МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт машиностроения (наименование института полностью) Кафедра Сварка, обработка материалов давлением и родственные процессы (наименование) 22.04.01 Материаловедение и технологии материалов (код и наименование направления подготовки) Инжиниринг перспективных материалов и диагностика поведения материалов в изделиях

(направленность (профиль))

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ)

на тему Пути повышения качества точечной сварки в АО "АВТОВАЗ"

Обучающийся	К.Н. Грабовский (Инициалы Фамилия)	(личная подпись)	
Научный	д.т.н., профессор, Г.В. Клевцов		
руководитель	(ученая степень (при наличии), ученое звание (при наличии), Инициалы Фамилия)		

Содержание

Введение	3
1 Аналитический обзор. Точечная сварка изделий: преимущества и	
недостатки	5
1.1 Сущность контактной сварки	5
1.2 Машины контактной сварки	12
1.3 Особенности сварки деталей с разными толщинами	16
1.4 Дефекты сварочных соединений и причины их возникновения	21
1.5 Влияние параметров режима сварки на качество соединений	26
1.6 Контроль качества контактной сварки	32
2 Материал (изделие), оборудование и методика проведения исследований	39
2.1 Материал (изделие)	39
2.2 Комплексный подход математического планирования экспериментов	
и крутого восхождения	40
2.2.1 Математическое планирование экспериментов	40
2.2.2 Метод крутого восхождения	49
2.3 Подготовка образцов для исследований	51
2.4 Оборудование для исследований	54
2.4.1 Ультразвуковой дефектоскоп EPOCH 4 PLUS	54
2.4.2 Спредер ISU 20	60
2.5 Методика проверки качества соединений в исследованиях	67
3 Результаты исследования	70
3.1 Результаты математического планирования	70
3.2 Результаты крутого восхождения	72
3.3 Результаты внешнего осмотра точек сварки	73
3.4 Результаты проверки с помощью дефектоскопа	74
3.5 Результаты прочности соединений с помощью спредера ISU20	75
Заключение	80
Список используемой литературы и используемых источников	82

Введение

Контактная сварка приобрела популярность ещё с начала XIX века благодаря своей способности создавать надёжные соединения, занимая значительную долю среди всех современных методов фиксации материалов [2]. Эта технология широко применяется на заводах массового производства различных деталей и изделий, особенно востребована в автомобильной промышленности, став одним из ключевых элементов технологического процесса сборки автомобилей.

Сегодня особое внимание уделяется повышению качества сварных соединений и минимизации возникающих дефектов — это важно для улучшения эксплуатационных характеристик продукции и усиления позиций предприятия на рынке [3]. Среди преимуществ контактной сварки выделяют следующие аспекты:

- Возможность быстрого выполнения больших объемов работ;
- Высокая надежность конструкций без изменения механических свойств основного материала;
- Простота эксплуатации и отсутствие строгих требований к уровню подготовки оператора;
- Сохранение защитных лакокрасочных и антикоррозийных покрытий на деталях;
- Компактность и мобильность используемого оборудования [20].

Однако, несмотря на перечисленные достоинства, контактные методы соединения имеют определённые недостатки, которые требуют внимания инженеров и технологов:

- Высокая стоимость специализированного сварочного оборудования;
- Недостаточная герметизация шва по сравнению с электродуговыми методами сварки;
- Риск появления специфичных дефектов прожогов и непроваров,
 негативно влияющих на качество готового изделия [3].

Качество соединений зависит от нескольких факторов: величины сварочного тока, продолжительности воздействия на материал, силы сжатия, структуры сварочной точки, размеров используемых электродов, геометрии рабочей части инструмента, чистоты поверхностей [35]. Улучшение указанных параметров — одно из основных направлений современного машиностроительного производства, направленное на снижение затрат и повышение эффективности рабочих процессов.

Таким образом, цель представленного исследования заключается в повышении качества сварных соединений в автомобильном производстве на примере АО «АВТОВАЗ», путём выбора оптимальных режимов работы сварочного оборудования.

Для достижения поставленной цели исследования предстоит решить следующие задачи:

- 1. Разработать методику и программу проведения экспериментальных исследований.
- 2. Подготовить опытные образцы и провести испытания согласно предложенной программе.
- 3. Определить оптимальный набор технологических параметров, позволяющих обеспечить высокое качество готовых соединений.
- 4. Провести контрольные замеры, подтверждающие правильность подобранных параметров сварки.

Объектом исследования является процесс формирования соединений металлов.

Предметом исследования является процесс точечной сварки ручными клещами.

Научная новизна работы состоит во внедрении комплексного подхода, сочетающего использование математического планирования эксперимента (МПЭ) и метода крутого восхождения для определения наиболее эффективных параметров точечной сварки.

1 Аналитический обзор. Точечная сварка изделий: преимущества и недостатки

1.1 Сущность контактной сварки

При различных потребностях производства требуется различные способы соединения, а именно: шовная, точечная, рельефная и стыковая сварка.

В процессе производства изделий, метод контактной сварки, аналогично другим сварочным технологиям, реализует объединение компонентов за счёт формирования межмолекулярных связей в зонах их взаимодействия [4]. Для инициации процесса физического взаимодействия и повышения активности поверхностей, предназначенных для сваривания, применяется энергия, обладающая тепловыми и механическими свойствами, которая поступает из экстернальных источников. Ввиду того, что сварное соединение реализуется непосредственно в точках контакта деталей, данная технология получила наименование "контактной сварки" [5]. Процесс создания соединения предполагает взаимодействие изменяющихся электрических и тепловых полей, а также характеризуется быстрым нагревом и пластическими деформациями материала. Нагревание свариваемых частей происходит благодаря току, протекающему сквозь них, что обусловлено сопротивлением материала и точкой контакта с электродом, через который и подается ток [25].

Контактная сварка находит широкое применение в различных областях, начиная от крупных строительных проектов и космических кораблей, и заканчивая маленькими полупроводниковыми устройствами и пленочными микросхемами.

Основные плюсы контактной сварки:

- сохранение грунтовочных и антикоррозионных покрытий,
- небольшие габариты и вес оборудования,
- возможность быстро выполнить необходимый объем работ,

- надежность и прочность сварной конструкции без ухудшения свойств металла,
 - готовая конструкция гладкая и без видимых дефектов поверхности,
- отличается простотой в эксплуатации и не требует высокой квалификации сварщика [20].

Производство при помощи сварки характеризуются краткосрочным временем (0,1-1 сек), высокими значениями сварочного тока (3-300 кА) и большой силой сжатия на деталь со стороны электродов, одним из важных условий для образования сварного шва является создание общей зоны расплавленного металла заданного размера, что обеспечивает прочность и герметичность соединения [13].

Материалы складываются в слои и сжимаются с усилием и свариваются при помощи дуги между контактами, условная схема точеной сварки представлена на рисунке 1 [15].

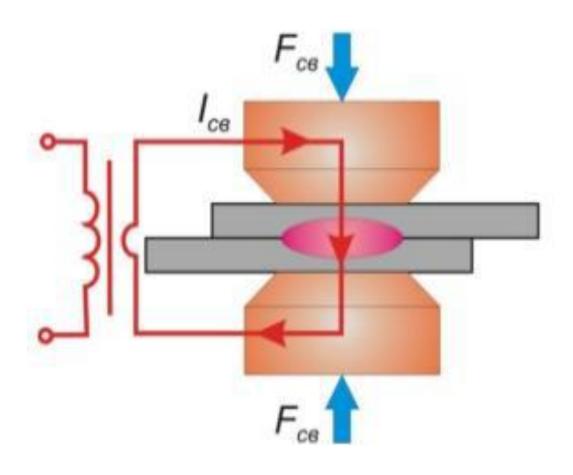


Рисунок 1 – Точечная сварка (условная схема)

При сварке слоев металла применяют кратковременную электрическую дугу с большой силой тока, что приводит к образованию точки расплавления слоев деталей называемой «сварочной точкой» при нагреве и сжатии происходит деформация в области «сварочной точки», при этом создается область плотного контакта, эта зона выполняет функцию защиты и дополнительная обработка не требуется [12].

Сварка шва происходит путем плавления металла и состоит из нескольких этапов, представленных на рисунке 2.

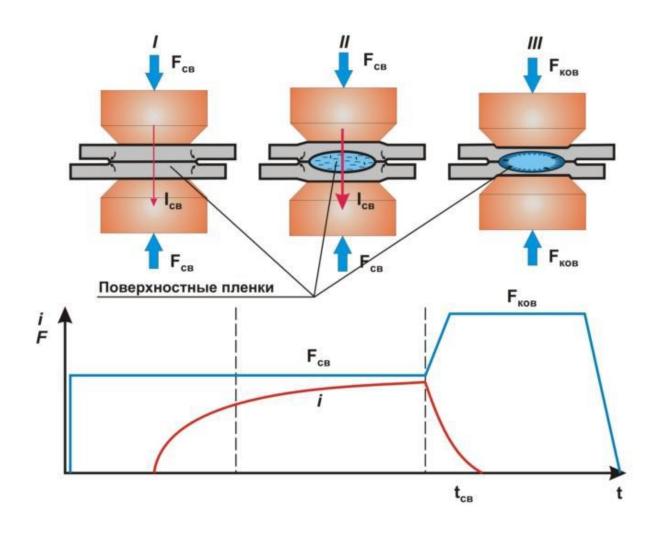


Рисунок 2 – Этапы образования сварного соединения точечной сваркой

Первый этап начинается при сжатии детали для пластичной деформации при интенсивном нагреве в следствии электрической дуги, при которой металл плавится и соединяет, и формируется рельеф сварочного шва.

После сжатия идет плавление, при прохождении тока сердечник достигает максимальной высоты и диаметра. В это же время происходит перемешивание металла, удаление поверхностной пленки и формирование металлических связей в жидкой фазе, к концу этого этапа рельеф сварочного шва практически полностью формируется.

По завершении подачи тока и в процессе последующего остывания металл переходит в твердое состояние, формируя отливку с твердым ядром. В ходе остывания металлический объем сжимается, в результате чего в нем возникают внутренние напряжения. Для минимизации этих напряжений и предотвращения образования усадочных дефектов и внутренних пустот необходимо применение существенных усилий [18].

Этот цикл повторяется через определенный промежуток времени для получения следующего соединения [17].

Высокое качество и темп сварки зависит правильного подбора режимов сварки, учитывая толщину, форму и материал изделия. Режим сварки представляет собой набор параметров, которые обеспечиваются сварочным оборудованием и влияют на качество [19].

В контексте процессов точечной сварки размер контактной области зависит от габаритов используемых электродов. В данных условиях происходит концентрация электрического тока в дискретных проводящих микроканалах, что приводит к локальному увеличению плотности тока и, как следствие, к интенсивному выделению тепла в зоне контакта. Характеристики контактного сопротивления зависят от множества факторов, включая химический состав и микроструктуру материалов, физическое состояние поверхности, а также от внешних условий, таких как температура и влажность окружающей среды.

Перед сваркой необходимо правильно подготовить поверхности деталей и отчистить поверхностные покрытия и удалить загрязнения. Данное решение позволяет обеспечить низкое и стабильное контактное сопротивление, что в свою очередь стабилизирует теплоотдачу, размер шва и сопротивление

электрода. Часто рекомендуется увеличить усилие сварки для достижения тех же целей [26].

Когда начинается подача тока для сварки, область микроконтакта нагревается очень быстро, что снижает сопротивление металла деформации и способствует разрушению оксидной пленки, что в свою очередь приводит к резкому уменьшению контактного сопротивления до нуля, когда достигается определенная критическая температура, характерная для определенных металлов согласно рисунку 3.

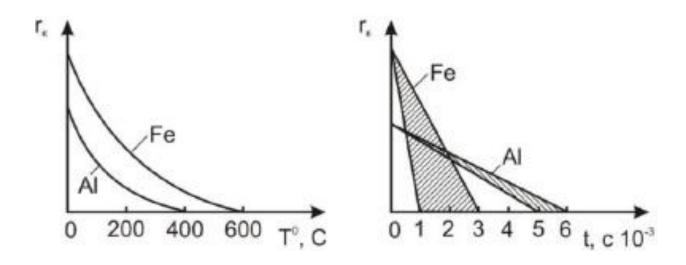


Рисунок 3 – Уменьшение контактного сопротивления при нагреве

Однако сопротивление внешних элементов в основном зависит от самого материала детали. Для стали критическая температура составляет 600-700 °C, а для алюминиевых сплавов — 400-450 °C. При увеличении силы сварочного тока критическая температура немного снижается.

Сокращение времени контакта до полного исчезновения происходит за очень короткий промежуток времени: от 1 до 3 миллисекунд для стали и от 5 до 6 миллисекунд для алюминиевых сплавов.

Показатели контактного сопротивления сильно зависят от состояния поверхности детали. В таблице 1 представлены результаты измерений контактного сопротивления двух листов низкоуглеродистой стали,

обработанных по-разному и имеющих толщину 3 мм. Эти листы сжимались электродом диаметром 10 мм с силой 200 даН [29].

Таблица 1 — Зависимость между гк и степенью обработки поверхности контактируемых материалов

Степень обработки поверхности	гк, мкОМ
образцы очищенные наждачным кругом и шлифованные	100
травленные образцы	300
обработанных резцом	1200
необработанные, покрытые окалиной	80000
необработанные, покрытые ржавчиной и окалиной	300000

С усилением давления на компонент, фактическая площадь контакта расширяется в результате деформации и возрастания числа микроразрезов на поверхности, что ведет к уменьшению сопротивления в месте соединения [32].

Основополагающими аспектами процесса сварки являются конфигурация и габариты рабочей зоны контакта. Именно от этих характеристик зависит формирование и постоянство сварочного сердечника, а также определение дополнительных настроек сварочного процесса. Контур рабочей зоны должен гармонировать с внешними очертаниями изделия. В случае тонких, плоских или немного изогнутых элементов контур рабочей зоны электрода или ролика может принимать цилиндрическую (плоскую) либо сферическую форму. Размеры этих зон (обозначаемые как dэ, Rэ, fp, Rp) коррелируют с толщиной детали. Для изделий конической формы рабочая зона может иметь соответствующий конический профиль. В ситуациях, когда требуется сварка цилиндрических объектов с рельефной поверхностью, рабочая зона может быть выполнена вогнутой, с радиусом, аналогичным радиусу самого изделия [12].

С течением времени и под влиянием высоких температур и давления, поверхности теряют свою первоначальную форму и размеры. Эти изменения происходят под воздействием нагрева и условий деформации в зоне сварки. Скорость, с которой происходят эти изменения, играет важную роль в

определении срока службы электродов [6]. Первоначальный диаметр электрода расширяется, а угол между конической и плоской частями становится менее выраженным, придавая обработанной поверхности более закругленную форму. Исходный радиус изгиба также увеличивается, в результате чего на контактной поверхности формируется почти плоская зона. Но такие изменения происходят медленно, особенно при интенсивной работе и использовании материалов, устойчивых к высоким температурам. Появление плоских зон определенного диаметра обычно свидетельствует о критическом износе, что является неприемлемым. Для поддержания эффективности, сферическая форма электрода регулярно восстанавливается путем добавления материала.

Обе геометрии рабочих поверхностей влияют на качество соединения, имея свои сильные и слабые стороны. Именно комбинация этих геометрических характеристик задает форму и сферу применения соединения [30].

Сферическая конфигурация концевой части электрода способствует расширению рабочей зоны в сравнении с плоской или конусообразной заточкой, что приводит к сокращению площади инициирования электрического контакта между округлым торцом электрода и плоской внешней поверхностью. Однако адекватная регулировка времени и силы контактного взаимодействия позволяет увеличивать плотность слияния металла за пределами объема формируемого ядра. Это способствует снижению вероятности образования трещин и других дефектов, особенно под воздействием неблагоприятных условий эксплуатации.

В отличие от этого, начальная плоская форма рабочей поверхности с конусной заточкой является предпочтительной для обработки металлов с высоким уровнем сопротивления деформации, таких как сталь и жаропрочные сплавы. Данная конфигурация также является оптимальной в условиях, когда допустимы повышенные уровни вдавливания, неровности и локальные наплывы металла. Такая геометрия эффективна при использовании

вертикальных движений электродов, а также на оборудовании с резкими скачками сварочного тока, например, на стационарных установках переменного тока [8].

При работе с металлами, которые плохо поддаются деформации, такими как алюминий, магний, медь и отдельные сплавы титана, и которые имеют тенденцию к появлению трещин и дефектов при высоких температурах, а также при сваривании сплавов большой толщины, применяется техника с исходной сферической геометрией. Этот подход предъявляет строгие требования к качеству сварного шва, исключая наличие вмятин, пропусков, трещин и прочих недочетов. Он также дает возможность соединять металлы с различной толщиной и сплавы разной структуры. В процессе используются сварочные устройства с разнообразными видами электродов, в том числе сварочные клещи, а также агрегаты с низкочастотным током и его выпрямлением во вторичной обмотке [13].

1.2 Машины контактной сварки

Современные сварочные машины, используемые для соединения деталей, заготовок и профильных поверхностей, представляют собой сложные и мощные электромеханические системы, которые широко применяются в различных областях. Эти аппараты обычно компактны и удобны в использовании, занимая минимальное пространство. Их оптимальный вес и размеры позволяют легко перемещать их по производственной площадке [39].

Все сварочные аппараты оснащены множеством систем, включая электрические, механические, пневматические и гидравлические. В зависимости от их функционального назначения, они отличаются мощностью, способностью соединять различные материалы (например, черный и цветной металл) и диаметры деталей. Кроме того, они могут быть оснащены различными типами приводов для зажима заготовок [17].

Электрическая часть сварочного аппарата включает в себя силовой трансформатор, который регулирует параметры поставки электрического тока, такие как время, сила, амплитуда, форма и частота. Конструкция аппарата включает в себя различные элементы, которые обеспечивают разрушение и перемещение заготовки. Сюда входят станины и кронштейны, консоли и держатели электродов, а также специальные ограничители и различные типы сварочных электродов [37].

Пневматические и гидравлические системы машин и оборудования для контактной точечной сварки включают в себя множество устройств, таких как краны, клапаны, фитинги, манометры, фильтры, вентили и шланги. Управление оборудованием возложено на независимые электронные компоненты, состоящие из сложных компонентов оборудования [43].

Кроме того, оснащение и модификации, каждый аппарат контактной сварки поставляется с определенным набором дополнительного оборудования, необходимого для рабочего процесса. Это могут быть различные скобы, сварочные пистолеты, специальные клещи и электроды. Сложные станции включают в себя два трансформатора, системы водяного охлаждения и другое оборудование [3].

Существует огромное количество сварочных аппаратов, которые предназначены для соединения различных материалов и заготовок, работающих в разных условиях и отраслях промышленности.

Ниже приведена классификация сварочного оборудования по основным признакам [11]. По типу сварки:

– оборудование для формирования стыковых соединений. Такая техника используется для сварки трубопроводов и проводов, листовых и профильных деталей, дверей, окон, витражных рам, металлических прутьев, элементов различного сечения и заготовок из разнородных сплавов. Этот метод соединения позволяет соединять материалы по всему прилегающему периметру;

- Аппараты контактной точечной сварки. Предназначены для соединения изделий в определенных точках, образующихся в месте контакта поверхности материала и электрода. Прочность стыкового шва определяется количеством наложенных точек. Они широко используются для создания таких конструкций, как самолеты, автомобили, судостроение, элементов каркаса и сидений, ограждений и несущих систем;
- Рельефные сварщики, которые соединяют детали с одной или несколькими выступающими точками, поднимая их от основания. Точечные выступы могут быть сформированы в процессе создания детали. Форма и размеры формируемого шва напрямую зависят от формы и размера выступов;
- Оборудование для формирования шовных соединений. Во многих случаях это полностью автоматическое устройство, которое может изготовить 1 км сварного прерывистого или шва, состоящего из некоторых точек. В зависимости от параметров дискового электрода, аппараты этого типа можно разделить на одно- и двухсторонние, одно- и многороликовые. Они используются для формирования герметичных точечных сварных швов на сосудах, резервуарах, воздуховодах и тонкостенных трубах.

В зависимости от назначения аппаратов контактной сварки, все оборудование может быть разделено следующим образом:

— многоцелевое оборудование, предназначенное для объединения различных металлических материалов и сварки изделий различных размеров, сечений и форм. Это оборудование находит применение в индивидуальном и малосерийном производстве, а также в ситуациях, требующих частой технической перенастройки. Многоцелевое оборудование отличается широким диапазоном толщины сварки, регулировкой тока и силы сжатия. Примерно 90% такого оборудования представлено радиальными или прессовыми аппаратами контактной точечной сварки с вертикально перемещающимися электродами. Их параметры соответствуют ГОСТ 297-80, в котором указаны такие характеристики, как высокое значение тока КЗ,

номинальное усилие сжатия и продолжительность вторичного тока в течение длительного времени [14];

– Специализированное оборудование, которое применяется для сварки большого объема однотипных элементов в массовом и крупносерийном производстве, где требуется длительная и сложная настройка оборудования для сварки. Обычно это низкопрофильное оборудование, предназначенное для изготовления специфических изделий, узлов или заготовок. Особенностью такого оборудования является его маркировка, указывающая на конкретное изделие, для которого оно предназначено. В качестве примера можно привести машины для точечной сварки цепей или боковых стенок комбайнов. Еще одной особенностью специального оборудования является автоматизация и механизация процессов загрузки, перемещения и выгрузки деталей сварки [20].

Классификация машин контактной сварки по степени автоматизации:

- ручная или неавтоматическая сварка. Простые и недорогие сварочные аппараты, которые используются для создания плоских и широких изделий. Они представляют собой экономичную и доступную альтернативу более мощным машинам для соединения. Эти аппараты обеспечивают достаточную производительность и контроль качества конечного продукта, снижая трудоемкость для сварщика. Сварка производится с использованием переменного тока;
- Полуавтоматическая сварка. Электромеханические устройства,
 которые осуществляют сварку, в зависимости от степени нагрузки, они могут
 быть разделены на бытовые (временные), полупрофессиональные
 (мелкосерийные промышленные) и профессиональные (промышленные);
- Автоматическая сварка. Многоэлектродные аппараты контактной сварки, которые обеспечивают высокую скорость процесса и рекордную производительность. Их использование гарантирует идеальную генерацию дуги и безупречное качество шва в любом режиме работы, даже при наличии перепадов напряжения в электрической сети. Автоматы подходят для

соединения широкого спектра металлов, включая легированные и углеродистые стали, цветные металлы и чугун [13].

1.3 Особенности сварки деталей с разными толщинами

В контексте сварочных операций, когда сталкиваются элементы с разницей в толщинах, превышающей соотношение 1:3, возникают сложности в формировании номинальной зоны слияния материалов, что обуславливает повышенную трудоемкость процесса. Данная проблематика коррелирует с дисбалансом в распределении теплового потока и асимметричностью в зоне сварочного контакта, что влечет за собой недостаточное и неоднородное проплавление в участках с меньшей толщиной металла. Следствием этого является повышенный риск образования непроваров, который усиливается пропорционально возрастанию разницы в толщинах материалов согласно источнику [24].

В сравнении с процедурой сварки элементов идентичной толщины, процесс сварки элементов с различной толщиной характеризуется усиленной теплопередачей от более тонкого элемента в направлении электрода и окружающей среды, что способствует увеличению плотности тока на периферии зоны контакта между элементами. Это обстоятельство приводит к смещению расплавленного ядра от централизованного расположения относительно плоскости соединения элементов в направлении более толстого элемента, представленного на рисунке 4.

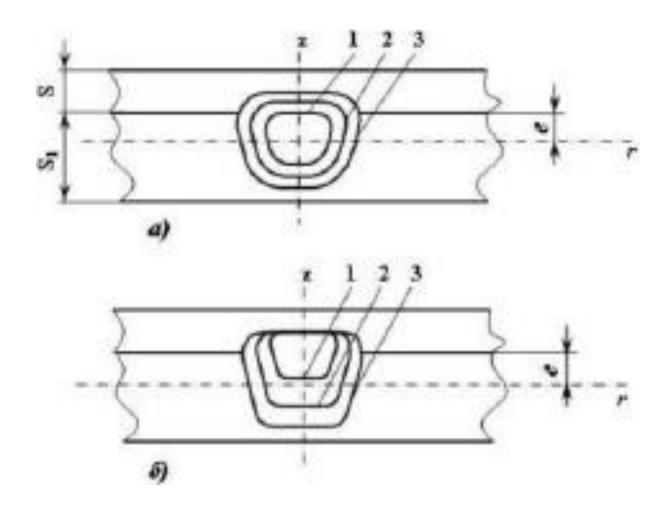


Рисунок 4 — Кинетика формирования литого ядра в деталях разной толщины

В мягком режиме инициация фазы плавления преимущественно происходит в центральной области поперечного сечения заметной толщины, после чего процесс распространяется радиально. Следовательно, тонкостенные элементы вступают в фазу плавления на заключительной стадии (рисунок 4, a). Данный сварочного цикла процесс отмечается глубины проплавления, объемом неоднородностью увеличенным расплавленного металла в участках с повышенной толщиной стенок, интенсификацией деформаций в тонкостенных сегментах и ускоренным износом сварочных электродов, что подтверждается источником [9].

В жестком режиме теплового воздействия, изотерма плавления изначально охватывает область в непосредственной близости к контактной зоне между элементами с различной толщиной стенок. В последующем, под влиянием теплоотдачи, изотерма смещается в направлении участка с большей

толщиной и достигает состояния теплового баланса (рисунок 4, б). При этом, увеличение интенсивности тока приводит к формированию внутренних и внешних трещин и сколов [14]. Тем не менее, данный режим является более предпочтительным по сравнению с традиционными методами сварки, благодаря оптимизации процесса распределения тепла и уменьшению дефектов сварного соединения.

В рамках исследовательской деятельности были разработаны различные методики, направленные на повышение эффективности сварочного процесса при работе с тонкостенными заготовками. Основная задача данных методик заключается в минимизации расхождения между плоскостью теплового баланса и плоскостью сварного соединения.

Два превалирующих направления в решении проблематики сварки тонких материалов включают в себя: регулирование теплоотвода от свариваемых элементов и интенсификацию тепловыделения в пределах самих деталей и в зоне их непосредственного контакта [9].

Первый метод предполагает применение сварочных режимов с пониженной интенсивностью, что достигается за счет использования электродов с уменьшенной рабочей поверхностью и пониженной теплопроводимостью для повышения глубины проникновения тепла в тонкие материалы. В то же время, при сварке более толстых элементов предпочтение отдается электродам с увеличенной рабочей поверхностью и более высокими показателями теплопроводности. Однако следует отметить, что данный метод лишь незначительно улучшает проплавление тонкостенных деталей (на уровне 10-15%), а также имеет ограничения при сварке сплавов алюминия и магния из-за риска прилипания электродов с низкой теплопроводностью.

Таким образом, несмотря на разработку специализированных подходов к сварке тонких материалов, необходимо учитывать специфические ограничения, присущие каждому из методов, и выбирать наиболее оптимальные решения в зависимости от характеристик свариваемых материалов и требуемых результатов.

Применение демонтируемого теплозащитного барьера, изготовленного из металлического материала с низкими теплопроводными характеристиками, является эффективной мерой для минимизации теплового воздействия на тонкие металлические изделия в процессе сварочных работ. Данный барьер, толщиной от 0,05 до 0,3 мм, устанавливается в промежутке между сварочным электродом и обрабатываемым элементом представлен на рисунке 5. В результате его применения, тепло аккумулируется в наиболее узких сегментах конструкции, иногда превращаясь В вторичный источник тепла. Определенный состав и размеры ленты барьера способствуют удобной регулировке позиции теплового баланса в сторону узкого сегмента, что обеспечивает равномерное распределение тепла и стабильность процесса расплавления. Для обеспечения глубокого проникновения тепла в тонкие металлические заготовки, также возможно применение методики смещения плоскости теплового равновесия непосредственно на обрабатываемую тонкую деталь [29].

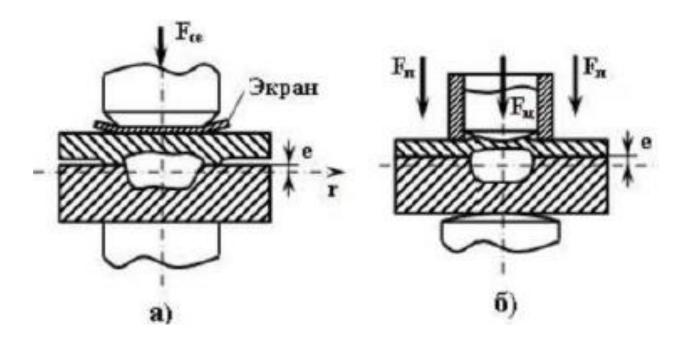


Рисунок 5 – Точечное соединение деталей разной толщины

Второй подход к улучшению процесса сварки осуществляется преимущественно путем ужесточения рабочих условий. В рамках данного подхода применяются две основные техники: увеличение сжимающего усилия на детали в зоне электрода и оптимизация распределения сварочного тока.

Область внутреннего контакта между деталями ограничивается их поверхностным рельефом. В целях повышения эффективности локализации тока вблизи этого рельефа иногда применяется непроводящий огнеупорный Применение конструктивных элементов в виде кольцевых углублений, а также использование материалов со сниженным уровнем электропроводности или же интеграция небольших вставок, изготовленных из сплавов высокими показателями проводимости, способствует интенсификации плотности тока в элементах с микроразмерными габаритами. Данное явление обусловлено уменьшением площади проводящего сечения в зоне, непосредственно прилегающей к рабочей поверхности электрода, что ведет к локализации и усилению токового потока в указанной области [14]. Также было предложено использование магнитного поля для усиления локализации тока в узкой зоне детали. Тем не менее, сложность конструкции электрода, низкое электрическое сопротивление и ограниченный эффект от усиленного проплавления в стенках малой толщины снижают практическую ценность вышеупомянутых методов [17].

Существуют эффективные способы сварки, которые включают в себя сжатие участка вокруг электрода. Это сжатие приводит к изменению процесса электротермической деформации. Общая сила сжатия, создаваемая специальным электродным устройством, делится на две силы: Ец в центре и Еп, сжимающую периферию острия. Такой подход практически полностью исключает возможность скалывания и может быть использован как в жестком, так и в мягком режимах. Применяемая методика обеспечивает возможность проникновения в микроструктуры объекта на глубину, составляющую от 30 до 70 процентов от исходного размера. Однако для достижения устойчивости электрода к факторам загрязнения и разработки надежного, компактного

устройства, способного выполнять функции кольцевого точечного сжатия, необходимы дополнительные исследования и технологические усовершенствования [3].

1.4 Дефекты сварочных соединений и причины их возникновения

В рамках изучения сварочных соединений выявляются отклонения от параметров, предусмотренных проектной документацией. Основными причинами дефектов являются термические воздействия и механические нагрузки, а также возможные технологические неточности, связанные с применением сварочного оборудования и инструментов [12]. Не менее важным фактором является соблюдение правильной ориентации деталей в процессе их соединения.

К отклонениям сварного шва относятся нарушения целостности и геометрические неточности, возникающие на этапах сборки и фиксации деталей [5]. В контексте точечной и шовной сварки эти проблемы имеют свои специфические особенности и сложности, требующие детального рассмотрения.

Ключевым аспектом обеспечения надежности сварных соединений является формирование качественных зон слияния материалов. Виды дефектов сварных соединений могут включать непровар, излишки металла, вмятины и неоднородности структуры сварного шва, такие как пустоты, трещины, локальное истончение материала и поры. Кроме того, важным является сохранение коррозионной стойкости и предотвращение нежелательных структурных преобразований металла, которые могут привести к увеличению его хрупкости и снижению герметичности соединений [33].

Окисные пленки или покрытия, сохраняющиеся в местах соединения деталей также являются примерами непроваров. Особенно опасны те случаи, когда в процессе сварки формируются твердофазные соединения в отдельных

участках микрорельефа. Обнаружение таких соединений затруднительно, и они могут сохранять целостность под воздействием значительных статических сдвиговых нагрузок, однако при этом они склонны к хрупкому разрушению при низких отрывных напряжениях и циклических нагрузках [4].

Основной фактор, способствующий некачественному провару, заключается в неоднородности распределения тепла, что ведет к снижению выделения тепла и, как следствие, к уменьшению плотности сварочного тока. Это может быть обусловлено корректировками в настройках сварки, включая повышение ампеража, продолжительности процесса сварки, скорости движения и размера электрода, а также другими техническими аспектами, такими как неадекватный зазор между соединяемыми элементами и избыточное расстояние между точками сварного соединения.

Для предотвращения непровара крайне важно гарантировать постоянство всех сварочных параметров и корректную функциональность оборудования. Кроме того, перед началом сварки следует тщательно очистить поверхности окислов наплывов, чтобы избежать OT И появления нерасплавленных зон на соединяемых элементах [31].

Часто встречаемая в сварочных работах проблематика — это выплеск. Этот процесс происходит, когда жидкий металл выталкивается из сварочного шва. Выброс бывает либо наружным, либо внутренним. Феномен внешнего выброса материала может быть обусловлен эксцессивным тепловым воздействием на металл в зоне контакта между электродом и обрабатываемым изделием. В отношении внутреннего выброса, его возникновение может быть как инициировано в начале процесса сварки, так и зафиксировано в его завершающей стадии. Инициация начального выброса часто наблюдается при применении ускоренных техник сварки, в частности при использовании индукционного контактора. Завершающий выброс, в свою очередь, может быть вызван формированием локальных разрывов в герметизирующем слое ленты [24]. Такие выбросы обычно углубляют вдавливание и заметны при осмотре на предмет дефектов. Наружное расслоение портит внешний вид

продукта, а внутренние сколы могут мешать росту сварного соединения. Конечные сколы, сопровождающиеся трещинами, провалами и глубокими вмятинами, представляют наибольшую опасность. Ряд причин, приводящих к таким дефектам, включают недостаточное давление сжатия, высокие сварочные токи и длительное время подачи тока, повышенное контактное сопротивление, слабое давление сжатия, некорректное положение электрода и ошибки в процессе нарезания резьбы. Но часто дефект возникает вследствие медленной деформации и скорости нагрева [20].

Возникновение углублений на одной из сторон сварного соединения часто обусловлено износом электрода, некорректным проведением его обработки или нарушением условий параллельности и совмещения рабочих поверхностей, что подтверждается исследованиями [17].

В число типичных дефектов сварных соединений входят трещинообразование, пористость и усадочные изменения. Трещины могут формироваться в результате возникающих в зоне сварки напряжений, вызванных неоднородностью температурных полей во время сварочного процесса и последующего интенсивного охлаждения, а также из-за жестких условий выполнения сварочных работ и неправильного применения усилия в процессе ковки. Внутри сварного соединения могут возникать такие дефекты, как трещины и включения воздуха или газа, что обычно является следствием загрязнения поверхности, обрабатываемой сваркой, и недостаточного уровня давления, прилагаемого в ходе сварочных операций [16].

При сварке последующих участков возможны несколько способов устранения дефектов в зависимости от шага. Если шаг сварки небольшой или внахлёст составляет более 50%, можно провести переплавку металла предыдущего участка. Если глубина дефекта превышает 50%, то восстановление поврежденной зоны возможно с использованием жидкого металла. Альтернативный метод — это наполнение поврежденного сегмента металлом в горячем состоянии, который распределится по месту дефекта благодаря пластической деформации. Для случаев, когда внахлёст или шаг

составляют 30-40%, применение горячего металла для заполнения также является эффективным решением [4].

Деградация коррозионной стойкости в зоне соединения обусловлена трансфером металлических частиц с электрода на поверхность в месте деформации, что ведет к интенсификации коррозионных явлений в данной области. Это явление особенно выражено в случае использования сплавов, предрасположенных к коррозии, при их контакте с металлами, обладающими более высокой электрохимической активностью, как, например, в ситуациях взаимодействия алюминиевых и магниевых сплавов с медью. В области контактной сварки данный дефект обозначать принято "контаминация" поверхности изделия [4]. В результате такого взаимодействия свойств материала возрастает температура в зоне контакта из-за увеличения тепловыделения и снижения теплоотведения, что создает эффект термической изоляции. Это приводит к расширению зоны расплавления металла и, как часто вызывает появление трещин И отколов, распространяются по поверхности изделия.

В связи с этим, на некоторых этапах сварочного процесса возникает необходимость регулярно очищать рабочую часть электрода, чтобы избавиться от продуктов реакции. Это неизбежно уменьшает эффективность работы. Оптимальный момент для очистки обычно приходится на момент, когда металл расплавлен на глубину 80-90%. Это зависит от характеристик используемого металла, состояния поверхности изделия и параметров сварки. Сопротивление гэд может служить электрическим индикатором, который помогает определить текущее состояние поверхности электрода [18].

Чтобы повысить устойчивость сварных соединений к коррозии, необходимо активно управлять процессами переноса веществ. Ключевые технологические шаги включают в себя:

– предварительное сжатие компонентов до начала сварочных работ,

- покрытие поверхности компонента защитным слоем (например, минеральное масло), что препятствует переносу веществ (их осаждению) и предотвращает повторное окисление электрода,
- глубокая очистка поверхности компонента перед сваркой, желательно
 с помощью химических методов, для удаления влажных веществ, которые
 могут способствовать повторному окислению электрода,
- применение проводящих электродных материалов, таких как
 промышленная медь, для точечной сварки магниевых сплавов,
- использование строгих условий работы для сокращения времени воздействия высоких температур на металл,
- избегание нежелательных структурных изменений в металле сварного соединения,
- очистка поверхности сварного шва от остатков веществ с помощью металлической щетки после завершения сварки [2].

Коррекция недостатков в сварных швах, как правило, является сложной и трудоемкой технической задачей. Возможно выполнение точечной или шовной сварки на существующих швах, но это редко применяется и требует специальных настроек. В таком случае достижение совместности швов часто представляет сложность. Во многих случаях дефектные участки или швы ремонтируются дополнительной сваркой или наложением параллельных швов. Исправление дефектных швов сваркой плавлением или пайкой почти всегда возможно, но требует больших трудозатрат [22].

Решение о том, следует ли исправлять недостатки в сварных соединениях, и допустимость таких исправлений определяются на основе важности соединения в конструкции и прописываются в спецификациях и сварочных процедурах. Варианты устранения дефектов, будь то дополнительная точечная сварка, шовная сварка, вырезание поврежденного участка с последующим заполнением сваркой в защитной атмосфере, просверливание и установка заклепок, шлифовка сварного шва или его

термическая обработка, выбираются в зависимости от характеристик дефекта, таких как тип, расположение и размер [2].

Чтобы исключить возникновение дефектов на ранних этапах, важно осуществлять тщательный контроль за процессами подготовки, включая формирование и обработку поверхности деталей, их сборку и временное закрепление перед началом сварки. Это особенно актуально при точечной сварке изделий из легких сплавов, где проверка качества поверхности выполняется путем замеров сопротивления холодных сжатых деталей, уже собранных в сварную конструкцию [14].

1.5 Влияние параметров режима контактной сварки на качество сварочных соединений

В целях обеспечения оптимального качества сварного соединения и повышения эффективности сварочного процесса необходимо осуществить адекватный выбор методики сварки. Данный выбор должен базироваться на тщательном анализе характеристик используемого материала, его геометрических параметров и толщины. Согласно исследованиям для каждого конкретного типа материала и его геометрических размеров, существует идеально подходящий метод сварки, способный обеспечить соответствие сварного соединения установленным стандартам качества [23]. Это включает необходимых габаритов достижение И прочностных характеристик, отсутствие дефектов, минимизацию структурных изменений и деформаций, а свойств также сохранение защитных материала, В TOM числе антикоррозийных. Ключевые параметры режима сварки должны гарантировать долговечность электродов, требуемую производительность процесса, а также упрощать технологическую сложность. В процессе определения режима сварки критически важно учитывать специфические особенности как самого процесса сварки, так и свойства свариваемых материалов.

Режим сварки представляет собой набор характеристик, включающих электрические, механические и временные параметры, которые обеспечивают качественное сварное соединение [30].

Оптимизация параметров процесса может быть выполнена посредством табличных анализа данных, применения номограмм, проведения математических вычислений или на базе эмпирических знаний. Избранный вычисленный режим подлежит последующей верификации или И корректировке в рамках специфических условий эксплуатации.

Основные параметры режима сварки для точечной сварки включают усилие ковки (Fк), время сварки (Тсв), сварочный ток (Ісв), сварочное усилие (Fсв), размеры рабочей поверхности электрода (Rэ, dэ) и время проковки (Тк) [29].

Для выполнения точечной сварки необходимо учесть размеры литого сердечника (d, h), указанные в ГОСТ 15878-79, в зависимости от толщины свариваемой детали. Расчет сварочного тока может быть осуществлен с использованием закона Джоуля-Ленца [7].

В процессе применения методов сварки, основанных на использовании электрического сопротивления, тепловая энергия генерируется в результате протекания тока через свариваемые материалы. В соответствии с физическими принципами, электрическое сопротивление свариваемой зоны предполагается быть в два раза выше по сравнению с сопротивлением вдоль сварного шва.

Количественные характеристики тепловыделения в сварном шве коррелируют с физическими и механическими свойствами используемого материала, толщиной свариваемых деталей и временем, в течение которого осуществляется сварочный процесс [44].

Вариации во времени протекания сварочного тока и его амплитуде оказывают значительное влияние на морфологию и механическую целостность сварного соединения. Следовательно, регулирование данных параметров позволяет достигать необходимой прочности сварного

соединения, оптимизируя при этом продолжительность сварочного процесса и интенсивность тока [17].

В контексте исследования механической прочности сварных соединений, особое внимание уделяется методам сварки плавлением ввиду их способности формировать сварные соединения с высокой надежностью. Исследования показывают, что применение сварки плавлением способствует получению соединений с минимальными колебаниями разрывной нагрузки при испытаниях. В отличие от методов сварки без плавления, где даже колебания во времени подачи тока или других процессуальных параметрах могут привести к значительным отклонениям в прочностных характеристиках сварного соединения, что обусловлено нестабильностью процесса сварки в производственных условиях.

Для достижения оптимальных и консистентных сварных соединений рекомендуется применение сварочного режима, адаптированного к точке С, представляющей собой оптимальный баланс параметров сварки. Уменьшение прочности сварного соединения в промежуточной области, расположенной выше точки С, может быть обусловлено тепловым воздействием на металл, приводящим к перегреву и значительному деформированию сварного шва [21].

В контексте сварки низкоуглеродистых сталей, оптимальное время подачи тока рекомендуется варьировать в зависимости от режима сварки и толщины свариваемых деталей. Для мягкого режима сварки, время подачи тока должно составлять от 0,2 до 0,4 секунды, тогда как для жесткого режима – от 0,1 до 0,2 секунды, где s обозначает толщину детали в миллиметрах.

При выборе скорости сварки (в метрах в минуту) необходимо учитывать не только требуемое расстояние между точками, но и их перекрытие.

В процессе реализации методов точечной и шовной сварки наблюдается вероятность распространения части тока вторичной цепи за пределы зоны формирования сварного соединения, что является феноменом шунтирования [15]. Данный процесс может происходить в различных контекстах, включая

проникновение тока через участки, ранее подвергшиеся сварке, а также сквозь пространства между компонентами конструкции или в результате непреднамеренного контакта с латеральной (нетронутой) поверхностью электрода.

В процессе сварки наблюдается явление редукции электрического тока через шунт, что обусловлено тепловым повышением его температуры и последующим снижением эффективности. В частности, при выполнении сварки герметичных соединений, особенно когда задействованы высокая скорость и непрерывное вращение сварочных роликов, ограничение тока через шунт происходит вследствие увеличения температуры в зоне предшествующего соединения, что подтверждается исследованиями [29].

Не менее значимым параметром является диаметр контактной поверхности сварочного электрода, оказывающий весомое влияние на габариты и механическую прочность сварного соединения. Исследования показывают, что с увеличением диаметра контактной поверхности электрода при неизменных остальных условиях процесса сварки, интенсивность соединения изначально понижается незначительно, однако последующее увеличение приводит к резкому снижению прочностных характеристик [34].

При сварке сталей обработанная часть электрода обычно имеет форму граненого конуса с плоской контактной поверхностью или реже цилиндра со сферической контактной поверхностью.

В ходе проведения сварочных работ с использованием стальных материалов, радиус контактной поверхности электрода обычно составляет от 50 до 100 миллиметров. В соответствии с технологическими требованиями, параметры указанной поверхности могут подвергаться изменениям в процессе сварки [15]. Стандартные условия эксплуатации предписывают, что износ контактной поверхности электрода не должен превышать 15-20% от его первоначального диаметра [16].

Сила сжатия электрода является одним из ключевых параметров в сварочном процессе, поскольку она влияет на тепловую динамику сварного

соединения и его деформационные характеристики. При увеличении данной силы происходит снижение электрического сопротивления свариваемой детали, как контактного, так и объемного, а также возрастает плотность тока в месте сварки. Это ведёт к замедлению темпа нагрева и, при прочих равных условиях, к уменьшению размеров и механической прочности сварного шва [28].

В процессе исследования сварочных операций было выявлено, что декремент средней интенсивности сварочной точки коррелирует качества повышением дисперсии показателей сварного соединения. Следствием этого является редукция степени стабильности интенсивности сварочного процесса. Данный феномен может быть обусловлен воздействием механического давления электрода: при его усилении, при прочих неизменных условиях процесса, наблюдается тенденция к значительному сокращению размеров сварочной точки или к полному отсутствию ее формирования [14].

Если время включения тока или сварочный ток увеличиваются, при этом поддерживая постоянную среднюю интенсивность сварочного пятна, то при повышении силы сжатия электрода интенсивность пятна становится более стабильной.

Сила сжатия электрода зависит от толщины и времени нагрева свариваемой детали.

При проведении сварки стальных листов, изготовленных из холоднокатаной стали, наблюдается увеличение приложенного давления на 20-30% [14].

Для сварки стали с использованием горячекатаной низкоуглеродистой стали, требуется применение жесткого режима с диапазоном давления от 50 до 120 Мпа и мягкого режима с диапазоном давления от 30 до 60 Мпа [21].

В рамках современных технологических процессов контактной сварки осуществляется точное управление тепловым режимом и степенью деформации свариваемых металлических материалов, что допускает широкий спектр настроек. Данная возможность предполагает реализацию

программирования термомеханического режима сварки, что включает в себя адекватный подбор профиля сварочного тока и модуляции сварочного давления в течение каждого отдельного цикла сварочного процесса. Такая методика позволяет достигать высокого уровня контроля над качеством формируемого соединения, а также способствует минимизации риска появления дефектов сварного шва [22].

В процессе разработки и оптимизации технологических параметров сварочного процесса, в частности параметров управления усилием сварки, необходимо учитывать ряд факторов, таких как толщина свариваемых элементов, их материальные характеристики, геометрическая конфигурация, критичность функционирования в конструкции, качество выполнения сборочных работ и технические возможности сварочного оборудования. В ряде случаев, ввиду ограничений оборудования, невозможно осуществить непрерывное регулирование усилия сжатия, что приводит к его ступенчатому целесообразно изменению. Известны ситуации, когда применение циклограмм с неизменным уровнем приложенного давления, особенно это актуально для точечной сварки.

В большинстве случаев программа нагрева сварного шва задается в виде одного импульса сварочного тока. Путем регулировки длительности и величины сварочного импульса можно достичь жесткого или мягкого режима нагрева [26].

Для минимизации риска возникновения термических трещин в сварных соединениях рекомендуется использование последовательного импульса теплового воздействия. Данная методика предусматривает также внедрение дополнительной циклограммы приложения давления. Кроме того, замедление скорости охлаждения может быть достигнуто путем регулирования скорости снижения заднего фронта тока сварки в интервале времени [1].

Для устранения промежутков между сварными швами и предотвращения внутренней обработки, можно использовать предварительное нагревание дополнительными импульсами тока нагрева.

Чтобы снизить скорость нагрева с целью предотвращения образования горячих трещин, передний фронт сварочного тока модулируется с помощью импульса.

Допускается применение бинарной схемы подачи электрического импульса, либо осуществлять модуляцию как анодного, так и катодного фронтов сварочного импульса в синхронном режиме [30].

1.6 Контроль качества контактной сварки

Одной из главных характеристик качества контактной сварки является степень непрерывности металлического соединения на определенном участке шва. В случае точечной, шовной и, чаще всего, рельефной сварки, этот параметр определяется размером зоны взаимного проплавления деталей [16].

В рамках современной сварочной промышленности, несмотря на значительные достижения в разработке технологических нормативов и совершенствование сварочного оборудования, полностью исключить возникновение дефектов в сварных соединениях не представляется возможным. Это явление обусловлено воздействием многочисленных неконтролируемых факторов на процесс сварки, возникающих в результате отклонений технических параметров, зазоров между свариваемыми деталями, геометрических размеров рабочей поверхности электрода, спецификой подготовки поверхности компонента к сварочному процессу, а также стабильностью фиксации компонентов в зажимном устройстве [14].

Структурные несоответствия в сварном соединении, включая трещины, углубления и пористость, могут быть выявлены благодаря использованию методов визуального осмотра, ультразвуковой диагностики или рентгенографии [42].

Структурные изменения материала, приводящие к его хрупкости или перегреву, могут быть идентифицированы в ходе визуального осмотра, что

проявляется в изменении цвета металла на белый, или путем измерения его твердости [2].

В рамках профилактических мероприятий, направленных на предотвращение возникновения дефектов и обеспечения их своевременной идентификации, осуществляется систематический мониторинг на всех этапах производства сварных изделий [15]. Этот процесс охватывает все фазы, начиная от стадии проектирования и заканчивая завершением сварочных работ, включая непосредственно акт сварки и последующую оценку качества готовой продукции. На рисунке 6 представлен наиболее исчерпывающий перечень методик контроля качества швов, применяемых в контексте контактной сварки [16].

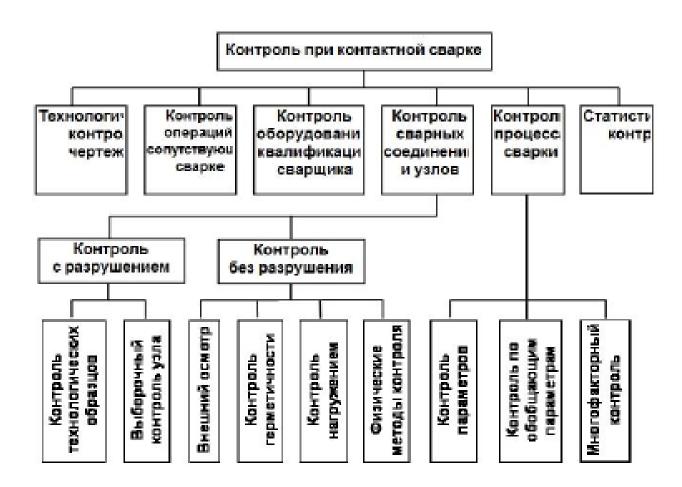


Рисунок 6 – Способы контроля швов контактной сварки

Контроль может происходить с разрушением и без разрушения соединения.

Испытание методом разрушения представляет собой процедуру оценки качества технических изделий и отдельных сварных соединений путем их физического разрушения. Данный подход не позволяет установить характеристики неразрушенных сварных швов. Однако простота интерпретации результатов и наглядность испытаний обуславливают их распространенность в промышленной практике, особенно при оценке технических образцов.

Процесс выбора метода сварки, верификация качества сварного соединения в рамках сварочных операций и оценка эксплуатационной надежности сварочного аппарата производятся на основе эмпирических данных, собранных в результате проведения испытаний на технологических образцах [8]. Эти образцы должны быть идентичны по своим физико-механическим И химическим характеристикам свариваемым элементам, что включает сорт металла, состояние поверхностного слоя, толщину материала, конфигурацию сечений, расстояние между точками сварки и, при определенных условиях, геометрию соединения.

На основе анализа результатов тестирования технологических образцов формируется заключение о качестве сварного шва и пригодности изделия к дальнейшему применению, а также об удовлетворении сварочного оборудования предъявляемым требованиям эксплуатационной надежности, при отсутствии альтернативных методов контроля качества [9].

Для оценки качественных характеристик сварных стыков в рамках серийного производства может быть проведена выборочная деструктивная проверка определённого количества изготовленных конструкционных элементов. Методология контроля сварных стыков коррелирует с материалом и функциональным предназначением изделия и устанавливается в соответствии с разработанной программой контроля [6].

Методы неразрушающего контроля занимают ведущие позиции в области диагностики сварных соединений на предмет выявления дефектов. В качестве приоритетных физических методов неразрушающей проверки используются: радиационное просвечивание, методы на основе электромагнитных волн и ультразвуковая диагностика [5].

Одной из техник неразрушающего контроля является проведение визуального осмотра, оценка герметичности и определение способности сварных соединений выдерживать заданные эксплуатационные нагрузки [41].

Основным методом неразрушающего контроля является визуальная инспекция соединений, которая может осуществляться без применения специализированных инструментов или с использованием оптических увеличивающих устройств, например, лупы. В ходе данной процедуры проводится анализ соответствия геометрических параметров точек и швов чертежах нормам, измерение глубины установленным на вмятин, образованных электродами, выявление внешних дефектов, таких как трещины, шероховатости, а также проверка на наличие неспаянных участков шва. Кроме того, осуществляется оценка следов переноса вещества, наличия зазоров между элементами конструкции и деформаций в местах соединения. Визуальная инспекция способна выявить также внешние трещины и неспаянные участки шва после удаления избыточного металла или его шлифовки. В случае использования в соединениях легированных сталей целесообразно проведение измерений твердости сварного определенных условиях также рекомендуется проверка герметичности сварных соединений [36].

В число неразрушающих методов контроля также входят испытания соединений на прочность под воздействием нагрузок. Положительные результаты данных испытаний свидетельствуют о высоком качестве изделия. Этот метод находит широкое применение сфере производства радиоэлектронной техники, где проводится анализ электрических В характеристик. дополнение механических К тестированию на

герметичность, резервуары, предназначенные для критически важных задач, подвергаются проверке на способность выдерживать предполагаемые вибрационные и ударные нагрузки [38].

В процессе производства изделий встречаются ситуации, когда приложение нагрузок, соизмеримых cпрогнозируемыми рабочими параметрами, становится неизбежным этапом. В процессе испытаний сварных соединений под воздействием нагрузок необходимо проводить тщательный контроль их состояния. Одним из перспективных методов является акустическая эмиссия, которая позволяет идентифицировать потенциальные ранней стадии развития. Радиографический метод дефекты ИХ работающий неразрушающего контроля, на основе использования рентгеновского излучения, широко применяется для оценки качества сварных соединений, созданных путем контактной сварки. Этот метод способен выявлять разнообразные типы неоднородностей в структуре сварного шва, включая трещины, включения несваренных зон, оксидные включения, пористость и другие аналогичные дефекты. Однако следует отметить, что радиографический метод может оказаться недостаточно эффективным для обнаружения дефектов, связанных с нарушениями технологии сварки, если эти нарушения не приводят к появлению вышеуказанных неоднородностей [12].

Тем не менее, при использовании методов точечной, шовной и рельефной сварки возможно применение радиографического контраста границ шва для объективной оценки присутствия несплавленных участков. Рентгенографическое исследование размеров зон сплавления элементов дает возможность точной диагностики качества сварного соединения.

Ультразвуковой контроль основан на способности ультразвуковых колебаний (УЗК) распространяться через металл в виде направленных волн на большие расстояния и отражаться от участков с различной плотностью, таких как дефекты [7]. Современные дефектоскопы работают преимущественно в

диапазоне частот распространения упругих колебаний 0,5-25МГ способны четко обнаруживать дефекты размером не менее 10 микрон.

Применение ультразвуковой дефектоскопии позволяет идентифицировать различные аномалии структуре соединений, сформированных с использованием технологии контактной сварки. К числу выявляемых дефектов относятся редукция толщины материала, наличие микротрещин, пористость, образование шлаковых включений И локализованные области окисления (последний тип дефекта преимущественно свойственен сварке в расплавленном состоянии) [40]. Традиционные ультразвуковые методики позволяют обнаружить указанные несоответствия. Однако дефекты, связанные \mathbf{c} полным отсутствием сцепления И формированием тонких оксидных пленок, ΜΟΓΥΤ оставаться не детектируемыми при использовании ультразвуковой дефектоскопии [16].

В рамках неразрушающего контроля, магнитные методы представляют собой один из важных подходов к диагностике структурной целостности сварных соединений, преимущественно выполненных из ферромагнитных материалов. Такие методы демонстрируют высокую чувствительность к выявлению поверхностных и неглубоких подповерхностных дефектов, включая трещины, сколы и поры, проникающие на глубину до 10-15 мм [16]. Тем не менее, при интерпретации магнитных изображений необходимо учитывать потенциальное влияние факторов, способных исказить получаемые данные. К таким факторам относятся гетерогенность структуры металла, изменчивость его магнитных свойств, а также особенности геометрии сварного шва. Эти условия могут привести к ошибочным выводам при анализе результатов магнитного контроля. В частности, при анализе сварных соединений, выполненных методом точечной сварки сталей, магнитные методы могут быть использованы для определения границ сварочной ленты, что является важным для оценки качества сварного соединения [1].

Вывод по первому разделу: метод контактной сварки является высокоэффективным инструментом для создания надежных сварных

соединений без повреждений защитного слоя изделий и привлечения квалифицированной рабочей силы. Главными факторами, определяющими качество сварного шва, выступают правильный выбор режимов сварки, четкое позиционирование электродов и качественная подготовка поверхностей. Высокая интенсивность процессов нагрева и деформации в сочетании с концентрацией энергии в ограниченной зоне обеспечивают оптимальные результаты при минимальных временных и ресурсных затратах.

Производительность и надежность современных сварочных аппаратов гарантируют качественную и быструю работу в любых производственных масштабах, от единичных заказов до массовой продукции. Возникающие трудности при сварке деталей с разным профилем толщины успешно преодолеваются путем грамотного регулирования теплового баланса и выбора подходящих электродов. Организация регулярного мониторинга качества сварных швов, применение проверенных методов контроля и постоянное совершенствование технологических параметров позволяют минимизировать дефекты и обеспечить надежную эксплуатацию сварных конструкций.

2 Материал (изделие) и методика проведения исследований

2.1 Материал (изделие)

Экспериментальная база настоящей работы представлена образцами соединений элементов кузова автомобиля марки «Веста». В качестве объектов исследования выбраны следующие детали кузова:

Усилитель брызговика, выполненный из высококачественного материала — низколегированной низкоуглеродистой стали марки DX53D+Z100. Толщина листа составляет 0,7 мм, поверхность покрыта защитным слоем цинка.

Кронштейн крепления переднего крыла, изготовленный из легированной высокопрочной стали марки HX180YD+Z100. Структура аналогична предыдущей: толщина листа также равна 0,7 мм, материал покрыт цинковым покрытием.

Использование именно этих материалов обусловлено их широким распространением в автомобилестроении и высокими требованиями к прочности, коррозионной стойкости и долговечности деталей автомобильного кузова.

Химический состав применяемых марок сталей детально описан в таблице 2. Приведены основные химические компоненты обеих сталей, такие как углерод, марганец, кремний, фосфор, серу и другие важные примеси. Анализ химического состава позволяет оценить особенности структуры металлов и выявить ключевые различия, способные повлиять на поведение соединённых конструкций при механических нагрузках.

Таблица 2 – Химический состав сталей в эксперименте

Сталь	C	Si	Mn	P	S	Ti	Nb	Al	Fe
DX53D	<0,12	<0,5	<0,6	<0,1	<0,045	<0,3	_	_	остальное
HX180YD	<0,01	<0,3	<0,7	<0,06	<0,025	<0,12	<0,09	>0,01	остальное

Физико-механические свойства используемой стали подробно изложены в таблице 3. Здесь приведены важнейшие механические характеристики обоих типов сталей, включая предел прочности, Временное сопротивление разрыву и относительное удлинение. Эти данные являются основой для последующего анализа сопротивления свариваемых изделий механическим деформациям и разрушениям, что крайне важно для прогнозирования надежности соединений в реальных эксплуатационных условиях.

Таблица 3 – Механические свойства сталей в эксперименте

Сталь	Предел текучести	Временное сопротивление	Относительное
	Re, MПa	разрыву Rm, МПа	удлинение A80, %, min
DX53D	140 - 260	270 - 380	30
HX180YD	180 - 240	330 - 390	> 34

Подготовка и изучение свойств, применяемых образцов, позволяют провести всестороннюю оценку поведения автомобильных кузовных компонентов при эксплуатации и разработать рекомендации по улучшению конструкции и технологии изготовления узлов автомобиля «Веста», повышая общую безопасность и долговечность транспортного средства.

2.2 Комплексный подход математического планирования экспериментов и крутого восхождения

2.2.1 Математическое планирование экспериментов

Современные производственные технологии, особенно такие, как сварочные процессы, характеризуются значительным числом одновременно воздействующих на продукт технологических факторов. Это обстоятельство значительно усложняет исследование таких процессов, поскольку выбор

оптимального режима требует учета множества переменных, каждая из которых оказывает влияние на конечный результат.

Традиционные методы исследования, основанные исключительно на эмпирическом подходе, зачастую оказываются неэффективными ввиду длительности исследований и недостаточной точности полученных результатов. Поэтому современные подходы предполагают использование статистико-математических методов, позволяющих уменьшить затраты времени и ресурсов, обеспечить высокую точность выводов и оптимизацию технологического процесса.

Математическое собой планирование эксперимента представляет методологию, предназначенную для рационального выбора необходимого и объема достаточного опытных данных, которые позволят поставленную задачу с необходимой степенью достоверности. Этот процесс включает в себя определение оптимальных условий постановки опытов, разработку алгоритмов анализа результатов измерений обоснованных управленческих решений.

Особое внимание уделяется следующим аспектам:

- выбор выходного параметра, определяющего качество исследуемого объекта (или системы), являющимся ключевым элементом процедуры планирования. Его грамотное определение непосредственно влияет на эффективность и успешность всей исследовательской деятельности.
- Критерии оптимизации предполагают достижение максимального эффекта при минимизации затрат и рисков. Важно выбрать правильный критерий оценки эффективности технологического процесса.
- Факторы планирования, изменение которых планируется в ходе эксперимента, должны быть управляемыми и независимыми друг от друга.
 Необходимо учитывать физические ограничения измерительных приборов и диапазон возможных изменений каждого фактора.

При выборе параметров исследования особое внимание уделяется понятию однозначности, согласно которому каждому набору значений

факторов должно строго соответствовать единственное значение целевого показателя. Такой подход обеспечивает четкость интерпретации результатов и снижает вероятность ошибок при принятии решений.

Однако в реальности технические характеристики производственного процесса редко выражаются одним единственным показателем качества. Обычно существует ряд показателей, каждый из которых важен для достижения цели. Чтобы упростить процесс нахождения оптимума, рекомендуется выделить основной показатель оптимизации, а остальные — рассматривать как дополнительные условия (ограничения).

Факторы планирования должны удовлетворять ряду требований:

- управляемость: возможность изменять фактор по желанию исследователя.
 - Независимость: отсутствие корреляций между факторами.
- Количественная природа: точное численное выражение каждой величины.
- Ограниченность: интервал допустимых значений должен находиться внутри физической возможности реализации опыта.

Кроме того, необходимо учитывать соотношение погрешностей измерения факторов и результата эксперимента. Желательно, чтобы относительная ошибка измерения факторов была в три-пять раз ниже погрешности целевого показателя.

Оптимальное число планируемых факторов определяется исходя из двух противоречивых целей:

- минимизация расходов на проведение испытаний.
- Максимально полное описание поведения исследуемого объекта.

При увеличении числа факторов растет объем необходимых опытов или снижается точность полученной математической модели. Таким образом, задача сводится к поиску компромисса между полнотой описания объекта и ресурсоемкостью эксперимента.

Для начала проектирования эксперимента выбираются начальные условия, соответствующие среднему уровню факторов. Среднее значение чаще всего принимается равным наиболее предпочтительному состоянию системы, известному заранее. Но если оптимальное состояние находится вблизи границ диапазона возможного изменения фактора, целесообразно сдвинуть среднее значение внутрь доступной зоны, чтобы избежать граничных эффектов.

Следующий этап предусматривает получение линейной математической модели объекта. Она строится путем задания фиксированных верхних и нижних уровней для каждого фактора, при которых проводятся опыты. Разница между средним уровнем и верхним (нижним) называется интервалом варьирования. Этот интервал определяет область чувствительности рассматриваемого фактора относительно изменений выходных характеристик продукта.

Важно отметить, что величина интервала варьирования должна превышать ошибку измерения самого фактора, иначе полученные данные будут недостаточно информативны. Вместе с тем недопустимо устанавливать чрезмерно большие интервалы, приводящие к выходу за пределы области применимости метода. Значения факторов в эксперименте:

$$Z_{imin} = \overline{Z_1} - h_i, \tag{1}$$

$$Z_{imax} = \overline{Z_1} + h_i . (2)$$

Для упрощения записи условий эксперимента и расчетов при обработке экспериментальных данных натуральные переменные заменяют кодированными (условными). Для количественных факторов замена проводится по формулам:

$$X_{imax} = \frac{Z_{imax} - \overline{Z_i}}{h_i} = +1, \tag{3}$$

$$X_{imax} = \frac{Z_{imax} - \overline{Z_i}}{h_i} = -1. \tag{4}$$

Далее используют матрицу планирования — таблицу, описывающую условия проведения опытов, в которой строки соответствуют различным опытам, а столбцы — значения факторов. Уровни факторов в матрице (+1 или -1) часто обозначают просто знаками (+ или -). При полном факторном эксперименте реализуются все возможные сочетания уровней факторов, представленные в таблице 4.

Таблица 4 – Три фактора. Полный факторный эксперимент

Номер	Значения факторов				
опыта	X_1	X_2	X ₃		
1	_	_	+		
2	_	+	_		
3	+	_	_		
4	+	+	+		
5	_	_	_		
6	_	+	+		
7	+	_	+		
8	+	+	_		

На основе матрицы значений условных переменных формируется соответствующая матрица значений натуральных переменных, используемых в экспериментальных исследованиях.

Экспериментальные испытания, проводимые в соответствии с матрицей планирования, должны осуществляться в случайном порядке, причем каждый отдельный опыт необходимо многократно воспроизводить в идентичных условиях для повышения надежности и достоверности полученных результатов.

По результатам опытов вычисляют в каждой строке матрицы:

- среднее арифметическое

$$\overline{y}_j = \frac{\sum_{k=1}^n y_{kj}}{n} \tag{5}$$

где n — количество опытов, выполненных при одинаковых условиях (j строка);

 y_{kj} – значение выходного параметра в k-м опыте j-й строки.

- Дисперсию:

$$\sigma_j^2 = \frac{\sum_{k=1}^n (y_{kj} - \overline{y_j})^2}{n-1} \tag{6}$$

Производится проверка однородности дисперсий. В случае одинакового количества повторных наблюдений в каждой строке матрицы планирования данная проверка осуществляется посредством применения критерия Кохрена:

$$G_{\text{pacy}} = \frac{\sigma_{max}^2}{\sum_{i=1}^{N} \sigma_i^2} < G_T \tag{7}$$

где $G_{\text{расч}}$ – рассчитанное значение Кохрена;

 σ_{max}^{2} — максимальная из всех построчных дисперсий;

 $\sum\limits_{j=1}^N \sigma_j^2$ — сумма построчных дисперсий во всех N строках матрицы;

 G_T – табличное значение критерия Кохрена, указанное в таблице 5.

Таблица 5 — Значение критерия Кохрена для различного числа опытов при доверительной вероятности 0.95

Число строк	Число опытов в каждой строке матрицы					
матрицы	2	3	4	5		
планирования						
4	0,907	0,768	0,684	0,629		
5	0,680	0,516	0,438	0,391		

Если рассчитанное значение критерия Кохрена превышает критическое пороговое значение, дальнейшее построение математической модели становится невозможным. В таком случае возникает необходимость

повторного проведения экспериментов соответствующей строки матрицы или внесения изменений в структуру эксперимента с целью увеличения его точности.

Далее для последующих вычислительных процедур рассчитывается дисперсия воспроизводимости:

$$\sigma_B^2 = \frac{\sum_{j=1}^N \sigma_j^2}{N} \tag{8}$$

Под влиянием случайных внешних воздействий результаты опытов, выполненных в идентичных условиях (с позиции наблюдателя), неизбежно демонстрируют вариабельность. По завершении аналитической обработки данных удается определить лишь наиболее вероятное значение выходного параметра при установленных значениях управляющих факторов. Подобная зависимость носит название корреляционной связи, а математическая формула, её отображающая, именуется уравнением регрессии. Когда речь идет о формировании линейной модели исследуемого объекта, уравнение регрессии представляется в следующем виде:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_i x_i + \dots + b_{m-1} \cdot x_{m-1}$$
 (9)

Коэффициенты уравнения регрессии рассчитываются по формулам:

$$b_0 = \frac{1}{N} \sum_{j=1}^{N} \overline{y_j},\tag{10}$$

$$b_1 = \frac{1}{N} \sum_{j=1}^{N} x_{ij} \cdot \overline{y_j}. \tag{11}$$

где x_{ij} — значение і-го фактора в ј-й строке матрицы планирования.

Оценка значимости коэффициентов проводится для отбрасывания членов уравнения, незначительно влияющих на выходной параметр. В результате упрощаются расчеты.

Определяется доверительный интервал по следующей формуле:

$$\Delta b = c \cdot \sqrt{\sigma_R^2} \tag{12}$$

где σ_B^2 — рассчитанная по формуле дисперсия воспроизводимости;

с – постоянная, зависящая от числа строк матриц и количества
 опытов в каждой строке, взятая из таблицы 6.

Таблица 6 – Коэффициент с для расчета доверительного интервала

Количество	Количество опытов, проведенных в условиях каждой строки					
строк в матрице	2	3	4	5		
4	1,15	1,06	1,03	1,02		
5	0,81	0,75	0,73	0,72		

Значимость коэффициентов уравнения регрессии определяется из условий $|b_i| > \Delta b$. Если абсолютная величина коэффициента регрессии b_i меньше доверительного интервала, фактором хі можно пренебречь.

Определяется дисперсия адекватности по формуле:

$$\sigma_{\rm ad}^2 = \frac{n}{N-m} \sum_{j=1}^{N} (\overline{y_j} - y_{jp})^2$$
 (13)

где п – число параллельных опытов;

N – количество строк матрицы планирования;

m – количество коэффициентов уравнения, считая b_0 ;

 \bar{y}_{j} и y_{jp} – среднее экспериментальное и рассчитанное по уравнению (9) значение выходного параметра для i-й строки матрицы.

Определяется критерий Фишера по формуле:

$$F_{\text{pacy}} = \frac{\sigma_{\text{ag}}^2}{\sigma_{\text{B}}^2} \tag{14}$$

Уравнение считается адекватным, если $F_{\text{расч}} < F_{\text{табл}}$. Значение критерия Фишера представлены в таблице 7.

Таблица 7 – Значение критерия Фишера при доверительной вероятности 0,95

Число степеней	Число степеней свободы дисперсии адекватности $f_{a\pi}$ =N-m					
свободы дисперсии воспроизводимости f_B =N(n-1)	1	2	3	4	5	
4	7,7	6,9	6,6	6,4	6,3	
8	5,3	4,5	4,1	3,8	3,7	
12	4,8	3,9	3,5	3,3	3,1	
16	4,5	3,6	3,2	2,9	2,8	
24	4,3	3,4	3,0	2,8	2,6	
32	4,2	3,3	2,9	2,7	2,5	

Если уравнение адекватно, необходимо перейти к неполной или полной квадратичной модели.

Переход к неполной квадратичной модели, в которой к правой части уравнения (9) добавляются слагаемые $b_{il} \cdot x_i \cdot x_l$ (причем $i \neq l$), может быть осуществлен без проведения дополнительных опытов.

Коэффициенты, учитывающие одновременное изменение двух факторов, рассчитывается по формуле:

$$b_{il} = \frac{1}{N} \sum_{j=1}^{N} x_{ij} \cdot x_{lj} \cdot \overline{y_j}$$
 (15)

Тем не менее, взаимодействие различных факторов может приводить к наложению соответствующих эффектов друг на друга. В ситуации выявления значимых коэффициентов взаимодействия возможно интерпретировать их принадлежность определенному типу взаимодействия, основываясь на физических закономерностях и сопоставлении величин коэффициентов, характерных для отдельных факторов.

Для перехода к полной квадратичной модели, включающей слагаемые вида $b_{il} \cdot x_i^2$, необходимо проведение дополнительных опытов.

Если уравнение адекватно, осуществляют переход от условных переменных к натуральным. Для этого в уравнение (9) подставляют следующее уравнение:

$$x_i = \frac{z_i - \overline{z_i}}{h_i} \tag{16}$$

и получают уравнение вида:

$$y = f(Z_1, Z_2, \dots, Z_{m-1})$$
 (17)

Данным уравнением удобнее пользоваться для расчетного выходного параметра внутри исследованной области. Решение интерполяции на этом заканчивается.

2.2.2 Метод крутого восхождения

Одной из распространенных ситуаций в процессе моделирования и оптимизации технологических режимов является недостаточность найденных ранее оптимумов для удовлетворения поставленных практических задач. Например, при достижении определенных значений выходного параметра процесса обнаруживается, что целевой показатель не соответствует желаемым требованиям. Тогда возникает необходимость перехода к следующему этапу улучшения процесса — применению метода крутого восхождения.

Метод крутого восхождения применяется тогда, когда найдено адекватное уравнение регрессии, однако оптимальный результат, соответствующий поставленным целям, пока не достигнут. Основная идея метода заключается в пошаговом изменении независимых переменных таким образом, чтобы достичь максимума искомого параметра по самой быстрой траектории. Данная стратегия подразумевает постепенное продвижение вдоль

поверхности отклика, направляя эксперименты в сторону наибольшего роста интересующего параметра.

Процесс крутого восхождения начинается с исходного (нулевого) уровня факторов, полученного после предварительного этапа эксперимента. Затем алгоритм движется последовательно вверх по направлению градиента поверхности отклика, постепенно приближаясь к точке экстремума.

Изменение независимых переменных выполняется пропорционально величине соответствующих коэффициентов регрессии. Чем сильнее коэффициент регрессии отражает вклад конкретного фактора в отклик, тем больший вес приобретает этот фактор при движении к оптимальному решению.

Одним из ключевых шагов в данном методе является выбор одного из факторов в качестве базового. Как правило, базовым фактором выступает тот, который оказывает наибольшее влияние на выходной параметр. После выбора базового фактора определяется размер шага перемещения по этому фактору. Размер шага играет важную роль, так как слишком большой шаг может привести к перескакиванию через точку оптимума, а слишком маленький — замедлить прогресс и сделать процедуру неоправданно длительной.

Размер шага обычно устанавливается на уровне, обеспечивающем уверенный рост целевого показателя, но не превышающем размеры зон влияния остальных факторов. Движение продолжается до тех пор, пока прирост отклика остается стабильным и положительным. В противном случае делается вывод о выходе на плато или близости к экстремальной точке.

Выбирают шаг движения по базовому фактору:

$$\Delta Z_6 = \gamma \cdot h_6 \tag{18}$$

где γ – коэффициент, принимаемый обычно в пределах 0,3-0,9;

 $h_{\rm f}$ – интервал варьирования базового фактора.

Затем рассчитывают шаги движения по факторам, пропорционально произведениям коэффициентов регрессии на интервалы варьирования:

$$\Delta Z_i = \gamma \frac{b_i}{|b_6|} h_i \tag{19}$$

Факторы планирования в опытах принимают значения:

$$Z_{ip} = \overline{Z_i} + p \cdot \Delta Z_i \tag{20}$$

где р – номер шага крутого восхождения.

Эффективность метода крутого восхождения оценивается достижением результата, превосходящего наилучший показатель среди опытов, предусмотренных первоначальным планом эксперимента. Процесс восходящей оптимизации прерывается в следующих ситуациях:

- уровни факторов выходят за рамки допустимой области исследования,
- достигается точка экстремума целевой функции, означающая невозможность дальнейшего улучшения выбранного выходного параметра.

Достижение указанных критериев сигнализирует о завершении фазы крутого восхождения и переходе к другим методикам анализа и оптимизации технологического процесса.

2.3 Подготовка образцов для исследований

На основании предварительных математических расчетов были сварены 10 образцов с параметрами, указанными в таблице 8.

Таблица 8 – Параметры сварки при проведении экспериментов

Образец	Параметры					
	сила тока, kA	цикл сварки, период	сила сжатия, daN			
1, 2	9,4	0,14	230			
3, 4	9,5	0,14	230			
5, 6	9,5	0,12	230			
7, 8	9,5	0,10	230			
9, 10	9,6	0,10	230			

Сварка деталей производится на стенде, с установленными на нем направляющими, ложементами, прижимными механизмами с пневмоприводом. Для сварки деталей используются сварочные клещи ARO типа V143311000F X04 с наконечниками Ø6 мм.

Перед сваркой поверхности деталей очищались от загрязнений и остатков масла для обеспечения качественного контакта при сварке.

Согласно технологическому процессу в направляющие на стенде устанавливаются в определенном порядке следующие детали:

- 1. кронштейн крепления крыла (В на рисунке 7),
- 2. усилитель брызговика (А на рисунке 7),
- 3. усилитель крепления петли капота (С на рисунке 7),

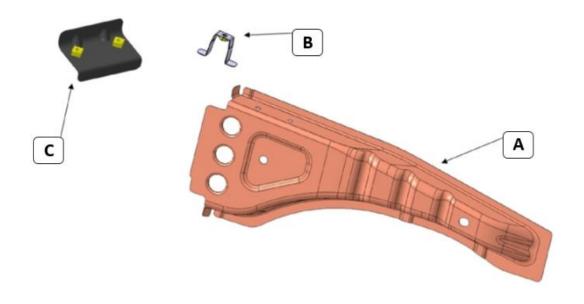


Рисунок 7 — Детали для сварки усилителя брызговика верхнего правого в сборе

После установки деталей на стенд с помощью пульта управления закрываются пневмоприжимы.

Сварщик на машинах контактной (прессовой) сварки берет двумя руками сварочные клещи и производит сварку 10 точек, соблюдаю последовательность, определенную технологом и представленную на рисунке 8.

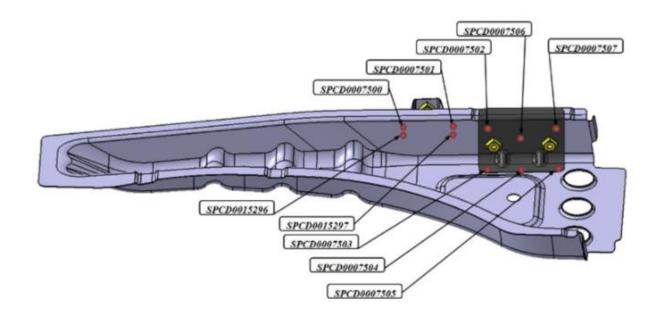


Рисунок 8 — Технологическая схема процесса сварки усилителя брызговика верхнего правого в сборе

Подготовленные образцы для исследований представлены на рисунке 9.

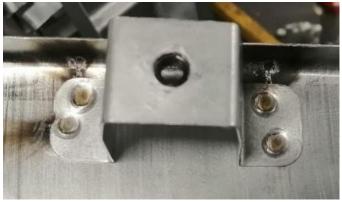


Рисунок 9 – Подготовленные образцы для исследований

2.4 Оборудование для исследований

2.4.1 Ультразвуковой дефектоскоп EPOCH 4 PLUS

Неразрушающий анализ предполагает оценку качества сварки точек в элементах из листового металла. Для выборочного контроля сварных соединений в конструкциях из листового металла используется ультразвуковой дефектоскоп EPOCH 4 PLUS, производимый компанией «PANAMETRICS-NOD» из США, представленного на рисунке 10.

Рисунок 10 – Дефектоскоп EPOCH 4 PLUS

Лица, имеющие сертификаты с первой группой по электробезопасности, имеют право работать с ультразвуковыми дефектоскопами. При использовании акустических устройств необходимо строго следовать правилам безопасности и санитарным нормам на производстве. В процессе осуществления контроля следует придерживаться стандартов, установленных международным стандартом ISO 14001.

Только квалифицированные специалисты, прошедшие обучение и аттестацию на второй уровень в области ультразвукового неразрушающего контроля, имеют право проводить оценку качества сварных соединений изделий. На рисунке 11 обозначены основные элементы процесса: в точке 1

вводится упругая волна с помощью ультразвукового преобразователя 2. Эти вводимые волны, называемые зондирующими, посылаются в изделие поочередно с интервалами в определенные моменты времени. Зондирующий импульс 4, пройдя через материал, отскакивает от противоположной границы (донной поверхности) изделия и частично возвращается обратно в преобразователь, где его может зафиксировать электронно-лучевая трубка (ЭЛТ), на экране которой наблюдается донный импульс 5.

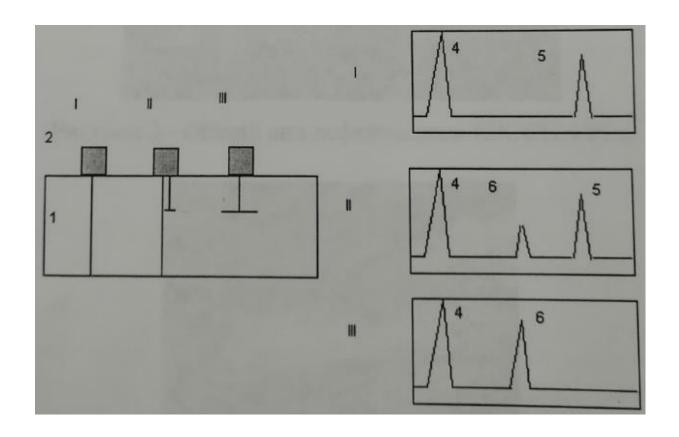


Рисунок 11 – Осциллограммы прозвучивания изделия

В случае обнаружения дефекта второй степени (II) ультразвуковой импульс отразится от него до того, как достигнет противоположной стороны изделия. Между первоначальным импульсом в позиции 4 и последующим импульсом в позиции 6 появляется дополнительный импульс позиция 6. Если дефект полностью блокирует путь ультразвуковому лучу, то на экране ЭЛТ

будут видены только первоначальный импульс и отраженный импульс от дефекта (III).

Процесс контроля точечной сварки осуществляется вручную с использованием ультразвуковых дефектоскопов типа EPOCH 4 PLUS, поскольку современные технологии пока не позволяют автоматизировать контроль из-за неровной поверхности, на которой происходит сварка.

В процессе контроля точечной сварки используются специализированные преобразователи с встроенной акустической твердой задержкой. Это обеспечивает свободный перенос звуковых воли через криволинейную поверхность, характерную для точечной сварки. Обычно выбирается рабочая частота 20 МГц, а диаметр излучателя — в диапазоне от 3,6 до 10 мм.

При распространении волн в материале контролируемого изделия возникает последовательность отраженных импульсов. Форма этой последовательности может служить показателем качества сварки. Если луч не соприкасается со стенками точки сварки, амплитуда отраженных сигналов быстро уменьшается из-за грубозернистой структуры сварного соединения, что приводит к высокому затуханию звука. Расстояние между эхо-сигналами соответствует общей толщине сварного места, определяемой давлением электродов.

При недостаточно широкой точке сварки оператор, помимо обычной последовательности импульсов, замечает небольшие промежуточные эхосигналы, обусловленные границей между листами. Это позволяет определить, не превышает ли диаметр линзы диаметр ультразвукового луча. Поэтому для различных номинальных диаметров линзы выбирается соответствующий диаметр излучателя.

При наличии холодной сварки, происходит "склейка" и образуется удлиненная последовательность эхо-импульсов для удвоенной толщины листа. Холодная сварка создает мелкозернистую структуру за счет низкого

уровня поглощения звука и медленного уменьшения эхо-импульсов на позиции 3, как показано на рисунке 12.

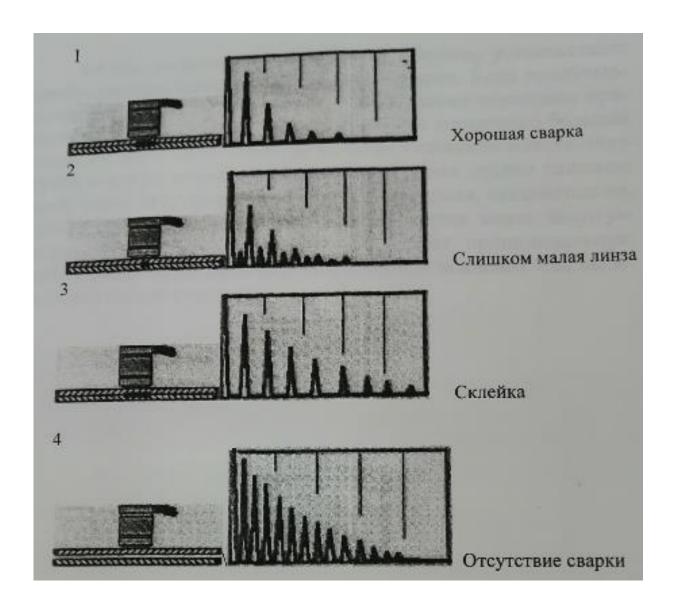


Рисунок 12 – Осциллограммы прозвучивания сварных точек листового соединения

Отсутствие соединения приводит к появлению длинной последовательности эхо-импульсов с малым расстоянием между ними, соответствующим толщине одного листа. Для определения слишком маленького диаметра сварочной линзы сравнивают диаметр линзы и диаметр ультразвукового луча: если диаметр линзы слишком мал, то возникают промежуточные эхо-сигналы на позиции 4.

Это происходит, когда преобразователь установлен точно по центру точки сварки. Если преобразователь установлен не по центру, также возникают промежуточные эхо-сигналы. Это означает, что даже большая сварочная линза может быть оценена как "слишком маленькая". Однако обратная ситуация, когда слишком маленькая линза оценивается как "хорошая", невозможна. Таким образом, результат контроля диаметра линзы всегда точен, даже если оператор допустит ошибку, например, выберет неправильное усиление или преобразователь.

Перед началом проверки контролируемых сварных точек образца необходимо обработать их контактной жидкостью (например, гелем SOUNDSAFE или вазелином).

Шаги настройки программы автоматического анализа качества точечной сварки и контроля, следующие:

- 1. разместить ультразвуковой преобразователь, смазанный контактной жидкостью, на поверхности проверяемого изделия без сварного соединения и получить замороженное изображение "отсутствие сварки" (позиция 4 на рисунке 4). Записать изображение с помощью клавиш.
- 2. Поместить смазанный контактной жидкостью ультразвуковой преобразователь на хорошую сварную точку проверяемого изделия и получить замороженное изображение "хорошая сварка" (позиция 1 на рисунке 4). Записать изображение с помощью клавиш.
- 3. Установить "контроль" с помощью клавиш. Разместить преобразователь на сварочной точке и добиться стабильных сигналов на экране. В правом верхнем углу экрана дефектоскопа автоматически отобразятся данные о суммарной толщине сварного соединения в миллиметрах и оценка качества сварки.
 - UNWELD отсутствие сварки,
 - -THIN вмятина,
 - STICK склейка,
 - UNDERSIZED малое ядро,

- -BURNT прожог,
- GOOD хорошая сварка,
- NO RATING рейтинг не присвоен.

Оценка результатов проверки сварочных соединений изделия при помощи ультразвукового дефектоскопа EPOCH 4 PLUS происходит автоматически с применением программы для оценки качества сварных соединений. Итоговое решение о качестве сварных соединений изделия принимает инспектор на основе последовательности импульсов, изображенных на рисунке 11. Результаты ультразвуковой проверки качества точечной сварки деталей кузова должны быть зафиксированы в рабочем журнале в соответствии с ГОСТ 20415 и в документе "карта сварки" [10].

2.4.2 Спредер ISU 20

Спредер — это устройство, которое используется для проверки прочности сварных соединений кузовов и деталей из конструкционной стали путем натяжения конструктивных элементов. Спредер представляет собой ручной инструмент, который может быть управляем одним человеком с помощью балансира. Он подключается к насосу через один или несколько шлангов и контрольный кабель. На переднем конце устройства находятся два расширяющихся штыря, обозначенных как буква "А" на рисунке 13, которые отвечают за процесс натяжения.

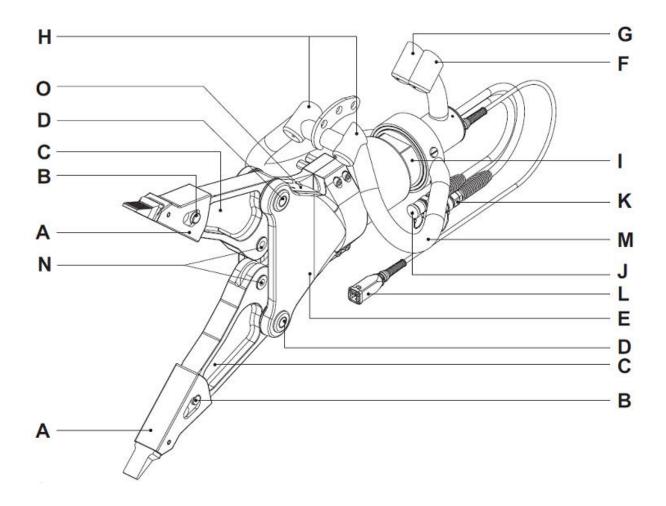


Рисунок 13 – Составные части спредера ISU 20

Составные части спредера ISU 20:

- А растягивающий штырь,
- B стопорный штифт,
- -C «лапа» захвата,
- D неподвижный шарнирный болт,
- Е поперечина,
- F кнопка замыкания,
- G кнопка открывания,
- Н ручная кнопка,
- I клапан сброса избыточного давления,
- J охватываемая соединительная муфта,
- К охватывающая соединительная муфта,

- -L сигнальная муфта,
- M кронштейн подвески,
- -N шарнирный болт,
- O защитная крышка.

Для работы с инструментом необходимо приглашать специалистов, прошедших специальное обучение. В процессе работы следует соблюдать все нормы законодательства, правила безопасности и охраны окружающей среды. Работники, занимающиеся эксплуатацией оборудования, обязаны использовать все индивидуальные средства защиты в соответствии с установленными стандартами. Небрежное отношение к этому вопросу может привести к серьезным травмам. Необходимо применять следующие средства защиты: шлем, защитные очки или щиток на шлеме, защитные перчатки, огнестойкая одежда, закрывающая все тело, защитная обувь с поддержкой голеностопа и защитой пальцев, маска с фильтром при работе с резким стеклом или определенными видами пластмассы.

Правила безопасности при работе с оборудованием:

- прежде чем начать работу, необходимо оценить возможные риски.
- Убедиться, что все лица находятся на безопасном расстоянии,
 особенно при работе рядом с животными или другими людьми.
 - Проверить, что рабочее место хорошо освещено и обозначено.
 - Проверить, нет ли повреждений на оборудовании.
- Стоять на устойчивой поверхности и держите оборудование обеими руками.
- Переносить оборудование с помощью специальной рукоятки или рычага управления.
 - Никогда не становиться между инструментом и грузом.
- Внимательно следить за расположением оборудования во время работы.
 - Закрепить элементы груза, которые могут соскочить.

- Не трогать соединительные муфты, когда оборудование работает или под давлением.
 - Избегать контакта с лезвиями, рычагами или плунжером инструмента.
- Убедиться, что корпус не соприкасается с движущимися частями,
 чтобы избежать их повреждения.
 - Проверить, что рычаг управления свободно перемещается.
- Прекратить работу при появлении необычных звуков или поведения оборудования.
 - Остановить работу при обнаружении утечки масла.

При выполнении технического обслуживания необходимо соблюдать следующие меры безопасности:

- обязательно использовать средства индивидуальной защиты,
- использованные жидкости и другие материалы необходимо собирать и утилизировать с учетом экологических принципов,
 - избегать опасных методов работы,
 - проверить исправность движущихся элементов,
- убедиться, что оборудование не может случайно включиться, блокируя привод и систему управления.

Система включает в себя гидронасос, шланг и один или несколько инструментов. Гидронасос может быть запущен с помощью двигателя внутреннего сгорания, электродвигателя, пневматическим способом, ножным или ручным приводом, выталкивая гидравлическое масло и создавая давление. Шланг предназначен для передачи масла от насоса к инструменту и обратно. Инструмент с двойным действием оснащен гидроцилиндром, в котором находится поршень, двигающийся вдоль оси. При накачивании цилиндра снизу создается давление под поршнем, выталкивающим его наружу. При накачивании цилиндра сверху поршень возвращается обратно в цилиндр. Направление движения поршня определяется клапаном с электрическим управлением на насосе.

Путем нажатия кнопок на инструменте регулирующий клапан перемещается влево или вправо, устанавливая направление движения поршня. Если клапан находится в нейтральном положении, давление в цилиндре не увеличивается, и масло циркулирует без давления. При отпускании кнопки на инструменте регулирующий клапан автоматически возвращается в нейтральное положение, останавливая движение поршня.

В некоторых инструментах, например, спредерах, осевое движение поршня запускает механизм, отвечающий за резание или растягивание материала.

Шланг является компонентом оборудования, соединяющим другие детали таким образом, чтобы они функционировали как единая система.

Система шлангов включает в себя соединенные подачу и обратку шланги, а также контрольный кабель. Эта система поставляется в специальном чехле. На концах каждого шланга находятся соединительные муфты для захвата и регулирующая затворная пробка. Чтобы подключить или отключить инструмент и/или шланг, необходимо сначала остановить работу насоса.

Насос, к которому присоединяется распределитель, оснащен клапаном с электрическим управлением. Управление клапаном осуществляется двумя кнопками, обозначенными буквами F и G на схеме. Две другие кнопки (Н) предназначены для ручного управления. Во время работы инструмента одну из кнопок ручного управления (Н) следует отпустить вместе с одной из кнопок автоматического управления, чтобы "лапы" захвата могли двигаться. В нейтральном положении, когда кнопки не нажаты, масло циркулирует в насосе без давления, и "лапы" захвата остаются неподвижными.

"Лапы" захвата расходятся при нажатии кнопки, что создает давление под поршнем. Откачиваемое масло из инструмента возвращается обратно в насос без давления.

Используя кнопку, закрывается захват, что приводит к образованию давления над плунжером. Масло, находящееся в инструменте, естественным образом возвращается в насос без приложения давления.

Инструмент оснащен механизмом сброса избыточного давления. Если обратный путь к насосу заблокирован, этот механизм предотвратит накопление избыточного давления в системе, обеспечивая слив масла.

Захваты инструмента быстро раскрываются и сжимаются, пока не встречают сопротивление. Насос обеспечивает необходимый уровень давления для выполнения задачи, будь то растяжение или сжатие. Работа с спредером влечет за собой риск ущемления частей тела.

При работе с такими инструментами следует помнить о их высокой мощности.

Рекомендуется использовать только оригинальную арматуру от «Holmatro», исключая любые другие крепежные элементы или цепи.

Правила при работе с растягиванием деталей:

проверить, что растягивающие штыри правильно установлены на растягивающих "лапах".

Сценарий А. Начальное разведение "лап" достаточно.

- разместить оба растягивающих штыря между деталями, которые требуется растянуть,
 - развести детали в разные стороны, раскрывая "лапы".

Сценарий Б. Начальное разведение "лап" достаточно.

- раскрыть растягивающие "лапы",
- поместить один растягивающий штырь между "лапами",
- закрыть растягивающие "лапы", пока материал не будет сжат,
- убрать сжатый материал,
- повторять эту процедуру до тех пор, пока не будет достаточно места
 для обоих растягивающих штырей,
 - растянуть детали.

Сценарий В. Без начального разведения "лап".

- развести "лапы" с помощью другого инструмента,
- продолжить следовать либо сценарию A, либо Б, в зависимости от того,
 насколько раскроются "лапы".

Правила при сжатии предметов:

- проверить, что растягивающие штыри правильно установлены на растягивающих "лапах".
 - раскрыть растягивающие "лапы",
- поместить растягивающие штыри над предметом, который нужно сжать,
 - закрыть растягивающие "лапы".

Изменение температуры может привести к повышению давления в изолированных трубах и инструментах, что усложняет процесс их соединения. Для устранения этой проблемы рекомендуется использовать специализированное устройство для снижения давления.

Для снижения давления в инструменте или трубе, которые еще не соединены, следует выполнить следующие шаги:

- открутить ручку на инструменте сброса давления в направлении против хода часовой стрелки, чтобы освободить пространство для вставки соединительной муфты,
- плотно прижать инструмент сброса давления к охватываемой муфте шланга или инструмента,
 - закрепить инструмент сброса давления тканью,
- открутить ручку на инструменте сброса давления по часовой стрелке,
 чтобы уменьшить давление, возможно, масло выльется,
- открыть ручку на инструменте сброса давления против часовой стрелки, чтобы очистить муфту,
 - отсоединить инструмент сброса давления от муфты.

После использования необходимо выполнить следующие действия:

- свернуть расширяющиеся "лапы" и оставить их немного открытыми для сохранения инструмента без давления,
 - выключить насос,
- отсоединить гидрошланги и регулирующий кабель от инструмента и насоса,

- проверить, что спредер не поврежден, и нет утечки масла,
- проверить целостность арматуры. При серьезном повреждении заменить ее,
- осмотреть расширяющиеся штыри. При серьезном повреждении заменить их,
- проверить, правильно ли закреплены стопорные штифты расширяющихся штырей,
- убедиться в надежном креплении рукоятки для переноски инструмента.

При чистке и хранении оборудования необходимо:

- очистить оборудование и использованную арматуру перед их хранением,
- прочистить соединительные муфты и пылезащитные колпачки.
 Убедиться, что пылезащитные колпачки установлены,
- высушить насос, если он использовался во влажной среде. Нанести тонкий слой защитного масла WD-40 на внешние стальные элементы,
- хранить насос в горизонтальном положении в сухом, хорошо проветриваемом месте [27].

2.5 Методика проверки качества соединений в исследованиях

После завершения сварки всех образцов проводится проверка качества полученных сварных соединений следующими способами:

- 1. проверка внешнего вида точек сварки,
- 2. контроль точек сварки с помощью ультразвукового дефектоскопа EPOCH 4 PLUS,
- 3. испытания соединений на разрыв и растяжение с помощью спредера ISU 20.

После завершения сварки всех образцов проведен визуальный осмотр внешнего вида точек сварки согласно таблице 9.

Таблица 9 – Непригодность внешнего вида точки сварки

Результаты внешнего осмотра точек сварки вносились в таблицу. Для выявления скрытых дефектов в сварных швах использовался ультразвуковой дефектоскоп EPOCH 4 PLUS, показанный на рисунке 14.

Рисунок 14 — Проведение проверки качества точек сварки с помощью ультразвукового дефектоскопа

В соответствии с последовательностями импульсов, отображаемых на мониторе дефектоскопа, произведена оценка качества сварки точек на каждом образце. На рисунке 15 представлены примеры точек с «хорошей сваркой» и точки с отклонениями (склейка).



Рисунок 15 – Примеры последовательностей на дефектоскопе а) хорошая сварка, б) склейка

Вывод ПО второй главе: исследование контактной сварки автомобильных кузовных деталей направлено на проверку качества сварных соединений c применением комплексного подхода, сочетающего математическое планирование экспериментов и метод крутого восхождения. Объектами исследования выбраны узлы автомобилей марки «Веста», выполненные из различных марок легированных и низкоуглеродистых сталей.

Метод математического планирования экспериментов позволяет построить математическую модель, отражающую взаимосвязь между режимами сварки и прочностью сварных соединений. Использование метода крутого восхождения необходимо для пошагового улучшения качества сварных швов. Экспериментальные исследования подтвердят правильность или ошибки предложенных методов и позволят выработать практические рекомендации по совершенствованию процесса контактной сварки деталей кузова автомобилей.

3. Результаты исследования

3.1 Результаты математического планирования

В качестве факторов планирования выбраны три параметра: сила тока (I), период сварки (t) и сила сжатия (p), а в качестве выходного параметра – усилие разрыва.

В качестве среднего уровня факторов $Z_{\text{сред}}$. взяты значения, соответствующие наилучшему с точки зрения предшествующего знания об объекте значению выходного параметра.

На первом этапе эксперимента для построения линейной модели объекта выбраны средние уровни факторов и интервалы варьирования, которые представлены в таблице 10. Согласно матрице значений условных переменных, составлена таблица 11 матрица значений натуральных переменных в опытах.

Таблица 10 – Факторы планирования эксперимента

Фактор	Единица	Основной уровень	Интервал
Фактор	измерения Основной уровень		варьирования
сила тока (I)	kA	9,3	0,2
период сварки (t)	период	0,11	0,02
сила сжатия (р)	daN	230	10

Таблица 11 – Три фактора. Матрица значений натуральных переменных

Номер	Значения факторов					
опыта	I, сила тока, kA	t, цикл сварки, пер.	P, сила сжатия, daN			
1	9,1	0,09	240			
2	9,1	0,13	220			
3	9,5	0,09	220			
4	9,5	0,13	240			
5	9,1	0,09	220			
6	9,1	0,13	240			
7	9,5	0,09	240			
8	9,5	0,13	220			

Расчеты среднего арифметического и дисперсии опытов сведены в таблицу 12.

Таблица 12 – Расчетные результаты опытов

	Знач	ения факт	горов		Результат	,		
Номер	I, сила тока, kA	t, цикл сварки, пер.	р, сила сжатия, daN	опыт 1	опыт 2	опыт 3	Среднее значение	Дисперсия
1	9,1	0,09	240	196,6	179,1	200,9	192,2	133,15
2	9,1	0,13	220	260,3	249,9	265,1	258,4	60,30
3	9,5	0,09	220	188,1	177,5	189,9	185,2	44,89
4	9,5	0,13	240	296,4	318,2	306,2	306,9	119,21
5	9,1	0,09	220	180,2	193,5	177,8	183,8	71,60
6	9,1	0,13	240	283,9	271,8	261,1	272,3	130,36
7	9,5	0,09	240	205,2	208,7	195,6	203,2	46,00
8	9,5	0,13	220	271,7	280,7	287,6	280,0	63,57

Рассчитанный критерий Кохрена равный 0,199 и меньший табличного значения 0,516 подтвердил однородность дисперсий, что свидетельствует о возможности дальнейшей обработки данных и построения надежной математической модели

Согласно расчётам, получаем следующие коэффициенты уравнения регрессии:

 $b_0 = -154,21,$

 $b_1=115,87,$

 $b_2=2014,83,$

 $b_3 = -13,55.$

Уравнение регрессии принимает вид:

 $y=-154,21+115,87x_1+2014,83x_2-13,55x_3$

Согласно расчетам, получаем доверительный интервал b=19,82, значит фактор x3 незначительный и им можно пренебречь.

Расчетный критерий Фишера равный 4,86 больше табличного критерия Фишера, равного 2,8, что означает неадекватность уравнения и необходимость перехода к неполной квадратичной модели.

Коэффициенты b1 и b2 = 14,11 значимые.

Уравнение регрессии принимает вид:

$$y=-154,21+115,87x_1+2014,83x_2+14,11\cdot x_1\cdot x_2$$

Расчетный критерий Фишера равный 2,33 меньше табличного критерия Фишера, равного 2,9, что означает адекватность уравнения.

Так как адекватно, осуществлен переход от условных переменных к натуральным и получено следующее уравнение:

$$y=-16631,38+579,35z1+100741,5z2+3527,5(z1-9,3)\cdot(z2-0,11)$$

После получения адекватного уравнения регрессии принято решение использовать метод крутого восхождения.

3.2 Результаты крутого восхождения

Значения выбранных факторов крутого восхождения сведены в таблицу 13.

Таблица 13 – Факторы крутого восхождения

Номер	Значения факторов						
опыта	сила тока, kA	цикл сварки, пер.	усилие разрыва, N				
1	9,1	0,09	127,45				
2	9,18	0,096	157,84				
3	9,26	0,102	189,84				
4	9,34	0,108	240,45				
5	9,42	0,114	312,32				
6	9,5	0,12	668,48				
7	9,58	0,126	1328,03				
8	9,66	0,132	2090,96				
9	9,74	0,138	2757,27				
10	9,82	0,144	3526,98				

На 6 шаге крутого восхождения достигнут результат лучший по сравнению с наилучшим результатом в опытах по матрице планирования. После 10 шага крутое восхождение прекращено, т.к. выходной параметр вышел за допустимые пределы.

Согласно проведенным расчетам следует продолжить работу в районе шестого шага (оптимальной зоне), увеличивая контроль над условиями производства и деталями процесса. Эти выводы помогают лучше понимать особенности процесса сварки и выбирать оптимальные параметры для конкретной ситуации.

Таким образом, проведенное исследование продемонстрировало эффективное применение методов математического планирования эксперимента для изучения сложных технологических процессов, таких как сварка, и обеспечило основу для разработки оптимальной стратегии управления процессом.

3.3 Результаты внешнего осмотра точек сварки

Результаты проведённого внешнего осмотра точек сварки внесены в таблицу 14.

Таблица 14 – Результаты проверки внешнего вида точек сварки

Образец	Результат проверки							
1 выплески сварки								
2 прожог								
3	наличие наплывов							
4	без видимых дефектов							
5	без видимых дефектов							
6	без видимых дефектов							
7	выплески сварки							
8	без видимых дефектов							
9	выплески сварки							
10 прожог								

При изменении параметров сварки внешний вид сварочного шва претерпевает значительные изменения. Наблюдаются разнообразные отклонения от нормы, среди которых выделяются следующие проблемы:

- образование наплывов металла, недостаточный провар соединения,
- неравномерность формы шва,
- появление различных дефектов поверхности.

Подобные проявления свидетельствуют о важности выбора правильных режимов сварки, обеспечивающих стабильное высокое качество сварочных соединений внешне. Анализируя полученные результаты визуального контроля, мы видим значительное расхождение качества образцов сварных швов. Таким образом, становится очевидным, насколько сильно влияют настройки процесса сварки на итоговое качество полученного соединения.

3.4 Результаты проверки сваренных образцов с помощью дефектоскопа

Методика ультразвукового контроля позволила выявить скрытые дефекты, такие как удлинённые последовательности импульсов и сигналы промежуточных зон, свидетельствующие о возможных внутренних дефектах, таких как склейка (непровар) или низкое качество соединения.

Результаты проверки сваренных образцов с помощью дефектоскопа представлены в таблице 15.

Таблица 15 — Результаты контроля точек сварки с помощью ультразвукового дефектоскопа

Образец	Результат							
1	удлиненная последовательность импульсов							
2 не замерялся								
3	удлиненная последовательность импульсов							
4	последовательность импульсов в норме							
5	последовательность импульсов в норме							
6	последовательность импульсов в норме							
7	удлиненная последовательность импульсов							

Продолжение таблицы 15

Образец	Результат
8	последовательность импульсов в норме
9	последовательность импульсов с промежуточными сигналами
10	не замерялся

Использование ультразвукового дефектоскопа является эффективным методом выявления скрытых дефектов внутри сварных соединений. Этот инструмент позволяет обнаруживать неполадки, невидимые при обычном внешнем осмотре. В ходе испытаний были выявлены различные типы отклонений, включая слабый сигнал, недостаточную глубину проникновения ультразвуковых волн, мелкие пустоты и крупные включения различного происхождения.

Данные наблюдения подчеркивают критичность использования ультразвуковой диагностики при оценке качества сварных конструкций. Даже визуально хорошие сварочные швы могут скрывать серьезные внутренние повреждения, способные существенно снизить надежность и долговечность конструкции. Поэтому применение ультразвукового контроля является обязательным этапом оценки качества сварных соединений, позволяющим своевременно обнаружить и устранить потенциальные угрозы целостности изделий.

3.5 Проверка прочности сварных соединений с помощью спредера ISU20

С помощью спредера ISU20 на сваренных образцах проведено исследование качество крепления кронштейна крыла и брызговика. Замерены с помощью штангенциркуля диаметры ядер точек сварки после разрыва. Результаты представлены в таблице 16.

Таблица 16 – Результаты контроля точек сварки с помощью спредера ISU20

Образец	Выявленный дефект	Диаметр ядра, мм	Фотография ядра
1	малый диаметр с выплеском	2,1	
2	прожог	не замерялся	
3	малый диаметр	2,3	
4	без дефектов	3,3	0
5	без дефектов	3,5	Q
6	без дефектов	3,5	1
7	малый диаметр с выплеском	2,6	(S)
8	без дефектов	3,4	0
9	склейка (непровар)	0,2	P. C.
10	прожог	не измерялся	8

Испытания на разрыв предоставили информацию относительно механических характеристик исследуемых сварных соединений. Результаты тестов показывают различия в измеренных диаметрах точек сварки. Разброс

значений наглядно иллюстрирует прямую зависимость механической прочности сварных соединений от применяемых параметров сварки.

Результаты всех проведенных исследований сведены в таблицу 17.

Таблица 17 – Результаты проведенных экспериментов

Образец	Внешний вид точек сварки	УЗК	Выявленный дефект ядра	Диаметр ядра, мм	Фотография ядра	
1	выплески сварки	удлиненная последовательность импульсов	малый диаметр с выплеском	2,1		
2	прожог	не замерялся	прожог	не замерялся		
3	наличие наплывов	удлиненная последовательность импульсов	малый диаметр	2,3		
4	без видимых дефектов	последовательность импульсов в норме	без дефектов	3,3	0	
5	без видимых дефектов	последовательность импульсов в норме	без дефектов	3,5	12	
6	без видимых дефектов	последовательность импульсов в норме	без дефектов	3,5	0	
7	выплески сварки	удлиненная последовательность импульсов	малый диаметр с выплеском	2,6	0	
8	без видимых дефектов	последовательность импульсов в норме	без дефектов	3,4	0	
9	выплески сварки	последовательность импульсов с промежуточными сигналами	склейка (непровар)	0,2	4	
10	прожог	не замерялся	прожог	не измерялся	0	

По результатам проведенных экспериментов можно сделать следующие выводы о качестве точек сварки:

- хорошее качество демонстрируют образцы под номерами 4, 5, 6 и 8, обладающие высокой прочностью, о чем свидетельствуют диаметры ядер после разрыва в допустимых диапазонах 3,3-3,5 мм. Эти образцы характеризуются отсутствием визуальных дефектов и хорошим качеством сигнала УЗК, что подтверждает предварительный математический расчет параметров сварки.
- Удовлетворительное качество демонстрируют образцы под номерами 1,
 3 и 7, с наличием выплесков, наплывов и малых диаметров ядер.
- Недостаточное качество показывают образцы под номерами 2, 9 и 10,
 имеющие прожог или склейку (непровар).

На основании результатов математических расчетов и проведенных экспериментов внесены изменения в карту наладки сварочного оборудования, применяемого для сварки усилителя брызговика верхнего правого и представленной на рисунке 16.

0	3	КАРТА										Блок управления сваркой Цех: 6124							
	АВТОВАЗ наладки сварочного оборуд								цова	ния		ARO - T 1400					Лист:	1 Листов: 1	
ПАП В0 СРпИП ОС № ОПЕРАЦИИ РСО-)-01 0)		ПСМ №			0501.3239						
Наименование узла											Тип автомобиля			Стенд сварки №					
	Ус	илите	ель бр	оызговин	ка вер	ерхний правый в сборе				XGF									
ТИП	клеш	ей (РІІ	NCE)			вижный эл/дер.неподвиж				подвижный электрод				неподвижный электрод					
V	1433	11000)F		03020					01840		P911310400						10400	
	X	04		854	10829	6553		8	5408	2965	36	85408277066				8	85408277066		
№ программы (№ Seg)	Подвод (1er accostage) / Сжатие (Accos)	Усилие на электродах (Consigne)	Возрастание тока сварки (Slope Up)	Ток предв. нагрева	Предв. нагрев (Prechauffage)	Пауза (Temps froid)	(Temps froid) Ток сварки (Intensite)		Нарастание тока	Сварка (Souda)	Кол-во импульсов (Nombre Pulsations)	Интервал импульсов (Intervalle)	Спад тока сварки (Down)	Закалка (Trempe)	Сила тока отжига	Отжиг (Recuit)	Проковка (Forge)	Количество точек (Nombre de Points)	
	пер.	daN	пер.	kA	пер.	пер.	k/	١	kA	пер.	ШТ.	пер.	пер.	пер.	kA	пер.	пер.	ШТ.	
1		230		8,0	7	2	9,	5	+1,0	12	1						6	351	
2		230		8,0	7	2	9,	5	+1,0	12	1						6	331	
				XGF															
Свариваемые толщины (мм) 📮 №																			
1	2	3	Σ	Ref. Epais	№ прогр-ы		арочно точки	Й											
	0,7Гц		1.40	0.70Гц	1		D0007												
	0,7Гц		1.40	0.70Гц	1		D0007												
	0,7Гц		1.70	0.70Гц	1	SPCD0015296			1										
0,7Гц	0,7Гц		1.70	0.70Гц	1	SPC	D0015	297											

Рисунок 16 – Карта наладки сварочного оборудования

Выводы по третьему разделу: проведённые исследования показали, что математическое планирование эксперимента позволило построить адекватную модель процесса контактной сварки и подобрать оптимальные параметры, обеспечивающие высокое качество сварных соединений. Наиболее качественные результаты получены после увеличения исходного значения силы тока на 2% до 9,5 kA, увеличения цикла сварки на 9% до 0,12 периода и неизменной силе сжатия 230 daN. Дальнейшее использование метода крутого восхождения подтвердило потенциал улучшений и позволило достигнуть оптимальных условий сварки, обеспечивающих максимальную прочность и отсутствие дефектов.

Практическое подтверждение результатов математического моделирования получено в ходе проверок внешним осмотром, ультразвуковой диагностикой и замерами ядер точек сварки после использования спредера.

Лучшие образцы №4, №5, №6 и №8 обладали высокой прочностью, о чем свидетельствуют диаметры ядер после разрыва в допустимых диапазонах 3,3-3,5 мм. Эти образцы характеризуются отсутствием визуальных дефектов и хорошим качеством сигнала УЗК, что подтверждает предварительный математический расчет параметров сварки.

Образцы с низким качеством имели малые диаметры ядер точек сварки после разрыва и дефекты, такие как наплывы, непровары, и сигналы плохой проходимости ультразвука.

Данные исследования послужили основанием для корректировки карты наладки сварочного оборудования и выработки рекомендаций по обеспечению устойчивого качества сварных соединений.

Заключение

Проведенные исследования подтверждают, что выбор оптимального режима сварки играет ключевую роль в достижении устойчивых и прочностных характеристик сварных соединений. Правильный подбор технологических параметров обеспечивает высокие эксплуатационные свойства материалов, минимизирует риск возникновения трещин и снижает вероятность выхода изделия из строя под действием внешних факторов.

Анализируя три параметра точек сварки (внешний вид, ультразвуковые исследования и механическую прочность), можно утверждать, что оптимальным сочетанием параметров сварки для получения высококачественных и надежных соединений усилителя брызговика из низкоуглеродистой качественной легированной стали DX53D+Z100 толщиной 0,7 мм с покрытием цинка и кронштейна крепления переднего крыла из легированной качественной стали HX180YD+Z100 толщиной 0,7 мм с покрытием цинка для кузовов автомобилей марки «Веста» являются:

- увеличенное на 2% исходное значение силы тока с 9,3 kA до 9,5 kA,
- увеличенное на 9% исходное значение периода сварки с 0,11 секунды до 0,12 секунды,
- без изменения исходное значение силы сжатия 230 daN.

Подобранные параметры обеспечивают наилучшее сочетание внешнего вида, отсутствия значительных дефектов и высокой механической прочности. Отклонения от указанных параметров оказывают негативное влияние на качественные характеристики сварного соединения, что подчеркивает важную роль правильной настройки параметров сварки.

Важно отметить, что изменение силы тока, времени цикла сварки, силы сжатия и других факторов существенно влияет как на внешний вид, так и на механическую прочность сварного соединения. Эксперименты показывают, что при неправильно подобранных параметрах возникают трещины, поры и другие дефекты, способные снизить общую прочность и долговечность изделия.

Помимо механических свойств, внешние характеристики сварного соединения также зависят от грамотно настроенных параметров сварки. Недостаточный прогрев металла может привести к непроварам и наличию следов окисления, что негативно сказывается на эстетике готового изделия. Избыточная подача тока способна вызывать разбрызгивание материала и формирование излишков металла (наплывов), что увеличивает затраты на последующую доработку.

Таким образом, правильное понимание и учет влияния параметров сварки на качество сварных соединений является необходимым условием для выпуска качественной и безопасной продукции.

Интеграция математического планирования эксперимента позволяет создать прогностические модели, связывающие входные параметры (сила тока, время импульса, давление электродов) с желаемыми свойствами сварного соединения (прочность, жесткость, антикоррозионные свойства). Благодаря этому появляется возможность заранее оценивать качество будущих соединений и адаптировать стратегию сварки под конкретные требования производства.

Список используемой литературы и используемых источников

- 1. Абабков Н. В. Пимонов М. В. Технологии и оборудование контактной сварки. Кемерово: КузГТУ, 2017. 263 с.
- 2. Алешин Н. П. Новые цифровые технологии сварки ответственных изделий / Н. П. Алешин, Э. А. Гладков // Сварка и диагностика. 2008. № 4. С. 8-10.
- 3. Аношин, В.А. Повышение ресурса электродов контактных машин при сварке оцинкованной стали / В.А. Аношин, В.М. Илюшенко, Р.В. Минакова, Н.И. Гречанюк // Автоматическая сварка. 2010. № 8. С. 35—38.
- 4. Банов М. Д. Технология и оборудование контактной сварки. М. : «Академия», 2008. 224 с.
- 5. Беляев А. В. Анализ физико-химических процессов при сварке / А. В. Беляев, Э. Р. Галимов, Л. В. Сироткина // Инновационные машиностроительные технологии, оборудование и материалы-2016 (МНТК «ИМТОМ-2016». Материалы Международной нацвино-технической конференции. 2016. С. 191-195.
- 6. Бигус Г. А. Травкин А. А. Неразрушающий контроль сварных соединений, выполненных контактной сваркой // Матер. 17-й Междунар. конф. «Современные методы и средства неразрушающего контроля и технической диагностики», 5–9 окт. 2009. Ялта, 2009. С. 122–124.
- 7. Бернадский В. Н. Сварочное производство и рынок сварочной техники в современной экономике: перспективы развития сварочного производства / В. Н. Бернадский, О. К. Маковецкая // Сварочное производство. 2009. № 2. С. 43–47.
- 8. Горячий Д. В. Технология изготовления автомобильных узлов. М.: Машиностроение, 1990. 367 с.
- 9. ГОСТ 15878-79. Контактная сварка. Соединения сварные. Конструктивные элементы и размеры М. : Изд. Стандартов, 1979. 9 с.

- 10. Григорович В. В., Иванов С. В., Романов А. И. Технологическая инструкция «Проведение неразрушающего контроля качества сварных точек изделий кузова автомобиля ВАЗ с помощью ультразвукового дефектоскопа EPOCH 4 PLUS». 2012. 35 с.
- 11. Гуляев А. И. Технология и оборудование контактной сварки. М.: Машиностроение, 1985. 256 с.
- 12. Ермолов И. Н., Ланге Ю. В. Неразрушающий контроль: Справочник: В 7 т. Т. 3. Ультразвуковой контроль / Под ред. В. В. Клюева. М.: Машиностроение, 2004. 864 с.
- 13. Золоторевский В. С. Механические свойства металлов: учебник для вузов / В. С. Золоторевский. М.: Металлургия, 1983 –352 с.
- 14. Ильенкова С. Д. Управление качеством: учебник для вузов / С. Д. Ильенкова, Н. Д. Ильенкова, В. С. Мхитарян. М.: Изд-во «ЮНИТИ-ДАНА», 2009 352 с.
- 15. Исследование и внедрение технологии УЗК качества точечной сварки кузовов автомобилей LADA в ОАО «АВТОВАЗ» / А. В. Новиков, Р. Р. Хакимьянов, В. В. Григорович, А. В. Семеренко // В мире неразруш. контроля. 2009. № 2(44). С. 66–69.
- 16. Калиниченко Н. П. Атлас дефектов сварных соединений и основного металла: учебно-методическое М. А. Васильева. Томск: Изд-во Томского политехнического университета, 2006 55 с.
- 17. Катаев Р.Ф. Оборудование контактной сварки: учеб. пособие / Р.Ф. Катаев, В.С. Милютин, М.Г. Близнюк Екатеринбург: изд. Урал. ун-та, 2014. 144 с.
- 18. Климов А. С. Контактная сварка. Вопросы управления и повышения стабильности качества. М.: Физматлит, 2011. 216 с.
- 19. Козловский С. Н. Введение в сварочные технологии. Сварка плавлением, контактная сварка и сварка давлением : учеб. пособие ; Сиб. гос. аэрокосмич. ун-т. Красноярск, 2010. 132 с.

- 20. Кочергин К. А. Контактная сварка. Л.: Машиностроение, 1987. 240 с.
- 21. Липа М. Контактная рельефная сварка. Киев: Техника, 1970. 324 с.
- 22. Меньшиков Г. А. Опыт и перспективы использования методов контроля точечной контактной сварки при производстве изделий ответственного назначения // Сварка и контроль-2004 / Матер. Всерос. с межд. участием науч.-техн. конф., посвященной 150-летию со дня рождения 75 Н.Г. Славянова: Теория сварки, 17–20 мая 2004. Пермь, 2004. С. 324–327.
- 23. Неразрушающий контроль: Справочник: В 7 т. Под общ. Ред. В. В. Клюева. Т.1: В 2 кн.: Кн. 1: Визуальный и измерительный контроль. Кн. 2: Радиационный контроль. М.: Машиностроение, 2003. С. 560.
- 24. Оборудование для контактной сварки: Справочное пособие / Под ред. В.В. Смирнова. СПб.: Энергоатомиздат, 2000. 848 с.
- 25. Подола, Н.В. Алгоритмы компенсации износа электродов при контактной точечной сварке / Н.В. Подола, П.М. Руденко, В.С. Гавриш // Автоматическая сварка. 2005. № 4. С. 26–30.
- 26. Поляков А. Ю. Разработка уравнения теплового баланса для расчета требуемой величины сварочного тока при контактной рельефной сварке / А. Ю. Поляков, В. П. Куликов, Б. В. Федотов // Сварка и диагонстика. 2018. № 3. С. 48-52.
 - 27. Руководство по эксплуатации «Спредер ISU 20». 24 с.
- 28. Сварка в машиностроении: справочник. В 4-х т.: том 2 / под ред. Акулова. М.: Машиностроение, 1978. 462 с.
- 29. Сварка в машиностроении: справочник. В 4-х т.: том 3 / под ред. Винокурова. М.: Машиностроение, 1978. 567 с.
- 30. Теория сварочных процессов. Под ред. В. В. Фролова М. : Высш. школа. 1988.
- 31. Технология и оборудование контактной сварки / Под ред. Б.Д. Орлова. М.: Машиностроение, 1986. 352 с.

- 32. Фетисов, Г. П. Материаловедение и технология металлов / Г. П. Фетисов, М. Г. Карпман, В. М. Матюнин, В. С. Гаврилюк [и др.]. М.: Изд-во «Высшая школа», 2001. 639 с.
- 33. Фомин А. А., Жизняков А. Л. Оценка качества сварных соединений по многомасштабному образу рентгенограмм // Тяжелое машиностроение. 2010. № 6. —С. 19–23.
- 34. Чуларис А. А. Расчет и проектирование оборудования для контактной сварки: учеб. пособие / А. А. Чуларис, А. И. Попов, Н. Г. Чередниченко, Д. В. Рогозин Ростов н/Д: Изд. центр ДГТУ, 2003. 162 с.
- 35. Чулошников П.Л. Контактная сварка. В помощь рабочему-сварщику. М.: Машиностроение, 1977. 144 с.
- 36. Шаповалов Е.В. Современные методы и средства неразрушающего контроля сварного соединения, выполненного контактной точечной сваркой / Е. В. Шаповалов, Р. М. Галаган, Ф. С. Клишар, В. И. Запара // Техническая диагностика и неразрушающий контроль. 2013. № 1. С. 10-22.
- 37. Fayzimatov U. Analysis of the methods for assassing the reability of spot welding machines in the automotive industry // Scientific progress. 2022. № 3. P. 127-136.
- 38. Fr. Stefan The evolution of weld inspection in the automotive industry // Welding J. 2009. № 8. P. 52–53.
- 39. Dorn, L. Influence of the mechanical properties of resistance welding machines on the quality of spot welding / L. Dorn, P. Xu // Schweißen und Schneiden. 1993. № 1. S. E2–E14.
- 40. Martin O., Lopez M., Martin F. Artificial neural networks for quality control by ultrasonic testing in resistance spot welding // J. of Materials Processing Technology. 2007. 183, № 2-3. P. 226–233.
- 41. Rethmeier M., Brauser S., Weber G. Potential of optical strain field measurement for the characterization of the properties of resistance-spot-welded joints // Welding and Cutting. 2011. № 1. P. 48–52.

- 42. Rivas S., Servent R., Belda J. Automated spot weld inspection in the automotive industry [Электрон. pecypc]. http://www.ndt.net/article/wcndt2004/html/automotive/408_rivas/408_rivas.htm.
- 43. Tang, H. Influence of Welding Machine Mechanical Characteristics on the Resistance Spot Welding Process and Weld Quality / Tang, H., Hou, W., Hu, S. J., [et al.] // Weld. J. $-2003. N_{\odot} 82(5)$. P. 116-124.
- 44. Zhou M. Relationships between Quality and Attributes of Spot Welds / M. Zhou, H. Zhang and S. J. Hu // Welding Journal. 2003. № 4. P. 72-77.