

Н.В. Шаврина, С.В. Шлыков

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ. РЕЗОНАНС В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА

Рабочая тетрадь

Тольятти Издательство ТГУ 2025

Министерство науки и высшего образования Российской Федерации Тольяттинский государственный университет

Н.В. Шаврина, С.В. Шлыков

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ. РЕЗОНАНС В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА

Рабочая тетрадь

Тольятти Издательство ТГУ 2025 УДК 621.3.01(075.8) ББК 31.211я73 Ш 146

Рецензенты:

главный инженер ООО «Энергоремсервис» *И.Г. Жиляев*; д-р техн. наук, профессор, заведующий кафедрой «Электроснабжение и электротехника» Тольяттинского государственного университета *В.В. Вахнина*.

Ш 146 Шаврина, Н.В. Теоретические основы электротехники. Резонанс в электрических цепях синусоидального тока : рабочая тетрадь / Н.В. Шаврина, С.В. Шлыков. — Тольятти : Издательство ТГУ, 2025. — 21 с. — ISBN 978-5-8259-1751-1.

Рабочая тетрадь предназначена для самостоятельного и взаимного контроля знаний обучающихся по теме «Резонанс в электрических цепях синусоидального тока». Она поможет выяснить условия возникновения и способы получения резонанса в электрических цепях синусоидального тока, научиться рассчитывать синусоидальную цепь при резонансе.

Предназначена для студентов, обучающихся по направлениям подготовки бакалавров 13.03.02 «Электроэнергетика и электротехника», 11.03.04 «Электроника и наноэлектроника» очной и заочной форм обучения (в том числе с использованием ДОТ).

УДК 621.3.01(075.8) ББК 31.211я73

Рекомендовано к изданию научно-методическим советом Тольяттинского государственного университета.

© Шаврина Н.В., Шлыков С.В., 2025

ISBN 978-5-8259-1751-1

© ФГБОУ ВО «Тольяттинский государственный университет», 2025

ВВЕДЕНИЕ

Рабочая тетрадь предназначена для организации практических занятий студентов, обучающихся по направлениям подготовки бакалавров 13.03.02 «Электроэнергетика и электротехника», 11.03.04 «Электроника и наноэлектроника», изучающих дисциплину «Теоретические основы электротехники». Рабочая тетрадь составлена в соответствии с требованиями, предусмотренными рабочей программой данной дисциплины.

Цель курса «Теоретические основы электротехники» — формирование теоретического базиса, навыков практических расчетов и компьютерного моделирования в области электротехники, необходимых для успешного освоения профильных дисциплин.

Для достижения поставленной цели в процессе освоения курса обучающиеся должны решить следующие задачи:

- изучить электромагнитные явления в цепях, представленных идеализированными элементами схем замещения, при различных воздействиях и режимах;
- ознакомиться с терминологией и символикой теории линейных электрических цепей постоянного и переменного тока в установившемся режиме;
- приобрести навыки применения методов расчета, анализа и моделирования линейных электрических цепей с использованием схем замещения;
- освоить способы записи уравнений состояния элементов и участков цепей в установившемся режиме.

Данная дисциплина относится к блоку 1 обязательной части учебного плана и ориентирована на формирование у обучающихся компетенций заданного уровня: способность использовать методы анализа и моделирования электрических цепей и электрических машин.

В процессе изучения дисциплины обучающиеся должны:

- знать основы теории активных и пассивных линейных электрических цепей синусоидального тока;
- уметь проводить анализ и моделировать линейные электрические цепи синусоидального тока;

 владеть навыками работы с программами для создания математических и компьютерных моделей.

Формы и виды текущего контроля успеваемости обучающихся определяются рабочей программой дисциплины. Текущий контроль успеваемости обучающихся является постоянным, осуществляется в течение семестра по итогам участия обучающихся на практических занятиях и посредством реализации накопительной балльно-рейтинговой системы (БРС) оценки успеваемости.

Баллы, выставляемые за каждую из выполненных работ, прописываются в технологической карте дисциплины, актуализируемой перед началом учебного семестра.

Рабочая тетрадь по дисциплине «Теоретические основы электротехники» необходима для оказания методической и организационной помощи обучающимся в усвоении знаний по дисциплине и приобретении практических умений и навыков решения типовых задач.

Рабочая тетрадь рассчитана на проведение практического занятия по теме «Резонанс в электрических цепях синусоидального тока», содержит практическую, теоретическую части и задания для самостоятельного решения, а также примеры решения задач и список рекомендуемой литературы.

Практическое занятие рассчитано на два академических часа.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦИИ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ НА ПРАКТИЧЕСКИХ ЗАНЯТИЯХ

Чистые поля рабочей тетради позволяют студентам при выполнении заданий заносить ответы прямо в рабочую тетрадь (вписывает, подчеркивает, чертит, заполняет таблицы).

Номер варианта для решения задач с различными числовыми значениями выдается студенту преподавателем.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ

Цель занятия — выяснить условия возникновения и способы получения резонанса в электрических цепях переменного тока, научиться рассчитывать синусоидальную цепь при резонансе.

Практическая часть

1. Выберите правильный ответ.

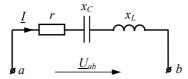
№	Вопрос	Варианты ответов	Ответ
1.1	«При резонансе в произвольной цепи, содержащей резисторы,	а) мнимая часть входного сопротивления отрицательна	
	катушки индуктивности и конденсаторы	б) угол между векторами напряжения и тока на входе цепи равен π	
		в) вещественная часть входного сопротивления равна нулю	
		г) сдвиг фаз между током и напряжением на входе цепи равен нулю» [8]	
1.2	При резонансе	a) $x_L > x_C$	
	напряжений	$6) x_L < x_C$	
		$\mathbf{B}) x_L = x_C$	
1.3	Коэффициент мощности	a) 0	
	цепи при резонансе напряжений равен	б) 1	
		B) -1	
1.4	При уменьшении частоты питающего напряжения	а) не изменится	
	амплитуда тока в цепи	б) увеличится	
	*	в) уменьшится	

Nº	Вопрос	Варианты ответов	Ответ
1.5	При увеличении частоты питающего напряжения	а) не изменится	
	амплитуда тока в цепи	б) увеличится	
	**************************************	в) уменьшится	

2. Укажите неправильное утверждение.

№	Вопрос	Варианты ответов	Ответ
2.1	При резонансе	а) ток в цепи максимален	
	напряжений	б) сдвиг фаз между прило- женным напряжением и током равен 90°	
		в) полная и активная мощ- ности равны	
2.2	При резонансе напряжений	а) напряжения на емкостном и индуктивном элементах равны	
		б) сдвиг фаз между прило- женным напряжением и током равен 0°	
		в) полное сопротивление контура максимально	
2.3	При резонансе токов	а) коэффициент мощности в цепи равен 1	
		б) полная и активная мощ- ности равны	
		в) сдвиг фаз между прило- женным напряжением и током в неразветвленной части равен 90°	
2.4	При резонансе токов	а) ток в цепи минимален	
		б) полная и реактивная мощности равны	
		в) сопротивление контура максимально	

3. Решите задачи.	
3.1. Последовательный колебательный контур имеет паратры элементов $R=20$ Ом, $L=0,1$ Гн, $C=10$ мкФ. Определите ренансную частоту $\omega_{\rm pes}$, добротность контура Q и характеристичес сопротивление контура ρ . $Pewehue:$	езо
Ответ:	
3.2. Последовательно соединены R , L , C , которые соотственно равны: $L=0,1$ Гн, $x_C=31,4$ Ом, $R=10$ Ом, $f=50$ Выполняются ли в цепи условия резонанса? <i>Решение:</i>	
Ответ:	
3.3. Катушка $R_{\rm K}$, L и конденсатор C соединены последовато но. Напряжение на входе цепи $U=100$ В, напряжение на конд саторе $U_C=80$ В. Определите напряжение на зажимах катушесли известно, что в цепи имеет место резонанс напряжений. $Pewehue$:	цен


Ответ:

3.4. В электрической цепи переменного тока мгновенные значения тока и входного напряжения равны: $i(t) = 10 \sin(\omega t + 45^\circ)$ A, $u(t) = 20 \sin(\omega t + 45^\circ)$ B.

Напряжение на конденсаторе $U_C = \frac{50}{\sqrt{2}}$ В.

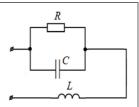
Определите значение сопротивления x_i .

Решение:


Ответ:

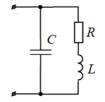
3.5. Определите ток I в заданной цепи, если

$$u_{ab} = 200 \cdot \sin(\omega t + 45^\circ) \text{ B},$$


 $r = x_C = x_L = 2 \text{ Om.}$

Решение:

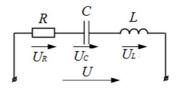
Ответ:


3.6. Каким активным сопротивлением следует зашунтировать конденсатор емкостью C=2 мк Φ , включенный последовательно с идеальной катушкой, индуктивность которой L=0,01 Гн, чтобы при $\omega=5000$ рад имел место резонанс напряжений?

Решение:

Ответ:

3.7. Определите угловую частоту $\omega_{\rm pes}$ и частоту $f_{\rm pes}$, при которых в заданной цепи наступит резонанс токов. Параметры цепи: R=6 Ом, $L=1~{\rm MFH}, C=10~{\rm MK\Phi}.$

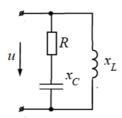

Решение:

Ответ:

Задачи для самостоятельной работы

Решите задачи по вариантам.

1. Определите частоту, ток в цепи, напряжение на зажимах индуктивности и на зажимах конденсатора при резонансе напряжений, если заданы параметры цепи R, L, C и напряжение, действующее в цепи, U.


Решите задачу, используя данные табл. 1. Номер варианта выдается преподавателем.

Таблина 1

Параме-		Варианты										
тры	1	2	3	4	5	6	7	8	9	10		
U, B	100	10	200	20	30	40	50	60	70	80		
R, Om	50	5	100	10	15	20	25	30	35	40		
L, Гн	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1		
<i>С</i> , мкФ	40	20	30	40	50	60	70	20	40	25		

Дано.											
Найп	ıu:										
Реше	ние: _										
							0.75				
2. В с вательно		пряже пка с а									
L, a tak	-				_			-			
при кото		-			-	-				- '	
в цепи и	_	-			_		_				
Реши	те зад	ачу, и	споль	зуя даі	нные т	габл. 2	. Ном	ер вар	ианта	выда-	
ется прег	тодава	телем	•								
									Таб.	лица 2	
Параме-		Варианты									
тры	1	2	3	4	5	6	7	8	9	10	
<i>R</i> , Ом	20	40	20	40	20	40	20	40	20	40	
L , м Γ н	318	127	191	223	255	286	159	318	127	191	
Дано.	·										
Найп	ıu:										
Реше	ние:										
Отве	m:										

3. Заданы параметры цепи R, x_{C} . При каком значении x_{L} в цепи наступит резонанс?

Решите задачу, используя данные табл. 3. Номер варианта выдается преподавателем.

Таблица 3

Параме-					Вари	анты				
тры	1	2	3	4	5	6	7	8	9	10
R, Om	2	3	4	5	4	2	6	6	2	3
x_C , OM	2	3	4	5	2	4	3	6	5	5

Дано:	 	 	
Найти:	 	 	
Решение:			
Ответ:			

Теоретическая часть

При подключении колебательного контура, состоящего из катушки индуктивности и конденсатора, к источнику энергии (источнику синусоидальной ЭДС или синусоидального тока) могут возникнуть резонансные явления.

Режим, при котором в цепи, содержащей реактивные элементы, ток и напряжение совпадают по фазе, называют резонансным, то есть эквивалентное сопротивление цепи является чисто активным.

Различают две основные разновидности резонансных режимов: резонанс напряжений и резонанс токов (табл. 4).

Таблица 4 Резонанс в цепях переменного тока

Резонанс напряжений	Резонанс токов
Возможен в цепи при последовательном соединении R, L, C элементов	Возможен в цепи, содержащей параллельно соединенные R, L, C элементы
Общее комплексное сопротивление цепи $\underline{Z} = R + j(x_L - x_C)$	Общая комплексная проводимость цепи $\underline{Y} = g - j(b_L - b_C)$
Условие резонанса напряжений	Условие резонанса токов
$\operatorname{Im}(\underline{Z}) = 0$	$\operatorname{Im}(\underline{Y}) = 0$
$x_L - x_C = 0$, $x_L = x_C$ или $\omega L = \frac{1}{\omega C}$	$b_L - b_C = 0, \ b_L = b_C$
$\underline{I} = \frac{\underline{U}}{R + j(x_L - x_C)} = \frac{\underline{U}}{R},$ $I = I_{\text{max}},$ $\varphi = 0, \cos \varphi = 1,$ $Q = 0, S = P.$	$\begin{split} \underline{I} &= \underline{U} \cdot [g - j(b_L - b_C)] = \underline{U} \cdot g , \\ I &= I_{\min} , \\ \varphi &= 0 , \cos \varphi = 1 , \\ Q &= 0 , S = P \end{split}$
$ \underline{U_L} $ $ \underline{U_C} $ $ \underline{U_C} $ $ \underline{U} $ $ \underline{U} $ $ U = U_R, U_L = U_C $	$ \underline{\underline{I}_{L}} $ $ \underline{\underline{I}_{L}} $ $ \underline{I} $ $ I = I_{R}, I_{L} = I_{C} $

Частота, при которой в колебательном контуре наступает резонанс, называется резонансной и определяется из условия резонанса:

$$\omega_{\rm pes} = \frac{1}{\sqrt{LC}}$$
.

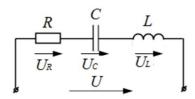
Добротность Q резонансного контура показывает, во сколько раз напряжение на индуктивности (емкости) превышает напряжение на входе схемы в резонансном режиме:

$$Q = \frac{\omega_{\text{pe}_3} L}{R} = \frac{U_L}{U_{\text{BX}}} = \frac{U_C}{U_{\text{BX}}}.$$

В радиотехнических устройствах Q может доходить до 300 и более.

Характеристическое сопротивление контура — это сопротивление каждого из реактивных элементов при резонансе:

$$\rho = \omega_{\text{pes}} L = \frac{1}{\omega_{\text{pes}} C} = \sqrt{\frac{L}{C}} = QR.$$


«Значение резонанса напряжений:

- 1. В электроэнергетических устройствах в большинстве случаев явление нежелательное, связанное с неожиданным появлением перенапряжений.
- 2. В электротехнике связи (радиотехнике, проволочной телефонии), в автоматике явление резонанса напряжений широко применяют для настройки цепи на определенную частоту» [5].

Явление резонанса токов используют в полосно-заграждающих фильтрах, а также для улучшения коэффициента мощности.

Примеры решения задач

Задача 1. Для заданной электрической цепи определите резонансную частоту $\omega_{\text{рез}}$, характеристическое сопротивление ρ и добротность контура Q, а также чему равны ток, расходуемая в цепи мощность, напряжение на индуктивности и емкости, если R=50 Ом, L=1,5 Гн, C=42 мк Φ , напряжение, действующее в цепи, U=100 В.

Решение. Резонанс напряжений наступает в цепи при равенстве реактивных сопротивлений цепи, то есть $x_L = x_C$ или $\omega L = \frac{1}{\omega C}$.

Отсюда резонансная частота цепи

$$\omega_{\mathrm{pe}_3} = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{1,5\cdot 42\cdot 10^{-6}}} = 126,1 \ \mathrm{c}^{-1}, \ f_0 = \frac{\omega_{\mathrm{pe}_3}}{2\pi} = \frac{126,1}{2\pi} = 20 \ \mathrm{\Gamma II}.$$

Характеристическое сопротивление контура:

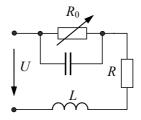
$$\rho = \sqrt{\frac{L}{C}} = \sqrt{\frac{1,5}{42 \cdot 10^{-6}}} = 189$$
 Om.

Добротность контура:

$$Q = \frac{\rho}{R} = \frac{189}{50} = 3.78$$
.

Действующее значение тока в цепи при резонансе:

$$I_{\text{pe}_3} = \frac{U}{R} = \frac{100}{50} = 2 \text{ A}.$$


Мощность, расходуемая в цепи:

$$P = I_{\text{pes}}^2 R = 4 \cdot 50 = 200 \text{ Bt.}$$

Напряжение на индуктивности и емкости при резонансе равны:

$$U_L = U_C = \rho \cdot I_{\text{pe3}} = \omega L I_{\text{pe3}} = \frac{I_{\text{pe3}}}{\omega C} = 189 \cdot 2 = 378 \text{ B}.$$

Задача 2 [6]. На зажимах цепи поддерживается постоянное по действующему значению напряжение $U=100~{\rm B},~R=10~{\rm Om},$ $x_L=5~{\rm Om},$ $x_C=10~{\rm Om}.$ Определите R_0 , при котором цепь будет находиться в резонансе.

Решение. Запишем условие возникновения резонанса напряжений в заданной цепи $\text{Im}(\underline{Z}) = 0$.

Найдем комплексное сопротивление цепи:

$$\begin{split} \underline{Z} &= \frac{R_0(-jx_C)}{R_0 - jx_C} + R + jx_L = \frac{R_0(-jx_C) + R_0x_C^2}{R_0^2 + x_C^2} + R + jx_L = \\ &= \frac{R_0x_C^2}{R_0^2 + x_C^2} + R + j\left(x_L - \frac{R_0^2x_C}{R_0^2 + x_C^2}\right). \end{split}$$

Приравняем мнимую часть комплексного сопротивления к нулю:

$$x_L - \frac{R_0^2 x_C}{R_0^2 + x_C^2} = 0 \Rightarrow R_0^2 x_L + x_L x_C^2 - R_0^2 x_C = 0 \Rightarrow 5R_0 = 500 \Rightarrow R_0 = 10 \text{ Om.}$$

Задача 3 [6]. В цепи без емкости приборы показывают P=1210 Вт, I=11 А, U=220 В, f=50 Гц. Определите величину емкости, необходимую для повышения коэффициента мощности ($\cos \varphi$) до 1.

Решение. Определим активное сопротивление R и индуктивное сопротивление катушки x_i в цепи без емкости:

$$R = \frac{P}{I^2} = \frac{1210}{11^2} = 10 \text{ Om}, \quad z = \frac{U}{I} = \frac{220}{11} = 20 \text{ Om},$$
 $x_L = \sqrt{z^2 - R^2} = \sqrt{20^2 - 10^2} = 17,3 \text{ Om}.$

Коэффициент мощности соs ϕ будет равен 1 при резонансе токов цепи. Цепь состоит из двух параллельных ветвей с комплексными сопротивлениями $\underline{Z}_1 = R + j\omega L$ и $\underline{Z}_2 = -j\frac{1}{\omega C}$.

Запишем условие возникновения резонанса токов в цепи: $Im(\underline{Y}) = 0$.

Для определения резонансной емкости найдем комплексную входную проводимость цепи:

$$\begin{split} &\underline{Y} = \underline{Y}_1 + \underline{Y}_2 = \frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2} = \frac{1}{R + j\omega L} + j\omega C = \frac{R - j\omega L}{R^2 + \omega^2 L^2} + j\omega C = \\ &= \frac{R}{R^2 + \omega^2 L^2} + j \left(\omega C - \frac{\omega L}{R^2 + \omega^2 L^2}\right). \end{split}$$

Приравняем мнимую часть комплексной входной проводимости к нулю:

$$\omega C - \frac{\omega L}{R^2 + \omega^2 L^2} = 0,$$

отсюда получим:

$$C = \frac{\omega L}{\omega (R^2 + \omega^2 L^2)} = \frac{17,3}{2\pi \cdot 50(10^2 + 17,3^2)} = 138 \text{ MK}\Phi.$$

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. Аполлонский, С. М. Теоретические основы электротехники: учеб. пособие для студентов вузов, обучающихся по направлению подготовки «Электроэнергетика и электротехника», «Электроника и микроэлектроника» / С. М. Аполлонский, А. Л. Виноградов. Москва: Кнорус, 2016. 248, [1] с. ISBN 978-5-406-03879-6.
- 2. Атабеков, Г. И. Основы теории цепей: учебник / Г. И. Атабеков. Изд. 7-е, стер. Санкт-Петербург [и др.]: Лань, 2017. 424 с. URL: e.lanbook.com/book/256100 (дата обращения: 22.04.2024). Режим доступа: по подписке. ISBN 978-5-8114-0699-9.
- 3. Белецкий, А. Ф. Теория линейных электрических цепей: учебник / А. Ф. Белецкий. Изд. 3-е, стер. Санкт-Петербург [и др.]: Лань, 2022. 542, [1] с. (Учебники для вузов. Специальная литература). URL: e.lanbook.com/book/209825 (дата обращения: 22.04.2024). Режим доступа: по подписке. ISBN 978-5-8114-0905-1.
- 4. Введение в теоретическую электротехнику: Курс подготовки бакалавров: учеб. пособие / Ю. А. Бычков, В. М. Золотницкий, Е. Б. Соловьева, Э. П. Чернышев. Санкт-Петербург [и др.]: Лань, 2022. 286 с. (Учебники для вузов. Специальная литература). URL: e.lanbook.com/book/212480 (дата обращения: 22.04.2024). Режим доступа: по подписке. ISBN 978-5-8114-2406-1.
- 5. Иванова, С. Г. Теоретические основы электротехники. Конспект лекций / С. Г. Иванова, В. В. Новиков; Сибирский федеральный университет. Красноярск: ИПК СФУ, 2008. 230 с. (Электронный учебно-методический комплекс). URL: studfile.net/preview/3543395/ (дата обращения: 22.04.2024). ISBN 978-5-7638-1530-6.
- 6. Методическое пособие для студентов по курсу «Теоретические основы электротехники» / В. К. Шакурский, А. А. Пичугина, Л. Г. Томникова, М. В. Шакурский; Тольяттинский государственный университет. Тольятти: ТГУ, 2006. 85 с. URL: edu.tltsu. ru/er/er_files/book382/book.pdf (дата обращения: 22.04.2024).

- 7. Сергеева, А. С. Базовые навыки работы с программным обеспечением в техническом вузе. Пакет MS Office (Word, Excel, PowerPoint, Visio), Electronic Workbench, MATLAB: учеб. пособие / А. С. Сергеева, А. С. Синявская; Сибирский государственный университет телекоммуникаций и информатики. Новосибирск: СибГУТИ, 2016. 263 с. URL: www.iprbookshop.ru/69537.html (дата обращения: 22.04.2024). Режим доступа: по подписке.
- 8. Теоретические основы электротехники: интернет-тестирование базовых знаний: учеб. пособие / Г. Н. Герасимова, Н. В. Коровкин, М. А. Кац [и др.]; под ред. П. А. Бутырина, Н. В. Коровкина. Санкт-Петербург [и др.]: Лань, 2022. 329, [2] с. URL: е.lanbook.com/book/210857 (дата обращения: 22.04.2024). Режим доступа: по подписке. ISBN 978-5-8114-1205-1.
- 9. Шаврина, Н. В. Электротехника и электроника: практикум / Н. В. Шаврина, С. В. Шлыков; Тольяттинский государственный университет. Тольятти: Издательство ТГУ, 2023. 103 с. URL: dspace.tltsu.ru/bitstream/123456789/26493/1/Shavrina%20 Shlikov%201-35-21_Praktikum_Z.pdf (дата обращения: 25.04.2024). ISBN 978-5-8259-1310-0.
- 10. Электрические и магнитные цепи: практикум по дисциплине «Электротехника и электроника» / Р. В. Ахмадеев, И. В. Вавилова, П. А. Грахов, Т. М. Крымская. Уфа: Уфимский государственный авиационный технический университет, 2007. 78 с. URL: www.studmed.ru/view/ahmadeev-rv-vavilova-iv-grahov-pa-i-dr-elektricheskie-i-magnitnye-cepi_98f02527616.html (дата обращения: 24.04.2024). ISBN 5-86911-543-4.

Содержание

ВВЕДЕНИЕ	3
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ОРГАНИЗАЦ	ии
САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ	
НА ПРАКТИЧЕСКИХ ЗАНЯТИЯХ	5
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ	6
Практическая часть	6
Теоретическая часть	13
Примеры решения задач	14
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА	18

Учебное издание

Шаврина Наталия Вячеславовна, Шлыков Сергей Викторович

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОТЕХНИКИ. РЕЗОНАНС В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ СИНУСОИДАЛЬНОГО ТОКА

Рабочая тетрадь

Редактор *Е.А. Держаева*Технический редактор *Н.П. Крюкова*Компьютерная верстка: *Л.В. Сызганцева*Дизайн обложки: *И.И. Шишкина*

При оформлении пособия использована иллюстрация от pikisuperstar на сайте ru.freepik.com

Подписано в печать 08.07.2025. Формат $60 \times 84/16$. Печать оперативная. Усл. п. л. 1,22. Тираж 100 экз. Заказ № 1-08-24.

Издательство Тольяттинского государственного университета 445020, г. Тольятти, ул. Белорусская, 14, тел. 8 (8482) 44-91-47, www.tltsu.ru