МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт инженерной и экологической безопасности

(наименование института полностью)

20.03.01 Техносферная безопасность

(код и наименование направления подготовки/специальности)

Безопасность технологических процессов и производств

(направленность (профиль)/специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему «Разработка логистической концепции обращения с отходами производства на промышленном предприятии»

Обучающийся	Ейст Я.А.						
	(Инициалы Фамилия)	(личная подпись)					
Руководитель	водитель В.В. Будко						
	(ученая степень (при наличии), ученое звание (при наличии), Инициалы Фамилия)						
Консультанты	к.э.н., доцент, Т.Ю. Фрезе						
	(ученая степень (при наличии), ученое звание (пр	и наличии), Инициалы Фамилия)					

Тольятти 2024

Аннотация

Выпускная квалификационная работа включает в себя 66 страниц печатного текста, 21 таблица, 3 иллюстрации и 44 литературных источника.

Твёрдо бытовые отходы производства, система обращения с отходами, логистический подход, охрана труда, экология

Темой настоящей выпускной квалификационной работы является разработка логистической концепции обращения с отходами производства на промышленном предприятии.

Объект исследования - предприятие ООО «ЮграЭнергоСервис».

Предмет исследования – логистическая концепция обращения с отходами производства.

Проведён анализ существующей системы обращения с отходами на предприятии. Рассмотрен перечень годового образования отходов предприятия ООО «ЮграЭнергоСервис».

Рассмотрены особенности внедрения логистической концепции обращения с отходами производства.

Содержание

Введение	4
Перечень сокращений и обозначений	5
1 Современные методы обращения с отходами производства	6
2 Анализ существующей системы обращения с отходами на предприят	ии 11
3 Разработка логистической концепции обращения с отходами произво	дства в
«Промышленном предприятии»	17
4 Охрана труда	24
5 Охрана окружающей среды и экологическая безопасность	31
6 Защита в чрезвычайных и аварийных ситуациях	37
7 Оценка эффективности мероприятий по обеспечению техносо	ферной
безопасности	39
Заключение	39
Список используемой литературы	62

Введение

В настоящее время ни один день на промышленном предприятии не обходится без образования отходов производства. По своей природе производства классифицируются возникновения. отходы ПО опасности, в зависимости от которых устанавливается плата за 1 тонну отходов. Тема настоящей работы является актуальной и по сей день, так как в время наблюдается увеличение настоящее производительности промышленных отечественных предприятий, сопровождающееся увеличенным образованием отходов. Цель работы - разработка мероприятия, направленные на снижение количества отходов производства, путём внедрения в деятельность предприятия новой логистической концепции обращения с отходами производства.

Для достижения поставленной цели необходимо решить следующие задачи:

- рассмотреть современные методы обращения с отходами производства;
- провести анализ существующей системы обращения с отходами на предприятии;
- провести разработку логистической концепции обращения с отходами производства в «Промышленном предприятии»;
- рассмотреть вопросы охраны труда в организации;
- рассмотреть вопросы охраны окружающей среды и экологической безопасности;
- рассмотреть вопросы организации в области защиты в чрезвычайных и аварийных ситуациях;
- провести оценку эффективности мероприятий по обеспечению техносферной безопасности.

Объект исследования - предприятие ООО «ЮграЭнергоСервис».

Предмет исследования – логистическая концепция обращения с отходами производства.

Перечень сокращений и обозначений

АИС УЛО – автоматизированная информационная система управления логистикой бытовых отходов;

МСЗ – мусоросжигательный завод;

ООО – общество с ограниченной ответственностью;

ТБО – твёрдо бытовые отходы.

1 Современные методы обращения с отходами производства

«В современных условиях одной из главных задач для государства становится обеспечение экологической безопасности.

Сегодня необходимо признать, что стремление к улучшению экономических показателей и игнорирование элементарных экологических норм могут иметь негативные последствия для регионов России [1].

Экономическое развитие тесно связано с объемами используемых ресурсов, однако без технических новшеств и научно-технологического подхода к добыче, обработке, восстановлению и воспроизводству ресурсов прогресс невозможен.

Уже сейчас мы ощущаем перегруженность территорий из-за промышленных отходов (таких как полигоны, отвалы и шламы), но еще более явным становится беспорядок, вызванный бытовыми отходами, когда значительные участки земли заняты так называемыми «свалками».

«Вопросы, связанные с созданием, обезвреживанием и переработкой отходов производства и потребления, остаются актуальными для всех регионов Российской Федерации [2].

Даже без точных данных, очевидно, что образование отходов, включая токсичные, и их непрекращающееся накопление представляют собой серьёзную экологическую угрозу для страны.

На территории России в отвалах и хранилищах накопилось около 80 миллиардов тонн отходов.

Вокруг большинства российских городов расположены несанкционированные свалки и полигоны.

По мнению С.В. Белов «Отходы производства и потребления размещают и закапывают в местах, не предназначенных для этого, часто в зонах, охраняемых водоохранными нормами, вблизи магистральных трубопроводов или в санитарно-защитных зонах источников питьевой воды» [3].

Утилизация отходов производства составляет в среднем около 30 %, из отходов потребления во вторичное сырье перерабатывается всего лишь 2 % от общего объема, в то время как оставшиеся 98 % продолжают загрязнять окружающую природу».

Производственные и бытовые отходы следует оценивать не только как фактор загрязнения природы и опасного влияния на человека, но и как возможные источники вторичных материалов и энергии.

«Объёмы образования отходов позволяют в настоящее время говорить о «второй геологии» - дисциплине, посвящённой изучению антропогенных ресурсовсодержащих отходов, одной из областей решения задач по сохранению ресурсов.

Уровень использования ресурсов является ключевым индикатором развития экономики.

Известно, что лишь небольшой процент сырья (в пределах от 4 % до 7 %) становится конечной продукцией после добычи и переработки [4].

В странах ЕС, несмотря на рыночные принципы, директивным путём определены повышенные тарифы на захоронение отходов на полигонах, а также обязательные для городов показатели по сбору и использованию вторичных материалов.

Однако в России за последние два десятилетия этот процесс пошел в противоположную сторону».

На государственном уровне отсутствуют стратегические подходы к управлению ТБО, и нет механизма для решения этих вопросов [5].

Согласно законодательству, проблема должна решаться исключительно на уровне местных органов управления.

«На рынке появилось множество компаний, которые не имеют должной профессиональной подготовки в вопросах обращения с твердыми бытовыми отходами и не обладают необходимыми технологическими возможностями, но стремятся занять свою долю в системе санитарной очистки городов России от ТБО [6].

Большая часть отходов, которые не содержат токсинов, может быть переработана.

К таким материалам относятся бумага, дерево, металлы, пластик, текстиль, стекло и органические остатки.

Рассмотрим ключевые методы утилизации таких отходов.

Рециклинг. Этот процесс подразумевает сортировку, очищение и, при необходимости, дезинфекцию отходов.

Рециклинг - это процесс их обработки для производства вторичного сырья. В зависимости от типа материала рециклинг может включать до четырех этапов:

Первичный этап - утилизация материалов одного вида, не требующих очистки.

Вторичный этап - сырье проходит стадии очистки, сортировки и измельчения.

Третий этап - материалы подвергаются химической переработке для производства низкомолекулярных соединений.

Четвёртый этап - уничтожение остатков в пиролизных печах или инсинераторах с получением газа и пиролизного масла.

Метод рециклинга в России пока не получил широкого распространения из-за нехватки культуры сортировки отходов и пунктов приема во многих регионах». Этот способ также требует значительных трудовых и производственных ресурсов [7].

«Пиролиз. Для осуществления пиролиза применяют специализированные герметичные установки, в которых отходы обрабатываются под воздействием высоких температур.

В результате этой переработки образуются газы, уголь и масло, которые могут служить источниками энергии.

Существует два типа пиролиза.

Высокотемпературный пиролиз проходит в вакуумных агрегатах, где температура достигает 900 градусов, и это позволяет извлекать из отходов газ, используемый для производства тепла и электричества.

Низкотемпературный пиролиз предполагает уничтожение мусора при температуре от 400 до 500 градусов без необходимости предварительной сортировки.

Этот метод способствует получению большего количества угля и масла, в то же время вырабатывая меньше газа».

Для проведения пиролиза требуются большие, специализированные и дорогостоящие печи, что ограничивает его популярность в России.

Рассмотрим основные преимущества метода [8]:

- безопасное обращение с отходами, исключающее вредные выбросы в воздух;
- полное уничтожение тяжелых металлов, оставляя лишь золу;
- созданные энергоматериалы не нуждаются в специальных условиях для хранения и транспортировки;
- пиролиз в настоящее время выступает наиболее экологичной заменой сжиганию и захоронению отходов.

Плазменный пиролиз. Более усовершенствованный подход к пиролизу - это плазменный пиролиз, который характеризуется экономичностью и безопасностью, а также отсутствием необходимости в предварительной обработке отходов.

Для переработки используется устройство с особой камерой плазмотроном, куда мусор поступает непосредственно из распределителя.

Под действием плазменных лучей отходы превращаются в стекловидную массу, уменьшаясь в объёме в 300 раз.

На выходе получается высокопрочный материал, который находит применение в строительстве [9].

Одним из ключевых достоинств этой технологии является замкнутый цикл. Газ, образующийся в процессе переработки, превращается в пар и может

быть использован как источник энергии. У этого метода также имеются другие преимущества.

Газификация. При переработке мусора методом газификации также получается газ и вторичные материалы для производства топлива. Отходы обрабатываются кислородом в специализированных печах, что позволяет получить меньше смол и золы по сравнению с пиролизом.

Перед утилизацией мусор необходимо предварительно отсортировать и высушить до остаточной влажности в 20%. Затем он помещается в печь, где нагревается до температуры в 1500 градусов.

В процессе обработки образуется газ, который очищают для дальнейшего использования. Полученное вторичное сырьё может быть направлено на производство дизельного топлива и строительных материалов.

Преимущества метода газификации схожи с пиролизом, однако оборудование имеет высокую стоимость, и для работы с ним требуются специально обученные специалисты [10].

2 Анализ существующей системы обращения с отходами на предприятии

«Компания «ЮграЭнергоСервис» была основана в сентябре 2007 года. Главная деятельность компании сосредоточена на техническом обслуживании автономных электроисточников для объектов топливно-энергетического комплекса, а также критически важных инфраструктур в населенных пунктах и вахтовых поселках.

ООО «ЮграЭнергоСервис» предоставляет альтернативные решения в области электроснабжения и эффективные технологии для создания автономных энергетических систем. Диапазон мощностей и возможностей генераторных установок позволяет решать множество задач, обеспечивая электроэнергией как нефтяные месторождения, так и промышленные комплексы, стройплощадки, больницы и учебные заведения.

Компания имеет все необходимые лицензии и сертификаты для работы с объектами повышенной опасности, соответствующие Международному стандарту качества ISO 9001. Подразделения компании обладают всеми ресурсами, чтобы выполнять задачи на уровне мировых стандартов.

Наличие промышленных баз в городе Мегион дает возможность оперативно обслуживать энергетические комплексы в районах Сургута и Нижневартовска, а также в труднодоступных местах Западной Сибири. Каждое подразделение оснащено современным оборудованием и может решать любые эксплуатационные задачи в соответствии с актуальными нормативами.

Благодаря высокой мобильности подразделения способны быстро мобилизовать передвижные генераторные установки на объектах клиентов. Персонал компании обладает значительным опытом работы с оборудованием таких фирм, как Cummins, Caterpillar, Jenbacher, Waukesha, Perkins, Sckoda, Solar Turbines.

Компания ориентирована на работу с высококвалифицированными специалистами, поэтому уделяет особое внимание повышению профессиональных навыков сотрудников, поддерживая инициативы по улучшению производственной деятельности».

В таблице 1 представлен перечень образования отходов ООО «ЮграЭнергоСервис» [11].

Таблица 1 – Перечень образования отходов ООО «ЮграЭнергоСервис»

N п/п	Наименование вида отхода	Код по ФККО	Класс опасности вида отхода	Кол-во образующих ся отходов, т/год
1	2	3	4	5
1	лампы ртутные, ртутно-кварцевые, люминесцентные, утратившие потребительские свойства	4 71 101 01 52 1	1	0,06
2	Отходы синтетических и полусинтетических масел компрессорных	4 13 400 01 31 3	3	0,62
3	пыль (порошок) от шлифования чёрных металлов	3 61 221 01 42 4	4	0,006
4	обтирочный материал, загрязнённый нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15 %)	9 19 204 02 60 4	4	0,021
5	системный блок компьютера, утративший потребительские свойства	4 81 201 01 52 4	4	0,01
6	мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	4	4,251
7	покрышки пневматических шин с металлическим кордом отработанные	9 21 130 02 50 4	4	0,821
8	фильтры воздушные компрессорных установок в стальном корпусе отработанные	9 18 302 65 52 4	4	0,113
9	сплит-системы кондиционирования бытовые, не содержащие озоноразрушающих веществ, утратившие потребительские свойства	4 82 713 15 52 4	4	0,044
10	отходы бумажных этикеток	4 05 122 11 60 5	5	0,011
11	лом и отходы стальных изделий незагрязнённые	4 61 200 01 51 5	5	15,00

Продолжение таблицы 1

N π/π	Наименование вида отхода	Код по ФККО	Класс опасности вида отхода	Кол-во образующих ся отходов, т/год
12	отходы упаковочного картона незагрязнённые	4 05 183 01 60 5	5	42,28
13	отходы бумаги и картона от канцелярской деятельности и делопроизводства	4 05 122 02 60 5	5	0,048
14	отходы полипропиленовой тары незагрязнённой	4 34 120 04 51 5	5	0,26
15	отходы полиэтиленовой тары незагрязнённой	4 34 110 04 51 5	5	0,21
16	отходы упаковочного гофрокартона незагрязнённые	4 05 184 01 60 5	5	0,17
17	лом и отходы, содержащие незагрязнённые чёрные металлы в виде изделий, кусков, несортированные	4 61 010 01 20 5	5	5,358
18	лом и отходы алюминия несортированные	4 62 200 06 20 5	5	3,245
19	мусор от офисных и бытовых помещений организаций практически неопасный	7 33 100 02 72 5	5	1,271
20	остатки и огарки стальных сварочных электродов	9 19 100 01 20 5	5	1,257
21	тара деревянная	4 04 140 00 51 5	5	47,254

Рисунок 1 демонстрирует процентное распределение отходов ООО «ЮграЭнергоСервис» по категориям опасности.

Рисунок 1 – Разновидность отходов ООО «ЮграЭнергоСервис»

Проведённый анализ отходов предприятия по классам опасности, образуемые на объекте деятельности позволил установить, что наибольшее количество отходов приходится на 5 класс опасности и составил 78,25 % от общего числа отходов предприятия.

Наименьшее количество отходов приходится на 1 класс опасности, на доля данных отходов приходится 0.08 %.

Структурная классификация 3 класса опасности составила 0,81 %. На долю 4 класса опасности отходов приходится 20,87 % [12].

На рисунке 2 представлено распределение годового количества отходов, относящихся к 5 классу опасности.

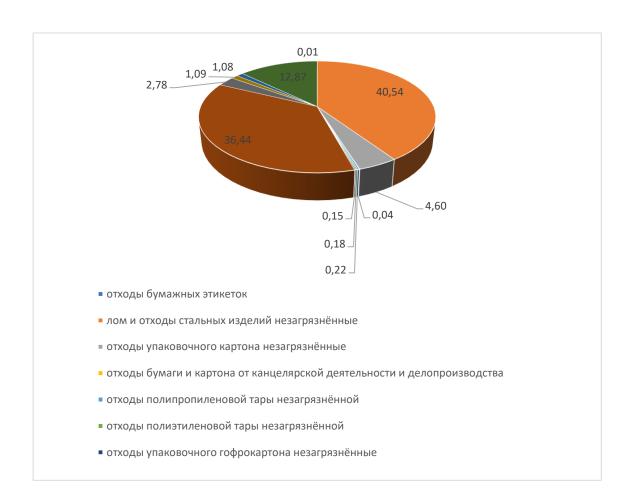


Рисунок 2 — Распределение годового количества отходов, относящихся к 5 классу опасности ООО «ЮграЭнергоСервис»

Анализ данных, представленных на рисунке 2 показал, что основными видами отходов на предприятии являются лом и отходы стальных изделий

незагрязнённые, а также лом и отходы, содержащие незагрязнённые чёрные металлы в виде изделий, кусков, несортированные [13].

Общая доля представленных выше отходов 5 класса опасности в общей совокупности составляет 76,98 %.

Процесс накопления отходов вне зависимости от класса опасности сопровождается длительным сопровождением.

На рисунке 3 показана универсальная модель процесса управления твердыми бытовыми отходами на предприятии [14].

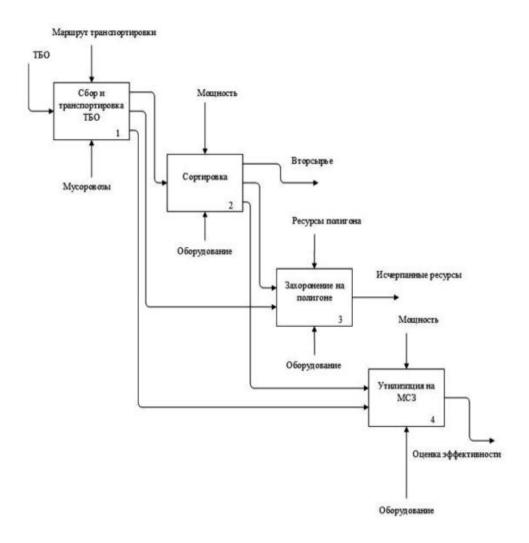


Рисунок 3 — Универсальная модель процесса управления твердыми бытовыми отходами на предприятии

«Применяемая в настоящее время на предприятии процессная модель системы управления ТБО представлена на рисунке 3.

От источника сбора твердые бытовые отходы направляются в один из выбираемых объектов утилизации, согласно маршруту транспортировки, который задается в соответствии с условиями, поставленными пользователем перед запуском модели. Маршрут транспортировки учитывает количество объектов утилизации каждого типа и их приоритет [15].

Отвал (остаточная часть ТБО, полученная в результате сортировки грязных отходов) транспортируется либо на полигон, либо на МСЗ.

Полигон имеет ряд параметров: время жизни полигона; количество полигонов и среднее расстояние от источника сбора до полигона.

В соответствии с представленной на рисунке 3 моделью ТБО транспортируется с мусороперегрузочных станций на мусоросортировочную станцию или на один из объектов утилизации.

Он также включает в себя такие маршруты, описывающие дальнейшую транспортировку хвостов утилизации: с мусоросортировочной станции на полигон или МСЗ, с МСЗ на полигон» [16].

Вывод по разделу: проведённый анализ существующей системы обращения с отходами производства позволил выявить, что существует необходимость разработки новой логистической концепции обращения с отходами предприятия.

Проведён годовой анализ перечня отходов деятельности предприятия.

3 Разработка логистической концепции обращения с отходами производства в «Промышленном предприятии»

В настоящее время наблюдается устойчивый рост деятельности предприятия ООО «ЮграЭнергоСервис», что в свою очередь приведёт к повышению экологической нагрузки на окружающую среду [17].

«Решением данной проблемы может служить постоянная информационная поддержка системы управления твердыми бытовыми отходами» [18].

Эта система охватывает не только процессы сбора и вывоза ТБО, но и включает подготовку к утилизации полезных компонентов и ликвидацию или захоронение остатков, которые не были использованы».

Для решения поставленных выше задач, целесообразно разработать логистическую концепцию обращения с отходами предприятия на примере анализируемого объекта деятельности [19].

Для определения наиболее перспективной модели логистической концепции, проведём сравнительный анализ систем обращения с отходами.

Результаты сравнительного анализа сведём в таблицу 2 [20].

Таблица 2 – Результаты сравнительного анализа

Функциональные	Наименование программного средства						
возможности системы	ANTOR	Top	Magenta	СППР	СКМО	АИС	
	Logistics	Logistic	Systems	на базе		УЛО	
	Master			ГИС			
1	2	3	4	5	6	7	
Учет дорожной	+	+	+	+	+	+	
обстановки							
Оценка экологического	+	+	-	+	+	-	
ущерба							

Продолжение таблицы 2

Функциональные	Наименование программного средства						
возможности системы	ANTOR	Top	Magenta	СППР	СКМО	АИС	
	Logistics	Logistic	Systems	на базе		УЛО	
	Master			ГИС			
Планирование	-	-	-	-	-	+	
необходимых							
ресурсов для							
осуществления							
грузоперевозки							
Формирование	+	+	+	+	-	+	
отчетности							
Мониторинг движения	+	+	+	+	+	+	
автотранспорта в							
режиме реального							
времени							
Накопление статистики	+	-	+	-	+	+	
Расчет экономических	-	+	+	+	+	+	
затрат на сбор и							
транспортировку							

«Проведённый анализ функциональных возможностей логистических систем обращения с отходами позволил установить, что лишь одна из представленных выше систем наиболее в полном объеме соответствует критериям, предъявляемым к инструментам информационной поддержки, которые сосредоточены на выполнение заданных целей, связанных с управлением логистикой отходов [21].

Система управления логистикой отходов АИС УЛО служит одним из таких решений [22].

Коробко В.И. утверждал, что «АИС УЛО оптимизирует планирование транспортировочных процессов, принимая во внимание данные мониторинга, а также оценивает потенциальный экологический ущерб и финансовые издержки, связанные с выполнением операций по сбору и транспортировке» [23].

По мнению Колосов А.В. «использование АИС УЛО предполагает получение следующих эколого-экономических выгод:

- снижение финансовых расходов на транспортировку отходов от мест выброса до мест их утилизации и/или захоронения, в том числе посредством улучшения маршрутов транспортировки;
- адаптивное планирование времени, затрачиваемого на сбор и перевозку бытовых отходов;
- сокращение отрицательного влияния транспортировочного процесса на окружающую среду и здоровье городских жителей путем наблюдения и анализа показателей экологического урона» [24].

Согласно Киселев А.С. «в качестве интерактивного веб-сервиса создан прототип АИС УЛО, который обеспечивает визуализацию и контроль за процессами перемещения бытовых отходов» [25].

По мнению Калашникова Л. Г. «Он включает в себя проведение расчетов и автоматическое построение маршрутов для транспортировки с учетом состояния дорог в городе, расположения пунктов сбора и особенностей мусоровозов» [26].

Перечисленные сведения сохраняются в базе данных системы. Для оптимальной деятельности системы в базу загружаются Яндекс. Карты [27].

«Ключевые функции системы включают в себя [28]:

- ввод, корректировку и отображение данных (вместимость одного транспортного средства, объем контейнера для бытовых отходов);
- редактирование таблиц базы данных, необходимых для разработки оптимальных маршрутов;
- автоматическое создание оптимальных маршрутов для процессов сбора и транспортировки бытовых отходов в городской местности с учетом текущей дорожной обстановки;
- отслеживание и управление движением транспортных средств (мусоровозов), задействованных в сборе и перевозке waste, в режиме реального времени;
- оценка финансовых и временных затрат на сбор и транспортировку отходов с учетом амортизации техники и расхода топлива;

- определение уровня экологического вреда окружающей среде (содержание CO, NO, CH в выбросах при сжигании топлива);
- составление рабочего графика;
- ведение статистики по понесенным затратам на процессы сбора и транспортировки отходов, а также по выбросам загрязняющих веществ в результате сжигания топлива» [29].

Функционирование системы осуществляется следующим образом [30]:

На сервере формируется и создается оптимальный маршрут для сбора и транспортировки мусора.

Полученная информация передается с помощью спутниковой связи на бортовой компьютер мусоровоза.

Эти машины оснащены системами связи с сервером и различными датчиками. Они занимаются сбором отходов.

При заполнении контейнера датчик объема отправляет на сервер уведомление, которое запрашивает текущее местоположение машины.

Получив данные о заполнении и координатах контейнера, сервер вычисляет идеальный путь к месту выгрузки и передает маршрут бортовому компьютеру.

После выгрузки клиент сообщает серверу об этом, и процесс повторяется с начального этапа.

«Программный комплекс содержит такие функциональные элементы [31]:

- модуль создания маршрута;
- модуль оценки экономических расходов;
- модуль оценки экологических последствий;
- модуль взаимодействия с базой данных;
- визуализация результатов.

На рисунке 4 показана функциональная структура и логика работы АИС УЛО» [32].

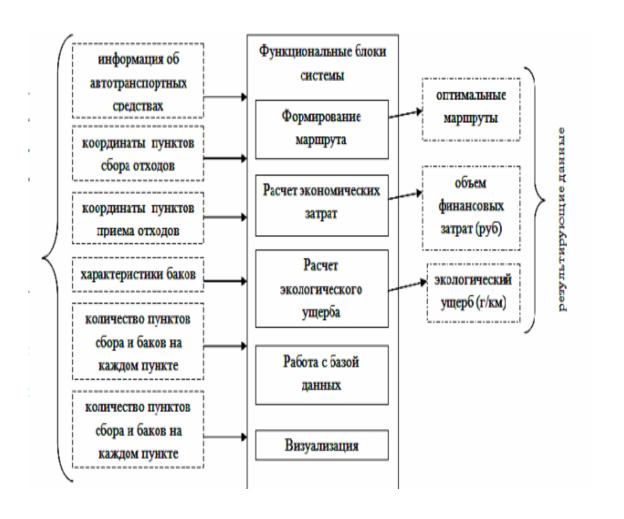


Рисунок 4 — Функциональная структура и логика работы АИС УЛО

«Модуль планирования маршрута отвечает за вычисление и визуализацию на интерактивной карте наиболее эффективного пути. Модуль оценки экономических затрат позволяет определить расходы, связанные с процессами сбора и транспортировки бытового мусора [33].

Модуль оценки экологического ущерба дает возможность вычислить количество вредных веществ, образующихся при сжигании топлива, на основании маршрута и экономических затрат.

Модуль визуализации обеспечивает интерактивное взаимодействие пользователя с системой. Функции интерфейса пользователя применяются на всех этапах работы программы, обеспечивая обмен информацией между компьютером и пользователем [34].

Этот блок также служит для преобразования результатов, полученных в ходе решения задачи, в удобный для пользователя вид - будь то графики, таблицы или текст.

Работу АИС УЛО обеспечивают три ключевых комплекса программных процедур:

- настройка параметров модели;
- выполнение задач;
- отображение результатов.

На рисунке 5 показана функциональная схема АИС УЛО» [35].

Рисунок 5 – Функциональная схема АИС УЛО

«Первый модуль «Ввод параметров» позволяет пользователю задавать управляющие параметры: число транспортных средств, объём кузова, ёмкость бака, расход топлива, координаты месторасположения пунктов сбора и приёма отходов. Он также проверяет корректность введённых данных [36].

Второй модуль «Решение задач» осуществляет вычисление распространения мутности в водоёме, используя параметры, введённые пользователем, и данные, полученные с помощью математической модели.

Третий модуль «Отображение результатов» отвечает за создание и представление решения задач в форме графиков.

Информация, которая нужна для расчёта маршрутов, хранится в базе данных. Эта база включает несколько таблиц с данными о мусоровозах, баках и пунктах приёма, которые необходимы для прокладки маршрутов» [37].

Вывод по разделу: таким образом, ситуация сложившаяся в настояшее время на предприятии с промышленными отходами разного класса опасности не даёт чёткого и быстрого реагирования на утилизацию или обезвреживание отходов, так как темпы накопления отходов достаточно высоки.

Предлагаемая новая логистическая концепция обращения с отходами производства за счёт своей простоты и современности применяемых технологий логистики позволяет достаточно эффективно и результативно справляться с поставленной задачей.

4 Охрана труда

Техническое обслуживание и оперативное управление действующего электрооборудования на месторождениях нефтегазодобывающего комплекса, выполнение пуско-наладочных и монтажных работ на электрооборудовании с проведением высоковольтных испытаний является опасными видами работ, характеризуемыми наличием опасных и вредных производственных факторов, классифицируемые по природе своего проявления.

Рассмотрим аспекты обеспечения безопасности труда на рабочих местах сотрудников компании «Югра Энерго Сервис» с учётом следующих позиций:

- инженер, отвечающий за оперативные режимы в электроэнергетике;
- мастер, занимающийся техническим обслуживанием и ремонтом оборудования электрических сетей подстанций;
- электромонтёр.

Сводная информация о рисках и опасностях, характерных для данных профессий при проведении пуско-наладочных и монтажных мероприятий на электрооборудовании, представлена в таблице 3 [38].

Таблица 3 – Перечень опасностей

Опасность	ID	Опасное событие
Неприменение СИЗ или	2.1	Травма или заболевание вследствие
применение поврежденных СИЗ,		отсутствия защиты от вредных
не сертифицированных СИЗ, не		(травмирующих) факторов, от которых
соответствующих размерам		защищают СИЗ
СИЗ, СИЗ, не соответствующих		
выявленным опасностям		
Скользкие, обледенелые,	3.1	Падение при спотыкании или
зажиренные, мокрые опорные		поскальзывании, при передвижении по
поверхности		скользким поверхностям или мокрым полам
Перепад высот, отсутствие	3.2	Падение с высоты или из-за перепада высот
ограждения на высоте свыше 5 м		на поверхности
Обрушение наземных	6.1	Травма в результате заваливания или
конструкций		раздавливания

Продолжение таблицы 3

Опасность	ID	Опасное событие
Подвижные части машин и	8.1	Удары, порезы, проколы, уколы, затягивания,
механизмов		наматывания, абразивные воздействия
		подвижными частями оборудования
Вредные химические вещества в	9.1	Отравление воздушными взвесями вредных
воздухе рабочей зоны		химических веществ в воздухе рабочей зоны
Воздействие на кожные покровы	9.2	Заболевания кожи (дерматиты)
смазочных масел		
Воздействие химических	9.7	Травма оболочек и роговицы глаза при
веществ на глаза		воздействии химических веществ
Химические реакции веществ,	10.1	Травмы, ожоги вследствие пожара или взрыва
приводящие к пожару и взрыву		
Воздействие локальной	21.1	Воздействие локальной вибрации на руки
вибрации при использовании		работника при использовании ручных
ручных механизмов и		механизмов (сужение сосудов, болезнь белых
инструментов		пальцев)
Электрический ток	27.1	Контакт с частями электрооборудования,
		находящимися под напряжением

По результатам проведенной идентификации опасностей на каждом рабочем месте заполняется Анкета рисков по каждому рабочему месту в соответствии Приказом Минтруда России от 28.12.2021 № 926.

Данные анкеты целесообразно представить в таблицах 4-6.

Таблица 4 – Анкета на рабочем месте инженера по оперативным режимам организации электроэнергетики

Рабочее	Опасность	Опасное событие	Степе	Коэ	Тяжесть	Коэффи	Оце	Значи
место			НЬ	фф	последств	циент,	нка	мость
			вероят	ици	ий, U	U	риск	оценки
			ности,	ент,			a, R	риска
			A	Α				
Инженер	Неприменени	Травма или заболеван	3	3	3	3	9	средни
по	е СИЗ или	ие вследствие						й
оператив	применение	отсутствия защиты от						
ным	поврежденны	вредных						
режимам	х СИЗ,	(травмирующих)						
организа		факторов, от которых						
ции		защищают СИЗ						
электроэ	Подвижные	Удары, порезы,	3	3	2	2	6	низкий
нергетик	части машин	проколы, уколы,						
И	и механизмов	затягивания,						
		наматывания,						
		абразивные						
		воздействия						
		подвижными частями						
		оборудования						

Таблица 5 — Анкета на рабочем месте мастера по техническому обслуживанию и ремонту оборудования подстанций электрических сетей

Рабочее	Опасность	Опасное событие	Степень	Коэ	Тяжесть	Коэффи	Оце	Значи
место			вероятн	фф	последств	циент,	нка	мость
			ости, А	ици	ий, U	U	риск	оценки
				ент,			a, R	риска
				Α				_
Мастер по	Обрушение	Травма в	2	2	3	3	6	низкий
техническ	наземных	результате						
ому	конструкций	заваливания или						
обслужива		раздавливания						
нию и	Перепад высот,	Падение с	3	3	2	2	6	низкий
ремонту	отсутствие	высоты или из-за						
оборудова	ограждения на	перепада высот						
ния	высоте свыше	на поверхности						
подстанци	5 м							
й	Подвижные	Удары, порезы,	4	4	4	4	16	средни
электричес	части машин и	проколы, уколы,						й
ких сетей	механизмов	затягивания,						
		наматывания,						
		абразивные						
		воздействия						
		подвижными						
		частями						
		оборудования						
	Воздействие	Воздействие	5	5	4	4	20	высоки
	локальной	локальной						й
	вибрации при	вибрации на						
	использовании	руки работника						
	ручных	при						
	механизмов и	использовании						
	инструментов	ручных						
		механизмов						
		(сужение						
		сосудов, болезнь						
		белых пальцев)						

Таблица 6 – Анкета на рабочем месте электромонтёра

Рабочее место	Опасность	Опасное событие	Степень вероятн ости, А	Коэфф ициент, А	Тяжес ть после дстви й, U	Коэффи циент, U	Оце нка риск а, R	Значи мость оценки риска
Электромонтёр	Непримене ние СИЗ или применение поврежденн ых СИЗ,	Травма или заб олевание вследствие отсутствия защиты от вредных (травмирующи х) факторов, от которых защищают СИЗ	3	3	2	2	6	низкий

Продолжение таблицы 6

Рабочее место	Опасность	Опасное событие	Степень вероятн ости, А	Коэфф ициент, А	Тяжес ть после дстви й, U	Коэффи циент, U	Оце нка риск а, R	Значи мость оценки риска
Электромонтёр	Подвижные части машин и механизмов	Удары, порезы, проколы, уколы, затягивания, наматывания, абразивные воздействия подвижными частями оборудования	2	2	3	3	6	низкий
	Электричес кий ток	Контакт с частями электрооборуд ования, находящимися под напряжением	4	4	4	4	16	й

По формуле (1) проведём расчёты количественной оценки риска и результаты отразим в таблицах 4-6:

$$R = A \cdot U \tag{1}$$

Как видно из данных, представленных в таблицах 4-6, видно, что высокий уровень риска зафиксирован на рабочем месте мастера по техническому обслуживанию и ремонту оборудования подстанций электрических сетей, а именно воздействие локальной вибрации на сотрудника [39].

На рабочем месте мастера по техническому обслуживанию и ремонту оборудования подстанций электрических сетей уровень локальной вибрации составил 129 дБ.

В соответствии с требованиями приказа Министерства труда и социальной защиты РФ от 21.11.2023 года № 817Н предельно-допустимая концентрация составляет предельно-допустимый уровень вибрации составляет 126 дБ.

По результатам проведённого анализа класс условий труда на рабочем месте мастера по техническому обслуживанию и ремонту оборудования подстанций электрических сетей – 3.1.

Длительное воздействие вибрации на организм сотрудника приводит к развитию вибрационной болезни, преждевременной утомляемости, снижению производительности труда [40].

Для снижения уровня вибрации при ремонте оборудования трансформаторов, необходимо рассчитать параметры амортизаторов.

В качестве материала амортизаторов рекомендуется выбрать резину.

Масса трансформатора 320 кг.

Число оборотов данного двигателя 800 об/мин.

Определим частоту вынужденных колебаний компрессора по формуле (2):

$$f = \frac{n}{60} \tag{2}$$

где f – частота вынужденных колебаний;

п-число оборотов электродвигателя.

$$f = \frac{800}{60} = 13,3 \Gamma$$
ц.

Следующим шагом является выбор материала резиновых амортизаторов.

Так как ООО «ЮграЭнергоСервис» выполняет работы в условиях Крайнего Севера в качестве материала для резиновых амортизаторов выберем морозостойкую резину [41].

При выборе материала основной характеристикой является твёрдость по Шору.

Для морозостойкой резины твёрдость по Шору - 30.

На основании этой характеристики выбираем допустимое статическое напряжение в материале прокладки – 147 кПа.

Определим общую площадь амортизаторов по формуле (3):

$$S = \frac{Q}{\sigma}$$
 (3)

где S-площадь амортизаторов;

Q-общая масса компрессора;

σ-допустимое напряжение.

$$S = \frac{320}{147 \cdot 10^5} = 2,2 \text{ M}^2$$

Определим размеры амортизатора, его форму, количество.

Как показывает практика наиболее оптимальной формой является кубическая. Количество - 4.

Целесообразно определить площадь одного амортизатора по формуле (4):

$$S_1 = \frac{S}{N} \tag{4}$$

где N-количество амортизаторов.

$$S_1 = \frac{2.2}{4} = 0.55 \text{ m}^2$$

Определим величину стороны куба амортизатора по формуле (5):

$$h = \sqrt{S_1} \tag{5}$$

где h-величина стороны куба амортизатора.

$$h = \sqrt{0,55} = 0,74 \text{ M}$$

Определим собственную частоту колебаний механической системы на резиновых амортизаторах по формуле (6):

$$f_0 = \frac{f}{\lambda} \tag{6}$$

где λ -отношение частоты возмущающей силы к частоте собственных колебаний амортизируемого объекта.

$$f_0 = \frac{13,3}{5} = 2,66 \Gamma$$
ц

Определим эффективность резиновых амортизаторов по снижению вибрации работающего оборудования по формуле (7):

$$\Delta L = \left| 40 \cdot \lg(\frac{f}{f_0}) \right| \tag{7}$$

$$\Delta L = \left| 40 \cdot \lg(\frac{13,3}{2,66}) \right| = 27,9$$

Уровень вибрации с применением виброизоляторов найдём по формуле (8):

$$L_{BH} = L_{V} - \Delta L \tag{8}$$

$$L_{_{\mathrm{BH}}} = 129 - 27,9 = 101,1$$
 дБ.

Таким образом, проведённые расчёты позволили выбрать амортизаторы, способные снизить уровень локальной вибрации на рабочем месте мастера по техническому обслуживанию и ремонту оборудования подстанций электрических сетей до предельно-допустимого уровня [42].

На рисунке 6 представлен чертёж пружины амортизатора.

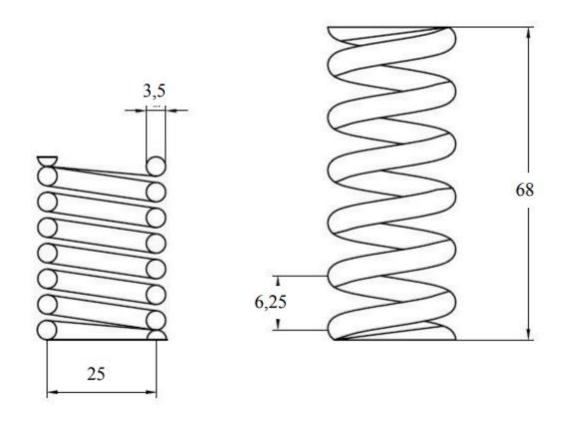


Рисунок 6 – Чертёж пружины амортизатора

Вывод по разделу: выявлены профессиональные риски, присущие рабочим местам сотрудников компании. Проведена скрупулезная оценка потенциальных опасностей, возникающих при выполнении задач на анализируемых позициях.

В дополнение к этому предложены стратегии для снижения высокого уровня профессионального риска для специалиста по обслуживанию и ремонту оборудования электрических подстанций. [43].

Проведённые расчеты показали, что предложенные меры по уменьшению уровня локальной вибрации доказали свою эффективность, так как позволяют снизить локальную вибрацию до допустимого уровня [44].

5 Охрана окружающей среды и экологическая безопасность

Рассматриваемый объект влияет на окружающую среду за счет хранения материалов и их отходов, а также при выполнении рабочих производственных задач. Нагрузка данного влияния отражена в таблице 7.

Таблица 7 – Антропогенная нагрузка на окружающую среду

Наименовани	Подразделение	Воздействие	Воздействие на	Отходы
е объекта		на	водные объекты	(перечислить
		атмосферны	(сбросы,	виды отходов)
		й воздух	перечислить виды	
		(выбросы,	сбросов)	
		перечислить		
		виды		
		выбросов)		
000	Энергетический	Оксид	Нефтепродукты	Строительный
«ЮграЭнерго	отдел	углерода,		мусор
Сервис»				
	Энергетический	Диоксид	Взвешенные	Пустые баки
	отдел	серы	вещества	ГСМ
	Энергетический	Диоксид	-	Промасленная
	отдел	азота		ветошь
	Энергетический	Взвешенные	-	Древесина
	отдел	вещества		
Количество в г	Количество в год		9	50

Методы и оборудование утилизации отходов, утративших потребительские свойства, описаны в таблице 8.

Таблица 8 – Методы и оборудование утилизации отходов, утративших потребительские свойства

Методы	Применяемые технологии					
Физические	Воздействие силовых полей (гравитационного, центробежного,					
	электрического, магнитного)					
	Фильтрование через пористые перегородки					
	Теплофизические технологии (нагревание, выпаривание, водная					
	промывка, атмосферная и вакуумная перегонка)					
	Комбинированные технологии					

Продолжение таблицы 8

Методы	Применяемые технологии				
Физико-химические	Адсорбция				
	Коагуляция				
	Селективное растворение (ионообменная очистка)				
	Экстракция				

Согласно данным таблицы 8 приведены физические и физико-химические методы утилизации, а также расписаны применяемые технологии каждого метода.

Далее в таблице 9 представлена информация списка загрязняющих веществ, которые включены в расписание контроля выбросов стационарных источников.

Таблица 9 – Список загрязняющих веществ, которые включены в расписание контроля выбросов стационарных источников

N п/п	Наименование загрязняющего вещества
1	Оксид углерода
2	Диоксид серы
3	Диоксид азота
4	Взвешенные вещества

В таблице 10 продемонстрированы итоги проверки стационарных источников выбросов загрязняющих веществ в атмосферу.

Таблица 11 показывает результаты инспекций функционирования очистных сооружений, включая данные технологического контроля их эффективности на всех уровнях и этапах очистки сточных вод и обработки осадков.

Таблица 10 – Результаты контроля стационарных источников выбросов загрязняющих веществ в атмосферный воздух

Структурное подразделение		Источник		Наименование загрязняющего	Предельно допустимый	Фактически й выброс,	Превышение предельно	Дата отбора проб	Общее количество
Номер	Наименование	Номер	Наименование	вещества	выброс или временно согласованный выброс, г/с	г/с	допустимого выброса или временно согласованного выброса в раз (гр.8/гр.7)		случаев превышения предельно допустимого выброса или временно согласованного выброса
1	Энергетическ ий отдел	1	Производствен ная площадка	Оксид углерода	5,0	1,5	-	23.09.2024	0
1	Энергетическ ий отдел	1	Производствен ная площадка	Диоксид серы	0,2	0,04	-	23.09.2024	0
1	Энергетическ ий отдел	1	Производствен ная площадка	Диоксид азота	0,2	0,02	-	23.09.2024	0
1	Энергетическ ий отдел	1	Производствен ная площадка	Взвешенные вещества	0,5	0,26	-	23.09.2024	0
Итого					5,9	1,82			0

Таблица 11 – Результаты инспекций функционирования очистных сооружений, включая данные технологического контроля их эффективности на всех уровнях и этапах очистки сточных вод и обработки осадков

Тип очистно го сооруже ния	Год ввода в эксплу атацию	Сведения о стадиях очистки с указание м сооружен ий очистки сточных вод (в том числе дренажных), относящи		сброса сточн исле дренажн		Наименова ние загрязняю щего вещества или микроорга низма	ние контро веществ, мг/дм ³ грязняю ля щего (дата ещества отбора проб) икроорга		Содержание микроорганизмов			Эффективность очистки сточных вод, %			
		хся к каждой стадии	Проект ный	Допустимы й	Фактиче			Проект	Допустимо е в соответстви и с разрешение м на сброс	Фактиче ское	Проект	Допустимо е в соответстви и с разрешение м на сброс	Фактиче ское	Проек тная	Фактиче ская
Локальн ые	2020	Этапы: -	550 м ³ /сут,	550 м ³ /сут, 185000	250 м ³ /сут,	Нефтепрод укты	23.09.2 024	25	220	5	-	-	-	99	91
очстные сооруже ния ЛОС-86		механиче ская очистка	185000 м ³ /год	м ³ /год	85950 м ³ /год	Взвешенн ые вещества	23.09.2 024	30	1000	4	-	-	-	99	88

В таблице 12 продемонстрированы сведения о производстве, переработке, обезвреживании и размещении промышленных и потребительских отходов за 2023 год

Таблица 12 – Данные о производстве, переработке, обезвреживании и размещении промышленных и потребительских отходов за 2023 год

Наимен ование видов	Код по федеральном У	Класс опасности отходов	на нач	ие отходов ало года, гонн	Образовано отходов, тонн	Получено отходов от других индивидуаль ных предпринима телей и юридических лиц, тонн	Утилиз ирован о отходо в, тонн	Обезврежено отходов, тонн
отходов	классификац ионному каталогу отходов, далее - ФККО		Хране ние	Накоплен ие				
Строит ельный мусор	4 71 101 01 52 1	1	-	20	20	0	20	0
Пустые баки ГСМ	4 82 212 11 53 2	3	-	15	15	0	15	0
Промас ленная ветошь	4 06 166 01 31 3	3	-	5	5	0	5	0
Древес ина				10	10	0	10	0

Вывод по разделу: анализ оценки влияния человеческой деятельности на природу, равно как и рассмотрение производственного экологического контроля, выявил, что главным отрицательным фактором, оказывающим воздействие предприятия на окружающую среду, является накопление отходов от производственных процессов.

6 Защита в чрезвычайных и аварийных ситуациях

При выполнении строительных работ возможно возникновение чрезвычайных ситуациях на ООО «ЮграЭнергоСервис».

К чрезвычайным ситуациям, имеющим место быть на ООО «ЮграЭнергоСервис», целесообразно отнести:

- пожары и возгорания электрооборудования;
- падение грузов при подъеме их кранами;
- аварийные ситуации при эксплуатации машин и механизмов.

В случае возникновения чрезвычайных ситуаций на объекте, для устранения последствий аварий необходимо задействовать большое количество сил и средств.

В таблице 13 приведены силы и средства, привлекаемые в случае ЧС для ликвидирования ситуации, а также место их нахождения.

Таблица 13 — Перечень сил и средств, привлекаемых для ликвидации возможных ЧС и места их постоянной дислокации

Силы и средства, привлекаемых для	Место их нахождения
ликвидации возможных ЧС	
Полиция	ул. Студенческая, д.5
Скорая помощь	ул. Дзержинского, д.27
Пожарная часть	ул. Автострадная, д.28

В случае возникновения чрезвычайной ситуации, необходимо вызвать представленные выше организации.

При вызове аварийных сил и служб необходимо соблюдать следующий алгоритм:

- наименование объекта;
- место возникновения ЧС;
- фамилию сотрудника, вызывающего помощь.

В процессе выполнения комплекса мероприятий, которые направлены на устранение последствий ЧС:

- обеспечить медицинскую помощь пострадавшим;
- поддерживать режим функционирования развернутого оперативного штаба.

В таблице 14 находится информация о пунктах для временного размещения эвакуируемого населения в случае ЧС.

Таблица 14 — Перечень пунктов временного размещения и расчет приема эвакуируемого населения из объекта

Номер	Наименование	Адрес расположения,	Количество предоставляемых мест		
ПВР	организаций (учреждений), развертывающих пункты временного размещения		Посадочных мест	Койко-мест	
1	МБОУ СОШ №1	ул. Октябрьская, д.17	150	100	
2	МБОУ СОШ №3	ул. Школьная, д.23	200	150	
3	МБОУ СОШ №5	ул. Корчагинцева, д.7	250	190	

Эвакуируемые мероприятия эффективно проводить самостоятельно в пешем порядке из потенциально опасных зон, а при необходимости задействовать автотранспорт, который предоставят органы местного самоуправления.

Можно сделать следующие выводы по разделу: в рамках выполнения раздела были определены основные угрозы, которые могут возникнуть на территории ООО «ЮграЭнергоСервис», такими являются загорания и пожары. Ликвидационными работами в случае возникновения ЧС на объекте осуществляется под руководством руководителя предприятия.

7 Оценка эффективности мероприятий по обеспечению техносферной безопасности

Мероприятия, планируемые провести для обеспечения техносферной безопасности на предприятии в 2024 году продемонстрированы в таблице 15.

Таблица 15 – План мероприятий по обеспечению экологической безопасности ООО «ЮграЭнергоСервис» на 2024 год

Наименование структурного подразделения, рабочего места	Наименование мероприятия	Цель мероприятия	Срок выполнения	Источник финансирования мероприятия
Группа	Внедрение системы	Снижение	01.10.2024-	Собственные
рационального	управления	затрат	31.12.2024	средства
природопользован	логистикой отходов	предприятия,		предприятия
ия и охраны	АИС УЛО	связанных с		
окружающей		обращением с		
среды		отходами		

Финансирование планируемых мероприятий приведено в таблице 16.

Таблица 16 — Смета затрат на финансирование мероприятий по обеспечению экологической безопасности

№ п/1		Единицы измерения	Количество	Цена за ед., руб.	Стоимость, руб.
1	Внедрение системы управления логистикой отходов АИС УЛО	тыс. руб.	1	800	800

При осуществление технического обслуживания и оперативного управления действующего электрооборудования на месторождения нефтегазодобывающего комплекса за 2 квартал в атмосферу были выброшены такие загрязняющие вещества: неорганическая пыль с содержанием кремния

менее 20 % - 1,4 тонны, неорганическая пыль с содержанием кремния от 20 % до 70 % - 2,5 тонны, неорганическая пыль с содержанием кремния свыше 70 % - 3,2 тонны, оксид углерода - 15,3 тонны, оксид азота - 8,6 тонны и диоксид серы - 8,2 тонны.

В водоёмы попали следующие загрязняющие вещества: медь - 1,3 тонны, кобальт - 0,6 тонны, никель - 0,3 тонны, марганец - 8,4 тонны, железо - 0,48 тонны и алюминий - 0,35 тонны.

Были размещены отходы: У класс опасности 12,6 т.

«Расчет платы за выброс загрязняющих веществ в атмосферный воздух от стационарных источников» рассчитаем по формуле (9):

$$\Pi_{\text{aTM}} = \sum_{i=1}^{n} (C_{i \text{ aTM}} \cdot M_{i \text{ aTM}}), \tag{9}$$

где «i – вид загрязняющего вещества (i = 1, 2, 3, ..., n);

 $C_{i_{aтм}}$ — расчетная ставка платы за выброс 1 тонны і-го загрязняющего вещества в пределах допустимых нормативов выбросов с учетом коэффициентов (руб.);

 $M_{i_{a_{TM}}}- \varphi$ актический выброс i-го загрязняющего вещества (т)».

В таблице 17 показаны результаты вычисления платы за эмиссию вредных веществ в атмосферу от стационарных источников, связанных с проведением технического обслуживания и оперативным управлением действующего электрооборудования на месторождениях нефтегазодобывающего комплекса.

Таблица 17 — Результаты вычисления платы за эмиссию вредных веществ в атмосферу от стационарных источников, связанных с проведением технического обслуживания и оперативным управлением действующего электрооборудования на месторождениях нефтегазодобывающего комплекса

№п/п	Наименование	Фактический	Ставка платы	Плата за
	загрязняющего вещества	выброс	за выброс 1	выброс
		загрязняющего	тонны	загрязняющего
		вещества, т	загрязняющего	вещества, руб.
			вещества, руб.	
1	Неорганическая пыль с	1,4	109,5	153,3
	содержанием кремния менее			
	20 %			
2	Неорганическая пыль с	2,5	56,1	140,25
	содержанием кремния 20 % -			
	70 %			
3	Неорганическая пыль с	3,2	36,6	117,12
	содержанием кремния более			
	70 %			
4	Оксид углерода	15,3	1,6	24,48
5	Оксид азота	8,6	93,5	804,1
6	Диоксид серы	8,2	45,4	372,28
Итого				1611,45

«Расчет платы за сброс загрязняющих веществ в водные объекты» рассчитаем по формуле (10):

$$\Pi_{\text{вод}} = \sum_{i=1}^{n} \left(C_{i \text{ вод}} \cdot \mathbf{M}_{i \text{ вод}} \right), \tag{10}$$

где $\langle i - вид загрязняющего вещества (i = 1, 2, ..., n);$

 $C_{i \, вод}-$ ставка платы за сброс 1 тонны i-го загрязняющего вещества в пределах допустимых нормативов сбросов (руб.);

 $M_{i \; \text{вод}} - \varphi$ актический сброс i-го загрязняющего вещества (т)».

В таблице 18 показаны результаты вычислений платы за выбросы загрязняющих веществ в водные объекты от стационарных источников во время проведения технического обслуживания и управления текущим электрооборудованием на месторождениях нефтегазодобывающего комплекса.

Таблица 18 — Результаты вычислений платы за выбросы загрязняющих веществ в водные объекты от стационарных источников во время проведения технического обслуживания и управления текущим электрооборудованием на месторождениях нефтегазодобывающего комплекса

№п/п	Наименование	Фактический	Ставка платы за	Плата за сброс
	загрязняющего	сброс	сброс 1 тонны	загрязняющего
	вещества	загрязняющего	загрязняющего	вещества, руб.
		вещества, т	вещества, руб.	
1	Медь	1,3	5473,5	7115,55
2	Кобаль	0,6	4428	2656,8
3	Никель	0,3	5473,5	1642,05
4	Марганец	8,4	5473,5	45977,4
5	Железо	0,48	1369,7	657,456
6	Алюминий	0,35	442,8	154,98
Итого				58204,236

«Расчет платы за хранение, захоронение отходов производства и потребления» проведём по формуле (11):

Были размещены отходы: У класса опасности 12,6 т.

$$\Pi_{\text{otx}} = \sum_{i=1}^{n} (C_{i \text{ otx}} \cdot M_{i \text{ otx}}), \tag{12}$$

где $\langle i - вид отхода (i = 1, 2, 3, ..., n);$

 $C_{i \text{ отх}}$ – ставка платы за размещение 1 тонны i-го отхода в пределах установленных лимитов (руб.);

 $M_{i \text{ отх}}$ – фактическое размещение i-го отхода (т, куб. м)».

В таблице 19 показаны результаты вычислений стоимости хранения и захоронения отходов, возникающих при техническом обслуживании и оперативном управлении существующего электрооборудования на местах добычи нефти и газа.

Таблица 19 — Результаты вычислений стоимости хранения и захоронения отходов, возникающих при техническом обслуживании и оперативном управлении существующего электрооборудования на местах добычи нефти и газа

$N_{\Omega}\Pi/\Pi$	Класс опасности отхода	Фактическое	Ставка	Плата за
		размещение	платы за	хранение,
		отхода (т,	размещение	захоронение
		куб. м)	1 тонны	отхода, руб.
			отхода,	
			руб.	
1	V	12,6	1,1	13,86

В таблице 20 показаны начальные данные для вычисления оценки эффективности мероприятий по обеспечению безопасности техносферы в ООО «Югра Энерго Сервис».

Таблица 20 — Исходные данные для вычисления оценки эффективности мероприятий по обеспечению безопасности техносферы в ООО «Югра Энерго Сервис»

	Усл.		Значение	
Наименование показателя	обозн.	Ед. измер.	1	2
1	2	3	4	5
		Тыс.руб./усл.		
Множитель	γ	Т	98,7	98,7
Показатель опасности				
загрязнения атмосферного				
воздуха над территориями				
различных типов	δ	_	0,05	0,05
Поправка, учитывающая				
характер рассеяния примеси в				
атмосфере	f	_	0,9	0,9
Приведенная масса годового				
выброса загрязнений из				
источника	M	Усл. т/год	39,2	13

	Усл.		Значение	
Наименование показателя	обозн.	Ед. измер.	1	2
Текущие расходы на				
эксплуатацию сооружения или				
устройства	C	Тыс. руб.	0	20
Инвестиции на внедрение				
системы управления				
логистикой отходов АИС УЛО	К	Тыс. руб.	0	800
Нормативный коэффициент				
экономической эффективности			0,10	0.10
капитальных вложений			0,10	0,10
средозащитного назначения	Ен	_		

«Величина предотвращенного экономического ущерба от загрязнения среды» определяется по формуле (13):

$$\Pi = \mathcal{Y}_1 - \mathcal{Y}_2,\tag{13}$$

где « Π — величина предотвращенного годового экономического ущерба от загрязнения среды;

 y_1 — ущерб от загрязнения окружающей среды до проведения мероприятий;

 ${
m Y}_2$ — ущерб от загрязнения окружающей среды после проведения мероприятий».

$$\Pi = 174,1068 - 57,7395 = 116,3673$$

«Экономическая оценка ущерба от выбросов годовых объемов вредных веществ в природную среду (атмосферу, воду, землю) для отдельного источника до и после осуществления мероприятия» рассчитаем по формуле (14):

$$\mathbf{y} = \gamma \cdot \delta \cdot f \cdot \mathbf{M},\tag{14}$$

- где γ множитель, определяемый как удельный ущерб от выброса (сброса) вредных веществ, тыс. руб/усл. Т;
- δ показатель опасности загрязнения атмосферного воздуха над герриториями различных типов;

f— поправка, учитывающая характер рассеяния примеси в атмосфере, усл. т/год;

 М – приведенная масса годового выброса загрязнений из источника в природную среду, усл. т/год.

$$y1 = 98.7 \cdot 0.05 \cdot 0.9 \cdot 39.2 = 174.1068$$

 $y2 = 98.7 \cdot 0.05 \cdot 0.9 \cdot 13 = 57.7395$

«Годовой экономический эффект от проведения природоохранных мероприятий, способствующих снижению загрязнения природной среды в районе источника», определим по формуле (15):

$$\Im = \Pi - 3 \tag{15}$$

где «3 — величина приведенных затрат на проведение природоохранных мероприятий, руб».

$$9 = 116,3673 - 100 = 16,3673$$

«Приведенные затраты» определим по формуле (16):

$$3 = C + E_{H} \cdot K \tag{16}$$

где «C — текущие расходы на эксплуатацию сооружения или устройства, руб.;

 Е_н – нормативный коэффициент экономической эффективности капитальных вложений средозащитного назначения; K- инвестиции на приобретение и установку очистных устройств, руб».

$$3 = 20 + 0.1 * 800 = 100$$

Общая (абсолютная) экономическая эффективность средозащитных затрат определяется по формуле (17):

$$\mathfrak{I}_{3} = \frac{\mathfrak{I}}{\mathfrak{I}} \tag{17}$$

$$\mathfrak{I}_{3} = \frac{16,3673}{100} = 0,164$$

Общая (абсолютная) экономическая эффективность инвестиций в природоохранные мероприятия определяется по формуле (18):

$$\Im_{\kappa} = \frac{3 - C}{\kappa}
\Im_{\kappa} = \frac{16,3673 - 20}{100} = 0,036$$

Вывод: предложенные природоохранные мероприятия на объекте при осуществление технического обслуживания и оперативного управления действующего электрооборудования на месторождения нефтегазодобывающего комплекса являются эффективными.

Заключение

В первом разделе рассмотрены современные методы обращения с отходами производства, дана их характеристика и отличительные особенности.

Во втором разделе проведён анализ существующей системы обращения с отходами на предприятии. В результате проведённого анализа представлена характеристика деятельности отходов предприятия. Представлен перечень отходов предприятия, классифицируемые по классам опасности отходов, образуемых на предприятии.

В третьем разделе представлены особенности разработки логистической концепции обращения с отходами производства на предприятии. Проведён сравнительный анализ программных продуктов, предназначенных для решения вопросов обращения с ТБО.

Проведённый анализ, позволили установить, что наиболее подходящей с точки зрения функциональных возможностей является система АИС УЛО.

Эта логистическая система способствует повышению эффективности управления процессами сбора и транспортировки бытовых отходов, используя информационное обеспечение, которое включает требования стандартов и санитарно-гигиенические нормы.

В четвёртом разделе рассмотрены вопросы охраны труда. По результатам проведённой идентификации опасностей на рабочих местах сотрудников, было установлено, что высокий уровень риска был зафиксирован на рабочем месте мастера по техническому обслуживанию и ремонту оборудования подстанций электрических сетей.

В процессе выполнения работ на организм сотрудника воздействует локальная вибрация, исходящая от оборудования электрических подстанций. Выявив источник опасности, были предложены мероприятия, направленные на снижение уровня локальной вибрации до нормативного значения.

В пятом разделе рассмотрен анализ оценки влияния человеческой деятельности на природу, равно как и рассмотрение производственного экологического контроля, выявил, что главным отрицательным фактором, оказывающим воздействие предприятия на окружающую среду, является накопление отходов от производственных процессов.

В обеспечения шестом раздел рассмотрены вопросы защиты организации в условиях чрезвычайных и аварийных ситуаций. Были определены основные угрозы, которые могут возникнуть на территории ООО «ЮграЭнергоСервис», такими являются загорания пожары. И Ликвидационными работами в случае возникновения ЧС на объекте осуществляется под руководством руководителя предприятия.

В седьмом разделе проведён анализ эффективности мероприятий, направленных на поддержание техносферной безопасности на предприятии.

Список используемой литературы

- 1. Ананичев К.В. Проблемы окружающей среды, энергии и природных ресурсов. Международный аспект. М.: ВИНИТИ- МГУ, 2019. 164 с.
- 2. Альтшулер И.И., Ермаков Ю.Г. Региональные особенности загрязнения атмосферы земли. М.: Дорфа, 2021. С. 37-42.
- 3. Белов С.В. Безопасность жизнедеятельности и защита окружающей среды (техносферная безопасность): учебник.. М. : Юрайт, 2022. 683 с.
- 4. Бережная М. С. Экологические проблемы открытой добычи полезных ископаемых // Проблемы комплексного освоения полезных ископаемых: Материалы IV Молодежн. экологич. форума, посвящ. 300-летию Кузбасса и 70-летию КузГТУ, Кемерово, 29-30 окт. 2019 г. Кемерово: Кузбасский государств. технич. ун-т им. Т. Ф. Горбачева, 2019. С. 6-9.
- 5. Бородачев Н.М. Токсичные свойства угольной пыли как фактор негативного воздействия на работников угледобывающей // Сборник материалов XIV международной научно-практической конференции. Кемерово, 2021.
- 6. Бурашников Ю.М. Безопасность жизнедеятельности. СПб.: Гиорд, 2020. 416 с.
- 7. Бринк Г.И. Использование и производственно-экономическая оценка побочных продуктов горной промышленности и их значение для охраны окружающей среды / Труды IX Международного горного конгресса. 2020. №4. С. 5 9.
- 8. Виноградов В. С. Охрана недр и улучшение условий труда в горнорудной промышленности черной металлургии / Безопасность труда в промышленности. 2020. № 2. С. 7-9.

- 9. Ворошилов Я.С., Ворошилов Я.С. Влияние угольной пыли на профессиональную заболеваемость работников угольной отрасли // Уголь. 2019. №5. С.20-25.
- 10. Витальев А.И.О промышленной безопасности опасных производственных объектов. М.: ДЕАН, 2019. 719 с.
- 11. Вернадский В. И. Биосфера и ноосфера. М.: Айрис-пресс, 2022. 576 с.
- 12. Гаврилова Д.И. Применение пленкообразующих полимерных веществ для пылеподавления и снижения окисляемости углей при их хранении и транспортировке. НИТУ МИСИС, Москва, 2020. 111 с.
- Гертнер Э. Горное дело и окружающая среда / Труды VII Международного горного конгресса. 2021. №4. С. 3-4.
- 14. Говард А.Д., Ремсон И. Геология и охрана окружающей среды. Л.: Недра, 2018. 583 с.
- 15. Гридин А.Д. Охрана труда и безопасность на вредных и опасных производствах. М.: Альфа-Пресс, 2020. 160 с.
- 16. Дубовик Ф. Н. Рекультивация земель предприятиями угольной промышленности. М.: Губкин-Орджоникидзе, 2020. С. 83-84.
- 17. Егоров А.Ф. Управление безопасностью химических производств на основе новых информационных технологий. М.: КолосС, 2020. 416 с.
- 18. Егоров А.Ф. Анализ риска, оценка последствий аварий и управление безопасностью химических и нефтеперерабатывающих и нефтехимических производств. М.: КолосС, 2020. 526 с.
 - 19. Захаров Е.И. Охрана окружающей среды. М.: Недра, 2019. 208 с.
- 20. Ионеску М., Хилар Д., Дон И. и др. Борьба с загрязнением вод и атмосферы в горнодобывающей промышленности / Труды VII Международного горного конгресса. Бухарест, 2020. №6. С. 22-25.
- 21. Кукин В.Л. Безопасность жизнедеятельности. Производственная безопасность и охрана труда. М.: Высшая школа, 2021. 439 с.

- 22. Краснослободцева А. Е. Проблемы процесса управления в техносферной безопасности // Известия Самарского научного центра РАН. 2021. №1. С. 35-37.
- 23. Коробко В.И. Промышленная безопасность. М.: Академия, 2022. 208 с.
- 24. Колосов А.В. Эколого-экономические принципы развития горного производства. М.: Недра, 2019. 208 с.
- 25. Киселев А.С. Промышленная безопасность опасных производственных объектов. М.: Альфа-Пресс, 2020. 240 с.
- 26. Калашникова Л. Г., Тесленок К. С., Тесленок С. А. Картографирование неблагоприятных последствий взаимодействия человека и природной среды // Гуманитарное знание и духовная безопасность. 2020. С. 292-297.
- 27. Копытов А. И., Масаев Ю. А., Масаев В. Ю. Влияние технологии взрывных работ на состояние окружающей среды в Кузбассе // Уголь. 2020. № 5. С. 57-62.
- 28. Косолапов О. В. Типизация воздействий, оказываемых на окружающую среду при разработке месторождений полезных ископаемых // Известия Уральск. государств. горного ун-та. 2021. № 2. С. 54-60.
- 29. Коллинс Х.Е. Восстановление поверхности полей после окончания разработки месторождений / Труды VII Международного горного конгресса. 2022. №19. С. 6-13.
- 30. Коротаев Г. В., Михайлова 3. Н. Основные направления и организация научно-исследовательских работ по рекультивации земель. М.: Губкин-Орджоникидзе, 2020. С. 14-18.
- 31. Мосинец В.Н., Грязнов М.В. горные работы и окружающая среда. М.: Недра, 2021. 192 с.
- 32. Михайлов Ю. Промышленная безопасность и охрана труда. Справочник руководителя опасного производственного объекта. М.: АльфаПресс, 2019. 232 с.

- 33. Никитин, К.Д. Основы промышленной безопасности: учебное пособие. Красноярск : Сиб. федер. ун-т, 2020. 416 с.
- 34. Новые технологические процессы, машины, устройства и приборы для горной, металлургической и строительной промышленности. Проспект научно-исследовательских работ, предложенных для использования в народном хозяйстве // Новосибирск. 2020. 127 с.
- 35. Об организации и осуществлении производственного контроля за соблюдением требований промышленной безопасности [Электронный ресурс] : Постановление Правительства РФ от 18.12.2020 № 2168. URL: https://www.consultant.ru/document/cons_doc_LAW_372136/ (дата обращения: 22.07.2024).
- 36. Об утверждении комплексной стратегии обращения с твердыми коммунальными (бытовыми) отходами в РФ [Электронный ресурс]: Приказ Министерства природных ресурсов и экологии РФ от 14 августа 2013 г. № 298. URL: https://docs.cntd.ru/document/499041934 (дата обращения: 22.07.2024).
- 37. Основы государственной политики в области экологического развития РФ на период до 2030 г.». Распоряжение Правительства РФ от 18 декабря 2012 г. № 2423-р «О плане действий по реализации // СЗ РФ. 2012. № 52. Ст. 7561.
- 38. Тесленок С. А. Экологическое картографирование: учеб. пособие. Саранск: Изд-во Мордов. ун-та, 2022. 141 с.
- 39. Тесленок С. А., Бучацкая Н. В. Экологические карты: учебнометодич. комплекс. Саранск: Изд-во Мордов. ун-та, 2021. 159 с.
- 40. Ферсман А. Е. Занимательная минералогия. Л.: Детиздат, 1937. 240 с.
- 41. Храмцов Б.А. Промышленная безопасность опасных производственных объектов : учебное пособие. Старый Оскол : ТНТ, 2021. 276 с.
- 42. Grosser Z.A., Ryan J.F. Overview of environmental analytical methods. // Instrumentation Solutions. 2020. №3. P. 16-21.

- 43. Health risk and sources of arsenic in the potable water of a mining area / A. Armienta, R. Rodrigues, O. Morton et all // Pap. 2nd International Symposium on Assessing and Managing Health Risks from Drinking Water Contamination: Approaches and Applications, Santiago, Sept., 1998. IAHS Publ. 2022. №260. P. 9-16.
- 44. Heavy metals values and their correlations in body fluids of workers exposed to lead / D. Djarmati, M. Stupar, S. Djarmati, M. Milovic // 40 Congress of the European Societies of Toxicology EUROTOX 2002, Budapest, 15-18 Sept., 2002.: Toxicol.Lett. 2022. V.135.-P. 124.