кВт	1570	3онт ЭВЦ 1600×1000× 350(h)	B7/1
Местный отсос посудомоечной машины МПК-1400К	1	Влаговыделения – 294 г/ч к Вт	730	Зонт 1480×1020× 1110(h)	B7/2
Местный отсос от ванны моечной тройной BCM-3/350	1	Влаговыделения – 294 г/ч к Вт	748	Зонт 1550×670× 1160(h)	B7/2

4.2 Выбор принципиальных решений и конструирование

В здании запроектированы приточные, приточно-вытяжная и вытяжные системы с механическим побуждением.

Для спортивного зала была запроектирована приточно-вытяжная системаПВ1 с I рециркуляцией воздуха. Установкой является центральный кондиционер КЦКП-25 блочного исполнения. Подача воздуха осуществляется с высоты +6,300 горизонтальными струями при помощи воздухораспределительных решеток типа PВ-5400х600. Удаление воздуха происходит из верхней зоны на той же отметке через решётки НГН 400х600.

Воздуховоды из оцинкованной стали с теплоизоляцией K-FlexAir, которая была подобрана по [42].

В подсобных и административных помещениях запроектированы приточные системы П1-П4 с канальными приточными установками фирмы ВЕЗА - Airmate. Подача воздуха осуществлена сверху через диффузоры DVSE-Р.Прокладка воздуховодов скрыта подвесным потолком. В системах П1 и П4 установлены дополнительные канальные электронагреватели КЕА 125/2 и KEA200/2для догрева воздуха до нужной температуры притока.

Вытяжные механические системы B1-B6 осуществляют вытяжку воздуха из помещений кладовых, буфета, раздевалок, санузлов и тренерской. Вытяжка осуществляется с помощью крышных вентиляторов.

При пересечении воздуховодами систем вентиляции противопожарных перегородок установлены противопожарные клапаны.

4.3 Выбор и расчёт воздухораспределительных устройств

Выбираются воздухораспределители и их количество, в зависимости от расхода, месторасположения и вида струи, и выписываются их характеристики. Расчет ведётся по методике описанной в [22].

Выбирается для установкив спортивном залевоздухораспределительные устройства PB, в количестве N=12 шт. Из [23, табл 17.6] по расходу выбираем воздухораспределитель PB-5 с параметрами:

Температурный коэффициент n=1,9;

Скоростной коэффициент m=2,5;

Коэффициент местного сопротивления ξ =1,5;

Размер 600×400 мм;

Площадь живого сечения воздухораспределителя $F_0=0.24$ м².

Расход воздуха из 1-го BP $L_0 = 35344 / 12 = 2945$,33 м $^3/$ ч.

Скорость воздуха на выходе из PB-5 $\upsilon_0 = 2945,33/3600 \cdot 0,24 = 3,41 \,\mathrm{m/c}.$

Дальнобойность вертикальной струи x = 8,1-2=6,1 м.

Определяем коэффициент стеснения:

$$F_{II} = \frac{628,2}{12} = 52,35 \,\mathrm{m}^2;$$

$$F = \frac{0.24}{52.35} = 0.005 \text{ m}^2;$$

$$\bar{x} = \frac{6,1}{2,5 \cdot \sqrt{52,35}} = 0,3;$$

$$k_C = 0.8.$$

Определяется коэффициент неизотермичности струи:

$$\Delta t_0 = 23 - 20 = 3$$
°C;

$$H = 5,45 \cdot \frac{2,5 \cdot 3,41 \cdot \sqrt[4]{0,24}}{\sqrt{1,9 \cdot 3}} = 13,62;$$

$$\frac{H}{\sqrt{F_0}} = \frac{13,62}{\sqrt{0,24}} = 27,79 > 14,7.$$

Значение получилось в диапазоне 14,7< $\frac{H}{\sqrt{F_0}}$ <100, значит, коэффициент

рассчитывается по формуле (4.18):

$$k_H = \sqrt[3]{1 + \left(\frac{61}{13,62}\right)^2} = 1,063$$

Определяется коэффициент взаимодействия между струями:

$$\frac{x}{l} = \frac{6,1}{1,8} = 3,39;$$

$$k_B = 1$$
.

Максимальная скорость воздействия на основном участке струи на входе в рабочую зону:

$$\upsilon_{x} = \frac{2,5 \cdot 3,41 \cdot \sqrt{0,24}}{6,1} \cdot 0,8 \cdot 1 \cdot 1,063 = 0,58 \text{ m/c}$$

Проверка 1:

$$0,58 \le 1,2 \cdot 0,5$$
;

$$0,58 \le 0,60$$
.

Проверка 2:

$$\Delta t_x = \frac{1,9 \cdot 3 \cdot \sqrt{0,24}}{6,1} \cdot \frac{1}{0,8 \cdot 1,063} = 0,54 \,^{\circ}\text{C};$$

 $0,54 \le 2.$

Вывод: оба условия соблюдаются, а значит количество РВ-5 подобрано правильно.

В остальных помещениях расчет производится аналогично. Подобраны вытяжные и приточные решётки DVSEи DVSE-Pd=100-200 мм[28].

4.4Аэродинамический расчёт

Выполнение аэродинамического расчета системы вентиляции ведетсяпо методике представленной в [23].

Общие потери давления в системе ΔP , Πa , вентиляции возникают за счетудельных потерь на трения по длине и местных сопротивлений.

$$\Delta P = \sum (R \cdot l + Z), \qquad (4.22)$$

где R – потери давления за счет трения на участке, Па/м;

1- длинна участка сети, м;

 Z – потери давления на местные сопротивления на участке, Па, определяются по формуле:

$$Z = \sum \xi \cdot P_{\partial un}, \tag{4.23}$$

где $\sum \xi$ – сумма коэффициентов местных сопротивлений на участке, определяется по [23];

 $P_{\text{дин}}$ – динамическое давление в воздуховоде, Па.

После расчёта ответвления увязываются с магистралью по формуле:

$$\frac{\Delta P_{\scriptscriptstyle M} - \Delta P_{\scriptscriptstyle om}}{\Delta P_{\scriptscriptstyle M}} \cdot 100\% \le 15\% \,. \tag{4.24}$$

В случае невязки более 15% для уравнивания давлений устанавливается диафрагма, коэффициент местного сопротивления которой определяется по формуле:

$$\xi_{\partial} = \frac{\Delta P_{M} - \Delta P_{om}}{P_{\partial m}}.$$
 (4.25)

По значениям $\xi_{\text{д}}$ по таблицам [23, табл. 22.48 и 22.49] определяются диаметры отверстия диафрагмы.

Результаты аэродинамического расчёта и расчётные схемы систем ПВ1, П1-П4, В1-В6, В7/1, В7/2 приводятся в Приложение Е.

4.5Расчёт и подбор оборудования

Подбор воздухозаборной решётки начинается с определения требуемой площади живого сечения $F_{\text{треб}}$, м²:

$$F_{mpe\acute{0}} = L/3600 \cdot v, \tag{4.26}$$

где L – расход приточного воздуха. $M^3/4$;

v – допустимая скорость, м/с.

Скорость воздуха в живом сечении ВР принимается 4 м/с.

Количество воздухозаборных решёток, шт, определяется:

$$n = F_{Tpe6,peu} / f_{\mathcal{H},c} , \qquad (4.27)$$

где $f_{\text{ж.c}}$ – площадь живого сечения одной решётки, м 2 ;

Определяется действительная скорость воздуха в живом сечении воздухозаборных решеток:

$$v_{\text{deŭcms}} = L/3600 \cdot f_{\text{xc.c}} \cdot n. \tag{4.28}$$

Потери давления в жалюзийной решётке определяются по формуле:

$$P_{\partial e \tilde{u} c m s} = \xi \cdot \rho \cdot v_{\partial e \tilde{u} c m s}^{2} / 2, \qquad (4.29)$$

где ξ – КМС решётка равный 1,7;

 ρ – плотность воздуха, ρ =1,29кг/м³.

Рассчитывается воздухозаборная решётка для системы ПВ1:

$$F_{mpe\delta} = 35344 / 3600 \cdot 4 = 2,45 \,\mathrm{m}^2;$$

K установке принимаются воздухозаборные решётки компании «Вентпрофиль» [25]. Принимаются решетки P50 размерами 1,8×1,22м, $f_{\text{ж.c}}$ =1,25м 2 .

$$n = 2,45/1,25 = 1,96 \approx 2$$
 шт;
 $v_{\text{действ}} = 35344 /3600 \cdot 1,25 \cdot 2 = 3,93 \text{ м/c};$

$$P_{\text{deŭcms}} = 1.7 \cdot 1.29 \cdot 3.93^2 / 2 = 16.93 \,\Pi a.$$

Принимаются утеплённые клапаны [26]:

КВУ размер 1,8×1,4м, 2 шт, fфронт=2,56м2, количество лопаток 13 шт, количество ТЭНов 14 шт, суммарная мощность ТЭНов 5,6 кВт;

Рклап=20·2=40 Па.

Для систем П1-П4 подбор проводится аналогично.

В результате для П1 выбрана решетка ВР-НЗ 350х350 с потерями давления 18,5 Па. Для П2 выбрана решетка ВР-НЗ 600х400 с потерями 18,9 Па. Для П4 выбрана решетка ВР-НЗ 700х500 с потерями 20,3 Па.

Подбор приточных канальных установок произведён по [27] и приточно-вытяжной установки по [24] результаты представлены в Приложении Ж.

В системах П1 и П4 предусмотрена установка дополнительных электрический нагревателей KEA 125/2 и KEA 200/2.

Для поддержания температурного режима внутреннего воздуха в ТП года в здании запроектированы системы кондиционировании воздуха К1-К7. В качестве оборудования этих систем приняты кондиционеры фирмы «LESSAR», наружные блоки размещены на кровле.

В качестве холодильной машины для $\Pi B1$ будет применяться чиллер. Подбор чиллера происходит по требуемому количеству холодопроизводительности Q_X , кBт, которое находится по формуле:

$$Q_X = \frac{1,1 \cdot G_{\Pi P} \cdot (I_H - I_K)}{3600},\tag{4.30}$$

$$Q_X = \frac{1,1 \cdot 42554 \cdot (54,9 - 38)}{3600} = 219 \,\text{kBt}.$$

По каталогу подбирается Чиллер McQuay McEnergy SE XN 064.2, характеристики приводятся в Приложение И.

Подбор вентиляторов для механических систем вентиляции В1-В6 осуществлен по [29] по производительности и давлению. Результаты сведены в таблицу 6, характеристики представлены в приложении К.

Таблица 7 - Подбор вытяжных крышных вентиляторов

Система	РасходL, м ³ /ч	Потери Р, Па	Вентилятор
B1	346	249	VENTS VKH 4D 310
B2	450	257	VENTS VKH 4D 310
В3	751	220	VENTS VKH 4D 310
B4	957	413	VENTS VKH 4E450
B5	200	152	VENTS VKH 2E220
В6	286	236	VENTS VKH 2E220
B7/1	2584	84	VENTS VKH 6E500
B7/2	1478	117	VENTS VKH 4D 355

5 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ

Индивидуальный тепловой пункт является комплексом, находящимся внутри объекта, для транспортировки, регулирования и контроля теплоносителя от котельной к внутридомовым системам теплоснабжения, отопления и ГВС. Для простоты регулирования и более тщательного контроля систем, индивидуальные тепловые пункты оснащают автоматизацией. Раздел выполнен в соответствии [30].

Основные задачи контроля и автоматизации ИТП:

- 1. Обеспечение бесперебойной работы ИТП без постоянного присутствия человека;
- 2. Снижение энергозатрат при изменениях параметров наружного климата;
- 3. Предотвращение аварийных ситуаций.

Теплоноситель поступает по тепловой сети в ИТП из котельной, попадает в узел ввода, после чего проходит очистку в сетчатом фильтре.

Далее теплоноситель проходит узел учёта — тепловой счётчик, в который входят ультразвуковый расходомер SONO 1500 СТ, предназначенный для измерения и учёта теплоносителя, поступающего в здание, пара преобразователей температуры КТС-Б и тепловычислитель ТВ7-04.

«Конструктивно внутри корпуса расходомера типа SONO 1500 СТ, по краям, установлены два преобразователя попеременно выполняющие функции излучателя и приемника ультразвукового сигнала. Короткие ультразвуковые импульсы, попеременно посылаются в направлении потока и против него, для того чтобы получить разность времени прохождения сигнала. Величина разности времени пропорциональна скорости движения жидкости. Преобразователь, встроенный в расходомер, преобразует эту разность в импульсный сигнал.» [31].

Автоматический регулятор давлений AFP/VFG2 обеспечивает необходимый перепад давлений между подающей и обратной магистралью. Регулятор состоит из регулирующего фланцевого клапана, регулирующего блока с диафрагмой и пружиной для настройки перепада давлений. Принцип действия основан на воздействии разности давления на регулирующую диафрагму. Клапан закрывается при увеличении разности давлений и открывается при снижении. Устанавливается на подающем и обратном трубопроводе.

Подача теплоносителя в системы отопления обеспечивается сдвоенным циркуляционным насосом GrundfosUPSD 50-120F. Насос подобран в разделе Отопление, характеристика приведена в Приложении Γ.

Электронный регулятор ECL Comfort 310 обеспечивает необходимую температуру теплоносителя для систем отопления и теплоснабжения, за счет изменений температуры наружного воздуха. Изменения температур наружного воздуха, считываются с датчиков ESMT. Регулятор отправляет исполнительный сигнал на электропривод двухходового клапана VB2 для регулирования теплоносителя, в зависимости от температурных датчиков ESMU-100, установленных на подающем и обратном трубопроводе.

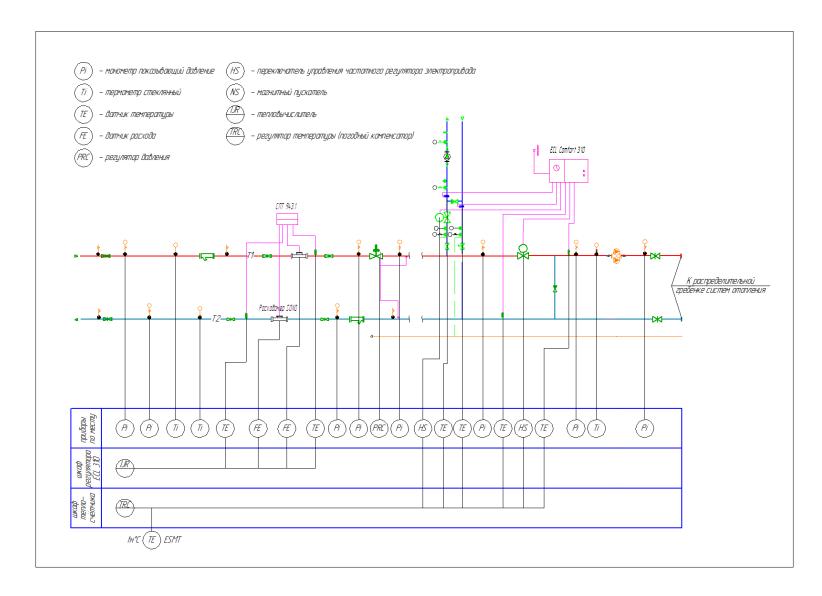


Рисунок 1 – Функциональная схема ИТП

6 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ

Монтаж всех внутренних санитарно-технических систем выполняется поточным методом, суть которого заключается в предварительной сборке элементов и узлов трубопроводов и выполнение по мере освобождения людей в бригаде с одной захватке на другой. На монтаж системы задействована 1 бригада монтажников вентиляционщиков, состоящая из 4 человек: 6,5,4 и 3 разрядов. А так же электросварщик ручной сварки 1 человека: 5 разряда. Внутренние сантехнические работы производятся в соответствии с[32], [33] и инструкций заводов-изготовителей оборудования.

Перед началом выполнения монтажно-сборочных работ санитарнотехнических систем необходимо иметь планы этажей, на которых изображены запроектированные воздуховоды, указано расположение воздухораспределителей, отмечено местоположение и отметка вентилятора, а так же выполнена привязка к строительным конструкциям.

Прежде чем приступить к монтажу необходимо убедится в выполнении подготовительных и скрытых работ на объекте. К ним относятся:

- устройство стен и перекрытий;
- устройство фундаментов и опор;
- установка закладных деталей для крепления воздуховодов;
- устройство монтажных проёмов и освещения;
- доступ к местам выполнения монтажных работ.

Монтаж системы вентиляции начинается с установки вентиляционного оборудования, к которому будет присоединяться система. Далее выполняют разметку мест креплений воздуховодов. Затем выполняется сборка под трассой воздуховодов прямых участков и фасонных частей в укрупнённые блоки. Осуществляется подъём и сборка укрупненных блоков воздуховодов на проектных отметках (сборка ведётся от вентиляторной установки). После сбора системы производят выверку и укрепление воздуховодов. Установку

вентиляционного оборудования, к которому воздуховоды не посредственно не присоединяются, выполняют параллельно с монтажом системы или до.

Перед сдачей в эксплуатацию систем вентиляции проводят испытание вентиляционных установок и наладку систем. Пусконаладочным работам предшествуют работы, выполняемые специализированными электромонтажными организациями, которые осуществляют подключение и проверку электропитания, направления вращения электродвигателей, защиты (установка щитов управления), а так же работо способность систем пожарной безопасности.

При регулировке систем на проектные расходы воздуха следует выполнить проверку соответствия фактического исполнения систем вентиляции И кондиционирования воздуха относительно проекта. фактических Осуществляют проверку соответствия характеристик техническим данным, в том числе: расход воздуха и полное давление, частота вращения, потребляемая мощность и прочее. Проверяется действие вытяжных устройств естественной вентиляции. Проводятся испытание и регулировка вентиляционной сети систем в целях достижения проектных показателей по расходу воздуха в воздуховодах, по воздухообмену в помещениях и определение в системах подсосов или потерь воздуха.

Отклонения показателей по расходу воздуха от предусмотренных исполнительной документацией после регулировки и испытания систем вентиляции и кондиционирования воздуха допускаются в пределах ±8% [33]-по расходу воздуха, проходящего через воздухораспределительные и воздухоприемные устройства общеобменных установок вентиляции, при условии обеспечения требуемого подпора воздуха в помещении.

Составляется комплектовочная ведомость стандартных деталей системы вентиляции по которой определяются фактические объёмы для определения трудоёмкости и происходит разбивка на укрупненные блоки.

Таблица 8 – Ведомость объёма работ

№	Наименование материала	ГОСТ, ТУ, ЕНиР	ед изм.	кол-во
1	2	3	4	5
	Монтаж прямых и фасонных частей			
	воздуховодов диаметром			
1	до 250 мм/периметром до 600 мм	ЕНиР 10 выпуск 5	\mathbf{M}^2	13,7
1	диаметром до 355 мм	ETIMI TO BBITTYCK 5	IVI	7,32
	диаметром до 560 мм или периметром до			20,5
	1600 мм			20,3
2	Монтаж ВР	ЕНиР 10 выпуск 11	ШТ	67
3	Установка воздухозаборных решёток	ЕНиР 10 выпуск 16	ШТ	5
	Установка приточных камер до 10 м3/ч			3
4	Установка приточно-вытяжную камеру	ЕНиР 10 выпуск 1	ШТ	1
	до 50 м3/ч			1
5	Материал для нестандартной гибкой вставки	ТУ 13.96.14-006-	M ²	1,2
	•	42924540-2017	M	
6	Рейка СТД 339 А.00.002	ТУ 36.19.24.07-36-87	ШТ	49
				0,23
		ГОСТ 9466-75		0,25
				0,19
				0,29
7	Электроды Э-42А, УОНИ 13/45		КΓ	0,29
				0,19
				0,19
				0,29
8	Заклёпка d=3мм	ГОСТ 10299-80		0,19 128
9	закленка d=3мм Гайка d=10мм	ΓΟCT 10299-80 ΓΟCT 5915-70	ШТ	32
10	т аика ц—томм Шпилька d=10мм l=1000мм	ΓΟCT 22032-76	ШТ	8
11	Z-образный профиль	ΓΟCT 13229-78	ШТ	32
12	Фланец опорный 2ФО-57 a×b=1000×500 мм	Серия 5.904-1	ШТ	2
13	Болты для фланцев d=8 мм	ΓΟCT 7798-70	ШТ	50
14	Гайки для фланцев d=8мм	ΓΟCT 5915-70	ШТ	50
15	Уплотнитель для фланца резина	ГОСТ 9833-73	ШТ	6

Требуемые нормы времени на затраты труда изложены в [34], [35], [36] и на основе их и фактических объёмах работ определяется трудоемкость по формуле:

$$T_p = \frac{H_{ep} \cdot V}{8} \,, \tag{1}$$

где $H_{\mbox{\scriptsize BP}}$ – норма времени на единицу объема работ, чел.-час;

V -фактический объем работ;

8 – время продолжительности смены, час.

Дополнительно предусматриваем затраты труда на основе накладных расходов в размере 10% и затраты на подготовительные работы в размере 4% от общей суммы трудоёмкости.

На основе этого расчёта заполняется ведомость затрат труда.

Таблица 9 – Ведомость затрат труда

	Шифр	Наименование	ед.	Норма	Трудоёмкость		Всего чел.	Состав звена
№				времени	Захватка			
		работ		на ед.	Объём	Чел.дни	дни	
1	2	3	4	изм 5	работ	7	8	9
1	<u> </u>	3	4		6 5,34		ð	9
		Монтаж прямых и фасонных частей воздуховодов	1 M ²	0,46		0,31	6,49	Монтажник систем вентиляции 6 разр 1 5 разр 1 4 разр 1 3 разр 1
				0,58	9,53	0,68		
				0,58	6,36	0,46		
				0,58 0,63	6,26 4,17	0,45 0,33		
				0,63	3,76	0,29		
				0,63	4,74	0,37		
				0,70	4,07	0,36		
1	E 10-			0,70	2,73	0,24		
	5.2			0,63	4,18	0,33		
		укрупненными		0,63	3,66	0,29		
		блоками		0,63	5,72	0,45		
				0,70	4,09	0,36		
				0,70	2,73	0,24		
				0,63	3,76	0,29		
				0,63	5,86	0,46		
				0,70	4,07	0,36		
				0,70	2,73	0,24		
	E 10- 11.2	Монтаж	1	0.94	10	1,17	1,17	5 разр 1
2		воздухо-	ШТ					3 разр 1
	E 10	распределителей	1					
3	E 10-	Установка	1	0,46	1	0,06	0,06	5 pasp 1
	26.2	виброизоляторов	ШТ					3 pasp 1
	E 34- 28.2	Монтаж вентилятора	1	45	1	5,625	5,625	6 разр 1 5 разр 1
4								4 pasp 1
	20.2	вентилитора	ші					3 pasp 1
	E 34-	Испытание	1					6 разр 1
5	28.3	вентилятора	ШТ	6,8	1	0,85	0,85	4 разр 1
	ГЭСН	Устновка	ші					r pusp. 1
6	20-02-	вставок гибких к	1 M ²	5,74	0,338	0,24	0,24	3 разр 1
	018-01	вентилятору						5 pusp. 1
	E 22- 1-9.11	Ручная дуговая сварка	10 M	2,2	105,7	29,07	29,07	Электросварщики
7								ручной сварки
								5 разр 1
-						Итого:	43,50	J pasp 1
	Накладными расходами 10%:						4,350	
-	Подготовительными работами 4%:							
-								
	Bcero:							

7 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА

7.1 Конструктивно-технологическая и организационно-техническая характеристика рассматриваемого технического объекта

Таблица 10 – Технологический паспорт физкультурно-оздоровительного комплекса

№	Техноло- гический процесс	Технологическая операция, вид выполняемых работ	Наименование должности работника, выполняющего технологический процесс, операцию	Оборудование, техническое устройство, приспособление	Материалы, вещества
1	Монтаж системы отопления	Соединение трубопроводов, установка креплений и отопительных приборов, прокладка трубопроводов	Монтажник санитарно- технических систем и оборудования	Молоток, линейка, рулетка, карандаш, уровень, шуруповерт, перфоратор, труборез, эл.инструмент, сварочный аппарат	Трубопроводы, радиаторы, крепления, фум лента, проволока, сварочные электроды
2	Монтаж системы вентиляции	Монтаж воздуховодов: сборка элементов системы и их крепление, установка оборудования	Монтажник санитарно- технических систем и оборудования	Рулетка, уровень брусковый, молоток слесарный, ключ гаечный двухсторонний, тиски слесарные, лестница- стремянка, сварочный аппарат	Укрупнённые блоки воздуховодов, воздухораспределители, виброизляторы, вентагрегаты, фланцы, болты, гайка, шпильки, сварочные электроды

7.2 Идентификация профессиональных рисков

Таблица 11- Идентификация профессиональных рисков.

№	Техноло- гическая операция, вид работ	Вредный производственный фактор	Источник вредного производственного фактора
1	Монтаж системы отопления	Повышенная запыленность и загазованность воздуха рабочей зоны; Острые кромки, заусенцы и шероховатость на поверхностях заготовок, инструментов и оборудования;Повышенный уровень шума на рабочем месте; Расположение рабочего места на значительной высоте относительно поверхности земли (пола); Недостаточная освещенность рабочей зоны.	Поверхности трубопровода при резке; Прокладка трубопроводов; Сварочный аппарат; Перфоратор.
2	Монтаж системы вентиляции	Повышенный уровень шума на рабочем месте; Острые кромки, заусенцы и шероховатость на поверхностях заготовок, инструментов и оборудования; Расположение рабочего места на значительной высоте относительно поверхности земли (пола);	Кромки воздуховодов при сборке; Сварочный аппарат; Ударные и режущие инструменты; Высокая отметка установки воздуховодов.

7.3 Методы и средства снижения профессиональных рисков

Таблица 12 — Организационно-технические методы и технические средства устранения негативного воздействия опасных и вредных производственных факторов

№	Опасный и вредный производственный фактор	Организационно-технические методы и технические средства защиты для устранения вредного производственного фактора	Средства индивидуальной защиты работника
1	Повышенная запыленность и загазованность воздуха рабочей зоны	Использование промышленных пылесосов; Обеспечение спецодеждой и средствами индивидуальной защиты;	Респираторы; Костюм из смешанных тканей для защиты от общих производственных загрязнений и механических воздействий; Ботинки кожаные с жёстким подноском; Очки защитные.
2	Острые кромки, заусенцы и шероховатость на поверхностях заготовок, инструментов и оборудования	Спецодежда и средства индивидуальной защиты;	Перчатки с полимерным покрытием.
3	Повышенный уровень шума на рабочем месте	Применение средств индивидуальной защиты для глушения шумов;	Противошумные наушники с креплением на защитной каске.
4	Расположение рабочего места на значительной высоте относительно поверхности земли (пола)	Применение лестниц и дополнительных предохранительные приспособления	Каска защитная; Ручные захваты, манипуляторы.
5	Недостаточная освещенность рабочей зоны	Использование источников дополнительного освещения.	Дополнительные осветительные приборы.

7.4 Обеспечение пожарной безопасности технического объекта

Таблица 13 – Идентификация классов и опасных факторов пожара.

№	Участок, подразделение	Оборудование	Класс пожара	Опасные факторы пожара	Сопутствующие проявления факторов пожара
	7 1 7		пожара	факторы пожара	
1	г.о. Воронеж. ФОК. Место сварки и резки трубопроводов и воздуховодов.	Труборез; сварочный аппарат; электроинструмент.	Класс Е	Пламя и искры	Образующиеся в процессе пожара осколочные фрагменты, крупногабаритные части разрушившихся строительных зданий, инженерных сооружений, энергетического оборудования, технологических установок, производственного и инженернотехнического оборудования

Класс Е - пожары, связанные с воспламенением и горением веществ и материалов электроустановок, находящихся под электрическим напряжением. Обоснование: возможность воспламенение метала при сварке; воспламенение оборудования; короткое замыкание, что приводит электрооборудование к выходу из строя.

Таблица 14 - Технические средства обеспечения пожарной безопасности.

Первичные средства пожаротушения	Мобильные средства пожаротушения	Установки системы пожаро- тушения	Средства пожарной автоматики	Пожарное оборудование	Средства индивидуальной защиты и спасения людей при пожаре	Пожарный инструмент (механизированный и немеханизированный)	Пожарные сигнализация, связь и оповещение.
Песок, вода, огнетушители	Пожарный автомобиль	Пожарные гидранты, щит со средствами пожаротушения	Не преду- смотрено	Огнетушители, щит со средствами пожаротушения	Противогазы, респираторы, пути эвакуации	Лом, топор, ведро, клещи, лопата, багор	Пожарные извещатели, пожарная сигнализация, телефоны «01» и «112»

Таблица 15 — Организационные (организационно-технические) мероприятия по обеспечению пожарной безопасности.

	Наименование	Наименование видов реализуемых	Предъявляемые нормативные
№	технологического	организационных (организационно-	требования по обеспечению пожарной
	процесса	технических) мероприятий	безопасности, реализуемые эффекты
		Должностные лица, ответственные за	
		обеспечение пожарной безопасности,	
	Marman arramana	проходят соответствующее обучение;	
1	Монтаж системы	Разработка правил о пожарной	
	отопления	безопасности на объекте;	
		Разработка плана эвакуации;	Мероприятия по обеспечению пожарной
		Проведение инструктажа с рабочими;	безопасности объекта разрабатываются
		Соблюдение противопожарных норм	в соответствии с требованиями
		и правил при устройстве, установке и	Федерального закона от 29 декабря 2004
		эксплуатации оборудования;	г. № 190-ФЗ «Градостроительный
		Работать в строго отведённых местах;	кодекс Российской Федерации»,
	3.6	Зонирование рабочих мест;	Федерального Закона от 21.12.1994 г. №
2	Монтаж системы	Согласование мест для проведения	69-ФЗ «О пожарной безопасности»
	вентиляции	временных сварочных работ с	
		ответственным за пожарную	
		безопасность;	
		Размещение первичных средств	
		пожаротушения.	

7.5 Обеспечение экологической безопасности технического объекта

Таблица 16 – Идентификация негативных экологических факторов технического объекта

Наименование технического процесса	Структурные составляющие производственно-технологического процесса	Негативное экологическое воздействие технического объекта на атмосферу	Негативное экологическое воздействие технического объекта на гидросферу	Негативное экологическое воздействие технического объекта на литосферу
Монтаж	Работа автотранспорта для	Вредные	Химически опасные	Воздействия на
систем	перевозки материалов,	выделения от	отходы	грунт
отопления и	сварочные работы,	сварочных	жизнедеятельности	1 5
вентиляции	монтажные работы	работ	человека	автотранспортом

Таблица 17 – Разработанные организационно-технические мероприятия по снижению негативного антропогенного воздействия технического объекта на окружающую среду.

Наименование технического объекта	г.о. Воронеж. ФОК. Монтаж отопления и вентиляции.
Мероприятия по снижению негативного антропогенного воздействия на атмосферу	Организация местных отсосов от мест проведения сварочных работ. Использование материалов в таком количестве, чтобы не превышать ПДК. Очистка, отсасываемого от рабочих мест, воздуха перед выбросом в атмосферу.
Мероприятия по снижению негативного антропогенного воздействия на гидросферу	Использование биотуалета.
Мероприятия по снижению негативного антропогенного воздействия на литосферу	Рекультивация земель. Вывоз строительного мусора в специально отведённое место. Использование контейнеров для сбора строительного мусора.

7.6 Заключение по разделу «Безопасность жизнедеятельности»

В данном разделе были рассмотрены технологические процессы, возникающие при монтаже внутренних санитарных систем здания, и составлен технологический паспорт.

На основании этого паспорта была проведена идентификация профессиональных рисков, на основании [37], и расписаны методы, технические средства для устранения рисков возникающих при монтаже систем, согласно [38], [39], [40], которых достаточно, чтобы обеспечить безопасность монтажа рабочим.

Была проведена идентификация класса пожароопасности, выявлены факторы и последствия возможной катастрофы, в связи, с чем были разработаны организационно-технические мероприятия по обеспечению пожарной безопасности заданного технического объекта и выбраны технические средства обеспечения пожарной безопасности, которые удовлетворяют действующие нормативные требования и обеспечивают объект защитой при возникновении несчастного случая.

Так же были идентифицированы негативные факторы выполняемых работ на состояние экологии окружающей среды и на этих основания разработаны организационно-технические мероприятия по обеспечению экологической безопасности на заданном техническом объекте.

ЗАКЛЮЧЕНИЕ

В данной бакалаврской работе был рассмотрен вопрос 0 проектирование инженерных систем отопления И вентиляции В физкультурно-оздоровительном комплексе.

Для этого был произведён анализ исходных данных и выполнен теплотехнических расчёт. На основе теплотехнического расчета были посчитаны теплопоступления и теплопотери здания, и составлен тепловой баланс.

Далее был выполнен расчёт системы отопления здания, подобраны приборы и расписана автоматизация теплового пункта.

После чего в здании проектировались системы вентиляции и кондиционирования воздуха, для которых был составлен воздушный баланс, посчитаны воздухораспределительные решётки и выполнен аэродинамический расчёт. так же было подобранно оборудование и выполнен раздел «Организация монтажных работ».

Так же в работе был проработан раздел «Безопасность и экологичность жизнедеятельности на объект», в котором были описаны основные нормы и правила работы на объекте при монтаже систем OB.

Все установленные задачи бакалаврской работы были выполнены, и основная цель по проектированию систем, для поддержания заданных параметров микроклимата в помещениях физкультурно-оздоровительного комплекса была достигнута.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. СП 131.13330.2012.- Строительная климатология. Актуализированная редакция СНиП 23-01-99 [Электронный ресурс]. Введ. 2013.- 01. 01. Режим доступа: http://docs.cntd.ru/document/1200095546
- 2. СП 50.13330.2012. Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 [Электронный ресурс]. Введ. 2013.- 07. 01. Режим доступа: http://docs.cntd.ru/document/1200095525
- 3. СП 44.13330.2011. Административные и бытовые здания. Актуализированная редакция СНиП 2.09.04-87 [Электронный ресурс]. Введ. 2011.- 05. 20. Режим доступа: http://docs.cntd.ru/document/1200084087
- 4. ГОСТ 30494-2011. Здания жилые и общественные. Параметры микроклимата в помещениях. МНТКС М.: Госстрой России, ГУП ЦПП, 1999. 10 с.
- 5. СП 2.3.6.1079-01.- Санитарно-эпидемиологические требования к организациям общественного питания, изготовлению и оборотоспособности в них пищевых продуктов и продовольственного сырья. [Электронный ресурс]. Введ. 2002.- 02. 01. Режим доступа:http://docs.cntd.ru/document/901802127
- 6. СанПиН 2.2.4.548-96 Гигиенические требования к микроклимату производственных помещений. [Электронный ресурс]. Введ. 1996.- 10. 01. Режим доступа: http://docs.cntd.ru/document/901704046
- 7. Каталог продукции Технониколь. [Электронный ресурс]. Режим доступа:https://nav.tn.ru/systems/ploskaya-krysha/tn-krovlya-fiks-beton/
- 8. Теплопотери здания: справочное пособие / Е. Г. Малявина. М.: ABOK-ПРЕСС, 2007.
- 9. СП 118.13330.2012 Общественные здания и сооружения. Актуализированная редакция СНиП 31-06-2009.[Электронныйресурс]. Введ. 2014.- 09. 01. Режим доступа: http://docs.cntd.ru/document/1200092705

- 10. ГОСТ 3262-75. Трубы стальные водогазопроводные. Технические условия. [Электронный ресурс]. Введ. 1977.- 01. 01. Режим доступа: http://docs.cntd.ru/document/gost-3262-75
- 11. Система Ekoplastik: Инструкция по монтажу. [Электронный ресурс]. Режим доступа: http://www.plasttermo.ru/wp-content/uploads/2015/12/montazh_ekoplastik.pdf
- 12. Технические характеристики VolcanoVR1. [Электронный ресурс]. Режим доступа: http://www.volcano-vr.ru/teploventilyator-volcano-vr1
- 13. Внутренние санитарно-технические устройства. В 3 ч. Ч.1. Отопление/ В. Н. Богословский, Б. А. Крупнов, А. Н. Сканави и др.; Под ред. И. Г. Староверова и Ю. И. Шиллера. 4-е изд., перераб. и доп. М.: Стройиздат, 1990.-344 с.: ил.- (Справочник проектировщика)
- 14. СП 60.13330.2016. Отопление, вентиляция и кондиционирование воздуха. Актуализированная редакция СНиП 41-01-2003. [Электронный ресурс]. Введ. 2017.-06.-17. Режим доступа: http://docs.cntd.ru/document/456054205
- 15. Технический каталог «Purmo». Радиаторы панельные. [Электронный ресурс]. Режим доступа: https://www.purmo.com/docs/Purmo-tehichesyj-katalog-radiatory-panelye-full_PR_07_2013_RU_PL.pdf
- 16. Технический каталог «Purmo». Канальные конвекторы.[Электронный ресурс]. Режим доступа: https://www.purmo.com/docs/Purmo-RU-Tekhnicheskiy-katalog-kanalnyye-konvektory-AQUILO-2017.pdf
- 17. Тепловой режим зданий / А.И. Ерёмкин, Т.И. Королева, Гриф МО. Ростов н/Д.: Феникс, 2008. 364 с.
- 18. Ручные фланцевые балансировочные клапаны «Данфосс» каталог.[Электронный ресурс]. Режим доступа: http://www.danfoss-rus.ru/catalog/sections_files/MSV_F2_2008.pdf
- 19. Балансировочные клапаны «BALLOREX» для систем отопления, охлаждения и кондиционирования. [Электронный ресурс]. Режим доступа: https://broen.ru/media/ballorex_2014.pdf

- 20. СП 332.1325800.2017.- Спортивные сооружения. Правила проектирования.[Электронный ресурс].— Введ. 2018-05-15. Режим доступа: http://docs.cntd.ru/document/556793895
- 21. Системы вентиляции и кондиционирования. Рекомендации по проектированию для производственных и общественных зданий / Ю.С. Краснов, М.: Термокул, Техносфера, 2006. 288 с.
- 22. Проектирование промышленной вентиляции: Справочник/ Б.М. Торговников, В.Е. Табачник и др. Киев.: Будивельник, 1983. 256 с.
- 23. Внутренние санитарно-технические устройства. В 3 частях. Часть 3. Вентиляция и кондиционирование воздуха. Книга 2 / Б. В. Баркалов, Н. Н. Павлов, С. С. Амирджанов и др.; Под ред. Н. Н. Павлова и Ю. И. Шиллера. 4-е изд., перераб. и доп. М.: Стройиздат, 1992.
- 24. Каталог продукции Вентмаш. [Электронный ресурс]. Режим доступа: https://www.ventmash.net/ventmash_docs/Catalog2014.pdf
- 25. Каталог оборудования Вентпрофиль. [Электронный ресурс]. Режим доступа: https://www.ventprofil.ru/product/aksessuary/reshetka-vozduhozabornaya
- 26. Каталог оборудования Инновент. [Электронный ресурс]. Режим доступа: https://innovent.ru/files/catalog/product/product/pdf/577ceda0e8030.pdf
- 27. Каталог оборудования Веза. [Электронный ресурс]. Режим доступа: http://www.veza.ru/catalog/konditsionery/
- 28. Каталог Русклимат «Сетевые элементы, воздухораспределительные устройства, гибкие воздуховоды и аксессуары». [Электронный ресурс]. Режим доступа: http://ventkont.ru/katalog/ventil/SHUFT%203%202015.pdf
- 29. Каталог вентиляторов «VENTS». [Электронный ресурс]. Режим доступа: https://vents-selector.com/fan
- 30. СП 41-101-95. Проектирование тепловых пунктов. [Электронный ресурс]. Введ. 1996.- 07. 01. Режим доступа: https://www.ohranatruda.ru/ot_biblio/normativ/data_normativ/4/4920/index.php
- 31. Паспорт. Расходомер ультразвуковой SONO 1500 СТ. [Электронный ресурс]. Режим доступа: https://www.c-o-

k.ru/library/instructions/danfoss/avtomatika-regulyatory-modulitermostaty/18939/64539.pdf

- 32. Журавлёв, Б.А. Справочник мастера-вентиляционщика. М., Стройиздат, 1983. 366 с.
- 33. СП 73.13330.2016. Внутренние санитарно-технические системы зданий. Актуализированная редакция СНиП 3.05.01-85 [Электронный ресурс]. Введ. 2013.- 01. 01. Режим доступа: http://docs.cntd.ru/document/456029018
- 34. ЕНиР Сборник E 10 Сооружение систем вентиляции, кондиционирования воздуха, пневмотранспорта и аспирации [Электронный Введ. 1986.-12. 05. Режим pecypel. доступа: http://files.stroyinf.ru/Data1/2/2571/index.htm
- 35. ЕНиР Сборник Е 34 Монтаж компрессоров, насосов и вентиляторов Сооружение систем вентиляции, кондиционирования воздуха, пневмотранспорта и аспирации [Электронный ресурс]. Введ. 1986.- 12. 05. Режим доступа: http://files.stroyinf.ru/Data1/2/2613/index.htm
- 36. ЕНиР Сборник Е 22-1 Сварочные работы [Электронный ресурс]. Введ. 1986.- 12. 05. Режим доступа: http://files.stroyinf.ru/Data1/2/2586/index.htm
- 37. ГЭСН Сборник 20 Вентиляция и кондиционирование воздуха. [Электронный ресурс]. Введ. 2009.- 11. 17. Режим доступа: https://www.defsmeta.com/rgsn/gsn_20.php
- 38. ГОСТ 12.0.003-74. ССБТ. Опасные и вредные производственные факторы. Классификация. [Электронный ресурс]. Введ. 1976.- 01. 01. Режим доступа: http://docs.cntd.ru/document/5200224
- 39. Приказ министерства здравоохранения и социального российской федерации от 16 июля 2007 г. № 477 об утверждении типовых норм бесплатной выдачи сертифицированных специальной одежды, специальной обуви и других средств индивидуальной защиты работникам, строительных, строительно-монтажных занятым на И ремонтностроительных работах с вредными и (или) опасными условиями труда, а

также выполняемых в особых температурных условиях или связанных с загрязнением. [Электронный ресурс]. - Введ. 2007.- 07. - 16. - Режим доступа: http://www.docipedia.ru/document/1721606

- 40. ГОСТ 12.4.051-87. ССБТ. Средства индивидуальной защиты органа слуха. Общие технические требования и методы испытаний. [Электронный ресурс]. Введ. 1987.- 10. 29. Режим доступа: http://docs.cntd.ru/document/1200006183
- 41. ГОСТ 12.4.011-89. ССБТ. Средства защиты работающих. Общие требования и классификация. [Электронный ресурс]. Введ. 1990.- 07. 01. Режим доступа: http://docs.cntd.ru/document/1200000277
- 42. Программа расчета K-Project . [Электронный ресурс]. Режим доступа: http://www.k-flex.ru/tehnicheskaya-podderzhka/programma-rascheta-k-project

ПРИЛОЖЕНИЕ А

Таблица А.1 – Конструкция наружного ограждения стен

№	Наименование материала	Толщина δ, м	Плотность ρ , $\kappa \Gamma / M^3$	Коэф. Теплопроводности λ,Вт/м·°С	Сопротивление. теплопередачи R, м ² .°C/Вт
1	Известково-песчанная штукатурка	0,012	1600	0,7	0,017
2	Железобетон	0,2	2500	1,92	0,104
3	Минерально-ватная плита	0,1	60	0,032	2,187
4	Воздушная прослойка	0,15	-	-	-
5	Сайдинг	0,07	-	-	-

$$R_0^{VCJI} = \frac{1}{8.7} + \frac{0.012}{0.7} + \frac{0.2}{1.92} + \frac{0.1}{0.032} + \frac{1}{12} = 3.44 \,\mathrm{m}^2 \cdot \mathrm{°C/Bt}.$$

$$R_0^{IIP} = 2,507 \cdot 0,8 \cdot 0,9 = 2,48 \,\mathrm{m}^2 \cdot ^{\circ} \mathrm{C/Bt}.$$

Таблица А.2 – Конструкция плоской кровли ТехноНиколь-Кровля Фикс Бетон

№	Наименование материала	Толщина δ, м	Коэф. Теплопроводности λ,Вт/м·°С	Сопротивление. теплопередачи R, м ² .°C/Вт
1	Железобетонная плита перекрытия	0,22	1,92	0,1145
2	Биполь ЭПП	0,0025	0,17	0,0147
3	Плиты из каменной ваты ТЕХНОРУФ Н ПРОФ	0,05	0,04	1,25
4	Плиты из каменной ваты ТЕХНОРУФ В ЭКСТРА	0,05	0,041	1,21
5	Минераловатный утеплитель ТЕХНОРУФ Н КЛИН 1,7%	0,05	0,04	1,25
6	Техноэласт ФИКС П	0,0025	0,17	0,0147
7	Техноэласт ПЛАМЯ СТОП	0,042	0,17	0,024

$$R_0^{VC/I} = \frac{1}{8,7} + 0,1145 + 0,0147 + 1,25 + 1,21 + 1,25 + 0,0147 + 0,024 + \frac{1}{12} = 4,076$$

 $M^2 \cdot {}^{\circ}C/B_T$.

$$R_0^{TIP} = 4,76 \cdot 0,82 \cdot 0,9 = 3,427 \,\mathrm{m}^2 \cdot {}^{\circ}\mathrm{C/Bt}.$$

Таблица А.3 – Ограждающая конструкция стен ниже уровня земли

№	Наименование материала	Толщина δ, м	Коэффициент теплопроводности λ, Вт/м·°С
1	Железобетонная фундаментная плита	0,6	1,92
2	Минерально-ватная плита	0,1	0,032
3	Битум	0,02	0,27

$$R^{CT} = 2.1 + \frac{0.1}{0.032} = 5.225 \,\mathrm{m}^2 \cdot \mathrm{°C/BT}.$$

Таблица А.4- Ограждающая конструкция полов на грунте

No	Наименование материала	Толщина δ, м	Коэффициент теплопроводности λ, Вт/м·°С
1	Линолеум на тканевой основе	0,005	0,29
2	Древесностружечная плита	0,02	0,13
3	Минерально-ватная плита	0,1	0,032
4	Железобетонная фундаментная плита	0,6	1,92
5	Битум	0,02	0,27

Разбивка полов на зоны представлена на рисунке А.1.

Сопротивление утеплителя равно:

$$R_{ymen.n} = \frac{0.1}{0.032} = 3.125 \,\mathrm{m}^2 \cdot \mathrm{°C/Bt}.$$

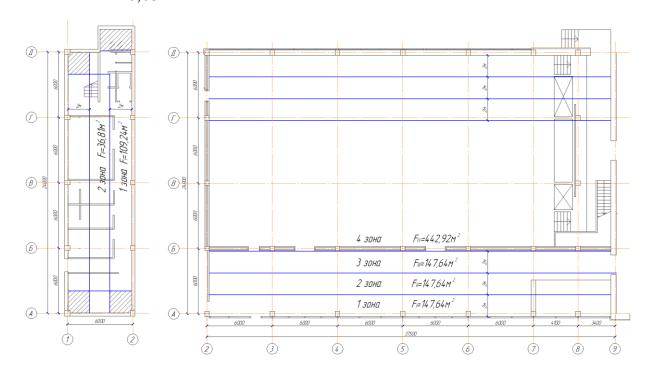


Рисунок А.1 – Разбивка полов, лежащих на грунте на зоны

Таблица А.5 – Конструкция межэтажного перекрытия

№	Наименование материала	Толщина δ, м	Плотность ρ , $\kappa \Gamma/M^3$	Коэф. Теплопроводности λ,Вт/м.°С	Сопротивление. теплопередачи R, м ² .°С/Вт
1	Железобетон	0,22	2500	1,92	0,114
2	Минерально-ватная плита	0,05	60	0,032	1,562
3	Древесностружечная плита	0,02	600	0,13	0,154
4	Напольная плитка	0,01	1600	0,58	0,017

$$R_0^{VCJI} = \frac{1}{8,7} + \frac{0.22}{1.92} + \frac{1}{8,7} = 2.07 \,\mathrm{m}^2 \cdot \mathrm{C/Bt}.$$

$$R_0^{IIP} = 2,07 \cdot 0,8 \cdot 0,9 = 1,495 \,\mathrm{m}^2 \cdot {}^{\circ}\mathrm{C/Bt}.$$

Таблица А.6 – Конструкция внутренних перегородок

№	Наименование материала	Толщина δ, м	Плотность ρ , $\kappa \Gamma/M^3$	Коэф. Теплопроводности λ,Вт/м·°С	Сопротивление. теплопередачи R, м ^{2.} °C/Вт
1	Известково-песчаный раствор	0,015	1600	0,7	0,021
2	Изделия из ячеистого бетона	0,09	600	0,22	0,4
3	Известково-песчаный раствор	0,015	1600	0,7	0,021

$$R_0^{VCJI} = \frac{1}{8.7} + \frac{0.015}{0.7} + \frac{0.09}{0.22} + \frac{0.015}{0.7} + \frac{1}{8.7} = 0.68 \,\mathrm{m}^2 \cdot ^{\circ} \mathrm{C/Bt}.$$

$$R_0^{\Pi P} = 0.344 \cdot 0.8 \cdot 0.9 = 0.49 \,\mathrm{m}^2 \cdot ^{\circ} \mathrm{C/Bt}.$$

приложение б

Таблица Б.1 – Теплопотери здания

	٩			Огра	ждающи	іе конст	рукции				.0-	Добаво теплопо		+B)	ои через с учётом Q(1+Σβ)
4118	ин 18	ه		Размер)ы, м	2	_ =			၁	эез О,	9		1)	че ₎ учё (1+
№ помещения	Наименование	Наименование	ориентация	a	h	Площадь, F, м2	Коэффициент теплопередачи к,Вт/м2•°С	tB	tH	Δt=(tB-tH)•n, °	Основные тепло- потери через ограждения Q, Вт	На ориентацию	На угловую комнату.	Коэффициент (1+β)	Теплопотери через ограждения с учётом добавочных Q(1+Σβ
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
							Подвал								
		НС	ЮЗ	5,88	1,10	6,5	0,403	10	-24	34	89	0		1	89
	Кладовая	НС грунт		5,88	2,00	11,8	0,191	10	-24	34	76	0		1	76
001	уличного	ПТ		5,88	4,19	24,6	0,668	10	19	-9	-148	0		1	-148
	инвентаря	ПЛ IIз				13,8	0,13	10	-24	34	61	0		1	61
		ПЛ IIIз				10,9	0,085	10	-24	34	31	0		1	31
															109
		НС	Ю3	2,26	1,10	2,5	0,403	25	-24	49	49	0		1	49
		НС грунт		2,26	2,00	4,5	0,191	25	-24	49	42	0		1	42
002,	Гардеробная и	BC		2,26	2,88	6,5	2,04	25	16	9	120	0		1	120
003	душевая	BC		4,19	2,88	12,1	2,04	25	10	15	369	0		1	369
		ПЛ IIз				5,3	0,13	25	-24	49	34	0		1	34
		ПЛ IIIз				4,2	0,085	25	-24	49	17	0		1	17
															631
		НС	Ю3	2,22	1,10	2,4	0,403	25	-24	49	48	0		1	48
004,	Гардеробная и	НС грунт		2,22	2,00	4,4	0,191	25	-24	49	42	0		1	42
005	душевая	BC		2,22	2,88	6,4	2,04	25	16	9	117	0		1	117
		ПТ		4,19	2,88	12,1	0,668	25	15	10	81	0		1	81

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
004,	Гардеробная и	ПЛ IIз				5,2	0,13	25	-24	49	33	0		1	33
005	душевая	ПЛ IIIз				4,1	0,085	25	-24	49	17	0		1	17
								•			•			•	338
		НС	ЮЗ	3,64	1,10	4,0	0,403	15	-24	39	63	0	0,05	1,05	66
		НС грунт		3,64	2,00	7,3	0,191	15	-24	39	54	0		1	54
		НС	ЮВ	5,85	1,10	6,4	0,403	15	-24	39	101	0,05	0,05	1,1	111
007	Кладовая	НС грунт		5,85	2,00	11,7	0,191	15	-24	39	87	0		1	87
007	Кладовая	НС	CB	3,64	1,10	4,0	0,403	15	-24	39	63	0,1	0,05	1,15	72
		НС грунт		3,64	2,00	7,3	0,191	15	-24	39	54	0		1	54
		ПЛ IIз				26,3	0,13	15	-24	39	133	0		1	133
		ПЛ IIIз				3,02	0,085	15	-24	39	10	0		1	10
															588
		НС	CB	1,81	1,10	2,0	0,403	19	-24	43	35	0,1		1,1	38
008	Туалет с	НС грунт		1,81	2,00	3,6	0,191	19	-24	43	30	0		1	30
008	умывальни-ком	ПЛ IIз				6,7	0,13	19	-24	43	37	0		1	37
		ПЛ IIIз				1,1	0,085	19	-24	43	4	0		1	4
															109
		НС	Ю3	2,00	1,10	2,2	0,403	15	-24	39	35	0	0,05	1,05	36
		НС грунт		2,00	2,00	4,0	0,191	15	-24	39	30	0		1	30
	Кладовая	HC	C3	2,90	1,10	3,2	0,403	15	-24	39	50	0,1	0,05	1,15	58
008a	уборочного	НС грунт		2,90	2,00	5,8	0,191	15	-24	39	43	0		1	43
	инвентаря	НС	CB	2,00	1,10	2,2	0,403	15	-24	39	35	0,1	0,05	1,15	40
		НС грунт		2,00	2,00	4,0	0,191	15	-24	39	30	0		1	30
		ПЛ IIз				11,6	0,13	15	-24	39	59	0		1	59
															295
		HC	ЮЗ	5,86	1,10	6,4	0,403	16	-24	40	104	0	0,05	1,05	109
		НС грунт		5,86	2,00	11,7	0,191	16	-24	40	90	0		1	90
		HC	C3	2,85	1,10	3,1	0,403	16	-24	40	51	0,1	0,05	1,15	58
009	Коридор и ЛК	НС грунт		2,85	2,00	5,7	0,191	16	-24	40	44	0		1	44
		HC	CB	15,78	1,10	17,4	0,403	16	-24	40	280	0,1		1,1	308
		НС грунт		15,78	2,00	31,6	0,191	16	-24	40	241	0		1	241
		BC		4,48	2,88	12,9	2,04	16	25	-9	-237	0		1	-237

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		НС	Ю3	1,40	2,88	1,4	0,403	16	-24	40	22	0		1	22
009	Vоринор и ПV	НД	Ю3	1,20	2,20	2,6	1,631	16	-24	40	172	0		1	172
009	Коридор и ЛК	ПЛ IIз				47,8	0,13	16	-24	40	248	0		1	248
		ПЛ IIIз				8,4	0,085	16	-24	40	28	0		1	28
															1084
							Первый эт	гаж							
104	Vararyyy	НС	ЮЗ	3,00	2,70	8,1	0,403	19	-24	43	140	0		1	140
104	Холодный цех	ПЛ		3,00	4,41	13,2	0,668	19	10	9	80	0		1	80
															220
105	Доготовочная	HC	Ю3	9,62	2,70	22,9	0,403	19	-24	43	396	0		1	396
103	и раздаточная	ОК	Ю3	2,20	1,42	3,1	2,000	19	10	9	56	0		1	56
															452
		НС	C3	3,40	2,70	9,2	0,403	16	-24	40	148	0,1	0,05	1,15	170
		НС	C3	3,00	2,70	4,6	0,403	16	-24	40	74	0,1		1,1	81
106	Коридор и ЛК	НД		1,60	2,20	3,5	1,631	16	-24	40	230	0		1	230
100	коридор и лис	НС	Ю3	6,45	2,70	17,4	0,403	16	-24	40	281	0	0,05	1,05	295
		НС	ЮЗ	2,26	2,70	2,6	0,403	16	-24	40	42	0		1	42
		НД		1,60	2,20	3,5	1,631	16	-24	40	230	0		1	230
															1047
108	Моечная	HC	Ю3	3,47	2,70	9,4	0,403	19	-24	43	162	0	0,05	1,05	170
100	тиос шия	HC	ЮВ	6,49	2,70	17,5	0,403	19	-24	43	304	0,05	0,05	1,1	334
			T		1	1		1	,		Ī		T	T	504
		HC	C3	34,90	6,72	71,7	0,403	15	-24	39	1127	0,1		1,1	1240
		ОК	C3	29,60	5,50	162,8	2,325	15	-24	39	14762	0,1		1,1	16238
	Спортивный	ПТ		34,90	18,00	628,2	0,291	15	-24	39	7129	0		1	7129
109	зал	ПЛ Із				70,0	0,191	15	-24	39	521	0		1	521
	5431	ПЛ IIз				70,0	0,13	15	-24	39	355	0		1	355
		ПЛ IIIз				70,0	0,085	15	-24	39	232	0		1	232
		ПЛ IVз				410,0	0,057	15	-24	39	911	0		1	911
	ı		T -		T	1		1	1		T		T		26627
110	Буфет	ОК	ЮВ	23,80	2,70	64,3	2,325	19	-24	43	6424	0,05		1,05	6746
-1.0	27401	ПЛ Із				47,7	0,191	19	-24	43	392	0		1	392

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		ПЛ IIз				47,7	0,13	19	-24	43	267	0		1	267
		ПЛ IIIз				47,7	0,085	19	-24	43	174	0		1	174
															7578
		ОК	ЮВ	6,00	2,70	16,2	2,325	16	-24	40	1507	0,05		1,05	1582
111	Вестибюль	ПЛ Із				12,0	0,191	16	-24	40	92	0		1	92
111	Бестиоюль	ПЛ IIз				16,9	0,13	16	-24	40	88	0		1	88
		ПЛ IIIз				27,0	0,085	16	-24	40	92	0		1	92
															1853
		ОК	ЮВ	7,11	2,70	19,2	2,325	16	-24	40	1785	0,05		1,05	1875
112	Гардеробная	ПЛ Із				15,0	0,191	16	-24	40	115	0		1	115
		ПЛ IIз				10,1	0,13	16	-24	40	53	0		1	53
															2042
							Второй эт	аж							
		HC	C3	6,60	4,02	26,5	0,403	19	-24	43	460	0,1	0,05	1,15	529
201	Тренерская	HC	ЮЗ	18,19	4,02	73,1	0,403	19	-24	43	1267	0	0,05	1,05	1331
		ПТ		6,15	17,84	109,7	0,291	19	-24	43	1373	0		1	1373
															3232
		НС	ЮЗ	4,4	4,02	17,7	0,403	16	-24	40	285	0	0,05	1,05	299
202	Сервисная	НС	ЮВ	4,55	4,02	18,3	0,403	16	-24	40	295	0,05	0,05	1,1	324
	_	ПТ		3,84	4,10	15,7	0,291	16	-24	40	183	0		1	183
															807
203	Corre	НС	ЮВ	1,02	4,02	4,1	0,403	19	-24	43	71	0,05		1,05	75
203	Санузел	ПТ		1,02	3,84	3,9	0,291	19	-24	43	49	0		1	49
															124
204	Сомирон	НС	ЮВ	1,02	4,02	4,1	0,403	19	-24	43	71	0,05		1,05	75
204	Санузел	ПТ		1,02	3,84	3,9	0,291	19	-24	43	49	0		1	49
															124
	Кладовая	НС	ЮВ	5,72	4,02	23,0	0,403	15	-24	39	361	0,05		1,05	379
205	инвентаря для зала	ПТ		5,72	3,84	22,0	0,291	15	-24	39	249	0		1	249
								_							629

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Кладовая	НС	ЮВ	12,00	4,02	48,2	0,403	15	-24	39	758	0,05		1,05	796
206	инвентаря для зала	ПТ		12,00	3,84	46,1	0,291	15	-24	39	523	0		1	523
															1319
	Кладовая	НС	ЮВ	4,08	4,02	16,4	0,403	15	-24	39	258	0,05		1,05	271
207	инвентаря для зала	ПТ		4,08	3,84	15,7	0,291	15	-24	39	178	0		1	178
															448
208	Розуткоморо	HC	ЮВ	6,93	4,02	27,9	0,403	16	-24	40	449	0,05		1,05	472
208	Венткамера	ПТ		6,93	3,84	26,6	0,291	16	-24	40	310	0		1	310
															781
209	Галерея	HC	Ю3	2,32	4,02	9,3	0,403	16	-24	40	150	0		1	150
209	т алерея	ПТ		2,32	40,10	93,0	0,291	16	-24	40	1083	0		1	1083
											•				1233
											•	Ита	ого по всему	дому:	52176
													Q omoni	пения:	54785

приложение в

Таблица В.1 – Гидравлический расчёт

№ уч.	Q _{уч} , Вт	G _{уч} , кг/ч	l, m	d, mm	w, m/c	R _ф , Па∕м	R_{ϕ} l, Па	Σξ	Рдин, Па	Ζ, Па	R _ф l+Z, Па
1	2	3	4	5	6	7	8	9	10	11	12
					Система отог	іления 1					
		·		Расчёт гла	вного циркул	іяционноі	го кольца				
1	24579	299	5,07	20	0,227	50	253,5	3,0	25,8	77,3	330,8
1,1	24579	299	63,70	32x5,4	0,3	45	2866,5	50,3	45,0	2263,5	5130,0
2	16386	200	16,75	20x3,4	0,3	155	2596,1	7,7	45,0	344,3	2940,3
3	8193	100	20,61	20x3,4	0,2	62	1277,8	35,2	20,0	703,0	3080,8
3'	8193	100	20,61	20x3,4	0,2	62	1277,8	28,2	20,0	563,0	2185,2
2'	16386	200	16,75	20x3,4	0,3	155	2596,3	7,7	45,0	344,3	2940,5
1,1'	24579	299	63,70	32x5,4	0,3	45	2866,5	50,3	45,0	2263,5	5130,0
1'	24579	299	5,07	20	0,227	50	253,5	3,0	25,8	77,3	330,8
		ΣІгл.к=	212,26							$\Sigma(R\phi l+Z)=$	22068
			Балансиров	очный клапан ус	танавливается	на давлен	ние: 44000-220	68=21932 Г	Ia		
			P	асчёт второстеп	енного цирку	уляционн	ого кольца С	O1			
1	24579	299	5,07	20	0,227	50	253,5	3,0	25,8	77,3	330,8
1,1	24579	299	63,70	32x5,4	0,3	45	2866,5	50,3	45,0	2263,5	5130,0
4	8193	100	3,31	20x3,4	0,2	62	205,2	30,3	20,0	606,0	1911,2
1	2	3	4	5	6	7	8	9	10	11	12
4'	8193	100	3,31	20x3,4	0,2	62	205,2	20,3	20,0	406,0	955,6
1,1'	24579	299	63,70	32x5,4	0,3	45	2866,5	50,3	45,0	2263,5	5130,0
1'	24579	299	5,07	20	0,227	50	253,5	3,0	25,8	77,3	330,8
		ΣІвтор.к=	144,16							$\Sigma(R\phi l+Z)=$	13788
			Балансиров	вочный клапан ус	станавливается	я на давле	ние: 22068-13	788=8280 П	a		
					Система отог	іления 2					
				Расчёт гла	вного циркул	іяционної	го кольца				
1	26828	1259	39,08	32	0,335	55	2149,6	3,0	56,1	168,3	2317,9
2	24684	1159	3,72	32	0,308	45	167,5	1,0	47,4	47,4	214,9

1	2	3	4	5	6	7	8	9	10	11	12
3	22746	1068	8,18	32	0,284	38	310,8	3,0	40,3	121,0	431,7
4	18526	870	13,80	32	0,23	26	358,8	3,0	26,5	79,4	438,1
5	13978	656	9,22	125x20,8	0,7	52	479,5	7,5	245	1837,5	2317,0
6	11673	548	8,52	125x20,8	0,6	37	311,8	7,1	180	1278,0	1589,8
7	10006	456	2,13	110x18,4	0,67	52	110,8	3,2	224,5	707,0	817,8
8	7380	337	11,28	110x18,4	0,5	30	338,4	19,1	125	2387,5	2725,9
9	6124	279	3,78	90x15	0,6	55	207,9	7,7	180	1377,0	1584,9
10	3860	176	5,82	75x12,5	0,52	57	332,9	7,7	135,2	1034,3	1367,2
11	3310	151	6,89	75x12,5	0,48	42	292,1	7,5	115,2	864,0	1156,1
12	2317	106	0,86	63x10,5	0,4	50	43,2	8,1	80,0	644,0	687,2
13	2033	93	7,21	63x10,5	0,4	40	290,0	7,1	80,0	568,0	858,0
14	1256	57	6,03	50x8,4	0,3	45	271,3	7,7	45,0	344,3	615,6
15	901	41	8,62	50x8,4	0,25	34	288,7	2,6	31,3	81,3	370,0
16	617	28	2,44	40x6,7	0,3	47	114,5	25,7	45,0	1154,3	3268,8
16'	617	28	2,74	40x6,7	0,3	47	128,6	17,7	45,0	794,3	922,9
15'	901	41	8,62	50x8,4	0,25	34	288,7	2,6	31,3	81,3	370,0
14'	1256	57	6,03	50x8,4	0,3	45	271,3	7,7	45,0	344,3	615,6
13'	2033	93	7,21	63x10,5	0,4	40	290,0	7,1	80,0	568,0	858,0
12'	2317	106	0,86	63x10,5	0,4	50	43,2	8,1	80,0	644,0	687,2
11'	3310	151	6,89	75x12,5	0,48	42	292,1	7,5	115,2	864,0	1156,1
10'	3860	176	5,82	75x12,5	0,52	57	332,9	7,7	135,2	1034,3	1367,2
9'	6124	279	3,78	90x15	0,6	55	207,9	7,7	180,0	1377,0	1584,9
8'	7380	337	11,28	110	0,5	30	338,4	19,1	125,0	2387,5	2725,9
7'	10006	456	2,13	110	0,67	52	110,8	3,2	224,5	707,0	817,8
6'	11673	548	8,52	125x20,8	0,6	37	311,8	7,1	180,0	1278,0	1589,8
5'	13978	656	9,22	125x20,8	0,7	52	479,5	7,5	245,0	1837,5	2317,0
4'	18526	870	13,80	32	0,23	26	358,8	3,0	26,5	79,4	438,1
3'	22746	1068	8,18	32	0,284	38	310,8	3,0	40,3	121,0	431,7
2'	24684	1159	3,72	32	0,308	45	167,5	1,0	47,4	47,4	214,9
1'	26828	1259	39,08	32	0,335	55	2149,6	3,0	56,1	168,3	2317,9
		ΣІгл.к=	275,47							$\Sigma(R\phi l+Z)=$	39176
			Балансиров	очный клапан ус	станавливаетс	я на давле	ние: 44000-39	176 = 4824 Па	<u></u>		

Продолжение таблицы В.1

1	2	3	4	5	6	7	8	9	10	11	12
			P	асчёт второстеп	енного цирку	ляционн	ого кольца С	O2			
1	26828	1259	39,08	32	0,335	55	2149,6	3,0	56,1	168,3	2317,9
17	2144	101	8,05	63x10,5	0,4	50	402,5	12,8	80,0	1024,0	1426,5
18	1072	50	1,21	50x8,4	0,3	45	54,5	25,4	45,0	1143,0	2901,1
18'	1072	50	1,08	50x8,4	0,3	45	48,6	38,4	45,0	1728,0	3776,6
17'	2144	101	8,05	63x10,5	0,4	50	402,5	12,8	80,0	1024,0	1426,5
1'	26828	1259	39,08	32	0,335	55	2149,6	3,0	56,1	168,3	2317,9
	Σ	ЕІвтор.кол=	96,56							$\Sigma(R\phi l+Z)=$	14166
			Балансиров	очный клапан ус	танавливается	на давлен	ние: 39176-141	66=25010 Г	Ia		

Расчетная схема СО1 G 200 1 16,75 (2°) G 100 1 20,61 Ø20×3,4 PPR G 100 1 2061 #20×3,4 PPR Krianai+ ¢20 NVNZ 2020B Фильтр Ø20 Valtec Шар. кр. ¢20 Valtec Воздушно-атапительный агрегат VOLCANO VR1 <u>G 299</u> 1 5,07

Рисунок В.1 – Расчётная схема СО1

К распределительной ј гребенке ИТП

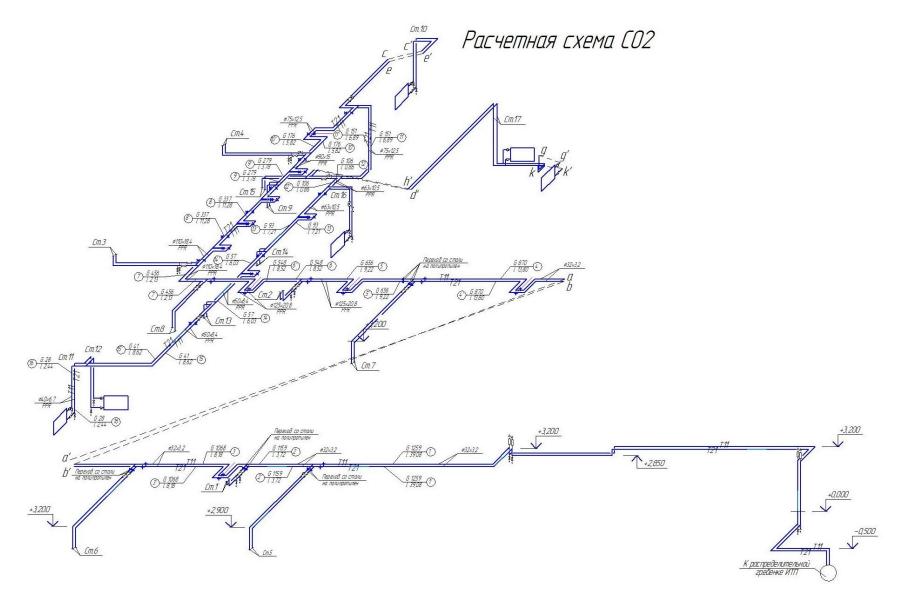


Рисунок В.2 – Расчётная схема СО

Таблица В.2 – Тепловой расчёт отопительных приборов

№ пом	Q ₀ , B _T	Спр, кг∕ч	tв, °С	tвx, °C	tвых, °С	Δt, °C	Опр, Вт	Тип прибора
		KI/4	C		стема ото	пления 1		<u> </u>
	9320	99,8	15	90	70	65	-	Volcano VR1 Qвозд=800м3/ч
109	9320	99,8	15	90	70	65	-	Volcano VR1 Qвозд=800м3/ч
	9320	99,8	15	90	70	65	-	Volcano VR1 Qвозд=800м3/ч
Σ	$Q_0 = 27959$							
				Си	стема ото	пления 2		
					1 эта		T	
104	231	10,5	19	90	70	60,45	353	Purmo RC11 300x400
105	237	10,8	19	90	70	60,45	353	Purmo RC11 300x400
	237	10,8	19	90	70	60,45	353	Purmo RC11 300x400
106	550	25,1	16	90	70	63,48	564	Purmo RC11 300x600
	550	25,1	16	90	70	63,48	564	Purmo RC11 300x600
108	265	12,1	19	90	70	60,45	353	Purmo RC11 300x400
	265	12,1	19	90	70	60,45	353	Purmo RC11 300x400
	1137	51,8	19	90	70	-	1218	AQUILO F1T 26 100 09 01
	1137	51,8	19	90	70 70	-	1218	AQUILO F1T 26 100 09 01
110	1137 1137	51,8 51,8	19 19	90 90	70	-	1218 1218	AQUILO F1T 26 100 09 01 AQUILO F1T 26 100 09 01
110	1137	51,8	19	90	70	-	1218	AQUILO F1T 26 100 09 01
	1137	51,8	19	90	70		1218	AQUILO F1T 26 100 09 01
	1137	51,8	19	90	70		1218	AQUILO F1T 26 100 09 01
	973	44,4	16	90	70	-	1218	AQUILO F1T 26 100 09 01
111	973	44,4	16	90	70	_	1218	AQUILO F1T 26 100 09 01
	1072	48,9	16	90	70	_	1218	AQUILO F1T 26 100 09 01
112	1072	48,9	16	90	70	_	1218	AQUILO F1T 26 100 09 01
	10,2	.0,>	10	, ,	2 эта	ж	1210	1120100 07 01
	565	14,7	19	90	70	60,45	575	Purmo RC11 400x500
	565	14,7	19	90	70	60,45	575	Purmo RC11 400x500
201	565	14,7	19	90	70	60,45	575	Purmo RC11 400x500
201	565	14,7	19	90	70	60,45	575	Purmo RC11 400x500
	565	14,7	19	90	70	60,45	575	Purmo RC11 400x500
	565	14,7	19	90	70	60,45	575	Purmo RC11 400x500
202	424	11,0	16	90	70	63,48	470	Purmo RC11 300x500
	424	11,0	16	90	70	63,48	470	Purmo RC11 300x500
203	130	3,4	19	90	70	60,45	353	Purmo RC11 300x400
204	130	3,4	19	90	70	60,45	353	Purmo RC11 300x400
205	660	17,2	15	90	70	64,48	671	Purmo RC11 300x700
206	693	18,1	15	90	70	64,48	671	Purmo RC11 300x700
	693	18,1	15	90	70	64,48	671	Purmo RC11 300x700
207	471	12,3	15	90	70	64,48	479	Purmo RC11 300x500
208	410	10,7	16	90	70	63,48	470	Purmo RC11 300x500
	410	10,7	16	90	70 70	63,48	470	Purmo RC11 300x500 Purmo RC11 300x700
209	647 647	16,9	16	90	70	63,48	657	Purmo RC11 300x700
	047	16,9	16	90		63,48	657	Purillo RC11 300x700
001	115	3,0	10	90	Подв 70	ал 69,52	424	Purmo RC11 300x400
002/003	663	17,3	25	90	70	54,39	692	Purmo RC11 300x900
002/005	355	9,3	25	90	70	54,39	384	Purmo RC11 300x500
004/003	617	16,1	15	90	70	64,48	671	Purmo RC11 300x700
008	115	3,0	19	90	70	60,45	353	Purmo RC11 300x400
008a	310	8,1	15	90	70	64,48	384	Purmo RC11 300x400
	285	7,4	16	90	70	63,48	376	Purmo RC11 300x400
000/777	285	7,4	16	90	70	63,48	376	Purmo RC11 300x400
009/ЛК	285	7,4	16	90	70	63,48	376	Purmo RC11 300x400
	285	7,4	16	90	70	63,48	376	Purmo RC11 300x400

приложение г

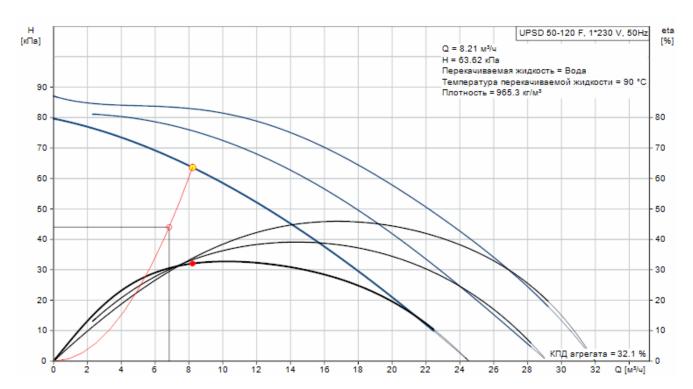


Рисунок $\Gamma.1$ – Характеристика насоса

приложение д

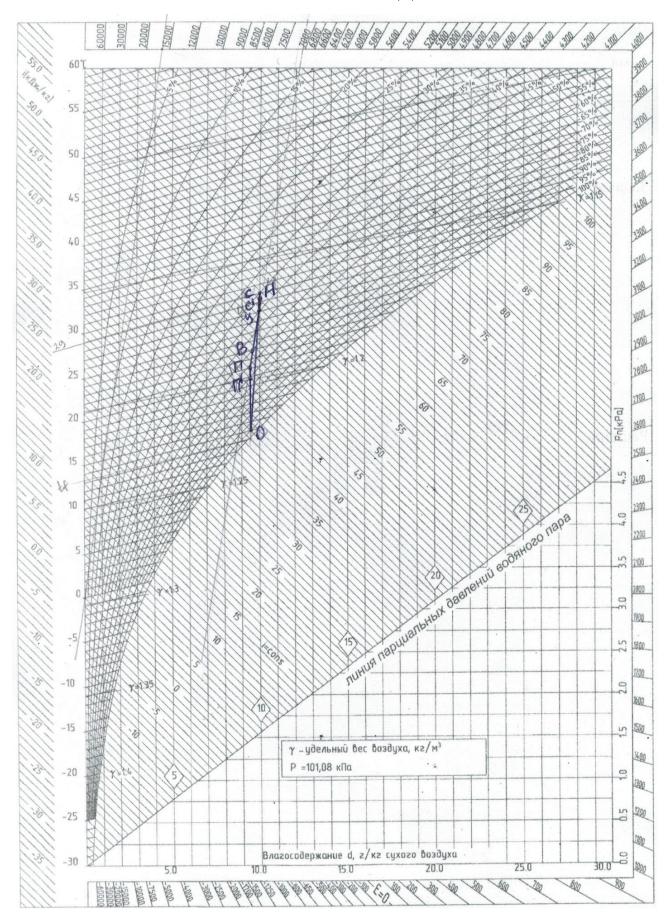


Рисунок Д.1 – Обработка воздуха с применением І рециркуляции в ТП

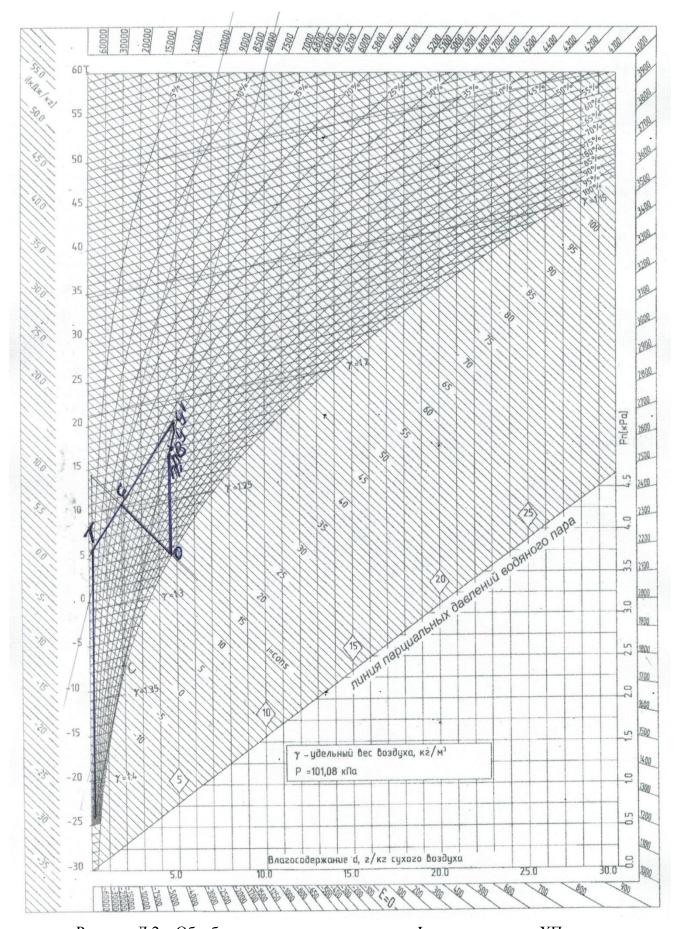


Рисунок Д.2 – Обработка воздуха с применением I рециркуляции в XII

приложение е

Таблица Е.1 – Аэродинамический расчет ПВ1

NC.	T 3,	,		Воздух	оводы		1	р. п. /	DI II	T 26	п	7 П	DL Z H	S(DL-7) H
№ уч.	L, м ³ /ч	l, m	а, мм	b, мм	f, m ²	V, m/c	d _{экв} , мм	R, Па/м	Rl, Πa	$\Sigma \xi$	р _{дин} , Па	Z , Πa	Rl+Z, Па	Σ(Rl+Z), Πa
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
						I	TB1 (Cnopmi	івный зал)						
							прит	ок						
BP1	2945	_	400	600	0,24	3,41	_	_	0	1,5	7,03	10,55	10,55	10,55
1	2945	2,07	600	500	0,3	2,73	545,5	0,137	0,28	4,49	4,50	20,20	20,49	31,03
2	5891	2,07	600	500	0,3	5,45	545,5	0,584	1,21	0,370	18,00	6,66	7,87	38,90
3	8836	2,07	800	600	0,48	5,11	685,7	0,363	0,75	0,4	15,82	6,33	7,08	45,98
4	11781	2,07	800	600	0,48	6,82	685,7	0,651	1,35	0,470	28,12	13,22	14,57	60,55
5	14727	2,07	1000	600	0,6	6,82	750,0	0,591	1,22	0,5	28,12	14,06	15,28	75,83
6	17672	2,07	1000	600	0,6	8,18	750,0	0,784	1,62	0,58	40,50	23,49	25,11	100,94
7	20617	2,07	1200	800	0,96	5,97	960,0	0,297	0,61	0,4	21,53	8,61	9,23	110,17
8	23563	2,07	1200	800	0,96	6,82	960,0	0,459	0,95	0,4	28,12	11,25	12,20	122,37
9	26508	2,07	1200	800	0,96	7,67	960,0	0,547	1,13	0,49	35,59	17,44	18,57	140,94
10	29453	2,07	1200	1000	1,2	6,82	1090,9	0,358	0,74	0,5	28,12	14,06	14,80	155,74
11	32399	2,07	1200	1000	1,2	7,50	1090,9	0,390	0,81	0,5	34,03	17,01	17,82	173,56
12	35344	22,56	1200	1000	1,2	8,18	1090,9	0,570	12,86	0,84	40,50	34,02	46,88	220,44
							КВТИВ							
13	2945	2,07	600	500	0,3	2,73	545,5	0,137	0,28	6,24	4,50	28,08	28,36	28,36
14	5891	2,07	600	500	0,3	5,45	545,5	0,584	1,21	1,160	18,00	20,88	22,09	50,45
15	8836	2,07	800	600	0,48	5,11	685,7	0,363	0,75	1,25	15,82	19,77	20,53	70,97
16	11781	2,07	800	600	0,48	6,82	685,7	0,651	1,35	1,32	28,12	37,12	38,47	109,44
17	14727	2,07	1000	600	0,6	6,82	750,0	0,591	1,22	1,1	28,12	30,93	32,16	141,60
18	17672	2,07	1000	600	0,6	8,18	750,0	0,784	1,62	1,18	40,50	47,79	49,41	191,01
19	20617	2,07	1200	800	0,96	5,97	960,0	0,297	0,61	1,2	21,53	25,84	26,45	217,46
20	23563	2,07	1200	800	0,96	6,82	960,0	0,459	0,95	1,2	28,12	33,75	34,70	252,16
21	26508	2,07	1200	800	0,96	7,67	960,0	0,547	1,13	1,27	35,59	45,20	46,34	298,49
22	29453	2,07	1200	1000	1,2	6,82	1090,9	0,358	0,74	1,32	28,12	37,12	37,86	336,36
23	32399	2,07	1200	1000	1,2	7,50	1090,9	0,390	0,81	1,32	34,03	44,92	45,72	382,08
24	35344	7,81	1200	1000	1,2	8,18	1090,9	0,570	4,45	0,21	40,50	8,50	12,96	395,04

Расчетная схема ПВ1

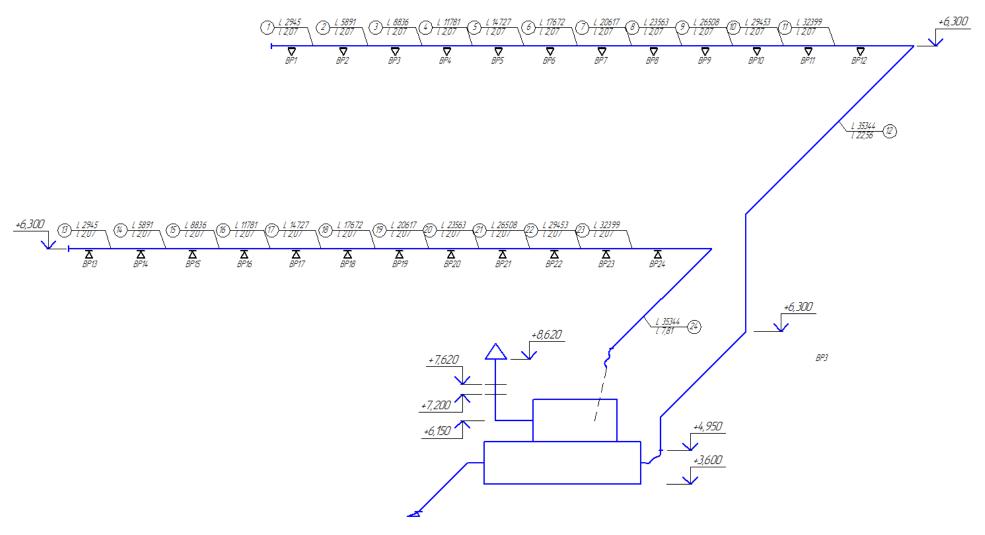


Рисунок Е.1 –Расчётная схема ПВ1

Таблица Е.2 – Аэродинамический расчет П1, В1, В2

Mo vyv	L, м ³ /ч	1		Воздухово	ды	р по/м	RI, Па	78	ъ Па	7 По	ри 7 по	Σ(D1+7) Па		
№ уч.	L, M /4	l, M	d, mm	f, m ²	V, m/c	R , Па/м	Ki, Ha	Σξ	р _{дин} , Па	Z , Πa	Rl+Z, Па	Σ(Rl+Z), Πa		
1	2	3	4	5	6	7	8	9	10	11	12	13		
						П1								
						магистра	ль				.			
BP1	92	_	125	0,012	2,08	_	0	0	2,63	0,00	0,00	160,00		
1	92	2,88	125	0,012	2,08	0,55	1,57	0,72	2,63	1,89	3,46	163,46		
2	184	3,30	125	0,012	4,17	1,95	6,44	0,37	10,51	3,89	10,32	183,79		
3	440	2,72	200	0,031	3,89	1,01	2,75	0,30	9,17	2,75	5,50	189,29		
4	696	9,28	200	0,031	6,16	2,13	19,77	0,42	22,94	9,63	29,40	218,69		
4'	696	3,53	200	0,031	6,16	2,13	7,52	0,27	22,94	6,19	13,71	232,40		
						ответвле								
$\Delta Ppacn=163,46\Pi a$														
BP2	92	_	125	0,012	2,08	_	0	0	2,63	0,00	0,00	160,00		
5	92	0,58	125	0,012	2,08	0,55	0,32	1,19	2,63	3,13	3,44	163,44		
				Невяз	вка с уч1: ((163	<i>, , ,</i>		0,012%<1	5%					
						1 <i>Ppacn=183</i>	1				T.			
BP3	256	_	125	0,012	5,80	_	0	0	20,34	0,00	0,00	160,00		
6	256	0,56	125	0,012	5,80	3,42	1,92	1,01	20,34	20,54	22,45	182,45		
				Невяз	зка с уч2: ((183	3,79-182,45)/	(183,79)*100	=0,72%<1	5%					
						<u> 1Ppacn=189</u>	,29Па							
BP4	256	_	125	0,012	5,80	_	0	0	20,34	0,00	0,00	160,00		
7	256	0,56	125	0,012	5,80	3,42	1,92	1,01	20,34	20,54	22,45	182,45		
				Невя	зка с уч3: ((18		/189,29)*100	0=3,6%<1	5%					
						B1								
						магистра								
1	60	2,73	100	0,008	2,12	0,80	2,19	0,56	2,73	1,53	3,72	53,72		
2	91	3,15	100	0,008	3,22	1,67	5,26	0,75	6,27	4,70	9,97	63,69		
3	183	1,87	100	0,008	6,48	5,56	10,40	0,41	25,37	10,40	20,80	84,49		
4	275	2,9	125	0,012	6,23	3,72	10,79	0,41	23,47	9,62	20,41	104,90		
5	346	11,11	125	0,012	7,84	5,83	64,77	2,14	37,15	79,49	144,27	249,16		
						ответвлен								
						∆Ppacn=53,	72Па							

6	31	0,785	100	0,008	1,10	0,26	0,20	0,66	0,73	0,48	0,68	50,68
				Нег	вязка с уч1: ((5			5,65%<15%)			
	1 02	0.705	100	0.000		$\Delta ppacn=63$,		0.66	- 41	4.22		
7	92	0,785	100	0,008	3,26	1,69	1,33	0,66	6,41	4,23	5,56	60,56
				Невя	нзка с уч2: <u>((</u> 63	,69-60,56)/6 ∆Ppacn=84,		2,/6%>15	%			
8	92	0,785	100	0,008	3,26	1,69	1,33	0,96	6,41	6,16	7.10	62.49
8	92	0,783	100	,		,	,	,		0,10	7,48	62,48
				пев	2 (1	<i>, , ,</i>	4,91) 100=2)=3,43 dд=71		70			
					7	_02,48)/0,41 ∆Ppacn=104		I IVI IVI				
9	71	0,785	100	0,008	2,51	1,04	0,82	0,96	3,82	3,67	4,48	74,48
				Невя	язка с уч4: ((10	4,9-74,48)/1	04,9)*100=2	8,99%>15	%			
					ξд=((104,9-	-74,48)/3,82)=7,96 dд=63	Змм				
						<i>B2</i>						
						магистра						
1	100	2,73	100	0,008	3,54	1,68	4,59	0,97	7,58	7,35	11,93	136,93
2	200	11,66	125	0,012	4,53	2,24	26,12	1,60	12,41	19,86	45,98	182,91
3	350	5,41	160	0,020	4,84	1,83	9,90	0,84	14,16	11,89	21,79	204,71
4	450	7,44	160	0,020	6,22	2,93	21,80	1,30	23,41	30,43	52,23	256,94
						ответвле						
_	T 400	1				1 <i>Ppacn=136</i>		1				
5	100	1,91	100	0,008	3,54	1,68	3,21	1,05	7,58	7,95	11,16	136,16
				Невя	зка с уч1: ((136		-	=0,56%<13	9%			
6	75	4,19	100	0,008	2,65	1 <i>Ppacn=182</i> 1,23	5,15	1,2	4,26	5,11	10,27	135,27
7	150	1,71	125	0,008	3,40	1,25	2,33	2,12	6,98	14,80	17,13	152,39
/	130	1,/1	123	/		,	,	,		14,00	17,13	132,39
				ПСВИЗ	• ((/	1Ppacn=135		-14,5070<1	. 5 /0			
8	75	0,88	100	0,008	2,65	1,23	1,08	1,33	4,26	5,67	6,75	131,75
				Невя	зка с уч6: ((13	5,27-131,75)/135,27*100	=2,6%<15	•	•		•
						1Ppacn=204	,71Πa					
9	100	9,82	100	0,008	3,54	1,68	16,50	2,33	7,58	17,65	34,15	194,15
				Невя	зка с уч3: ((204	1,71-194,15)	/204,71*100	=5,18% < 15	5%			

Расчетная схема П1

Расчетная схема В1

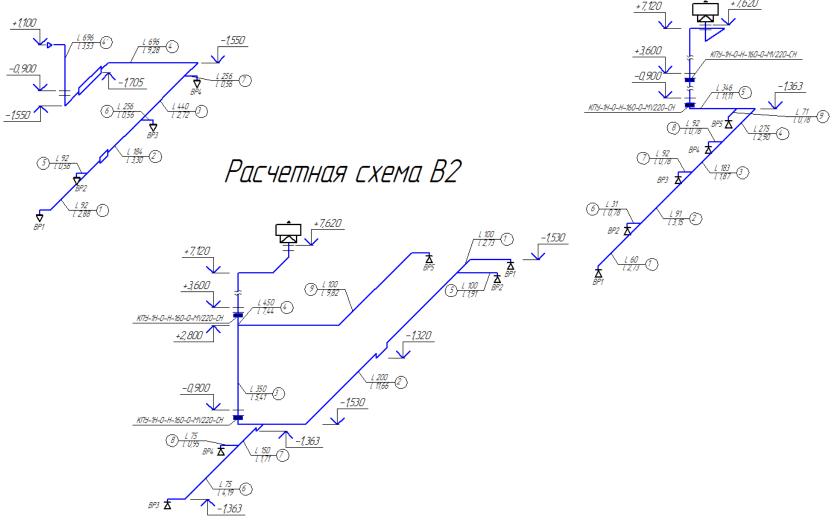
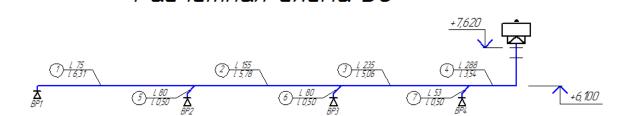


Рисунок Е.2 – Расчётные схемы П1, В1, В2


Таблица Е.3 – Аэродинамический расчет П2, В3, В5, В6

№ уч.	L, м ³ /ч	l, м	Воздуховоды			R, Па/м	Rl, Па	Σξ	р _{дин} , Па	Ζ, Па	Rl+Z, Па	Σ(Rl+Z), Πa
	·		d, mm	f, m ²	V, m/c		,	•			Í	`
1	2	3	4	5	6	7	8	9	10	11	12	13
П2												
магистраль												
BP1	248	_	200	0,031	2,19		0	0	0,00	0,00	0,00	75,00
1	248	2,6	200	0,031	2,19	0,32	0,82	0,76	2,91	2,21	3,03	78,03
2	496	2,63	200	0,031	4,38	1,05	2,76	0,75	11,63	8,72	11,48	89,52
3	743	3,24	250	0,049	4,21	0,83	2,69	0,73	10,72	7,82	10,52	100,03
4	991	2,27	250	0,049	5,61	1,45	3,29	0,74	19,05	14,10	17,39	117,42
5	1239	3,78	600×400	0,24	1,43	0,05	0,20	0,09	1,24	0,11	0,31	117,73
5'	1239	2,67	600×400	0,24	1,43	0,05	0,14	0,21	1,24	0,26	0,40	118,14
ответвления												
	- 10	1 1		T		Ppacn=78,0						
BP2	248	-	200	0,031	2,19	_	0	0	0,00	0,00	0,00	75,00
6	248	0,86	200	0,031	2,19	0,32	0,27	0,91	2,91	2,65	2,92	77,92
Невязка с уч1: ((78,03-77,92)/78,03)*100=0,12%<15%												
		1 1		T		<i>Ppacn</i> =89,5		<u> </u>				
BP3	248	-	200	0,031	2,19	_	0	0	0,00	0,00	0,00	75,00
7	248	0,86	200	0,031	2,19	0,32	0,27	1,11	2,91	3,23	3,50	78,50
				Невязка		,52-78,5)/89,		.,31%<15%	<u> </u>			
	- 10	1 1		T		Ppacn=100,0						
BP4	248	-	200	0,031	2,19	_	0	0	0,00	0,00	0,00	75,00
8	248	0,86	200	0,031	2,19	0,32	0,27	1,12	2,91	3,26	3,53	78,53
					, ,,	,03-75,27)/10	· /		%			
				ξJ		75,27)/2,91)=	•	4мм				
DE 5	.		000	0.021		Ppacn=117, ₄		_ ^	1 0 00	0.00		
BP5	248	-	200	0,031	2,19	- 0.22	0	0	0,00	0,00	0,00	75,00
9	248	0,86	200	0,031	2,19	0,32	0,27	1,09	2,91	3,17	3,44	78,44
Невязка с уч2: ((117,42-78,44)/117,42)*100=33,19%>15%												
ξд=((117,42-78,44)/2,91)=13,39 dд=115мм												
<i>B3</i>												
магистраль												

1	125	3,11	125	0,012	2,83	0,91	2,83	0,94	4,86	4,57	7,40	132,40
2	250	2,54	125	0,012	5,67	3,27	8,31	0,55	19,44	10,69	19,00	151,40
3	375	1,9	160	0,020	5,19	2,03	3,86	1,67	16,30	27,22	31,07	182,47
4	751	1,07	200	0,031	6,64	2,49	2,66	1,30	26,70	34,71	37,38	219,85
ответвления												
$\Delta Ppacn=182,47\Pi a$												
5	125	3,11	125	0,012	2,83	0,91	2,83	0,94	4,86	4,57	7,40	132,40
6	250	2,54	125	0,012	5,67	3,27	8,31	0,55	19,44	10,69	19,00	151,40
7	375	1,89	160	0,020	5,19	2,03	3,84	1,67	16,30	27,22	31,05	182,45
Невязка с уч3: ((182,47-182,45)/182,47*100=0,11%<15%												
$\Delta Ppacn=132,4\Pi a$												
8	125	0,56	125	0,012	2,83	0,91	0,51	0,91	4,86	4,42	4,93	129,93
Невязка с уч1: ((132,4-129,93)/132,4)*100=1,86%<15%												
$\Delta Ppacn=151,4\Pi a$												
9	125	0,56	125	0,012	2,83	0,91	0,51	1,91	4,86	9,28	9,79	134,79
Невязка с уч2: ((151,4-134,79)/14,91)*100=10,97%<15%												
						Ppacn=132,						
10	125	0,56	125	0,012	2,83	0,91	0,51	0,91	4,86	4,42	4,93	129,93
Невязка с уч5: ((132,4-129,93)/132,4)*100=1,86%<15%												
	1	1		ľ		Ppacn=151,		ı		1		
11	125	0,56	125	0,012	2,83	0,91	0,51	1,91	4,86	9,28	9,79	134,79
Невязка с уч6: ((151,4-134,79)/14,91)*100=10,97%<15%												
						B5						
	1			ı		магистрал		1		1	, ,	
1	100	1,73	125	0,012	2,26	0,625	1,08	0,76	3,10	2,36	3,44	128,44
2	200	2,02	125	0,012	4,53	2,270	4,59	1,51	12,41	18,74	23,33	151,77
ответвления												
$\Delta Ppacn=128,44\Pi a$												
3	100	0,72	125	0,012	2,26	0,625	0,45	0,91	3,10	2,82	3,27	128,27
Невязка с уч1: ((128,44-128,27)/128,44*100=0,13%<15%												
B6												
магистраль												
1	75	6,31	100	0,008	2,65	1,170	7,38	0,66	4,26	2,81	10,20	120,20
2	155	5,78	100	0,008	5,48	4,660	26,93	0,63	18,20	11,47	38,40	158,60
3	235	5,06	125	0,012	5,32	2,870	14,52	0,54	17,14	9,25	23,78	182,37

4	288	3,54	125	0,012	6,52	4,260	15,08	1,51	25,74	38,86	53,94	236,31
	ответвления											
$\Delta Ppacn=120,2\Pi a$												
5	80	0,5	100	0,008	2,83	1,350	0,68	1,01	4,85	4,90	5,57	115,57
	Невязка с уч1: $((120,2-115,57)/120,2*100=3,85\%<15\%$											
$\Delta Ppacn=158,6\Pi a$												
6	80	0,5	100	0,008	2,83	1,350	0,68	1,11	4,85	5,38	6,06	136,06
	Невязка с уч2: ((158,6-136,06)/158,6)*100=14,2%<15%											
	$\Delta Ppacn=182,37\Pi a$											
7	53	0,5	100	0,008	1,88	0,596	0,30	1,61	2,13	3,43	3,72	113,72
	Невязка с уч3: ((182,37-113,72)/182,37)*100=68,65%>15%											

Расчетная схема ВЗ Расчетная схема П2 +6,720 Расчетная схема В5 Расчетная схема В6

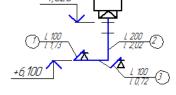
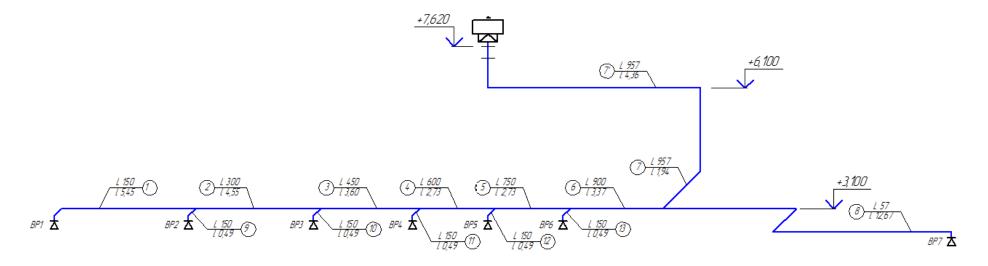


Рисунок Е.З –Расчётные схемы П2, В3, В5, В6


Таблица Е.4 – Аэродинамический расчет П4, В4

No	L, м ³ /ч l, м Воздуховоды					R, Па/м	рі п.	V 8	" Па	7 Па	Rl+Z, Па	У (D 11- Z). П 2
№ уч.	L, M /Ч	1, M	d, мм	f, m ²	V, м/с	K, IIa/M	Rl, Πa	Σξ	р _{дин} , Па	Ζ, Па	RI+Z, IIa	Σ(Rl+Z), Πa
1	2	3	4	5	6	7	8	9	10	11	12	13
						Π 4	1					
		1		1	ı	магист		1			1	
BP1	150	_	160	0,020	2,07	_	0	0	0,00	0,00	0,00	50,00
1	150	0,9	160	0,020	2,07	0,399	0,36	0,76	2,60	1,98	2,34	52,34
2	300	4,38	160	0,020	4,15	1,430	6,26	0,86	10,40	8,95	15,21	67,55
3	450	4,31	160	0,020	6,22	2,870	12,37	0,95	23,41	22,24	34,61	102,15
4	600	4,31	200	0,031	5,31	2,310	9,96	0,89	17,04	15,17	25,13	127,28
5	750	4,01	200	0,031	6,63	2,490	9,98	0,65	26,63	17,31	27,30	154,58
6	900	4,01	200	0,031	7,96	3,500	14,04	0,67	38,35	25,70	39,73	194,31
7	994	2,01	500×250	0,125	2,21	0,157	0,32	0,7	2,95	2,07	2,38	196,69
8	1088	7,13	500×250	0,125	2,42	0,217	1,55	1,34	3,54	4,74	6,29	202,97
						ответвл	тения					
						∆Ppacn=.	52,34Па					
BP2	150	_	160	0,020	2,07	_	0	0	0,00	0,00	0,00	50,00
9	150	0,2	160	0,020	2,07	0,399	0,08	0,78	2,60	2,03	2,11	52,11
				Невя	изка с уч1: ((52,34-52,1)		0=0,43%<	<15%			
						∆Ppacn=0						
BP3	150	_	160	0,020	2,07	_	0	0	0,00	0,00	0,00	60,00
10	150	0,62	160	0,020	2,07	0,399	0,25	1,31	2,60	3,41	3,65	63,65
				Невя	язка с уч2: (((67,55-63,6)	, , ,	00=3,9%<	:15%			
					T	∆Ppacn=1	02,15Па					
BP4	150	_	160	0,020	2,07	_	0	0	0,00	0,00	0,00	50,00
11	150	0,62	160	0,020	2,07	0,399	0,25	1,31	2,60	3,41	3,65	53,65
				Невязк	, ((02,15-53,65	, ,		%<15%			
	ξ д= ((102,15-53,65)/2,6)=15,6 dд=89мм											
		T		1	T	∆Ppacn=1		T	·			
BP5	150	_	160	0,020	2,07	_	0	0	0,00	0,00	0,00	50,00
12	150	0,62	160	0,020	2,07	0,399	0,25	1,71	2,60	4,45	4,69	54,69
				Невязк	, ((27,28-54,69	, , ,		<u>%>15%</u>			
					ξд=((127	,28-54,69)/2	,6)=14,81 dz	ц=89мм				

						∆Ppacn=1	54,58Πa					
BP6	150	_	160	0,020	2,07	-	0	0	0,00	0,00	0,00	50,00
13	150	0,62	160	0,020	2,07	0,399	0,25	1,71	2,60	4,45	4,69	54,69
				Невязк	• \\	54,58-54,69			6>15%			
					ξд=((154	,58-54,69)/2	<u> </u>	=89мм				
	T				T	∆Ppacn=1		1				1
BP7	94	_	100	0,008	3,33	_	0	0	0,00	0,00	0,00	150,00
14	94	0,62	100	0,008	3,33	1,560	0,97	1,91	6,69	12,78	13,75	163,75
				Невязк	а с уч6: ((19	94,31-163,75		00=14,729	<u>%<15%</u>			
220	Ι					∆Ppacn=1						1.70.00
BP8	94	-	100	0,008	3,33	-	0	0	0,00	0,00	0,00	150,00
15	94	0,62	100	0,008	3,33	1,560	0,97	1,91	6,69	12,78	13,75	163,75
				Невязк	- ' '	06,69-163,75	, , ,		%>15%			
					ξд=((196,	69-163,75)/6	<u>, , , , </u>	д=69мм				
						<i>В</i> 4						
1	150	5,45	160	0,020	2,07	0,41	2,25	1,21	2,60	3,15	5,39	155,39
2	300	4,55	160	0,020	4,15	1,39	6,32	0,75	10,40	7,80	14,13	169,52
3	450	3,6	160	0,020	6,22	2,92	10,51	0,80	23,41	18,73	29,24	198,76
4	600	2,73	200	0,031	5,31	1,64	4,48	1,10	17,04	18,75	23,23	221,98
5	750	2,73	200	0,031	6,63	2,49	6,80	1,14	26,63	30,36	37,16	259,14
6	900	3,37	200	0,031	7,96	3,50	11,80	1,12	38,35	42,95	54,75	313,89
7	957	1,94	200	0,031	8,47	4,16	8,07	1,7	43,36	73,72	81,79	395,68
7'	957	4,36	300×250	0,075	3,54	0,54	2,36	1,93	7,60	14,67	17,03	412,71
						ответв.	пения					
						∆Ppacn=3	95,68Па					
8	57	0,49	100	0,008	2,02	0,71	0,35	2,53	2,46	6,23	6,58	181,58
				Невязк	а с уч 7: ((3 9	95,68-181,58	<i>'</i>	$00=5\overline{0,349}$	%>15%			
						∆Ppacn=1						
9	150	0,49	160	0,020	2,07	0,40	0,20	1,34	2,60	3,49	3,68	153,68
				Невяз	ка с уч1: ((1	155,39-153,6		100=1,1%	<15%			
						∆Ppacn=1			1			
10	150	0,49	160	0,020	2,07	0,40	0,20	1,46	2,60	3,80	3,99	153,99
				Невязк	а с уч2: ((1	69,52-153,9	9)/169,52)*	100=9,16%	6<15%			

	ΔPpacn=198,76Πa											
11	150	0,49	160	0,020	2,07	0,40	0,20	1,46	2,60	3,80	3,99	153,99
	Невязка с уч3: ((198,76-153,99)/198,76)*100=28,83%>15%											
					ξд=((198,7	76-153,99)/2	(2,6)=14,21 d	д=89мм				
	$\Delta Ppacn=221,98\Pi a$											
12	12 150 0,49 160 0,020 2,07 0,40 0,20 1,52 2,60 3,95 4,15 154,15											
				Невязка	а с уч4: ((22	1,98-154,15	5)/221,98)*1	00=30,559	%>15%			
	ξд=((221,98-154,15)/2,6)=14,81 dд=89мм											
	$\Delta Ppacn=259,14\Pi a$											
13	13 150 0,49 160 0,020 2,07 0,40 0,20 1,52 2,60 3,95 4,15 154,15											
	Невязка с уч5: ((259,14-154,15)/259,14)*100=40,51%>15%											

Расчетная схема В4

Расчетная схема П4

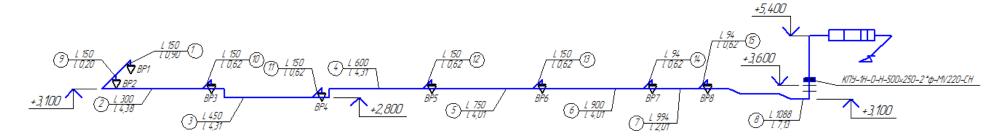


Рисунок Е.4 – Расчётные схемы П4, В4

Таблица Е.5 – Аэродинамический расчет П3, В7/1, В7/2

№ уч. L	L, м ³ /ч	l , м			T 7 /	R , Па/м	RI, Па	Σξ	рдин, Па	Ζ , Πa	Rl+Z, Πa	Σ (Rl+Z), Π a
1		2	d, мм	<u>f, м²</u>	V, m/c		ŕ	<u> </u>			,	, ,,
		3	4	5	6	7	8	9	10	11	12	13
ПЗ												
BP1	517		200	0,031	4,57	магистра	<u>П</u> Б	0	0,00	0,00	0,00	50,00
1	517	1,66	200		4,57	1,250	2,08	0,66	12,65	8,35	10,42	60,42
2	1034	1,66	200									90,52
	1550	1,66	315	0,031	9,15 5,53	4,410 1,010	1,68		18,49	22,78 9,06	10,73	101,26
	2067	1,66	315	0,078	7,37	1,720	2,86	0,49	32,87	17,09	19,95	121,21
	2584	0,875	400	0,078	5,71	0,835	0,73	0,32	19,76	13,83	19,93	135,77
	4062	1,036	400	0,126	8,98	1,870	1,94	0,7	48,83	6,84	8,77	144,54
0	4002	1,030	400	0,120	8,98	,	,	0,14	46,63	0,84	8,77	144,34
_						ответвле <i>∆Ppacn=135</i>						
BP6	739		250	0,049	4,18		0	0	0,00	0,00	0,00	100,00
7	739	1,109	250	0,049	4,18	0,784	0,87	0,64	10,59	6,78	7,65	107,65
	1478	1,801	250	0,049	8,37	2,960	5,33	0,45	42,36	19,06	24,39	132,04
0	8 1478 1,801 250 0,049 8,57 2,900 5,55 0,45 42,50 19,00 24,59 132,04 152,04											
				ПСВИЗК	a c y 13. ((1.	B7/1	133,77) 100	J=1,2070×	.1370			
						магистра	ЛЪ					
1	1570	1,91	315	0,078	5,60	0,399	0,76	0,73	18,97	13,84	14,61	14,61
2	2330	1,188	315	0,078	8,31	1,430	1,70	0,70	41,77	29,24	30,94	45,55
3	2584	4,114	400	0,126	5,71	2,870	11,81	1,35	19,76	26,67	38,48	84,03
						ответвле	ния					
						∆Ppacn=45,	55Па					
4	254	1,01	125	0,012	5,75	0,399	0,40	0,91	20,02	18,22	18,62	18,62
				Невяз	ка с уч1: ((-	45,55-18,62)/4	5,55)*100=5	59,12%>1	5%			
	ξд=(45,55-18,62)/20,02=1,35 dд=115мм											
						∆Ppacn=14,		·				
5	5 760 200 0,031 6,72 0,399 0,00 0,47 27,35 12,85 12,85 12,85											
	Невязка с уч2: ((14,61-12,85)/14,61)*100=14,9%>15%											
						B7/2						
						магистра	ЛЬ					

1	748	0,98	200	0,031	6,62	2,490	2,44	0,91	26,49	24,11	26,55	26,55
2	1478	6,14	250	0,049	8,37	2,940	18,05	1,72	42,36	72,87	90,92	117,46
	ответвления											
	$\Delta Ppacn=26,55\Pi a$											
3	3 730 1,07 200 0,031 6,46 2,370 2,54 0,91 25,23 22,96 25,50 25,50											

Расчетная схема В7/1 Расчетная схема В7/2 Расчетная схема ПЗ

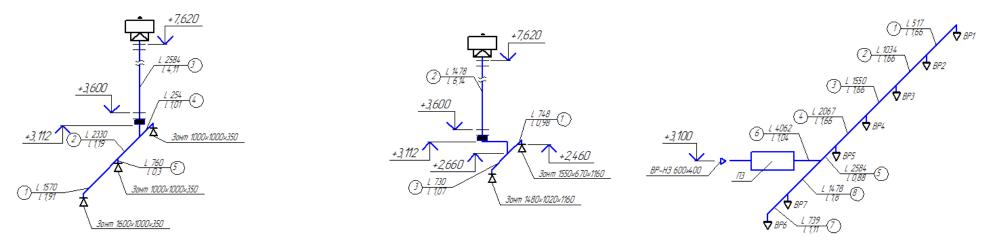


Рисунок Е.5 – Расчётные схемы ПЗ, В7/1, В7/2

приложение ж

Приточная установка П1

Исполнение: Стандартная установка, Общепромышленное, УЗ

Название:

Типоразмер: Airmate-1200-У3 **Сторона обслуживания:** Снизу

Lв, м3/ч: 696

Блоков/моноблоков: 4/1

Наименование блоков с индексами и характеристиками входящего оборудования

1. Моноблок очистка, нагрев (вода)

dPв=202.5Па; BxHxL :450x310x770мм; м=59кг

1.1. Блок воздухоприемный (один вертикальный клапан), Наружный блок

Положение :Клапан верт.; Возд.клапан :РЕГУЛЯР-0210-0300-H-П-02-00-01-У3; BxH=300x210мм; Привод :LM24A-S; $Сторона_обсл. :Снизу; <math>dPB=4.9\Pi a; BxHxL : 450x310x200$ мм

1.2. Фильтр панельный

Индекс :ФВКас-III-377-265-48-F5; Класс :F5; Материал :гофриров.полиэстр; dРв_загрязн.50%=160Па; Сторона_обсл. :Снизу; dРв=159.9Па; ВхНхL :450х310х150мм

1.3. Воздухонагреватель жидкостный

Насос :Установлен; Индекс :HTO243.1-028-025-02-2,2-10-2; Прямоток; FTo=3.2кв.м; QT=9кВт; Kf=7%; Lв=696куб.м/ч; tвн=-24°С; tвк=16°С; vro=3.3кг/кв.м/с; Gж=400кг/ч; tжн=90°С; tжк=64.1°С; w=1.1м/с; dРж=6.1кПа; Сторона_обсл. :Снизу; dРв=36.6Па; BxHxL :450x310x250мм; м=6кг

1.4. Вентилятор, Выхлоп По оси развернутый

Индекс :GXLF-5-014; Выхлоп :По оси; Выхлоп_ВхН :180х180мм; Рконд=202Па; Рсеть=250Па; Lв=696куб.м/ч; Рполн=626Па; Vвых=5.97м/с; n_pк=2730мин-1; Гиб.вставка :178х178мм; Эл.двиг :АИР63В2; Ny=0.55кВт; n_дв=2730мин-1; Ремень :SPZ-722; Шкив_вент=1-SPZ-63мм; Шкив_двиг=1-SPZ-63мм; Lцентр=262мм; Сторона_обсл. :Снизу; dPв=1Па; ВхНхL :450х310х770мм; м=53кг

Автоматика

К-Ф-ТО-В

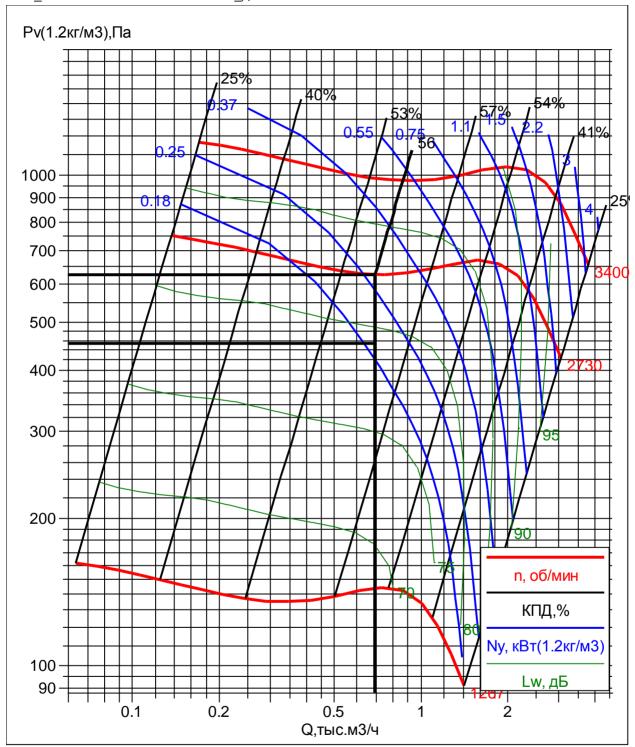
- 1. Реле перепада давления для контроля запыленности фильтра
- 2. Канальный датчик температуры приточного воздуха с подсоединительным фланцем
- 3. Датчик защиты от замораживания теплообменника по воде
- 4. Датчик защиты от замораживания теплообменника по воздуху
- 5. 2-х ходовой регулирующий клапан по теплоносителю
- 6. Электропривод регулирующего водяного клапана
- 7. Циркуляционный насос для подмешивания теплоносителя
- 8. Реле перепада давления для контроля работы вентилятора
- 9. Шкаф приборов автоматики
- 10. Контроллер

		63	125	250	500	1000	2000	4000	8000	Сумм,дБА
	На входе	64	69	61	62	58	54	48	44	64
Приток	На выходе	82	80	75	78	76	75	73	73	82
	Вовне	69	80	74	63	47	40	47	63	69

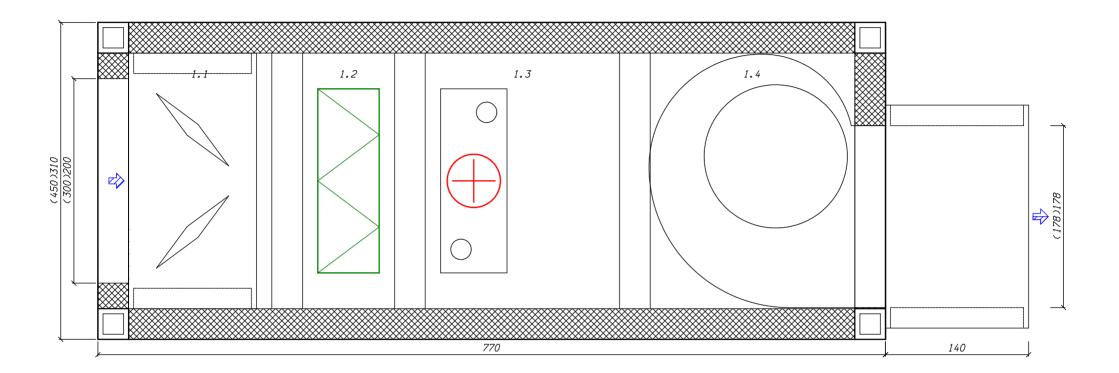
Аэродинамическая характеристика

Индекс :GXLF-5-014 Рполн=626Па Lsum_вx=82.5дБ Ny=0.55кВт 220/380В

220/380B Шкив вент=1-SPZ-63мм Выхлоп :По оси n_pк=2730мин-1 Lsum_вых=82.8дБ n_дв=2730мин-1


50Гц

Шкив_двиг=1-SPZ-63мм


Lв=696куб.м/ч Np=0.218кВт Эл.двиг :АИР63В2

2p=2

Ремень :SPZ-722

Установка:		Заказчик:
Типоразмер: Airmate-1200-У3	Схема установки П1	Исполнитель:
Сторона обслуживания: Снизу	·	Дата: 01.06.2019

Приточная установка П2

Исполнение: Стандартная установка, Общепромышленное, УЗ

Название:

Типоразмер: Airmate-2000-У3 **Сторона обслуживания:** Снизу

Lв, м3/ч: 1239

Блоков/моноблоков: 4/2

Наименование блоков с индексами и характеристиками входящего оборудования

1. Моноблок очистка, нагрев (вода)

dPв=205.2Па; BхHхL :675х380х950мм; м=61кг

1.1. Фильтр панельный

Индекс :ФВКас-III-63-48-F5; Класс :F5; Материал :гофриров.полиэстр; dPв_загрязн.50%=154Па; Сторона_обсл. :Снизу; dPв=154.5Па; BхHхL :675х380х250мм

1.2. Воздухонагреватель жидкостный, С обводным каналом

Насос :Установлен; Индекс :BHB243.1-043-025-02-2,0-10-2; Прямоток; FTo=5.4кв.м; QT=18кВт; Kf=8%; Lв=1239куб.м/ч; tвн=-24°С; tвк=19°С; vro=3.8кг/кв.м/с; Gж=383кг/ч; tжн=110°С; tжк=63.3°С; w=1 $\rm m$ /c; dPж=7.5кПа; Положение :Обвод.клапан; Возд.клапан :УВК-0110-0585-05; BxH=585x110 $\rm m$ M; Привод :CM24-SR-R; Сторона_обсл. :Снизу; dPв=49.7Па; BxHxL :675x380x250 $\rm m$ M; м=7кг

1.3. Вентилятор, Выхлоп По оси

Индекс :ADH 160 L/R; Выхлоп :По оси; Выхлоп_ВхН :205х205мм; Рконд=218Па; Рсеть=250Па; Lв=1239куб.м/ч; Рполн=476Па; Vвых=8.19м/с; n_pк=2293мин-1; Эл.двиг :АИР63В2; Ny=0.55кВт; n_дв=2730мин-1; Ремень :SPZ-800; Шкив_вент=1-SPZ-75мм; Шкив_двиг=1-SPZ-63мм; Lцентр=292мм; Сторона_обсл. :Снизу; dPв=1Па; ВхНхL :675х380х600мм; м=54кг

2. Шумоглушитель, 500

Пластины :3 x 100 мм; L пластин=500мм; Сторона обсл. :Снизу; dPв=13Па; BxHxL :675x380x565мм; м=34кг

Автоматика

Ф-ТО-В

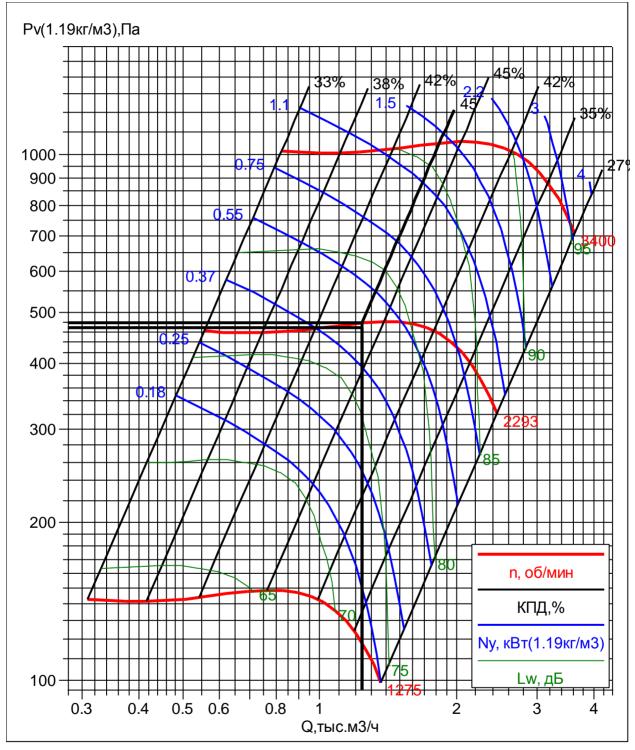
- 1. Реле перепада давления для контроля запыленности фильтра
- 2. Канальный датчик температуры приточного воздуха с подсоединительным фланцем
- 3. Датчик защиты от замораживания теплообменника по воде
- 4. Датчик защиты от замораживания теплообменника по воздуху
- 5. 2-х ходовой регулирующий клапан по теплоносителю
- 6. Электропривод регулирующего водяного клапана
- 7. Циркуляционный насос для подмешивания теплоносителя
- 8. Реле перепада давления для контроля работы вентилятора
- 9. Шкаф приборов автоматики
- 10. Контроллер

		63	125	250	500	1000	2000	4000	8000	Сумм,дБА
	На входе	71	74	65	68	64	63	60	61	71
Приток	На выходе	56	69	56	52	33	29	38	49	56
	Вовне	59	71	60	49	34	33	44	55	59

Аэродинамическая характеристика

Lв=1239куб.м/ч

Индекс :ADH 160 L/R Рполн=476Па Lsum_вx=77.4дБ Ny=0.55кВт 220/380В Выхлоп :По оси n_pк=2293мин-1 Lsum_вых=76.6дБ n_дв=2730мин-1 50Гц

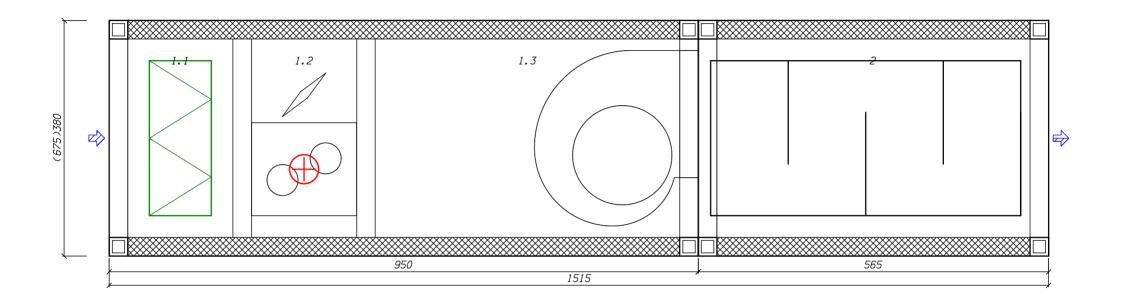

Np=0.368кВт Эл.двиг :АИР63В2

2p=2

Ремень :SPZ-800

Шкив_вент=1-SPZ-75мм

Шкив_двиг=1-SPZ-63мм



Установка:

Типоразмер: Airmate-2000-У3 Сторона обслуживания: Снизу

Схема установки

Заказчик: Исполнитель: Дата: 02.06.2019

Приточная система ПЗ

Исполнение: Стандартная установка, Общепромышленное, УЗ

Название:

Типоразмер: Airmate-6000-У3 **Сторона обслуживания:** Снизу

Lв, м3/ч: 4062

Блоков/моноблоков: 5/4

Наименование блоков с индексами и характеристиками входящего оборудования

1. Блок

dPв=197.3Па; BхHхL :1040х420х250мм; м=26кг

1.1. Передняя панель с клапаном, Наружный блок

Положение :Клапан верт.; Возд.клапан :РЕГУЛЯР-0360-0980-Н-П-04-00-00-У3; BxH=980x360мм; Привод :LM230A-S; $Сторона_обсл. :Снизу; <math>dPb=3.2\Pi a; m=7$ кг

1.2. Фильтр панельный

Индекс :ФВКас-III-970-365-48-F5; Класс :F5; Материал :гофриров.полиэстр; dРв_загрязн.50%=194Па; Сторона_обсл. :Снизу; dРв=194.1Па; ВхНхL :1040х420х250мм; м=19кг

2. Воздухонагреватель жидкостный, С обводным каналом

Насос :Установлен; Индекс :BHB243.1-083-030-03-2,5-04-2; Прямоток; FTo=15.1кв.м; QT=59кВт; Kf=4%; Lв=4062куб.м/ч; tвн=-24°С; tвк=19°С; vro=5.4кг/кв.м/с; Gж=2505кг/ч; tжн=90°С; tжк=66.7°С; w=1.8м/с; dPж=16.2кПа; Положение :Обвод.клапан; Возд.клапан :УВК-0110-0910-05; BxH=910x110мм; Привод :СМ24-SR-R; Сторона_обсл. :Снизу; dPв=112.9Па; BxHxL :1040x420x250мм; м=33кг

3. Вентилятор, Выхлоп По оси

Индекс :ADH 180 G2L; Выхлоп :По оси; Выхлоп_ВхН :2x(230x230)мм; Рконд=355Па; Рсеть=250Па; Lв=4062куб.м/ч; Рполн=615Па; Vвых=10.76м/с; n_pk=2397мин-1; Эл.двиг :A80B2; Ny=2.2кВт; n_дв=2820мин-1; Ремень :SPZ-950; Шкив_вент=1-SPZ-100мм; Шкив_двиг=1-SPZ-85мм; Lцентр=330мм; Сторона_обсл. :Снизу; ВхНхL :1040x420x750мм; м=89кг

4. Шумоглушитель, 500

Пластины :5 x 100 мм; L_пластин=500мм; Сторона_обсл. :Снизу; dPв=43.4Па; BхHхL :1040x420x565мм; м=48кг

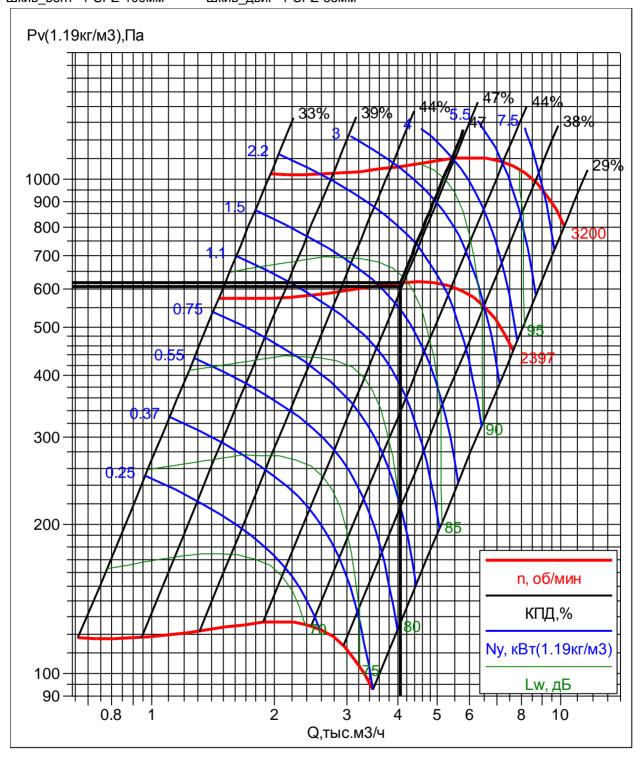
Автоматика

К-Ф-ТО-В

- 1. Реле перепада давления для контроля запыленности фильтра
- 2. Канальный датчик температуры приточного воздуха с подсоединительным фланцем
- 3. Датчик защиты от замораживания теплообменника по воде
- 4. Датчик защиты от замораживания теплообменника по воздуху
- 5. 2-х ходовой регулирующий клапан по теплоносителю
- 6. Электропривод регулирующего водяного клапана
- 7. Циркуляционный насос для подмешивания теплоносителя
- 8. Реле перепада давления для контроля работы вентилятора
- 9. Шкаф приборов автоматики
- 10. Контроллер

		63	125	250	500	1000	2000	4000	8000	Сумм,дБА
	На входе	67	75	66	66	61	58	52	48	67
Приток	На выходе	62	72	61	55	53	54	52	49	62
	Вовне	63	74	66	57	51	50	52	51	63

Аэродинамическая характеристика


Индекс :ADH 180 G2L Рполн=615Па Lsum_вх=84.6дБ Ny=2.2кВт 220/380В

220/380B Шкив вент=1-SPZ-100мм Выхлоп :По оси n_pк=2397мин-1 Lsum_вых=83.9дБ n_дв=2820мин-1

50Гц Шкив двиг=1-SPZ-85мм Lв=4062куб.м/ч Np=1.482кВт Эл.двиг :A80В2

2p=2

Ремень :SPZ-950

Установка:

Типоразмер: Airmate-6000-У3 Сторона обслуживания: Снизу

Схема установки

Заказчик: Исполнитель: Дата: 11.06.2019

Приточная Система 4

Исполнение: Стандартная установка, Общепромышленное, УЗ

Название:

Типоразмер: Airmate-2000-У3 **Сторона обслуживания:** Снизу

Lв, м3/ч: 1088

Блоков/моноблоков: 4/2

Наименование блоков с индексами и характеристиками входящего оборудования

1. Моноблок очистка, нагрев (вода)

dPв=191Па; BхHхL :675х380х950мм; м=61кг

1.1. Фильтр панельный

Индекс :ФВКас-III-63-48-F5; Класс :F5; Материал :гофриров.полиэстр; dPв_загрязн.50%=150Па; Сторона_обсл. :Снизу; dPв=149.8Па; BхHхL :675х380х250мм

1.2. Воздухонагреватель жидкостный, С обводным каналом

Насос :Установлен; Индекс :ВНВ243.1-043-025-02-2,0-10-2; Прямоток; Fто=5.4кв.м; Qт=16кВт; Kf=9%; Lв=1088куб.м/ч; tвн=-24°С; tвк=19°С; vro=3.4кг/кв.м/с; Gж=671кг/ч; tжн=90°С; tжк=63.2°С; w=1.8м/с; dРж=21.3кПа; Положение :Обвод.клапан; Возд.клапан :УВК-0110-0585-05; ВхН=585х110мм; Привод :СМ24-SR-R; Сторона_обсл. :Снизу; dРв=40.2Па; ВхНхL :675х380х250мм; м=7кг

1.3. Вентилятор, Выхлоп По оси

Индекс :ADH 160 L/R; Выхлоп :По оси; Выхлоп_ВхН :205х205мм; Рконд=201Па; Рсеть=250Па; Lв=1088куб.м/ч; Рполн=463Па; Vвых=7.19м/с; n_pк=2275мин-1; Эл.двиг :АИР63В2; Ny=0.55кВт; n_дв=2730мин-1; Ремень :SPZ-825; Шкив_вент=1-SPZ-90мм; Шкив_двиг=1-SPZ-75мм; Lцентр=283мм; Сторона_обсл. :Снизу; dPв=1Па; ВхНхL :675х380х600мм; м=54кг

2. Шумоглушитель, 500

Пластины :3 x 100 мм; L пластин=500мм; Сторона обсл. :Снизу; dPв=10Па; BхHхL :675x380x565мм; м=34кг

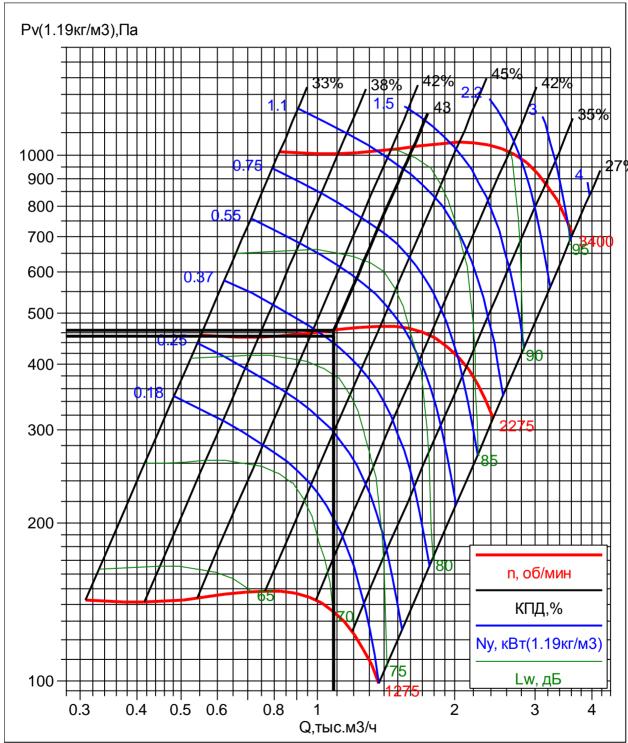
Автоматика

Ф-ТО-В

- 1. Реле перепада давления для контроля запыленности фильтра
- 2. Канальный датчик температуры приточного воздуха с подсоединительным фланцем
- 3. Датчик защиты от замораживания теплообменника по воде
- 4. Датчик защиты от замораживания теплообменника по воздуху
- 5. 2-х ходовой регулирующий клапан по теплоносителю
- 6. Электропривод регулирующего водяного клапана
- 7. Циркуляционный насос для подмешивания теплоносителя
- 8. Реле перепада давления для контроля работы вентилятора
- 9. Шкаф приборов автоматики
- 10. Контроллер

		63	125	250	500	1000	2000	4000	8000	Сумм,дБА
	На входе	70	73	65	67	64	62	59	60	70
Приток	На выходе	56	68	55	51	32	28	37	48	56
	Вовне	59	71	60	49	34	33	44	55	59

Аэродинамическая характеристика

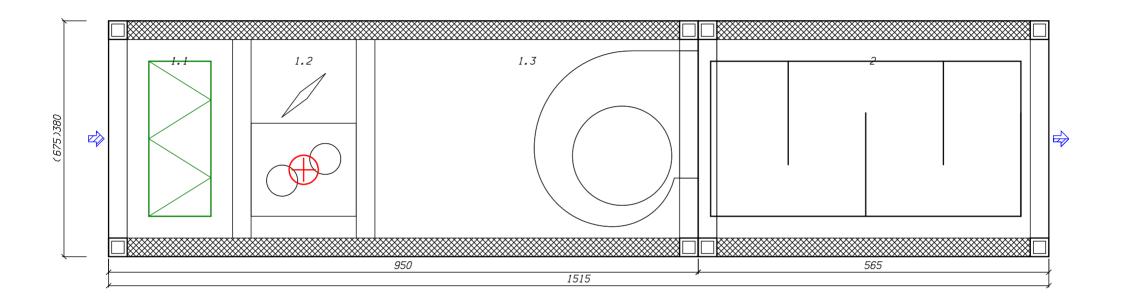

Индекс :ADH 160 L/R Рполн=463Па Lsum_вx=76.5дБ Ny=0.55кВт 220/380В Выхлоп :По оси n_pк=2275мин-1 Lsum_вых=75.7дБ n_дв=2730мин-1 50Гц Lв=1088куб.м/ч Np=0.322кВт Эл.двиг :АИР63В2

2p=2

Ремень :SPZ-825

220/380B Шкив_вент=1-SPZ-90мм

Шкив_двиг=1-SPZ-75мм



Установка:

Типоразмер: Airmate-2000-У3 Сторона обслуживания: Снизу

Схема установки П4

Заказчик: Исполнитель: Дата: 03.06.2019

Приточно-вытяжная система 1 КЦКП-25 фирмы «Вентмаш».

Наименование блоков

1. Приточный моноблок

dPв=220,44Па; BхHхL :1700х2050мм;

1.1. Блок воздухоприемный (один горизонтальный клапан), Наружный блок

Секция пустая S3 BxHxL: 1700x2050x500мм

1.2. Фильтр карманный

Индекс: ВМ-F9-4- 397х950х600; Класс: F9; Материал: стекловолокно;

1.3. Воздухонагреватель жидкостный

Насос :Установлен; Прямоток; 1700х2050мм;

1.4. Блок воздухоприемный (два клапана), Блок смешения

1.6. Воздухоохладитель жидкостный

1.7. Камера орошения сотовая

1.8. Воздухонагреватель жидкостный

Насос :Установлен; Прямоток; 1700х2050мм;

1.9. Воздухонагреватель жидкостный

2. Вытяжной моноблок

dPв=395,04; BхHхL :1700х2050мм;

2.1. Вентилятор

2.2. Фильтр панельный

Индекс: ВМ-F9-4- 397х950х600; Класс: F9; Материал: стекловолокно;

2.3. Блок воздухоприемный (два клапана), Блок смешения

Секция смешения S3 BxHxL: 1700x2050x500мм

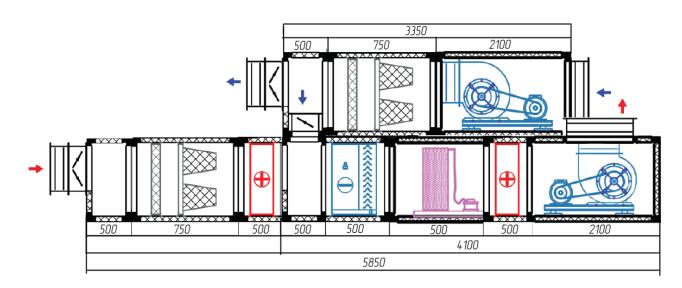


Рисунок Ж.1 – Приточно-вытяжная установка ПВ1

приложение и

Таблица И.1 – Технические характеристики McQuay McEnergy SE XN 064.2

McQuay McEnergy SE XN		064.2
Холодопроизводительность	кВт	219,0
Потребляемая мощность компрессора	кВт	81,0
Потребляемая мощность чиллера	кВт	85,2
EER		2,57
Уровень звукового давления	дБ(А)	70,0
Компрессор	Одновинто	вой, серии Frame 3100 производства McQuay
Количество		2
Заправка маслом	кг	26
Минимальная производительность	%	12,5
Хладагент	HFC134a	1 -
Количество контуров	<u> </u>	2
Заправка	кг	50
•		убки с внутренней спиральной навивкой и
Теплообменник конденсатора		оребрением
Вентилятор	ц. т	Осевой
Количество		6
Потребляемая мощность	кВт	0,70
Скорость вращения	об/мин	680
Диаметр крыльчатки	MM	710
Расход воздуха	м.куб/с	18,6
		ой противоточный теплообменник
Испаритель	кожухотруб	
Количество	<u> </u>	1
Объем	Л	93
Максимальное рабочее давление	бар	10,5
Диаметр гидравлических магистралей	дюйм	4
Габариты и вес		
Длина	ММ	3140
Ширина	MM	2235
Высота	MM	2340
Вес транспортировочный	КГ	2916
Вес эксплуатационный	КГ	3009
Электрические характеристики	KI	5007
Параметры электропитания	В/Ф/Гц	400/3/50
Номинальный потребляемый ток	В/ Ф/1 Ц А	145,5
Максимальный пусковой ток	A	217,2
Условия эксплуатации	Λ	217,2
Температура наружного воздуха		
	°C	+ 44
Максимальная	°C	- 18
Минимальная	I	- 10
Температура воды на выходе из испарителя	- i	1.5
Максимальная	°C	+ 15
Минимальная (с гликолем)	°C	- 8

приложение к

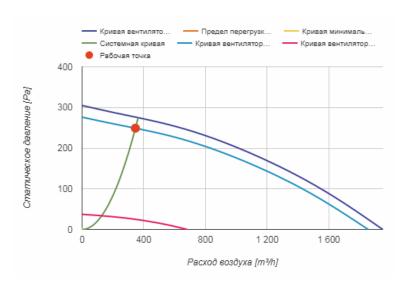


Рисунок К.1 – Характеристика вентилятора VENTS VKH 4D 310 системы B1

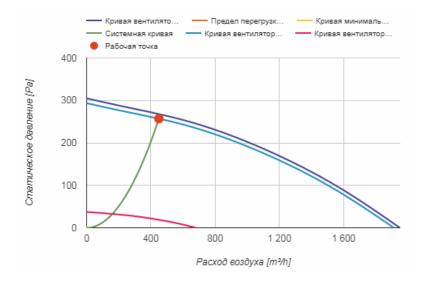


Рисунок К.2 – Характеристика вентилятора VENTS VKH 4D 310 системы B2

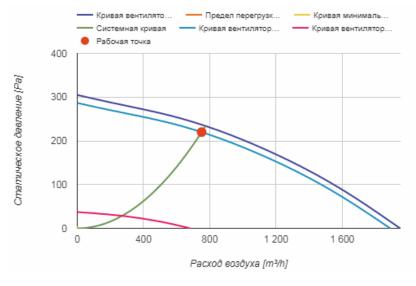


Рисунок К.3 – Характеристика вентилятора VENTS VKH 4D 310 системы В3

Рисунок К.4 – Характеристика вентилятора VENTS VKH 4E 450 системы B4

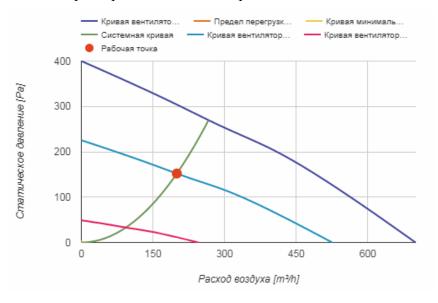


Рисунок К.5 – Характеристика вентилятора VENTS VKH 2E 220 системы B5

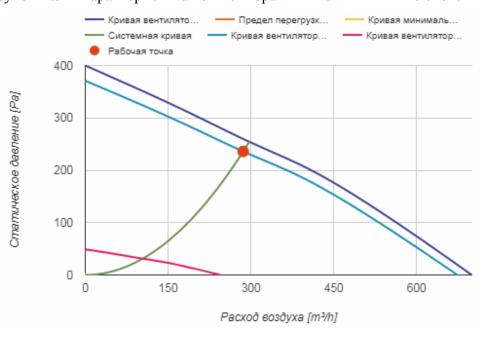


Рисунок К.6 – Характеристика вентилятора VENTS VKH 2E 220 системы B6

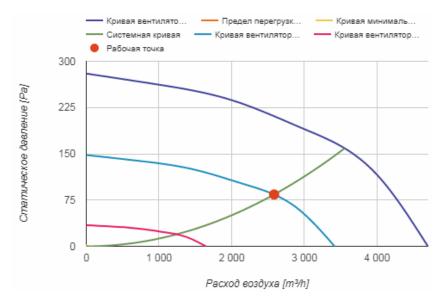


Рисунок К.7 – Характеристика вентилятора VENTS VKH 6E 500 системы B7/1

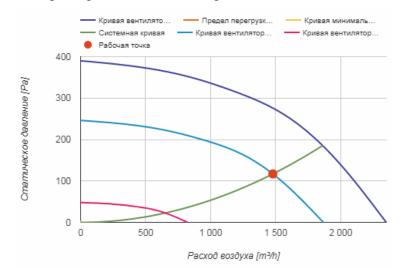


Рисунок К.8 – Характеристика вентилятора VENTS VKH 6D355 системы B7/2