МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт машиностроения

(наименование института полностью)

Кафедра «Энергетические машины и системы управления»

(наименование кафедры)

13.03.03 «Энергетическое машиностроение»

(код и наименование направления подготовки, специальности)

Двигатели внутреннего сгорания

(направленность (профиль/специализация)

БАКАЛАВРСКАЯ РАБОТА

на тему подернизация мо	сханизма газораспределения для	четырелтактного
двигателя с улучшенными па	раметрами приспособляемости	
Студент	Б. А. Елманов	
	(И.О. Фамилия)	(личная подпись)
Руководитель	А. М. Дзюбан	
_	(И.О. Фамилия)	(личная подпись)
Консультанты	М. И. Фесина	
	(И.О. Фамилия)	(личная подпись)
	А. Г. Егоров	
_	(И.О. Фамилия)	(личная подпись)
	С. А. Гудкова	
_	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
Заведующий кафедрой	к.т.н., Д.А. Павлов	
	(ученая степень, звание, И.О. Фамилия)	(личная подпись)
«» 2018 г.		

КИЦАТОННА

В выпускной квалификационной работе (ВКР) бакалавра Елманова Б.А., в соответствии с темой «Модернизация механизма газораспределения для четырехтактного двигателя улучшенными параметрами приспособляемости» представлены различные конструкции систем изменения фаз газораспределния, произведен анализ их преимуществ и недостатков, произведена оптимизация фаз и высоты подъема клапана, произведен тепловой расчет базового и модернизированного двигателей, выполнен расчет механизма газораспределения, а так же разработаны конструктивные схемы реализации изменения фаз на базовом двигателе. По результатам анализа различных систем изменения фаз обоснован выбор системы бесступенчатого изменения относительного углового положения распределительных валов. За счет изменения фаз достигнуто увеличение максимального крутящего момента, а так же увеличение коэффициентов приспособляемости и эластичности, что видно из теплового расчета. В механизма результате оптимизации И расчета газораспределения обеспечил спрофилирован безударный кулачек, который допустимые значения динамических нагрузок в клапанном механизме. Так же в удалось результате изменения фаз газораспределения достигнуть уменьшения выбросов токсичных компонентов.

Выводы о достижении поставленной цели ВКР: «увеличение коэффициента приспособляемости автомобильного бензинового двигателя без значительного изменения номинальной мощности за счет модернизации механизма газораспределения» сформулированы в заключении данной работы.

Страниц 83, Таблиц 20, Иллюстраций 15, Библиографических источников 21.

ABSTRACT

The aim of this Bachelor graduate qualification work (BW) is to increase the engine adjustability factor by upgrading valve timing gear without significant changing of the nominal horsepower. Valve timing gear is optimized by using phase change system.

With this aim the following tasks were set and completed:

- The overview of various designs of the gas phase distribution systems, their advantages and disadvantages;
- Valve timing gear calculation, gas distribution phase and valve lift optimization;
- Thermal calculations of the basic and modernized engines, engine variation analyses;
 - Crank gear and valve kinematic calculations;
- Safety and environmental of the technical object, emissions reduction of the toxic components in exhaust gases.

The result of this BW is the increase of max torque by 7%. The change of the maximum torque to the low engine rpm helped to achieve the coefficient of the adjustability factor of 1,331and elasticity coefficient of 2.24. The minimum stable idling was also reduced in 9 %.

The BW consists of: 83 pages, 20 tables, 15 illustrations, 21 reference sources.

СОДЕРЖАНИЕ

введение	5
1 Обзор систем изменения фаз газораспределения	7
1.1 Классификация систем изменения фаз газораспределения	7
1.2 Системы изменения фаз при постоянном время-сечении	7
1.3 Системы изменения фаз и время-сечения	11
1.4 Анализ целесообразности применения различных систем измен	нения
фаз газораспределения.	17
2 Оптимизация фаз газораспределения в программной комплексе ДИЗ	ЕЛЬ-
РК	19
2.1 Краткие теоретические сведения о программном комплексе	19
2.2 Выбор оптимальных фаз газораспределения	19
3 Тепловой расчет бензинового двигателя с использованием методики	И.И.
Вибе для двух различных настроек механизма газораспределения	22
3.1 Выбор скоростных режимов для расчета	22
3.2 Выбор топлива и его параметров.	23
3.3 Расчет параметров рабочего тела	23
3.4 Параметры окружающей среды и остаточных газов	25
3.5 Расчет процесса наполнения	26
3.6 Расчет процесса сжатия и начала воспламенения	29
3.7 Термодинамический расчет процесса сгорания	31
3.8 Расчет процессов расширения и выпуска	34
3.9 Расчет индикаторных показателей рабочего цикла	37
3.10 Расчет эффективных показателей двигателя	
3.11 Расчет внешнего теплового баланса	40
4 Кинематический расчет кривошипно-шатунного механизма	42
5 Кинематический расчет клапанного механизма	43
5.1 Основные размеры проходных сечений в горловинах и клапанах	44
5.2 Основные размеры кулачка	45

5.3 Профилирование безударного кулачка (кулачек Курца)45
5.4 Расчет пружины клапана
6 Расчет распределительных валов
6.1 Расчет выпускного распределительного вала
6.2 Расчет впускного распределительного вала
7 Анализ устойчивости режима работы двигателя и его динамических
характеристик
8 Безопасность и экологичность технического объекта
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ67
ПРИЛОЖЕНИЕ А – Результаты оптимизации фаз газораспределения70
ПРИЛОЖЕНИЕ Б – Результаты теплового расчета71
ПРИЛОЖЕНИЕ В – Результаты кинематического расчета82

ВВЕДЕНИЕ

Автомобильные двигатели внутреннего сгорания (ДВС) эксплуатируются на различных частотах вращения коленчатого вала. Поэтому зависимости крутящего момента и мощности от частоты вращения коленчатого вала являются важнейшими характеристиками двигателей, предназначенных для автотранспорта.

Чтобы увеличить крутящий момент бензинового двигателя, работающего на составе смеси близком к стехиометрическому, необходимо увеличить цикловую подачу топлива и обеспечить нужное количество воздуха для его полного сгорания, то есть увеличить цикловое наполнение. За осуществление процессов газообмена в двигателях внутреннего сгорания отвечает механизм газораспределения, имеющий впускные и выпускные органы и детали, которые обеспечивают их своевременное открытие и закрытие.

В автомобилестроении наибольшее распространение получили четырехтактные быстроходные двигатели с клапанным механизмом газораспределения, в состав которого входят: клапаны, распределительные валы, толкатели, гидрокомпенсаторы, рычаги, пружины и др.

Совершенство очистки и наполнения цилиндра таких двигателей главным образом проходного зависит площади сечения клапанов OT продолжительности фаз газораспределения. Увеличение проходных сечений конструктивными особенностями, а продолжительность фаз ограничено профилем связана кулачка распределительного вала. Кулачок спроектирован для обеспечения максимального крутящего момента при определенной частоте вращения коленчатого вала, при отклонение от которой наполнение цилиндра уменьшается ввиду инерционных свойств воздуха. Таким образом, постоянные фазы газораспределения не способны обеспечить максимально возможное наполнение цилиндра свежим зарядом во всем рабочем диапазоне частот вращения коленчатого вала. Для повышения наполнения на различных частотах вращения и улучшения динамических свойств двигателя применяются различные системы изменения фаз газораспределения.

Одной из важнейших динамических характеристик двигателя является коэффициент приспособляемости, численно равный отношению максимального крутящего момента к номинальному, и характеризующий способность двигателя преодолевать возросшее сопротивление без перехода на низшую передачу.

Целью работы является увеличение коэффициента приспособляемости автомобильного бензинового двигателя без значительного изменения номинальной мощности. Задачами данной работы являются: выбор оптимальной системы изменения фаз газораспределения, нахождение оптимального профиля кулачка и фаз газораспределения, а так же их смещения при различных режимах работы двигателя, конструктивное размещение системы изменения фаз газораспределения на модернизируемом двигателе, анализ изменения динамических свойств двигателя.

1 Обзор систем изменения фаз газораспределения

1.1 Классификация систем изменения фаз газораспределения

Традиционная конструкция механизма газораспределения (МГР) способна обеспечить работу двигателя с постоянными величинами подъема клапанов и фаз их открытия во всем рабочем диапазоне частот вращения коленчатого вала. Такая конструкция способна обеспечить максимально возможное значение крутящего момента в узком диапазоне частот вращения коленчатого вала.

На современных двигателях все чаще применяются различные устройства регулирования фаз газораспределения и высоты подъема клапанов. Такие системы, как правило, регулируются электронным блоком управления (ЭБУ) двигателя, который воспроизводит необходимые для получения желаемых характеристик двигателя команды воздействия на исполнительные механизмы [1].

Классифицируют системы управления фазами газораспределения и законами подъема клапанов по трем признакам: изменение фаз при постоянном время-сечении, изменение фаз и время-сечения, изменение время-сечения при постоянных фазах. Системы изменения время-сечения при постоянных фазах в практике двигателестроения практически не используются [2].

1.2 Системы изменения фаз при постоянном время-сечении

Впервые на двигателях внутреннего сгорания (ДВС) были применены наиболее простые по конструкции механизмы ступенчатого регулирования фаз впускных клапанов при постоянном время-сечении. На рисунке 1 приведена схема устройства способного осуществлять изменение фаз

газораспределения за счет поворота кулачкового вала в два различных положения.

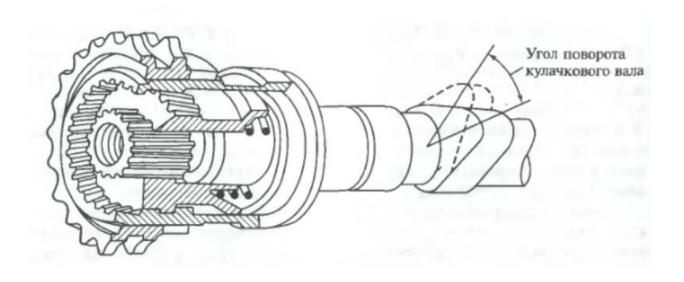
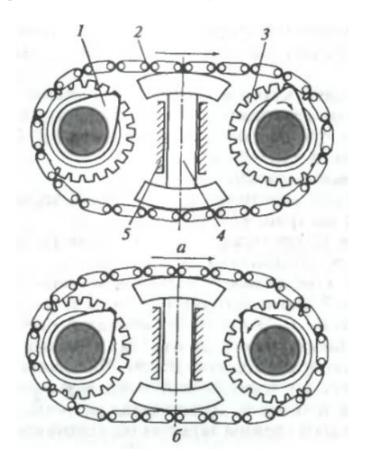
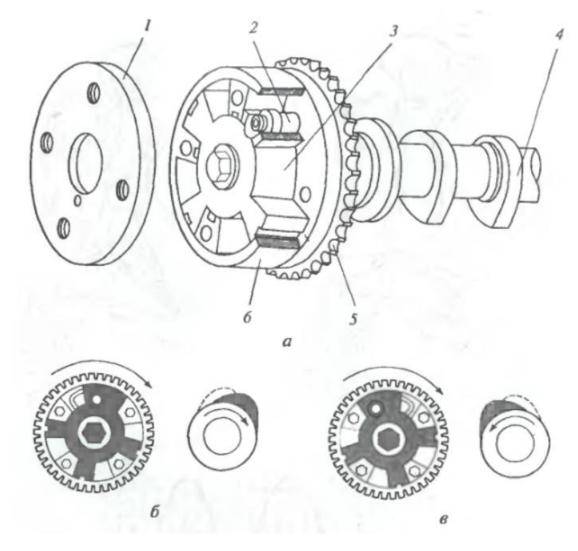



Рисунок 1 — Механизм ступенчатого регулирования фаз клапанов при постоянном время-сечении.

Поворот распределительного вала реализуется за счет винтовой пары внутреннего зацепления, которая связывает ведущую звездочку распредвалом. Поворот распределительного вала происходит при смещении ведомой шестерни по шлицам кулачкового вала в результате воздействия усилия возвратной пружины, а так же давления масла системы смазки, подаваемого через канал в полость управления. Управление исполнительным осуществляется ЭБУ, который устройством подает команды на исполнительный соленоид, реализующий перестановку плунжера [3].

Наиболее лучшее формирование характеристик двигателя обеспечивается системами бесступенчатого регулирования фаз газораспределения. Такие устройства в различной конструктивной реализациях используются разными автопроизводителями.


Ha рисунке 2 изображена схема гидромеханического регулятора бесступенчатого (непрерывного) изменения фаз газораспределения. Распределительный вал 1, который предназначен для приведения в движения выпускных клапанов, вращается от коленчатого вала через двухрядную роликовой цепь. Вращение от распределительного вала с помощью цепной передачи 2 передается на звездочку 3 привода вала, предназначенного для управления впускными клапанами. Набегающая и сбегающая ветви гидравлическим распираются специальным натяжителем 4, перемещающимся в направляющей 5, которая неподвижна. В результате происходит поворот распределительного вала впускных клапанов относительно распределительного вала выпускных клапанов.

а — максимальное перекрытие клапанов, б — минимальное перекрытие клапанов.

Рисунок 2 — Гидромеханическая система непрерывного регулирования фаз клапанов при постоянном время-сечении.

Аналогичными функциональными возможностями обладает гидромеханическая система изменения взаимного углового положения распределительных валов привода впускных и выпускных клапанов, которая представлена на рисунке 3.

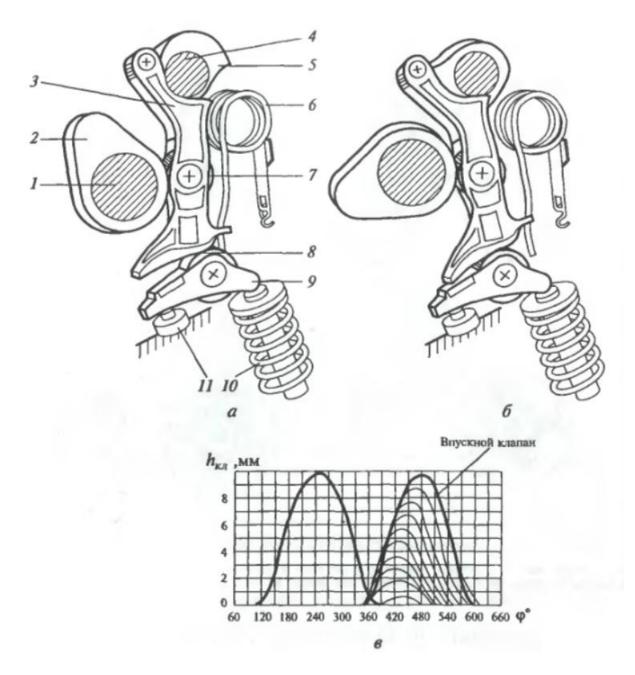
а – общий вид, б – раннее открытие впускного клапана, в – позднее открытие впускного клапана.

Рисунок 3 — Блок системы непрерывного регулирования фаз клапанов при постоянном время-сечении.

Исполнительный механизм данной системы расположен на конце впускного распредвала, который приводится от звездочки выпускного распредвала. Ротор 3 и его лопатки закреплены неподвижно относительно

распределительного вала 4, а корпус 6 закреплен на звездочке привода 5 кулачкового вала. По команде ЭБУ масло по специальным каналам в распредвалу попадает в полость между лопастями ротора и корпуса 6. Происходит поворот распределительного вала под давлением моторного масла на величину, которая задается регулятором, затем распредвал фиксируется гидравлическим управляемым стопорным пальцем 2. Такая система изменения фаз широко применяется на автомобилям марки Тоуота под аббревиатура VVT-i (Variable Valve Timing with intelligence) [4].

1.3 Системы изменения фаз и время-сечения


Более эффективное изменение фаз газораспределения осуществляется системами, которые комплексно регулируют фазы газораспределения и высоту подъема клапана (время-сечения). Наиболее известная из них таких систем это Valvetronic, которая разработана инженерами компании BMW (рис. 4).

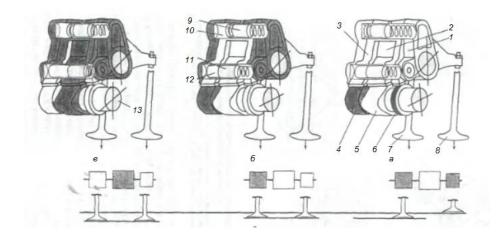
Ее конструкция включается в себя распределительный вал 1 и дополнительный вал 4 с эксцентриком 5, эти валы расположены в головке блока цилиндров. В зависимости от положения дополнительного вала с эксцентриком, рычаг 3 и впускной кулачок 2:

- не открывают клапаны (рис. 4, а)
- обеспечивают максимальные высоту подъема клапана и фазы (рис. 4, б)
- обеспечивают промежуточные значения высоты подъема и фазы (рис. 4, в)

За счет пружины 6 обеспечивается постоянная кинематическую связь между роликом 7 рычага 3, рычагом 9, кулачком 2 и эксцентриком 5. Дополнительный вал с эксцентриком изменяет свое положение воздействием шагового электродвигателя. Шаговый электродвигатель управляется дополнительным компьютером, связанным с ЭБУ двигателя. Данный

компьютер получает команды от электронного органа управления нагрузкой, положение которого задается водителем транспортного средства [5].

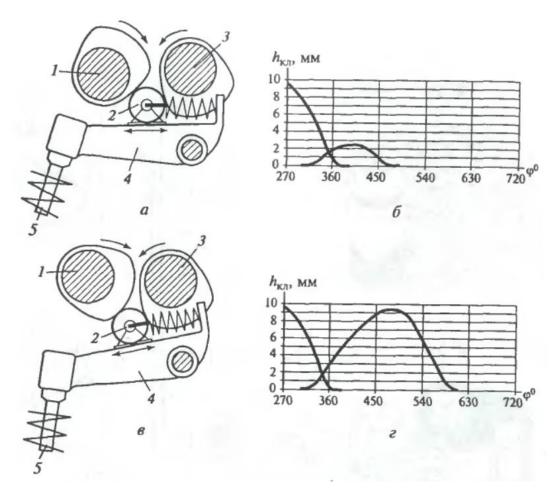
a – клапаны закрыты, б – клапаны полностью открыты, в – промежуточное значение фаз и величин подъема клапанов.


Рисунок 4 — Система изменения высоты подъем клапанов и фаз газораспределения.

Необходимость применения дроссельной заслонки при данной реализации изменения фаз газораспределения отсутствует, так как наполнение цилиндров свежим зарядом регулируется величиной подъема клапанов.

В двигателестроении нашла применение гидромеханическая система управления фазами газораспределения и высотой подъема клапанов (рис. 5). Конструктивной особенностью данной системы является четыре клапана на цилиндр. Для привода двух впускных клапанов (7,8) используются три кулачка (4,5,6) и три коромысла (1,2,3), которые обеспечивают подъем клапана на различную высоту.

Коромысла 1 и 3 приводятся в движение кулачками 6 и 4, соответственно, и приводят в движение впускные клапаны 8 и 7, соответственно. В коромыслах имеются гидравлические каналы 10 и 12, в которых перемещаются поршни-блокираторы 9 и 11, соответственно. Кулачок 5 приводит в движение только коромысло 2, которое непосредственно не связано с клапанами.


Такая система изменения фаз газораспределения и время-сечения клапана широко применяется на автомобилях марки Honda под аббревиатура VTEC (Variable valve Timing and lift Electronic Control) [6, 7].

a — низкие частоты вращения коленчатого вала, б — средние частоты вращения коленчатого вала, в — высокие частоты вращения коленчатого вала.

Рисунок 5 – Привод клапанов гидромеханической системы.

Схожими функциональными возможностями обладает гидромеханическая система привода впускных клапанов с запирающим валом (рис. 6). Данная система отличается тем, что на верхней плоскости коромысел привода впускных клапанов 4 (рис. 6, а) установлен суппорт 2, ролик данного суппорта связан с распределительным валом 1 и дополнительным валом 3. Положение суппорта определяет величину его взаимодействия с каждым из кулачков 1 и 3. Данное положение устанавливается гидравлической системой по команде электронного органа управления нагрузкой. Достоинством такой системы является возможность бесступенчатого изменения высоты подъема клапана.

a, b — минимальное открытие впускного клапана, b, r — максимальное открытие впускного клапана.

Рисунок 6 – Гидромеханическая система бесступенчатого регулирования фаз газораспределения.

Так же нашла применение гидромеханическая система, изображенная на рисунке 7. Толкатель клапана состоит из двух толкателей: внутреннего 3 и 2. внешнего Ha внутренний толкатель воздействует кулачек распределительного вала с меньшим ходом и фазой. На внешний толкатель воздействуют два кулачка распределительного вала, обеспечивающие более Маленький высокий подъем клапана И широкую фазу. кулачек распределительного вала воздействует на внутренней толкатель, когда плунжер 1 не фиксирует толкатели между собой. При подачи масла в управляющий канал, по сигналу ЭБУ, плунжер фиксирует оба толкателя между собой. В этом случае толкатель, а затем клапан приводятся в движение большими кулачками.

Такая система изменения фаз газораспределения и время-сечения клапана применяется на автомобилях марки Porsche под аббревиатура VarioCam.

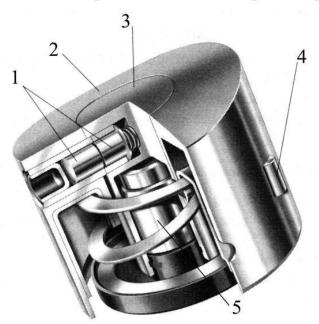


Рисунок 7 — Чашечный толкатель гидромеханической системы изменения фаз газораспределения.

Вышеперечисленные системы изменения фаз газораспределения в большей или меньшей степени ограничены в регулировках. Устранение этого недостатка возможно применением системы электромеханического привода клапанов (ЭМПК). Данная система позволяет изменять величину подъема каждого клапана и фазу его открытого состояния в широких пределах. При

использовании ЭМПК отпадает необходимость установки распределительных валов, дроссельной заслонки, механизмов привода распределительных валов, но усложняется электромеханическая система управления клапанами.

Приводят в движение клапан два электромагнита 3 и 6, которые осуществляют перестановку клапана ПО сигналу, поступающему электронного блока управления клапанами (ЭБУК). Когда магниты не действуют, две, действующие друг на друга идентичные пружины 2 и 8 удерживают якорь 4 в нейтральном положении. Действия электромагнитных сил не хватит для достижения необходимой скорости перестановки клапана, так как тяговые характеристики электромагнита нелинейные. Для ускорения скорости открытия и закрытия клапана применяются колебательные явления в системе клапан – якорь – пружина. При синфазном включении и электромагнитов переменные электромагнитные выключении СИЛЫ колебательных резонанс процессах. Данный вызывают сопровождается нарастанием амплитуды колебаний клапана и якоря. При подачи управляющего сигнала на обмотку электромагнита, якорь будет находиться в зоне больших величин электромагнитных сил и зафиксируется получения следующего сигнала управления от на нем ДО Электромагниты 3 и 6 вместе с двумя пружинами изменяют величину подъема клапана, а также фиксируют якорь исполнительного устройства в нижнем или верхнем положении [8, 9].

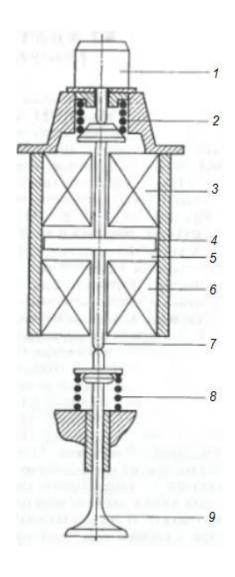


Рисунок 8 – Исполнительное устройство электромеханического привода клапанов.

1.4 Анализ целесообразности применения различных систем изменения фаз газораспределения

Анализ всех вышеперечисленных конструктивных вариантов изменения фаз газораспределения дает представление о целесообразности применения той ИЛИ иной системы на данном двигателе. Различные системы, рабочий профиль позволяющие ступенчато изменять кулачка распределительного вала (фазу и время-сечение клапана) являются наиболее эффективными, чем системы фазовращения, которые позволяют изменять фазу при постоянном время-сечении. Наряду с этим такие системы изменения профиля кулачка значительно усложняют конструкцию головки блока цилиндров, распредвала и механизм привода клапанов, значительно повышают стоимость двигателя, ухудшают ремонтопригодность, а также работе Система повышают ШУМ при двигателя. бесступенчатого регулирования Valvetronic наряду с вышеперечисленными недостатками, так систему же усложняет управления механизмом регулирования фаз газораспределения. Система ЭМПК приемлемым быстродействием cявляется еще более дорогостоящей, а так же требует перехода системы электропитания на высокое напряжение, усложняя электрическую клапанов составляющую привода И систему управления. способные изменять фазу при постоянном время сечении, являются менее эффективными, но их конструкция отличается простотой и относительной дешевизной. При этом такие системы позволяют значительно не изменять конструкцию головки блока цилиндров, распределительного вала, механизм привода клапана, а так же, как правило, не повышают шумность работы двигателя. Таким образом, можно сделать вывод о том, что применение различных систем изменения фаз и время-сечения клапана целесообразно на двигателе, предназначенном для дорогостоящего транспортного средства, а применение системы изменения только фазы газораспределения может быть обоснованно и на более бюджетном транспорте [10]. На выбранном для модернизации двигателе, который предназначен для автомобиля бюджетного класса, целесообразно применение системы изменения фаз при постоянном время-сечении. Конструктивно наиболее совершенной кажется бесступенчатая гидромеханическая система, в которой ротор приводится в движение давлением масла на его лепестки (рисунок 3).

2 Оптимизация фаз газораспределения в программной комплексе ДИЗЕЛЬ-РК

2.1 Краткие теоретические сведения о программном комплексе

В настоящее время проектирование и доводка ДВС осуществляется, как правило, с использованием различных программных комплексов математического моделирования процессов. Одним из таких комплексов является программа ДИЗЕЛЬ-РК, направленная в первую очередь на моделирование газодинамических процессов в разветвленных трубопроводах.

Предварительная проработка системы воздухопитания и газораспределения в программе ДИЗЕЛЬ-РК дает возможность сократить объем дорогостоящих эксперементальных работ, связанных с оптимизацией параметров данных систем.

При решении задач связанных с выбором оптимальных параметров (фаз газораспределения) эффективным средством является многопараметрическая оптимизация при которой поиск оптимальных значений изменяемых параметров возлагается на процедуру нелинейного программирования. Исследователю остается задать целевую функцию и вектор независимых переменных, а так же грамотно сформулировать задачу оптимального поиска, задать известные данные и проанализировать полученный результат [11].

2.2 Выбор оптимальных фаз газораспределения

Перед началом оптимизации необходимо верно задать параметры двигателя и окружающей среды, особое внимание уделив параметрам газораспределения: впускной и выпускной коллекторы, впускные и выпускные каналы, время-сечение впускного и выпускного клапанов. Затем

задается целевая функция, в качестве которой выбран коэффициент наполнения, так же задаются варьируемые переменные с заданным ограничением (вектор независимых переменных): угол начала впуска до ВМТ (-5÷50 град. поворота коленчатого вала) и угол начала выпуска до НМТ (20÷90 град. поворота коленчатого вала). Конечным этапом является выбор скоростного режима для оптимизации и задание основных его параметров.

Задачей оптимизации, в соответствие с темой бакалаврской работы, является выбор таких профилей кулачков и фаз газораспределения впускного и выпускного распределительных валов, которые при возможности изменения их относительного углового положения, обеспечивали бы такой же коэффициент наполнения и максимальную мощность как стандартные (при п = 5600 мин⁻¹). При этом, увеличивая максимальные значения коэффициента наполнения, смещая эти значения в зону пониженных оборотов.

Уменьшая продолжительность фаз газораспределения и изменяя график подъема клапанов (продолжительность стандартных фаз газораспределения 256° поворота коленчатого вала), а затем оптимизируя угол начала впуска до ВМТ и угол начала выпуска до НМТ добиваемся того же значения наполнения как и при стандартной настройки механизма газораспределения. Результаты оптимизации угла начала впуска до ВМТ и угла начала выпуска до НМТ при продолжительности фаз 236° поворота коленчатого вала на впуске и на выпуске для номинального режима работы двигателя (n = 5600 мин⁻¹) представлены в приложении А.

Начиная с оборотов максимального наполнения (при n = 4000 мин⁻¹) при стандартных фазах газораспределения, постепенно (с шагом 100 мин⁻¹), оптимизируя угол начала впуска и угол начала выпуска, находим значение оборотов при котором достигается максимальное наполнение при заданной продолжительности фаз 236° поворота коленчатого вала. Результаты оптимизации угла начала впуска и угла начала выпуска при оборотах максимального наполнения 2500 мин⁻¹ представлены в приложении A.

Затем проводится оптимизация промежуточных режимов работы двигателя. Результаты оптимизации приведены в таблице 1.

Таблица 1 – Результаты оптимизации газообмена

n,	Угол начала	Угол начала	Коэффициент	Коэффициент
мин ⁻¹	впуска до ВМТ,	выпуска до	наполнения при	наполнения
	град. п.к.в	НМТ, град. п.к.в изменяемых ф		стандартного двигателя
800	19	54	0,84	0,71
2500	16	36	0,94	0,79
4000	14	28	0,90	0,91
5600	0	24	0,81	0,81
6200	0	22	0,77	0,78

3 Тепловой расчет бензинового двигателя с использованием методики И.И. Вибе для двух различных настроек механизма газораспределения

3.1 Выбор скоростных режимов для расчета

Тепловой расчет производится с использованием методики И.И. Вибе. Объектом расчета является четырехтактный четырехцилиндровый бензиновый двигатель с распределительным впрыском топлива в клапанный канал и четырьмя клапанами на цилиндр.

Расчет проводится для двигателя со стандартной настройкой фаз газораспределения и с системой изменения фаз. Выбранные скоростные режимы работы для расчета: минимальная частота вращения ($n_1 = 800 \text{ мин}^{-1}$), режим максимального крутящего момента ($n_2 = 2500 \text{ мин}^{-1}$ и $n_3 = 4000 \text{ мин}^{-1}$), режим номинальной мощности ($n_6 = 5600 \text{ мин}^{-1}$), режим максимальной частоты вращения коленчатого вала ($n_6 = 6200 \text{ мин}^{-1}$) [12].

Исходные параметры двигателя:

Бензиновый двигатель с впрыском в клапанный канал;

Номинальная частота вращения коленчатого вала: $n_N = 5600 \text{ мин}^{-1}$;

Количество цилиндров: i = 4;

Ход поршня: S = 75,6 мм;

Диаметр поршня: D = 82 мм;

Количество тактов: $\tau = 4$;

Степень сжатия: $\varepsilon = 11$;

Рабочий объем: $V_{\pi} = 1,597 \text{ л}$;

Коэффициент избытка воздуха для всех скоростных режимов: $\alpha = 1$.

3.2 Выбор топлива и его параметров

При выбранной степени сжатия и конструкции головки блока цилиндров рекомендуется использование следующих марок топлива: «Премиум-95» ГОСТ Р 51105 или «Премиум Евро-95» ГОСТ Р 51866. Для дальнейших расчетов выберем бензин марки «Премиум-95».

Молекулярная масса топлива и его элементарный состав в массовых долях:

$$m_T = 115 \text{ кг/кмоль}; C = 0,856; H = 0,144$$

Низшая теплота сгорания бензина находится по формуле Д.И. Менделеева:

$$H_u = 33.91C + 125.6H - 10.89(O - S) - 2.51(9H+W),$$
 (3.1)

где С - массовая доля содержания углерода;

S - массовая доля содержания серы;

Н - массовая доля содержания водорода;

W - количество водяных паров в продуктах сгорания (массовое);

О - массовая доля содержания кислорода.

$$H_u = 33,91 \cdot 0,856 + 125,6 \cdot 0,144 - 2,51 \cdot 9 \cdot 0,144 = 43,86$$
 МДж/кг = 43860 кДж/кг.

3.3 Расчет параметров рабочего тела

Теоретически необходимое массовое количество и мольное количество воздуха для сгорания бензина:

$$L_0 = \frac{1}{0,208} \cdot \left(\frac{C}{12} + \frac{H}{4}\right) = 0,516 \text{ (кмоль возд./кг топл.)}$$
 (3.2)

$$l_0 = \frac{1}{0,230} \cdot \left(\frac{8}{3}C + 8H\right) = 14,933 \text{ (кг возд./кг топл.)},$$
 (3.3)

где 0,208 - объемное содержание кислорода в 1кмоль воздуха;

0,23 - массовое содержание кислорода в 1кг воздуха.

Расчет количества горючей смеси:

$$\mathbf{M}_1 = \alpha \cdot \mathbf{L}_0 + \frac{1}{m_-},\tag{3.4}$$

где т- молекулярная масса топлива, кг/кмоль;

α - коэффициент избытка воздуха;

 L_0 - теоретическая масса воздуха, которая необходима для сгорания 1кг бензина.

Количество отдельных компонентов продуктов неполного сгорания топлива (K = 0.5):

-оксид углерода (кмоль СО/кг топл.):

$$M_{CO} = 2\frac{1-\alpha}{1+K}0,208L_0 \tag{3.5}$$

-водяной пар (кмоль $H_2O/кг$ топл.):

$$M_{H_2O} = \frac{H}{2} - 2K \frac{1 - \alpha}{1 + K} 0,208 L_0 \tag{3.6}$$

-углекислый газ (кмоль $CO_2/кг$ топл.):

$$M_{CO_2} = \frac{C}{12} + 2\frac{1-\alpha}{1+K}0,208L_0, \tag{3.7}$$

где K – постоянная, зависящая от отношения количества водорода к количеству оксида углерода, которые содержатся в продуктах сгорания.

-водород (кмоль $H_2/к$ г топл.):

$$M_{H_2} = 2K \frac{1-\alpha}{1+K} 0,208 L_0 \tag{3.8}$$

-азот (кмоль $N_2/кг$ топл):

$$M_{N_2} = 0.792 \cdot \alpha \cdot L_0 \tag{3.9}$$

Расчет суммарного количества продуктов сгорания:

$$M_2 = M_{CO_2} + M_{CO} + M_{H_2O} + M_{H_2} + M_{N_2}$$
 (3.10)

Вычисление коэффициента молекулярного изменения горючей смеси:

$$\mu_0 = \frac{M_2}{M_1} \tag{3.11}$$

Результаты расчетов параметров рабочего тела представлены в таблице 2.

Таблица 2 – Параметры рабочего тела

n, мин ⁻¹	μ_0	M_{CO2}	M_{N2}	$M_{\rm H2O}$	M_{CO}	M_{H2}	M_1	M_2
800	1,052	0,0713	0,4087	0,0720	0	0	0,5247	0,5520
2500	1,052	0,0713	0,4087	0,0720	0	0	0,5247	0,5520
4000	1,052	0,0713	0,4087	0,0720	0	0	0,5247	0,5520
5600	1,052	0,0713	0,4087	0,0720	0	0	0,5247	0,5520
6200	1,052	0,0713	0,4087	0,0720	0	0	0,5247	0,5520

3.4 Параметры окружающей среды и остаточных газов

Температура окружающей среды и атмосферное давление:

$$T_0 = 293$$
, K; $p_0 = 0.1$ M Π a.

Расчет давления отработавших газов:

$$p_r = p_0(1.035 + A_p \cdot 10^{-8} n^2),$$
 (3.12)

где A
$$_p = (p_{rN} - p_0 \cdot 1,035) \cdot 10^8 / (n_N^2 p_0);$$

n - частота вращения коленчатого вала;

 p_{rN} - давление остаточных газов на режиме $n_N, \, M\Pi a;$

 p_0 - давление окружающей среды, МПа.

Определение температуры остаточных газов:

Температура остаточных газов выбирается исходя из практики двигателей с подобной конфигурацией для каждого скоростного режима.

Параметры окружающей среды и остаточных газов приведены в таблице 3.

Таблица 3 - Параметры остаточных газов и параметры окружающей среды

n, мин ⁻¹	Рг, МПа	Р ₀ , МПа	T ₀ , K	Тг, К							
	Базовый двигатель										
800	0,1038	0,1	293	890							
2500	0,1068	0,1	293	1020							
4000	0,1119	0,1	293	1165							
5600	0,1200	0,1	293	1175							
6200	0,1237	0,1	293	1175							
Двига	тель с изменяем	иыми фазами га	зораспределени	R							
800	0,1038	0,1	293	910							
2500	0,1068	0,1	293	1120							
4000	0,1119	0,1	293	1155							
5600	0,1200	0,1	293	1180							
6200	0,1237	0,1	293	1190							

3.5 Расчет процесса наполнения

Расчет температуры подогрева воздушного заряда (К):

$$\Delta T = A_T (110 - 0.0125n), \qquad (3.13)$$

где ΔT_N - температура подогрева при оборотах n_N ;

$$A_{\rm T} = \Delta T_{\rm N}/(110\text{-}0.0125n_{\rm N}).$$

Определение плотность заряда на впуске ($\kappa \Gamma/M^3$):

$$\rho_0 = \frac{p_0 \cdot 10^6}{R_e T_0},\tag{3.14}$$

где $R_{\text{в}}$ - удельная газовая постоянная воздуха, Дж/(кг·град).

Расчет потерь давления на впуске по формуле Бернулли (МПа):

$$\Delta p_a = \frac{\left(\beta^2 + \xi_{B\Pi}\right) A_n^2 n^2 \rho_0 \cdot 10^{-6}}{2}, \qquad (3.15)$$

где $\xi_{\text{вп}}$ - коэффициент сопротивления системы впуска в самом узком ее сечении;

 β - коэффициент затухания скорости движения свежего заряда в данном сечении.

$$A_n = \frac{R\pi^2 D^2 \sqrt{1 + \lambda^2}}{120 f_{gn}}, \qquad (3.16)$$

где D - диаметр поршня, м;

 λ - отношение радиуса кривошипа к длине шатуна;

R - радиус кривошипа, м;

 $f_{\text{вп}}$ - площадь наименьшего сечения впускной системы, м².

Расчет давления в конце наполнения (МПа):

$$p_a = p_0 - \Delta p_a \tag{3.17}$$

Определение коэффициента остаточных газов:

$$\gamma_r = \frac{T_0 + \Delta T}{T_r} \cdot \frac{\varphi_{ou} p_r}{\varepsilon \varphi_{oos} p_a - \varphi_{ou} p_r}, \qquad (3.18)$$

где $\phi_{\text{доз}}$ - коэффициент дозарядки;

 $\phi_{o^{\text{u}}}$ - коэффициент очистки.

Расчет температуры рабочей смеси в конце впуска (К):

$$T_{a} = \frac{T_{0} + \Delta T + \gamma_{r} T_{r}}{1 + \gamma_{r}}$$
 (3.19)

Расчет коэффициента наполнения:

$$\eta_{V} = \frac{T_{0}}{T_{0} - \Delta T} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{1}{p_{0}} (\varphi_{\partial o s} \cdot \varepsilon \cdot p_{a} - \varphi_{o u} \cdot p_{r}), \tag{3.20}$$

где є - степень сжатия;

Расчет удельного объема рабочего тела в конце процесса наполнения (${\rm M}^3/{\rm K}\Gamma$):

$$V_{a} = 8.314 \cdot 10^{-3} \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(1 + \alpha \cdot l_{0} \right) p_{a} \right], \tag{3.21}$$

где μ_m - молярная масса топлива, кг/кмоль;

μ_в - молярная масса воздуха, кг/кмоль.

Результаты расчетов процесса наполнения представлены в таблице 4.

Таблица 4 - Результаты расчетов процесса наполнения

n,	η_{v}	p _a ,	ρ,	Δp_a ,	A _n	γr	фоч	Фдоз	T _a ,	ΔΤ	v _a ,
мин ⁻¹		МПа	кг/	МПа					К	, К	м ³ /кг
			\mathbf{M}^3								111 / 111
			IVI								
	Базовый двигатель										
800	0,71	0,0998	1,19	0,0002	0,0153	0,078	1	0,68	355	20	0,97
2500	0,79	0,0977	1,19	0,0023	0,0153	0,044	1	0,78	339	16	0,95
4000	0,91	0,0940	1,19	0,0060	0,0153	0,033	0,99	0,96	332	12	0,97

Продолжение таблица 4

n,	η_{v}	p _a ,	ρ,	Δp_a ,	A _n	γr	фоч	Фдоз	T _a ,	ΔΤ	v _a ,
мин ⁻¹		МПа	кг/	МПа					К	, К	$M^3/K\Gamma$
			M ³								
5600	0,81	0,0882	1,19	0,0118	0,0153	0,038	0,99	0,94	333	8	1,04
6200	0,78	0,0856	1,19	0,0144	0,0153	0,041	0,99	0,93	334	6,5	1,07
		Двигат	гель с и	зменяемі	ыми фаза	ми газор	аспред	еления			
800	0,84	0,0997	1,19	0,0003	0,0166	0,046	1	0,81	339	20	0,93
2500	0,94	0,0972	1,19	0,0028	0,0166	0,033	1	0,94	334	16	0,94
4000	0,90	0,0930	1,19	0,0070	0,0166	0,034	0,99	0,96	333	12	0,98
5600	0,81	0,0862	1,19	0,0138	0,0166	0,038	0,99	0,95	333	8	1,06
6200	0,77	0,0831	1,19	0,0169	0,0166	0,042	0,99	0,94	335	6,5	1,11

3.6 Расчет процесса сжатия и начала воспламенения

Расчет коэффициента молекулярного изменения рабочей смеси:

$$\mu = \frac{\mu_0 + \gamma_r}{1 + \gamma_r} \tag{3.22}$$

Определение политропы сжатия методом последовательных приближений:

$$n_1 = 1 + \frac{8,314}{20,16 + 1,738 \cdot 10^{-3} (\varepsilon^{n_1 - 1} + 1) \cdot T_a}$$
 (3.23)

Расчет давления в конце процесса сжатия (МПа):

$$p_c = p_a \varepsilon^{n_l} \tag{3.24}$$

Расчет температуры в конце процесса сжатия (К):

$$T_c = T_a \varepsilon^{n_1 - 1} \tag{3.25}$$

Расчет удельного объёма рабочего тела в момент зажигания смеси при угле опережения зажигания θ:

$$V_{y} = \frac{V_{a}}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \left[\left\{ 1 + \frac{1}{\lambda} \right\} - \left\langle \cos(\Theta) + \frac{1}{\lambda} \sqrt{1 - \lambda^{2} (\sin(\Theta))^{2}} \right\rangle \right] \right]$$
(3.26)

Расчет давления рабочего тела в момент зажигания (МПа):

$$P_{y} = P_{a} \left(\frac{V_{a}}{V_{y}}\right)^{n_{1}} \tag{3.27}$$

Определение температуры рабочего тела в момент зажигания (К):

$$T_{y} = T_{a} \left(\frac{V_{a}}{V_{y}}\right)^{n_{1}-1} \tag{3.28}$$

Результаты расчетов процесса сжатия представлены в таблице 5.

Таблица 5 – Результаты расчетов процесса сжатия

n, мин ⁻¹	P_c , МПа	V_y , м $^3/$ кг	T_y , K	μ	T_c , K	Θ, °	n_1	P_y , МПа			
Базовый двигатель											
800	2,68	0,097	838	1,048	867	10	1,373	2,36			
2500	2,64	0,120	736	1,050	832	20	1,375	1,69			
4000	2,54	0,145	678	1,050	817	26	1,375	1,28			
5600	2,39	0,185	637	1,050	819	32	1,375	0,95			
6200	2,31	0,202	624	1,050	822	34	1,375	0,85			
	Д	вигатель с	изменяем	ыми фазам	и газораст	гределени	Я				
800	2,69	0,093	804	1,050	833	10	1,375	2,37			
2500	2,63	0,119	728	1,050	822	20	1,375	1,68			
4000	2,51	0,147	679	1,050	818	26	1,375	1,27			
5600	2,33	0,189	637	1,050	820	32	1,375	0,92			
6200	2,25	0,209	626	1,050	824	34	1,375	0,82			

3.7 Термодинамический расчет процесса сгорания

Коэффициент выделения теплоты, который учитывает неполноту сгорание бензина:

$$\delta = \frac{\left[H_{U} - 119950(1 - \alpha)L_{o}\right]}{H_{U}}$$
(3.29)

Определение коэффициента эффективности процесса сгорания:

$$\xi = \delta \cdot \Psi \,, \tag{3.30}$$

где Ψ - коэффициент использования теплоты.

Определение удельной теплоты сгорания горючей смеси:

$$q_z = \frac{\xi \cdot H_u}{(1 + \gamma_r)(\alpha \cdot l_0 + 1)} \tag{3.31}$$

Расчет давления газов в процессе сгорания:

$$E_2 = \left(0,002 \frac{\varepsilon}{V_a}\right) q_z \tag{3.32}$$

$$P_{2} = \frac{E_{2}\Delta X_{1-2} + P_{1} \cdot (K_{1-2}\psi(\varphi'_{1}) - \psi(\varphi'_{2}))}{K_{1-2}\psi(\varphi'_{1}) - \psi(\varphi'_{2})}$$
(3.33)

$$\psi(\varphi') = 1 + \frac{\varepsilon - 1}{2} \left[\left(1 + \frac{1}{\lambda} \right) - \left(\cos \varphi' + \frac{1}{\lambda} \sqrt{1 - \lambda^2 \cdot \sin^2 \varphi'} \right) \right]$$
(3.34)

Расчет количества топлива, сгоревшего на участке 1-2:

$$X_{1-2} = \exp \left[-6,908 \left[\frac{\varphi_1}{\varphi_z} \right]^{m+1} \right] - \exp \left[-6,908 \left[\frac{\varphi_2}{\varphi_z} \right]^{m+1} \right]$$
 (3.35)

Средняя доля топлива, сгоревшего на участке 1-2:

$$\Delta X_{1-2} = \frac{1}{2} \left[\exp \left[-6,908 \left[\frac{\varphi_1}{\varphi_z} \right]^{m+1} \right] - \exp \left[-6,908 \left[\frac{\varphi_2}{\varphi_z} \right]^{m+1} \right] \right]$$
(3.36)

Отношение средних теплоёмкостей:

$$k_{1-2} = 1,259 + \left[76,7 - \left(13,6 - \frac{14.2}{\alpha}\right)x_{1-2}\right] \frac{1}{T_{1-2}} - \left(0,0665 - \frac{0,0245}{\alpha}\right)x_{1-2}$$
(3.37)

Определение значения фактора теплоёмкостей K_{1-2} :

$$K_{1-2} = \frac{k_{1-2} + 1}{k_{1-2} - 1} \tag{3.38}$$

Расчет средней температуры на данном участке 1-2:

$$T_{1-2} = \frac{T_1 + T_2}{2} \tag{3.39}$$

Расчет температуры газов в процессе горения:

$$T_2 = \frac{T_y P_2 \psi(\phi_2')}{P_y \psi(\phi_2') \mu_{1-2}}$$
(3.40)

$$\Psi(\varphi') = 1 + \frac{\varepsilon - 1}{2}\sigma\tag{3.41}$$

$$\sigma = \left(1 + \frac{1}{\lambda}\right) - \left[\cos(\varphi') + \frac{1}{\lambda}\sqrt{1 - \lambda^2 \cdot \left(\sin(\varphi')\right)^2}\right]$$
 (3.42)

Определение среднего коэффициента молекулярного изменения смеси:

$$\mu_{1-2} = \frac{\mu_1 + \mu_2}{2} \tag{3.43}$$

$$\mu_{1} = 1 + \frac{\left(\mu_{0 \max} - 1\right)\left[1 - \exp\left[-6,908\left[\frac{\varphi_{1}}{\varphi_{z}}\right]^{m+1}\right]\right]}{1 + \gamma_{r}}$$

$$(3.44)$$

Расчет доли выгоревшего топлива:

$$\chi = 1 - \exp\left[-6,908 \left(\frac{\varphi}{\varphi_z}\right)^{m+1}\right] \tag{3.45}$$

Коэффициенты термодинамического расчет процесса горения приведены в таблице 6.

Таблица 6 – Коэффициенты термодинамического расчета

n, мин ⁻¹	800	2500	4000	5600	6200					
Базовый двигатель										
q _z , Дж/кг	1,46	1,99	2,45	2,31	2,22					
E ₂ , MΠa	32,9	46,7	55,6	49,0	45,6					
ф _z , град. п.к.в.	45	50	65	70	72					
m	3,1	3,2	3,4	3,5	3,5					
Ψ	0,71	0,75	0,92	0,87	0,84					
δ	1	1	1	1	1					
ξ	0,71	0,75	0,92	0,87	0,84					
	Двигатель	с изменяемыми	фазами газорас	пределения						
q _z , Дж/кг	1,61	2,35	2,40	2,29	2,23					
E ₂ , МПа	37,9	54,7	53,7	47,6	44,3					
ф _z , град. п.к.в.	45	50	65	70	72					
m	3,1	3,2	3,4	3,5	3,5					

Продолжение таблицы 6

n, мин ⁻¹	800	2500	4000	5600	6200
Ψ	0,71	0,88	0,90	0,87	0,84
δ	1	1	1	1	1
ξ	0,71	0,88	0,90	0,87	0,84

Результаты термодинамического расчета процесса сгорания сведены в приложение Б.

3.8 Расчет процессов расширения и выпуска

Расчет степени последующего расширения:

$$\delta = \frac{V_a}{V_z} \tag{3.46}$$

Показатель политропы расширения приминается постоянным и рассчитывается по формуле:

$$n_2 = 1 + \frac{8,341}{23,7 + 0,0046 \cdot T_Z \cdot \left(1 + \frac{1}{\delta^{n_2 - 1}}\right)}$$
(3.47)

Расчет давления и температуры в конце процесса расширения, соответственно:

$$p_b = \frac{p_Z}{\delta^{n_2}} \tag{3.48}$$

$$T_b = \frac{T_Z}{\delta^{n_2 - 1}}; T_b = 2076, 2(K)$$
 (3.49)

где $T_{\rm Z}$ - температура в конце сжатия;

 $p_{\rm Z}$ - давление в конце сжатия.

Расчет текущего удельного объема от окончания процесса горения до HMT:

$$V_{pm} = \frac{V_a}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \cdot \left[\left(1 + \frac{1}{\lambda} \right) - \left[\cos(\varphi_{pm}) + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^2 \sin^2(\varphi_{pm})} \right] \right] \right] (3.50)$$

где φ_{pr} – текущее значение угла поворота коленчатого вала

Расчет текущего давления от окончания процесса горения до НМТ:

$$p_{pm} = \left(\frac{V_a}{V_T}\right)^{n_2} p_b \tag{3.51}$$

Расчет текущей температуры от окончания процесса горения до НМТ:

$$T_{pm} = \left(\frac{V_a}{V_T}\right)^{n_2 - 1} T_b \tag{3.52}$$

Проверка правильности выбранной температуры выхлопных газов:

$$T_r = \frac{T_b}{\sqrt[3]{p_b/p_r}} \tag{3.53}$$

Результаты расчета процесса расширения приведены в таблице 7.

Таблица 7 - Результаты расчета процесса расширения

n, мин ⁻¹	T _z , K	V_z , $M^3/K\Gamma$	δ	T _b , K	P _z , МПа	T _{r1} , K	T _{r2} , K	Δ , %	Р _ь , МПа	n_2
				Базон	вый двиг	атель				
800	1973	0,190	5,141	1393	2,906	890	889	0,10	0,399	1,213
2500	2434	0,160	5,951	1719	4,255	1020	1024	0,42	0,505	1,195
4000	2674	0,211	4,587	2020	3,543	1165	1065	0,01	0,583	1,184
5600	2562	0,220	4,718	1912	3,266	1175	1175	0,03	0,517	1,188
6200	2490	0,227	4,718	1852	3,070	1175	1175	0,04	0,484	1,191

Продолжение таблицы 7

TIP OF CONTROLLED TO CONTROLLED TO											
	Двигатель с изменяемыми фазами газораспределения										
n,	T _z , K	V _z ,	δ	T _b , K	P _z ,	T_{r1} , K	T _{Γ2} , K	Δ , %	P _b ,	n_2	
мин ⁻¹		V_z , $M^3/K\Gamma$			МПа				МПа		
800	2077	0,181	5,141	1477	3,202	910	911	0,07	0,443	1,208	
2500	2740	0,158	5,951	1974	4,834	1120	1119	0,04	0,585	1,184	
4000	2630	0,214	4,587	1982	3,443	1155	1155	0,01	0,566	1,186	
5600	2551	0,225	4,718	1903	3,176	1180	1181	0,09	0,502	1,189	
6200	2497	0,235	4,718	1858	2,980	1190	1191	0,06	0,470	1,191	

По результатам расчета построены индикаторные диаграммы номинального режима работы двигателя в p-ф и p-V координатах, представленные на рисунке 9 и 10, соответственно [12].

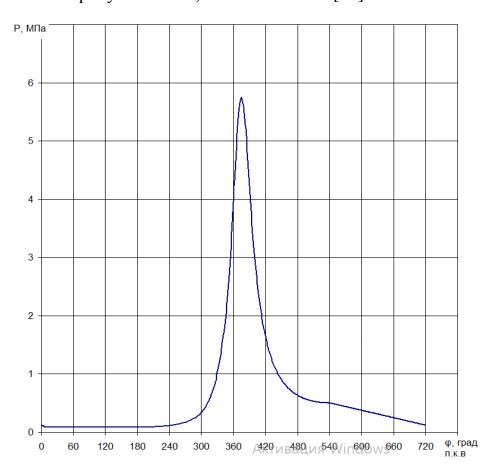


Рисунок 9 – Индикаторная диаграмма рабочего цикла в р-ф координатах.

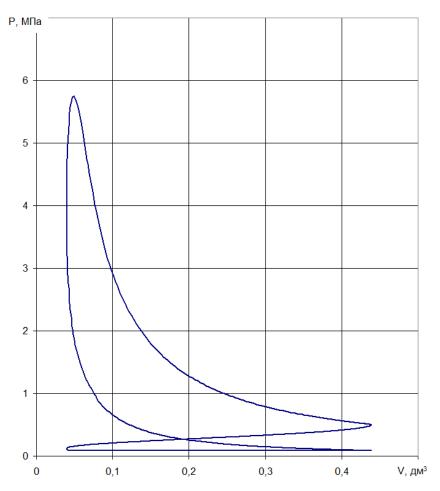


Рисунок 10 – Индикаторная диаграмма рабочего цикла в p-V координатах.

3.9 Расчет индикаторных показателей рабочего цикла

Расчет индикаторной работы цикла:

$$L_{iT} = \sum_{i=1}^{n} \frac{p_{1i} + p_{2i}}{2} (V_{2i} - V_{1i})$$
 (3.54)

где $V_{2i} - V_{1i}$ - изменение объема на i-том участке;

 $\frac{p_{1i} + p_{2i}}{2}$ - среднее индикаторное давление на i-ом участке.

Расчет среднего индикаторного давления:

$$p_{iT} = \frac{\varepsilon \cdot L_{iT}}{(\varepsilon - 1)V_a} \tag{3.55}$$

Определение индикаторного КПД:

$$\eta_i = 8{,}314 \frac{M_1 \cdot p_{iT} \cdot T_0}{p_0 \cdot \eta_V \cdot Hu}$$
(3.56)

Определение удельного индикаторного расхода топлива:

$$g_i = \frac{3600}{\eta_i \cdot Hu} \cdot 10^3 \tag{3.57}$$

Результаты расчета индикаторных показателей рабочего цикла сведены в таблицу 8.

Таблица 8 - Индикаторные показатели рабочего цикла

n, мин ⁻¹	η_i	L _i , кДж	P _i , МПа	g_i , г/к B т·ч						
Базовый двигатель										
800	800 0,351 0,701 0,791 234									
2500	0,414	0,950	1,099	198						
4000	0,414	1,151	1,306	198						
5600	0,412	1,091	1,158	199						
6200	0,399	1,040	1,068	205						
Дві	игатель с изменя	немыми фазами	газораспределе	ния						
800	0,332	0,781	0,918	247						
2500	0,410	1,147	1,338	199						
4000	0,410	1,120	1,256	199						
5600	0,401	1,079	1,119	204						
6200	0,395	1,036	1,030	207						

3.10 Расчет эффективных показателей двигателя

Средняя скорость поршня:

$$\nu_n = \frac{S \cdot 10^{-3} \cdot n}{30} \tag{3.58}$$

Давление механических потерь:

$$p_{\rm M} = 0.034 + 0.0092 \cdot v_{\rm II} \tag{3.59}$$

Среднее эффективное давление:

$$p_{\rm e} = p_{\rm iT} - p_{\rm M} \tag{3.60}$$

Механический КПД:

$$\eta_M = \frac{p_e}{p_{iT}} \tag{3.61}$$

Эффективный КПД:

$$\eta_e = \eta_i \cdot \eta_M \tag{3.62}$$

Удельный эффективный расход топлива:

$$g_e = \frac{g_i}{\eta_M} \tag{3.63}$$

Эффективная мощность:

$$N_e = \frac{p_e \cdot V_{\pi} \cdot n}{30\tau} \tag{3.64}$$

Крутящий момент:

$$M_e = \frac{3 \cdot 10^4 \cdot N_e}{\pi \cdot n} \tag{3.65}$$

Часовой расход топлива:

$$G_T = N_e \cdot g_e \tag{3.66}$$

Результаты расчетов эффективных показателей двигателя представлены в таблице 9.

Таблица 9 - Эффективные показатели двигателя

n, мин ⁻¹	рм,	p _e ,	$\eta_{\scriptscriptstyle M}$	η_e	g _e ,	N _e ,	G _T ,	M _e ,	V _n , м/с		
	МПа	МПа			г/кВт·ч	кВт	кг/ч	Н∙м			
	Базовый двигатель										
800 0,057 0,734 0,928 0,326 252 7,8 1,97 93,3 2,01											
2500	0,105	0,994	0,904	0,367	223	33,1	7,24	126,3	6,300		
4000	0,148	1,158	0,887	0,375	219	61,6	13,75	147,1	10,080		
5600	0,193	0,965	0,833	0,345	238	71,9	17,10	122,6	14,112		
6200	0,211	0,857	0,803	0,321	256	70,7	18,09	109,0	15,624		
		Двигател	іь с измен	няемыми (разами га	зораспре,	деления				
800	0,057	0,866	0,938	0,311	265	9,2	2,42	110,1	2,016		
2500	0,105	1,234	0,921	0,379	217	41,0	8,90	156,8	6,300		
4000	0,148	1,108	0,882	0,356	231	59,0	13,61	140,8	10,080		
5600	0,193	0,925	0,827	0,331	247	69,0	17,10	117,6	14,112		
6200	0,211	0,820	0,796	0,314	262	67,6	17,69	104,2	15,624		

Результаты расчета текущих параметров процесса сгорания для режима максимального крутящего момента и номинальной мощности приведены в приложении Б.

3.11 Расчет внешнего теплового баланса

Суммарное количество теплоты, которое подведено с топливом:

$$Q_o = \frac{H_u G_T}{3.6} {(3.67)}$$

Расчет теплоты, эквивалентной эффективной работе за 1 секунду:

$$Q_e = 1000 \, N_e \tag{3.68}$$

Расчет теплота, переданной охлаждающей жидкости:

$$Q_B = \frac{ciD^{1+2m}n^m(H_u - \Delta H_u)}{\alpha H_u}$$
(3.69)

Расчет теплоты, выброшенной с выхлопными газами:

$$Q_{\Gamma} = (\frac{G_{T}}{3.6})(M_{2}((mc''_{v})_{t_{0}}^{t_{r}} + 8.315)t_{\Gamma} - M_{2}((mc''_{v})_{t_{0}}^{t_{20}} + 8.315)t_{0})$$
(3.70)

Расчет теплоты, потерянной из-за неполноты сгорания топлива:

$$Q_{\scriptscriptstyle H.C.} = \frac{\Delta H_{\scriptscriptstyle u} G_{\scriptscriptstyle T}}{3.6} \tag{3.71}$$

Определение неучтенных потерь теплоты:

$$Q_{ocm} = Q_o - (Q_e + Q_B + Q_{\Gamma} + Q_{\mu,c})$$
 (3.72)

Результаты расчетов внешнего теплового баланса занесены в приложение Б.

4 Кинематический расчет кривошипно-шатунного механизма

Уравнения кинематики позволяют определить зависимость положения поршня от угла поворота коленчатого вала, а также его скорость и ускорение в различных положениях. При анализе кинематики кривошипно-шатунного механизма (КШМ) пренебрегают неравномерностью крутящего момент и вводят допущение, что угловая скорость вращения коленчатого вала является постоянной величиной. Кинематический расчет КШМ проводят для номинального режима работы двигателя [13].

Из теплового расчета известно отношение радиуса кривошипа к длине шатуна $\lambda = 0.284$.

Перемещения поршня:

$$S_x = R[(1 - \cos \varphi) + \frac{\lambda}{4}(1 - \cos 2\varphi)],$$
 (4.1)

где ф – угол поворота коленчатого вала, град. п.к.в.;

R – радиус кривошипа, мм.

Скорость поршня:

$$V_n = \omega R(\sin \varphi + \frac{\lambda}{2} \sin 2\varphi), \qquad (4.2)$$

где ω – угловая частота вращения коленчатого вала, рад/с.

Ускорение поршня:

$$j = \omega^2 R(\cos \varphi + \lambda \cos 2\varphi) \tag{4.3}$$

Зависимость ускорения поршня от угла поворота коленчатого вала в табличном виде с шагом 10^0 представлена в приложении Б.

Результаты кинематического расчета сведены приложение В, графики зависимости перемещения, скорости и ускорения поршня представлены на плакатах диаграмм.

5 Кинематический расчет клапанного механизма

В настоящие время практически на всех быстроходных двигателях применяются кулачки называемые безударными. В отличие от кулачков, спрофилированных по дугам окружности, профилирование безударных кулачков начинают с выбора и расчета закона движения клапана. Данный закон должен обеспечивать максимально возможное время-сечение клапана при допустимых значениях динамических нагрузок (ускорений) в клапанном механизме. Обязательным требованием получения безударного кулачка является плавное и непрерывное изменение кривой ускорения толкателя и клапана.

Кулачек Курца относится к кулачкам, которые спроектированы без учета упругости деталей газораспределительного механизма. График ускорения данного кулачка состоит из четырех участков: участок сбега (косинусоида), участок положительных ускорений (половина волны синусоиды), первого участка отрицательных ускорений (четверть волны синусоиды), второго участка отрицательных ускорений (часть параболы).

При оптимизации фаз газораспределения была установлена продолжительность открытия впускного и выпускного клапанов равная 236° поворота коленчатого вала. Профиль кулачков впускного и выпускного распределительных валов будет одинаковым [14].

На рисунке 11 отмечены основные параметры, определяемые при профилировании безударного кулачка.

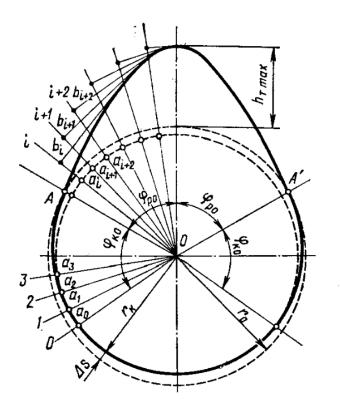


Рисунок 11 - Профиль кулачка распределительного вала 5.1 Основные размеры проходных сечений в горловинах и клапанах

Площадь проходных сечений клапанов при максимальном подъеме (cм²):

$$F_{\kappa n} = \frac{v_{n.cp.} F_n}{i \omega_{\kappa n}}, \tag{5.1}$$

где i – количество впускных клапанов;

 $V_{n.cp.}$ – средняя скорость поршня, м/с;

 F_n – площадь поршня, см²;

 $\omega_{\it en}$ – средняя скорость в клапанной щели при номинальной режиме, м/с.

Диаметр клапана (см):

$$d_{\kappa\pi} = \sqrt{\frac{4F_{\kappa\pi}}{\pi}} \tag{5.2}$$

Минимальная площадь проходного сечения горловины клапана (см²):

$$F_{cop} = 1{,}12F_{\kappa n} \tag{5.3}$$

Диаметр горловины клапана (см):

$$d_{zop} = \sqrt{\frac{4F_{zop}}{\pi}} \tag{5.4}$$

Максимальная высота подъема клапана (угол фаски $\alpha = 45^{\circ}$):

$$h_{\kappa n. \max} = \frac{\sqrt{4,93 \cdot d_{eop}^2 + 4,44 \cdot F_{\kappa n}}}{2,22 - d_{eop}}$$
 (5.5)

Результаты вычислений сведены в таблицу 16.

Таблица 10 — Основные параметры проходных сечений в горловине и клапане

$d_{\kappa n}$, cm	$F_{\kappa n}$, cm ²	$d_{\it cop}$, CM	F_{zop} , cm ²	$h_{_{\!\scriptscriptstyle{\mathcal{K}^{7}.\mathrm{max}}}}$, MM
2,44	4,66	2,58	5,22	7,15

Диаметр минимального проходного сечения горловины модернизируемого двигателя 2,6 см, что больше полученного, следовательно, не требует доработки.

5.2 Основные размеры кулачка

Радиус начальной окружности кулачка:

$$r_0 = (1,3 \div 2,5)h_{\kappa_{l.\,\text{max}}} = 9,30\,\text{MM} \div 17,88\,\text{MM}$$
 (5.6)

 $r_0 = 16 \text{ MM}.$

Максимальный подъем толкателя равен максимальному подъему клапана, так как толкатель является плоским:

$$h_{T_{\text{max}}} = h_{\kappa_{T,\text{max}}} = 7,15 MM$$
 (5.7)

5.3 Профилирование безударного кулачка (кулачек Курца)

Продолжительность открытия клапанов в градусах поворота распределительного вала:

$$\varphi_p = \frac{\varphi}{2} = 118^{\circ} \tag{5.8}$$

Тогда $\phi_{p0} = 59^{\circ}$ (рисунок 11).

Угловая протяженность участков выбирается из соотношений:

$$\Phi_1 + \Phi_2 + \Phi_3 = (\pi/180)\varphi_{p0} \tag{5.9}$$

$$\Phi_2 = (0.10 \div 0.25)\Phi_3 \tag{5.10}$$

$$\Phi_2 + \Phi_3 = (1.5 \div 3.0)\Phi_1 \tag{5.11}$$

Путь, скорость и ускорение толкателя на участке сбега Φ_0 :

$$h_0 = \Delta s (1 - \cos \frac{\pi}{2\Phi_0} \varphi_{\kappa 0}) \tag{5.12}$$

$$\omega_{T0} = \Delta s \omega_{\kappa} \frac{\pi}{2\Phi_0} \sin \frac{\pi}{2\Phi_0} \varphi_{\kappa 0}$$
 (5.13)

$$j_{T0} = \Delta s \omega_{\kappa}^2 \left(\frac{\pi}{2\Phi_0}\right)^2 \cos\frac{\pi}{2\Phi_0} \varphi_{\kappa 0}$$
 (5.14)

Путь, скорость и ускорение толкателя на участке положительных ускорений Φ_1 :

$$h_{1} = \Delta s + c_{11} \varphi_{\kappa 1} - c_{12} \sin \frac{\pi}{\Phi_{1}} \varphi_{\kappa 1}$$
 (5.15)

$$\omega_{T1} = \omega_{\kappa} (c_{11} - c_{12} \frac{\pi}{\Phi_{1}} \cos \frac{\pi}{\Phi_{1}} \varphi_{\kappa 1})$$
 (5.16)

$$j_{T1} = \omega_{\kappa}^{2} (c_{12} (\frac{\pi}{\Phi_{1}})^{2} \sin \frac{\pi}{\Phi_{1}} \varphi_{\kappa 1})$$
 (5.17)

Путь, скорость и ускорение толкателя на первом участке отрицательных ускорений Φ_2 :

$$h_2 = h_{1\kappa} + c_{21}\varphi_{\kappa 2} + c_{22}\sin\frac{\pi}{2\Phi_2}\varphi_{\kappa 2}$$
 (5.18)

$$\omega_{T2} = \omega_{\kappa} (c_{21} + c_{22} \frac{\pi}{2\Phi_2} \cos \frac{\pi}{2\Phi_2} \varphi_{\kappa 2})$$
 (5.19)

$$j_{T2} = \omega_{\kappa}^{2} (-c_{22} (\frac{\pi}{2\Phi_{2}})^{2} \sin \frac{\pi}{2\Phi_{2}} \varphi_{\kappa 2})$$
 (5.20)

Путь, скорость и ускорение толкателя на второй участке отрицательных ускорений Φ_3 :

$$h_3 = h_{2\kappa} + c_{31}(\Phi_3 - \varphi_{\kappa 3})^4 - c_{32}(\Phi_3 - \varphi_{\kappa 3})^2 + c_{33}$$
 (5.21)

$$\omega_{T3} = \omega_{\kappa} (-4c_{31}(\Phi_3 - \varphi_{\kappa 3})^3 + 2c_{23}(\Phi_3 - \varphi_{\kappa 3}))$$
 (5.22)

$$j_{T3} = \omega_{\kappa}^2 (12c_{31}(\Phi_3 - \varphi_{\kappa 3})^2 - 2c_{32})$$
 (5.23)

Коэффициенты находятся по следующим формулам:

$$c_{11} = \frac{K_1 \omega_{T0\kappa} + K_2 h_{\text{max}}}{2K_1 + K_2 \Phi_1}$$
 (5.24)

$$c_{12} = \frac{(c_{11} - \omega''_{T0\kappa})\Phi_1}{\pi}$$
 (5.25)

$$c_{32} = \frac{(2c_{11} - \omega''_{T0\kappa})}{K_2}; c_{21} = c_{32}k_3; c_{22} = c_{32}k_1$$
 (5.26)

$$c_{31} = \frac{c_{32}(1-z)}{6\Phi_3^2}; c_{33} = c_{32}k_2 \tag{5.27}$$

$$k_1 = 8Z(\frac{\Phi_2}{\pi})^2; k_2 = \frac{5+Z}{6}\Phi_3^2; k_3 = \frac{4+2Z}{3}\Phi_3$$
 (5.28)

$$K_1 = k_1 + k_2 + k_3 \Phi_2; K_2 = k_3 + \frac{4Z\Phi_2}{\pi}$$
 (5.29)

Коэффициенты должны вычисляться с большой точностью для точного вычисления значений перемещения, скорости и ускорения клапана.

Таблица 11 - Результаты расчетов коэффициентов

k_1	0,0154321	c ₁₂	0,4870353
k_2	0,3109953	C ₃₂	10,5546171
k ₃	1,0079276	c ₂₁	10,6382903
K_1	0,5023440	C ₂₂	0,1628799
K_2	1,1468165	C ₃₁	1,9885654
c ₁₁	6,6250625	C ₃₃	3,2824368

Перемещение, скорость и ускорение клапана в табличном виде посчитаны с шагом 0.5° поворота распределительного вала, с целью экономии места данные результаты приведены только в графическом виде.

Графики зависимости подъема, скорости и ускорения толкателя представлены на рисунках 12-14.

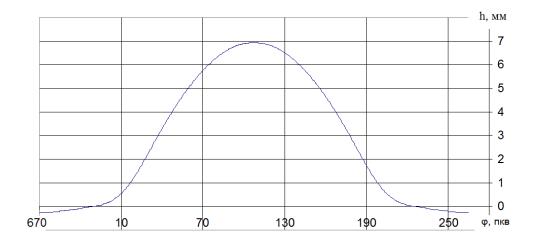


Рисунок 12 - Подъем толкателя.

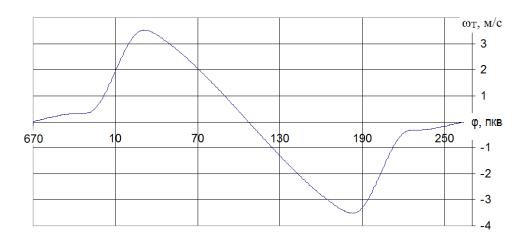


Рисунок 13 - Скорость толкателя.

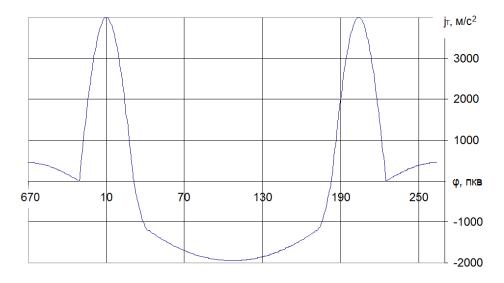


Рисунок 14 - Ускорение толкателя.

Из анализа графика ускорения видно, что изменение ускорения происходит плавно, не превышая значений ускорений базового двигателя. Из этого можно сделать вывод, что спрофилированный кулачек является безударным.

5.4 Расчет пружины клапана

Пружина клапана плотно прижимает его к седлу и кинематически замыкает механизм привода на участках подъема и опускания клапана. Усилие пружины на участках движения толкателя с отрицательными ускорениями должно быть значительно больше сил инерции при максимальных скоростных режимах работы двигателя. При проектировании механизма привода клапана следует исходить из условия достижения максимально возможной жесткости при минимальных массах движущихся деталей. Материал пружины – пружинная сталь, $\tau_{-1} = 350$ МПа, $\sigma_{\rm B} = 1500$ МПа.

Суммарная масса, приведенная к оси клапана:

$$M_{\kappa n} = m_{\kappa n} + \frac{1}{3} m_{np} + m_T = 50 + 32/3 + 54 = 114,72,$$
 (5.30)

где $m_{\kappa \pi}$ – масса клапана;

 m_{np} – масса пружины;

 m_T — масса толкателя.

Максимальная сила упругости пружины:

$$P_{np \max} = KM_{\kappa n} \alpha \omega_{\kappa}^2 = 202, 2H, \qquad (5.31)$$

где $M_{\kappa_{I}}$ – суммарная масса клапанного механизма, г;

K = 1,4 -коэффициент запаса;

 ω_{κ} – угловая скорость вращения распределительного вала.

$$\alpha = r_0 + h_{T \text{ max}} - r_2 = 14,65 \text{ MM}$$
 (5.32)

Минимальная сила упругости пружины:

$$P_{np\min} = KM_{\kappa n}(r_0 - r_2)\omega_{\kappa}^2 = 103,5H$$
 (5.33)

Жесткость пружины:

$$c = M_{\kappa \eta} K \omega_{\kappa}^2 = 13.8 \kappa H / M \tag{5.34}$$

Предварительная деформация пружины:

$$f_{\min} = r_0 - r_2 = 7,5 MM \tag{5.35}$$

Полная деформация пружины:

$$f_{\text{max}} = f_{\text{min}} + h_{\kappa \pi max} = 14,65 \,\text{MM} \tag{5.36}$$

По конструктивным соображениям приминаются размеры пружины: диаметр проволоки $\delta_{np}=3,6$ мм и диаметр пружины $D_{np}=26$ мм Число рабочих витков пружины:

$$i_{np} = \frac{G\delta_{np}^4 f_{\text{max}}}{8P_{np\,\text{max}}D_{np}^3} = 4.5, \qquad (5.37)$$

где $G = 8,3 - модуль упругости второго рода, <math>MH/cm^2$.

Полное число витков пружины:

$$i_n = i_p + 2 = 6.5 (5.38)$$

Длина пружины при полностью открытом клапане:

$$L_{\min} = i_n + i_p \Delta_{\min} = 22,1 MM \tag{5.39}$$

Длина пружины при закрытом клапане:

$$L_0 = L_{\min} + h_{\kappa_7 \max} = 29,3MM \tag{5.40}$$

Длина свободной пружины:

$$L_{cs} = L_{\min} + f_{\max} = 36.8MM \tag{5.41}$$

Максимальное напряжение в пружине:

$$\tau_{\text{max}} = k_{s}^{2} \frac{8P_{np \max} D_{np}}{\pi \delta_{np}^{3}} = 482,2M\Pi a$$
 (5.42)

Минимальное напряжение в пружине:

$$\tau_{\min} = k_{g}^{3} \frac{8P_{np\min}D_{np}}{\pi\delta_{np}^{3}} = 246,8M\Pi a$$
(5.43)

Среднее напряжение:

$$\tau_m = \frac{\tau_{\text{max}} + \tau_{\text{min}}}{2} = 364,5M\Pi a \tag{5.44}$$

Амплитуда напряжений:

$$\tau_{a\kappa} = \frac{\tau_{\text{max}} - \tau_{\text{min}}}{2} = 117,7M\Pi a \tag{5.45}$$

Запас прочности пружины:

$$n_{\tau} = \frac{\tau_{-1}}{\tau_{\alpha \kappa} + \alpha_{T} \tau_{m}} = 1.84 ,$$
 (5.46)

где α_T – коэффициент приведения.

Расчет пружины на резонанс:

$$n_c = \frac{2,17 \cdot 10^7 \,\delta_{np}}{i_p D_{np}^2} = 22905 \tag{5.47}$$

$$\frac{n_c}{n_p} = \frac{22905}{2800} = 8,18 \neq 1,2,3...$$
 (5.48)

6 Расчет распределительных валов

При работе двигателя на распределительный вал действуют следующие силы: упругости пружины, инерции деталей клапанного механизма, давления Расчет производится литых газов. ДЛЯ распределительных валов, изготовленных из серого чугуна. Из кинематического расчета клапанного механизма известны все необходимые данные ДЛЯ расчета распределительных валов.

6.1 Расчет выпускного распределительного вала

Наибольшая сила, действует на кулачек в начальный период открытия выпускных клапанов:

$$P_{T \max} = P_{np \min} + \frac{\pi d_e^2}{4} (p_e - p'_e) + M_T \omega_\kappa^2 (r_1 - r_0) = 824 H, \qquad (6.1)$$

где P_{npmin} – сила упругости пружины при закрытом клапане, H;

 $d_{\scriptscriptstyle B} = 0.028$ м— наружный диаметр тарелки клапана;

 $p_{\scriptscriptstyle \Gamma}$ = 0,605 МПа– давление в цилиндре в момент начала открытия клапанов;

 $p'_{r} = 0,107$ МПа– давление в трубопроводе;

 M_T – масса движущихся деталей, приведенная к оси толкателя, кг.

Давление газов в цилиндре двигателя в момент начала открытия клапана выбрано из теплового расчета. Данное давление является максимальным в режиме максимального крутящего момента ($n=2500~{\rm Muh}^{-1}$) и взято при заданном угле опережения открытия клапана [14].

Масса движущихся деталей, приведенная к оси толкателя:

$$M_T = m_{\kappa_T} + \frac{m_{np}}{3} + m_T = 0.115 \, \kappa z \,,$$
 (6.2)

где m_{KJ} – масса клапана, кг;

 $m_{пр}$ – масса клапана, кг;

т – масса клапана, кг.

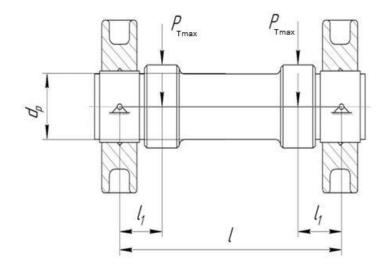


Рисунок 10 – Расчетная схема выпускного распределительного вала.

Основным является расчет распределительного вала на жесткость. Данный расчет заключается в определении стрелы прогиба под действием силы. Расчетная схема представлена на рисунке 10.

$$y = 6.8 \frac{P_{T \max} l_1^2 \cdot (l - l_1)^2}{El(d_p^4 - \delta_p^4)} = 0.005 \,\text{MM} \le 0.02 \,\text{MM}, \tag{6.3}$$

где Е = - модуль упругости материала;

1 = 88 мм - расстояние между опорами;

 $1_1 = 28 \text{ мм}$ - расстояние от опоры до точки приложения силы;

 $d_p = -$ наружный диаметр вала;

 $\delta_{\text{p}}=0$ мм– наружный диаметр вала;

Напряжение смятия:

$$\sigma_{_{CM}} = 0.418 \sqrt{\frac{P_{_{T \max}} E}{b_{_{K}} r_{_{1}}}} = 123 M\Pi a \le 400 \div 1200 M\Pi a,$$
(6.4)

6.2 Расчет впускного распределительного вала

Сила, действующая на кулачек в начальный период открытия впускных клапанов, Н:

$$P_{T \max} = P_{np \min} + \frac{\pi d_g^2}{4} (p_c - p'_c) + M_T \omega_\kappa^2 (r_1 - r_0) = 544 H, \qquad (6.5)$$

где P_{npmin} – сила упругости пружины при закрытом клапане, H;

 $d_{\scriptscriptstyle B} = 0.032$ м— наружный диаметр тарелки клапана;

 $p_{\scriptscriptstyle \Gamma} = 0,120 \ \text{М}$ Па- давление в цилиндре в момент начала открытия клапанов;

 $p'_{r} = 0,086 \text{ МПа-}$ давление в трубопроводе;

 M_T – масса движущихся деталей, приведенная к оси толкателя, кг.

Масса движущихся деталей, приведенная к оси толкателя, кг:

$$M_T = m_{\kappa \tau} + \frac{m_{np}}{3} + m_T = 0.115 \, \kappa z$$
, (6.6)

где $m_{\kappa\pi}$ – масса клапана, кг;

 m_{np} – масса клапана, кг;

 m_{T} — масса клапана, кг.

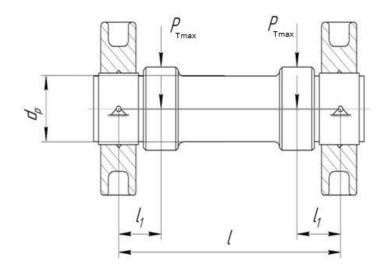


Рисунок 11 — Расчетная схема впускного распределительного вала. Стрелы прогиба (мм) под действием силы.

$$y = 6.8 \frac{P_{T \max} l_1^2 \cdot (l - l_1)^2}{El(d_p^4 - \delta_p^4)} = 0.003 \,\text{MM} \le 0.02 \,\text{MM}, \tag{6.7}$$

где Е = модуль упругости материала;

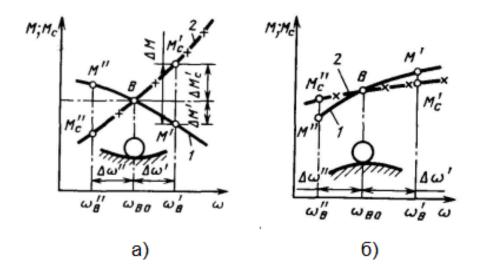
1 = 88 мм - расстояние между опорами;

 $l_1 = 25 \ \text{мм}$ - расстояние от опоры до точки приложения силы;

 $d_p = 24$ мм – наружный диаметр вала;

 $\delta_{\text{p}}=0$ мм– внутренний диаметр вала;

Напряжение смятия, МПа:


$$\sigma_{cM} = 0.418 \sqrt{\frac{P_{T \max} E}{b_{\kappa} r_1}} = 100 M\Pi a \le 400 \div 1200 M\Pi a$$
, (6.8)

7 Анализ устойчивости режима работы двигателя и его динамических характеристик

При установившемся режиме работы двигателя обеспечивается равенство крутящих моментов двигателя (M_0) и потребителя (M_{c0}) .

$$M_0 - M_{c0} = 0 (7.1)$$

Устойчивым режимом самопроизвольно называют режим, восстанавливающийся при случайном отклонении характеристик. Для сохранения устойчивого режима работы двигателя важно, чтобы при изменении нагрузки равенство крутящих моментов двигателя и потребителя восстанавливалось при наименьшем изменении скоростного режима двигателя. На рисунке 12 приведены условия устойчивости режимов работы двигателя 1 и потребителя 2.

а – устойчивый режим; б – неустойчивый режим.
 Рисунок 12 – Условия устойчивости режима работы двигателя.

Отклонение характеристик установившегося скоростного режима (рис. 12, а), характеризуемого точкой В, приводит к отклонению угловой скорости вращения коленвала на $\Delta\omega$ ' или $\Delta\omega$ ", при этом нарушается условие 7.1. Если

 $M'_c > M'$, то ω уменьшается и режим восстанавливается (точка B). И наоборот, если $M' > M'_c$, то ω увеличивается и режим возвращается к исходному установившемуся.

Взаимное изменение характеристик двигателя и потребителя, представленные на рисунке 12, б, соответствуют не устойчивому режиму работы двигателя. Такой режим не будет самопроизвольно восстанавливаться без использования регулятора.

Чем меньше изменяется частота вращения коленчатого вала при изменении крутящего момента потребителя, тем реже приходится воздействовать на орган управления двигателем и тем устойчивее режим работы потребителя. Таким образом, режим работы потребителя тем устойчивее, чем наиболее интенсивно уменьшается крутящий момент двигателя с ростом частоты вращения коленчатого вала [15].

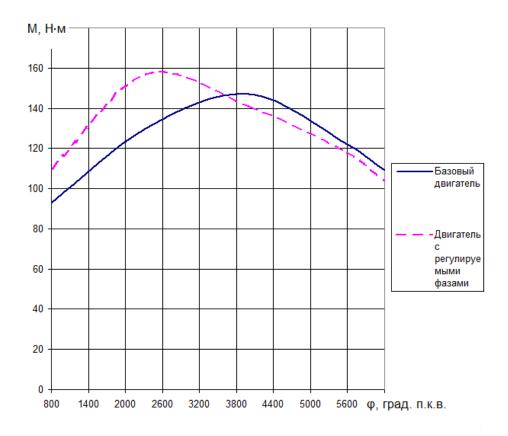


Рисунок 13 — Зависимость крутящих моментов базового и модернизированного двигателей от частоты вращения коленчатого вала.

Из рисунка 13 видно, что крутящий момент модернизированного двигателя достигает больших значений, при чем при меньшей частоте вращения коленчатого вала, в отличие от базового двигателя. Анализ графиков дает представление об устойчивых режимах работы обоих двигателей. Диапазон неустойчивой работы модернизированного двигателя от 800 мин⁻¹ до 2500 мин⁻¹, а устойчивой от 2500 мин⁻¹ до 6200 мин⁻¹, так как на этом участке крутящий момент падает с ростом числа оборотов. Диапазон неустойчивой работы базового двигателя от 800 мин⁻¹ до 4000 мин⁻¹, а устойчивой от 4000 мин⁻¹ до 6200 мин⁻¹.

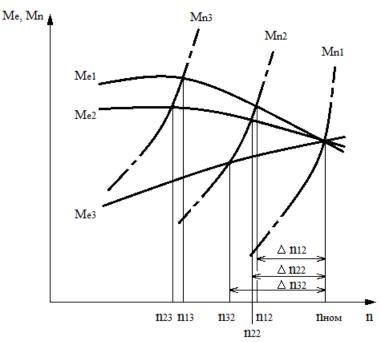


Рисунок 14 — Влияние изменения крутящего момента двигателя на устойчивость режима работы.

На рисунке 14 приведены графики значения крутящий моментов различных двигателей и крутящие моменты различных потребителей. Из графиков видно, что при увеличении крутящего момента со стороны потребителя с Mn₁ до Mn₂, обороты двигателя 1 изменяются меньше остальных двигателей, так как его крутящий момент Me1 уменьшается резче с увеличением оборотов, чем крутящие моменты Me2 и Me3. А при крутящем моменте Mn3 со стороны потребителя, двигатель с крутящим

моментом Ме3 не может иметь установившегося режима и остановится, так как в рабочем диапазоне оборотов его крутящий момент всегда меньше момента потребителя. Для того чтобы двигатель 3 мог работать на потребителя 3, необходимо искусственным путем увеличить крутящий момент, отдаваемый потребителю, например переключением передачи на автомобиле.

Для оценки устойчивости режима работы двигателя на внешней скоростной характеристики, используется коэффициент приспособляемости, равный отношению максимального крутящего момента $M_{\text{емах}}$ к крутящему моменту $M_{\text{еном}}$, соответствующему номинальному режиму работы.

$$K_{II} = \frac{M_{e \max}}{M_{e_{HOM}}} \tag{7.2}$$

Для потребителя важны не только способности приспособляемости, но и скоростной диапазон устойчивой работы. Этот диапазон оценивается скоростным коэффициентом, который равен отношению оборотов в режиме максимального крутящего момента к номинальному числе оборотов. Наиболее удобен для оценки коэффициент эластичности который обратно пропорционален скоростному коэффициенту двигателя.

$$K_{\mathfrak{I}} = \frac{n_{\scriptscriptstyle HOM}}{n_{\scriptscriptstyle M}} \tag{7.3}$$

Чем больше коэффициент приспособляемости и эластичности, тем шире диапазон устойчивой работы двигателя и тем реже приходится воздействовать на орган управления двигателем [16].

Значения крутящих моментов базового и модернизированного двигателей на рисунке 13, сведены в таблицу 12.

Таблица 12 – Крутящие моменты базового 1 и модернизированного 2 двигателей

n, мин ⁻¹	$M_{el}, H \cdot M$	M _{e2} , H·M
800	93,3	110,1
2500	126,3	156,8
4000	147,1	140,8
5600	122,6	117,6
6200	109,0	104,2

Результаты расчета динамических коэффициентов приведены в таблице 13. Таблица 13 - Динамические коэффициенты двигателя

	K_{π}	K ₉
Базовый	1,205	1,400
Модернизируемый	1,331	2,240

Таким образом, применение системы изменения фаз газораспределения, позволило достигнуть устойчивого режима работы при меньших частотах вращения коленчатого вала (причем с больших крутящим моментом). Удалось постичь увеличение коэффициента приспособляемости с 1,205 до 1,331, а коэффициента эластичности с 1,400 до 2,240. Модернизированный двигатель, в отличие от базового, способен преодолевать наибольшие сопротивления со стороны потребителя, легче в управлении, так как реже приходится воздействовать на его орган управления для поддержания определенного скоростного режима.

8 Безопасность и экологичность технического объекта

В бакалаврской работе данной предложен способ улучшения динамических характеристик бензинового двигателя, за счет применения УГЛОВОГО положения систем изменения относительного впускного Рассмотренный выпускного распределительных валов. двигатель предназначен для установки на легковой автомобиль, следовательно, должен удовлетворять предъявляемым нормам безопасности и экологичности (токсичность отработавших газов, акустический шум, вибрации, активная и безопасность, безопасность, пассивная пожарная эксплуатационная безопасность) [17, 18].

Проведенная модернизация не оказывает влияния на вибрацию силовой установки, не отражается на пожарной безопасности колесного транспортного средства. При этом достоинством данной системы является возможность уменьшения токсичности отработавших газов на основных режимах работы двигателя и снижение уровня шума при работе двигателя на холостом ходу.

Согласно действующим нормам отечественных (ГОСТ Р 41.83-2004) и зарубежных (привила ЕЭК ООН № 83) стандартов контролируются предельные значения выбросов следующих вредных веществ в составе отработавших газов: оксида углерода (СО), углеводорода (СН), оксидов азота (NO_x), сажи (PM).

За счет изменения фаз газораспределения при работе двигателя на холостом ходу можно установить минимальное перекрытие клапанов, что, в уменьшит обратный заброс отработавших свою очередь, газов стабилизирует процесс горения. Данное мероприятие позволит уменьшить оборотов значение минимальных холостого хода, что уменьшит акустический шум при работе двигателя на холостом ходу и уменьшит расход топлива на данном режиме. Уменьшение расхода благоприятно отразится на снижении выбросов оксида углерода (СО) [19].

В таблице 14 приведены предельно-допустимые значения выбросов токсичных компонентов в составе отработавших газов ДВС (ТР ТС 018/2011).

Таблица 14 – Предельные значения вредных веществ в отработавших газах

Характеристика		Контрол	Масса оксида		Macca		Масса оксидов		Суммарная		Macca
транспортного		ьная	углерода (СО),		углеводородов		азота (NO_x) ,		масса оксидов		вредны
едств	a	масса	Г	/ _{KM}	(СН), г/км		г/км		аз	ота и	X
		(КМ), кг							углево	одородов	частиц
									, 1	г/км	(PM),
											г/км
ория	Кла				 Топлив	о, необход	цимое дл	ія работы	двигате	ля	
	cc		бенз	дизель	бенз	дизель	бенз	дизель	бенз	дизель	дизель
			ИН	ное	ИН	ное	ИН	ное	ИН	ное	ное
M*	_	KM >	2,3	0,64	0,20	-	0,15	0,50	-	0,56	0,05
*		400 кг									
N _{1*}	I	KM <	2,3	0,64	0,20	-	0,15	0,50	-	0,56	0,05
**		1305 кг									
	II	1305 кг <	4,17	0,80	0,25	-	0,18	0,65	-	0,72	0,07
		KM <									
		1760 кг									
	III	KM >	5,22	0,95	0,29	-	0,21	0,78	-	0,86	0,10
		1760 кг									
M^*	-	KM >	1,0	0,50	0,10	-	0,08	0,25	-	0,30	0,025
*		400 кг									
N _{1*}	I	KM <	1,0	0,50	0,10	-	0,08	0,25	-	0,30	0,025
**		1305 кг									
	II	1305 кг <	1,81	0,63	0,13	-	0,10	0,33	-	0,39	0,04
		KM <									
		1760 кг									
	III	KM >	2,27	0,74	0,16	-	0,11	0,39	-	0,46	0,06
		1760 кг									
	ория М* ** N _{1*} N _{1*}	ория Кла сс М* - N1* I III М* - N1* I III	Вория Кла сс ория Кла сс М* - КМ > 400 кг N _{1*} I КМ < 1305 кг	Спортного ьная масса (КМ), кг углеро по	Спортного ведства вная масса (КМ), кг углерода (СО), г/км ория Кла сс М* - КМ > 2,3 0,64 ин ное ин но	ВПОРТНОГО ВНАЯ УГЛЕРОДА (СО), РЕДСТВА МАССА (КМ), КГ ТОПЛИВ	ВПОРТНОГО ВНАЯ МАССА КМ), КГ ТОПЛИВО, НЕОБХОД СС БЕНЗ ДИЗЕЛЬ ИН НОЕ ИН ИН ИН НОЕ ИН ИН ИН НОЕ ИН ИН НОЕ ИН ИН ИН ИН ИН ИН ИН И	ВНАЯ УГЛЕРОДА (СО), УГЛЕВОДОРОДОВ АЗОТА КМ КГ КГ	рия кла сс (км), кт	рия	этюртного ведства ьная масса (КМ), кг углерода (СО), г/км углеводородов (СН), г/км азота (NО _x), г/км масса оксидов азота и углеводородов дазота и углеводородородов дазота и углеводородов дазота и у

Согласно разделу 3 теплового расчета, удалось достичь снижения оборотов холостого хода на 9%, что привело к пропорционального снижению выбросов CO_2 . Так же в режимах полной нагрузки и малых частот вращения, за счет уменьшения перекрытия клапанов, уменьшился выброс несгоревших углеводородов.

При работе двигателя на частичных нагрузках, когда нет необходимости генерировать большую мощность, система изменения фаз газораспределения увеличивает угол опережения открытия до ВМТ впускного клапана и уменьшает угол опережения открытия до НМТ выпускного клапана, что клапанов. Увеличение перекрытия увеличивает перекрытия позволяет отработавшим газам попадать во впускной коллектор и, для обеспечения необходимой мощности, вынуждает больше открывать орган управления двигателем. Это приводит к тому, что разряжение во впускном коллекторе уменьшается (давление увеличивается), таким образом, уменьшается мощность, затрачиваемая насосные поршня. на Увеличивается коэффициент полезного действия двигателя, при его работе в данном режиме, что снижает расход топлива.

Так же проникновение отработавших газов во впускной коллектор оказывает влияние на токсичность. Часть несгоревших углеводородов (СН), которые остаются с предыдущего рабочего цикла в отработавших газах, заново поступают сначала во впускной коллектор, а потом доокисляются в течении следующего такта горения. Данное явление снижает содержание несгоревших углеводородов в отработавших газах [20].

Внутренняя рециркуляция отработавших газов позволяет уменьшить температуру горения смеси, так как отработавшие газы имеют высокую теплоемкость. Уменьшение температуры горения снижает образования оксидов азота. В результате, уменьшается количество оксидов азота (NO_x) в отработавших газах [21]. На режимах частичных нагрузок, за счет внутренней рециркуляции отработавших газов, уменьшился выброс оксидов азота на 5 – 15 % в зависимости от режима работы двигателя.

Таким образом, в разделе «Безопасность и экологичность технического объекта» приведен анализ влияния системы изменения фаз газораспределения на выбросы токсичных компонентов продуктов сгорания и уровня шума.

Удалось достичь уменьшения оборотов холостого хода, что снизило шумность работы двигателя на холостом ходу, а так же расход топлива и выбросы оксидов азота и несгоревших углеводородов. При этом в режиме полной нагрузки и высоких частотах вращения заметно ухудшение экономичности и увеличение несгоревших углеводородов.

Смещение фаз газораспределения позволило оксидов азота (NO_x) при работе двигателя на частичных нагрузках на 5 – 15%.

Данный двигатель при установки каталитического нейтрализатора удовлетворяет предъявляемым требованиям по токсичности.

ЗАКЛЮЧЕНИЕ

В результате обзора и анализа различных систем изменения фаз газораспределения, обоснован выбор системы бесступенчатого изменения фаз. За счет системы изменения фаз газораспределения удалось достигнуть увеличения максимального крутящего момента на 7 %. При этом смещение максимального крутящего момента в зону более низких оборотов позволило достичь значения коэффициента приспособляемости 1,331 и коэффициента эластичности 2,24.

Спрофилированный безударный кулачек обеспечил приемлемые значения ускорений толкателя при оптимальном время-сечении клапана. Мероприятия, связанные с изменением относительного углового положения распределительных валов в зависимости от нагрузки, позволили уменьшить выбросы токсичных веществ, а так же снизить минимальные устойчивые обороты холостого хода на 9 %.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Луканин В. Н. Двигатели внутреннего сгорания. В 3 кн. Кн. 2. Динамика и конструирование: Учебник для вузов/В. Н, Луканин, И. В. Алексеев, М. Г. Шатров и др.; Под ред. В. Н. Луканина и М. Г. Шатрова. 3-е изд. перераб. М.: Высш. Шк., 2007. 400 с.: ил.
- 2. Луканин В. Н. Двигатели внутреннего сгорания. В 3 кн. Кн. 1. Теория рабочих процессов: Учебник для вузов/В. Н, Луканин, И. В. Алексеев, М. Г. Шатров и др.; Под ред. В. Н. Луканина и М. Г. Шатрова. 3-е изд. перераб. М.: Высш. Шк., 2007. 479 с.: ил.
- 3. L. Qingyu « Comparative study on the pumping losses between continuous variable valve lift (CVVL) engine and variable valve timing (VVT) engine» vol.137 (2018), pp. 710-720/www.sciencedirect.com/science/article/pii/S1359431117351918.
- 4. Y. Zhipeng «Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation» vol. 157 (2018), pp. 314-326/www.sciencedirect.com/science/article/pii/S0360544218309708
- 5. U. Hasan «Effects of application of variable valve timing on the exhaust gas temperature improvement in a low-loaded diesel engine» vol. 122 (2017), pp. 758-767/www.sciencedirect.com/science/article/pii/S1359431117306130
- 6. L. Kaimin «Effect of asynchronous valve timing on combustion characteristic and performance of a high speed SI marine engine with five valves» vol. 123 (2016), pp.185-199/www.sciencedirect.com/science/article/pii/S0196890416305210
- 7. Ютт В. Е. Электрооборудование автомобилей. Учебник для вузов. 4-е изд., перераб. и доп. М.: Горячая линия Телеком, 2006. 440 с.: ил.
- 8. Орлин А. С. Двигатели внутреннего сгорания: Системы поршневых и комбинированных двигателей. Учебник для вузов по спец. «Двигатели

- внутреннего сгорания»/С. И. Ефимов, Н. А. Иващенко, В. И. Ивин и др.; Под общ. ред. А. С. Орлина, М. Г. Круглова. 3-е изд., перераб. и доп.—М.: Машиностроение, 1985. 456 с.,ил.
- 9. I. Zibani, R. Marumo, J. Chuma, I. Ngebani «Control Unit fora Coreless Stator for use with SI Engine Stepping Valve» vol. 21 (2018), pp. 397-404/www.sciencedirect.com.
- 10. A. Ainul, A. Shakrine «ENGINE OPTIMIZATION BY USING VARIABLE VALVE TIMING SYSTEM AT LOW ENGINE REVOLUTION» vol. 10 (2015), pp. 9730-9735/https://www.researchgate.net/publication/290264041.
- 11. Кулешов А.С. Развитие методов расчета и оптимизация рабочих процессов ДВС. 2011 г. Москва, МГТУ им. Баумана. 235 С.
- 12. Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / И.И. Вибе// М. Машиностроение, 1971. 282 с.
- 13. Райков И. Я., Рытвинский Г.Н. Конструирование автомобильных и тракторных двигателей: Учебник для вузов по спец. «Двигатели внутреннего сгорания». М.: Высш. шк., 1986. 352 с.: ил.
- 14. Колчин А. И. Расчет автомобильных и тракторных двигателей: Учеб. пособие для вузов/А. И. Колчин, В. П. Демидов. 4-е изд., перераб. и доп. М.: Высш. Шк., 2008. 496 с.: ил.
- 15. Крутов В. И. Автоматическое регулирование и управление двигателей внутреннего сгорания: Учебник для студентов вузов, обучающихся по специальности «Двигатели внутреннего сгорания» 5-е изд., перераб. И до. М.: Машиностроение, 1989. 416 с.: ил.
- 16. Ховах М. С. Автомобильные двигатели. Под ред. М. С. Ховаха. М., «Машиностроение», 1977. 591 стр.
 - 17. ТР ТС 018/2011 «О безопасности колесных транспортных средств».
- 18. ГОСТ Р 41.83-2004 (Правила ЕЭК ООН N 83) «Единообразные предписания, касающиеся сертификации транспортных средств в отношении

выбросов вредных веществ в зависимости от топлива, необходимого для двигателей».

- 19. Орлин А. С. Двигатели внутреннего сгорания. Теория рабочих процессов поршневых и комбинированных двигателей. Изд. 3-е Коллектив авторов, М., «Машиностроение», 1971, 400 стр.
- 20. Крутов В. И. Топливная аппаратура автотракторных двигателей. Учебник для студентов вузов, обучающихся по специальности «Двигатели внутреннего сгорания»/В. И. Крутов, В. Е. Горбаневский, В. Г. Кислов; Под общ. ред. В. И. Крутова. М.: Машиностоение, 1985. 208 с., ил.
- 21. Z. Jinxing «Improving the partial-load fuel economy of 4-cylinder SI engines by combining variable valve timing and cylinder-deactivation through double intake manifolds» vol. 141 (2018), pp. 245-256/https://www.sciencedirect.com/science/article/pii/S1359431117380675.

ПРИЛОЖЕНИЕ А

Протоколы оптимизации фаз газораспределения

1	1
1	ПРЕДЕЛЬНОЕ ДРОБЛЕНИЕ ШАГА ПО АРГУМЕНТАМ;
I	ИЛИ ЧРЕЗМЕРНОЕ УМЕНЬШЕНИЕ ГРАДИЕНТА
1	1
	Независимые переменные
Нач.вып	* Нач.впуск
24.361	0.0000
	Оптимизируемые параметры
Eta v	
0.81043	
Функция :	цели = -1.2735 Штраф = $0.53022E-05$ N = 22

Рисунок А.1 – Протокол оптимизации фаз газораспределения для скоростного режима работы $n=5600~{\rm Muh}^{-1}.$

предельное дробление шага по аргументам;
ИЛИ ЧРЕЗМЕРНОЕ УМЕНЬШЕНИЕ ГРАДИЕНТА
l
Нач.вып Нач.впуск
35.632 15.705
Eta v
0.93398
_ 1 4677
Φ ункция цели = -1.4677 Штраф = 0.0000 N = 22
!;
======================================

Рисунок А.2 – Протокол оптимизации фаз газораспределения для скоростного режима работы $n=2500~{\rm Muh}^{-1}$.

ПРИЛОЖЕНИЕ Б

Результаты теплового расчета

Таблица Б.1 — Результаты термодинамического расчета процесса сгорания модернизированного двигателя при n=2500 мин $^{-1}$

φ'												
П.К.В.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
0	340	0,03992	0,00000	0,00000	1,363	727,57	734,75	1,34788	731,16	6,511	6,511	1,00000
1	341	0,03996	0,00001	0,00000	1,362	734,75	741,85	1,31270	738,30	6,526	6,526	1,00000
2	342	0,04008	0,00004	0,00002	1,361	741,85	748,91	1,27932	745,38	6,541	6,541	1,00000
3	343	0,04028	0,00012	0,00006	1,360	748,91	756,04	1,24776	752,47	6,556	6,556	1,00001
4	344	0,04055	0,00027	0,00013	1,359	756,04	763,42	1,21803	759,73	6,572	6,572	1,00002
5	345	0,04090	0,00050	0,00025	1,358	763,42	771,30	1,19016	767,36	6,589	6,589	1,00003
6	346	0,04133	0,00085	0,00043	1,357	771,30	779,99	1,16414	775,65	6,607	6,607	1,00007
7	347	0,04183	0,00134	0,00067	1,355	779,99	789,88	1,14000	784,93	6,628	6,628	1,00012
8	348	0,04242	0,00200	0,00100	1,354	789,88	801,41	1,11775	795,65	6,652	6,652	1,00021
9	349	0,04308	0,00285	0,00142	1,352	801,41	815,11	1,09740	808,26	6,680	6,680	1,00033
10	350	0,04381	0,00390	0,00195	1,350	815,11	831,55	1,07895	823,33	6,713	6,713	1,00050
11	351	0,04462	0,00520	0,00260	1,348	831,55	851,32	1,06243	841,44	6,751	6,751	1,00073
12	352	0,04551	0,00674	0,00337	1,345	851,32	875,08	1,04783	863,20	6,795	6,795	1,00103
13	353	0,04648	0,00856	0,00428	1,342	875,08	903,45	1,03516	889,26	6,845	6,845	1,00142
14	354	0,04751	0,01065	0,00532	1,339	903,45	937,08	1,02442	920,26	6,901	6,901	1,00190
15	355	0,04863	0,01302	0,00651	1,335	937,08	976,54	1,01564	956,81	6,962	6,962	1,00250
16	356	0,04981	0,01566	0,00783	1,332	976,54	1022,37	1,00880	999,46	7,027	7,027	1,00322
17	357	0,05107	0,01855	0,00928	1,328	1022,37	1075,01	1,00391	1048,69	7,097	7,097	1,00408
18	358	0,05240	0,02167	0,01084	1,324	1075,01	1134,78	1,00098	1104,89	7,169	7,169	1,00509
19	359	0,05381	0,02498	0,01249	1,320	1134,78	1201,86	1,00000	1168,32	7,243	7,243	1,00627
20	360	0,05528	0,02842	0,01421	1,317	1201,86	1276,27	1,00098	1239,07	7,316	7,316	1,00761
21	361	0,05683	0,03192	0,01596	1,313	1276,27	1357,85	1,00391	1317,06	7,389	7,389	1,00913

			ицы Б.т			1						
φ'							_					
П.К.В.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
22	362	0,05844	0,03540	0,01770	1,310	1357,85	1446,22	1,00880	1402,03	7,460	7,460	1,01083
23	363	0,06012	0,03876	0,01938	1,306	1446,22	1540,77	1,01564	1493,50	7,527	7,527	1,01270
24	364	0,06188	0,04189	0,02095	1,303	1540,77	1640,70	1,02442	1590,74	7,591	7,591	1,01473
25	365	0,06369	0,04470	0,02235	1,301	1640,70	1744,95	1,03516	1692,83	7,651	7,651	1,01691
26	366	0,06558	0,04706	0,02353	1,298	1744,95	1852,26	1,04783	1798,60	7,706	7,706	1,01922
27	367	0,06753	0,04886	0,02443	1,296	1852,26	1961,19	1,06243	1906,72	7,756	7,756	1,02164
28	368	0,06954	0,05002	0,02501	1,294	1961,19	2070,15	1,07895	2015,67	7,801	7,801	1,02413
29	369	0,07162	0,05046	0,02523	1,292	2070,15	2177,45	1,09740	2123,80	7,841	7,841	1,02666
30	370	0,07376	0,05013	0,02507	1,291	2177,45	2281,38	1,11775	2229,41	7,876	7,876	1,02920
31	371	0,07596	0,04902	0,02451	1,290	2281,38	2380,26	1,14000	2330,82	7,906	7,906	1,03169
32	372	0,07822	0,04714	0,02357	1,289	2380,26	2472,53	1,16414	2426,40	7,932	7,932	1,03412
33	373	0,08054	0,04454	0,02227	1,288	2472,53	2556,81	1,19016	2514,67	7,953	7,953	1,03643
34	374	0,08292	0,04134	0,02067	1,287	2556,81	2631,95	1,21803	2594,38	7,971	7,971	1,03859
35	375	0,08536	0,03763	0,01882	1,286	2631,95	2697,13	1,24776	2664,54	7,984	7,984	1,04058
36	376	0,08785	0,03359	0,01679	1,286	2697,13	2751,86	1,27932	2724,50	7,994	7,994	1,04237
37	377	0,09040	0,02935	0,01468	1,286	2751,86	2795,99	1,31270	2773,93	8,001	8,001	1,04396
38	378	0,09299	0,02509	0,01255	1,285	2795,99	2829,72	1,34788	2812,85	8,006	8,006	1,04533
39	379	0,09565	0,02097	0,01048	1,285	2829,72	2853,56	1,38485	2841,64	8,008	8,008	1,04649
40	380	0,09835	0,01710	0,00855	1,285	2853,56	2868,28	1,42359	2860,92	8,009	8,009	1,04745
41	381	0,10110	0,01360	0,00680	1,285	2868,28	2874,87	1,46407	2871,58	8,008	8,008	1,04822
42	382	0,10390	0,01053	0,00527	1,285	2874,87	2874,40	1,50629	2874,64	8,005	8,005	1,04883
43	383	0,10675	0,00794	0,00397	1,286	2874,40	2868,04	1,55021	2871,22	8,002	8,002	1,04930
44	384	0,10964	0,00581	0,00290	1,286	2868,04	2856,90	1,59583	2862,47	7,998	7,998	1,04964
45	385	0,11258	0,00413	0,00206	1,286	2856,90	2842,04	1,64311	2849,47	7,993	7,993	1,04989
46	386	0,11556	0,00284	0,00142	1,286	2842,04	2824,39	1,69203	2833,21	7,988	7,988	1,05007
47	387	0,11858	0,00189	0,00094	1,286	2824,39	2804,74	1,74257	2814,56	7,983	7,983	1,05019
48	388	0,12164	0,00122	0,00061	1,287	2804,74	2783,76	1,79470	2794,25	7,977	7,977	1,05027
49	389	0,12474	0,00075	0,00038	1,287	2783,76	2761,93	1,84841	2772,84	7,972	7,972	1,05032
50	390	0,12788	0,00045	0,00023	1,287	2761,93	2739,64	1,90366	2750,78	7,966	7,966	1,05035

Таблица Б.2 — Результаты термодинамического расчета процесса сгорания базового двигателя при $n=4000~\text{мин}^{-1}$

φ'												
т.к.в.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
0	334	0,03992	0,00000	0,00000	1,370	678,39	685,77	1,59583	682,08	6,402	1,337	1,00000
1	335	0,03996	0,00000	0,00000	1,369	685,77	693,15	1,55021	689,46	6,419	1,391	1,00000
2	336	0,04008	0,00001	0,00000	1,368	693,15	700,55	1,50629	696,85	6,436	1,447	1,00000
3	337	0,04028	0,00002	0,00001	1,367	700,55	707,97	1,46407	704,26	6,453	1,504	1,00000
4	338	0,04055	0,00005	0,00003	1,366	707,97	715,44	1,42359	711,70	6,470	1,563	1,00000
5	339	0,04090	0,00011	0,00005	1,365	715,44	723,02	1,38485	719,23	6,487	1,624	1,00001
6	340	0,04133	0,00019	0,00009	1,363	723,02	730,77	1,34788	726,90	6,504	1,686	1,00001
7	341	0,04183	0,00030	0,00015	1,362	730,77	738,79	1,31270	734,78	6,521	1,751	1,00003
8	342	0,04242	0,00047	0,00023	1,361	738,79	747,19	1,27932	742,99	6,540	1,817	1,00005
9	343	0,04308	0,00068	0,00034	1,360	747,19	756,11	1,24776	751,65	6,559	1,885	1,00008
10	344	0,04381	0,00095	0,00048	1,358	756,11	765,70	1,21803	760,90	6,579	1,956	1,00012
11	345	0,04462	0,00129	0,00065	1,357	765,70	776,16	1,19016	770,93	6,601	2,029	1,00017
12	346	0,04551	0,00172	0,00086	1,356	776,16	787,70	1,16414	781,93	6,625	2,105	1,00025
13	347	0,04648	0,00222	0,00111	1,354	787,70	800,54	1,14000	794,12	6,651	2,185	1,00035
14	348	0,04751	0,00283	0,00141	1,352	800,54	814,94	1,11775	807,74	6,680	2,269	1,00047
15	349	0,04863	0,00353	0,00177	1,350	814,94	831,17	1,09740	823,06	6,711	2,357	1,00064
16	350	0,04981	0,00435	0,00218	1,348	831,17	849,50	1,07895	840,33	6,745	2,451	1,00083
17	351	0,05107	0,00529	0,00264	1,346	849,50	870,22	1,06243	859,86	6,783	2,551	1,00108
18	352	0,05240	0,00635	0,00318	1,343	870,22	893,64	1,04783	881,93	6,823	2,657	1,00137
19	353	0,05381	0,00754	0,00377	1,341	893,64	920,03	1,03516	906,84	6,867	2,769	1,00172
20	354	0,05528	0,00886	0,00443	1,338	920,03	949,69	1,02442	934,86	6,914	2,890	1,00213
21	355	0,05683	0,01031	0,00516	1,335	949,69	982,87	1,01564	966,28	6,963	3,018	1,00262
22	356	0,05844	0,01190	0,00595	1,332	982,87	1019,83	1,00880	1001,35	7,015	3,155	1,00318
23	357	0,06012	0,01360	0,00680	1,330	1019,83	1060,77	1,00391	1040,30	7,069	3,299	1,00382
24	358	0,06188	0,01543	0,00771	1,327	1060,77	1105,87	1,00098	1083,32	7,125	3,452	1,00455
25	359	0,06369	0,01736	0,00868	1,324	1105,87	1155,26	1,00000	1130,57	7,182	3,613	1,00537
26	360	0,06558	0,01937	0,00969	1,321	1155,26	1209,01	1,00098	1182,14	7,239	3,781	1,00630
27	361	0,06753	0,02146	0,01073	1,318	1209,01	1267,13	1,00391	1238,07	7,297	3,955	1,00733

φ'												
п.к.в.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
28	362	0,06954	0,02359	0,01180	1,315	1267,13	1329,57	1,00880	1298,35	7,353	4,134	1,00846
29	363	0,07162	0,02574	0,01287	1,312	1329,57	1396,18	1,01564	1362,87	7,409	4,318	1,00971
30	364	0,07376	0,02787	0,01393	1,309	1396,18	1466,77	1,02442	1431,48	7,464	4,503	1,01106
31	365	0,07596	0,02995	0,01497	1,307	1466,77	1541,02	1,03516	1503,90	7,516	4,689	1,01251
32	366	0,07822	0,03193	0,01597	1,305	1541,02	1618,56	1,04783	1579,79	7,567	4,873	1,01407
33	367	0,08054	0,03378	0,01689	1,302	1618,56	1698,91	1,06243	1658,73	7,614	5,052	1,01573
34	368	0,08292	0,03545	0,01773	1,300	1698,91	1781,51	1,07895	1740,21	7,660	5,226	1,01747
35	369	0,08536	0,03690	0,01845	1,298	1781,51	1865,72	1,09740	1823,61	7,702	5,390	1,01929
36	370	0,08785	0,03809	0,01905	1,297	1865,72	1950,83	1,11775	1908,27	7,741	5,544	1,02118
37	371	0,09040	0,03898	0,01949	1,295	1950,83	2036,07	1,14000	1993,45	7,778	5,684	1,02312
38	372	0,09299	0,03953	0,01976	1,294	2036,07	2120,62	1,16414	2078,34	7,811	5,809	1,02510
39	373	0,09565	0,03972	0,01986	1,292	2120,62	2203,64	1,19016	2162,13	7,841	5,916	1,02710
40	374	0,09835	0,03953	0,01977	1,291	2203,64	2284,27	1,21803	2243,96	7,868	6,003	1,02909
41	375	0,10110	0,03895	0,01948	1,290	2284,27	2361,69	1,24776	2322,98	7,893	6,071	1,03107
42	376	0,10390	0,03799	0,01900	1,289	2361,68	2435,07	1,27932	2398,38	7,914	6,116	1,03301
43	377	0,10675	0,03666	0,01833	1,288	2435,07	2503,70	1,31270	2469,39	7,933	6,140	1,03489
44	378	0,10964	0,03498	0,01749	1,288	2503,70	2566,91	1,34788	2535,30	7,949	6,141	1,03669
45	379	0,11258	0,03300	0,01650	1,287	2566,91	2624,15	1,38485	2595,53	7,962	6,121	1,03841
46	380	0,11556	0,03076	0,01538	1,287	2624,15	2675,00	1,42359	2649,57	7,974	6,079	1,04001
47	381	0,11858	0,02831	0,01416	1,286	2675,00	2719,15	1,46407	2697,07	7,983	6,017	1,04150
48	382	0,12164	0,02572	0,01286	1,286	2719,15	2756,45	1,50629	2737,80	7,990	5,936	1,04286
49	383	0,12474	0,02306	0,01153	1,286	2756,45	2786,89	1,55021	2771,67	7,995	5,839	1,04409
50	384	0,12788	0,02038	0,01019	1,286	2786,89	2810,61	1,59583	2798,75	7,998	5,726	1,04518
51	385	0,13105	0,01775	0,00887	1,286	2810,61	2827,86	1,64311	2819,24	8,000	5,601	1,04614
52	386	0,13426	0,01522	0,00761	1,286	2827,86	2839,01	1,69203	2833,44	8,001	5,464	1,04697
53	387	0,13750	0,01285	0,00643	1,286	2839,01	2844,54	1,74257	2841,78	8,001	5,320	1,04768
54	388	0,14078	0,01067	0,00534	1,286	2844,54	2844,99	1,79470	2844,76	7,999	5,169	1,04827
55	389	0,14408	0,00871	0,00436	1,286	2844,99	2840,93	1,84841	2842,96	7,997	5,014	1,04876
56	390	0,14742	0,00699	0,00349	1,286	2840,93	2833,00	1,90366	2836,97	7,993	4,857	1,04916
57	391	0,15078	0,00550	0,00275	1,286	2833,00	2821,78	1,96043	2827,39	7,990	4,699	1,04947

φ'												
п.к.в.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
58	392	0,15416	0,00425	0,00212	1,286	2821,78	2807,88	2,01869	2814,83	7,986	4,542	1,04972
59	393	0,15758	0,00322	0,00161	1,286	2807,88	2791,83	2,07841	2799,86	7,981	4,387	1,04991
60	394	0,16101	0,00238	0,00119	1,287	2791,83	2774,14	2,13957	2782,99	7,976	4,235	1,05005
61	395	0,16447	0,00173	0,00087	1,287	2774,14	2755,23	2,20213	2764,68	7,971	4,087	1,05015
62	396	0,16795	0,00123	0,00061	1,287	2755,23	2735,47	2,26607	2745,35	7,966	3,944	1,05023
63	397	0,17144	0,00085	0,00043	1,287	2735,47	2715,17	2,33136	2725,32	7,960	3,805	1,05028
64	398	0,17495	0,00058	0,00029	1,288	2715,17	2694,58	2,39796	2704,88	7,955	3,671	1,05031
65	399	0,17848	0,00038	0,00019	1,288	2694,58	2673,88	2,46584	2684,23	7,950	3,543	1,05034

Таблица Б.3 – Результаты термодинамического расчета процесса сгорания модернизированного двигателя при n=5600 мин $^{-1}$

φ'												
п.к.в.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
0	328	0,03992	0,00000	0,00000	1,377	636,75	643,86	1,90366	640,31	6,298	0,962	1,00000
1	329	0,03996	0,00000	0,00000	1,376	643,86	651,03	1,84841	647,45	6,317	1,001	1,00000
2	330	0,04008	0,00000	0,00000	1,375	651,03	658,29	1,79470	654,66	6,335	1,043	1,00000
3	331	0,04028	0,00001	0,00001	1,374	658,29	665,62	1,74257	661,95	6,353	1,086	1,00000
4	332	0,04055	0,00003	0,00002	1,372	665,62	673,05	1,69203	669,33	6,372	1,131	1,00000
5	333	0,04090	0,00006	0,00003	1,371	673,05	680,61	1,64311	676,83	6,390	1,178	1,00000
6	334	0,04133	0,00011	0,00005	1,370	680,61	688,33	1,59583	684,47	6,409	1,226	1,00001
7	335	0,04183	0,00018	0,00009	1,369	688,33	696,28	1,55021	692,31	6,427	1,277	1,00002
8	336	0,04242	0,00028	0,00014	1,367	696,28	704,52	1,50629	700,40	6,447	1,330	1,00003
9	337	0,04308	0,00041	0,00021	1,366	704,52	713,14	1,46407	708,83	6,467	1,385	1,00004
10	338	0,04381	0,00058	0,00029	1,364	713,14	722,23	1,42359	717,68	6,487	1,443	1,00007
11	339	0,04462	0,00080	0,00040	1,363	722,23	731,91	1,38485	727,07	6,509	1,503	1,00010
12	340	0,04551	0,00107	0,00053	1,362	731,91	742,32	1,34788	737,12	6,532	1,566	1,00015
13	341	0,04648	0,00140	0,00070	1,360	742,32	753,60	1,31270	747,96	6,557	1,633	1,00021

φ'п.к.в.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
14	342	0,04751	0,00179	0,00089	1,358	753,60	765,91	1,27932	759,75	6,583	1,703	1,00029
15	343	0,04863	0,00225	0,00113	1,356	765,91	779,43	1,24776	772,67	6,611	1,777	1,00039
16	344	0,04981	0,00280	0,00140	1,355	779,43	794,35	1,21803	786,89	6,642	1,855	1,00052
17	345	0,05107	0,00343	0,00171	1,352	794,35	810,87	1,19016	802,61	6,674	1,939	1,00068
18	346	0,05240	0,00415	0,00207	1,350	810,87	829,20	1,16414	820,03	6,710	2,027	1,00087
19	347	0,05381	0,00496	0,00248	1,348	829,20	849,55	1,14000	839,38	6,747	2,121	1,00109
20	348	0,05528	0,00588	0,00294	1,346	849,55	872,15	1,11775	860,85	6,787	2,222	1,00137
21	349	0,05683	0,00690	0,00345	1,343	872,15	897,20	1,09740	884,68	6,830	2,329	1,00169
22	350	0,05844	0,00802	0,00401	1,340	897,20	924,92	1,07895	911,06	6,875	2,442	1,00206
23	351	0,06012	0,00926	0,00463	1,338	924,92	955,50	1,06243	940,21	6,923	2,564	1,00249
24	352	0,06188	0,01060	0,00530	1,335	955,50	989,13	1,04783	972,32	6,972	2,692	1,00299
25	353	0,06369	0,01204	0,00602	1,332	989,13	1025,97	1,03516	1007,55	7,023	2,828	1,00356
26	354	0,06558	0,01359	0,00679	1,329	1025,97	1066,17	1,02442	1046,07	7,075	2,972	1,00420
27	355	0,06753	0,01523	0,00761	1,326	1066,17	1109,81	1,01564	1087,99	7,128	3,122	1,00492
28	356	0,06954	0,01695	0,00847	1,324	1109,81	1156,99	1,00880	1133,40	7,182	3,280	1,00573
29	357	0,07162	0,01873	0,00937	1,321	1156,99	1207,72	1,00391	1182,36	7,236	3,443	1,00662
30	358	0,07376	0,02057	0,01029	1,318	1207,72	1262,00	1,00098	1234,86	7,290	3,612	1,00761
31	359	0,07596	0,02245	0,01122	1,315	1262,00	1319,74	1,00000	1290,87	7,342	3,785	1,00869
32	360	0,07822	0,02433	0,01217	1,313	1319,74	1380,83	1,00098	1350,28	7,394	3,961	1,00986
33	361	0,08054	0,02620	0,01310	1,310	1380,83	1445,08	1,00391	1412,96	7,445	4,138	1,01112
34	362	0,08292	0,02803	0,01402	1,308	1445,08	1512,25	1,00880	1478,67	7,494	4,316	1,01248
35	363	0,08536	0,02979	0,01489	1,306	1512,25	1582,03	1,01564	1547,14	7,541	4,491	1,01393
36	364	0,08785	0,03144	0,01572	1,304	1582,03	1654,04	1,02442	1618,04	7,585	4,662	1,01547
37	365	0,09040	0,03294	0,01647	1,302	1654,04	1727,85	1,03516	1690,95	7,628	4,827	1,01708
38	366	0,09299	0,03428	0,01714	1,300	1727,85	1802,97	1,04783	1765,41	7,668	4,984	1,01876
39	367	0,09565	0,03541	0,01770	1,298	1802,97	1878,85	1,06243	1840,91	7,705	5,131	1,02051
40	368	0,09835	0,03630	0,01815	1,297	1878,85	1954,89	1,07895	1916,87	7,740	5,267	1,02231
41	369	0,10110	0,03692	0,01846	1,295	1954,89	2030,46	1,09740	1992,68	7,772	5,388	1,02414
42	370	0,10390	0,03726	0,01863	1,294	2030,46	2104,92	1,11775	2067,69	7,802	5,494	1,02600
43	371	0,10675	0,03728	0,01864	1,293	2104,92	2177,59	1,14000	2141,26	7,829	5,583	1,02787

φ'п.к.в.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
44	372	0,10964	0,03699	0,01849	1,292	2177,59	2247,81	1,16414	2212,70	7,853	5,653	1,02973
45	373	0,11258	0,03637	0,01818	1,291	2247,81	2314,94	1,19016	2281,38	7,875	5,705	1,03157
46	374	0,11556	0,03543	0,01772	1,290	2314,94	2378,36	1,21803	2346,65	7,894	5,737	1,03337
47	375	0,11858	0,03419	0,01710	1,289	2378,36	2437,51	1,24776	2407,94	7,911	5,750	1,03511
48	376	0,12164	0,03267	0,01633	1,289	2437,51	2491,91	1,27932	2464,71	7,925	5,742	1,03679
49	377	0,12474	0,03089	0,01544	1,288	2491,91	2541,13	1,31270	2516,52	7,938	5,715	1,03838
50	378	0,12788	0,02889	0,01445	1,288	2541,13	2584,86	1,34788	2563,00	7,948	5,670	1,03988
51	379	0,13105	0,02673	0,01336	1,288	2584,87	2622,88	1,38485	2603,87	7,956	5,608	1,04127
52	380	0,13426	0,02444	0,01222	1,287	2622,88	2655,06	1,42359	2638,97	7,963	5,529	1,04255
53	381	0,13750	0,02208	0,01104	1,287	2655,06	2681,41	1,46407	2668,24	7,968	5,435	1,04372
54	382	0,14078	0,01969	0,00985	1,287	2681,41	2702,01	1,50629	2691,71	7,971	5,329	1,04476
55	383	0,14408	0,01734	0,00867	1,287	2702,01	2717,06	1,55021	2709,54	7,973	5,211	1,04569
56	384	0,14742	0,01506	0,00753	1,287	2717,06	2726,85	1,59583	2721,96	7,974	5,085	1,04651
57	385	0,15078	0,01290	0,00645	1,287	2726,85	2731,74	1,64311	2729,29	7,973	4,950	1,04721
58	386	0,15416	0,01089	0,00545	1,287	2731,74	2732,13	1,69203	2731,93	7,972	4,811	1,04780
59	387	0,15758	0,00906	0,00453	1,287	2732,13	2728,51	1,74257	2730,32	7,970	4,667	1,04830
60	388	0,16101	0,00741	0,00371	1,287	2728,51	2721,34	1,79470	2724,92	7,967	4,521	1,04871
61	389	0,16447	0,00597	0,00298	1,287	2721,34	2711,13	1,84841	2716,24	7,963	4,375	1,04905
62	390	0,16795	0,00472	0,00236	1,287	2711,13	2698,37	1,90366	2704,75	7,959	4,229	1,04932
63	391	0,17144	0,00367	0,00184	1,288	2698,37	2683,51	1,96043	2690,94	7,954	4,085	1,04953
64	392	0,17495	0,00281	0,00140	1,288	2683,51	2666,98	2,01869	2675,24	7,949	3,943	1,04969
65	393	0,17848	0,00210	0,00105	1,288	2666,98	2649,17	2,07841	2658,07	7,944	3,805	1,04981
66	394	0,18203	0,00155	0,00077	1,288	2649,17	2630,42	2,13957	2639,79	7,939	3,670	1,04991
67	395	0,18558	0,00111	0,00056	1,288	2630,42	2611,02	2,20213	2620,72	7,933	3,540	1,04997
68	396	0,18915	0,00079	0,00039	1,289	2611,02	2591,21	2,26607	2601,11	7,928	3,414	1,05002
69	397	0,19273	0,00054	0,00027	1,289	2591,21	2571,19	2,33136	2581,20	7,922	3,293	1,05005
70	398	0,19632	0,00037	0,00018	1,289	2571,19	2551,11	2,39796	2561,15	7,916	3,176	1,05008

Таблица Б.4 — Результаты термодинамического расчета процесса сгорания базового двигателя при $n=5600~\text{мин}^{-1}$

φ'												
п.к.в.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
0	328	0,03992	0,00000	0,00000	1,378	636,51	643,61	1,90366	640,06	6,298	0,985	1,00000
1	329	0,03996	0,00000	0,00000	1,376	643,61	650,78	1,84841	647,20	6,316	1,025	1,00000
2	330	0,04008	0,00000	0,00000	1,375	650,78	658,03	1,79470	654,41	6,335	1,068	1,00000
3	331	0,04028	0,00001	0,00001	1,374	658,03	665,36	1,74257	661,70	6,353	1,112	1,00000
4	332	0,04055	0,00003	0,00002	1,372	665,36	672,79	1,69203	669,08	6,371	1,158	1,00000
5	333	0,04090	0,00006	0,00003	1,371	672,79	680,35	1,64311	676,57	6,389	1,206	1,00000
6	334	0,04133	0,00011	0,00005	1,370	680,35	688,07	1,59583	684,21	6,408	1,256	1,00001
7	335	0,04183	0,00018	0,00009	1,369	688,07	696,03	1,55021	692,05	6,427	1,307	1,00002
8	336	0,04242	0,00028	0,00014	1,367	696,03	704,27	1,50629	700,15	6,446	1,362	1,00003
9	337	0,04308	0,00041	0,00021	1,366	704,27	712,89	1,46407	708,58	6,466	1,418	1,00004
10	338	0,04381	0,00058	0,00029	1,365	712,89	721,99	1,42359	717,44	6,487	1,477	1,00007
11	339	0,04462	0,00080	0,00040	1,363	721,99	731,69	1,38485	726,84	6,509	1,539	1,00010
12	340	0,04551	0,00107	0,00053	1,362	731,69	742,11	1,34788	736,90	6,532	1,604	1,00015
13	341	0,04648	0,00140	0,00070	1,360	742,11	753,41	1,31270	747,76	6,556	1,672	1,00021
14	342	0,04751	0,00179	0,00089	1,358	753,41	765,75	1,27932	759,58	6,583	1,744	1,00029
15	343	0,04863	0,00225	0,00113	1,356	765,75	779,31	1,24776	772,53	6,611	1,819	1,00039
16	344	0,04981	0,00280	0,00140	1,355	779,31	794,28	1,21803	786,79	6,642	1,900	1,00052
17	345	0,05107	0,00343	0,00171	1,352	794,28	810,85	1,19016	802,56	6,674	1,985	1,00068
18	346	0,05240	0,00415	0,00207	1,350	810,85	829,25	1,16414	820,05	6,710	2,076	1,00087
19	347	0,05381	0,00496	0,00248	1,348	829,25	849,69	1,14000	839,47	6,748	2,173	1,00109
20	348	0,05528	0,00588	0,00294	1,346	849,69	872,38	1,11775	861,04	6,788	2,276	1,00137
21	349	0,05683	0,00690	0,00345	1,343	872,38	897,55	1,09740	884,97	6,831	2,386	1,00169
22	350	0,05844	0,00802	0,00401	1,340	897,55	925,39	1,07895	911,47	6,876	2,503	1,00206
23	351	0,06012	0,00926	0,00463	1,338	925,39	956,12	1,06243	940,76	6,924	2,627	1,00249
24	352	0,06188	0,01060	0,00530	1,335	956,12	989,92	1,04783	973,02	6,973	2,759	1,00299
25	353	0,06369	0,01204	0,00602	1,332	989,92	1026,95	1,03516	1008,43	7,024	2,899	1,00356
26	354	0,06558	0,01359	0,00679	1,329	1026,95	1067,34	1,02442	1047,14	7,077	3,047	1,00420
27	355	0,06753	0,01523	0,00761	1,326	1067,34	1111,22	1,01564	1089,28	7,130	3,202	1,00492
28	356	0,06954	0,01695	0,00847	1,323	1111,22	1158,64	1,00880	1134,93	7,184	3,364	1,00573
29	357	0,07162	0,01873	0,00937	1,321	1158,64	1209,65	1,00391	1184,15	7,238	3,532	1,00662

φ'												
П.К.В.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
30	358	0,07376	0,02057	0,01029	1,318	1209,65	1264,21	1,00098	1236,93	7,292	3,706	1,00761
31	359	0,07596	0,02245	0,01122	1,315	1264,21	1322,27	1,00000	1293,24	7,345	3,884	1,00868
32	360	0,07822	0,02433	0,01217	1,313	1322,27	1383,69	1,00098	1352,98	7,397	4,065	1,00986
33	361	0,08054	0,02620	0,01310	1,310	1383,69	1448,30	1,00391	1416,00	7,447	4,248	1,01112
34	362	0,08292	0,02803	0,01402	1,308	1448,30	1515,84	1,00880	1482,07	7,496	4,430	1,01248
35	363	0,08536	0,02979	0,01489	1,306	1515,84	1586,01	1,01564	1550,92	7,543	4,611	1,01393
36	364	0,08785	0,03144	0,01572	1,304	1586,01	1658,42	1,02442	1622,21	7,588	4,787	1,01547
37	365	0,09040	0,03294	0,01647	1,302	1658,42	1732,65	1,03516	1695,53	7,630	4,957	1,01708
38	366	0,09299	0,03428	0,01714	1,300	1732,65	1808,19	1,04783	1770,42	7,671	5,119	1,01876
39	367	0,09565	0,03541	0,01770	1,298	1808,19	1884,50	1,06243	1846,34	7,708	5,271	1,02051
40	368	0,09835	0,03630	0,01815	1,297	1884,50	1960,97	1,07895	1922,74	7,743	5,411	1,02231
41	369	0,10110	0,03692	0,01846	1,295	1960,97	2036,99	1,09740	1998,98	7,775	5,536	1,02414
42	370	0,10390	0,03726	0,01863	1,294	2036,99	2111,87	1,11775	2074,43	7,804	5,645	1,02600
43	371	0,10675	0,03728	0,01864	1,293	2111,87	2184,97	1,14000	2148,42	7,831	5,737	1,02787
44	372	0,10964	0,03699	0,01849	1,292	2184,97	2255,60	1,16414	2220,29	7,856	5,810	1,02973
45	373	0,11258	0,03637	0,01818	1,291	2255,60	2323,13	1,19016	2289,36	7,877	5,863	1,03157
46	374	0,11556	0,03543	0,01772	1,290	2323,13	2386,93	1,21803	2355,03	7,897	5,897	1,03336
47	375	0,11858	0,03419	0,01710	1,289	2386,93	2446,44	1,24776	2416,68	7,913	5,910	1,03511
48	376	0,12164	0,03267	0,01633	1,289	2446,44	2501,17	1,27932	2473,80	7,928	5,903	1,03678
49	377	0,12474	0,03089	0,01544	1,288	2501,17	2550,70	1,31270	2525,93	7,940	5,875	1,03838
50	378	0,12788	0,02889	0,01445	1,288	2550,70	2594,71	1,34788	2572,70	7,951	5,829	1,03987
51	379	0,13105	0,02673	0,01336	1,287	2594,70	2632,97	1,38485	2613,84	7,959	5,765	1,04127
52	380	0,13426	0,02444	0,01222	1,287	2632,97	2665,37	1,42359	2649,17	7,966	5,684	1,04255
53	381	0,13750	0,02208	0,01104	1,287	2665,37	2691,90	1,46407	2678,63	7,971	5,588	1,04372
54	382	0,14078	0,01969	0,00985	1,287	2691,89	2712,65	1,50629	2702,27	7,974	5,479	1,04476
55	383	0,14408	0,01734	0,00867	1,287	2712,65	2727,83	1,55021	2720,24	7,976	5,358	1,04569
56	384	0,14742	0,01506	0,00753	1,287	2727,83	2737,71	1,59583	2732,77	7,977	5,228	1,04650
57	385	0,15078	0,01290	0,00645	1,287	2737,71	2742,66	1,64311	2740,19	7,976	5,090	1,04720
58	386	0,15416	0,01089	0,00545	1,287	2742,66	2743,10	1,69203	2742,88	7,975	4,947	1,04780
59	387	0,15758	0,00906	0,00453	1,287	2743,10	2739,50	1,74257	2741,30	7,972	4,799	1,04830

φ'												
п.к.в.	φ	V	X1-2	ΔX1-2	k1-2	T1	T2	ψ(φ') 1-2	T1-2	K1-2	P 1-2	μ1-2
60	388	0,16101	0,00741	0,00371	1,287	2739,50	2732,34	1,79470	2735,92	7,969	4,649	1,04871
61	389	0,16447	0,00597	0,00298	1,287	2732,34	2722,11	1,84841	2727,23	7,966	4,499	1,04905
62	390	0,16795	0,00472	0,00236	1,287	2722,11	2709,32	1,90366	2715,72	7,962	4,349	1,04932
63	391	0,17144	0,00367	0,00184	1,287	2709,32	2694,42	1,96043	2701,87	7,957	4,200	1,04953
64	392	0,17495	0,00281	0,00140	1,288	2694,42	2677,84	2,01869	2686,13	7,952	4,055	1,04969
65	393	0,17848	0,00210	0,00105	1,288	2677,84	2659,97	2,07841	2668,90	7,947	3,912	1,04981
66	394	0,18203	0,00155	0,00077	1,288	2659,97	2641,16	2,13957	2650,57	7,942	3,774	1,04990
67	395	0,18558	0,00111	0,00056	1,288	2641,16	2621,69	2,20213	2631,43	7,936	3,640	1,04997
68	396	0,18915	0,00079	0,00039	1,289	2621,69	2601,81	2,26607	2611,75	7,931	3,511	1,05002
69	397	0,19273	0,00054	0,00027	1,289	2601,81	2581,72	2,33136	2591,77	7,925	3,386	1,05005
70	398	0,19632	0,00037	0,00018	1,289	2581,72	2561,57	2,39796	2571,64	7,919	3,266	1,05007

Таблица Б.5 - Внешний тепловой баланс

n, мин ⁻¹	800	2500	4000	5600	6200
		Базові	ый двигатель	1	
Q _o , Дж/с	23965	88204	167945	208609	220368
Q _e , Дж/с	7818	33055	61629	71918	70744
Q _г , Дж/с	5970	27194	63181	79470	83950
Q _в , Дж/с	7213	24636	38,129	46973	50033
Q _{н.с.} , Дж/с	0	0	0	0	0
Q _{ост.} , Дж/с	2965	3318	5006	10248	15642
q _o , %	100	100	100	100	100
q _e , %	32,6	37,5	36,7	34,5	32,1
q _Γ , %	24,9	30,8	37,6	38,1	38,1
q _в , %	30,1	27,9	22,7	22,5	22,7
q _{H.C.} , %	0	0	0	0	0
q _{ост.} , %	12,4	3,8	3,0	4,9	7,1
	Двигат	ель с изменяемы	ми фазами газор	распределения	I
n, мин ⁻¹	800	2500	4000	5600	6200
Q ₀ , Дж/с	30550	108432	165847	208039	215514
Q _e , Дж/с	9220	41046	58987	68961	67627
Q _г , Дж/с	7885	38493	61605	79745	83633
Q _в , Дж/с	9295	24636	38129	46973	50033
Q _{н.с.} , Дж/с	0	0	0	0	0
Q _{ост.} , Дж/с	4150	4257	7127	12359	14221
q _o , %	100	100	100	100	100
q _e , %	30,2	37,9	35,6	33,2	31,4
q _Γ , %	25,8	35,5	37,2	38,3	38,8
q _в , %	30,8	22,7	23,0	22,6	23,2
q _{H.C.} , %	0	0	0	0	0
q _{ост.} , %	13,6	3,9	4,3	5,9	6,6

ПРИЛОЖЕНИЕ В

Результаты кинематического расчета

Таблица В.1 – Результаты кинематического расчета кривошипно-шатунного механизма

ф, град п.к.в.	j, м/c ²	V, м/c	S, мм
0	16685	0	0
10	16265	4,92	0,736
20	15039	9,60	2,906
30	13101	13,81	6,404
40	10598	17,34	11,058
50	7716	20,08	16,647
60	4657	21,92	22,919
70	1623	22,85	29,603
80	-1206	22,91	36,433
90	-3686	22,17	43,159
100	-5721	20,76	49,561
110	-7269	18,81	55,460
120	-8343	16,48	60,719
130	-8996	13,89	65,242
140	-9318	11,15	68,971
150	-9415	8,36	71,875
160	-9392	5,56	73,947
170	-9339	2,77	75,187
180	-9314	0	75,600
190	-9339	-2,77	75,187
200	-9392	-5,56	73,947
210	-9415	-8,36	71,875
220	-9318	-11,15	68,971
230	-8996	-13,89	65,242
240	-8343	-16,48	60,719
250	-7269	-18,81	55,460
260	-5721	-20,76	49,561
270	-3686	-22,17	43,159
280	-1206	-22,91	36,433
290	1623	-22,85	29,603
300	4657	-21,92	22,919
310	7716	-20,08	16,647
320	10598	-17,34	11,058

ф, град п.к.в.	j, м/c ²	V, м/c	S, mm
330	13101	-13,81	6,404
340	15039	-9,60	2,906
350	16265	-4,92	0,736
360	16685	0	0