# федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

## <u>ИНСТИТУТ ХИМИИ И ИНЖЕНЕРНОЙ ЭКОЛОГИИ</u>

## Рациональное природопользование и ресурсосбережение

18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»

### БАКАЛАВРСКАЯ РАБОТА

на тему: Увеличение мощности отделения очистки от CO<sub>2</sub> в производстве аммиака на основе реконструкции регенератора рекуператора на OAO «Тольяттиазот»

Р. В. Руссов

Студент(ка)

| 3                    | 3                                      |                  |
|----------------------|----------------------------------------|------------------|
| _                    | (И.О. Фамилия)                         | (личная подпись) |
| Руководитель         | В. С. Гончаров                         |                  |
|                      | (И.О. Фамилия)                         | (личная подпись) |
|                      |                                        |                  |
|                      |                                        |                  |
|                      |                                        |                  |
|                      |                                        |                  |
|                      |                                        |                  |
|                      |                                        |                  |
| Допустить к защите   |                                        |                  |
| вав. кафедрой        |                                        |                  |
| Рациональное         |                                        |                  |
| •                    |                                        |                  |
| природопользование   |                                        |                  |
| и ресурсосбережение» | к.п.н. доцент, М.В., Кравцова          |                  |
|                      | (ученая степень, звание, И.О. Фамилия) | (личная подпись) |
|                      |                                        |                  |
| <b>(( )</b>          | 20 г.                                  |                  |

# федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

#### ИНСТИТУТ ХИМИИ И ИНЖЕНЕРНОЙ ЭКОЛОГИИ

## Кафедра «Рациональное природопользование и ресурсосбережение»

| <b>У</b> Т] | ВЕРЖДАІ    | Ю           |              |
|-------------|------------|-------------|--------------|
| зав.        | . кафедрої | и́ «РПиР»   |              |
|             |            | <u>M.B.</u> | Кравцова     |
| (под        | цпись)     | (И          | .О. Фамилия) |
| <b>«</b>    |            | 20          | Γ.           |
|             |            |             |              |

## ЗАДАНИЕ на выполнение бакалаврской работы

Студент: Руссов Роман Вениаминович

Тема: Увеличение мощности отделения очистки от CO<sub>2</sub> в производстве аммиака, на основе реконструкции регенератора рекуператора на ОАО «Тольяттиазот»

- 1. Срок сдачи студентом законченной бакалаврской работы 02.06.2017г.
- 2. Исходные данные к бакалаврской работе:
- 2.1. Существующие методы и схемы очистки конвертируемого газа в производстве аммиака от  $CO_2$
- 2.2. Принцип работы оборудования при очистке от  ${\rm CO_2}$
- 3. Содержание выпускной бакалаврской работы:
- 3.1. Теоретический обзор проблемы очистки от  ${
  m CO_2}$
- 3.2. Анализ методов и технологий очистки от  ${\rm CO}_2$  и регенерации раствора
- 3.3 Реконструкция регенератора рекуператора
- 3.4. Разработка и изменение схемы потоков выделения очистки от CO<sub>2</sub>, регенерации раствора при получении аммиака
- 4. Дата выдачи задания «26» января 2017г.

| Руководитель бакалаврской работы |           | В. С. Гончаров |
|----------------------------------|-----------|----------------|
| •                                | (подпись) | (И.О. Фамилия) |
| Задание принял к исполнению      |           | Р. В. Руссов   |
|                                  | (подпись) | (И.О. Фамилия) |

федеральное государственное бюджетное образовательное учреждение

## высшего образования «Тольяттинский государственный университет»

## ИНСТИТУТ ХИМИИ И ИНЖЕНЕРНОЙ ЭКОЛОГИИ Кафедра «Рациональное природопользование и ресурсосбережение»

| УТВ        | ЕРЖДА           | Ю                 |     |
|------------|-----------------|-------------------|-----|
| зав. 1     | кафедро         | й «РПиР»          |     |
|            |                 | <u>М.В. Крави</u> | ова |
| (под       | пись)           | (И.О. Фамили      | я)  |
| <b>‹</b> ‹ | <b>&gt;&gt;</b> | 20 г.             |     |

## **КАЛЕНДАРНЫЙ ПЛАН** выполнения бакалаврской работы

Студента: Руссова Романа Вениаминовича

по теме: <u>Увеличение мощности отделения очистки от CO<sub>2</sub> в производстве</u> аммиака на основе реконструкции регенератора рекуператора на ОАО «Тольяттиазот»

|                             | Плановый   | Фактический |            |           |
|-----------------------------|------------|-------------|------------|-----------|
|                             | срок       | срок        | Отметка о  | Подпись   |
| Наименование раздела работы | выполнения | выполнения  | выполнении | руководит |
|                             | раздела    | раздела     |            | еля       |
| Введение                    | 15.04.2017 | 16.04.2017  |            |           |
| Теоретический обзор         | 17.04.2017 | 19.04.2017  |            |           |
| проблемы очистки от СО2     |            |             |            |           |
| Анализ методов и            | 20.04.2017 | 24.04.2017  |            |           |
| технологий очистки от СО2   |            |             |            |           |
| и регенерации раствора      |            |             |            |           |
| Реконструкция регенератора  | 24.04.2017 | 28.04.2017  |            |           |
| рекуператора                |            |             |            |           |
| Разработка и изменение      | 02.05.2017 | 03.05.2017  |            |           |
| схемы потоков выделения     |            |             |            |           |
| очистки от СО2              |            |             |            |           |
| регенерации раствора при    |            |             |            |           |
| получении аммиака           |            |             |            |           |
| Заключение                  | 03.05.2017 | 04.05.2017  |            |           |
|                             | ĺ          | 1           |            | 1         |

| Руководитель бакалаврской работы |           | В. С. Гончаров |
|----------------------------------|-----------|----------------|
| <del>-</del>                     | (подпись) | (И.О. Фамилия) |
| Задание принял к исполнению      |           | Р. В. Руссов   |
| <del>-</del>                     | (подпись) | (И.О. Фамилия) |

### **АННОТАЦИЯ**

Бакалаврскую работу выполнил: Руссов Р.В.

**Тема работы:** Увеличение мощности отделения очистки от CO<sub>2</sub> в производстве аммиака на основе реконструкции регенератора рекуператора на OAO «Тольяттиазот»

Научный руководитель: к.т.н., профессор Гончаров В.С.

Краткие выводы по бакалаврской работе: В работе было проанализировано состояние отделения очистки от CO<sub>2</sub> агрегата AM76 OAO «ТОЛЬЯТТИАЗОТ», и разработано технологическое решение по её совершенствованию.

Бакалаврская работа состоит из введения, двух глав, заключения, списка литературы из 56 источников.

Во введении раскрывается актуальность исследования по производству сырья, ставится проблема, цель и задачи исследования, определяются объект, предмет, ставятся цель и задачи.

В главе первой предложено теоретическое обзор проблемы очистки от  $CO_2$ . Осуществляется опытно-практическая работа, в осуществлении которой формируется существующий метод очистки от  $CO_2$  на данном предприятии. В главу входит постановка задач, цели работы, рассмотрение недостатков существующего метода очистки, предложение решения поставленной проблемы.

В главе второй рассматриваются предложения по модернизации оборудования, для обеспечения лучшего качества работы отделения очистки от  $\mathrm{CO}_2$ .

Заключение посвящено основными выводами предложения с технической, экономической и экологической стороны и насколько эффективно модернизация.

Общий объём работы 71 страниц машинописного текста вместе с приложением 1, в том числе таблиц - 8, рисунков - 7.

## СОДЕРЖАНИЕ

| ВВЕДЕНИЕ7                                                               | 1                   |
|-------------------------------------------------------------------------|---------------------|
| ГЛАВА 1. АНАЛИЗ ФАКТИЧЕСКОГО СОСТОЯНИЯ ВОПРОСА11                        | L                   |
| 1.1. Теоретический обзор проблемы очистки от СО <sub>2</sub> 11         | L                   |
| 1.2 Проектно - аналитическая часть. анализ методов и технологий очис    | тки от              |
| СО <sub>2</sub> и регенерации раствора12                                |                     |
| 1.3. Существующий технологический процесс очистки от СО <sub>2</sub> 16 |                     |
| 1.4. Существующий регенератор - рекуператор32                           | 2                   |
| ГЛАВА 2. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО УЛУЧШЕ                               | ЕНИЮ                |
| РЕГЕНЕРАЦИЯ РАСТВОРА В РЕКУПЕРАТОРЕ                                     | 39                  |
| 2.1 Реконструкия регенератора - екуператора39                           |                     |
| 2.2 Разработка и изменение схемы потоков выделения очистки от           | r CO <sub>2</sub> , |
| регенерация раствора при получении аммиака                              | 47                  |
| ЗАКЛЮЧЕНИЕ50                                                            | )                   |
| СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ51                                      | -                   |
| ПРИЛОЖЕНИЕ57                                                            |                     |

### **ВВЕДЕНИЕ**

В данное время в химической и экологической промышленности главную роль играет производство азота, основную часть чего составляет производство аммиака и аммиачной воды. Очень огромное применение имеет аммиак, а именно: для получения азотной кислоты, удобрения, взрывчатых веществ и так далее. Так же аммиак применяют в виде нашатырного спирта в медицине [1].

Немного истории.

Первым из открывателей аммиака в чистом виде является Джозеф Пристли в 1774 году, а в 1785 году был установлен химический состав компонента французским химиком Клодом Луи Бертолле. Острый вопрос стал к концу 19-ого века о получение аммиака, промышленным способом из соединения азота и водорода, так как запасы чилийской селитры иссекали. Именно селитра являлась основным и крупнейшим продуктом, из которого получали азотные водородные соединения. В начале 20-го века был раскрыт новый промышленный способ, под названием синтез аммиака. Этот новый способ изобрел Фриц Габер - немецкий химик. Дал старт своей задачи он в 1904 году, а в 1909 году Фриц Габер изобрел и собрал небольшой контактный аппарат. Работа этого аппарата производилась при повышении давления, и использовании катализатора. Испытание контактного аппарата произошло 2 Бош 1909 Далее ближе 1911 Карл июля году. К году изобрел крупномасштабную версию контактного аппарата. Впервые в мире заработал завод по синтезу аммиака 9 сентября 1913 году в Оппау. Немецкий химик Фриц Габер в 1918 году стал лауреатом Нобелевской премии «за синтез аммиака» [2].

В 1928 году была получена первая партия аммиака на Чернореченском химическом заводе - комбинате в России. Недостатки производства аммиака осуществляется очень энергоёмкий процессом. Над данным недостатком в химической промышленности, а более точной в азотной производятся

обширные работы над устранением ежегодно. В частности, разрабатываются различные способы по утилизации выделяемой энергии. Самое оптимальное решение этой проблемы можно осуществить при совмещении производства, как это происходит в данной время на химических предприятиях. Приведем пример, производство аммиака и производство карбамида [3].

Сырье - главное для технической, технологической схемы при производстве аммиака. В качестве азота в чистом виде берут воздух, а водород в чистом виде выделяют из воды, но это выделение требует большое количество энерго потребления. В качестве сырья для производства аммиака использую природный газ, который содержит углеводороды [3,4].

Процесс очистки аммиака, а именно его технологическое оформление очень металлоёмкий и энерго затратный. В этих его критериях можно раскрыть возможности для повышения эффективности и увеличения мощности работы всего производства в целом [5,6].

Проектная выработка агрегата аммиака АМ 76 составляет 1420 тонн в сутки [7].

Предприятие стремится добиться выработки на агрегатах АМ 76 1750 – 1800 тонн в сутки, достигнута выработка 1600 – 1700 тонн в сутки, при этом столкнулись с проблемой сдерживающая дальнейшее развитие:

- 1. Высокая нагрузка в реакционных трубах в печи риформинга с внутренним диаметром: агрегат 05А 71мм, агрегат 07А 89 мм (в цехе 06А) выполнена реконструкция с увеличением диаметра реакционных труб до 101 мм;
- 2. Высокая нагрузка на выделение очистки от  $CO_2$ , на которой можно судить по периодическому «вскипанию» раствора в позиции 301.

При капитальном ремонте в 2016 году в цехе 05А выполнена замена реакционных труб в печи риформинга поз. 107 с внутренним диаметром 94 мм, что по практике (основываясь на работе смежных предприятий обеспечивает выработку 1800 тонн в сутки) [7].

В данной бакалаврской работе я хочу предложить свое видение решение проблемы очистки от  ${\rm CO_2}$  для достижения соответствующих мощностей, а именно:

- 1. Изменение схемы потоков регенерации раствора;
- 2. Доведение грубо регенерированного раствора до глубоко регенерированного раствора;
- 3. Объединение всасов насосов перекачки МДЭА позиция 316 1,2 позиция 317 1,2 в общий коллектор (получение дополнительного двойного резерва по насосам);
  - 4. Замену глухой тарелки всаса позиция 317 на ситчатую.

Представленная проблема имеет определенную цель в её испралении.

Цель — увеличения мощности отделения очистки от  $\mathrm{CO}_2$  в производстве аммиака, при реконструкции регенератора - рекуператора, для достижения необходимых мощностей.

Поставленная цель требует решения следующих задач:

- рассмотреть технологию очистки от  $CO_2$  и регенерации раствора, выявить методы и схемы очистки конвертируемого газа в производстве аммиака от  $CO_2$ ;
- разработать мероприятия по улучшению регенерации раствора в рекуператоре, провести реконструкцию регенератора рекуператора
- разработать и изменить схемы потоков выделения очистки от CO<sub>2</sub>, регенерации раствора при получении аммиака
- выделить эффективность качества производства раствора и влияние на окружающую среду, при увеличении мощности.

Объектом исследования является цех №05A OAO «Тольяттиазот».

Предмет исследования — очистка от  $CO_2$  и улучшение регенерации раствора в рекуператоре. Теоретические и методологические основы работы составили научные труды, публикации, монографии отечественных и зарубежных ученых по проблемам управления материальными потоками и управления логистическими системами и цепями.

|     |     | Tei   | ма | бакалаврской  | работы:   | Увел  | пичение | мощности отдел       | пения очистки |
|-----|-----|-------|----|---------------|-----------|-------|---------|----------------------|---------------|
| ОТ  | CO  | $O_2$ | В  | производстве  | аммиака   | на на | основе  | реконструкции        | регенератора  |
| pei | куп | epa   | то | ра на ОАО «То | ольяттиаз | OT≫.  |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
|     |     |       |    |               |           |       |         |                      |               |
| Γ.  | ЛА  | BA    | 1. | АНАЛИЗ ФА     | КТИЧЕ(    | СКО   | го со   | С <b>ТОЯНИЯ ВО</b> П | IPOCA         |

1.1 Теоретический обзор проблемы очистки от  ${\rm CO_2}$  в производстве

аммиака

Начиная с 2000 годов и по настоящее время ОАО «ТОЛЬЯТТИАЗОТ» ведется активная работа по реконструкции и модернизации агрегатов аммиака с выходом на более высокие мощности [7].

#### Было сделано:

- 1. Исключение схемы компрессора природного газа и переход на работу на потребление газа высокого давления;
- 2. Исключение из схемы подогревателя природного газа позиция 103 и внесение теплообменников его подогрева в конвективную зону в печи риформинга позиция 107;
  - 3. Замена смесителя шахтного конвертора позиция 110;
- 4. Замена катализаторов высоко температурной и низко температурной конверсии;
  - 5. Реконструкция колонн по разгрузке газового конденсата;
  - 6. Замена раствора МЭА на МДЭА;
- 7. Реконструкция компрессора технологического воздуха позиция К402;
  - 8. Реконструкция колоны синтеза позиция601 [7,8].

## 1.2. Проектно - аналитическая часть. анализ методов и технлогий очистки от $CO_2$ и регенерации раствора

Возникает вопрос, что же такое аммиак? Посмотрим ответ из источников.

Таблица 1 - Физико-химические свойства аммиака [1,5]

| Химическая формула (стандарт)  | NH <sub>3</sub>   |
|--------------------------------|-------------------|
| Химическое состояние           | Газообразное      |
| Молярная масса (молекулярная)  | 17,03064 г/моль   |
| Удельная плотность             | 0,00077234 (н.у.) |
| Удельная температура плавления | -77,732°C         |
| Удельная температура кипения   | -33,314°C         |
| Самая критическая точка        | 132,251°C         |
| Энтальпия образования          | -45,943 кДж/моль  |
| Константа диссоциации кислоты  | 9,214             |
| Удельная растворимость в воде  | 89,94 (при 0°С)   |

Рассмотрим свойства аммиака:

- NH<sub>3</sub>, нитрид водорода, при н.у.;
- бесцветный газ имеет резкий запах (нашатырного спирта), легче воздуха в двое, ядовитый газ; растворим в воде [4,5].

Форма тригональной пирамиды у молекулы аммиака в вершине с атомом азота [5].

Молекулы в жидком состоянии аммиака связаны между собой связями водорода.

Сравним физические свойства воды с жидким аммиаком, данные исследования показывают, что по сравнению с водой у аммиака низкая температура кипения 33,35°С и температура плавления 77,70°С, имеет низкую плотность, проводимость, проницаемость диэлектрики и вязкость, которая в семь раз меньше воды. Объяснение этому всему, что связи и их

прочностные явления существенно ниже в жидком аммиаке, чем у воды, а также не поделенных электронов в молекуле аммиака имеется лишь одна пара, существенно в отличие от двух в молекуле воды. Когда сильно влияет преломляющий свет, то аммиак в легкой степени переходит в бесцветную жидкость с определенной плотностью 681,47 кг/м³, сильно преломляющую свет. Электрический ток почти не проводится в жидком аммиаке [3,4,5].

После рассмотрения различных свойства жидкого аммиака, для общего обозрения проведем исследования недостатков и преимуществ замены раствора МЭА на МДЭА [9,10,11].

МЭА: Недостатки раствора высокая раствора смоление И необходимость непрерывного введения смолы; высокая коррозионная активность; активность, постоянное вскипание абсорбере, низкая сравнительно высокая температура регенерации раствора; недостаточная термическая стабильность; наличие интенсивного уноса абсорбента [9,12].

Замена раствора МЭА на раствор МДЭА имеет экономичность ресурсов на очистке газа по следующим статьям:

- 1) Уменьшение расхода раствора (циркуляционного, рабочего) для уменьшения энерго затрат до 30 %;
  - 2) Повышение раствора МДЭА степени насыщения [9];
- 3) Отсутствие смолообразования, сниженная активность абсорбентов при коррозии сократить большие затрат [11,13];
- 4) Срок окупаемости при замене на раствор МДЭА составляет 1 2 года, при сложившемся уровне цен на раствор МЭА и на раствор МДЭА [10,13].

Таким образом, замена МЭА на МДЭА может обеспечить значительную экономию материальных ресурсов на очистку газа. В ходе проведенных исследований было установлено, что снижение энергетических затрат до 30% может быть обеспечено за счет:

- 1) Уменьшение расхода раствора;
- 2) Повышение насыщения раствора;

3) Понижение температуры десорбции раствора МДЭА [6,9,13].

Понижение коррозионной активности МДЭА по сравнению с МЭА позволяет использовать вторичные и третичные амины в более концентрированном виде — до 50% МДЭА. В ходе исследований было показано, что при этом происходит:

- 1) Снижение циркуляции раствора, что ведет к уменьшению использования электроэнергии на его перекачку;
- 2) Уменьшение потребления тепла, что приведет к экономии расхода энергоресурсов;
- 3) Снижение коррозии оборудования и трубопроводов уменьшит затраты на текущий ремонт;
- 4) Стабильная работа установки в период установленного межремонтного пробега приведет к улучшению условий труда обслуживающего персонала [8,12,13].

Далее рассмотрим проблему недостатков технологии очистки, применяемой на данном предприятии ОАО «Тольяттиазот», по которому посвящена моя бакалаврская работа.

Значительные энерго затраты, очень сложная цепочка технологии оборудования и сложный процесс имеет очистка конвертированного газа от СО<sub>2</sub> с помощью абсорбции растворами МДЭА. При помощи критического анализа технологических схем можно выявить самые слабые места процесса, при этом необходимость производить новшество в аппаратурное оформление всего процесса, изменить современным образом материальные энергетические потоки. Помимо проблем энерго затратного характера существуют еще и технологические проблемы, которые связываются с деструкцией раствора МДЭА так далее. Из всего выше сказанного можно прийти к выводу, что данный процесс очистки обладает наибольшим потенциалом для усовершенствования при использовании подходов энерго и ресурсосбережения [8,14,15,16,19].

На основании выше сказанного, существуют еще много методов очистки от СО2, но так как мы рассматриваем агрегаты АМ 76 с существующей схемой, существующим оборудованием, моя модернизация эффективной должна быть при минимальных или разумных капиталовложениях в реконструкцию. В данной бакалаврской работе я хочу предложить свое видение решение проблемы очистки от  $\mathrm{CO}_2$  для достижения мощностей, соответствующих а именно: изменение схемы ПОТОКОВ регенерации раствора, доведение грубо регенерированного раствора до глубоко регенерированного раствора, объединение всасов насосов перекачки МДЭА позиция 316 1,2 позиция 317 1,2 в общий коллектор (получение дополнительного двойного резерва по насосам), замену глухой тарелки всаса позиция 317 на ситчатую [15,16,19,20,21].

### 1.3. Существующий технологический процесс очистки от СО2.

Рассмотрим существующий технологический процесс очистки от  $CO_2$  (инструкция AM14 часть 3 очистки газа от  $CO_2$  раствором МДЭА агрегата аммиака AM-76) [7,8,21].

Для очистки конвертируемого газа предназначена установка МДЭА очистки, которая поступает из конверсии так называемой установки окиси углерода, водным раствором МДЭА от углекислого газа [20,22].

Для тонкой очистки газа предназначена так называемая установка метанирования, который поступает из установки МДЭА, методом очистки гидрирования на катализаторе [7].

Для отгонки уксусной кислоты, аммиака, метанола и различных органических соединений существует так называемая установка разгонки газового конденсата [56].

В обслуживание очистки входит следующее оборудование, все позиции описаны в приложении 1.

1. Позиция 119 - установка для неочищенной азотной и водородной смеси, так называемая подогреватель; 2. Позиция 120 - Воздушный холодильник; 3. Позиция 123 - Сепаратор (влаго отделитель); 4. Позиция 124 - установка подогреватель для питательной воды газовым конденсатом; 5. Позиция 125 - установка подогреватель питательной воды паровым конденсатом; 6. Позиция 127 - установка для впрыска конденсата газа (насосы); 7. Позиция 129 - Холодильник газового конденсата; 8. Позиция 131 - фильтр газового конденсата под давлением; 9. Позиция 135 - бак парового конденсата; 10. Позиция 139 - бак отработанного газового конденсата; 11. Позиция 140 - гидрозатвор к баку отработанного газового конденсата; 12. Позиция 145 - узел охлаждения конвертированного газа после конвертора СО 2-ой степени; 13. Позиция 150 - установка отпарная колонна; 14. Позиция 152 - кипятильник; 15. Позиция 154 - насосы подачи флегмы; 16. Позиция 155 - влаго отделитель; 17. Позиция 301 - установка (абсорбер с сепаратором); 18. Позиция 306А, Б - установки (газовые кипятильники); 19. Позиция 303 А, Б

20. Позиция 307 установки (регенератор-рекуператор); кипятильник; 21. Позиция 309 - сепаратор; 22. Позиция 312 - установка (холодильник раствора 2-го потока МДЭА; 23. Позиция 313 - установка (холодильник раствора 1-го потока МДЭА); 24. Позиция 314 А центробежный насос для подачи раствора МДЭА 2-го потока на абсорбер с приводом от паровой турбины; 25. Позиция 314 Б - центробежный насос для подачи раствора МДЭА 2-го потока на абсорбер с приводом от электродвигателя; 26. Позиция 315 А - установка (ентробежный насос для подачи раствора МДЭА 1 потока на абсорбер с приводом от паровой турбины); 27. Позиция 315 Б - установка (центробежный насос для подачи раствора МДЭА 1 потока на абсорбер с приводом от электродвигателя); 28. Позиция 316 1,2 - установка (центробежный насос для подачи раствора МДЭА 2-го потока на регенераторы-рекуператоры); 29. Позиция 317 1,2 установка (центробежный насос для подачи раствора МДЭА 1 потока на регенераторы-рекуператоры); 30. Позиция 319 1,2 - отделители парового конденсата; 31. Позиция 320 - промежуточная емкость раствора МДЭА 2-го потока; 32. Позиция 321 - конденсатор - холодильник; 33. Позиция 322 сборник флегмы; 34. Позиция 323 А, Б - установка (центробежный насос для флегмы); 35. Позиция 324 А, Б - поршневые насосы для флегмы; 36. Позиция 325 - промежуточная емкость раствора МДЭА 1 потока; 37. Позиция 326 установка (расширительный бак пара вторичного вскипания); 38. Позиция 333 1,2 - сливная емкость; 39. Позиция 334 А, Б - установка, под названием погружной насос для раствора МДЭА к сливной емкости; 40. Позиция 335 емкость для раствора МДЭА; 41. Позиция 338 - бак для свежего раствора щелочи; 42. Позиция 339 - бак для растворения каустика; 43. Позиция 340 установка (насос для щелочи); 44. Позиция 341 А, Б - установка (насос для конденсата); 45. Позиция 342 1,2 - обратный гидрозатвор; 46. Позиция 343 предохранительный гидрозатвор; 47. Позиция 363 - установка (насос раствора - МДЭА); 48. Позиция 351 - песчанный фильтр раствора - МДЭА; 49. Позиция 352 - угольный фильтр раствора - МДЭА; 50. Позиция 313 А, Б установка, которая имеет название теплообменники для охлаждения 1 потока; 51. Позиция 312 А, Б - установка под называнием теплообменники для охлаждения 2-го потока; 52. Позиция 359 - сепаратор на чистой фракции СО<sub>2</sub>; 53. Позиция 360 - сепаратор к смоловыделителю; 54. Позиция 362 - сепаратор на грязной фракции СО<sub>2</sub>; 55. Позиция 501 - установка (метанатор); 56. Позиция 502 - подогреватель питательной воды высокого давления; 57. Позиция 503 - подогреватель питательной воды низкого давления; 58. Позиция 504 - установка, которая носит название аппарат воздушного охлаждения; 59. Позиция 505 - влаго отделитель.

Схема отделения очистки от  $CO_2$  очень загромождённое и сложная, при таком количестве позиций - это очень большой недостаток.

Далее из технологического процесса рассмотрим применяемое сырье, готовую продукцию и полупродукты, и их характеристику [5,23].

Состав парогазовой смеси на входе МДЭА очистки (в % об.)

N<sub>2</sub>-19,74; -20,04 % CO<sub>2</sub> -17,15; -17,84 % H<sub>2</sub> -61,23; -61,91 % CH<sub>4</sub> -0,261; -0,35% CO -0,461; -0,512 % Ar -0,223; -0,272 %

Данная смесь имеет высокий коэффициент горения и в случае этого имеет взрывоопасные смеси с воздухом, при наличии водорода. По водороду наибольший предел взрываемости присуще 4,6 - 76,1 %. Вредные воздействия на организм человека это - удушье, токсикация оказывает наличие окиси углерода С ПДК СО в воздухе 20 мг/м<sup>3</sup>. Окончательным сырьем и продуктом после установки метанатора позиция 501 является азотная, водородная смесь, которая имеет следующий состав (% об.):

 $N_2$  - 22,31; -24,32 %  $CO_2$  - до 7 млн. долей  $H_2$  - 73; -75%  $CH_4$  - 1,5 % Ar - 0,31 %

Рассмотрим состав раствора МДЭА. Это смесь аминов для очистки газов от  $CO_2$ . Состав следующий: вода — 53 %;

Пиперазин (активатор)-2 %;

Метилдиэтаноламин (основное вещество)-35-39 %; 3класс опасности. ГОСТ 12.1.0071 [6,7,17].

Химические свойства раствора МДЭА. Это бесцветная вязкая жидкость с высшей температурой кипения 155-161°C, и при давлении 761 мм ртутного столба. Раствор МДЭА разлагается при температуре более чем 126°C и при атмосферном давлении [24].

Раствора МДЭА соединяется с водой в любых соотношениях. Температура вспышки паров чистого раствора МДЭА составляет 72°С. Самовозгорание может произойти при попадании раствора МДЭА на горячую изоляцию, так как происходит понижение температуры. Цветные металлы такие как: олово, свинец, медь и так далее раствор МДЭА вызывает коррозионное действие. Раствор МДЭА очень опасен, при попадании на кожу вызывает раздражение, а пары амины вызывают удушье. ПДК МДЭА - 5мг/м³ ГОСТ 12.1.0056 [6,7,25].

Катализатор метанирования на основе алюминия, никелевый. Наличие карбонила никеля вызвает токсикацию организма человека - отработанный катализатор. ПДК NI(CO)<sub>4</sub> в воздухе 0,00051 мг/м<sup>3</sup> [7].

Углекислый газ - с химической формулой CO<sub>2</sub>. Не горюч, оказывает удушье дыхательных путей человека при больших концентрациях.

Рассмотрим газовый конденсат. Содержание аммиака конденсате:

- 1) До разгонки не выше 1003 мг/л;
- 2) После разгонки 2 мг/л, органических соединений 6 мг/л в пересчете на метанол [7,8,23].

Марка СКТ - 3 активный уголь. Плотность этого твердого вещества составляется 553 г/дм<sup>3</sup>. При вдыхании угольная пыль вызывает антракоз и оказывает токсикацию на организм человека. ПДК 3,6 мг/м<sup>3</sup> [7,8].

После ознакомления из существующего источника всего оборудования и применяемого сырья для отделения очистки от  $\mathrm{CO}_2$  в производстве аммиака рассмотрим сам процесс очистки и выявим в конце недостатки или преимущества.

При раздельных потоков а именно при двух поточной схемы происходит очистка конвертированного газа от  $CO_2$ , которая осуществляется 43-52 % раствором МДЭА. В абсорбер позиция 301 подается конвертированный газ с давлением не более 29 ати и с температурой не более 51°C, который орошается 48-51% с раствором МДЭА с температурой не более 47-61°C [6,7,8,10,23].

Абсорбция  $CO_2$  происходит при высоких барботажными слоями жидкости, на ситчатых тарелка, в вертикально аппарате (цилиндрическом). Абсорбер разделен на две части (нижняя часть и верхняя часть), при как выше сказанном принятии двух поточной схемой.

В процессе абсорбции протекают следующие различные реакции:

$$2CH_3N(CH_2CH_2OH)_2 + H_2O + CO_2 = //CH_3NH(CH_2CH_2OH)_2/2CO_3$$
  
 $/CH_3NH(CH_2CH_2OH)_2//_2CO_3 + H_2O + CO_2 =$   
 $2//CH_3NH(CH_2CH_2OH)_2/HCO_3$ 

Предел температуры абсорбции находится в 48-66<sup>0</sup>C. Выделение из раствора МДЭА двуокиси углерода происходит при повышении температуры насыщенного раствора, в соответствии этому в общем и основан процесс регенерации [7,8,17,18].

$$2/CH_3NH(CH_2CH_2OH)_2//HCO_3 = CO_2 + H_2O +$$
  
 $//CH_3NH(CH_2CH_2OH)_2/2CO_3$ 

$$/CH_{3}NH(CH_{2}CH_{2}OH)_{2}/\!/2CO_{3} = H_{2}O + CO_{2} + 2CH_{3}N(CH_{2}CH_{2}OH)_{2}$$

Для начала в нижней части абсорбера проходит конвертированный газ, который содержит 19 % CO<sub>2</sub>, а уже после этого в верхней части абсорбера и потом очищается до остатка с содержание не более 0,04 % об. CO<sub>2</sub>. Для уменьшения выноса и уноса раствора МДЭА с газом в верхней секции абсорбера конвертированный газ, который полностью очищенный от углекислоты проходит через колпачковые тарелки, которые орошаются флегмой, далее проходит через сепарирующие устройство и брызго отделитель. Конвертированный газ, который полностью очищен от CO<sub>2</sub> направляется напрямую на метанирование. При помощи газо анализаторов

позиции 302, 301 AnlRAh контролируется содержание  $CO_2$  в газе после нижней и верхней части абсорбера. На щите в ЦПУ после нижней части и верхней части абсорбера сигнализируется повышение содержания  $CO_2$  в газе выше чем на 10%. Орошение глубоко регенерированным раствором второго потока происходит верхняя часть абсорбера [18,19].

Регулировка расхода раствора МДЭА, который поступает на орошение абсорбера первого и второго потока происходит автоматически при помощи позиций 301, 302 QIRCAIS. Уровень, который считается постоянным позиция 301, автоматически поддерживается двумя клапанами позиции 301 A, Б LCV, которые работают в двух режимах:

- 1) Первый способ работы LCV позиция 301 A работа, LCV позиция 301 Б резерв или наоборот;
- 2) Второй способ работы LCV позиции 301 A и Б работа [7,8].

Режим 2), который предусмотрен для устранения различных вибраций, наблюдающейся при работе только при одном клапане. Закрытие клапанов позиция 301 А, Б происходит, когда понижается уровень в абсорбере до минимума 19 %. Закрытие отсекателя позиция 309 HCV на линии выхода раствора МДЭА ИЗ абсорбера происходит наименьшему ПО или минимальному уровню 11 % по позиции 302 LIRAS. Перед поступление на регенерацию раствора выходит из нижней части абсорбера с насыщением CO<sub>2</sub> - 0,36; -0,47 МОСО<sub>2</sub>//МОМДЭА с температурой 48 - 66°С [10]. Далее вся регенерация насыщенного раствора происходит в двух параллельно друг другу работающих регенераторах - рекуператорах позиции 303 А, Б, которые связанные между собой уравнительными коллекторами по раствору и парогазовой смеси, с распределением насыщенного раствора по 50% на каждый. За счет дроссельных шайб, которые установленные перед электро задвижками позиции 301, 302 HCV достигается равномерно распределение потоков раствора насыщение на регенераторы - рекуператоры позиции 303 А. Б. Контроль количества насыщенного раствора, который поступает на каждый аппарат осуществляется при помощи расходомеров позиции 306, 307

QR, а регулировка производится из ЦПУ электро задвижками позиции 301, 302 HCVA [7,8,22].

Существующий на данном предприятии система регенерации раствора очень не проста, так как слишком загромождённая и сложная схема по двум потокам. Это очень серьезный недостаток в отделении очистки.

Регенератор - рекуператор позиции 303 А, Б разделен на две части. В верхней части расположены ситчатые тарелки, номера которых 12, 30 расположены необычные теплообменные элементы, в которых происходит большой передача И отдача тепла, температуры OT горячего регенерированного раствора МДЭА насыщенному раствору [16]. В верхней части регенератора – рекуператора производится десорбция наибольшего, всего раствора (насыщенного), который поступают в аппарат (установку), до содержания его 33 – 64 г. л СО<sub>2</sub> за счет парогазовой смеси, который выделяет тепло, в связи с этим, который поступает из нижней части регенератора – рекуператора, и с двух потоков регенерированного раствора его тепла, которые играют важнейшую роль встроенные теплообменники для передачи.

Существуют два разных потока в каждом из рекуператоров позиции -303 А. Б. Подробнее рассмотрим эти потоки. Так называемый первый поток – из него выводится из верхней части регенераторов грубо регенерированный раствор, у которого температура составляет примерно 90 – 111°C, который в дальнейшем течении соединяется (объединяется) от двух регенераторов позиции - 303 А, Б в коллекторе, далее происходит перекачивание через, так называемые встроенные теплообменники насосами позиции - 317 1, 2 рекуператоров начиная снизу вверх по тарелкам, где преимущественно температура охлаждается до примерно 60 – 88°C. Далее после рекуператоров позиции 303 А, Б насыщенный раствор первого потока с данной температурой 60 – 88°C ведет направление в так называемые воздушный холодильник позишия -313. Следующее до охлаждения раствора (регенерированного) происходит за счет поступление из ХВО речной воды, температура раствора первого потока доходит до 48 – 62°C. Далее регенерированный раствор направляется в так называемую емкость позиция – 325, откуда потом насосом позиция - 315 подается нижнюю часть аппарата (абсорбера) с дальнейшим орошением. Регулировка уровня в так называемой емкости позиция – 325 производится автоматически позицией – 318 LIRCAS [26,28].

Далее рассмотрим так называемый второй поток. Во втором потоке внутри регенератора, через перелив путь идет в нижнюю часть по тарелкам 1 – 9, где происходит глубокая регенерация раствора [28]. Конечная стадия десорбция СО2 из насыщенного раствора происходит в так называемых газовых (выносных) кипятильниках позиция 306 А, Б, где содержания всего  $CO_2$  составляет 9 – 13 г. л. В так называемом во второй потоке – из нижней рекуператора выходит глубоко регенерированный раствор, с определенной температурой 108 – 127°C, и объединяется от двух абсорберов в коллекторе насосом позиция - 316, где происходит перегонка, прокачивание раствора через элементы теплообменника, которые встроенные внутри регенераторов, где подобно первому потоку охлаждается до 59 – 91°C, далее до охлаждение регенерированного раствора второго потока происходит при помощи так называемом воздушном холодильнике позиция - 312 до температуры 46-621°С в теплообменниках позиция - 312 А за счет подаваемой из XBO речной воды [29]. Дальнейший процесс: раствора поступает в так называемую емкость позиция – 320, откуда установкой насосом позиция 314 подается в верхнюю часть абсорбера для орошения. Регулировка уровня в так называемой ёмкости позиция – 320 происходит автоматически, при помощи позиции – 319 LIRAS. Контроль давления, температурного режима, сопротивление и уровня в рекуператоре происходит в ЦПУ с постоянными записями в журнале позиция – 305 Tr, позиция – 306 Tr, позиция 301 – PIrCAh, позиция 304 – LirA, позиция 313, 314 DPR. Постоянная подпитка с коррекцией уровня в рекуператорах регулируется автоматикой, для поддержания в системе очистки баланса влаги позиция -305 QIRc [7,30].

Далее происходит необходимое сообщение тепла для регенерации раствору парогазовой горячей смесью, которая поступает в так называемые кипятильники газовые позиция - 306 A, Б из конверсии с температурой  $179^{\circ}\text{C}$ . Достижение данной температуры происходит за счет впрыска конденсата (газового) так называемых насосами позиция - 127 в узел охлаждения позиция - 145. Существует перемычка от линии высокого давления питательной воды в узел позиции - 145. Через кипятильник (паровой) происходит передача недостающего тепла раствору позиция – 307, в которые с температурой 160 – 180°C поступает пар. Поддержание постоянного расхода пара на регенерацию происходит автоматически QIRC позиция – 303. Конденсат, который идет после (парового) кипятильника позиция - 307 проходит через так называемый (отделитель) парового конденсата позиция – 319 (1) и происходит поступление в расширительный бак пара вторичного вскипания позиция - 326. Дальнеейшее направления образование пара имеет направление в деаэратор, подача конденсата с температурой не выше 121°C происходи в так называемый подогреватель пит. Воды позиция - 125, а после этого уже на саму установку приготовления пит. воды. Регулировка отвода конденсата из так называемых отделителей позиция - 319 (1) в бак втор. вскипания позиция – 326 происходит автоматически при помощи регулятора уровня позиции 307, 313 LICA [7,31,32,33,34].

Существуют два варианта работы верхней части рекуператоров за счет снимаемых элементов в данной конструкции. Рассмотрим их:

- 1) С отдувкой газов из раствора в рекуператорах для получения двуокиси углерода, в котором содержится горючие до 0,03% об. это чистая фракция [7,8];
  - 2) второй способ без отдувки [7,33].
- По 1) варианту  $CO_2$  выслеживается из каждого регенератора по двум потокам: первый поток это чистая фракция, второй поток это грязная фракция. Рассмотрим первый поток чистая фракция, которая состоит из 86 % от количества (общего)  $CO_2$ , которая выводится из рекуператора из нижней

точки ввода раствора с тарелки под номером 29 с данной температурой 61 – 78°С и с давлением 0,3 – 0,6 ати. Далее происходит прохождение через сепаратор выносной позиция – 359 для отделения от брызг раствора МДЭА, где охлаждается до температуры 46°С выводится из регенератора – рекуператора ниже точки ввода насыщенного раствора с тарелки N 29 с температурой 60 – 75°С и давлением 0,4 – 0,5 ати, проходит выносной сепаратор 359 для отделения от брызг МДЭА охлаждается до температуры более 45°С при помощи холодильнике – конденсаторе позиция 321, далле происходит отделение флегмы в установке сборника флегмы позиция – 322 и поступление газа на выхлоп в атмосферу или так скажем к потребителю.

Раствор МДЭА, который отделился в сепараторе позиция - 359 сливается в так называемую емкость позиция – 320, позиция – 325 по линии (дренирования)

Рассмотрим, что такое грязная фракция. Грязная фракция — это оставшаяся часть  $CO_2$  с содержанием газов до 6% об., которая проходит в верхней части регенератора через колпачковые тарелки, где орошается флегмой и происходит выход с температурой около  $61-76^{\circ}$ С и с давлением 0.4-0.5 ати из рекуператора. Далее так называемая грязная фракция проходит до охлаждения до температуры  $44^{\circ}$ С в (воздушном) холодильнике — конденсаторе позиция - 321, дальше идет прохождение через установку (сепаратор) позиция - 361 для отделения флегмы и происходит выброс в атмосферу. Регулировка колическтво грязной фракции происходит автоматически при помощи позиции — 304 QIRc.

По варианту 2) СО<sub>2</sub> с содержанием горючих газов до 3% об. выходит из верхней части регенератора только с одним потоком, с данной температурой 61 – 79°С и с давление 0,3 – 0,7 ати, далее охлаждается до температуры 47°С в так называемом (воздушном) холодильник – конденсаторе позиция - 321, где проходит через сборник флегмы позиция – 322 для отделения флегмы и происходит поступление потребителю или в атмосферу. Для поддержания баланса (водного) флегма из сепаратора позиции - 361 поступает на всас

насосов позиция - 323 и происходит возвращение в схему. Часть флегмы насосом позиция - 323 А, Б подается на так называемые (колпачковые) тарелки в верхнюю часть регенераторов и поступает в сепаратор позиция -322 для улавливания паров раствора - МДЭА из СО<sub>2</sub>, а также для утопление сальников насосов позиции – 314, 315, 316, 317. Поступаемая в так называемую (дренажную) ёмкость позиция – 333 (1) уплотняющаяся жидкость с данных насосов и с помощью погружным насосом позиция – 334 преодолевает возварещение в систему для поддержки вод. баланса. При работе насосов в первоначальный период, при стадии снятии газа с очистки была сделана перемычка с диаметром ДУ 50 с нагнетания насосов позиция -334 на всас насосов позиция – 323, то есть эта технология имеет название возврат протечек в сепаратор позиция - 322 для исключения разбавления раствора пит. водой. Автоматическая остановка происходит при понижении уровня в дренажной емкости позиции 334 (1) до минимума 20% по позиции -316 LIAS. Другая часть конденсата подается так называемым поршневым насосом позиции - 324 А, Б на верхнюю часть абсорбера, на колпачковые тарелки для улавливания раствора - МДЭА из очищенного газа. На выдаче конденсата (флегмы) из сборника позиция - 322 установлен регулятор уровня позиция - 305 LIRCA [7,8,31,32,33,34].

для достижения цели по очистке рабочего раствора - МДЭА от всяких разных продуктов разложения, окисления и так далее, которые коррозию и эрозию аппаратуры, установлено дополнительное оборудование, а именно: шесть фильтров (четыре механических и два угольных). Два механических фильтра, которые расположенные перед так называемыми угольными фильтрами, широко предназначены для улавливания частиц более 11 микр., а два механических фильтра после угольных фильтров улавливает частицы более 6 микр. Для очистки от продуктов разложения данный раствор - МДЭА из позиции - 325 поступает на всас насоса позиция — 363 и далее в один из выше перечисленных механических фильтров, где производится очистка от механических примесей. Перепад на механических фильтрах позиции -

Ф1(1,2) не может быть более 0,7 МПа, и измерение происходит позицией -204 Pdi (1,2), так называемым перепадометром. Далее раствор - МДЭА поступает на угольные фильтры, где очищается от продуктов разложения с расходом на каждый из фильтров не более 54 м<sup>3</sup>/час. Замер расхода происходит на приборах позиция - 310 Fi (1,2). Перепад на угольных фильтрах позиция  $\Phi$ 2 (1,2) измеряется приборами позиция - 206 Pdi (1,2), который не может быть более 1,6 МПа. Очищенный от разложения продуктов раствор - МДЭА после угольных фильтров попадает в механические позиция  $\Phi$ 1 (3,4), где проходит очищение от угольный пыли. Перепад на фильтрах измеряется перепадметрами позиция - 205 Pdi (1,2) и должен быть не более 0,6 МПа. Раствор -МДЭА, пройдя полную очистку от примесей и продуктов разложения, поступает под так называемое зеркало жидкости в емкость позиции - 325. В ходе технологии очищения раствора -МДЭА необходимо следить за механическими фильтрами, за перепадами, отключая их для чистки самих фильтров. Во время обслуживания фильтров необходимо произвести включение резерва по фильтрам [7,12,25,32,35].

Все ёмкости с раствором - МДЭА расположены под буферным азотом с предельным давлением 0,04 МПа, который поступает из сети азота 99,97% об. после регулятора позиция - 303 РІС. Буферный азот предохраняет данный раствор - МДЭА от окисления, при котором контактирует с воздухом кислорода [7,32].

После очистки газ содержит 0,69% об. окиси углерода и до 280 млн. долей двуокиси углерода, которые являются ядами синтеза аммиака для катализатора. Каталитическое гидрирование — вот путь очистки газа от двуокиси и окиси углерода до метана при объемной скорости 4354 час на никелевом катализаторе [7,10,16,24].

В результате происходит лучшая тонкая очистка газа по реакциям:

 $CO + 3H_2 = CH_4 + H_2O + 49,29$  Ккал/Моль  $CO_2$  I  $4H_2 = CH_4|2H_2O$  I 39,46 Ккал/Моль остаточное содержание примесей: CO не выше 12 млн. долей  $CO_2$  не выше 7 млн. долей [24].

Большое выделение тепла происходит в метанаторе позиция – 501, при протекании реакции.

Для самого начала реакции требуется, подогрев газа до высокой температуры 290 - 330°С, поэтому перед входом в метанатор очищенный от СО<sub>2</sub> на стадии МДЭА - очистки газ проходит через два теплообменника последовательно, где происходит нагревание до начальной температуры реакции на метанирования.

Рассмотрим эти два теплообменника. В первом теплообменнике позиция – 119 нагревание газа осуществляется от 45°C до 105°C теплой парогазовой смеси, которая идет с абсорбционно - холодильной установки. Во втором теплообменнике позиция - 116, который расположен на установке конверсии CO, газ подогревается до 285 - 330°C смесью, которая идет после так называемого котла - утилизатора позиция - 115 и поступает в метанатор позиция - 501. Сама температура газа перед установкой метанатора поддерживается регулятором клапана позиция - 142 TIRCA, который установлен на байпасе холодного газа мимо теплообменника позиция - 116. При отличной работе, когда в газе, который идет на метанирование, содержание двуокиси и окиси углерода не превышает нормы до 0,68% об. СО и 350 млн. долей CO<sub>2</sub>, в зоне реакции температура составляет 330 - 360°C, поскольку при превращении 0,9% СО в метан происходит повышение температуры на 55°C. Увеличение достаточной температуры в зоне метанатора составляет 79°C на 1% окиси углерода и 68°C на 1% двуокиси углерода [7,24,32].

Замеры температуры в установке метанаторе проходят в верхнем, среднем и нижнем секциях катализатора, которые выносятся все показания в ЦПУ на прибор с сигналом о максимально температуре.

Существует защита метанатора, при высоком экзотермическом характере реакции метанирования, от повышенной температуры, которая сверх допустимая посредством блокировки позиции – 502, 503, 504 TRAhS на автоматическое закрытие заслонки позиция - 502 HCVA и задвижку с

электроприводом позиция - 501 HCVA на линии подачи газа. Если отсеч газ на метанаторе, то срабатывает блокировка, которая после подает сигнал на остановку компрессора азото водородной смеси позиция - 401. Предусмотрен сброс газа, который происходит на факел через клапан позиции - 501 PCV, который поддерживает данное давление. В ЦПУ подается сигнал о повышение давления более 29,4 ати. Из ЦПУ предусмотрена возможность управления заслонкой и электро задвижкой на входе газа. Положение электро задвижками и заслонками подается сигнал на ЦПУ [24,32].

Очищенная азотоводородная смесь из метанатора с температурой  $390^{\circ}$ С производит поступление в межтрубное пространство пит. вода на подогревател позиция — 502, который находиться под высоким давлением, где затем происходит охлаждение до температуры  $130 - 140^{\circ}$ С, и проходит межтрубное пространство подогревателя питательной воды (недеаэрированой) позиция — 503, где температура охлаждения составляет примерно  $58 - 67^{\circ}$ С.

Конечное охлаждение азото водородной смеси достигает до температуры  $44 - 49^{\circ}$ С и конденсация водяных паров, которые образовались в результате метанирования, где происходит в аппарате воздушного охлаждения позиция - 504, который оснащен автоматическим устройством, где поддерживается постоянная температура газа на выходе из аппарата позиция - 519 TIRCAI. Для того, чтобы снизить температуру в летнее время воздуха, предусмотрен в аппарате впрыск воды. Замер температуры газа после аппарата, где происходит впрыск воды выносится в ЦПУ с сигналом мин.  $40^{\circ}$ С на прибор позиция - 519 TIRCAI [7,8].

Далее после отделения конденсата в так называемом влаго отделителе позиция — 505 направление газа не меняется, а поступает на всас первой ступени центробежного компрессора азото водородной смеси позиция - 401. Очищенный газ на стадии метанирования анализируется при помощи приборов позиции — 501, 502 AnRAh, с дальнейшим проступанием сигнала в ЦПУ о достижении макс. СО и СО<sub>2</sub>. Поддержание давления перед

компрессором газа осуществляется при помощи регулятора давления позиция — 502. При повышенном давлении более чем 28,9 ати подается сигнал в ЦПУ [24,36,37,38].

Конденсат, который газовый из влаго отделителя позиция — 505 подается в аппарат позиция — 150 через автоматический регулятор уровня позиция - 501 LIRCAS. При максимуме и минимуме уровни во влаг отделителе подается сигнал на ЦПУ. При сверх максимуме уровне происходит срабатывание блокировки на отключение компрессора позиция - 401 [37].

Тепло метанирования используется в установке позиция - 502 для разогрева деаэрированной пит. воды от 108 – 110°C до 285 – 305°C. Пит. вода подается в трубное пространство так называемого подогревателя позиция - 502 из деаэрации насосами позиция - 128 под давлением 147 ати, а после разогрева направляется прямо в паросборник позиция - 109 для получения пара, у которого давление должно быть не менее 100 – 105 ати. Количество пит. воды, которая подается в подогреватель позиция - 502, дистанционно регулируется клапаном позиция – 503 HCVI из ЦПУ. Далее происходит показания температур пит. воды, которая входит в подогреватель позиция – 502, которые выносятся на ЦПУ прибором позиция – 515 TrAH с сигналом [7, 8,37,38].

После ознакомления с технологическим процессом отделения очистки от CO<sub>2</sub> раствором МДЭА, а именно инструкция АМ 14 часть 3 отделение очистки от CO<sub>2</sub> раствором МДЭА агрегата аммиака АМ 76 можно сделать выводы: недостатки в связи с большой загроможденностью отделения требуется огромная энерго затратность, слишком большое количество установок и позиций, нет мер предосторожностей от излишка выхлопов газов и растворов, большой расход сырья.

## 1.4. Существующий регенератор - рекуператор

Далее после технологического процесса рассмотрим описание устройство и схему существующего на данном предприятии регенератора - рекуператора.

Подогрев воздуха осуществляется при помощи рекуператоров или регенераторов. Рекуператоры более компактны, дешевле и эффективнее регенераторов, легче в обслуживании. Металлические рекуператоры применяют для подогрева воздуха до 355—407°С, рекуператоры из жаропрочных сплавов — для подогрева воздуха до 700°С. При более высоких температурах подогрева применяют керамические рекуператоры, обладающие меньшей газоплотностью [7,8,28].

Тепловая энергия химической реакции в агрегате синтеза рекуперируется вне зоны катализа на выходе горячего конвертированного газа с температурой 320—330°С из колонны синтеза. Горячий газ отдает в подогревателе 39 часть своей тепловой энергии питательной воде высокого давления. Для охлаждения газовых и жидкостных потоков применяются холодильники с воздушным охлаждением. Для очистки газа от диоксида углерода монодиэтаноламином (раствора - МДЭА) служит регенератор – рекуператор [28].

В регенераторе - рекуператоре получается диоксид углерода высокой чистоты, пригодный для производства карбамида. Это достигается отдувкой горючих газов из раствора - МДЭА на верхних тарелках регенератора и дало возможность отказаться от строительства цеха каталитического выжигания горючих из диоксида углерода [28,41].

Применение котлов-утилизаторов, регенераторов (рекуператоров) и т.д. дает возможность снизить потери тепла с уходящими газами, однако создание этих устройств требует дополнительных капиталовложений, затрат дефицитных огнеупоров. Вместе с тем, есть более экономичный способ снижения потерь с уходящими газами [7,28].

Теплообменники часто классифицируют в соответствии ИΧ назначением основные типы имеют специальные названия — паровые котлы, парогенераторы, конденсаторы, излучатели, испарители, градирни, регенераторы, рекуператоры, нагреватели Особые И холодильники. требования, диктуемые конкретными условиями применения, привели к разработке множества типов [8,33].

Второй поток через переливные устройства внутри регенераторарекуператора поступает в нижнюю часть для более глубокой регенерации до содержания СО<sub>2</sub> 0,12 моль/моль МДЭА. Тонко регенерированный раствор при температуре 129-140°С из нижней части регенератора-рекуператора подается во встроенные теплообменные элементы, где охлаждается до 62-70°С. Дальнейшее охлаждение раствора осуществляется в воздушном и водяном холодильниках [6,18].

Конструкция регенератора-рекуператора предусматривает возможность получения чистого диоксида углерода [7,28].

Грязная фракция  $CO_2$ , содержащая до 11% горючих, промывается в верхней части регенератора-рекуператора на колпачковых тарелках флегмой, затем охлаждается в холодильнике до  $40^{\circ}$ C и, пройдя сепаратор, выбрасывается в атмосферу [7,8,40].

Расход тепла в схеме с регенератором-рекуператором составляет 4,18  $MДж/м^3$   $CO_2$ , а в схеме с регенератором и выносными теплообменниками - 5,39  $MДж/м^3$   $CO_2$ . Снижение расхода тепла в схеме с регенератором-рекуператором объясняется меньшей температурой парогазовой смеси и более полной рекуперацией тепла регенерированного раствора во встроенных теплообменниках [28].

Схема и устройство регенератора – рекуператора представлена на рисунке 1.

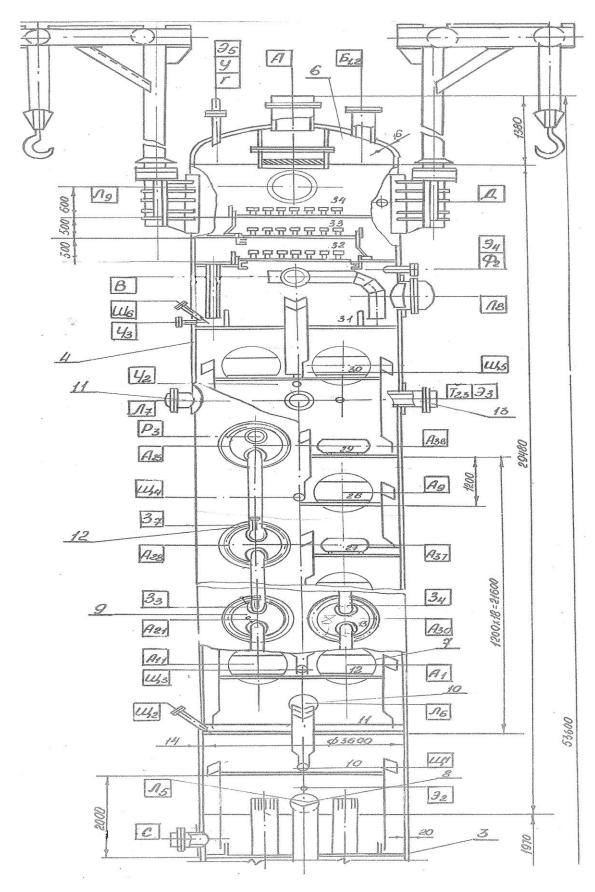



Рисунок 1- Схема регенератора – рекуператора нижняя секция

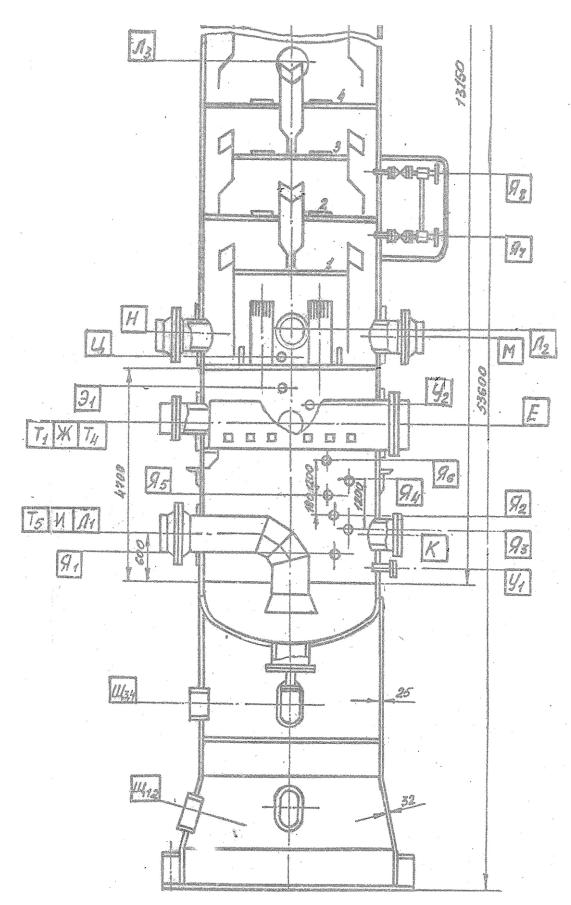



Рисунок 2 - Схема регенератора – рекуператора верхняя секция

Существующая конструкция регенератора - рекуператора на ОАО «Тольяттиазот» не эффективна для увлечения мощности отделения очистки от СО<sub>2</sub>, так как с такими габаритами невозможно увеличить производительность глубоко регенерированного раствора, слишком много люков и штуцеров, как описано в таблице 6, что делает конструкцию более опасной для окружающей среды, и всех рабочих на агрегатах АМ 76.

Конструкция регенератора - рекуператора предусматривает возможность получения чистого диоксида углерода, содержащего не более 0,02% (об.) горючих примесей, необходимого для производства карбамида. Чистая фракция CO<sub>2</sub>, составляющая свыше 75% общего количества CO<sub>2</sub> рисунок 1, рисунок 2, рисунок 3 [7,8,28,33].

 Таблица
 2
 Технические характеристики регенератора

 рекуператора

| Тип колонны        | Тарельчатая |             |
|--------------------|-------------|-------------|
| Тип тарелок        | ТСК - Р     | Специальные |
| Количество тарелок | 3           | 31          |

Таблица 3 - Технические характеристики регенератора рекуператора

| Параметры                                          | Аппарат                            | Теплообменник             |
|----------------------------------------------------|------------------------------------|---------------------------|
| Объем, м <sup>3</sup>                              | 450                                | 30                        |
| Давление рабочее кгс/см <sup>2</sup> (МПа) расчеты | 3 (0,3), 3 (0,3)                   | 12 (1,2), 12 (1,2)        |
| Среда                                              | Парогазовая смесь Н <sub>2</sub> О | 25% водный раствор        |
|                                                    | + СО <sub>2</sub> 25%, водный      | МЭА, не вп, не по,        |
|                                                    | раствор МЭА, 9% Н <sub>2</sub> ,   | токсичная, вызывает       |
|                                                    | СО <sub>2</sub> , взрывоопасная,   | Мкк                       |
|                                                    | пожароопасная,                     |                           |
|                                                    | токсичная.                         |                           |
| Температура рабочая                                | Вход 54 (337), выход               | Вход 150 – П5 (425 –      |
| расчетная стенка                                   | 150 - 115 (423 - 388),             | 449), выход 70 (343), 150 |
|                                                    | 150 (423)                          | (423)                     |
| Минимальная                                        | минус 20 (253)                     | минус 20 (253)            |

| дополнительный температура стенки ${}^{0}$ С $({}^{0}$ К) |   |      |
|-----------------------------------------------------------|---|------|
| Поверхность теплообмена, м <sup>2</sup>                   | - | 3200 |

# Таблица 4 - Технические характеристики регенератора – рекуператора [7], [8]

| Грузоподъемность краноукосины, кг | 3000            |
|-----------------------------------|-----------------|
| Масса аппарата, кг                | 700000          |
| Габаритные размеры, мм            | 3980x6430x53600 |

Таблица 5 - Характеристика марок стали оборудования [7], [28]

| №, п/п | Наименование       | Количество | Материал  | Примечание   |
|--------|--------------------|------------|-----------|--------------|
| 1      | Конус 3000/3600х20 | 11         | 12X18H10T | ГОСТ 7350-77 |
| 2      | Обечайка 3000x20   | 1          | 12X18H10T | ГОСТ 7350-77 |
| 3      | Обечайка 3600x20   | 1          | 12X18H10T | ГОСТ 7350-77 |
| 4      | Обечайка 3600x14   | 1          | 12X18H10T | ГОСТ 7350-77 |
| 5      | Днище 3000х20      | 1          | 12X18H10T | ГОСТ 7350-77 |
| 6      | Днище 3600x16      | 1          | 12X18H10T | ГОСТ 7350-77 |
| 7      | Штуцер Ду = 1100   | 38         | 12X18H10T | ГОСТ 7350-77 |
| 8      | Люк Ду = 500       | 5          | 12X18H10T | ГОСТ 7350-77 |
| 9      | Теплообменник      | 38         | 12X18H10T | ГОСТ 7350-77 |
| 10     | Люк Ду = 600 Ру 10 | 3          | 12X18H10T | ГОСТ 7350-77 |
| 11     | Люк Ду = 400 Ру 16 | 76         | 12X18H10T | ГОСТ 7350-77 |
| 12     | Штуцер             | 76         | 12X18H10T | ГОСТ 7350-77 |
| 13     | Штуцер             | 5          | 09Г2С     | ГОСТ 5520-69 |

Таблица 6 - Штуцера и люки регенератора – рекуператора [7], [28]

| Обозна                 |                                   |     |        |                         | Py  |
|------------------------|-----------------------------------|-----|--------|-------------------------|-----|
| чения                  | Наименование                      | Код | Ду, мм | кнс/<br>см <sup>2</sup> | МПа |
| A                      | Выход ПГС                         | 1   | 700    | 10                      | 1,0 |
| Б <sub>1,2</sub>       | К предохранительному клапану      | 2   | 300    | 16                      | 1,6 |
| В                      | Вход насыщенного раствора         | 1   | 500    | 25                      | 2,5 |
| Γ                      | Воздушник                         | 1   | 50     | 16                      | 1,6 |
| Д                      | Вход флегмы                       | 1   | 80     | 16                      | 1,6 |
| Е                      | Вход ПГС из газового кипятильника | 1   | 700    | 16                      | 1,6 |
| Ж                      | Вход ПГС из парового кипятильника | 1   | 500    | 25                      | 2,5 |
| 3 <sub>1-8</sub>       | Для ртутного 2 термометра         | 8   | 32     | 25                      | 2,5 |
| И                      | Выход раствора 2 потока           | 1   | 500    | 40                      | 4,0 |
| TC                     | Вход раствора из газового         | 1   | 500    | 25                      | 2.5 |
| K                      | кипятильника                      | 1   | 500    | 25                      | 2,5 |
| Л <sub>1,2,3,4,5</sub> | Люк                               | 5   | 500    | 10                      | 1,0 |
| $\Pi_{6,8,9}$          | Люк                               | 3   | 600    | 10                      | 1,0 |
| $\Pi_7$                | Люк                               | 1   | 400    | 16                      | 1,6 |
| M                      | Выход раствора в газовом          | 1   | 600    | 25                      | 2.5 |
| M                      | кипятильнике                      | 1   | 000    | 25                      | 2,5 |
| Н                      | Выход раствора в паровом          | 1   | 600    | 25                      | 2.5 |
| 11                     | кипятильнике                      | 1   | 000    | 23                      | 2,5 |
| $\Pi_{1,2}$            | Вход горячего раствора 2 потока   | 2   | 250    | 25                      | 2,5 |
| $\Pi_{3,4}$            | Вход горячего раствора 1 потока   | 2   | 250    | 40                      | 4,0 |
| P <sub>1,2</sub>       | Выход охлажденного раствора 2     | 2   | 250    | 25                      | 2,5 |
| 1 1,2                  | потока                            | 2   | 230    | 23                      | 2,3 |
| $P_{3,4}$              | Выход охлажденного раствора 1     | 2   | 250    | 25                      | 2,5 |
| 1 3,4                  | потока                            | 2   | 230    | 23                      | 2,3 |
| C                      | Выход раствора 1 потока           | 1   | 500    | 25                      | 2,5 |
| $T_1$                  | Вход ПГС из смоловыделителя       | 1   | 400    | 25                      | 2,5 |
| $T_{2,3}$              | Выход чистой фракции              | 2   | 400    | 16                      | 1,6 |
| $T_4$                  | Уравнительный штуцер по газу      | 1   | 400    | 40                      | 4,0 |
| $T_5$                  | Уравнительный штуцер по раствору  | 1   | 400    | 40                      | 4,0 |
| У                      | Для манометра                     | 1   | 20     | 25                      | 2,5 |
| $\mathbf{y}_{1,2}$     | Для датчика регулятора уровня     | 2   | 20     | 25                      | 2,5 |
| $\Phi_{1,2}$           | Для термометра сопротивление      | 2   | 32     | 25                      | 2,5 |

| Ц                 | Выход раствора в смоловыделитель | 1  | 150     | 16 | 1,6 |
|-------------------|----------------------------------|----|---------|----|-----|
| Ц <sub>1-3</sub>  | Для отбора анализа               | 3  | 25      | 25 | 2,5 |
| Щ <sub>1-4</sub>  | Лаз в опоре                      | 4  | 500x800 | -  | -   |
| Щ <sub>1-6</sub>  | Для ртутного термометра          | 6  | 32      | 25 | 2,5 |
| Ю                 | Дренаж                           | 1  | 300x100 | 16 | 1,6 |
| Я <sub>1-6</sub>  | К указателю уровня               | 8  | 20      | 25 | 2,5 |
| A <sub>1-32</sub> | Для теплообменника               | 38 | 1100    | 16 | 1,6 |
| Э <sub>1-к</sub>  | Для перепадомера                 | 5  | 20      | 25 | 2,5 |
| $\Gamma_{1,2}$    | Для монтажа                      | 2  | -       | -  | -   |
| $\Pi_{5-72}$      | Перелив                          | 68 | 250     | 25 | 2,5 |

Данные таблицы, которые описывают все оборудование в регенераторе рекуператоре не соответствует нормам для увеличения мощности.

### ГЛАВА 2. РАЗРАБОТКА МЕРОПРИЯТИЙ ПО УЛУЧШЕНИЮ РЕГЕНЕРАЦИИ РАСТВОРА В РЕКУПЕРАТОРЕ

#### 2.1 Реконструкция регенератора – рекуператора

При рассмотрении конструкции, и работы регенератора - рекуператора, можно сделать вывод, что аппарат слишком громоздкий, требующий большие энерго и ресурсные затраты.

Для увеличения мощности отделения очистки от  ${\rm CO_2}$  необходимо спланировать, с моделировать реконструкцию нижней части регенератора - рекуператора [43,44].

Рассмотрим существующий чертеж регенератора - рекуператора нижнего отсека [7,8].

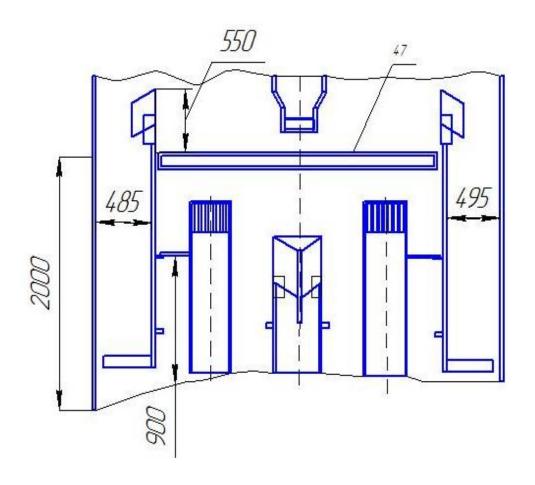



Рисунок 4 - Чертеж регенератора - рекуператора

Мои предложения бакалаврской работы: заменяем глухую тарелку на ситчатую. Эта замена предаст увеличение мощности очистки от  $CO_2$  раствора на 15 %, которые выражаются далее в моих расчетах [44,45,46].

Предложенные мной схемы - чертежи регенератора - рекуператора.

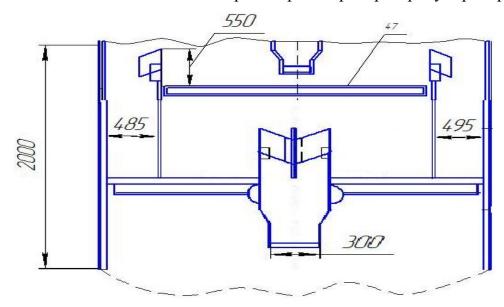



Рисунок 5 - Предложенный чертеж реконструкции регенератора - рекуператора.

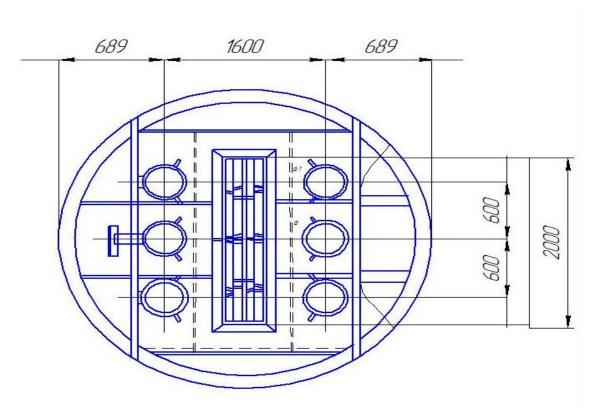



Рисунок 6 - Чертеж вид сверху - в разрезе [44]

Рассмотрим чертеж ситчатой тарелки, которую предлагаю заменить.

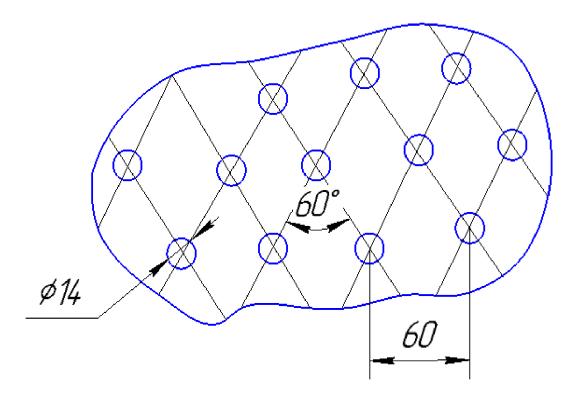



Рисунок 7 - Предложенный чертеж сетчатой тарелки

При замене глухой тарелки на ситчатую, произойдет более высокая производительность раствора, снижение энерго затрат, упрощение самого аппарата и стремление доведения его до глубоко регенерированного. Данная замена тарелки потребует не большое время демонтажа глухой тарелки, и монтажа по данным размерам ситчатой, при помощи электрогазосварки [44,46,47].

Изучим данную тарелку. Ситчатая тарелка представляет собой плоский перфорированный лист с переливными устройствами для жидкости. Перфорацию выполняют в виде круглых отверстий диаметром  $d_0=2...8$  мм и более и шагом  $t_1=(3...5)$   $d_0$ . Отверстия располагают в вершинах равностороннего треугольника. Свободное сечение тарелки в зависимости от производительности колонны по пару составляет от 2 до 18%. Для слива жидкости и регулирования ее уровня тарелка снабжена переливными устройствами с регулируемой сливной планкой и гидравлическим затвором [47].

При нагрузке по выдаче аммиака 1700 тонн в сутки вход газа в цех (нагрузка по газу) 50000 норм.  ${\rm M}^3/{\rm vac}$ . Выдача  ${\rm CO}_2$  составляет 28000 норм.  ${\rm M}^3/{\rm vac}$ ., вход 145 тонн пара в час. Общее количество 67000 норма.  ${\rm M}^3/{\rm vac}$ . На 1 поток и на 2 поток приходится 600000  ${\rm M}^3/{\rm vac}$ . На выходе из регенераторов рекуператоров по 600000  ${\rm M}^3/{\rm vac}$  [47,48].

Приведем расчеты регенератора - рекуператора при установленной мной ситчатой тарелки [49,50].

Расчет регенератора - рекуператора.

1. Переведём в мольные доли концентрацию [51].

Для этого используем формулу (3.1):

$$n_{6} = \frac{X_{6}/M_{6}}{X_{6}/M_{6}}, (3.1)$$

$$M_{6} + X_{H}/M_{H}$$

где  $x_6$ ,  $x_H$  – компонент нижней и верхней части рекуператора;

Рассчитаем мольную долю в абсорбере по формуле:

$$\chi_A = \frac{\frac{63}{258,724}}{\frac{50}{258,764 + \frac{30}{211,4424}}} = 0,75 _{\text{МОЛЬ/ДОЛИ}}.$$

Рассчитаем мольную долю в исходной смеси по формуле:

$$\chi_F = \frac{\frac{4}{248,724}}{\frac{4}{258,724 + \frac{97}{211,4424}}} = 0,02546$$
моль/доли

Рассчитаем мольную долю в кубовом остатке по формуле:

$$\chi_{\scriptscriptstyle W} = \frac{ 0.1 / 258,724 }{ 0.1 / 258,724 + 99,9 / 211,4424 } = 0,0009 \;\; \text{моль/доли}.$$

Рассчитаем материальный баланс, для этого примем обозначении расхода абсорбера через  $G_D$  кг/ч, кубового остатка  $G_W$  кг/ч [52,53,54,55].

Из уравнений материального баланса видно:

$$G_D + G_W = 62600 \text{ kg/y}$$
 ,(3.2)

$$G_D * 0.36 + G_W * 0.0019 = 62500 * 0.0656$$
 кг/ч

Из полученной системы уравнений находим:

$$G_D = 2824.8 \text{ кг/ч}, G_W = 1458.6 \text{ кг/ч}.$$

По формуле (3.3) находим мольный расход (относительный) питания [55]:

$$F = \frac{\chi_A - \chi_W}{\chi_A - \chi_W} = \frac{0.66 - 0.0019}{0.0356 - 0.0019} = 26.19$$
(3.3)

По формуле (3.4) определяем минимум флегму (число):

$$R_{\min} = \frac{x_A - y_F^*}{y_F^* - x_F} = \frac{0.66 - 0.1}{0.1 - 0.0356} = 6.193$$
,(3.4)

где  $y_F^*$  - это моль/доля раствора - МДЭА в паре [51].

Рассчитаем флегму, поределим ёё по формуле (3.5):

$$R = 1.5R + 0.7 = 1.5 * 6.193 * 0.5 = 8.93$$
 ,(3.5)

Рассчитаем уравнение линий (рабочих) [55]:

Верхняя часть колонны:

$$y = \frac{R}{(R+1)x} + \frac{\chi_A}{(R+1)} = \frac{8,74}{(8,74+1)x} + \frac{0,96}{(8,74+1)} = 0,219x + 0,99$$

Нижняя часть колонны:

$$y = \frac{R+F}{(R+1)x} + \frac{F-1}{(R+1)\chi_w} = \frac{8,74+223,19}{(8,74+1)x} - \frac{223,19-1}{(8,74+1)\cdot 0,0019} = 3,61-0,012$$

3. Приступи к расчету гидравлики, то есть к гидравлическому расчету [49,50].

Рассчитаем сопротивление тарелок в нижней и верхней части аппарата по данному уравнению:

$$\Delta \rho = \Delta \rho_c + \Delta \rho_0 + \Delta \rho_n \tag{3.6}$$

Верхняя часть колонны расчет:

Гидравлическое сопротивление сухой тарелки в верхней части аппарата рассчитаем по формуле (3.7)

$$\Delta \rho_{c} = \frac{\xi \overline{\omega}_{0}^{2} \rho_{m}}{2} = \frac{1,42 \cdot 3,85^{2} \cdot 7,23}{2} = 95,64 \Pi a \qquad ,(3.7)$$

Сопротивление, обусловленное поверхностным натяжением рассчитывается по формуле (3.8):

$$\Delta \rho_0 = \frac{4\sigma}{d_0} = \frac{4 \cdot 0.031}{0.025} = 5.9 \Pi a \tag{3.8}$$

где,  $\sigma = 0.031$  - натяжение смеси при средней температуре;  $d_0 = 0.025$  - относительный диаметр отверстий тарелок [51].

Рассчитаем сопротивление паро жидкостной части верхней секции аппарата:

$$\Delta \rho_n = 1.3 h_n \rho_{\infty} gk \tag{3.9}$$

Рассчитаем высоту паро жидкостного части верхней секции аппарата:

$$h_n = h_n + \Delta h \tag{3.10}$$

Рассчитаем  $\Delta h$  верхней секции аппарата по формуле (3.11):

$$\Delta h = \left(\frac{V_{\infty}}{1,25\pi\kappa}\right)^{\frac{2}{3}} \tag{3.11}$$

Рассчитаем расход жидкости в верхней секции аппарата по формуле (3.12):

$$V_{\infty} = \frac{G_D RM_{cp}}{M_D \rho_{\infty}} = \frac{2424.8 \cdot 8.64 \cdot 226.22}{23212.31 \cdot 964 \cdot 36421} = 0.02169 \text{ m}^3/\text{c}$$
,(3.12)

Все наши значения берем подставляем в формулу (3.11):

$$\Delta h = \left(\frac{0,02169}{1,85.5,277.0,5}\right)^{\frac{2}{3}} = 0,032112M$$

$$\Delta \rho = 91,24+5,6+1024,8=1121,6\Pi a$$

Рассчитаем нижнюю секцию аппарата:

Найдем сопротивление сухой тарелки по формуле (3.7):

$$\Delta \rho_{cox} = \frac{1,412 \cdot 3,215^{2} \cdot 6,52}{2} = 86,124 \Pi a$$

Рассчитаем сопротивление в нижней секции по формуле (3.8):

$$\Delta \rho_0 = \frac{4.0,4324 \sigma}{0.015} = 12,5 \Pi a$$

Рассчитаем расход жидкости в нижней секции аппарата по формуле (3.13):

$$V_{\infty} = \left(\frac{G_A R}{M_A} + \frac{G_F}{M_F}\right) \cdot \frac{M_{cp}}{\rho_{\infty}} = \left(\frac{223134,8 \cdot 8,34}{2672,31} + \frac{14321,6}{282,29}\right) \cdot \frac{8511,91}{974 \cdot 3600} = 0,54129$$

$$M^3/c, (3.13)$$

Все данные подставляем в формулу (3.11):

$$\Delta h = \left(\frac{0,54129}{1,85.5,77.0,5}\right)^{\frac{2}{3}} = 0,3112M$$

Далее рассчитаем высоту паро жидкостного части нижней секции аппарата по формуле (3.10):

$$h_{\text{max}} = 0.16 + 0.112 = 0.272 M$$

Рассчитаем сопротивление паро жидкостного части нижней секции по формуле (3.9):

$$\Delta \rho_{nx} = 1,3.0,122.954.9,11.0,5 = 10424,8 \Pi a$$

Суммируем все сопротивления в нижней секции аппарата по формуле (3.6) и получим общее сопротивление:

$$\Delta \rho = 83,434+6,4+10424,8=11214,21\Pi a$$

Проверим сами себя, соблюдаются ли правило при расстоянии между тарелками h = 3,6 м необходимое для норм. работы условие по формуле (3.14) [52]:

$$h > 1.8 \Delta \rho / (\rho_{x} * g)$$
 ,(3.14)

Для тарелок верхней части колонны, у которых гидравлическое сопротивление Δρ больше, чем у тарелок нижней части:

$$3,6>1,8\cdot\frac{12131,6}{94214\cdot 9,81}=0,22120\,\text{M}.$$

Следовательно, выше указанное условие нами соблюдается.

Проверим качество работы тарелок - рассчитаем минимум скорость пара в отверстиях по формуле (3.15), достаточную для того, чтобы ситчатая тарелка работала всем отверстиями [53]:

$$\overline{\omega}_{0,\text{min}} = 0.67 \sqrt{\frac{g\rho_{\infty}h_n}{\xi\rho_n}} = 0.67 \sqrt{\frac{9.87.9214.0.1422}{7.82.6.52}} = 3.3242$$
,(3.15)

Следовательно, тарелка будет работать всеми отверстиями.

## 2.2 Разработка и изменение схемы потоков выделения очистки от CO<sub>2</sub>, регенерация раствора при получении аммиака.

Чтобы достичь поставленной цели увеличения мощности необходимо изменить схему потоков: соединить все четыре насоса позиция - 316 A, позиция - 316 Б, позиция - 317 A, позиция - 317 Б при помощи тройника, для большего выделения очистки от  $CO_2$  регенерации раствора [7,8].

Предлагаемая схема в изометрии:

## Таблица 7 - Наименования составляющих деталей в схеме изометрии [7]

| ле паименование газмер количество | No | Наименование | Размер | Количество |
|-----------------------------------|----|--------------|--------|------------|
|-----------------------------------|----|--------------|--------|------------|

| п/п |               |         |       |
|-----|---------------|---------|-------|
| 1   | Задвижка ЗКЛ2 | Ду 600  | 4 шт. |
| 2   | Грязевик      | 600     | 4 шт. |
| 3   | Переходник    | 600x400 | 4 шт. |
| 4   | Переходник    | 500x600 | 2 шт. |

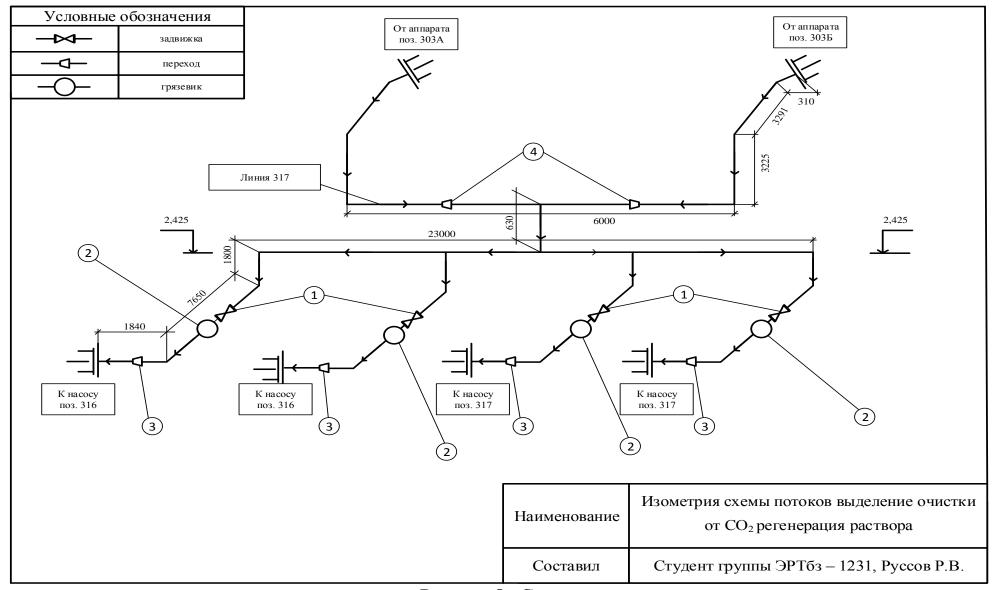



Рисунок 8 - Схема потоков

Расшифровка позиций: поз. 303 А, Б - регенератор - рекуператор; поз. 316 центробежный насос для подачи раствора МДЭА 2-го потока на регенераторы - рекуператоры; поз. 317 центробежный насос для подачи раствора МДЭА 1-го потока на регенераторы - рекуператоры; 1 - задвижка 3КЛ2 Ду 600; 2 - грязевик Ду 600; 3 - переход 600\*400; 4 - переход 500\*600.

При соединении всех четырех насосов будет происходить экономичность энергопотребления, уменьшение загроможденности всего ot  $CO_2$ , эффективность отделения очистки выдаваемого продукта, отделения очистки от СО<sub>2</sub>, глубоко увеличение мощности выхол регенерированного раствора.

Согласно расчету материального баланса увеличение мощности очистки от  $CO_2$ , при связывании всех четырех насосов в один коллектор произойдет на 8,7 % от нынешнего состояния рекуперации. Увеличиться качество выхода раствора, то есть по гидравлическому расчету мы имеем большой коэффициент в 38 %, что выход раствора будет глубоко регенерированный.

Данная реконструкция регенератора - рекуператора и изменение схемы потоков предаст стремление к примерному увеличение мощности производительности аммиака в 1800 тонн в сутки, защита окружающей среды от выхлопов, протечек и так далее улучшиться в полтора раза, за счет упрощения схемы потоков, и за счет энерго сбережения. при реконструкции рекуператора.

В данной работе была представлена модернизация процесса очистки от СО<sub>2</sub>, по части реконструкция регенератора - рекуператора с целью изменения потоков и получения глубоко регенерированного раствора.

Проведены и представлены:

- 1) Анализ существующих способов очистки от CO<sub>2</sub>, оптимизированы все параметры проведения данного процесса.
- 2) Исследование технологического процесса и модернизация отделения очистки от CO<sub>2</sub> OAO «ТОЛЬЯТТИАЗОТ».
- 3) Технологические и гидравлические расчеты вспомогательного оборудования для определения параметров оборудования и основных размеров, подтверждающие работоспособность и надежность конструкции.

Проведенные исследования и расчеты позволяют сделать вывод об возможности проведения модернизации и эффективности качества выхода раствора, при расчетах материального баланса и гидравлических расчетов рекуператора на 38 %, уменьшится сопротивление нижней части колонны на 9,5 %, значительно уменьшиться расход данного сырья для очистки раствора на 13,2%.

Данная реконструкция регенератора - рекуператора улучшит энерго сберегаемость, защита окружающей среды от вредных воздействий улучшится в значительное количество на 1,5%, какая была до реконструкции.

Данная тема бакалаврской работы актуальна, как показывают цифры из расчетов реконструкция регенератора - рекуператора и изменение схемы потоков очистки от CO<sub>2</sub> необходима, для увеличения мощности самого отделения очистки и для стремления добиться выработки на агрегатах AM 76 1750 - 1800 тонн в сутки производства аммиака.

### СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Driankov, D. Palm, R. Advances in Fuzzy Control / D. Driankov, R. Palm//Physica Verlag. Heidelberg. Germany 1992. P. 143 157.
- 2. Graaf G. H., Stamhuis E. J., Beenackersz A. A. Kinetics of low pressure ammiak synthesis / Chemical Engineering Science. 1993. Vol. 43. no. 14. pp. 3185 3207.
- 3. Seraya, O. V., Domin, D. A. Linear regression analysis of a small sample of fuzzy input data (2015) Journal of Automation and Information Sciences, 46 (9), pp. 28-53.
- 4. Аванесова, Г.А. Химическая деятельность: Историческая и современная химия и технологии очистки: учебное пособие / Г.А. Аванесова. М.: ИД Академия 2014. 389 с.
- 5. Азар, В.И., Туманов, С.Ю. Работа оборудования регенератора рекуператора / В.И. Азар, С. Ю. Туманов. М.: Химия, 2005. 412 с. 19с.
- 6. Аистов О.В. Химическое сопротивление при очистке газов: Учебное пособие для вузов. М.: ИНФРА-М, 2008.
  - 7. Амблер, Т. Основы работы тарелок/ Т. Амблер. М.: ОТС, 2006. 522 с.
- 8. Багиев, Г.Л., Тарасевич В.М., Анн Х. Конструкция ситчатых тарелок: учебник для вузов / Г.Л. Багиев, В. М. Тарасевич, Х. Анн. М.: Аппараты хиической технологии, 2008. 703 с.
- 9. Басовский, Л.Е. Очистка от  $CO_2$  Раствором МДЭА. Учебник. М.: ИНФРА-М, 2011.
- 10. Басовский, Л.Е., Протасьев В.Б. Технология конструкционных материалов: Учебник для ВУЗов. М.: ТолПИ, 2002. 140с.
- 11. Бассовский, Л.Е., Протасьева В.Б. Управление энерго и ресурсосбережением: Учебник для ВУЗов. М.: ИЭИ, 2006. 243 с.
  - 12. Боков, В.А., Гаяев В.И. Проблема «очистки»// 2013. № 8. С. 49-51.
- 13. В.Г. Рыжков, Л. А. Барышев, Р. Я. Усманов, П. Л. Костров. Инструкция АМ 14, часть 3 очистки газа от  $CO_2$  раствора МДЭА агрегата аммиака АМ 76 Тольятти 2007 г.

- 14. Ведерникова М.И., Таланкин В.С., Панова Т.М. / Общие требования к выполнению и оформлению курсовых работ и дипломных проектов (работ) ч.1 и 11, 2002 г., 106с.
- 15. Вершинин В.И., Перцев Н.В. Планирование и обработка результатов химического эксперимента. Омск: ОмГУ, 2008. 214 с.
- 16. Гидравлические и технологические расчеты колонн: учеб. пособие. Под общей редакцией профессора А.М. Николаева. 1969 260 с.
- 17. Гринберг Я. И. Проектирование химических производств / Я.И. Гринберг. М.: Химия, 1970. 83c.
- 18. Грошева Л.П. / Теоретические основы химической технологии. Методическое пособие. Новогородский государственный университет, 2007.
- 19. Кобринец, В.П. Автоматика, автоматизация и автоматизированные системы управления технологическими процессами: учеб. метод. пособие / В.П. Кобринцев, В.Д. Лебедев, В.Я. Максимов. Минск, БГТУ, 207. 83с
- 20. Коган В.Б. Равновесие между дикостью и парами / В.Б. Коган, В.М. Фридман, В.В. Кафаров М.: Наука, 1969. 646 с.
- 21. Котлер, Ф. Основы работы колонн. М.: Машиностроение, 2002 Лауреаты Нобелевской премии: Энциклопедия. Пер. с англ. М.: Прогресс, 1992 150 с.
- 22. Методы очистки конвертированная газа: Учебник. Под ред. С.Д. Ильенковой. 2-е изд., переработанное и дополненное. М.: ЮНИТИ-ДАНА, 2009.
- 23. Мишин, В.М. Очистка от  $CO_2$  с  $\Pi$ 3: Учебник. 2-е изд., переработанное и дополненное. М.: ИД Альянс, 20013.
- 24. Об альтернативном способе очистки конвертированного газа / Rawls Repeecal // Chem. and Eng. News. 2000. № 19. С 23-41.
- 25. Образовательный портал [электронный ресурс] / Замена раствора МЭА на раствора МДЭА, как способ снижения энерго затрат производства аммиака. Режим доступа http://chenetics.naod.ru/mea.htm свободный. (Дата обращения 20.04.2017)

- 26. Образовательный портал [электронный ресурс] / Основные стади очистки газа от окиси и диоксида углерода. Режим доступа http://alls.net/c42/3mz/ свободный. (Дата обращение 16.04.2017)
  - 27. Образовательный портал [электронный ресурс] / Производство жидкого аммиака и аммиачной воды. Режим доступа http://prolace.ru/himia-i-proizdstvo-plasss-staty/proivotvo-ammiaka-
  - 1471.htm свободный. (Дата обращения 17.04.2017)
- 28. Общая химическая технология: Материальный баланс химико технологического процесса: учеб. пособие для вузов / И. М. Кузнецова, Х. Э. Харлампиди, Н.Н. Батыршин. Гриф УМО. Москва: Логос, 2010. 263с
  - 29. Общая химия: учебник / Под ред. Ильенковой С.Д. М., 2007. 532 с.
- 30. Определение химического оборудования в коррозии: справочник / И.Я. Клиннов. Москва : Машиностроение, 2005. 576 с.
- 31. Орлов В.П. / Процессы в химической технологии. Справочные материалы. Учебное издание. Ленинград: УГЛТУ, 2007. 121с.
- 32. Основные процессы и аппараты химической технологии Учебн.пособие / Ю. И. Датнерский. - М.: Химия, 1983. - 546 с.
- 33. Основы расчетов химической аппаратуры и аппаратов / A.A. Лащиенский, А.Р. Тольчинский, справ. Москва, Екатеринбург 1973.
- 34. Постоянный технологический регламент OAO» Тольяттиазот», технология очистки от CO<sub>2</sub> агрегатов производства аммиака AM76.
- 35. Примеры и задачи по химической технологии: учеб. пособие для вузов / В. И. Игнатенкова, В. С. Бескова. Гриф МО. Москва : ИКЦ «Академкнига», 2015. 155 с.
  - 36. Производство аммиака/Под ред. В.П. Семенова М.: Химия, 1985.
- 37. Промышленная и технологическая очистка газов / В. Стураус; пер. с англ. Ю. Я. Косого. Москва : Химия, 1991. 645 с.
- 38. Процесс очистки от CO<sub>2</sub>, методы очищения: пат. 608640 США, МКП7 С 01 С1/04. /Whitney John P., Rao Ashok D. №09/200150; заявл. 25.11.1998; опубл. 14.06. 2001.

- 39. Радвель А. А. Справочник химических и термостатных величин / Радвель А. А. Пономарева А.М., Спб., 2009, 240с.
- 40. Сайт СтудопелиЯ [электронный ресурс] / Сырье для производства аммиака. Синтез из аммиака азотоводородной смеси (ABC). Режим доступа http://studopedia.ru/3\_191337\_sire-dlya-proizvodstva-ammiaka-sintez-ammiaka-iz-azotvodorodnoy-smesi-avs.html, свободный. (Дата обращения 16.04.2017)
- 41. Семенова, Т.А. Аксенов А.В. Технология очистки газов / Семенова Т.А., Лейтес И.ЛМ:, Химия 1997, 441с.
- 42. Сосуды и аппараты стальные сварные. Общие технические условия ГОСТ 26-291-87.
- 43. Сосуды и аппараты. Нормы и методы расчета на прочность. ГОСТ 14249-80.
- 44. Справочник азотчик: Химические свойства газов. Производство технологического газа. Очистка технологического газа. 2-е изд., переработка/Под редакцией Е.Я. Мельникова, М.: Химия 2011, 532 с.
- 45. Справочник химика [электронный ресурс] / Основы о регенераторе рекуператоре. Режим доступа http://ch21.info/info/845376/ свободный (Дата обращения 12.04.2017).
- 46. Стрельцов, М.М. Химическая и нефтехимическая промышленность / М.М. Стрельцов М.: «Химия», 1988, №8.
- 47. Сычева В.В. Лапонь А. С. Основные свойства термодинамики азота/ В.В. Сычев. М., Издательство стандартов, 1987. -382 с.
  - 48. Тавер, Е. Введение технологий в химии// Стройка, №19, 2008.
- 49. Теоретические основы синтеза аммиака. Под общей редакцией профессора А. М. Николаева. 2008. -243 с.
- 50. Тепло массообмен в химических установках аппаратах: №3 /[ред. кол.: Л.А. Бродкин (отв. ред.) и др.]. Иваново : ИЭИ, 2008. 188с.
- 51. Тепман, Л.Н. Основы недостатков МЭА: Учебное пособие. Под ред. проф. В.А. Швандара. М.: ИД Альянс, 2009

- 52. Химическая технология. Уч. пос./ Под общ. ред. С.А. Степаненко. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2003, 200 с.
- 53. Чебуннина Е.И., Баладаев Н. С. / Химическая технология. Часть 1. Сибирский Государственный Технологический Университет, 2008 год.
- 54. Шелдон Р.А. / Химические растворы на основе очистки. М.: 1987. 25c.
- 55. Щербин Л.А. Будкуте И.А. Рогов Е.А. (сост.) / Лабораторный практикум по курсу химическая технология. Могилев: 2006. 39 с.
  - 56. Юкельсон И.И., / Технология основного принципа очистки

#### ПРИЛОЖЕНИЕ

Таблица 8 - Характеристика основного технологического оборудования

|             |                                                                               |       | Очис                                                             | тка МДЭА-раствором                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|-------------------------------------------------------------------------------|-------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| по 1        | Наименовани<br>е<br>оборудования                                              | ество |                                                                  | Техническая характеристика                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1           | 2                                                                             | 3     | 4                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 306 А,<br>Б | Кипятильні<br>к<br>газовый<br>(чертеж<br>общ. Вида<br>N<br>К/ДН 70-<br>14,15) | и 2   | Нержавеющая сталь Углеродистая сталь Легированная сталь Биметалл | Горизонтальный аппарат кожухотрубчатого типа с U-образным пучком труб Д вн. = 2600 мм, Lобщ. = 13250 мм Трубки - 25+2 мм. Длина прямого участка - 9000 мм, n = 820 Гобщ .= 1125 м <sup>2</sup> Трубное пространство: Рраб. = н/в 30 кгс/см <sup>2</sup> (изб) Траб. = 137 - 180°C Среда - конвертированная парогазовая смесь Межтрубное пространство: Рраб. = н/в 1,35 кгс/см <sup>2</sup> (изб) Траб. = 115 - 130 °C Рабочая среда - раствор МДЭА СО <sub>2</sub> , пары Н <sub>2</sub> О, пары МДЭА |
| 307         | Кипятильни к паровой чертеж общ вида N К/ДН 77-276BO)                         |       | Нержавеющая сталь Углеродистая сталь                             | Вертикальный кожухотрубатый аппарат Д вн=1800 мм, H=7250 мм Трубки 25+2+4000 мм, n =2325 шт. F общ. = 672 м <sup>2</sup> Трубное пространство: Ppaб. = н/в 1,35 кгс/см <sup>2</sup> (изб) Траб. = 125 - 130°C, Среда: парогазовая смесь,раствор МДЭА Межтрубное пространство: Ppaб. = н/в 7 кгс/см <sup>2</sup> (изб) Траб. = 170 - 180°C, Рабочая среда - водяной пар и конденсат                                                                                                                    |

| 309  | Сепаратор к  | 1 | нержавеющая        | Вертикальный сварной аппарат: Двн = 2400 мм, Н = 5725 мм                      |
|------|--------------|---|--------------------|-------------------------------------------------------------------------------|
|      | газовому     |   | сталь              | Рраб. = $H/B$ 30 кгс/см <sup>2</sup> (изб), Траб. = $150$ °C                  |
|      | кипятильни   |   | углеродистая сталь | Рабочая среда: конвертированная парогазовая смесь, газовый                    |
|      | ку           |   | легированная сталь | конденсат                                                                     |
| 312, | Холодильни   | 2 | Нержавеющая        | Аппарат воздушного охлаждения, зигзагообразный состоит из                     |
| 313  | к раствора 2 |   | сталь              | 30 секций                                                                     |
|      | и 1 потоков  |   | Углеродистая       | Трубки в секции $25+2+12000$ мм, $n = 123$ шт, Fобщ. $= 57000$ м <sup>2</sup> |
|      | МДЭА         |   | сталь              | Коэффициент оребрения 14,6                                                    |
|      |              |   | Алюминий           | Рраб. = н/в 12 кгс/см <sup>2</sup> (изб), Траб. = 75 - 42°C                   |
|      |              |   |                    | Рабочая среда - раствор МДЭА                                                  |
|      |              |   |                    | Электродвигатель во взрывонепроницаемом исполнении с                          |
|      |              |   |                    | маркировкой ВЗГ N = 40 квт. Количество вентиляторов - 15                      |
|      |              |   |                    | шт.                                                                           |

| 314A 315A       | Центробежный насос для подачи раствора МДЭА2-го и 1-го потоков на абсорбер с приводом от паровой турбины (марки ХБ-630/390)           | 2 | Нержавеющая сталь Углеродистая сталь | Подача - 650 м³/час, Напор - 390 м.ст.ж. Рвс = 0,1 - 0,4 кгс/см² (изб) Тсреды = 30 - 80°С Рабочая среда - раствор МДЭА Рраб пара на входном патрубке турбины 36 - 40,5 кгс/см²(изб) Т пара = 360 - 380°С Рраб пара на выходном патрубке не выше 7,0 кгс/см² (изб) |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 314Б315Б        | Центробежный насос для подачи раствора МДЭА 2 и 1-го потоков на абсорбер с приводом от электродвигате ля(марки ХБ-30/390 ХМС-650-390) | 2 | Нержавеющая сталь Углеродистая сталь | Подача - 650 м³/час Напор - 390 м.ст.ж Рвс = 0,1 - 0,4 кгс/см² Тсреды = 30 - 80°С Рабочая среда - раствор МДЭА Электродвигатель во взрывонепроницаемом исполнении с маркировкой ВЗТ4 N эл. = 1250 квт. n = 1480 об/мин.                                           |
| 316-1/2 317-1/2 | Центробежный насос для подачи раствора МДЭА2-го и 1-                                                                                  | 4 | Нержавеющая сталь Углеродистая сталь | Подача - 650 м <sup>3</sup> /час.<br>Напор - 92 м.ст.ж.<br>Тереды -всас 316-1/2 -90- 110°С всас 317-1/2 -110-<br>120°С<br>Рабочая среда - раствор МДЭА                                                                                                            |

|                | го потоков на регенератор-рекуператор (марка ДХ-650-90)     |   |                       | Электродвигатель во взрывонепроницаемом исполнении с маркировкой ВЗТ4 N эл. = 315 квт n = 1480 об/мин                                                                                                                          |
|----------------|-------------------------------------------------------------|---|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ф-2/1,2        | Фильтр<br>угольный<br>(чертеж общ.<br>вида 98-6.000<br>ВО)  | 2 | Углеродистая<br>сталь | Вертикальный сварной аппарат заполненный углем Двн=3000 мм, Рраб. = н/б 6 кгс/см <sup>2</sup> Н = 5270 мм, Траб. = 46-60°С Рабочая среда раствор МДЭА Перепад н/б 1,5 кг/см <sup>2</sup>                                       |
| Ф-1/1, 2, 3, 4 | Фильтр жидкостной сетчатый (чертеж общ. вида 97-127 000 ВО) | 4 | Углеродистая<br>сталь | Вертикальный сварной аппарат Двн = $600$ мм, Перепад н/б $0.5$ кг/см <sup>2</sup> Рраб = н/б $6$ кг/см <sup>2</sup> , V - $0.4$ м <sup>3</sup> Траб = $46-60$ °C, F фильтр. = $1.53$ м <sup>2</sup> Рабочая среда раствор МДЭА |
| 319-1          | Отделитель парового конденсата кипятильника                 | 1 | Углеродистая<br>сталь | Вертикальный сварной аппарат<br>Двн = 900 мм, Рраб. = н/в 7 кгс/см <sup>2</sup> (изб)<br>Нобщ. = 2335 мм, Траб. = н/в 180°C<br>Рабочая среда - водяной пар конденсат                                                           |
| 320<br>325     | Промежуточна я емкость раствора МДЭА 2-го и 1-го потоков    | 2 | Углеродистая<br>сталь | Горизонтальный сварной аппарат Двн = $3200$ мм, Рраб. = $0.1 - 0.4$ кгс/см <sup>2</sup> (изб) Lобщ. = $8640$ мм, Траб. = $60 - 80$ °C, V = $63$ м <sup>3</sup> Рабочая среда - раствор МДЭА пары МДЭА                          |
| 322            | Сборник<br>флегмы                                           | 1 | Углеродистая<br>сталь | Вертикальный сварной аппарат<br>Двн = 3200 мм, H = 9260 мм<br>Аппарат имеет внутри сепарирующее устройство и                                                                                                                   |

|     |                                                |   |                       | 2 колпачковые тарелки, Рраб. = 0,4 - 0,5 кгс/см <sup>2</sup> (изб) Траб. = н/в 50°С, Рабочая среда - СО <sub>2</sub> , конденсат                                                                      |
|-----|------------------------------------------------|---|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 323 | Центробежный насос для флегмы марка ЦНС-38 -88 | 2 | Углеродистая<br>сталь | Подача - 38 м <sup>3</sup> /час, Напор - 88 м.ст.ж., Тереды = до 20 - 48°C Рабочая среда - флегма Электродвигатель во взрывонепроницаемом исполнении с маркировкой ВЗГ N эл. = 17 квт. n = 2940об/мин |

| 324   | Электроприв одной трехскальчат ый насос для подачи флегмы на | 2 | Нержавеющая сталь<br>Углеродистая сталь | Подача - 2 - 10 м <sup>3</sup> /час Рвс = 0,4 - 0,5 кгс/см <sup>2</sup> (изб) Рнаг. = н/в 40 кгс/см <sup>2</sup> (изб) Тсреды = 20 - 78°С Рабочая среда - флегма Электродвигатель во взрывонепроницаемом исполнении с |
|-------|--------------------------------------------------------------|---|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 326   | абсорбер Расширитель ный бак пара вторичного вскипания       | 1 | Углеродистая сталь                      | маркировкой ВЗГ N эл. = 22 квт. n=2940 об/мин Горизонтальный сварной аппарат Двн. = 2200 мм, Рраб. = н/в 1,0 кгс/см <sup>2</sup> (изб) L = 3200 мм, Траб. = 170 - 120°C Рабочая среда - водяной пар, конденсат        |
| 333-1 | Емкость<br>сливная<br>дренажная                              | 1 | Углеродистая сталь                      | Горизонтальный сварной аппарат Двн = $2000$ мм, Lобщ. = $6950$ мм, V = $20$ м <sup>3</sup> Рраб = под налив +0,05 кгс/см <sup>2</sup> , Траб. = $20 - 100$ °C Рабочая среда –МДЭА-раствор                             |
| 333-2 | Емкость<br>сливная                                           | 1 | Углеродистая сталь                      | Горизонтальный сварной аппарат Рабочая среда –МДЭА-раствор Концентрация не ниже 98%.                                                                                                                                  |
| 335   | Емкость для<br>МДЭА<br>раствора                              | 1 | Углеродистая сталь                      | Вертикальный сварной аппарат Двн = $8000$ мм, V = $602.9$ м <sup>3</sup> , H = $13130$ мм Р раб. = под налив + $0.05$ кгс/см <sup>2</sup> , T раб. = $30 - 40$ °C Рабочая среда -МДЭА раствор                         |
| 338   | Бак для свежего раствора щелочи                              | 1 | Углеродистая сталь                      | Вертикальный сварной аппарат<br>Двн = $2200$ мм, Рраб = под налив, H = $2600$ ммТраб. = $20$ - $40$ °C, V = $10$ м $^3$                                                                                               |

| 339  | Растворитель<br>каустика | 1 | Углеродистая<br>сталь | Прямоугольный сварной аппарат<br>Размеры 1450+1100+1000 мм           |
|------|--------------------------|---|-----------------------|----------------------------------------------------------------------|
|      |                          |   |                       | $V = 1.32 \text{ м}^3$ , Рраб. = под налив, Траб. = $40^{\circ}$ С   |
|      |                          |   |                       | Рабочая среда - раствор NaOH или КОН                                 |
| 340  | Центробежны              | 1 | Углеродистая          | Подача = $8 \text{ м}^3/\text{час}$ , Напор = $18 \text{ м.ст.ж.}$   |
|      | й насос для              |   | сталь                 | Подпор на всасе - 400 мм.ст.ж, Тсреды = 40°C                         |
|      | щелочи                   |   |                       | Рабочая среда - раствор NaOH                                         |
|      | (марка 1 1/2х-           |   |                       | Электродвигатель во взрывонепроницаемом исполнении с                 |
|      | 6Д)                      |   |                       | маркировкой ВЗГ N эл. = 3 квт, $n = 2900$ об/мин                     |
| 341  | Центробежны              | 2 | Углеродистая          | Подача - 125 м <sup>3</sup> /час, Напор - 55 м.ст.ж., Тсреды = 125°C |
| 341  | й насос для              | 2 | сталь                 | Рабочая среда - конденсат                                            |
|      | конденсата               |   | Clusib                | Электродвигатель во взрывонепроницаемом исполнении с                 |
|      | (марка КС-               |   |                       | маркировкой ВЗГ N эл. = $40$ квт, n = $1450$ об/мин                  |
|      | 124-55)                  |   |                       |                                                                      |
| 342  | Обратный                 | 2 | Углеродистая          | Вертикальный сварной аппарат                                         |
|      | гидрозатвор              |   | сталь                 | Двн = $600$ мм, Рраб. = под налив $+0.05$ кгс/см <sup>2</sup>        |
|      |                          |   |                       | $H = 1710$ мм, Траб. = $25 - 30^{\circ}$ C                           |
|      |                          |   |                       | Рабочая среда - вода, азот                                           |
| 343  | Предохраните             | 2 | Углеродистая          | Вертикальный сварной аппарат                                         |
|      | льный                    |   | сталь                 | Двн = $600$ мм, Траб. = $15 - 30^{\circ}$ С                          |
|      | гидрозатвор              |   |                       | H = 1710 мм, Рраб. = под налив + 0,05 кгс/см <sup>2</sup>            |
| 2.71 |                          |   |                       | Рабочая среда – вода, азот                                           |
| 351  | Фильтр                   | 1 | Углеродистая          | Вертикальный сварной аппарат, заполненный песком, гравием и          |
|      | МДЭА                     |   | сталь                 | каменными шарами                                                     |
|      | раствора                 |   |                       | Двн = 1200 мм, Рраб. = 50 кгс/см <sup>2</sup> (изб)                  |
|      | песчаный                 |   |                       | Нобщ. = 3440 мм, Трасч. = 170°C                                      |
|      |                          |   |                       | Рабочая среда - раствор МДЭА                                         |

| 352          | Фильтр МДЭА раствора угольный                               | 1 | Углеродистая<br>сталь                                            | Вертикальный сварной аппарат заполненный углем, гравием каменными шарами Двн = 1200 мм, Рраб. = Ррасч. = 50 кгс/см <sup>2</sup> (изб) Нобщ. = 3440 мм, Трасч = 170°C Рабочая среда - раствор МДЭА           |
|--------------|-------------------------------------------------------------|---|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 312A<br>313A | Теплообменник и для охлаждения раствора 1-го и 2-го потоков | 2 | Нержавеющая<br>сталь                                             | Горизонтальный кожухотрубчатый аппарат $Д = 800$ мм, Ррасч. = $25$ кгс/см <sup>2</sup> $L = 7225$ мм, Трасч. = $200^{0}$ C, $H = 1254$ мм $F$ общ = $181+4=724$ м <sup>2</sup>                              |
| 359          | Сепаратор на чистой фракции CO <sub>2</sub>                 | 1 | Нержавеющая сталь Углеродистая сталь Легированная сталь Биметалл | Вертикальный сварной аппарат Двн. = $2600$ мм, Рраб. = $3$ кгс/см $^2$ (изб) Н = $6615$ мм, Траб. = $100$ оС Рабочая среда – $CO_2$ , раствор МДЭА, пары воды                                               |
| 363a         | Центробежный насос для МДЭА раствора (XE 100-65-200-55-92)  | 1 | Нержавеющая<br>сталь                                             | Подача - 100 м3/час, Напор - 50 м ст.ж., Тсреды = 46-60°C Рабочая среда – раствор МДЭА Электродвигатель во взрывонепроницаемом исполнении с маркировкой ВЗГ N эл. = 37 квт, n = 2940 об/мин                 |
| 361          | Сепаратор на грязной фракции CO <sub>2</sub>                | 1 | Нержавеющая сталь Углеродистая сталь                             | Вертикальный сварной аппарат<br>Двн. = 1600 мм, Рраб. = 0,4 - 0,5 кгс/см <sup>2</sup> (изб)<br>Н = 6170 мм, Траб. = 100°C<br>Рабочая среда - CO <sub>2</sub> , H <sub>2</sub> , CO, пары воды, раствор МДЭА |
| 363          | Центробежный насос для МДЭА раствора (марка 4X-12A-1)       | 1 | Углеродистая<br>сталь                                            | Подача - 90 м <sup>3</sup> /час, Напор - 33 м.ст.ж., Тсреды = 46-60°C Рабочая среда - раствор МДЭА Электродвигатель во взрывонепроницаемом исполнении с маркировкой ВЗГ N эл. = 30 квт, n = 2900 об/мин     |
|              |                                                             |   | M                                                                | Гетанирование                                                                                                                                                                                               |

| 352          | Фильтр МДЭА раствора угольный                               | 1 | Углеродистая<br>сталь                                            | Вертикальный сварной аппарат, заполненный углем, гравием каменными шарами:  Двн = 1200 мм, Рраб. = Ррасч. = 50 кгс/см <sup>2</sup> (изб), Нобщ. = 3440 мм  Трасч = 170°С, Рабочая среда - раствор МДЭА |
|--------------|-------------------------------------------------------------|---|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 312A<br>313A | Теплообменник и для охлаждения раствора 1-го и 2-го потоков | 2 | Нержавеющая<br>сталь                                             | Горизонтальный кожухотрубчатый аппарат $Д = 800$ мм, Ррасч. = $25$ кгс/см $^2$ , $L = 7225$ мм, Трасч. = $2000$ С $H = 1254$ мм, Гобщ = $181+4=724$ м $^2$                                             |
| 359          | Сепаратор на чистой фракции CO <sub>2</sub>                 | 1 | Нержавеющая сталь Углеродистая сталь Легированная сталь Биметалл | Вертикальный сварной аппарат Двн. = $2600$ мм, Рраб. = $3$ кгс/см $^2$ (изб), H = $6615$ мм, Траб. = $1000$ С Рабочая среда - $CO^2$ , раствор МДЭА, пары воды                                         |
| 363a         | Центробежный насос для МДЭА раствора (XE 100-65-200-55-92)  | 1 | Нержавеющая<br>сталь                                             | Подача - 100 м3/час, Напор - 50 м ст.ж., Тсреды = 46-60°С Рабочая среда – раствор МДЭА Электродвигатель во взрывонепроницаемом исполнении с маркировкой ВЗГ N эл. = 37 квт, n = 2940 об/мин            |
| 361          | Сепаратор на грязной фракции CO <sub>2</sub>                | 1 | Нержавеющая сталь Легированная сталь                             | Вертикальный сварной аппарат Двн. = $1600$ мм, Рраб. = $0.4 - 0.5$ кгс/см $^2$ (изб) Н = $6170$ мм, Траб. = $100$ °C Рабочая среда - $CO_2$ , $H_2$ , $CO$ , пары воды, раствор МДЭА                   |
| 363          | Центробежный                                                | 1 | Углеродистая                                                     | Подача - 90 м $^3$ /час, Напор - 33 м.ст.ж., Тсреды = 46-60 $^{\circ}$ С                                                                                                                               |

|     | насос для<br>МДЭА<br>раствора<br>(марка 4X-12A-<br>1)             |   | сталь                                                   | Рабочая среда - раствор МДЭА Электродвигатель во взрывонепроницаемом исполнении с маркировкой ВЗГ N эл. = 30 квт, n = 2900 об/мин                                                                                                                                                                                                                         |
|-----|-------------------------------------------------------------------|---|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                                   |   | Мета                                                    | анирование                                                                                                                                                                                                                                                                                                                                                |
| 1   | 2                                                                 | 3 | 4                                                       | 5                                                                                                                                                                                                                                                                                                                                                         |
| 501 | Метанатор<br>(чертеж общ.<br>вида № КО/М<br>68-1516В)             | 1 | Легированная сталь Углеродистая сталь Нержавеющая сталь | Вертикальный сварной аппарат Двн = 3800 мм, Нобщ. = 10050 мм, Объем никельалюмохромового катализатора - 40,5 м³, Тип ТО - 2, НКМ, Рраб. = 26 кгс/см² (изб) Траб. 350°C, Рабочая среда - неочищенная азотоводородная смесь                                                                                                                                 |
| 502 | Подогреватель питательной воды (чертеж общ. вида № КО/М 70-1502A) | 1 | Легированная сталь Углеродистая сталь Нержавеющая сталь | Вертикальный сварной кожухотрубчатый аппарат с витыми трубками Двн = 1800 мм, Нобщ. = 8520 мм, Трубки 16+2+5500 мм, п = 398 F = 915 м² Трубное пространство: Рраб. = 130 кгс/см² (изб), Траб. = 102 - 300°C Рабочая среда - питательная вода Межтрубное пространство: Рраб. = 27 кгс/см² (изб) Траб. = 400 - 126°C, Рабочая среда - азотоводородная смесь |
| 503 | Подогреватель питательной воды низкого давления                   | 1 | Нержавеющая сталь Углеродистая сталь Двухслойная сталь  | Горизонтальный кожухотрубчатый аппарат с V - образными трубками: Двн = 1200 мм, Lобщ. = 7780 мм, Трубки - 20+2+13000 мм, n = 835, F = 600 м <sup>2</sup> Трубное пространство: Рраб. = 8 кгс/см <sup>2</sup> (изб), Траб. = 74 - 98°C                                                                                                                     |

| 504<br>505 | (чертеж общего вида № КО/М 70-3006А)  Аппарат воздушного охлаждения (чертеж общего вида № АВГУ-320/1.00.00. 000.ВО) | 1 | Углеродистая<br>сталь<br>Алюминиевая<br>сталь | Рабочая среда — недеаэрированная питательная вода Межтрубное пространство: Рраб. = 27 кгс/см² (изб) Траб. = 80 - 140°С, Рабочая среда-азотоводородная смесь Тип AB3-MT/1 зигзагообразный. Состоит из 6-ти секций Трубки 25+2+1200 мм, Количество труб в секции - 123 Общая поверхность по оребренным трубам - 11400 м² Трубное пространство: Рраб. = 28 кгс/см² (изб), Траб. = 60 - 43°С Рабочая среда — азотоводородная смесь Производительность вентилятора 300000 нм³/час  Тип AB3-MT/1 зигзагообразный. Состоит из 6-ти секций Трубки 25+2+1200 мм, Количество труб в секции - 123 Общая поверхность по оребренным трубам - 11400 м² Трубное пространство: Рраб. = 28 кгс/см² (изб), Траб. = 60 - 43°С Рабочая среда — азотоводородная смесь Производительность вентилятора 300000 нм³/час |
|------------|---------------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                     |   | Разгонка га                                   | зового конденсата                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 119        | Подогреватель неочищенной азотоводородно й смеси конвертирован ным газом 1                                          | 1 | Углеродистая сталь Нержавеющая сталь Биметалл | Горизонтальный аппарат кожухотрубчатого типа с V - образными трубками: Двн. = $1400$ мм, Lобщ. = $8315$ мм, Трубки $20+2+6000$ мм, $n=1165$ шт, $F=900$ м $^2$ Трубное пространство: Рраб. = $27$ кгс/см $^2$ (изб), Траб. = $35$ - $97$ °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|     | ступени<br>(чертеж общего<br>вида №КО/М<br>703008б, КО/Ь<br>75-3001ВО)                                      |   |                                                                       | Рабочая среда - неочищенная азотоводородная смесь Межтрубное пространство: Рраб. = 28 кгс/см <sup>2</sup> Траб. = 120 - 85°C Рабочая среда - конвертированный газ                                                                                                                                                                                                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | 2                                                                                                           | 3 | 4                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 120 | Аппарат воздушного охлаждения (чертеж общего вида ВНИИНефтема ша № БАВО-2.00.00.000ВО, БАВО-2.04.00.000.ВО) | 1 | Углеродистая<br>сталь<br>Нержавеющая<br>сталь<br>Алюминиевый<br>сплав | Зигзагообразный аппарат, Общая тепловая нагрузка 14100000 ккал/час, Количество секций - 18 шт., Количество труб в секции - 123 шт., Трубки 25+2+12000 мм, Коэффициент оребрения 14,6 Гореб. = 34200 м² Рраб. = 30 кгс/см² (изб), Траб. = 120 - 20°C Рабочая среда-конвертированный газ Количество вентиляторов - 9 шт., Qвент 300000 нм³/час Приводы вентиляторов от электродвигателей ВАСО-37 во взрывонепроницаемом исполнении с маркировкой ВЗГ N = 37 квт, n = 410 об/мин |
| 123 | Сепаратор -<br>влагоотделител<br>ь (чертеж<br>общего вида N<br>КО/Ь 71-<br>1542BO)                          | 1 | Биметалл<br>Нержавеющая<br>сталь                                      | Вертикальный сварной аппарат: Двн. = $2600$ мм, Н общ. = $7800$ мм V - $32$ м $^3$ , Рраб. = $30$ кгс/см $^2$ , Траб. = $40$ °C Рабочая среда – конвертированный газ, газовый конденсат                                                                                                                                                                                                                                                                                       |
| 124 | Подогреватель питательной воды газовым конденсатом (чертеж общего вида                                      | 1 | Нержавеющая сталь Углеродистая сталь Биметалл                         | Горизонтальный аппарат кожухотрубчатого типа с V - образными трубками, состоит из трех элементов Характеристика элемента: Двн. = 800 мм, Lобщ. = 7150 мм Трубки 20+2+6000 мм, n = 338 шт. F 3-х элементов -789 м <sup>2</sup> Трубное пространство: Рраб. = 10 кгс/см <sup>2</sup> (изб), Траб. = 30 - 100°C                                                                                                                                                                  |

|     | Гипронефтема                      |   |              | Рабочая среда - питательная вода                                              |
|-----|-----------------------------------|---|--------------|-------------------------------------------------------------------------------|
|     | Ш                                 |   |              | Межтрубное пространство: Рраб. = 23,5 кгс/см <sup>2</sup> (изб)               |
|     | № 800-A)                          |   |              | Траб. = $40 - 150^{\circ}$ С                                                  |
|     |                                   |   |              | Рабочая среда - газовый конденсат                                             |
| 125 | Подогреватель                     | 1 | Нержавеющая  | Горизонтальный аппарат кожухотрубчатого типа.                                 |
|     | питательной                       |   | сталь        | Состоит из 3-х элементов                                                      |
|     | воды газовым                      |   | Углеродистая | Характеристика элемента: Двн = 600 мм, L = 7910 мм                            |
|     | конденсатом                       |   | сталь        | Трубки $20+2+6000$ мм, F $3-x$ элементов = $441 \text{ м}^2$                  |
|     | (600-ΤΚΓ-1-16-<br>Б620Γ6-1-гр. A) |   | Биметалл     | Трубное пространство: Рраб. = 8 кгс/см <sup>2</sup> (изб), Траб. = 30 - 100°C |
|     | 1 /                               |   |              | Рабочая среда - питательная вода                                              |
|     |                                   |   |              | Межтрубное пространство: Рраб. =6-8 кгс/см <sup>2</sup> (изб); Траб.          |
|     |                                   |   |              | $= 170-40^{\circ}C$                                                           |
|     |                                   |   |              | Рабочая среда - паровой конденсат                                             |
| 127 | Насос для                         | 2 | Нержавеющая  | Центробежный. Подача - $10 \text{ м}^3$ /час, Рнагн. = $40 \text{ кгс/см}^2$  |
|     | впрыска                           |   | сталь        | $PBcaca = 32 \ \kappa \Gamma c/cm^2$ , $T \ cpeды = 130 - 150^{\circ}C$       |
|     | газового                          |   |              | Рабочая среда - газовый конденсат.                                            |
|     | конденсата в                      |   |              | Электродвигатель во взрывонепроницаемом исполнении с                          |
|     | трубопровод                       |   |              | маркировкой ВЗГ типа 5 агр ВАО 4А 260М293-37 квт,                             |
|     | конвертирован                     |   |              | n = 2940 об/мин, 6 агр20BAO-62-2-У3 - 17 квт, n = 2940                        |
|     | ного газа после                   |   |              | об/мин                                                                        |
|     | конвертора СО                     |   |              | 7 агрВАО -71-4 22 квт, n = 1500 об/мин                                        |
|     | 2-й ступени                       |   |              |                                                                               |
|     | ГОСТ 19553-74                     |   |              |                                                                               |
| 129 | Холодильник                       | 1 | Нержавеющая  | Горизонтальный аппарат кожухотрубчатого типа                                  |
|     | газового                          |   | сталь        | Двн. = 600 мм, Lобщ. = 1910мм., Трубки 20+2+4000 мм.                          |
|     | конденсата                        |   |              | F=93 m <sup>3</sup> ,                                                         |
|     | (600-ХНГ-25-                      |   |              | n = 370  m.                                                                   |
|     | M10)                              |   |              | Трубное пространство: Рраб. = $2,5$ кгс/см $^2$ (изб), Траб. = $27$ -         |

|     | 20Г4-2 гр. Б   |   |                  | 40°C                                                                 |
|-----|----------------|---|------------------|----------------------------------------------------------------------|
|     |                |   |                  | Рабочая среда - оборотная вода.                                      |
|     |                |   |                  | Межтрубное пространство: Рраб. = 1,6кгс/см <sup>2</sup> (изб), Траб. |
|     |                |   |                  | $= 57-45^{\circ}C$                                                   |
|     |                |   |                  | Рабочая среда - газовый конденсат.                                   |
| 131 | Фильтр         | 2 | Углеродистая     | Вертикальный сварной аппарат                                         |
|     | газового       |   | сталь            | Двн. = 800мм, Нобщ. = 2770мм                                         |
|     | конденсата под |   | Нержавеющая      | Рраб. = $30$ кгс/см <sup>2</sup> (изб)                               |
|     | давлением      |   | сталь            | Траб. = 190°C                                                        |
|     | чертежи        |   | Легированная     | Рабочая среда - газовый конденсат                                    |
|     | общего вида    |   | сталь            |                                                                      |
| 135 | Бак парового   | 1 | Углеродистая     | Горизонтальный сварной аппарат                                       |
|     | конденсата     |   | сталь            | Двн. = $2400$ мм, Нобщ. = $6200$ мм, $V = 25$ м <sup>3</sup>         |
|     |                |   |                  | Рраб под налив, Траб. = 90°C                                         |
|     |                |   |                  | Рабочая среда - паровой конденсат                                    |
| 139 | Бак            | 1 | Углеродистая     | Вертикальный сварной аппарат                                         |
|     | отработанного  |   | сталь            | Двн. = 2200 мм, Нобщ. = 3780 мм, $V = 10 \text{ м}^3$                |
|     | газового       |   |                  | Рраб под налив., Траб до 70 °C                                       |
|     | конденсата     |   |                  | Рабочая среда - газовый конденсат, вода                              |
| 140 | Гидрозатвор к  | 1 | Углеродистая     | Вертикальный сварной аппарат                                         |
|     | баку           |   | сталь            | Двн. = $1400$ мм, Нобщ. = $1800$ мм, $V = 2.5$ м <sup>3</sup>        |
|     | отработанного  |   |                  | Ррабпод налив, Траб до 70°C                                          |
|     | газового       |   |                  | Рабочая среда - газовый конденсат, вода.                             |
|     | конденсата     |   |                  |                                                                      |
| 150 | Отпарная       | 1 | Нержавеющая      | Вертикальный сварной аппарат                                         |
|     | колонна        |   | сталь            | Двн. = 1800 мм, Нобщ. = 25700 мм                                     |
|     | конденсата     |   | Низколегированая | Объем колец Рашига 29,7 м <sup>3</sup>                               |
|     | (чертеж общего |   | сталь            | Рраб. н/в 1,8 кгс/см <sup>2</sup> , Траб н/в 140°С                   |
|     | вида КО/М 70-  |   |                  | Рабочая среда - газовый конденсат, водяные пары, NH <sub>3</sub> ,   |

|     | 911)                                                     |   |                                      | $CO_2$                                                                                                                                                                                                 |
|-----|----------------------------------------------------------|---|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 151 | Сепаратор<br>(чертеж общего<br>вида КО/М 70-<br>890 "A") | 1 | Нержавеющая сталь Углеродистая сталь | Горизонтальный сварной аппарат Двн. = $1000$ мм, Lобщ. = $3750$ мм, V = $2.5$ м $^3$ Рраб. = $1.4$ кгс/см $^2$ (изб), Траб. = $124$ °C Рабочая среда - газовый конденсат, пары воды, NH $_3$ , CO $_2$ |