МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ МАШИНОСТРОЕНИЯ

(наименование института полностью) Кафедра «Сварка, обработка материалов давлением и родственные процессы »

15.03.01 «Машиностроение»

(код и наименование направления подготовки, специальности)

профиль «Оборудование и технология сварочного производства»

(направленность (профиль)

БАКАЛАВРСКАЯ РАБОТА

на тему: Технологический процесс восстановления шнеков питателей цементных силосов

Студент(ка)	А.К. Кузин	
	(И.О. Фамилия)	(личная подпись)
Руководитель	К.В. Моторин	
	(И.О. Фамилия)	(личная подпись)
Консультанты	В.Г. Викталов	
	(И.О. Фамилия)	(личная подпись)
	И.В. Краснопевцева	
	(И.О. Фамилия)	(личная подпись)
	А.Н. Москалюк	
	(И.О. Фамилия)	(личная подпись)
Допустить к защ	ите	
	дрой д.т.н., профессор, В.В. Ельцов (ученая степень, звание, И.О. Фамилия)	(личная подпись)
«» июня 20	18г.	

Тольятти 2018

Аннотация

В данной бакалаврской работе на тему «Технологический процесс шнеков питателей цементных найден более восстановления силосов» эффективный способ восстановления шнека, посредством изменения Целью было технологии наплавки. повысить производительность восстановления шнека. Для оценки предлагаемой технологии восстановления шнека был произведен сравнительный расчет базового и проектного метода наплавки.

Для более полного ознакомления с предлагаемой технологией наплавки представлено оборудование, на котором происходит весь процесс наплавки. В экономической части определена производственная стоимость данной технологии и рассчитаны показатели её экономической эффективности.

В проекте разработан технологический процесс наплавки шнека, мероприятия по безопасности и экологии.

Работа содержит пояснительную записку на 70 страницах и графическую часть на 6 листах формата A1.

Содержание

Аннотация	5
Введение	9
1 Анализ конструкций шнеков и возможных способов ремонта	10
1.1 Назначение шнека, устройство и принцип работы	10
1.2 Характеристика материала шнека	14
1.2.2 Химические свойства стали Ст3	15
1.2.3Механический свойства стали	15
1.3 Базовая технология ремонта шнека	16
1.3.1 Ручная наплавка электродом	17
1.3.1.1 Плюсы ручной наплавки электродом	17
1.3.1.2 Минусы ручной дуговой наплавки электродом	19
1.4 Анализ возможных способов ремонта шнека	20
1.4.1 Механизированная сварка	20
1.4.2 Автоматическая сварка	22
1.4.3 Плазменная наплавка	24
2 Разработка технологического процесса восстановления	26
шнеков питателей цементных силосов.	
2.1 Подготовка к наплавке	26
2.2 Наплавка	26
2.3 Контроль	28
3. Выбор и разработка оборудования и оснастки для	30
восстановления шнеков	
3.1 Оборудование для подготовки поверхности	30
3.2 Оборудование для наплавки	31
3.3 Оборудование для контроля качества	37
4. Безопасность	39
4.1. Техногенная безопасность	39
4.2 Экологическая безопасность	40

4.3 Безопасность в чрезвычайных ситуациях	41
4.4 Пожарная безопасность	42
4.5 Опасные и вредные факторы при плазменно-порошковой наплавки	43
4.5.1 Микроклимат	43
4.5.2 Электробезопастность	44
4.5.3 Сварочный аэрозоль	45
4.5.4 Высокий уровень излучения	46
4.5.5 Повышенный уровень яркости	47
4.5.6 Повышенный уровень шума	47
4.6 Правовые вопросы безопасности	48
5. Экономическая эффективность проекта	50
5.1 Исходные данные	50
5.2 Расчет штучного времени на выполняемые технологические операции	51
5.2.1 Расчет базового варианта	52
5.2.2 Расчет проектного варианта	53
5.3 Капитальные вложения в оборудование	53
5.4 Удельные капитальные вложения в оборудование	55
5.5 Дополнительные капитальные вложения	55
5.6 Расчет себестоимости сравниваемых вариантов.	56
5.6.1. Затраты на материалы.	56
5.6.1.1 Затраты на основной материал	56
5.6.1.2 Затраты на вспомогательные материалы.	56
5.6.2 Затраты на покупные комплектующие изделия, необходимые	для
изготовления изделия	57
5.7 Затраты на технологическую энергию	57
5.8. Затраты на содержание и эксплуатацию стандартного и не стандарт	ного
оборудования, приспособлений, рабочего инструмента и производствен	ных
площадей	58
5.8.1. Затраты на содержание и эксплуатацию стандартного и нестандарт	ного
оборудования	58

5.8.2. Затраты на содержание и эксплуатацию производственных площадей	60
5.9. Затраты на заработную плату основных производственных рабочих	
с отчислениями на социальные нужды	61
5.9.1. Основная заработная плата основных производственных рабочих	61
5.9.2. Дополнительная заработная плата	62
5.9.3. Отчисления на социальные нужды	62
5.10 Технологическая себестоимость изделия	62
5.11 Цеховая себестоимость изделия	63
5.12 Заводская себестоимость изделия	63
5.13 Полная себестоимость изделия	66
5.14 Расчет экономической эффективности разрабатываемого проекта	66
5.14.1 Ожидаемая прибыль от снижения себестоимости изделия	66
5.14.2 Чистая прибыль	66
5.14.3 Годовой экономический эффект	67
5.15 Срок окупаемости капитальных вложений	67
5.16 Коэффициент сравнительной экономической эффективности	67
5.17 Расчет повышения производительности труда	67
5.17.1 Снижение трудоёмкости изготовления изделия	67
5.17.2 Повышение производительности труда	67
Выводы по выпускной работе	68
Список использованных источников	69

Введение

Ha сегодняшний без шнеков обходится большинство лень не промышленных и бытовых устройств и приборов. Шнеки - это рабочие детали, используемые для комплектации разнообразных машин и механизмов. Прообразом современного является шнека водоподъёмная машина, изобретённая Архимедом в 3 веке до н.э., и получившая название Архимедов винт.

Основной задачей этих частей является перемещение грузов в винтовых вращающихся трубах. С развитием промышленности и технологий, количество отраслей, где можно найти применение шнеку, постоянно растет. На данный момент, это такие отрасли, как: сельское хозяйство, производство бытовой техники, изготовление магазина ДЛЯ стрелкового оружия, является неотъемлемой частью вездехода, а так же шнек активно применяется в строительстве. А особенно на, предприятиях специализирующихся на перемещении сухого и жидкого бетона и цемента. Сейчас сложно представить любое строительство без использования цемента, бетона. Поэтому роль шнека здесь крайне высока. Ведь именно с помощью шнека, смеси попадают не посредственно к месту работ. Часто шнеки применяются для загрузки сухого цемента в емкости для хранения или транспортирования. Во время работ, шнек испытывает на себе большое воздействие абразивных частиц, что приводит к износу и требует ремонта.

В настоящее время большинство шнеков ремонтируют путем наплавки дуговыми методами, часто электродами. Однако такой способ не обеспечивает нужного качества, по сколько оно во многом зависит от квалификации и опыта сварщика. Данный способ имеет не высокую производительность, из-за невозможности использования высокой плотности тока, необходимых перерывов при смене электродов, сложности технологического процесса.

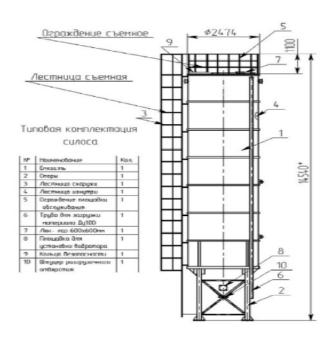
Поэтому целью выпускной работы является повышение производительности восстановления шнеков.

1 Анализ конструкций шнеков и возможных способов ремонта

1.1 Назначение шнека, устройство и принцип работы шнека

Шнек — основной рабочий механизм, он выполняет роль транспортировщика сырья. Самым простым примером работы шнека, является обычная мясорубка, которая была в каждом доме. В ней, шнек уплотняет мясо, а так же выполняет роль транспортера, проталкивая мясо к лезвию ножа. И дальше уже порезанное мясо под давлением, выходило из формочки головки. Шнек так же используют в сверлах, для того что бы удалять стружку, в качестве движителя шнекохода, более современное название «Вездеход», его применение понятно из его названия.

Нельзя не упомнить о шнеки в ледовых комбайнах, которые используют для восстановления льда на аренах. В этом комбайне шнек собирает стружку льда, снега и проталкивает ее в специальный отсек. Похожая роль у шнека в очистном комбайне.


Шнек является основным инструментом для бурения скважин, в зависимости от плотности грунта, выбирается вид буров.

Роль шнека в строительстве крайне важна. Он доставляет смеси из точки A, в места проведения работ. Часто смеси перемещают в специальные емкости для хранения — силос (рис.1.1).

Рисунок 1.1 – Силос

Силос цилиндр, металлический сверху закрытый крышкой вентиляционными отверстиями. Внизу выполнен в виде конуса, с отверстием и затвором для выдачи цемента. Вентиляция организовано для того, чтобы не позволять содержимому напитываться влагой и преть — идеальные условия для цемента. Силос востребован там, где есть необходимость в каждодневном строительного наличии сухого материала, ДЛЯ приготовления различного назначения [1]. Это производственные цеха, специализирующиеся на формовочных изделиях, и любая большая стройка. Изготавливается силос из железобетона, или из стальных конструкций. Второй вариант используется сейчас гораздо чаще, поскольку такой силос мобильный. Это очень важно для конечного потребителя, ведь такой силос можно взять в аренду, если стройка не большая, или же возить его от стройки к стройке обычным автоприцепом. Основной характеристикой силоса является вместимость, но важно учитывать оборачиваемость сухой массы, выбирать нужно так, чтобы смесь не залеживалась в бункере более 7 дней.

1 – емкость; 2 – опоры; 3- лестница снаружи; 4- лестница внутри;
 5- ограждение; 6- труба для загрузки; 7 – люк; 8 – площадка для установки;
 9- кольцо безопасности; 10 – штуцер разгрузки

Рисунок 1.2- Комплектация силоса

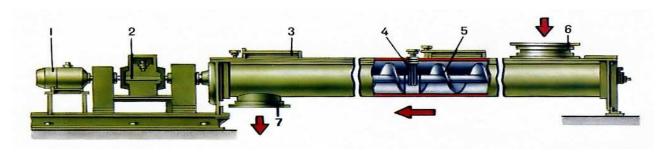

Как дополнительная комплектация к силосу, приобретается шнековый транспортер (рис 1.3).

Рисунок 1.3 – Шнековый транспортер

Шнековый транспортер выполнен из цилиндрического корпуса [2]. В корпусе находятся спираль и привод. Корпус расположен между разгрузочным и загрузочным узлами. Загрузочный узел соединен с бункером с помощью фланца, где находится цемент.

Мотор с редуктором служит приводом для шнека, который обеспечивает равномерное вращение вала со спиралью и продольную подачу от загрузочного узла к разгрузочному (рис 1.4). Это самый простой способ транспортировки сыпучих материалов внутри производственных комплексов. Перемещение возможно как по горизонтали, так и под определенным углом.

1 - электродвигатель; 2 - редуктор; 3 - жёлоб; 4 - подвесной подшипник; 5 - шнек; 6 - загрузочный патрубок; 7 - разгрузочный патрубок Рисунок 1.4 – Шнековый конвейер

Шнек способен перемещать любые мелкодисперсные материалы, в число которых входит и цемент, что довольно широко используется в строительных компаниях для перемещения сыпучих грузов. Во время работы происходит трение мелкодисперсных частиц о шнековый механизм, поэтому для изготовления шнеков необходимо использование износостойких и высокопрочных материалов, которые способны выдерживать воздействие цемента на них.

Принцип работы таких транспортеров довольно прост. Смонтированный спиралевидный механизм за счет центробежный силы перемещает смеси или вещество из отделения загрузки, до места хранения, работ. Движения винта происходит за счет включенного электромотора, от мощности которого зависит скорость движения материала. Преимущество шнековых транспортеров в минимизации затрат на выполнение каких либо работ, связанных с транспортировкой грузов, смесей. Система шнеков устроена таким образом, что сама смазывает подшипники, в то время когда это необходимо, таким образом, все оборудование долго и продуктивно работает, не затрагивая человеческих усилий.

Большинство переработчиков используют различные виды добавок смеси, которые по сути являются абразивом для металла, шнековые пары работают в среднем 2-3 года, до критических потерь производительности [3]. Поэтому со временем трущиеся детали шнека подвергаются износу и требуют или замены или ремонта. Покупка нового шнека, целесообразно только тогда, когда восстановление старого не возможно. Таких случаев не более 10%. Поэтому вопрос ремонта этого оборудования крайне актуален.

Причина распространения такой услуги как, ремонт шнеков, очень проста - это обходится дешевле, чем полная его замена. Еще одна из причин, это то, что большинство поставляющихся шнеков в России зарубежного производства, они совершенно разнообразные по конструкции и качеству и, в том числе, уже бывшими в эксплуатации. Это вынуждает обращаться к услугам зарубежных поставщиков повторно, за дорогостоящими запасными деталями для ремонта

шнека. Актуальности данной проблеме добавляют существующий в настоящее время режим санкций и современное состояние российской экономики, в том числе в секторе индустрии полимерных материалов. Падение курса рубля делает невыгодным приобретение ремонтных комплектов к работающим в России шнекам не только на Западе, но и, например, в Китае. Как известно, ремонтопригодность является одним из основных показателей надежности оборудования.

1.2 Характеристика материала шнека

Одной из самых распространенных марок стали, используемой для изготовления шнека, является углеродистая сталь обычного качества, марки Ст3, с содержанием в ней углерода не более 0.22% [4]. Одним из главных преимуществ этого вида стали является ее хорошая свариваемость. Сплав позволяет применять ручные и автоматические дуговые способы сварки (под флюсом и газом), а также электрошлаковый и контактно-точечный методы.

1.2.1 Технологические свойства стали марки Ст3

Сталь Ст3 не склонна к отпускной хрупкости, нефлокеночувствительна. свариваемость без ограничений. Механические свойства стали указанны в Таблице 1.

Качество конструкционной стали определяется коррозионной стойкостью, механическими свойствами и свариваемостью. По своим механическим характеристикам стали делят на группы: сталь обычной, повышенной и высокой прочности.

Основные свойства стали непосредственно зависят от химического элементов, входящих в состав сплава и технологических особенностей производства.

Основой структуры стали является феррит. Он является малопрочным и пластичным, цементит напротив, хрупок и тверд, а перлит обладает промежуточными свойствами. Свойства феррита не позволяют применять его в

строительных конструкциях в чистом виде. Для повышения прочности феррита сталь насыщают углеродом (стали обычной прочности, малоуглеродистые), легируют добавками хрома, никеля, кремния, марганца и других элементов (низколегированные стали с высоким коэффициентом прочности) и легируют с дополнительным термическим упрочнением.

1.2.2 Химические свойства стали Ст3.

В химическом составе элементов Ст3 массовая доля углерода составляет от 0,14 до 0, 22 % в зависимости от степени раскисления. Содержание марганца – 0,3 -1,10, кремния – от 0,05 до 0,30. Примеси - хром, никель, фосфор, медь, сера, азот составляют около 1%.

Стоит отметить, что одним из основных раскислителей при выплавке сталей на сегодня является кремний. Этот элемент и определяет тип стали. В полуспокойных сталях его содержание доходит до 0.10~%, тогда как в спокойных – до 0.40~%.

Кремний увеличивает прочность феррита, почти не снижая его пластичности, при концентрации в сплаве до 0,30 % - полностью растворяется. В сочетании с марганцем или молибденом кремний обеспечивает сплаву высокую закаливаемость, увеличивает предел упругости и предел текучести, сообщает устойчивость к воздействию перепадов температур.

1.2.3Механический свойства стали.

Таблица 1.1 – Механической свойства стали Ст3

	Механические свойства		
Марка стали	Временное	Предел текучести,	Относительное
	сопротивление, МПа	МПа	удлнинение,%
Ст3кп	360-460	235	27
Ст3пс	370-489	245	26

Ст3сп	380-490	245	26	
Ст3Гпс	370-490	245	26	
Ст3Гсп	390-570	245	24	
*При толщение до 20мм				

1.3 Базовая технология ремонта шнека

На сегодняшний день оборудование, а конкретнее его производительность и эффективность определяет конкурентоспособность современных промышленных предприятий. Чем меньше технологических перерывов требует оборудование, тем выше его эффективность при прочих равных. Стоит учитывать вероятность аварийных поломок. Такие перерывы в работе, чаще всего происходят из-за износа шнека [5]. Это одна из самых распространенных неисправностей. Если замечается потеря производительности, то, скорее всего, имеет место износ шнека (рис 1.5).

Рисунок 1.5 – Износ шнека

Износ гребня винта по длине шнека является обычно неравномерным и зависит от ряда факторов, основными из которых являются:

- изменение твердости металла по глубине поверхностного слоя;
- наличие твердых примесей в перерабатываемом полимерном материале;
- нарастание осевого давления по мере продвижения материала по шнеку;
- вид соединения шнека с валом привода (шпоночное или шлицевое);
- масса шнека, отношение длины шнека к диаметру и др.

Данная проблема очень распространённая. Основной способ ремонта (ручная наплавка электродом) имеет не высокую производительность, так же требует высокой квалификации мастера. Естественно не каждый сварщик, берущийся ремонтировать деталь, имеет такую квалификацию. Поэтому производительность данного способа крайне не высокая.

1.3.1 Ручная наплавка электродом

Ручная наплавка электродом основной способ ремонта шнека (рис. 1.6). Данный вид ремонта очень распространён, и как и любой другой вид ремонта имеет свои плюсы и минус [6].

Рисунок 1.6 – ручная наплавка электродом

1.3.2 Плюсы ручной наплавки электродом

- Сварочный аппарат очень мобильный, за счет своих не больших габаритов.
- Возможность сварки большого кол-ва марок сталейх сталей; способность к быстрой смене сварочного материала.
- Возможность сварки в любых пространственных положениях Наплавка в нижнем положении
- Не дорогое оборудование

Технология наплавки электродом состоит из не сложных операций.

- Подготовка поверхности
- Выбор электрода
- Наплавка
- Контроль качества

Начинается всё с того, что поверхность нужно подготовить к восстановлению. Нужно тщательно очистить и вымыть поверхность. Удалить с поверхности детали грязь, ржавчину, остатки транспортируемого сырья (цемента). Если перед наплавкой плохо подготовить шнек, то это привёдет к непроварам в сварном соединении, образуются поры и раковины. Поэтому очень важно правильно и тщательно произвести процесс подготовки поверхности.

Для удаления жира и масла обычно используют растворитель. Ржавчину удаляют с помощью металлической щетки. Нужно удалить трещины, старое покрытие, деформированную поверхность. Это делается для хорошего сплавления металла. Обычно это делают шлифмашинкой.

В зависимости от вида износа и требований к наплавленному слою, выбирают соответствующий электрод.

Для создания наплавленного слоя с любыми характеристиками подобрать электрод для наплавки не составит труда.

Сама наплавка бывает поверхностная или восстановительная.

Восстановительная используется для восстановления изношенных деталей, поверхностная для нанесения на слоя с особыми заданными свойствами (

износостойкой, жаропрочность). Наплавка может выполняться в любом пространственном положении.

В комплект оборудования для ручной наплавки входит: источник питания, электрододержатель, стол, сварочные провода, защитные приспособления, зубило, молоток.

Контроль качества происходит следующим образом [7]. Когда наплавка закончена, с поверхности изделия удаляют шлак и брызги металла. Далее визуальным осмотром определяют качества наплавленного металла, наличие трещин и других дефектов. Не допускаются непровары и трещины. Так же переход от основного металла к наплавленному должен быть плавным и ровным. Это увеличивает прочность детали. Все выявленные дефекты должны быть устранены.

1.3.3 Минусы ручной дуговой наплавки электродом

Не смотря на то, что ручная сварка самая распространенная, она имеет много минусов [8].

• Вредные условия работы.

Условия работы при такой сварке очень вредны. Самым ярким вредным фактором является образование и поступление в воздух сварочных аэрозолей, которые содержат токсические вещества. В результате длительного воздействия на организм сварщика это может привести к возникновению серьёзных заболеваний (пневмокониоз, пылевой бронхит, интоксикация металлами и газами). Сварке сопутствует оптические излучения в ультрафиолетовом, инфракрасном диапазоне. Брызги, искры и выбросы расплавленного металла и шлака при отсутствии средств защиты могут стать причиной ожогов кожных покровов, травмирования органов зрения, а также повышают опасность возникновения пожаров.

• Качество сварных соединений напрямую зависит от квалификации мастера

Не все сварщика, берущиеся за ремонт таких изделий, как шнек, имеют

соответствующую квалификацию. Очень часто за такое дело берутся люди без специальной подготовки. Даже если у мастера есть нужное образование, знания и опыт, человеческий фактор присутствует всегда. Человек может пребывать в разном морально-физическом состоянии и при таких вредных, для организма условиях работы его рука может дрогнуть.

• Не высокая производительность по сравнению с другими видами сварки. Данный минус является очень существенным, ведь скорость выполнения ремонта является таким же определяющим, как и его качество. В силу своей конструкционной особенности, работа ручной дуговой сваркой требует периодической замены электродов. Это делает её менее производительной с точки зрения темпа работ. Плюс работа требует от сварщика больших затрат сил. Именно он делает всю работу, и от его умений и опыта зависит скорость выполнения работы.

Метод ручной дуговой наплавки по праву занимает свое место на рынке, но когда речь заходит о ремонте сложного оборудования в кратчайшие сроки и с необходимым качеством следует обратить внимания на другие способы.

1.4 Анализ возможных способов ремонта шнека

Существует большое количество способов наплавки шнека. Выбор способа зависит от ряда факторов [9]. Это материал и химический состав шнека, его толщина, характер повреждений. Так же нужно учитывать целесообразность каждого из способов. Нужно понимать единичный ли это случай, или это какое то многосерийный цех по наплавке. Так же стоит учитывать экономическую сторону вопроса.

1.4.1 Механизированная сварка.

В отличие от ручной сварки, в полуавтомате подача электрода происходит автоматически. Для этой цели сделан специальный материал — сварочная проволока. Все остальные операции сварщик выполняет самостоятельно [10]. Так что здесь тоже важную роль играет мастерство сварщика (рис. 1.7).

Рисунок 1.7 - Механизированная сварка

К плюсам полуавтоматической сварки можно отнести следующие пункты.

- Не дорогое оборудование (сварка без газа).
- Способность сварки различных материалов, таких как нержавейки, легированная сталь, различные алюминиевые сплавы.
- Легкая сварка тонколистового металла.
- Производительность выше, чем у ручной сварки, за счет автоматической подачи электрода.

К минусам сварки полуавтомата относится:

- Невозможность наблюдать за ходом образования шва.
- Большие затраты труда.

Сварка с газом позволяет полностью исключить проникновение кислорода на место непосредственного проведения сварки. За счет этого устраняются недостатки, связанные с содержанием углерода, что позволяет получить сварной шов высокого качества.

Придется перемещать тяжелые газовые баллоны, что нецелесообразно для выполнения всего нескольких швов. К тому же зарядка баллонов нерентабельна, когда сварка используется не слишком часто [11].

• Затруднена работы на улице при сварка полуавтоматом – газовая среда

- требует защиты. Без защиты есть вероятность, что ее сдует ветром.
- Ввод в эксплуатацию полуавтомата требует серьёзной электрической сети. Сеть должна иметь три фазы. Стоит учитывать, что понадобиться газовые баллоны. Необходимость в использовании баллонов делает данную сварку не мобильной.

Сварка полуавтоматом больше подходит для работ у себя в гараже или же на даче, а не для ремонта сложного оборудования, такого как шнек.

1.4.2 Автоматическая сварка.

Для полной автоматизации сварочного процесса применяются специальные сварочные аппараты (рис.1.8).

Рисунок 1.8 – Автоматический сварочный аппарат

Их использование позволяет лишь осуществлять контроль над качеством сварного соединения, не вмешиваясь в такие процессы, как подача электродов, поддержание горения сварочной дуги, начало и завершение рабочего процесса. Человек выполняет функцию оператора, устанавливая автомат и детали в нужное положение и управляя работой чаще всего с пульта управления [12]. Сварка методом автомат существенно снижает трудозатраты работников. Сварка в режиме автомат характеризуется постоянством подачи проволоки по

мере ее плавления. Некоторые автоматы могут самостоятельно зажигать дугу, как при начале работы так и при ее случайном обрыве.

Плюсы автоматической сварки:

- Высокая производительность труда. Сварочный автомат может применяться не только для сварки конструкций больших размеров, но и при поточной работе с изготовлением небольших швов. И в том, и другом случае производительность труда будет гораздо выше, чем при использовании ручного труда, так как полностью исключена необходимость замены сгоревших электродов. Исключение возможности фактора. Благодаря исключению действия человеческого человеческого фактора шов получается ровным по всей длине и однородным по толщине. В то время как рука человека может, например, дрогнуть, работа автомата — постоянна на протяжении всего заданного времени.
- Работа автомата не зависит от состояния оператора, как психологического, так и физического.
- Возможность работы в труднодоступных местах. Человек имеет определенные физические размеры, и для его комфортного размещения для выполнения работы требуется определенная площадь. Сварка методом автомат может выполняться в таких условиях, в которых человеку физически работать не только неудобно, но и не представляется возможным.
- Автоматическая регулировка. Большинство современных сварочных автоматов «умеет» регулировать подачу проволоки при изменении длины дуги, а также восстанавливать работу после технических сбоев без последствий для качества шва.
- У автоматической сварки, качество получаемых швом практически не зависят от внешних обстоятельств окружающей среды.
- Экономичность. Снижается расход используемых материалов, так как сварка с использованием автомат технологий потребляет достаточное

для качественного выполнения их количество без потерь на бесполезный угар или разбрызгивание.

• Безопасность для оператора. Человеку не нужно контактировать с вредными веществами, выделяемыми при сваривании, и рабочими элементами аппарата, поэтому снижается риск развития профессиональных заболеваний и производственного травматизма.

К недостаткам автоматической сварки можно отнести:

- Возможность сварки швов только в нижнем положении, или при небольших наклонах сварных кромок, угол не более 15 градусов.
- Затруднено применение автоматической сварки в монтажных условиях. Эти недостатки обусловлены недостаточной маневренностью сварочных автоматов из-за их конструктивных особенностей.

1.4.3 Плазменная наплавка.

Плазма представляет собой крайне мощную дугу, состоящую из высоко ионизированного газа, сжатую и сфокусированную соплом горелки (плазматрон), которая используется в качестве источника нагрева для проведения сварочных процессов (рис. 1.9).

Рисунок 1.9 – Плазменная сварка

Горелка для плазменной сварки и наплавки (плазматрон) работает с двумя независимыми регулируемыми дугами - дежурной и основной, каждая из которых питается от отдельного источника [13].

Свариваемые материалы: нержавеющие стали, низкоуглеродистые стали оцинкованные стали, титан, медь, бронза, латунь.

Преимущества технологии плазменной сварки [14]:

- Повышение производительности процессов сварки в 2-3 раза.
- Повышение качества сварочных швов, отсутствие брызг в отличие от полуавтоматической сварки.
- Большая экономия на сварочной проволоке, т.к. варим без разделки и ток и скорость подачи проволоки при плазме независимы.
- Малая зона термического влияния, благодаря механическому сжатию соплом плазмы, вследствие этого незначительный нагрев основного металла и минимизация коробления после и во время сварки.
- Гладкая поверхность швов, не требующая дополнительной обработки,
- Высокая надёжность зажигания основной дуги, благодаря наличию вспомогательной, отсутствие включений вольфрама в сварном соединении.
- С помощью плазменной наплавки можно не просто восстанавливать рабочую поверхность витком шнека, но и многократно увеличивать ресурс за счет применения наплавочных порошков с различной твердостью и различным содержанием карбидов.

В результате проведенного анализа возможных способов наплавки, можно сделать вывод, что для шнеков целесообразно использовать метод плазменной наплавки, т.к. этот способ имеет более высокие показатели производительности. Таким образом, для достижения поставленной цели необходимо решить следующие задачи: разработать технологический процесс восстановления шнека и разработать оборудование для наплавки шнека.

2 Разработка технологического процесса восстановления шнеков питателей цементных силосов

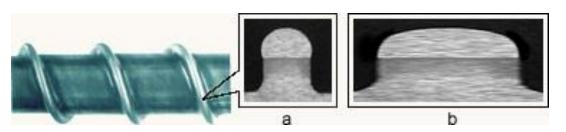
2.1 Подготовка к наплавке

Прежде чем приступать к плазменной наплавке, необходимо подготовить поверхность детали. Подготовка состоит из таких операций как: обезжиривание и очистка деталей от влаги, цемента; создание шероховатостей [15]. Так же нужно защитить те части поверхности, которые не подлежат наплавки. Стоит отметить, что обезжиривание и очистку можно осуществить с помощью пескоструйной обработки. Пескоструйная обработка представляет из себя процесс струйной абразивной очистки поверхности из металла.

Из названия обработки понятно, что в качестве обрабатывающего материала в основном применяют песок. Песок распыляют под давление сжатого воздуха. Данная обработка, убирает любые загрязнение и при этом минимально воздействует на саму поверхность.

Создать шероховатость на металлизируемой поверхности детали можно несколькими способами. Наиболее эффективным методом является обработка стальной крошкой. На поверхность восстанавливаемой детали струёй сжатого воздуха под давление 5-6 кгс/см² наносят стальную крошку (08 – 1.5мм). Перед тем как создать шероховатость поверхность детали протачивают для обеспечения минимально допустимой толщины покрытия. Поверхности детали не участвующие в этой операции, накрывают толстым картоном. Важно что бы между подготовкой детали и наплавкой прошло не более двух часов.

2.2 Наплавка


Суть наплавки состоит в нанесении слоя износостойкого и коррозионностойкого материала напрямую на гребень витка шнека (рис. 13,14). В качестве источника нагрева используется плазменная дуга, а присадочным материалом служит мелкозернистый порошок, вдуваемый в дугу потоком

транспортирующего газа. Рабочий газ - аргон.

С помощью инновационного сплава Pmalloy 21 [16], разработанного для наплавки износостойкого покрытия, работа идёт без предварительного подогрева заготовки, и практически не зависит от диаметра шнека. Это существенно упрощает технологию наплавки. Так же данный сплав обладает существенной стойкостью к образованию трещин при наплавке.

Рисунок 13 – До наплавки

а – макрошлиф наплавленного валика без колебания плазмотрона;
 б – макрошлиф с колебаниями плазмотрона
 Рисунок 14 – После наплавки

Деталь, закреплённая в патроне, получает вращательное движение с окружной скоростью 15-20 об/мин. Плазматрон тем времен закреплён на суппорте токарного станка, и совершает продольные движения подачи от 1 до 10 мм/об. На получения твердого и износостойкого покрытия оказывают влияния режимы наплавки. Благодаря высокой температуре плазменной дуги при наплавке, покрытие получается пористое и плотное. Так же пламенная наплавка обеспечивает большую прочность сцепления с основным металлом.

Размеры наплавляемого слоя можно регулировать в широких пределах, изменяя количество подаваемого присадочного порошка, амплитуду колебаний плазмотрона и скорость наплавки. Благодаря хорошему формированию

наплавленного металла достигается минимальный припуск на последующую механическую обработку. При правильно выбранном режиме наплавки доля основного металла не превышает 5%. Коэффициент использования присадочного порошка составляет 95%. Наплавленную деталь обрабатывают на шлифовальных и токарных станках.

2.3 Контроль качества выполненных работ

Технологический процесс ремонта контролируется на каждом этапе (обезжиривание, зачистка, механичкая обработка, наплавка). Так же проверяется оборудование, на котором производятся работы. Важным моментом является контроль выполненной операции [17].

Контроль наплавки

Необходимо стремиться к минимальному проплавлению основного металла. Это достигается путем наклона электрода в сторону, обратную ходу наплавки. Должно быть, как можно меньшее перемешивание наплавленного металла с основным.

Нужно стараться достичь минимальных остаточных напряжений и деформаций в детали. Это требование во многом обеспечивается соблюдением двух предшествующих.

Необходимо снижать до приемлемых значений припуски на последующую обработку детали. Говоря другими словами, нужно наплавлять металла ровно столько, сколько необходимо, и не больше [18].

Существует много методов контроля сварных соединений от визуального до проверок с помощью магнитных полей. Наиболее эффективный метод контроля — ультразвуковой метод. Данный метод требует специальной подготовки наплавленного слоя.

Для начала нужно очистить наплавленный слой от ржавчины на расстоянии 50-70 см с каждой стороны. Для лучшей проходимости волны, слой обрабатывают машинным маслом или солидолом. Далее прибор настраивают по определённым стандартам, зависящим от того, какие задачи решаются.

Метод основан на возможности высокочастотных колебаний проникать в

проверяемый металл и отражаться от поверхности трещин, непроваров, неровностей. Созданная искусственным путём, управляемая диагностическая волна проникает в проверяемое соединение и если волна обнаруживает дефект, то она отклоняется от своего привычного распространения. Оператор УЗД фиксирует это отклонение на экране прибора. Далее, исходя из показаний на экране, оператор уже сможет дать экспертную оценку качеству наплавленному слою.

Данный способ контроля очень четкий. При правильной методики контроля ультразвуковой метод даёт исчерпывающий ответ о качестве наплавленного слоя.

К плюсам ультразвукового контроля относиться

- Отличная точность и скорость исследования, и его не высокая стоимость.
- Мобильность диагностики
- Во время проведения УЗК не требуется выведения контролируемой детали или всего объекта из эксплуатации.
- Объект проходящий проверку не повреждается

3 Выбор и разработка оборудования и оснастки для восстановления шнеков

3.1 Оборудование для подготовки поверхности

Для подготовки поверхностей, потребуется пескоструйная камера (рис 3.1). Она позволяет очень качественно произвести очистку поверхности. В процессе пескоструйной обработки устраняются окалины, ржавчина, остатки цемента и влаги. Оператору необходимо использовать специальные средства защиты, такие как костюм, маску, фильтр для дыхания. Напорная пескоструйная камера довольно таки производительная и используется чаще всего для обработки шнека. На сегодняшний день одна из самых эффективных пескоструйных камер Contagor CAB — 135 PD. Технические характеристики камеры указанны в таблице 3.1.

Таблица 3.1- Технические характеристики Contagor CAB – 135 PD

Максимальное рабочее давление, бар	12
Мощность, кВт	1,6
Напряжение, вольт	380
Площадь фильтра, м2	20
Производительность, м2/час	до 15
Рабочее давление, бар	5-6
Расход сжатого воздуха, м3/мин	0,7 - 3,3
Габаритные размеры ШхГхВ, мм	1470x1700x2140
Вес, кг	400

Рисунок 3.1 – Пескоструйный аппарат

3.2 Оборудование для наплавки

На сегодняшний используют установки для плазменного напыления серии PM-300 (рис. 3.2).

Рисунок 3.2 – Наплавочный модуль РМ-300

Наплавка происходит высокотемпературной сжатой дугой, которая образуется в плазматроне.

Комплектация аппарата:

- Наплавочный модуль с плазмотроном РР-6-03
- Блок и пульт управления
- Сварочный источник питания
- Блок охлаждения

На сегодняшний день на рынке представлено большое количество плазматронов. В зависимости от характера технологического процесса, будь это напыление порошком, наплавка или сварка и типа тока, подбирается плазматрон.

Плазмотроны должны выполнять следующие функции.

- Надежная защита сварочной ванны от пагубного воздействия окружающего воздуха при минимальном расходе газа.
- Большой срок службы при непрерывной работе.
- Беспрепятственное прохождение порошка в зону наплавки через имеющиеся в плазмотроне каналы.
- Надежное охлаждение участков плазмотрона, подверженных высокой тепловой нагрузке.

Плазмотрон PP-6-03 (рис 3.3), состоит из двух частей. Одна часть это сам плазмотрон, а вторая его часть это держатель, с горизонтально расположенными коммуникациями. Крепится плазматрон с держателем за счет четырех труб и винтов. Такая конструкция позволяет очень быстро собирать и разбирать конструкцию при необходимости. Технические характеристики плазматроны указанны в таблице 3.2.

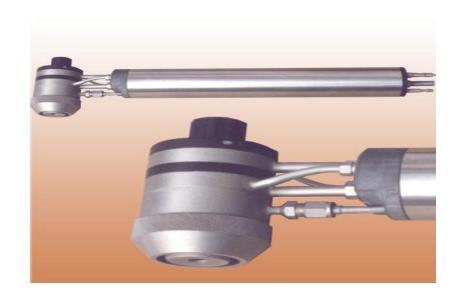


Рисунок 3.3 - Плазмотрон

Таблица 3.2 - Технические данные плазматрона РР-6-03

Ток косвенной дуги	30 – 50
Ток прямой дуги	30 – 350
Подача присадочного порошка кг/ч	0.5 - 0.8
Фракция порошка, мкм	63-200
Потери порошка, %	Меньше 5
Расход аргона, л/мин	12-19
Расход охлаждающей воды, л/мин	Больше 6 литров
Диаметр и высота ,мм	60/114
Масса с держателем / без, кг	2.5 / 1.2

Порошковые питатели (рис. 3.4) служат для хранения порошка. Так же питатель порошка равномерно подаёт порошок к месту наплавки, через плазматрон. Регулирует расход и обеспечивает стабильную подачу порошка. Порошковый питатель является очень важным звеном в процессе наплавки. Во многом от него зависит качество наплавки. Как правило, перечисленные типы питателей обеспечивают стабильную работу порошка при расходе не менее 25—30 г/мин.

Порошковый питатель РМ-РF-10 выполнен в виде барабана. В барабане есть продольный насечки и вертикально расположены подвижные трубки. Через эти трубки порошок насыпается в барабан. Расход регулируется с помощью изменения зазора между трубкой и барабаном. Так же за счет изменения скорости вращения барабана. Благодаря прозрачной стенки, очень удобно следить за расходом порошка при наплавке. Данный порошковый питатель идёт в комплекте к плазменной установки РМ — 300, его характеристики указанны в таблице 3.3.

Таблица 3.3 - Технические данные PM-PF-10

Напряжение	220в, 50гц
Производительность	0-10 кг/ч
Ёмкость бункера	3.5 л
Франкий присадочного порошка	56-260 мкм
Форма чистиц порошка	Сферическая
Режим работы	Постоянный
Габариты (ДхШхВ)	175х150х480 мм /240х193х120 мм
Питатель порошка / блок упр-ия	
Масса Питатель порошка /блок упр-ия	6.7 кг / 3.3 кг

Рисунок 3.4 – Порошковый питатель

Ha блоке управления сосредоточены пусковые, измерительные, сигнальные приборы И устройства, контролирующие процесс плазмообразования и водоснабжения. Основное назначение блока управления при плазменной наплавке с подачей порошка в сварочную ванну — обеспечение включения установки только после подачи в плазмотрон охлаждающей воды и плазмообразующего газа. В противном случае плазмообразующее сопло расплавляется, и плазмотрон выходит из строя.

Блок управления идёт в комплекте вместе с плазменной установкой РМ-300.

Для питания установки РМ-300 в комплекте идёт необходимый источник питания.

Колебатель служит для возвратно-поступательного перемещения плазменной горелки вдоль оси наплавляемой детали. Заранее задается, частота и амплитуда, для того что бы повысить производительности труда.

Колебатель РМ-WMO-120 не останавливая процесс наплавки, имеет возможность менять скорость и ширину колебаний. Для того что бы контролировать положение плазматрона, на лицевой панели имеется шкала с указателем. Данный колебательный механизм идёт в комплекте вместе с плазменной установкой РМ -300, его характеристики указанны в таблице 3.4.

Таблица 3.4 - Технические характеристики PM-WMO-120

Напряжение	220в, 50гц
Несущая способность	10кг
Скорость перемещения	0-50 мм/с
Ширина колебаний	0-50 мм
Ход каретки	120 мм
Габариты (ДхШхВ)	254х184х187 мм / 240х220х140 мм
Механизм колебаний / блок упр-ия	
Macca	6.1 кг / 4.2 кг
Механизма колебаний / блок упр-ия	

Тип двигателя	шаговый

Вращатель нужен для вращения шнека относительно плазмотрона при наплавке. В вращателе РМ-РМ-100 имеется шкала для контроля угла наклона, механизм фиксации детали. Наклон может задаваться в ручную, либо с помощью электродвигателя. Технические характеристики данного вращатель указанны в таблице 3.5.

Таблица 3.5 - Технические характеристики РМ-РМ-100

Грузоподъёмность, кг	100
Диаметр наплавляемой детали, мм	400
Крутящий момент, н/м	100
Частота вращений ,1/мин	0.01-0.3
Угол наклона, градус	90 ±1

Рисунок 3.5 – Вращатель

•

Блок охлаждения служит для охлаждения плазматрона, горелок и прочих деталей подвергающихся интенсивному нагреву в процессе наплавки. Рабочая жидкость — дистиллированная вода. В комплекте с плазменной установкой РМ-300 входит блок охлаждения РМ-WCD-5-200. Его технические характеристики указанны в таблице 3.6.

Таблица 3.6 – Технические характеристики блока охлаждения PM-WCD-5-200

Напряжение и частота питающей сети	220 В, 50 Гц
Потребляемая мощность	до 0,7 кВт
Давление рабочей жидкости	до 0,5 мПа
Расход рабочей жидкости	2 - 10 л/мин
Теплоотбор	до 2 кВт
Диапазон температур рабочей	5 - 50 °C
жидкости	
Объем бака	200 л
Габариты	600х600х1800 мм
Масса без рабочей жидкости	30 кг

3.3 Оборудование для контроля качества

Для применения ультразвукового контроля качества понадобиться следующие оборудование: ультразвуковой дефектоскоп, толщиномер и томограф.

Основным оборудованием, конечно же, является ультразвуковой дефектоскоп (рис 3.6). Поиск дефектов происходит за счет ультразвука.

Рисунок 3.6 – ультразвуковой дефектоскоп УСД – 60

Данный дефектоскоп так же является толщиномером и томографом. Датчик дефектоскопа устанавливается на определённое расстояние от сварного шва. После чего оператор проводит контроль, перемещая датчик по сварному шву. При обнаружение дефекта, на экране это отобразиться. Данная операция очень проста и не требует серьёзной квалификации от оператора.

4 Безопасность

Безопасность и экологичность работы не менее важная часть процесса. Безопасность, в первую очередь связанна с обеспечением такого режима работы, при котором исключается возможность влияния на работающих вредных факторов. К вредным факторам помимо возможности получения физической травмы, можно отнести изменение в функционировании основных органов зрения, обоняния, слуха, дыхания, кровообращения. Эти изменения негативно сказываются на здоровье работника, по сколько могут привезти к повышенной утомляемости, потери концентрации. Всё это увеличивает вероятность получения физической травмы [19].

Исходя из этого, нужно разработать меры защиты от вредных факторов и описание, используемым мерам защиты, учитывая требования дать документов. Следует так же провести анализ рабочего нормативных Соблюдение пространства И оборудования. правил безопасности жизнедеятельности человека помогает не только защитить здоровье работников, но и повысить производительность их работы.

4.1. Техногенная безопасность

Техногенная безопасность — состояние защищённости рабочего персонала, объектов экономики и окружающей среды от опасных техногенных происшествий. Для того, что бы ни потерять в качестве и производительности труда, нужно организовать рабочую зону с соответствием с установленными нормами и ГОСТ 2269-76. Этот ГОСТ распространяется на индивидуальные рабочие места и указывает общие требования к расположению рабочего оборудования.

Общие правила

- Нужно учитывать рабочую позу и пространство для размещения оператора.
- Возможность обзора компонентов рабочего места и за его пределами.

- Необходимо вести записи, размещать документы и материалы, которые использует в своей работе оператор.
- Для эксплуатации и обслуживания оборудования необходимо обеспечить возможность его движения и перемещения.
- Между операторами и оборудования должны быть зрительно-звуковая связь.
- Должны быть предусмотрены специальные средства защиты оператора от воздействия вредных факторов, установленные ГОСТ 12.0.003-74.

Опасные и вредные факторы разделяются на несколько категорий:

Физические

- Повышенный уровень шума.
- Малое количество или отсутствие естественного света.
- Высокий уровень статического электричества.
- Малая оснащенность рабочего места...

Биологические

- Вирусы, микробы, бактерии и продукты их жизнедеятельности.
- Животные, растения.

Психофизиологические

• Физические и нервно-психические перегрузки.

Плазменно-порошковая наплавка происходит в специально отведённых помещениях (лаборатория) и основные вредные факторы: повышенный шум, пониженная или повышенная температура, малая освещенность рабочего места.

4.2 Экологическая безопасность.

Меры, предназначенные для уменьшения вреда окружающей среде от деятельности человека – защита окружающей среды.

Ограничение выбросов в атмосферу, гидросферу, создание заповедников и парков, ограничения в охоте за редкими животными это всё меры по защите окружающей среды. Многие предприятие внедряют в свои производства новые технологии по утилизации отходов, поскольку вопрос экологической

безопасности стоит очень остро. Глобальное потепление, высыхание естественных водоёмов земли, загрязнение атмосферы, всё это происходит из -за пагубного воздействия деятельности человека. Уместно на производстве использовать установки с малым потребление электроэнергии, а отходы сдавать в мусороперерабатывающие заводы. Очень наглядным примером является огромная мусорка вокруг г. Москва и тем, что в Китае 90% отходов перерабатываются на мусороперерабатывающих заводах.

4.3 Безопасность в чрезвычайных ситуациях.

Совокупность опасных событий, влияющих на безопасность человека – чрезвычайные ситуации. Основными источниками таких ситуаций являются: землетрясение, цунами и другие опасные природные явления, техногенные катастрофы, инфекции, применение современных средств вооружения.

Вопросы, связанные с защитой населения и территорий от чрезвычайных ситуаций решает РСЧС (единая государственная система предупреждений и ликвидации ЧС). РСЧС организует комплекс мероприятий по защите. К ним относиться:

- Оповещение и информирование населения от опасности.
- Эвакуация.
- Меры по инженерной, химической, радиационной защите.

Эвакуация один из основных и самых эффективных способов защиты населения. Эвакуация - перемещение населения и ценностей в безопасное место. Так же у населения должны быть средства индивидуальной защиты. Обычно это средства для зашиты органов дыхания, кожи. Так же проводиться мероприятия. Они направлены ослабление медицинские на предотвращения поражающих эффектов, возникших при чрезвычайной Медицинские мероприятие ситуации. отвечают за санитарноэпидемиологическую защиту в местах чрезвычайной ситуации, и в районах, где располагается эвакуированное население.

4.4 Пожарная безопасность.

Государственная противопожарная служба осуществляет контроль в сфере пожарной безопасности. Они разрабатывают меры и нормативы по пожарной безопасности, осуществляют тушение пожаров и проводят аварийноспасательные работы.

Пожароопасная среда в помещения возникает по нескольким причинам. Это выброс или утечка горючего газа, легковоспломеняющей жидкости, неисправность оборудования, деятельности персонала, отключение вентиляции, короткое замыкание. На стадии проектирования здание определяется его пожароопасность, с помощью требований, которые в свою очередь государственными В составляются органами. настоящий нормированию области пожаровзрывобезопасности относиться два подхода. Детерминированный подход, нормативный документ НПБ-105-95. Этот подход распределяет объекта по степени их опасности. Основным параметров считается - последствие взрыва или пожара. Так же существует вероятностный подход, нормативный документ – ГОСТ 12.1.004-91. Этот способ основан на оценке допустимого риска, и предусматривает недопущение воздействия на людей опасных факторов взрыва, пожара с вероятностью, выше нормативой. Помещение для плазменно-порошковой наплавки, ориентируясь на степень пожаровзрывоопасности относиться к категории В.

Обязательно нужно производить пожарные учения и профилактику. Во многом успех при тушении пожара зависит от того, как быстро его обнаружат и примут меры по его ликвидации. В кабинете обязательно должен быть не просроченный огнетушитель и силовой щит, для того что бы иметь возможность обесточить его. На видных местах должны быть инструкции и обязанности персонала в случаи пожара. Не стоит забывать о плане пожарной эвакуации. В случаи обнаружение пожара нужно попытаться потушить его, или ограничить его распространение. В случаи невозможности самостоятельно потушить пожар, вызвать пожарную службу, и покидать помещение, согласно

плану эвакуации.

- 4.5 Опасные и вредные факторы при плазменно-порошковой наплавки Как и любое другой вид сварки, плазменно-порошковая наплавки имеет свои вредные и опасные факторы.
 - Повышенная температура в рабочей зоне, а так же поверхности оборудования и материалов.
 - Высокое напряжение в электрической цепи.
 - Воздух в рабочей зоне содержит сварочный аэрозоль.
 - Высокий уровень ультрафиолетового излучения.
 - Повышенный уровень яркости света.
 - Повышенный уровень шума.

Плазменно-порошковая наплавка должна проходить в строгом соответствии с требованиями по ГОСТ 12.3.039-85 ССБТ.

4.5.1 Микроклимат

Пониженная или повышенная температура в помещении сильно сказывается на работе оператора. Температура в помещении зависит от многих факторов, это и технологические особенности технического процесса, от времени года, систем вентиляции и отопления [20]. Общие нормы воздуха к рабочей зоне должны соответствовать ГОСТ 12.1.005–88. Эти нормы указанны в таблице 4.1.

Таблица 4.1- ГОСТ 12.1.005-88

Период	Темпаратура допустимая			Относ-		Скорость	движения	
Года	на рабочих местах			влажность %		воздуха м	воздуха м/с	
		Верхняя	Нижняя					
	ная	Пост\не	Пост\не	ьная	симая	ьная	гимая	
	эптималь	пост.	пост.	тимальная	путсим более	тимальная более	пустим	
	ПТИ			ПТИ	Цопу не 60	Опти	Допу не бо	
	0			\sim	Н	Н	П	

Холодный	22-	25	26	21	18	40-60	75	0.1	0.1
	24								
Теплый	23-	28	30	22	20	40-60	70	0.1	0.1
	25								

Микроклимат в помещение должен поддерживаться центральным отоплением, системы вентиляции и кондиционирования.

4.5.2 Электробезопастность.

Сложно представить современное производство без электрических приборов. Поэтому обеспечения электробезопасности на предприятие играет важную роль.

Система мер и средств, отвечающих за безопасность человека, при работе с электрическим током и дугой — электробезопастность, ГОСТ 12.1.009-76.

При использовании на производстве и даже в быту электрических приборов, человек рискует попасть под воздействие электрического тока. Характер и тяжесть таких повреждений зависит от многих факторов: длительность воздействия тока на человека, место контакта с током, мощности напряжения, а так же индивидуальных особенностей организма и электроустановки. Для того что бы избежать поражения электрическим током, нужно соблюдать правила безопасности.

При включении электроустановок важно проверить целостность изоляции, проводки, отсутствие короткого замыкания. Если имеются признаки замыкания, нужно незамедлительно отключить прибор от сети. Так же при работе с электроприборами запрещается одновременно прикасаться к приборам с естественным заземлением.

Основные способы защиты при работе с электроустановками

- Заземление.
- Зануление.
- Защитное разделение сетей.

- Предохранительные устройства.
- Лица, не достигшие 18 лет, не прошедшие инструктаж и не обученные безопасным методам работы с оборудованием, не допускаются к работе с электроустановками.

Электробезопасность во многом зависит от сознательности работников, их дисциплине. Очень важно знать методы оказания первой помощи при поражении током

Меры по предотвращению поражения током.

- Все провода должны быть хорошо изолированы.
- На плазматроне должна быть изолированная рукоятка.
- Сварщик не должен самостоятельно производить отключение, включение сварочной установки, её ремонт, а так же какие либо манипуляции с электрическим щитком. Всё это должен делать специалист-электрик.
- Одежда должна быть из брезента или сукна.
- Обувь должна иметь кожаную подошву, а сам сварщик во время работ должен находится на изолирующей подкладке.
- Если работ проходит в сухом помещении, лампы не должны превышать 36ват, в сыром 12в.

При поражение человека электрическим током, нужно оказать первую медицинскую помощь. При необходимости сделать искусственное дыхание.

4.5.3 Сварочный аэрозоль

Одним из самых опасных вредных факторов при плазмено-порошковой наплавке, является выделение сварочного аэрозоля. Если верить статистики заболеваний у сварщиков, больше 80% всех заболеваний связанно именно с органами дыхания и воздействия на них вредных аэрозолей.

Сварочный аэрозоль это совокупность маленьких частиц, которые образовались в результате конденсации паров расправленного металла. В большинстве случаев состав аэрозоля это железо и его окислы. В дополнении к этому может быть и алюминий, марганец, азот и другие вещества. Из-за очень

маленьких размеров, аэрозоль легко проникает в легкие человека, а дальше в кровь.

Сварочный аэрозоль может вызывать онкологию и сердечнососудистые заболевания.

Часто бывает, что вытяжки на производстве не могут обеспечить необходимый уровень безопасности человека, поэтому здесь не обойтись без средств индивидуальной защиты. К ним можно отнести противопылевые респираторы, шланговые противогазы с подачей воздуха.

4.5.4 Высокий уровень излучения

Плазменная дуга, используемая при наплавки, излучает инфракрасные, световые и ультрафиолетовые лучи.

Инфракрасное излучение при воздействие на человека, вызывают катаракту хрусталика. Проще говоря, полную потерю зрения. Для того что бы избежать этого, нужно использовать специальные защитные стёкла во время работ.

Световые лучи при наплавки, могут кратковременно ослеплять, а в дальнейшем ухудшить зрения человека.

Ультрафиолетовые лучи при кратковременном воздействии вызываю светобоязнь. Это такая болезнь, при которой возникает острая боль в глазах и слезоточение. Это болезнь проходит через 2-3 дня. При длительном воздействии этих лучей, может возникнуть ожог кожи. Сварщики должны защищать своё тело специальной одеждой, лицо и шею щитков, руки должны быть в специальных перчатках.

Для того, что бы обезопасить себя от ожогов и болезней глаз, помимо индивидуальных средств защиты, нужно применять и общие средства. К ним относиться использовании кабин с дверьми, с закрытым брезентом занавесками, а так же переносные щиты и ширмы.

4.5.5 Повышенный уровень яркости

Зрение один из самых больших каналов для получения информации. От освещения зависит качество получаемой картинки. Из-за плохого освещения получаемая информация может искажаться, что приводит к уменьшению производительности труда и увеличивает шанс брака. Так же при слабом или слишком ярков свете повышается вероятность получить травму.

Согласно санитарно-гигиеническим нормам, рабочая зона должна освещаться как естественным, так и искусственным светом. Действующая норма освещённости СП 52.13330.2011.

Уместно повысить уровен освещенности при сварочных работах до 500 лк при общем и местном освещении и до 300 лк при одном общем освещении. Всё световое оборудование необходимо чистить по мере загрязнения. Окраску стен лучше наносить специальными красками, которые имеют большой коэффициентом отражения для видимой части спектра и низким коэффициентом — для ультрафиолетовых лучей.

4.5.6 Повышенный уровень шума

Слух один из основных органов чувств у человека. Долгое пребывание в шумных помещениях может привести к частичной или полной глухоте. Так же снижается и производительность труда, т.к. большой шумовой фон влияет на скорость принятие решений, снижает концентрацию внимания и увеличивается расход энергии. Разумеется понятие «шумно» у каждого человека разное. Производственный шум оценивают как совокупность звуков, возникающий во время технических процесса работ, а так же от работы оборудования. Принято классифицировать шум по его звуковой мощности. Нормы предельно допустимого уровня шума установлены ГОСТ 12.1.023–80. Эти нормы указанны в таблице 4.2.

Таблица 4.2 ГОСТ 12.1.023-80

Уровни звукового давления, дБ								Уровни	
31.5	63	125	250	500	1000	2000	4000	8000	звука и
									анлогичные
									уровни
									звука, дБА
68	71	61	54	49	45	42	40	38	50

Для того, что бы уменьшить влияние этого вредного фактора нужно выполнить следующие установки.

- Изоляции источников шумов.
- Проведения акустической обработки помещения.
- Создания дополнительных ДВП или ДСП изоляционных перегородок.

4.6 Правовые вопросы безопасности

Руководитель организации, берёт на себя ответственность за выполнение и собелюдение требований безопасности в помещениях, ГОСТ 12.3002.-75. Расстояние между приборами должно быть подобрано таким образом, что бы его было удобно обслуживать, безопасно использовать. Рабочая зона персонала, и расположение всех элементов, участвующих в работе, должно обеспечивать рациональность рабочих движений, а так же учитывать физиологические (скорость, силу) возможности человека. Необходим нормированный рабочий день, он не превышает 8 часов в сутки.

Помещения должны соответствовать требованиям пожарной безопасности и иметь всё необходимое, для устранения возможного пожара. Отделка помещения должно выполнять не из горючих материалов. Не допустимо применение глянцевых и блестящих материалов. Высота помещения не должна быть меньше 4.2метра.

Все коммуникаци прокладываются в специальных каналах под полов, в защитных корпусах. Кабели должны быть на высоте не менее 2.2 метра от пола. Необходимо иметь приточно-вытяжную вентиляцию, и если это требует технический процесс, то должна быть местная вытяжка. Это делается для того, что бы исключить возможность попадание вредных выборосов в рабочую зону.

Экономическая эффективность проекта Исходные данные.

Таблица 5.1 – Краткая характеристика сравниваемых вариантов

Базовый вариант	Проектный вариант			
В базовом варианте рассмаривается	В проектном варианте рассматривается			
метод ручной дуговой наплавки	метод плазменно-порошковой			
электродом шнека из стали ст3.	наплавки шнека из стали ст3. Наплавка			
Наплавка происходит с помощью	происходит плазменным аппаратом			
сварочного аппарата Саи-250 и	PM-300			
электрода т-590.				

Таблица 5.2 – Исходные данные по проекту

No	Наименование показателей	Базовый вариант	Проектный вариант	
1	Цена 1кг материала изделия	30p	30p	
2	Цена 1кг электрода	144	-	
3	Цена сварочного	320000т.р.	2250000т.р.	
	оборудования			
4	Цена комплектующих	20p	50p	
5	Разряд сварщика	4	4	
6	Часовая тарифная ставка	100 руб/ч	100 руб/ч	
7	Отчисление на социальные	523,26p	147.51p	
	нужны			
8	Норма амортизации на	20%	20%	
	оборудования			
9	Норма амортизации на	3%	3%	
	здание			
10	Норма расхода основного	428кг	428кг	
	металла на изделие			
	1	<u> </u>		

11	Норма расхода газа	-	20г.
12	Цена газа	-	40р/кг
13	Цена 1Квт электроэнергии	2.2	2.2
14	Площадь занимаемая	0.8m^2	4.6m ²
	сварочным оборудованием		
15	Коэффициент доплаты к	1.6	1.6
	Основной заработной плате		
16	Скорость сварки	2.6	15
17	Сила сварочного тока	225A	450A
18	Напряжение сварочной дуги	22	120
19	КПД источника питания	79%	90%
20	Масса наплавляемого	25,74	25.74
	металла		

5.2 Расчет штучного времени на выполняемые технологические операции

Таблица 5.3 – Трудоёмкость технологического процесса, базовый вариант.

Операции	^t n-3	^t O	^t ₆	tomл	^t обсл	t _{H.n}	^t um
Подготовка	0,001	2ч	0,2ч	0,1ч		0,2 ч.	2,561
поверхности					0.16		
Предварительный	0,001	1 ч.	0,1 ч	0,05	0,08	0,1 ч	1,331
подогрев							
Наплавка	0.00115	2.3ч	0.5	0.115	0.184	0.2ч	3.3
Контроль	0,001	1ч	0.1ч	0,05	0,08	0,01ч	1,331
качества							
Итого	0,00415	6.3ч	0.9ч	0.315	1.224	0.51	8.5

Таблица 5.4 – Трудоёмкость технологического процесса, проектный вариант.

Операции	^t n-3	^t O	^t B	tomл	^t обсл	tH.N	^t um
Подготовка	0,001	0,5	0,05ч	0,025		0,1 ч.	0,716
поверхности					0.04		
Наплавка	0,001	0.2.	0,02 ч	0,01	0,016	0,2 ч	0.44
Контроль качества	0,001	1 ч	0.1	0,05	0,08	0,01	1,331
Итого	0,003	1.7ч	0,17	0,085	0.136	0.31	2.487

tum Рассчитывается по формуле 1.

$$tum^{-t}n-3^{+t}o^{+t}e^{+t}om\pi^{+t}ocon^{+t}H.n$$
 (1)

где, $t_o = t_{\mathcal{M}}$ — основное (машинное) время, рассчитывается по формуле (2);

 t_{e} – вспомогательное время t_{e} = 10% от t_{o} ;

 t_{omn} – время на отдых и личные надобности t_{omn} = 5% от t_o ;

 $t_{oбcn}$ – время обслуживания рабочего места $t_{oбcn}$ = 8% от t_o

 t $_{H.}$ n — время неустранимых перерывов, предусмотренных технологическим процессом.

5.2.1 Расчет базового варианта

$$t_O = \frac{60 * M_{Han \pi.Mem} * L_{uu}}{I_{ce.} * \alpha_{Han \pi}}, \tag{2}$$

где $M_{hanл.mem}$ - масса наплавленного металла, ${}^{L}u=3, {}^{I}cs=225$ a hann=9 г/а*ч, $M_{hanл.mem}=\rho\cdot F_{H}\cdot 10^{-3}=7,8*3.3*10^{-3}=25,74 \tag{3}$

где
$$p = 7.8 \text{ г/см}^3$$
, $F_H = 3.3$

$$t_0 = (60*25.74*3)/225*9 = 2.34$$

5.2.2 Расчет проектного варианта

$$t_O = \frac{60 * L_{uu}}{V_{CB}},\tag{4}$$

где $V_{cs} = 15 \text{м/ч}$.

 $t_0 = 60*3/15=0,24.$

5.3 Капитальные вложения в оборудование

Общие капительные вложения, вычисляются по формуле (5).

K
общ $^{=K}$ пр $^{+K}$ соп' (5)

Базовый вариант Кобщ= 240000т.р

Проектный вариант K общ=495000+527622=1022662т.р.

Где K пр — капитальные вложения в оборудование, вычисляются по формуле (6) K соп — сопутствующие капитальные вложения в оборудования, для проектного варианта. Вычисляются по формуле (10)

$${}^{\mathrm{K}}_{\Pi} p = \coprod_{\mathrm{o} \delta} * \mathbf{k}_{3} \tag{6}$$

где \coprod_{06} = суммарная стоимость оборудования, k_3 коэфицент загрузки, высчитвается по формуле (7).

Базовый вариант K пр=320000*0,75=240000т.р.

Проектный вариант K пр= 2250000*0,22=495000т.р.

$$k_3 = \frac{{}^{n}oб. pacчетн}{{}^{n}oб. npuh}$$
 (7)

 $n_{oб.pacчеmh}$ вычисляется по формуле (8).

$$n_{o\textit{6.pacчemH}} = \frac{N_{np} * t_{um}}{\Phi_{o\textit{4}} * 60}$$
 (8)

где: N_{np} –150 шт., t_{um} – штучное время на изготовление одного изделия, мин.,

 $\Phi_{
egthat}$ – эффективный фонд времени работы сварочного оборудования, час

$$\Phi_{\ni db} = (\mathcal{A}_{\kappa} - \mathcal{A}_{gblx} - \mathcal{A}_{np}) * T_{cm} * S * (1 - k_{p,n})$$
(9)

где: $\mathcal{A}_{K} - 365, \mathcal{A}_{Bblx} - 120, \mathcal{A}_{np}$ 19, T_{CM} . 8 часов, S- 1рабочая смена,

$$k_{p.n} = 0.06.$$

$$\Phi_{9\phi}$$
=(365-120-19)*8*1*(1-0,06)=1700ч

Базовый вариант

$$n_{o\textit{6.pacчemh}} = (150*510)/(1700*60) = 0.75$$

Проектный вариант

$$n_{o 6.pac \textit{чет} H} = (150*150)/(1700*60) = 0,22$$

 $n_{of,npuh}$ Для базового и проектного варианта равен 1

Базовый вариант

$$k = 0.75/1 = 0.75$$

Проектный вариант

$$k_3 = 0.22/1 = 0.22$$

Сопутствующие капитальные вложения:

$$K_{con} = K_{MOHm} + K_{\partial eM} + K_{n \pi o u \mu}$$
 (10)

 $K_{\emph{moнm}}$ – затраты на монтаж нового оборудования;

 $K_{\partial e\!M}$ – затраты на демонтаж старого оборудования;

 K_{nnow} – затраты на производственные площади под новое оборудование.

$$K_{MOHm} = \Sigma L_{OO} * k_{MOHm}$$
 (11)

где: k_{monm} – коэффициент монтажа оборудования = 0,2.

$$K_{\partial e_M} = \sum \mathcal{U}_{\partial \tilde{\Omega}} * k_{\partial e_M} \tag{12}$$

где: $k_{\partial eM}$ – коэффициент демонтажа оборудования = 0,2

Затраты на площадь, дополнительно занимаемую под новое оборудование, рассчитываем по формуле (13).

$$K_{n \pi o u \mu} = S_{n \pi o u \mu} * \mathcal{L}_{n \pi o u \mu} * g * k_{3}$$

$$\tag{13}$$

где: g = 3.

 K_{MOHm} = 2250000*0,2=450000T.p.

 $K_{\partial eM}$ =320000*0,2= 64000T.p.

 $K_{n \pi o u u}$ =4.6*4500*3*0,22 =13622 τ .p.

 K con = 450000+64000+13622=527622 $\mathrm{T.p.}$

5.4 Удельные капитальные вложения в оборудование Удельные капитальные вложения, вычисляются по формуле (14).

$$K_{y\partial} = \frac{K_{o\delta u\mu}}{N_{np}} \tag{14}$$

Базовый вариант ${}^{\mathrm{K}}y\partial = 240000/150 = 1600$ т.р.

Проектный вариант K у ∂ =1022662/150 = 6817,7т.р.

5.5 Дополнительные капитальные вложения

Дополнительные капитальные вложения, высчитываются по формуле (15)

$$K_{\partial On} = K_{npoe\kappa m} - K_{\overline{0}a3} \tag{15}$$

 K $\partial on = 6817,7-1600=5217,7\text{T.p.}$

5.6 Расчет себестоимости сравниваемых вариантов

5.6.1. Затраты на материалы

Затраты на материалы высчитываются по формуле (16).

$$3M = 3M_{OCH} + 3M_{BCH} \tag{16}$$

Базовый вариант 3M = 12840 + 273.6 = 13113.6 py б

Проектный вариант $3M = 12840 + 11200 = 24040 py \delta$

5.6.1.1 Затраты на основной материал

Затраты на материал высчитываются по формуле (17).

$$3M_{OCH} = H_M * II_M * k_{m.3} - H_{OMX} * II_{OMX}$$
 (17)

где,
$$H_M$$
 –, 428кг, U_M = 30, H_{OMX} и U_{OMX} =0,

Базовый вариант

$$3M_{och} = 428 + 30 = 12840$$
 руб

Проектный вариант

$$3M_{och} = 428 + 30 = 12840 \ py6$$

5.6.1.2 Затраты на вспомогательные материалы.

Затраты на вспомогательные сварочные материалы высчитываются по формуле (18) для базового варианта.

Базовый вариант.

$3M$
 $cs=^{3M}$ эл. (18)

$3M$
эл= H эл *I эл=1,9*144=273,6 (19)

где H эл= 1.9 кг, II эл= 144р.

Проектный вариант.

$$^{3M}ce = ^{II}nop * ^{3}32. = 4000 + 7200 = 11200 \text{ T.p.}$$
 (20)

где, ${}^{\text{II}}nop =$ цена 1кг порошка , 3 зz = расход газа

$$3_{3.2} = H_{3.2} \cdot \mathcal{U}_{3.2} = 180*40 = 7200$$
 (21)

где $H_{3.2}$ – норма расхода защитного газа на 1 погонный метр сварного шва,

³32 высчитывается по формуле (21)

литр/мин; $\mathcal{U}_{3.2}$ – цена защитного газа, руб./литр.

Норму расхода защитных газов рассчитывают по формуле (22).

$$H_{3.2} = V_{3.2} \cdot L_{u(6)} = 60*3 = 180$$
 (22)

где ${Y}_{3.2}$ – норма расходы газа, вычисляется по формуле (23)

$$V_{3,2} = q_{3,2} \cdot t_{01} = 15*4=60$$
 (23)

где, $q_{3,2} = 15$

 $^{t}01$ расчитывается по формуле (24)

$$t_{O1} = \frac{t_O}{L_{u(6)}} = 12/3 = 4 \tag{24}$$

5.6.2 Затраты на покупные комплектующие изделия, необходимые для изготовления изделия

$$3_{K.U3} = n_{K.U3} \cdot \mathcal{U}_{K.U3} \tag{25}$$

где $n_{K.U3}$ — количество покупных комплектующих изделий, необходимых для изготовления сварной конструкции, шт., $\mathcal{U}_{K.U3}$ — цена одного покупного комплектующего изделия, руб.;

Базовый вариант ${}^3\kappa$. u3= 8*20=160

Проектный вариант 3 к. u 3 2 400

5.7 Затраты на технологическую энергию

$$3_{9-9} = \frac{P_{o\delta} \cdot t_o}{\eta \cdot 60} \cdot \mathcal{U}_{9-9} \tag{26}$$

где P $o \delta$ — полезная мощность оборудования КВт, t_{O} — основное время работы сварочного оборудования, η — коэффициент полезного действия оборудования.

$$P_{oo} = I_{co} \times U_{o} \tag{27}$$

где, $I_{\mathcal{C}\mathcal{B}}$ — сила сварочного тока, А; U_{∂} — напряжение на дуге, В Базовый вариант $^{\mathrm{P}}o \delta = 225*25 = 5625$

Проектный вариант P o δ = 40*120 = 480000

Базовый вариант 3 э-э=(5625*2.3)/(85*60)*2.2=5.5

Проектный вариант 3 э-э=(48000*0.2)/(90*60)*2.2=4

- 5.8. Затраты на содержание и эксплуатацию стандартного и не стандартного оборудования, приспособлений, рабочего инструмента и производственных площадей
- 5.8.1. Затраты на содержание и эксплуатацию стандартного и нестандартного оборудования

$$3_{o6} = A_{o6} + P_{m.p} + 3_{e.mex} + 3_{c.c.eo30}$$
 (28)

где $A_{ob}^{}-$ амортизационные отчисления на оборудование, руб., $P_{m.p}^{}-$ затраты на текущий ремонт оборудования, руб., $3_{e.mex}^{}-$ затраты на воду техническую, $3_{cж.eo3d}^{}-$ затраты на сжатый воздух.

Базовый вариант $3_{o\delta} = 1.76 + 49.4 + 8,5 = 59.66 py \delta$. Проектный вариант $3_{o\delta} = 1.94 + 102 + 58 + 0.02 = 161,96 py \delta$.

а) Затраты на амортизацию оборудования рассчитываются по формуле:

$$A_{oo} = \frac{U_{oo} * Ha_{oo} * t_{uum}}{\Phi_{oo} * 60 * 100}$$
 (29)

где: $U_{o\tilde{o}}$ – цена используемого сварочного оборудования, руб, $Ha_{o\tilde{o}}$ – норма амортизационных отчислений на оборудование, %.

Базовый вариант:
$$A = \frac{32000 \cdot 17 \cdot 3.3}{0000} = 1.76 \ py 0.$$
 Проектный вариант: $A = \frac{2250000 \cdot 20 \cdot 0.44}{1700 \cdot 60 \cdot 100} = 1,94 \ py 0.$

б) Затраты на текущий ремонт оборудования рассчитываются по формуле:

$$P_{m.p} = \frac{\mathcal{U}_{o\tilde{o}} * H_{m.p} * k_3}{\Phi_{o\phi} * 100}$$
 (30)

где $H_{m.p}$ – норма отчислений на текущий ремонт оборудования, $\approx 35\%$;

Базовый вариант:
$$P=\frac{320000*35*0,75}{m.\,p}:49.4\,$$
 руб.
$$\frac{1700*100}{1700*100}$$
 Проектный вариант: $P=\frac{2250000*35*0.2}{1700*100}=102\,$ руб.

в) Затраты на воду, идущую на охлаждение электродов для контактной сварки рассчитываются по формуле:

$$3_{R,mex} = H_{R,mex} * \mathcal{L}_{R,mex} * t_{\mu m} \tag{31}$$

где $H_{e.mex}$ – норма расхода воды технической на одно изделие, м³/час, $\mathcal{U}_{e.mex}$ – цена 1 м³ воды технической, руб.

Базовый вариант ${}^3e.mex$ =0,1*33*2.56=8.5 Проектный вариант ${}^3e.mex$ =4*33*0.44=58

г) Затраты на сжатый рассчитываются по формуле:

$$3_{\text{CHC.603d}} = H_{\text{CHC.603d}} \cdot k_{\text{nom.}} \cdot \mathcal{L}_{\text{CHC.603d}} \cdot t_0 \tag{32}$$

где $H_{cж.возд}$ — норма расхода сжатого воздуха, м³/час, $\mathcal{L}_{cж.возд}$ — цена 1м³ сжатого воздуха, руб., k_{nom} — коэффициент, учитывающий потери воздуха при выполнении сварочных операций = 1,4.

Проектный вариант 3 *сэк.возд* = 0,03*1,26*1,4*0.5=0,02

5.8.2. Затраты на содержание и эксплуатацию производственных площадей

$$3_{n n o u u} = \frac{\mathcal{U}_{n n o u u} * S_{n n o u u} * Ha_{n n o u u} * t_{u u m}}{\Phi_{9 \phi} * 100 * 60}$$
(33)

где: U_{nnow} — цена 1m^2 производственной площади, руб., Ha_{nnow} — норма амортизационных отчислений на здания, %, S_{nnow} — площадь, занимаемая сварочным оборудованием, m^2 .

Базовый вариант:
$$3=\frac{4500*0,8*3*8.5}{nлощ}:0,009$$
 руб. Проектный вариант: $3=\frac{4500*4.6*3*2.487}{1700*100*60}=0,01$ руб. $\frac{4500*4.6*3*2.487}{1700*100*60}=0,01$

5.9. Затраты на заработную плату основных производственных рабочих с

отчислениями на социальные нужды

Фонд заработной платы производственных рабочих состоит из основной и дополнительной заработной платы.

$$\Phi 3\Pi = 3\Pi \Pi_{OCH} + 3\Pi \Pi_{OOn} \tag{34}$$

Базовый вариант: $\Phi 3\Pi = 1530 + 214, 2 = 1744$, 2руб.

Проектный вариант: $\Phi 3\Pi = 447 + 44,7 = 491.7$ руб

5.9.1. Основная заработная плата основных производственных рабочих

$$3\Pi\Pi_{OCH} = C_u * t_{um} * k_{3n\pi}$$
 (35)

Базовый вариант: $3\Pi \Pi_{OCH} = 100*8.5*1,828 = 1530$ руб.

Проектный вариант: $3\Pi\Pi_{OCH} = 100*2.487*1,828 = 447$ руб

где: C_{q} – часовая тарифная ставка, руб./час, $k_{3n,1}$ – коэффициент начислений на основную заработную плату.

$$k_{3n\pi} = k_{np} * k_{\theta H} * k_y * k_{nd} * k_H$$
 (36)

 $k_{3N\pi} = 1,25*1,1*1,1*1,067*1,133 = 1,828$

где $k_{np}=1,25$ — коэффициент премирования, $k_{\theta H}=1,1$ — коэффициент выполнения норм, $k_y=1,1$ — коэффициент доплат за условия труда, $k_{n\phi}=1,067$ — коэффициент доплат за профессиональное мастерство, $k_H=1,133$ — коэффициент доплат за работу в вечерние и ночные смены

5.9.2. Дополнительная заработная плата

Дополнительная заработная платаосновных производственных рабочих определяется по формуле:

$$3\Pi \Pi_{\partial On} = \frac{k_{\partial}}{100} \cdot 3\Pi \Pi_{OCH} \tag{36}$$

где $k_{\partial}^{}$ – коэффициент соотношения между основной и дополнительной заработной платой

Базовый вариант: $3\Pi \Pi_{\partial on} = (14\backslash 100)*1530=214,2$ руб.

Проектный вариант: $3\Pi \Pi_{\partial on} = (10\backslash 100)*447=44,7$ руб.

5.9.3. Отчисления на социальные нужды

$$O_{C.H.} = \frac{H_{cou} \cdot \Phi 3\Pi}{100}$$
 (37)

где H_{cou} – норма отчислений на социальные нужды = 30%.

Базовый вариант ${}^{\rm O}$ c.н.=30*1744,2/100=523,26 pyб Проектный вариант ${}^{\rm O}$ c.н.=30*491,7/100=147,51 руб

5.10 Технологическая себестоимость изделия

$$C_{mex} = 3M + 3_{\kappa.u3} + 3_{n.\phi} + 3_{9-9} + 3_{oo} + 3_{npucn} + 3_{uhcmp} + 3_{nnow} + \Phi 3\Pi + O_{c.h}$$
(38)

Базовый вариант C_{mex} =13113+160+5,5+59.66+0,009+1744 ,2+523,26 =15605,6pyб

Проектный вариант $C_{mex} = 24040 + 400 + 4 + 161,96 + 0,01 + 491,7 + 147,51$ = 25245,18 $py\delta$

5.11 Цеховая себестоимость изделия

$$C_{uex} = C_{mex} + P_{uex} \tag{39}$$

Базовый вариант = C_{yex} = 15605,6+3825=19430,6 $py\delta$

Проектный вариант = C_{yex} = 25245,18+1117,5=26362,68 py6

где P_{uex} – цеховые расходы.

Цеховые (общепроизводственные) расходы относятся к косвенным затратам на изготовление продукции, это накладные расходы по управлению цехом и его обслуживанию.

$$P_{uex} = k_{uex} \cdot 3\Pi \Pi_{och.} \tag{40}$$

где $k_{uex.}$ – коэффициент цеховых расходов =2,5

Базовый вариант $P_{yex} = 2,5*1530=3825$ руб.

Проектный вариант $P_{uex} = 2,5*447=1117,5$ руб

5.12 Заводская себестоимость изделия

$$C_{3a\theta} = C_{uex} + P_{3a\theta} \tag{41}$$

Базовый вариант $C_{3\mathcal{A}\mathcal{G}} = 19430,6+2754=22184,6$ руб.

Проектный вариант $C_{3a6} = 25362,68+804,6=26167,28$ руб

где P_{3a6} – заводские (общехозяйственные) расходы, руб.

Заводские (общехозяйственные) расходы относятся к косвенным затратам на изготовление продукции, это накладные расходы по управлению производством продукции на предприятии и обслуживанию предприятия.

$$P_{3AB} = k_{3AB} * 3\Pi \Pi_{OCH} \tag{42}$$

Базовый вариант $P_{3a6} = 1,8*1530 = 2754$ руб.

Проектный вариант: $P_{3a6} = 1,8*447 = 804,6$ руб

где k_{3a6} – коэффициент заводских (общехозяйственных) расходов = 1,8.

5.13 Полная себестоимость изделия

$$C_{NOЛH} = C_{3AB} + P_{BH} \tag{43}$$

Базовый вариант $C_{noлH} = 22184,6+1109,23=23293,8$ руб

Проектный вариант $C_{noлh} = 26167,28+1308,4=27475,6$ руб

где $P_{\it 6H}$ – внепроизводственные расходы, руб.

Внепроизводственные расходы – это расходы, связанные с реализацией изготовленной продукции.

$$P_{\mathcal{B}H} = k_{\mathcal{B}H} \cdot C_{3\mathcal{B}\mathcal{B}} \tag{44}$$

Базовый вариант $P_{\mathcal{GH}} = 0.05*22184, 6=1109, 23$ руб

Проектный вариант $P_{\it вн}=0.05*26167,28=1308,4$ руб где $k_{\it вн}$ — коэффициент внепроизводственных расходов = 0,05.

Таблица 5.5 – Калькуляция себестоимости изделия

Статьи затрат	Базовый вариант	Проектный вариант		
Материалы основные	12840	12840		
Материалы вспомогательные	273.6	11200		
Покупные комплектующие изделия и полуфабрикаты	160	400		
Электроэнергия	5,5	4		
Затраты на содержание и эксплуатацию оборудования	59.66	161,96		
Затраты на содержание занимаемой под оборудование площади	0,009	0,01		
Основная заработная плата	1530	447		
Дополнительная заработная плата	214,2	44,7		
Отчисления на социальное страхование	523,26	147,51		
Технологическая себестоимость	15605,6	25245,18		

Цеховая себестоимость	19430,6	26362,68
Заводская себестоимость	22184,6	26167,28
Внепроизводственные расходы	1109,23	1308,4
Полная себестоимость	23293,8	27457,6

5.14 Расчет экономической эффективности разрабатываемого проекта

5.14.1 Ожидаемая прибыль от снижения себестоимости изделия

$$\Pi p_{o \mathcal{H} c.} = 9_{y.c.} = \left(C_{no \mathcal{H}}^{\delta a 3} * \frac{\mathcal{I}_2}{\mathcal{I}_1} - C_{no \mathcal{H}}^{npoe \kappa m} \right) \cdot N_{np}$$
(45)

Проектный вариант $\Pi p_{OHC.} = \Im_{\mathcal{Y}.\mathcal{Z}.} = (23293,8*2.5) - 27457,6))*150 = 4616535 рублей.$

где \mathcal{I}_1 и \mathcal{I}_2 – срок служб изделий соответственно по базовому и проектному вариантам.

5.14.2 Чистая прибыль

$$\Pi p_{\textit{qucm}} = \Pi p_{\textit{osc}} - H_{\textit{np}} \tag{46}$$

$$\Pi p_{uucm} = \Pi p_{o \to c} - H_{np} = 4616535-1107968, 4=3508566, 6$$

5.14.3 Годовой экономический эффект

$$\mathcal{I}_{\mathcal{Z}} = \left[\left(C_{nonh}^{\delta a3} + E_{H} \cdot K_{y\partial}^{\delta a3} \right) - \left(C_{nonh}^{npoe\kappa m} + E_{H} \cdot K_{y\partial}^{npoe\kappa m} \right) \right] \cdot N_{np}$$

$$(47)$$

где $C_{noлh}^{\it fa3}$ и $C_{noлh}^{\it npoekm}$ — полная себестоимость продукции $E_H=0.33$.

$$\theta_2 = [(23293.8 + 0.33.1600) - (27457.6 + 0.33.6817.7)]*150 = -882846.15py\delta$$

5.15 Срок окупаемости капитальных вложений

$$T_{OK} = \frac{K_{OOU}^{npoekm}}{\Pi p_{yycm}} \tag{48}$$

$$T_{\text{ок}} = 1022662/3508566 = 0,3$$
 лет.

5.16 Коэффициент сравнительной экономической эффективности

$$E_{cp} = \frac{1}{T_{OK}} \tag{49}$$

$$Ecp = 1/0.3 = 3.3$$

Ecp > EH - внедряемое оборудование эффективно

- 5.17 Расчет повышения производительности труда
- 5.17.1 Снижение трудоёмкости изготовления изделия

$$\Delta t_{um} = \frac{t_{um}^{\delta a3} - t_{um}^{npoe\kappa mH}}{t_{um}^{\delta a3}} *100 \tag{50}$$

$$\Delta tum = (8,5-2487)/8.5*100\% = 70\%$$

Снижение трудоёмкости происходит за счет уменьшения времени на изготовление одного изделия в проектном варианте.

5.17.2 Повышение производительности труда

$$\Delta\Pi_T = \frac{100 * \Delta t_{uum}}{100 - \Delta t_{uum}} \tag{51}$$

$$\varDelta \Pi_T \!=\! (100*70)/(100\text{-}70) \!= 233.3(\%)$$

Выводы по выпускной работе

Предлагаемый способ наплавки гораздо эффективнее базового метода. Это проявляется в уменьшение времени на наплавку одной детали, что значит более высокая производительность труда. Так же данный метод гарантирует 100% контроль качества, за счет внедрения прогрессивного метода контроля сварных соединений.

Срок окупаемости нового оборудования очень низкий, всего 0.3 года. Такая окупаемость связанна с высокой чистой прибылью за наплавка одного шнека.

Качество наплавки сильно измениться за счет внедрения новой технологии наплавки и нового оборудования. Благодаря тому, что в предлагаемом варианте наплавка происходит автоматически, и практически не зависит от сварщика, качество улучшиться. Предлагаемый метод контроля наплавки, способствует тому, что на выходе из цена, мы получаем 100% готовое оборудование к работе.

Внедрение нового оборудование положительно отразиться на условия труда рабочих. Поскольку уменьшиться время на наплавку одной детали, упрощается сам процесс наплавки, а так же метод контроля. Работники будут меньше уставать физически и морально, а значит повыситься производительность труда.

Предлагаемая технология имеет гораздо более лучшие условия по охране труда. Метод ручной наплавки электродом характеризовался сложными условиями в работе. Ведь время наплавки этим методом очень высокое, появляется усталость. Так же при длительном воздействии на организм сварочных эрозолей организм сварщика подвергается серьёзным нагрузкам, и это может привезти к к возникновению серьёзных заболеваний. Брызги, искры, выбросы расплавленного металла, всё это на себя берёт тело сварщика. Пусть даже он находиться в защите, приятного здесь мало. Так же велик риск возникновения пожара. Предлагаемый метод не имеет этих минусов и является более безопасным для здоровья сварщика.

Список использованных источников

- 1 Леденёв, В.В. Расчет и конструирование специальных инженерных сооружений: учебное пособие / В.В. Леденев Тамбов: Изд-во Тамб. гос. техн. ун-та, 2007. 128 с.
- 2 Гевко, Б.М. Технология изготовления спиралей шнеков. Б. М. Гевко Львов: Вища шк. Изд-во при Львов, ун-те, 1986. 128 с.
- 3 Попов, В. С. Рентгеноструктурное исследование превращений в рабочей поверхности сплавов при абразивном изнашивании / В. С. Попов, Ю. И. Титух // М и ТОМ . 1975. № 1. С. 24–27
- 4 ГОСТ 380 2005 Сталь углеродистая обыкновенного качества
- 5 Максимчук, А.М. Изготовление новых и восстановление изношенных червяков экструдеров плазменной наплавкой / А. М. Максимчук, Г. А. Месяц, В. Г. Нечипоренко [и др.] // Химическое и нефтяное машиностроение. 1973. № 8. 768 с.
- 6 Фоминых, В.П., Яковлев А.П. Ручная дуговая сварка: Учебник для сред. ПТУ. 7-е изд., испр. и доп. Высш. шк., 1986. 288 с.
- 7 Абрамов, В.А. Визуальный и измерительный контроль сварных соединений. Практические рекомендации по применению. ИД Спектр. 2014. - 324 с.
- 8 Волченко, В.Н. Теория сварочных процессов: Учебник .для вузов по специаль ности. «Оборудование и технология сварочного производства» /В.Н.Волченко.; Под ред. В.В.Фролова.— М.: Высшая школа, 1988. 559 с.
- 9 Казаков, Ю.В., Масаков В.В. Теория сварочных процессов. Курс лекций Учебное пособие. Тольятти: : ТГУ, 2011. 126 с.
- 10 Виноградов, В.С. Оборудование и технология дуговой автоматической и механизированной сварки: Учеб. для проф. учеб. заведений. 3-е изд., стер. М.: Высш. шк., Изд. центр «Академия», 2000. 319 с.
- 11 Казаков, Ю.В., Масаков В.В. Теория сварочных процессов. Курс лекций Учебное пособие. Тольятти: : ТГУ, 2011. 126 с.
- 12 Столбов, В.И., Потехин В.П. Модель нагрева поверхности сварочной дугой.

- Автоматическая сварка, 1979, №12. с. 10-12.
- 13 Гладкий, П. В. Плазменная наплавка / П. В. Гладкий, Е. Ф. Переплетчиков, И. А. Рябцев. К.: «Екотехнологія», 2007. 292 с.
- 14 Пузряков, А.Ф. Теоритические основы технологии плазменного напыления : учебное пособие / А.Ф. Пузряков Москва : Изд-во МГТУ, 2003. 360 с.
- 15 Ельцов, В.В. Ремонтная сварка и наплавка деталей машин и механизмов: учеб. пособие / В.В. Ельцов. Тольятти: Изд-во ТГУ, 2004. — 188 с.
- 16 Сом, А.И. Сплав на основе железа для плазменно-порошковой наплавки шнеков и термопластавтоматов /А.И. Сом. Журнал автоматическая сварка.-2016.- №7. С.22-27.
- 17 Овчинников, В.В. Контроль качества сварных соединений: учебник для студ. учреждений сред. проф. образования / В. В. Овчинников. 3-е изд., стер. М. :Издательский центр «Академия», 2014. 208 с.
- 18 Коновалов, А.В. Теория сварочных процессов: Учебник для вузов / А.В. Коновалов, А.С. Куркин, Э.Л. Неровный, Б.Ф. Якушин; Под ред. В.М. Неровного. М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. 752 с.
- 19 Куликов, О.Н., Ролин Е.И. Охрана труда при производстве сварочных работ: Учеб. пособие для нач. проф. образования. М.: Издательский центр «Академия», 2006. 176 с.
- 20 Карнас, А. А. Вентиляция и отопление сварочных, гальванических, окрасочных цехов и зарядных аккумуляторных станций. —М.:Машиностроение 1997. -66 с.