МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт инженерной и экологической безопасности
(наименование института полностью)
20.03.01 Техносферная безопасность
(код и наименование направления подготовки, специальности)
Пожарная безопасность
(направленность (профиль)/специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Противопожарная защита электрических подстанций и кабельных сооружений с применением систем автоматического пожаротушения

Обучающийся	И.С. Данилин	
	(И.О. Фамилия)	(личная подпись)
Руководитель	к.т.н., доцент А.В. І	Ципанов
	(ученая степень (при наличии), ученое звание (при	и наличии), Инициалы Фамилия)
Консультант	к.э.н., Т.Ю. Фр	резе
	(ученая степень (при наличии), ученое звание (при	и наличии), Инициалы Фамилия)

Аннотация

В рассматриваемой ВКР описана противопожарная защита электрических подстанций и кабельных сооружений с применением систем автоматического пожаротушения.

Приведен анализ систем автоматического пожаротушения, применяемых для обеспечения противопожарной защиты электрических подстанций и кабельных сооружений. Сделаны соответствующие выводы.

Цель ВКР – проектирование системы автоматического пожаротушения для обеспечения противопожарной защиты электрической подстанции.

Задачи ВКР:

- анализ систем автоматического пожаротушения, применяемых для обеспечения противопожарной защиты электрических подстанций и кабельных сооружений;
- выбор средств пожарной автоматики для обеспечения пожарной безопасности электрической подстанции;
- проектирование системы автоматического пожаротушения для обеспечения противопожарной защиты электрической подстанции.

Результат достижения: определена положительная оценка эффективности по проектированию системы АУПТ.

ВКР содержит введение, 6 разделов, заключение (60 страниц, 3 рисунка, 18 таблиц).

Содержание

Введение	4
Термины и определения	6
Перечень сокращений и обозначений	7
1 Анализ систем автоматического пожаротушения, применяемых	
для обеспечения противопожарной защиты	8
1.1 Специфика электрических подстанций и кабельных сооружений при	
разработке систем автоматического пожаротушения	8
1.2 Анализ существующих систем автоматического пожаротушения	12
2 Выбор средств пожарной автоматики для обеспечения пожарной	•
безопасности электрической подстанции	20
2.1 Анализ средств пожарной автоматики, применяемых в системах	•
обеспечения пожарной безопасности электрической подстанции	20
2.2 Обоснованный выбор средств пожарной автоматики	25
3 Проектирование системы автоматического пожаротушения	26
4 Охрана труда	28
4.1 Реестр профессиональных рисков для рабочих мест	28
4.2 Идентификация опасностей, которые могут возникнуть при	
выполнении технологических операций	29
5 Охрана окружающей среды и экологическая безопасность	35
5.1 Антропогенная нагрузка организации на окружающую среду	35
5.2 Определение соответствия наилучшим доступным технологиям	52
5.3 Результаты производственного контроля	54
6 Оценка эффективности по обеспечению техносферной безопасности	56
Заключение	63
Список используемых источников	64

Введение

В России наблюдается рост городской инфраструктуры. Это объясняется быстрым темпом развития рыночной экономики.

«Общее количество пожаров, возникающих на объектах энергетики, неуклонно снижается благодаря комплексу противопожарных мероприятий и актуализации нормативных требований в области пожарной безопасности. Однако проблема физического и морального устаревания, а также перегрузка электросетей приводит к возникновению аварий на объектах энергетики, в число которых входят и пожары. Любой пожар является потенциально опасным, и последствия от него могут носить катастрофический характер. Пожар способен целиком вывести объект энергетики из строя, что может повлечь перегрузку других объектов и их отключение. Именно поэтому обеспечение пожарной безопасности таких объектов — одна из наиболее приоритетных задач» [16].

В последние годы особый интерес уделяется обеспечению пожарной безопасности различных зданий и сооружений. Очевидно, что актуальность данной тематики обоснована тем, явление пожара часто влечет за собой немалое количество человеческих жертв, материальные потери, а также ущерб окружающей среде.

«Наиболее распространенными объектами энергетики на территории РФ являются тепловые электростанции, они вырабатывают более 60% от суммарной мощности всех электростанций. Следом за НИМИ атомные электростанции. Все гидроэлектростанции И ЭТИ объединяет то, что они имеют похожую пожарную нагрузку, которые могут В зажигания. процесс выступать источниками распределения преобразования электроэнергии также включены высоковольтные подстанции, которые имеют аналогичную пожарную нагрузку: кабельное хозяйство, маслопроводы, трансформаторы, электроприемники» [16].

При всем при этом, актуальность выбранной темы дипломного проектирования — обеспечение пожарной безопасности электрических подстанций и кабельных сооружений с применением систем автоматического пожаротушения подтверждается тем, что:

- здания электроэнергетики являются сложными объектами при выборе огнетущащего вещества, поэтому все же лучше обезопасить их системами предотвращения пожара и АУПТ [9];
- необходимы предложения по внедрению современных АУПТ для объектов электроэнергетики [16];
- предотвратить пожар лучше, чем бороться с его последствиями.

Цель ВКР – проектирование системы автоматического пожаротушения для обеспечения противопожарной защиты электрической подстанции.

Задачи ВКР:

- анализ систем автоматического пожаротушения, применяемых для обеспечения противопожарной защиты электрических подстанций и кабельных сооружений;
- выбор средств пожарной автоматики для обеспечения пожарной безопасности электрической подстанции;
- проектирование системы автоматического пожаротушения для обеспечения противопожарной защиты электрической подстанции.

Термины и определения

«Безопасная зона – зона, в которой люди защищены от воздействия опасных факторов пожара или в которой опасные факторы пожара отсутствуют» [17].

«Допустимый пожарный риск – пожарный риск, уровень которого допустим и обоснован исходя из социально-экономических условий» [17].

«Объект энергетики – это совокупность элементов (установок, систем, оборудования), предназначенных для производства энергии путем преобразования первичной (природной) энергии во вторичную, например в электрическую и/или тепловую, и ее дальнейшего распределения. К тому же, объект энергетики – важный инфраструктурный объект, вовлеченный в непрерывный процесс производства и распределения энергии в рамках единой энергосистемы государства» [16].

«Пожар — неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства» [4].

«Пожарная опасность объекта защиты – состояние объекта защиты, характеризуемое возможностью возникновения и развития пожара, а также воздействия на людей и имущество опасных факторов пожара» [17].

«Электрическая подстанция — электроустановка, предназначенная для приема, преобразования и распределения электрической энергии, состоящая из трансформаторов или других преобразователей электрической энергии, устройств управления, распределительных и вспомогательных устройств» [18].

Перечень сокращений и обозначений

АПС – автоматическая система пожарной сигнализации

АУПТ – автоматическая система пожаротушения

АСР – аварийно-спасательные работы

ВМП – воздушно-механическая пена

ГГРП – газораспределительная подстанция

ГЖ – горючая жидкость

ГПП – главная понижающая подстанция

ЛВЖ – легковоспламеняющаяся жидкость

МПП – модуль порошкового огнетушения

ОВ – огнетушащее вещество

ОТ – охрана труда

ОТВ – огнетушащее вещество

ПБ – пожарная безопасность

ПВ – противопожарный водоем

ПГ – пожарный гидрант

ПО – пожарная охрана

СОУЭ – система оповещения и управления эвакуацией людей при пожаре

ТБ – техника безопасности

ЧС – чрезвычайная ситуация

1 Анализ систем автоматического пожаротушения, применяемых для обеспечения противопожарной защиты электрических подстанций и кабельных сооружений

1.1 Специфика электрических подстанций и кабельных сооружений при разработке систем автоматического пожаротушения

К кабельным сооружениям в нормативно-справочной литературе относят: кабельные туннели, эстакады, галереи, камеры, подпитывающие пункты. Кроме того, также это коробы, каналы, блоки, шахты, этажи, полуэтажи, двойные полы [5].

«Подстанция, в которой стоят повышающие трансформаторы, повышает электрическое напряжение при соответствующем снижении значения силы тока, в то время как понижающая (или понизительная) подстанция уменьшает выходное напряжение при пропорциональном увеличении силы тока» [18].

Повышение напряжения, прежде всего, необходимо для экономии материала (конкретно, металла), который используется при производстве кабельных проводов, линий электропередач, а также для сокращения потери параметра активного сопротивления [3].

«Действительно, необходимая площадь сечения проводов определяется только силой проходящего тока и отсутствием возникновения коронного разряда. Также уменьшение силы проходящего тока влечёт за собой уменьшение потери энергии, которая находится в прямой квадратичной зависимости от значения силы тока. С другой стороны, чтобы избежать высоковольтного электрического пробоя, применяются специальные меры: используются специальные изоляторы, провода разносятся на достаточное

расстояние и т. д. Основная же причина повышения напряжения состоит в том, что чем выше напряжение, тем большую мощность и на большее расстояние можно передать по линии электропередачи» [18].

«Электроустановки зданий и сооружений должны соответствовать классу пожаровзрывоопасной зоны, в которой они установлены, а также категории и группе горючей смеси. Для обеспечения бесперебойного энергоснабжения систем противопожарной защиты, установленных в зданиях класса функциональной пожарной опасности Ф1.1 с круглосуточным пребыванием людей, должны предусматриваться автономные резервные источники электроснабжения» [17].

Все составные элементы устройства противопожарной автоматики электрических подстанций, а также средства оповещения и управления эвакуацией объектов электроэнергетики должны быть в работоспособном техническом исправном состоянии, в режиме бесперебойной работы [15]. Такие условия необходимы для обеспечения надежности и безопасности при возникновении пожароопасной ситуации [8].

Прокладку кабелей трансформаторных подстанций необходимо производить через огнестойкие каналы, либо обеспечивать отдельно им огнезащиту.

«Линии электроснабжения помещений зданий и сооружений должны иметь устройства защитного отключения, предотвращающие возникновение пожара. Правила установки и параметры устройств защитного отключения должны учитывать требования пожарной безопасности, установленные в соответствии с настоящим Федеральным законом» [17].

Также к специфике электрических подстанций и кабельных сооружений при разработке систем автоматического пожаротушения относится обеспечение защиты и надежности распределительных щитов, где не допускается распространение пожара из отсека в силовой щит.

«Горизонтальные И вертикальные прокладки каналы ДЛЯ электрокабелей и проводов в зданиях и сооружениях должны иметь защиту от распространения пожара. В местах прохождения кабельных каналов, коробов, кабелей проводов через строительные конструкции огнестойкости нормируемым пределом должны быть предусмотрены кабельные огнестойкости проходки cпределом не ниже предела огнестойкости данных конструкций» [17].

При устройстве открытой прокладки кабелей, необходимо обеспечивать правила ПБ, кабели должны быть обязательно негорючими.

«Светильники аварийного освещения на путях эвакуации с автономными источниками питания должны быть обеспечены устройствами для проверки их работоспособности при имитации отключения основного источника питания. Ресурс работы автономного источника питания должен обеспечивать аварийное освещение на путях эвакуации в течение расчетного времени эвакуации людей в безопасную зону» [17].

При отсутствии средств от пожара, мер защиты и оборудования огнетушения и взрыва недопустимо использовать электрооборудование в пожароопасных помещения. Неукоснительно соблюдение этих требований [19].

«Взрывозащищенное электрооборудование допускается использовать в пожароопасных и непожароопасных помещениях, а во взрывоопасных помещениях - при условии соответствия категории и группы взрывоопасной смеси в помещении виду взрывозащиты электрооборудования» [17].

Основополагающим параметром по правилам применения электрооборудования является степень взрывопожарной и пожарной опасности того или иного здания и сооружения. Так, методы определения этих параметров, указаны в техническом регламенте, а также в федеральном законе «О техническом регулировании».

«Противопожарная безопасность кабельных трасс, каналов, подвалов и сооружений систем электроснабжения объектов различного назначения обеспечивается различными системами автоматического или автономного пожаротушения, схемами тушения, огнетушащими веществами» [14].

Конструктивные и объемно-планировочные решения в области обеспечения ПБ относительно зданий и сооружений объектов электроэнергетики всецело зависят от технологических условий и экономических критериев выбора.

«Кабельные сооружения электростанций, подстанций, кабельные сооружения промышленных и общественных зданий, в зависимости от напряжения, мощности, объемов должны оборудоваться автоматическими системами пожаротушения» [14].

В качестве огнетушащего вещества выбирается вода или пенообразователь.

«В последнее время, с появлением новых систем, конструкций и схем вытеснения ОВ, стало возможным применение АУП порошкового и аэрозольного пожаротушения. Эти системы эффективны, просты в монтаже и эксплуатации, практически не причиняют ущерб оборудованию после срабатывания и имеют относительно невысокую стоимость» [14].

В качестве выбора относительно АУПТ на объектах энергетики зачастую пользуются установки аэрозольно-порошкового пожаротушения, а также генераторы огнетушащего аэрозоля.

«ГОА АГАТ-2А эффективно применять в кабельных каналах и подвалах, где позволяет условие по негерметичности защищаемых объемов помещения. В остальных случаях пожарную защиту осуществляют порошковые модули МПП» [14].

Конструктивные и объемно-планировочные решения в области обеспечения ПБ относительно зданий и сооружений объектов

электроэнергетики всецело зависят от технологических условий и экономических критериев выбора.

1.2 Анализ существующих систем автоматического пожаротушения

Особенности устройства АУПТ для объектов электроэнергетики:

- все регламентированные процедуры по АУПТ проходят, прежде всего, в соответствии с Правилами устройства электроустановок;
- «расчетный расход воды УВП принимается по наибольшему расходу, требующемуся на пожаротушение одного защищаемого изолированного отсека кабельного сооружения» [15];
- проектирование АУПТ включает в себя две составляющие установка пожаротушения и ее автоматическое управление;
- «время с момента обнаружения пожара в кабельном сооружении извещателем до поступления воды на его тушение из наиболее удаленного оросителя) не должна превышать 3 мин» [15];
- в кабельных тоннелях предусматривают установки водяного пожаротушения с бесперебойной подачей воды.

По виду огнетушащего вещества АУПТ бывают: водяные, порошковые, пенные, газовые, аэрозольные и комбинированные (достаточно часто реализуемые). Системы АУПТ (вид, способ, выбор ОТВ, способ подачи) выбираются и проектируются в зависимости от назначения и категории помещения, пожарной нагрузки на единицу объема помещения, а также экономической составляющей по рациональному использованию.

Кроме того, также АУПТ различают по способу тушения: объемные поверхностные или локальные.

По конструктивному исполнению АУПТ могут быть: модульные, агрегатные, дренчерные и спринклерные.

Рассмотрим основное ОТВ – вода, тонкораспылённая вода.

тонкораспыленной воды как OTB преимущество эффективность (выше, чем У распыленной воды), универсальность, безвредность для человека, экологическая чистота, дешевизна, простота удаления. Специальные распылители (как правило, высокого давления, 10–15 МПа) формируют объемный «туман» со свойствами, приближенными к газовым ОТВ, который активно поглощает тепловое излучение, охлаждая помещение (в отличие от большинства других ОТВ), и осаждает продукты горения» [16].

Основное преимущество АУП ТРВ на базе насосных агрегатов – долгий срок службы, автоматическая дозаправка, возможность создания централизованной системы, на базе модульных установок – гибкость при размещении оборудования, возможность автономной работы [19].

На рисунке 1 приведены виды АУПТ по различным классификационным признакам.



Рисунок 1 - Виды АУПТ по различным классификационным признакам

«Однако для применения АУП ТРВ на объектах энергетики есть и некоторые ограничения, их запрещено применять для:

- защиты помещений, сооружений и оборудования с обращением натрия;
- тушения пожаров класса Д по ГОСТ 27331, а также химически активных веществ и материалов, реагирующих с ТРВ со взрывом (алюминийорганические соединения, щелочные металлы), разлагающихся при взаимодействии с ТРВ с выделением горючих газов (литийорганические соединения, азид свинца, гидриды алюминия, цинка, магния), взаимодействующих с ТРВ с сильным экзотермическим эффектом (серная кислота, хлорид титана, термит); самовозгорающихся веществ (гидросульфит натрия и др.);
- защиты зданий, сооружений и помещений, в которых использование ТРВ может повлечь за собой аварийную ситуацию или аварию с более тяжелыми последствиями, чем пожар; не совместимо с работой технологического оборудования, которое не может быть обесточено (остановлено) при пожаре в соответствии с технологическим регламентом;
- может повлечь ущерб, превышающий возможный ущерб от пожара; ухудшает условия безопасной эвакуации людей либо затрудняет действия персонала по приведению объекта в безопасное состояние [13];
- может негативно повлиять на надежность функционирования
 элементов и систем безопасности объекта;
- защиты помещений, находящихся рядом или над перечисленными помещениями» [16].

По данным технического регламента для АУПТ применяются следующие нормы и правила:

- установка должна отвечать требованиям эффективной реализации пожаротушения, оптимальной инерционности, a также обеспечивать условие минимального вредного воздействия (например, когда действие пены наносит вред технологическому оборудованию, «вторичные поражающие так называемые факторы») [24];
- обеспечение своевременного срабатывания АУПТ, которое обеспечивает тушение или ликвидацию возгорания на начальной его стадии (не превышает время свободного развития пожара);
- обеспечение интенсивности подачи ОТВ;
- обеспечение тушения возникшего пожара до приезда пожарных подразделений или сокращение площади, исходя из специфических особенностей источника пожара и его объекта;
- срок эксплуатации и надежность при срабатывании, впрочем, это условие действует, как и для любого технического оборудования, представляющего собой рабочую единицу технологического процесса.

«Учитывая, что объекты энергетики имеют отраслевую принадлежность, для решения указанной задачи, помимо СП 5.13130.2009, следует обращаться к отраслевым нормативным документам, в которых содержится определенный набор рекомендаций и требований» [16].

На объектах энергетики принято применять следующие ОТВ:

- распыленная вода; пенообразователь (пенные установки, а также водопенные);
- аэрозоли; газ.

Далее, сформируем в таблице 1 преимущества и недостатки при анализе существующих систем автоматического пожаротушения.

Таблица 1 – Анализ существующих систем АУПТ

Вид АУПТ,	Преимущества	Недостатки
производители	Преимущества	педостатки
Водяные (ТРВ)	Доступность ОТВ;	Невозможность применения на
System Sensor,	Недорогая стоимость ОТВ;	электроустановки;
Рубеж, Simplex,	Не требуется 100% резерв;	Вода повреждает архивы, библиотеки,
ESMI, Siemens	Нет затрат на оборудование;	установки;
Lown, Siemens	Низкая трудоемкость при то;	Не подойдет также для объектов с
	Вода безопасна для людей;	электрооборудованием, химическими
	Высокая надежность;	веществами, вступающими в реакцию
	Высокое качество тушения;	с водой
	быстрое срабатывание и	Сводон
	восстановление	
Пенные	Нет необходимости герметичности	Ограниченное применение ОТВ при
Аргус-Спектр,	помещения;	температуре окружающей среды ниже
НПО «Центр-	Безвредное ОТВ для эвакуации;	+5 °c;
протон», НПО	расширенный диапазон классов	Невозможность применения на
Пожарная	пожара: а и в и высокая	электроустановки
Автоматика	эффективность (по сравнению с	Дороже стоимость ОТВ, сложнее
Сервис.	водяными установками);	техобслуживание (по сравнению с
1	Расход воды сниженный	водяными установками);
		Меньшая эффективность для сыпучих
		и волокнистых материалов
Порошковые	Нетоксичность ОТВ;	Не всегда эффективны (например, при
Satel,	Низкая стоимость ОТВ;	горючих материалах);
Сибирский	Удобство эксплуатации;	Долгая подача по трубопроводу;
Арсенал	Бережное воздействие ОТВ на	Вредность для человека;
	оборудование	
Аэрозольные	Простота установки;	Ложные срабатывания;
Bolid, эпектрон	Недорогое обслуживание; высокая	Интенсивное тепловыделение во время
НПО	эффективность; доступность	генерирования аэрозоля;
		Невозможность использования в
		помещениях, объем которых
		превышает 1 м ³
Газовые	Высокая скорость работы;	Невозможность применения на
	Эффективное устранение пожара;	открытой территории;
	ОТВ нетоксично;	Помещение должно быть
	ОТВ не опасно для здоровья людей;	герметизировано;
	Возможность одновременного	Хранение таких модулей требует
	тушения пожара во всем	особых условий и соблюдения мер
	помещении	предосторожности;
		Нельзя использовать для тушения
		пожара для щелочноземельных и
		щелочных металлов

Также зафиксирован тот факт, что целесообразно и эффективно применение комбинированных АУПТ: порошок-пена средней и низкой кратности, порошок-распыленная вода, газ-пена средней кратности; газ-пена низкой кратности; газ-распыленная вода; газ-газ; порошок-газ. Но в этом случае, обязательно провести расчеты и обосновать выбор, поскольку мероприятие – дорогостоящее.

«При этом указанные огнетушащие вещества, как правило, следует применять для следующих объектов:

- распыленную воду для кабельных сооружений с естественной вентиляцией; для защиты силовых (авто-) трансформаторов и реакторов, расположенных на территории ОРУ подстанций, а также кровель подстанций закрытого типа; для тушения очагов пожара классов А, В по ГОСТ 27331 и электроустановок под напряжением не выше указанного в технической документации на установку;
- онкораспыленную воду -ДЛЯ кабельных сооружений принудительными системами вентиляции И на вновь реконструируемых объектах, где существуют ограничения по расходам подачи воды и водоотведению; для защиты проходных кабельных сооружений, а также поверхностного и локального по поверхности тушения очагов пожара классов А, В по ГОСТ 27331; для тушения электроустановок под напряжением не выше указанного в технической документации на установку;
- газовые составы для непроходных кабельных сооружений внутри зданий/сооружений; для защиты силовых (авто-) трансформаторов и реакторов, расположенных в закрытых камерах подстанций, а также ликвидации пожаров классов A, B, C по ГОСТ 27331 и электрооборудования с напряжением не выше указанного в технической документации на установку; для

защиты проходных кабельных шахт и пространств под двойными полами и потолками при прокладке кабелей (проводов) типа НГ, залов АСУ ТП (на основе безопасных для человека газовых ОТВ);

огнетушащие аэрозоли – для протяженных кабельных сооружений, где устройство систем водяного пожаротушения трудновыполнимо или экономически нецелесообразно, а также кабельных сооружений, где возникают трудности (невозможно) водоотведение и непроходных кабельных сооружениях внутри зданий/сооружений; для тушения (ликвидации) пожаров подкласса А2 и класса В по ГОСТ 27331» [16].

Системы порошковое АУПТ редко применяют на объектах электроэнергетики ввиду низкой эффективности и целесообразности применения, поскольку удаление порошка представляется очень сложным процессом с кабелей и проводов. А, срабатывание АУПТ, может быть и ложным (например, при запыленности рабочего пространства, повышении температуры рабочей среды, попадание пара или лучей света на датчики).

Особенности применения различных ОТВ на объектах энергетики:

- предпочтение водным установкам газовые АУПТ при невозможности применения воды (например, где нельзя применять воду для электроустановок, а также где существует удалённость до водоисточников);
- применение «аэрозолей для объемов, надежная герметизация или водоотведение в которых трудно- или невыполнимы, при этом необходимо применение в модулях огнетушащего аэрозоля компонентов, не опасных для оперативного персонала, а также использование низкотемпературных модулей огнетушащего аэрозоля (температурные зоны, образующиеся при работе генераторов на расстоянии 0,3 м от выходных отверстий не должны превышать 75–100 °C)» [16];

категорически запрещено применение АУПТ порошкового,
 газового и аэрозольного типа, где есть возможность пребывания
 людей, и они могут не покинуть помещение до начала срабатывания.

Вывод к разделу 1

Анализ систем автоматического пожаротушения, применяемых для обеспечения противопожарной защиты электрических подстанций и кабельных сооружений, показал, что:

- сформированы преимущества и недостатки при анализе существующих систем автоматического пожаротушения;
- определены условия и особенности применения различных ОТВ и
 АУПТ на объектах энергетики;
- выявлены параметры опасности устройства, входящие в устройство подстанций;
- обеспечение интенсивности подачи ОТВ;
- обеспечение тушения возникшего пожара до приезда пожарных подразделений или сокращение площади, исходя из специфических особенностей источника пожара и его объекта;
- срок эксплуатации и надежность при срабатывании, впрочем, это условие действует, как и для любого технического оборудования, представляющего собой рабочую единицу технологического процесса.

- 2 Выбор средств пожарной автоматики для обеспечения пожарной безопасности электрической подстанции
- 2.1 Анализ средств пожарной автоматики, применяемых в системах обеспечения пожарной безопасности электрической подстанции

Объектом исследования выбран корпус 113 ГПП-5, расположенный с восточной стороны завода ПАО «АВТОВАЗ».

На рисунке 2 приведен объект исследования.

Рисунок 2 - Объект исследования

ГПП-5 принадлежит энергетическому производству и предназначена для понижения напряжения с 110 кВ на 10 кВ, а также для запитки трансформаторных подстанций.

На рисунке 3 приведена схема расположения ГПП.

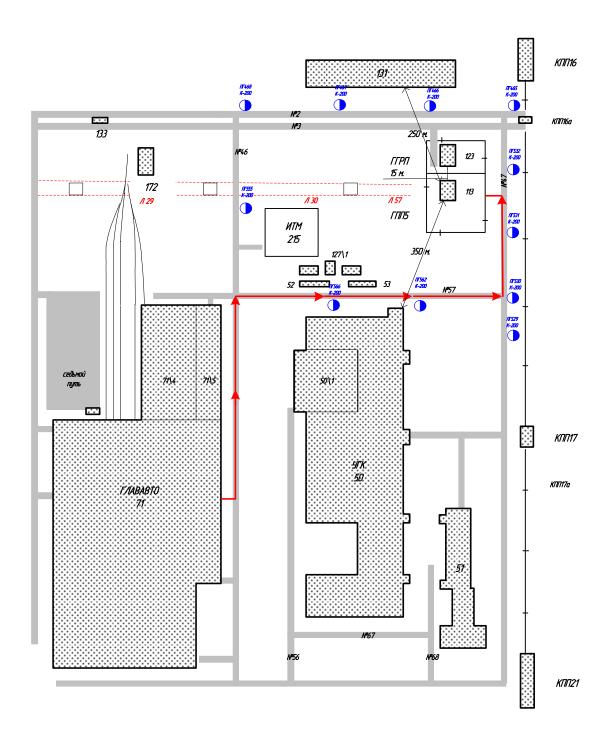


Рисунок 3 – Схема расположения ГПП

ГПП-5 запитана от Тольяттинской ТЭЦ откуда поступает напряжение 110 кВ по высоковольтным проводам. На ГПП-5 происходит понижение напряжения с 110 кВ до 10 кВ и через кабельный тоннель 10 кВ по кабелям происходит напряжения высоковольтным подача на трансформаторные подстанции корпусов завода, где происходит понижение напряжения до 380 В и 220 В и распределение электроэнергии по корпусам завода. Здание ГПП-5 одноэтажное, второй степени огнестойкости. Размеры в плане 18 м × 9 м, высота 6 м. Площадь со вспомогательными помещениями 162 м². Стены из керамзитобетонных навесных плит, вентиляционные окна в металлических переплетах. Несущие колонны железобетонные. Перекрытие из железобетонных плит. Кровля горючая – гравий, утопленный в мастику, 4 слоя рубероида на мастике, цементная стяжка 20 мм, утеплитель керамзит – 150 мм, плиты ребристые. Полы бетонные и керамическая плитка. На расстоянии 15 м от ГПП-5 расположена газораспределительная подстанция с наличием горючих газов.

В здании ГПП-5 находятся следующие помещения:

- помещение ЗРУ находится 1 секция шин с 15 масляными выключателями ВМ-10, в каждой которой находится по 5 кг трансформаторного масла, общей сложностью в 75 кг;
- помещение ГЩУ где находятся щиты релейной защиты, по периметру расположены кабельные лотки, в лотках 29 кабелей которые подходят к потребителю;
- с восточной стороны здания снаружи расположен трансформатор,
 трехфазный, силовой, масляный, двухобмоточный с
 регулированием напряжения под нагрузкой по ГОСТ 12965-67
 [22].
- Тип ТДН 31500/110, Мощность 31500, Частота 50 Γ ц, Установка наружная. Общее количество масла 21 т.

Характеристика трансформаторного масла.

Пробойная прочность в стандартном маслопробойнике не ниже 50 кВ, действительно для трансформаторов с напряжением 132-500 кВ и 40 кВ действительно для трансформатора с напряжением до 110 кВ включительно [6].

Трансформаторы напряжением до 150 кВ должны заливаться маслом с температурой не ниже +10 C0, трансформаторы 220-250 кВ должны заливаться масло с температурой не ниже +45 C.

Аварийный сброс масла осуществляется через запорную арматуру, открываемую вручную, которая находится в нижней части трансформатора. Вылившееся масло через приемный бункер, заполненный щебнем, поступает в железобетонный подземный резервуар, расположенный с юго-восточной стороны на расстояние 20 м. от трансформатора. Емкость резервуара в 1,5 раза превышает общее количество масла, находящегося в резервуаре [23].

Наружное противопожарное водоснабжение обеспечивается от пожарных гидрантов, расположенных непосредственно у ГПП-5: с восточной стороны — ПГ-530, 531, 532; с южной стороны — ПГ-562 на кольцевом водопроводе диаметром 300 мм. Максимальный расход воды Q=265 л/с при напоре 50 м. На кровле корпуса установлены два ГПС-600. С северной стороны корпуса смонтирован сухотруб диаметром 66 мм для подачи огнетушащих средств через ГПС-600 на трансформатор.

Автоматические установки тушения пожара отсутствуют, имеются три стационарные установки ОУ-80.

Установки автоматического обнаружения о пожаре.

АБК, технический пристрой и склад защищены АУПС с дымовыми и ручными пожарными извещателями.

В помещениях ГЩУ, ЗРУ отопление электрическое — электротенами. Вентиляция отсутствует. ГПП-5 запитана от Тольяттинской ТЭЦ откуда поступает напряжение 110 кВ по высоковольтным проводам. На ГПП-5

происходит понижение напряжения с 110 кВ до 10 кВ и через кабельный тоннель 10 кВ по высоковольтным кабелям происходит подача напряжения на трансформаторные подстанции корпусов завода, где происходит понижение напряжения до 380 В и 220 В и распределение электроэнергии по корпусам завода [7].

Критерии оснащения подстанции сооружений АПС и АУПТ, анализ средств пожарной автоматики, применяемых в системах обеспечения пожарной безопасности электрической подстанции:

- напряжением менее 500 киловольт допустимо не оснащать АУПТ;
- «кабельные сооружения, пространства за подвесными потолками автоматическими установками пожаротушения и системой пожарной сигнализации не оборудуются» [9];
- тип АПС также целесообразно принят согласно нормативному регламенту [12].

«На ОРУ подстанций могут быть следующие источники пожароопасности [2]:

- масляные трансформаторы и выключатели.
- маслонаполненные концевые кабельные муфты.
- охлаждаемые водородом синхронные компенсаторы.
- хранение бензина или других воспламеняемых жидкостей.
- горючие элементы зданий и сооружений.
- меры по смягчению последствий или уменьшению опасности пожара обычно называют мерами противопожарной защиты» [1].

«Для создания условий, обеспечивающих минимальное негативное воздействие электросетевых объектов на окружающую среду на всех стадиях жизненного цикла, при проектировании используем вакуумные выключатели, элегазовые силовые трансформаторы, а также элегазовые и сухие трансформаторы тока» [11].

2.2 Обоснованный выбор средств пожарной автоматики

Предусмотрим автоматическую установку газового пожаротушения модульного типа дистанционного пуска ПДП «Posa-2SL» [10]. Прибор «C2000 – АСПТ» разместим в помещении персонала, а также установим резервный источник питания на случай бесперебойной работы [31]. При срабатывании извещателей, сигнал идет на прибор включения операторной [21].

«Автоматические установки пожаротушения эффективно работают только тогда, когда обнаружение пожара происходит на ранней стадии, поэтому какую бы эффективную автоматическую установку пожаротушения вы ни выбрали — неисправная или морально устаревшая система обнаружения пожара может сработать не так, как планировалось, сведя на нет перспективы ликвидации зарождающегося возгорания. К таким средствам можно отнести, например, устройства самотушения проливов горящих и легковоспламеняющихся жидкостей, имеющие расчетную способность тушения пролившихся горящих и легковоспламеняющихся жидкостей, близкую к 100%, и автономные установки пожаротушения для приборных шкафов и стоек с радиоэлектронной аппаратурой, которые не комплектуются локальными системами пожаротушения непосредственно производителем» [16].

Вывод к разделу 2

Объектом исследования выбран корпус 113 ГПП-5, расположенный с восточной стороны завода ПАО «АВТОВАЗ». ГПП-5 принадлежит энергетическому производству и предназначена для понижения напряжения и для запитки трансформаторных подстанций [23].

Проведен анализ средств пожарной автоматики, применяемых в системах обеспечения пожарной безопасности электрической подстанции и обоснован выбор средств АУПТ.

3 Проектирование системы автоматического пожаротушения

Необходимо использовать автоматическую установку газового пожаротушения модульного типа. Срабатывание происходит в автоматическом режиме от срабатывания извещателей (дымовых), а также с ручным и дистанционным пуском ПДП «Posa-2SL» [20].

В таблице 2 представлены предлагаемые изменения на объекте по внедрению АУПТ.

Таблица 2 – Предлагаемые изменения на объекте по внедрению АУПТ

Наименование	Вид и	Наличие и места	Порядок включения и
помещений,	характеристика	автоматического и	рекомендации по
защищаемых	установки	ручного пуска установок	использованию при
установками		пожаротушения	тушении пожара
пожаротушения			
Тепловой узел и	Автоматическая	Установка находится в	При возникновении
мастерская	установка газового	автоматическом режиме,	загорания в
Трансформаторная	пожаротушения	при которой возможен	защищаемом
подстанция	модульного типа	автоматический пуск при	
		срабатывании дымовых	срабатывании 1
		пожарных извещателей в	пожарного извещателя
		защищаемом помещении	на ППК поступает
		и ручной пуск системы	сигнал «внимание»,
		от внешних кнопок	после срабатывания 2
		«пуск» на пульте	пожарного извещателя
		дистанционного пуска	сигнал «пожар».
		ПДП «Posa-2SL»	Включаются пожарные
		установленных у входа в	оповещатели «ГАЗ
		защищаемое помещение	УХОДИ», с задержкой
			30 секунд подается
			сигнал на подрыв
			пиропатрона и подача
			огнетушащего состава
			Хладон 125 из баллонов
			модулей [21].

Вследствие вышесказанного, следует отметить, что установка внедряемой АПС необходима для выявления опасных факторов пожара

(температура, пламя, дым), она срабатывает автоматически, что значительно экономит время на ликвидацию аварийной ситуации [10]. Внедряемая автоматическая установка газового пожаротушения модульного типа необходима для возникшего пожара (локализация и ликвидация) на защищаемой площади помещения теплового узла и мастерской трансформаторной подстанции [31]. Это помещения, где применение воды в качестве огнетушащего вещества недопустимо [21].

В состав порошковой АУПТ входит:

- газогенерирующий элемент, который расположен внутри корпусацилиндра;
- система электрозапуска;
- система подачи порошка с объемным распылением [23].

Вывод к разделу 3

Проведено проектирование системы автоматического пожаротушения на объекте исследования - корпусе 113 ГПП-5, расположенного с восточной стороны завода ПАО «АВТОВАЗ». Необходимо использовать автоматическую установку газового пожаротушения модульного типа. Срабатывание происходит в автоматическом режиме от срабатывания извещателей (дымовых), а также с ручным и дистанционным пуском ПДП «Posa-2SL» [20].

Внедряемые АПС и АУПТ способны на ранней стадии выявить факторы возникшего пожара, таким образом это снижает риск развития крупного пожара на объекте электроэнергетики [31].

4 Охрана труда

4.1 Реестр профессиональных рисков для рабочих мест

Профессии, рассматриваемые для разработки реестра профессиональных рисков: бригадир, электрики энергетической службы, начальник смены, мастер.

Для целей снижения профессиональных рисков на предприятии разрабатывают СУОТ.

«СУОТ разрабатывается в целях исключения и (или) минимизации профессиональных рисков в области охраны труда и управления указанными рисками (выявления опасностей, оценки уровней и снижения уровней профессиональных рисков), находящихся под управлением работодателя (руководителя организации), с учетом потребностей и ожиданий работников организации, а также других заинтересованных сторон» [7].

Поскольку выбраны профессии административного персонала участка и электриков энергетической службы, необходимо учитывать конкретно опасности, возникающие при работе с электрооборудованием на объектах электроэнергетики.

«При определении состава соблюдаемых работодателем норм Примерного положения и их полноты учитываются наличие у работодателя рабочих мест с вредными и опасными условиями труда, производственных процессов, содержащих опасности травмирования работников, а также результаты выявления (идентификации) опасностей и оценки уровней профессиональных рисков, связанных с этими опасностями» [7].

«Управление профессиональными рисками представляет собой комплекс взаимосвязанных мероприятий и процедур, включающих в себя выявление опасностей, оценку профессиональных рисков и применение мер по снижению уровней профессиональных рисков» [7].

4.2 Идентификация опасностей, которые могут возникнуть при выполнении технологических операций

В таблице 3 приведена оценка профессионального риска на рабочем месте старших ДЭМ ПШ, ТП, мастера (таблица 3).

Таблица 3 – Реестр рисков

No	Опасность	ID	Опасное событие
Корпус 113	«Неприменение СИЗ	2.1	«Травма или заболевание
ГПП-5,	или применение		вследствие отсутствия защиты от
расположенный	поврежденных СИЗ, не		вредных (травмирующих)
с восточной	соответствующих		факторов, от которых защищают
стороны завода	размерам СИЗ, составу		СИЗ» [25]
ПАО	или уровню		
«ABTOBA3»	воздействия вредных		
	факторов» [25]		
	«Скользкие,	3.1	«Падение при спотыкании или
	обледенелые,		проскальзывании, при
	зажиренные, мокрые		передвижении по скользким
	опорные поверхности»		поверхностям или мокрым
	[25]		полам» [25]
	«Обрушение наземных	6.1	«Травма в результате
	конструкций» [25]		заваливания или раздавливания»
			[25]
	«Транспортное	7.1	«Наезд транспорта на человека»
	средство, в том числе		[25]
	погрузчик» [25]		
	«Подвижные части	8.1	«Удары, порезы, проколы,
	машин и механизмов»		уколы, затягивания,
	[25]		наматывания, абразивные
			воздействия подвижными
			частями оборудования» [25]
	«Вредные химические	9.1	«Отравление воздушными
	вещества в воздухе		взвесями вредных химических
	рабочей зоны» [25]		веществ в воздухе рабочей зоны»
			[25]
	«Воздействие на	9.2	«Заболевания кожи (дерматиты)»
	кожные покровы		[25]
	смазочных масел» [25]		

Продолжение таблицы 3

No	Опасность	ID	Опасное событие
Корпус 113 ГПП-5, расположенный с восточной стороны завода ПАО «АВТОВАЗ»	«Повышенный уровень шума и другие неблагоприятные характеристики шума» [25]	20.1	«Снижение остроты слуха, тугоухость, глухота, повреждение мембранной перепонки уха, связанные с воздействием повышенного уровня шума и других неблагоприятных характеристик шума» [25]
	«Монотонность труда при выполнении однообразных действий или непрерывной и устойчивой концентрации внимания в условиях дефицита сенсорных нагрузок» [25]	24.1	«Психоэмоциональные перегрузки» [25]
	«Наведенное напряжение в отключенной электрической цепи (электромагнитное воздействие параллельной воздушной электрической линии или электричества, циркулирующего в контактной сети)» [25]	27.7	«Поражение электрическим током» [25]

При необходимости связь между ДЭЗ и РТП может осуществляться с использованием прямой телефонной связи между ДЭЗ. Проведем оценку профессионального риска на рабочем месте старших ДЭМ ПШ, ТП, мастера согласно нормативным документам и сведем итоги в таблицу 4.

Таблица 4 – Оценка вероятности

Стег	пень вероятности	Характеристика	Коэффициент, А
1	Весьма маловероятно	Практически исключено Зависит от следования инструкции Нужны многочисленные поломки	1
2	Маловероятно	Сложно представить, однако может произойти Зависит от следования инструкции Нужны многочисленные поломки/отказы/ошибки	2
3	Возможно	Иногда может произойти Зависит от обучения (квалификации) Одна ошибка может стать причиной аварии/инцидента/несчастного случая	3
4	Вероятно	Зависит от случая, высокая степень возможности реализации Часто слышим о подобных фактах Периодически наблюдаемое событие	4
5	Весьма вероятно	Обязательно произойдет Практически несомненно Регулярно наблюдаемое событие	5

В таблице 5 приведена оценка степени тяжести последствий.

Таблица 5 - Оценка степени тяжести последствий

Тяжесть последствий		Потенциальные последствия для людей	Коэффициент, U	
5	Катастрофическая	Групповой несчастный случай на производстве (число пострадавших 2 и более человек); Несчастный случай на производстве со смертельным исходом; авария, пожар	5	
4	Крупная	Тяжелый несчастный случай на производстве (временная нетрудоспособность более 60 дней); Профессиональное заболевание, инцидент	4	
3	Значительная	Серьезная травма, болезнь и расстройство здоровья с временной утратой трудоспособности до 60 дней	3	
2	Незначительная	Незначительная травма - микротравма (легкие повреждения, ушибы), оказана первая	2	

Таблица 6 – Анкета

Рабочее место	Опасность	Опасное событие	Степень	Коэффициент,	Тяжесть	Коэффициент,	Оценка	Значимость
			вероятности,	A	последствий,	U	риска,	оценки
			A		U		R	риска
Корпус 113	«Неприменение	«Травма или	Маловероятно	2	Маловероят	2	4	Низкий
ГПП-5,	СИЗ или	заболевание			НО			
расположенны	применение	вследствие						
й с восточной	поврежденных	отсутствия						
стороны	СИЗ» [25]	защиты от						
завода ПАО		вредных						
«ABTOBA3»		(травмирующих)						
		факторов, от						
		которых						
		защищают СИЗ»						
		[25]						
	«Скользкие,	«Падение при	Возможно	3	Маловероят	2	6	Низкий
	обледенелые,	спотыкании или			НО			
	зажиренные,	проскальзывании,						
	мокрые опорные	при						
	поверхности»	передвижении по						
	[25]	скользким						
		поверхностям»						
		[25]						
	«Обрушение	«Травма в	Возможно	3	Весьма	1	3	Низкий
	наземных	результате			маловероятн			
	конструкций»	заваливания» [25]			0			
	[25]							

Продолжение таблицы 4

Рабочее место	Опасность	Опасное событие	Степень	Коэффициент,	Тяжесть	Коэффициент,	Оценка	Значимость
			вероятности,	A	последствий,	U	риска,	оценки
			A		U		R	риска
Корпус 113	«Транспортное	«Наезд	Возможно	3	Маловероят	2	6	Низкий
ГПП-5,	средство,	транспорта на			НО			
расположенны	погрузчик» [25]	человека» [25]						
й с восточной	«Подвижные	«Удары, порезы,	Возможно	3	Маловероят	2	6	Низкий
стороны	части машин и	проколы,			НО			
завода ПАО	механизмов»	наматывания»						
«ABTOBA3»	[25]	[25]						
	«Вредные	«Отравление	Вероятно	4	Возможно	3	12	Средний
	вещества в	вредными						
	воздухе рабочей	веществами в						
	зоны» [25]	воздухе» [25]						
	«Воздействие на	«Заболевания	Вероятно	4	Маловероят	2	8	Низкий
	кожные покровы	кожи			НО			
	масел» [25]	(дерматиты)» [25]						
	«Повышенный	«Снижение	Вероятно	4	Возможно	3	12	Средний
	уровень шума»	остроты слуха»						
	[25]	[25]						
	«Монотонность	«Психоэмоционал		4	Маловероят	2	8	Низкий
	труда» [25]	ьные перегрузки»	Вероятно		НО			
		[25]	_					
	«Наведенное	«Поражение	Возможно	3	Маловероят	2	6	Низкий
	напряжение»	электрическим			НО			
	[25]	током» [25]						

Мероприятия по устранению высокого уровня профессионального риска на рабочем месте:

- «регулярная проверка СИЗ на состояние работоспособности и комплектности» [25];
- «назначение локальным нормативным актом ответственное лицо
 за учет выдачи СИЗ и их контроль за состоянием, комплектностью»
 [25];
- разработка инструкций по ОТ согласно специфике в зависимости от объекта [1];
- «заполнение материалом углублений, отверстий, в которые можно попасть при падении (например, с помощью разделительных защитных устройств)» [25];
- наличие и исправность средств защиты (огнетушители; пожарный инвентарь.

Вывод раздела 4

Приведены профессии выбранного объекта электроэнергетики (трансформаторной подстанции), приведены виды опасных событий и производственных рисков для соответствующих рабочих мест. Далее заполнена анкета по выбору методов оценки уровней профессиональных рисков и по снижению уровней таких рисков. Профессии, рассматриваемые для разработки реестра профессиональных рисков: бригадир МДП, старшие ДЭМ ПШ, ТП, начальник смены, мастер.

5 Охрана окружающей среды и экологическая безопасность

5.1 Антропогенная нагрузка организации на окружающую среду

Расчет выбросов загрязняющих веществ в атмосферу Определение валового суммарного выброса оксидов азота:

$$\mathbf{M}_{NO\mathbf{x}} = B_P \cdot Q_i^r \cdot K_{NO_2}^T \cdot b_r \cdot 10^{-3}$$
 т/год, (1)

 ${
m M}_{NO{
m x}}=1447,5*21,77*0,159*1*10^{-3}=5,01$ т/год; где B_P - расчетный расход топлива, т/год;

$$B_P = B * \left(1 - \frac{q_4}{100}\right) = 1500*(1 - \frac{3.5}{100}) = 1447.5 \text{ т/год},$$
 (2)

где q_4 -потери тепла вследствие неполноты сгорания топлива,%;

 Q_{i-}^r низкая теплота сгораний топлива, $\dfrac{\mathsf{M} \mathcal{J} \mathtt{ж}}{\mathsf{к} \mathsf{r}}$;

 $K_{NO_2}^T$ - удельный выброс оксидов азота при сжигании топлива, г/МДж;

$$K_{NO_2}^T = 0.011 * d_T (1 + 5.46 * \frac{100 - R_6}{100}) * \sqrt[4]{Q_i^R} * q_r$$
 г/МДж; (3)

$$K_{NO_2}^T = 0.011*1.4(1+5.46*\frac{100-1}{100})*\sqrt[4]{21.77*0.309} = 0.159 \Gamma/\text{МДж};$$

где d_T - коэффициент избытка воздуха в топке;

 R_6 - характеристика гранулометрического состава топлива, %;

 q_r - тепловое напряжение зеркала горения, МВт/кв.м

$$q_r = \frac{Q_t}{F} = \frac{1,975}{6.39} = 0,309 \frac{\text{MBT}}{\text{KB}}.$$
 (4)

где q_4 -потери тепла вследствие неполноты сгорания топлива,%;

F- площадь зеркала горения, кв.м;

 Q_t - тепловая мощность котла по введенному в топку тепла, МВт

$$Q_t = B_p^{max} * Q_i^r = 0.0907 * 21.77 = 1.975 \text{ MBT},$$
 (5)

где B_p^{max} - расчетный расход топлива для максимальной нагрузки, кг/с

$$B_p^{max} = B^{max} * \left(1 - \frac{q_4}{100}\right) = 0.094 * \left(1 - \frac{3.5}{100}\right) = 0.0907 \frac{\text{K}\Gamma}{\text{c}}$$
 (6)

где B^{max} -фактический расход топлива при максимальных нагрузке на котел, кг/с;

 b_r - безразмерный коэффициент

$$b_r = 1 - 0.075 * \sqrt{r} = 1 - 0.075 * \sqrt{0} = 1 \tag{7}$$

где r- степень рециркуляции дымовых газов, %.

Валовый выброс диоксида азота и оксида азота:

$$M_{No_2} = 0.8 * M_{No_x} = 0.8 * 5.01 = 4.008 \text{ т/год}$$
 (8)

$$M_{No} = 0.13 * M_{No_x} = 0.13 * 5.01 = 0.651 \text{ т/год}$$
 (9)

Расчет максимальных разовых выбросов окислов азота:

$$G_{No_x} = B_p^{max} * Q_i^r * K_{NO_2}^T * b_r, \Gamma/c$$
 (10)

$$G_{No_x} = 0.0907 * 21.77 * 0.159 * 1 = 0.314 \, \text{r/c}$$
.

Таблица 7 – Антропогенная нагрузка на окружающую среду

Наименование	Подразделение	Воздействие	Воздействие	Отходы
объекта		на	на водные	(перечислить виды
		атмосферный	объекты	отходов)
		воздух	(сбросы,	
		(выбросы,	перечислить	
		перечислить	виды сбросов)	
		виды		
		выбросов)		
ГПП-5,	корпус 113	Газообразные	Бытовые	Производственные,
расположенный			сточные воды	коммунальные
с восточной				
стороны завода				
ПАО				
«ABTOBA3»				
Количество в год		0,25639 т	-	16,256 т

Максимально разовый суммарный выброс определяется формуле:

$$G_{No_2} = 0.8 * G_{No_x} = 0.8 * 0.314 = 0.251 \,\text{r/c}$$
 (11)

$$G_{No} = 0.13 * G_{No_x} = 0.13 * 0.314 = 0.0408 \,\mathrm{r/c}$$
 (12)

Расчет выбросов оксида углерода.

Валовый выброс оксида углерода:

$$M_{CO} = B * C_{CO} * \left(1 - \frac{q_4}{100}\right) * 10^{-3}, \text{т/год}$$
 (13)

$$M_{CO}=1500*16{,}328\left(1-rac{3{,}5}{100}
ight)*10^{-3}=23{,}635$$
 т/год

где \mathcal{C}_{CO} - выход оксида углерода при сжигании топлива, г/кг

$$C_{CO} = q_3 * R_x * Q_i^r = 0.75 * 1 * 21.77 = 16.328 \,\text{r/kr}$$
 (14)

arrhoде q_3 - потери тепла вследствие химической неполноты сгорания топлива, %;

 R_x =1 для твердого топлива.

Максимально разовый выброс оксида углерода определяется формуле:

$$G_{CO} = B^{max} * C_{CO_x} \left(1 - \frac{q_4}{100} \right)$$

$$G_{CO} = 0,094 * 16,328 * \left(1 - \frac{3.5}{100} \right) = 1,481 \text{ r/c}$$
(15)

Пробойная прочность в стандартном маслопробойнике не ниже 50 кВ, действительно для трансформаторов с напряжением 132-500 кВ и 40 кВ действительно для трансформатора с напряжением до 110 кВ включительно.

Трансформаторы напряжением до 150 кВ должны заливаться маслом с температурой не ниже +10 C0, трансформаторы 220-250 кВ должны заливаться масло с температурой не ниже +45 С. В таблице 8 сведены результаты расчета выбросов веществ в атмосферу.

Таблица 8 — Перечень загрязняющих веществ, включенных в план-график контроля стационарных источников выбросов

Наименован	ие загрязняющего вещества
Ксилол	
Толуол	
Оксид азота	
Оксид серы	
Формальдегид	

Результаты производственного контроля в области охраны атмосферного воздуха представлены в таблице 9.

Таблица 9 - Результаты расчета выбросов загрязняющих веществ в атмосферу

Наименование загрязняющего вещества	Валовый	Максимально-
	выброс	разовый выброс
	т/год	г/с
Оксид углерода	23,635	1,481
Оксид азота	0,651	0,0408
Оксид серы	10,8	0,677
Диоксида азота	4,008	0,251

Результаты контроля стационарных источников выбросов загрязняющих веществ в атмосферный воздух представлены в таблице 10.

Таблица 10 – Результаты контроля стационарных источников выбросов загрязняющих веществ в атмосферный воздух

подраз, (площа	турное деление дка, цех ругое)	Ист	очник	Наименование загрязняющего вещества	Предельно допустимый выброс или временно	Фактичес кий выброс, г/с	Превышение предельно допустимого выброса или	Дата отбора проб	Общее количество случаев превышения	Примечание
Номер	Наимено вание	Номе	Наимен ование		согласованн ый выброс, г/с		временно согласованного выброса в раз		предельно допустимого выброса или временно согласованног о выброса	
1	Цех	1	Вытяжн ое	Ксилол	0,25639 т	0,25639 т	-	-	-	Контроль осуществляется
			устройс	Толуол	0,25639 т	0,25639 т	-	-	-	1 раз в 5 лет
			тво цеха зарядки	Оксид азота	0,25639 т	0,25639 т	-	-	-	
		аккумул яторов		Оксид серы	0,25639 т	0,25639 т	-	-	-	
				Формальдегид	0,12142	0,148649	-	-	-	
Итог					0,14968	0,14968	-	-	-	-

Результаты производственного контроля в области охраны и использования водных объектов представлены в таблице 11.

Таблица 11 — Результаты проведения проверок работы очистных сооружений, включая результаты технологического контроля эффективности работы очистных сооружений на всех этапах и стадиях очистки сточных вод и обработки осадков

Тип очистно го сооруж	Год ввода в эксплуа тацию	Сведения о стадиях очистки, с указанием сооружений	м ³ /сут.; тыс. м ³ /год		, тыс.	Наименован ие загрязняющ его	Дата контроля (дата отбора	загря	Содержание изняющих веш мг/дм ³		Эффекти ь очис сточны: %	стки х вод,
ения		очистки сточных вод, в том числе дренажных, вод, относящихся к каждой стадии	Проек тный	Допустимый, в соответствии с разрешительн ым документом на право пользования водным объектом		вещества или микроорган изма	проб)	Прое ктно е	Допустимое , в соответстви и с разрешение м на сброс веществ и микроорган измов в водные объекты	Факт ическ ое	Проект ная	Факт ическ ая
Очистны	е сооруж	ения отсутствуют										

Результаты производственного контроля в области обращения с отходами представлены в таблице 12.

Таблица 12 — Сведения об образовании, утилизации, обезвреживании, размещении отходов производства и потребления за отчетный год 2022 г.

№ стр	Наименование видов отходов	Код по федеральному опасности		Наличие отход года,		Образова но	Получено отходов от других индивидуальных	Утилизиро вано	Обезврежен о отходов,
оки		классификацио нному каталогу отходов, далее - ФККО	отходов	Хранение	Накопление	отходов, тонн	предпринимателей и юридических лиц, тонн	отходов, тонн	тонн
1	Батареи и аккумуляторы, утратившие потребительск ие свойства, кроме аккумуляторов для транспортных средств	48220000000	4	0	0	0,012	0	0	0,012
2	Ткань фильтровальна я из полимерных волокон	44322911604	4	0	0	0,10	0	0,10	0

Продолжение таблицы 12

№ стр	Наименование видов отходон	федеральному	Класс опасности	Наличие отход года,		чало	Образова но	Получено отходов других индивидуалы предпринимателей юридических лиц, то		ных	Утилизиро вано	о отходов,						
оки		классификацио нному каталогу отходов, далее - ФККО		Хранение	Накопл	ение	отходов, тонн											
3	Строительный мусор, отходы производства [9]		4	0	0		8,50	0			0			8,50	0			
	Пере	дано отходов друг	тим индивидуа	альным предпри	инимател	пям и	юридическ	им ли	цам, тонн									
В	сего для	обработки	для утилизации	для обезвреж	ивания	Д	ля хранени	Я	для захорон	ения								
0,	012	-	-	0,012			-		-									
0	,50	-	0,12	-			-	-										
4,	012	-	-	-	-		-		8,5									
Размещено отходов на эксплуатируемых объектах, тонн Наличие отход года, то																		
В		ние на собственни щения отходов, д		Захоронение собственных		Хран торон	ление на Захоронение н них ОРО сторонних ОРО		Захоронение на сторонних ОРО Хран		нение]	Накопление						
	-	-		-			-		-		0	0						

5.2 Определение соответствия наилучшим доступным технологиям

Аварийный сброс масла осуществляется через запорную арматуру, открываемую вручную, которая находится в нижней части трансформатора. Вылившееся масло через приемный бункер, заполненный щебнем, поступает в железобетонный подземный резервуар, расположенный с юго-восточной стороны на расстояние 20 м от трансформатора. Емкость резервуара в 1,5 раза превышает общее количество масла, находящегося в резервуаре.

«Сочетанием критериев достижения целей охраны окружающей среды для определения наилучшей доступной технологии являются:

- наименьший уровень негативного воздействия на окружающую среду в расчете на единицу времени или объем производимой продукции, выполняемой работы, оказываемой услуги либо другие предусмотренные международными договорами РФ показатели; экономическая эффективность ее внедрения и эксплуатации;
- применение ресурсо- и энергосберегающих методов;
- период ее внедрения; промышленное внедрение этой технологии на двух и более объектах, оказывающих негативное воздействие на окружающую среду» [5].

Результаты анализа представлены в таблице 13.

Таблица 13 – Сведения о применяемых на объекте технологиях [8]

	руктурное подразделение пощадка, цех или другое)	Наименование технологии	Соответствие наилучшей доступной
Номер	Наименование		технологии
1	ГПП-5	корпус 113	Соответствует

Подтверждение соответствия:

- наличие аварийного сброса масла через запорную арматуру,
 открываемую вручную, которая находится в нижней части трансформатора;
- показаны данные системы противопожарной защиты р. 1.1, 1.2,
 2.1;
- происходит понижение напряжения с 110 кВ до 10 кВ и через кабельный тоннель 10 кВ по высоковольтным кабелям происходит подача напряжения на трансформаторные подстанции корпусов завода;
- полноценный контроль технологического цикла под руководством должностных лиц объекта;
- после снятия напряжения, тушение пожара можно производить любыми средствами пожаротушения (распылённой водой, воздушно-механической пеной);
- при внутреннем повреждении трансформатора с выбросом масла через выхлопную трубу или через нижний разъём и внутри трансформатора, следует вводить средства ликвидации аварии внутрь трансформатора через верхние люки и через деформированный разъём используя СВП-4 и СВП-8;
- при аварии трансформаторных подстанциях предусмотрено автоматическое отключение от сети со всех сторон и заземление;
- полноценное ведение служебной документации;
- имеются в наличии индивидуальные и групповые фонари, со средствами связи и изолирующими аппаратами дыхания;
- возможность включения систем жизнеобеспечения (вентиляция, освещение) и технического оборудования, блокированного системами
 автоматики.

5.3 Результаты производственного контроля

В таблице 14 приведены сведения об организации производственного контроля за соблюдением требований промышленной безопасности и наличии отчетов

Таблица 14 — Сведения об организации производственного контроля за соблюдением требований промышленной безопасности и наличии отчетов

Наименование блока	Наименование отчетов
Сведения об обязательном страховании гражданской ответственности за причинение вреда в результате аварии	Сведения о полисах обязательного страхования гражданской ответственности владельца объекта за причинение вреда в результате аварии
Сведения о работниках, ответственных за	Сведения о работниках, ответственных за организацию производственного контроля
организацию и осуществление	Сведения о работниках, ответственных за осуществление производственного контроля
производственного контроля	Сведения о положении о производственном контроле
Сведения об организации системы промышленной безопасностью	Сведения об организации системы управления промышленной безопасностью
Сведения о выполнении мероприятий по	Сведения о выполнении плана мероприятий по обеспечению промышленной
обеспечению промышленной безопасности	безопасности за предыдущий год
Denvill Total I Inoponor I Inopoliëvill IV	Количество проведенных проверок за отчетный период
Результаты проверок, проведённых	Предложения работника, ответственного за осуществление производственного контроля
работником, ответственным за организацию	Сведения о состоянии зданий и сооружений, отработавших сроки службы
и осуществление контроля	Общие сведения о технических устройствах, применяемых на
Сведения о состоянии технических	Сведения о состоянии технических устройств, применяемых на ОПО, отработавших
устройств, применяемых на	сроки службы, требующих проведения ремонтных работ, реконструкции, модернизации,
производственном объекте	находящихся в опытной эксплуатации

Вывод к разделу 5

Определена антропогенная нагрузка организации, технологического процесса на окружающую среду, определены соответствия технологии на производстве наилучшим доступным.

Аварийный сброс масла осуществляется через запорную арматуру, открываемую вручную, которая находится в нижней части трансформатора. Вылившееся масло через приемный бункер, заполненный щебнем, поступает в железобетонный подземный резервуар, расположенный с юго-восточной стороны на расстояние 20 м. от трансформатора. Емкость резервуара в 1,5 раза превышает общее количество масла, находящегося в резервуаре.

Оформлены результаты производственного контроля в области охраны атмосферного воздуха, результаты производственного контроля в области охраны и использования водных объектов, результаты производственного контроля в области обращения с отходами.

6 Оценка эффективности по обеспечению техносферной безопасности

План реализации мероприятий по обеспечению техносферной безопасности представлен в таблице 15.

Таблица 15 – План реализации мероприятий по техносферной безопасности

Мероприятия	Срок
Мероприятия	исполнения
Проектирование системы автоматического пожаротушения для	2023 год
обеспечения противопожарной защиты электрической подстанции	
Монтаж системы АУПТ	2023 год
Пуско-наладочные работы	2023 год

Данные для расчёта ожидаемых потерь представлены в таблице 16.

Таблица 16 – Данные для расчёта ожидаемых потерь

Показатель	Измерение	Обоз.	1 вариант	2 вариант
«Площадь объекта» [2]	M^2	F	47	, ₁
«Стоимость поврежденного	руб./м ²	Ст	50000	50000
технологического оборудования и				
оборотных фондов» [2]				
Стоимость поврежденных частей здания	руб/м ²	Ск	300	000
«Площадь пожара при отказе всех средств	M^2	F"	47	',1
пожаротушения» [2]		тож		
«Площадь пожара при тушении средствами	M^2	F*пож	-	2
автоматического пожаротушения» [2]				
«Вероятность возникновения пожара» [2]	$1/м^2$ в год	J	3,1,	10 ⁻⁶
«Площадь пожара на время тушения	M^2	Fпож	2	1
первичными средствами» [2]				
«Вероятность тушения пожара первичными	-	p1	0,	79
средствами» [2]				
«Вероятность тушения пожара привозными	-	p2	0,95	
средствами» [2]				
«Вероятность тушения средствами	-	p3	0,	86
автоматического пожаротушения» [2]				

Продолжение таблицы 16

Показатель	Измерение	Обоз.	1 вариант	2 вариант
«Коэффициент, учитывающий степень	-	-	0,:	52
уничтожения объекта тушения пожара				
привозными средствами» [2]				
«Коэффициент, учитывающий косвенные	-	К	1,0	53
потери» [2]				
«Линейная скорость распространения	м/мин	VЛ	1,	0,
горения по поверхности» [2]				
«Время свободного горения» [2]	МИН	Всвг	1	5
«Норма текущего ремонта» [2]	%	Нт.р.	•	-
«Норма амортизационных отчислений» [2]	%	На	•	-
Заработная плата 1 работника	руб/мес	ЗПЛ	()
«Период реализации мероприятия» [2]	лет	T	1	0

Рассчитаем площадь пожара при тушении привозными средствами по формуле 6:

$$F'_{\text{пож}} = \pi \times (\vartheta_{\pi} \cdot T_{\text{CB}})^2, \,\text{M}^2, \tag{6}$$

«где $\upsilon_{\scriptscriptstyle \rm I}$ – линейная скорость распространения горения по поверхности, м/мин;

Т_{св} – время свободного горения, мин.» [2]

$$F_{noxc} = 3.14 \times (1 \times 15)^2 = 47.1 \text{ m}^2,$$

Здание ГПП-5 одноэтажное, второй степени огнестойкости. Размеры в плане $18 \text{ м} \times 9 \text{ м}$, высота 6 м. Площадь со вспомогательными помещениями 162 m^2 .

Далее проведем расчёт показателя ожидаемых потерь от пожаров

$$M(\Pi)=M(\Pi_1)+M(\Pi_2)+M(\Pi_3)+M(\Pi_3),$$
 (7)

«где $M(\Pi_1)$ — математическое ожидание годовых потерь от пожаров, потушенных первичными средствами пожаротушения;

 $M(\Pi_2)$ — математическое ожидание годовых потерь от пожаров, ликвидированных подразделениями пожарной охраны;

 $M(\Pi_3)$ — математическое ожидание годовых потерь от пожаров при отказе всех средств пожаротушения» [2]:

$$M(\Pi_1) = J \cdot F \cdot C_T \cdot F_{\text{now}}^* \cdot (1+k) \cdot p_1; \tag{8}$$

«где J – вероятность возникновения пожара, $1/m^2$ в год;

F – площадь объекта, M^2 ;

 ${\rm C_T}$ — стоимость поврежденного технологического оборудования, pyб./м²;

 $F_{\text{пож}}$ – площадь пожара на время тушения первичными средствами;

р₁ – вероятность тушения пожара первичными средствами;

k – коэффициент, учитывающий косвенные потери» [2].

$$M(\Pi_{2}) = J \cdot F \cdot (C_{T} \cdot F'_{\text{пож}} + C_{K}) \cdot 0.52 \cdot (1 + k) \times \times [1 - p_{1} - (1 - p_{1}) \times p_{3}] \cdot p_{2}$$
(9)

«где p₂— вероятность тушения пожара привозными средствами;

 C_{κ} — стоимость поврежденных частей здания, руб./м²;

 $\vec{F}_{\text{пож}}$ – площадь пожара за время тушения привозными средствами» [2].

$$\mathsf{M}(\Pi_3) = J \cdot F \cdot \left(\mathsf{C}_\mathsf{T} \cdot F_{\mathsf{пож}}^{"} + \mathsf{C}_\mathsf{K}\right) \cdot (1+k) \cdot [1-p_1-(1-p_1)\cdot p_2] \tag{10}$$
 где $\mathsf{F}^{"}_{\mathsf{пож}}$ – площадь пожара при отказе всех средств пожаротушения, M^2 .

$$M(\Pi_4) = J \cdot F \cdot (C_T \cdot F_{\text{пож}}^{"} + C_K) \cdot (1+k) \cdot \{1 - p_1 - (1 - p_1) \cdot p_3 - [1 - p_1 - (1 - p_1) \cdot p_3] \cdot p_2\}$$

$$(11)$$

Расчет первого варианта:

$$\begin{split} M(\Pi_1) = &3.1 \times 10^{-6} \times 6500 \times 50000 \times 10 \times (1+1,63) \times 0,79 = 1516,82 \text{ руб./год;} \\ M(\Pi_2) = &3.1 \times 10^{-6} \times 6500 \times (50000 \times 452 + 30000) \times 0,52 \times (1+1,63) \times (1-0,79) \times 0,95 = \\ = &656236,12 \text{ руб./год.} \\ M(\Pi_3) = &3.1 \times 10^{-6} \times 6500 \times (50000 \times 6500 + 30000) \times (1+1,63) \times [1-0,79 - (1-0,79) \times 0,95] = \\ = &1562300,25 \text{ руб./год.} \end{split}$$

Расчет второго варианта:

$$\begin{split} M(\Pi_1) &= 3,1 \times 10^{-6} \times 6500 \times 50000 \times 4 \times (1+1,63) \times 0,79 = 62563,23 \text{ руб./год;} \\ M(\Pi_2) &= 3,1 \times 10^{-5} \times 6500 \times 50000 \times 2 \times (1+1,63) \times (1-0,79) \times 0,86 = \\ &= 1256,3 \text{ руб./год;} \\ M(\Pi_3) &= 3,1 \times 10^{-6} \times 6500 \times (30000 \times 452 + 30000) \times (1+1,63) \times [1-0,79 - (1-0.79) \times 0,86] \times \\ &\quad \times 0,95 = 665236,23 \text{ руб./год.} \\ M(\Pi_4) &= 3,1 \times 10^{-6} \times 6500 \times (50000 \times 6500 + 30000) \times (1+1,63) \times \{1-0,79 - (1-0.79) \times 0,86 - [1-0,79 - (1-0.79) \times 0,86] \times 0,95 \} = 256362 \text{ руб./год.} \end{split}$$

Общие ожидаемые потери объекта от пожаров составят:

- если отсутствует система пожаротушения: $M(\Pi)_1 = 1516,82 + 656236,12 + 1562300,25 = 2220053 \ \text{руб./год;}$
- если смонтирована система пожаротушения: $M(\Pi)_2 = 62563,23 + 1256,3 + 665236,2 + 256362 = 985417,5 \ \text{руб./год.}$

Таким образом, если отсутствует система пожаротушения потери в два раза больше, чем при ее наличии.

Стоимость монтажа АУПТ представлена в таблице 17.

Таблица 17 – Стоимость монтажа АУПТ

Виды работ	Стоимость, руб.
Проектирование системы АУПТ	30000
Монтаж системы АУПТ	50000
Стоимость оборудования	200000
Пуско-наладочные работы	20000
Итого:	300000

Рассчитаем эксплуатационные расходы на содержание АУПТ:

$$P = A + C \tag{12}$$

где A — «затраты на амортизацию систем автоматических устройств пожаротушения, руб./год;

С – текущие затраты указанных систем (зарплата обслуживающего персонала, текущий ремонт), руб./год» [2].

Текущие затраты рассчитаем по формуле 13:

$$C_2 = C_{T,D} + C_{C,O,\Pi}$$
 (13)

где « $C_{\text{т.р.}}$ – затраты на текущий ремонт;

 $C_{\text{с.о.п.}}$ – затраты на оплату труда обслуживающего персонала» [2].

$$C_2 = 50000 + 250000 = 300000$$
 py6.

Затраты на текущий ремонт рассчитывается по формуле 14:

$$C_{\text{r.p.}} = \frac{K_2 \cdot H_{\text{r.p.}}}{100\%} \tag{14}$$

«где K_2 — капитальные затраты на приобретение, установку автоматических средств тушения пожара, руб.;

 $H_{\text{т.р.}}$ – норма текущего ремонта, %» [2].

$$C_{m.p.} = \frac{10000000 \times 5}{100} = 50000 \text{ py}.$$

Затраты на оплату труда обслуживающего персонала:

$$C_{\text{с.о.п.}} = 12 \times \Psi \times 3\Pi J$$
 (15)

«где Ч – численность работников обслуживающего персонала, чел.;

ЗПЛ – заработная плата 1 работника, руб./месс» [2].

$$C_{\text{с.о.п.}} = 12 \times 1 \times 42000 = 504000$$
 руб.

Затраты на амортизацию АУПТ:

$$A = \frac{K_2 \cdot H_a}{100\%} \tag{16}$$

«где K_2 — капитальные затраты на приобретение, установку автоматических средств тушения пожара, руб.;

 H_a – норма амортизации, %» [2].

$$A = \frac{1000000 \times 10}{100} = 100000$$
 py6.

Экономический эффект от монтажа модульной АУПТ:

$$\mathbf{H} = \sum_{t=0}^{T} ([\mathbf{M}(\Pi_1) - \mathbf{M}(\Pi_2)] - [P_2 - P_1]) \times \frac{1}{(1 + \mathbf{H} \mathbf{I})^t} - (\mathbf{K}_2 - \mathbf{K}_1)$$
 (17)

«где Т – горизонт расчета (продолжительность расчетного периода);

 $M(\Pi_1), M(\Pi_2)$ — расчетные годовые материальные потери, руб./год; K_1, K_2 — капитальные вложения на осуществление противопожарных мероприятий в базовом и планируемом вариантах, руб.; P_1, P_2 — эксплуатационные расходы в t-м году, руб./год» [2].

Расчёт денежных потоков от монтажа АУПТ представлен в таблице 11.

$$H = \sum_{t=0}^{T} ([2220053 - 985417,5] - [850000 - 600000]) \times \frac{1}{(1+5,5)^t}$$
$$- (300000 - 120000) = 13256456,23$$

В таблице 18 произведен расчёт денежных потоков.

Таблица 18 – Расчёт денежных потоков

Год проекта	М(П1)-М(П2)	P ₂ -P ₁	1/ (1+НД) ^t	$[M(\Pi 1)-M(\Pi 2)-(C_2-C_1)]* 1/(1+HД)^t$	K_2 - K_1	Чистый дисконтированный
1			` ' '	,- ,- , , ,		поток
1	1234635,5	250000	0,91	1456234	300000	561785
2	1234635,5	250000	0,83	1235632	-	1236362
3	1234635,5	250000	0,75	1120362	-	1123365
4	1234635,5	250000	0,68	956365	-	912023
5	1234635,5	250000	0,62	912023	-	852232
6	1234635,5	250000	0,56	859632	-	563369
7	1234635,5	250000	0,51	752369	-	365952
8	1234635,5	250000	0,47	423563	-	425696
9	1234635,5	250000	0,42	215963	-	145623
10	1234635,5	250000	0,39	854123	-	256325

Вывод по разделу 6

Необходимо использовать автоматическую установку газового пожаротушения модульного типа. Срабатывание происходит в автоматическом режиме от срабатывания извещателей (дымовых), а также с ручным и дистанционным пуском ПДП «Posa-2SL» [20]. Интегральный экономический эффект от монтажа АУПТ за десять лет составит 13256456,23 рублей.

Заключение

Объектом исследования выбран корпус 113 ГПП-5, расположенный с восточной стороны завода ПАО «АВТОВАЗ». ГПП-5 принадлежит энергетическому производству и предназначена для понижения напряжения и для запитки трансформаторных подстанций.

Проведен анализ систем автоматического пожаротушения, применяемых для обеспечения противопожарной защиты электрических подстанций и кабельных сооружений.

Предусмотрена автоматическая установка газового пожаротушения модульного типа дистанционного пуска ПДП «Posa-2SL» [10]. Прибор «C2000 – АСПТ» разместим в помещении персонала, а также установим резервный источник питания на случай бесперебойной работы [31]. При срабатывании извещателей, сигнал идет на прибор включения операторной [21]. Профессии, рассматриваемые разработки ДЛЯ реестра профессиональных рисков: бригадир МДП, старшие ДЭМ ПШ, ТП, начальник смены, мастер. Приведены профессии выбранного объекта электроэнергетики (трансформаторной подстанции), приведены виды опасных событий и производственных рисков для соответствующих рабочих мест. Далее заполнена анкета по выбору методов оценки уровней профессиональных рисков и по снижению уровней таких рисков. Профессии, рассматриваемые для разработки реестра профессиональных рисков: бригадир МДП, старшие ДЭМ ПШ, ТП, начальник смены, мастер.

Определена антропогенная нагрузка организации, технологического процесса на окружающую среду, определены соответствия технологии на производстве наилучшим доступным. Оформлены результаты производственного контроля в области охраны и использования водных объектов, результаты производственного контроля в области обращения с отходами.

Список используемых источников

- 1. Амирханов Ф.Н. Пожарная безопасность понижающих на подстанциях// Научно-методический электронный журнал вестник 2018. Ŋo 4(1)-79. C. 40–42. магистратуры. URL: https://cyberleninka.ru/article/n/pozharnaya-bezopasnost-na-ponizhayuschihpodstantsiyah (дата обращения: 12.12.2017).
- 2. Методика и примеры технико-экономического обоснования противопожарных мероприятий к СНиП 21-01-97* [Электронный ресурс] : МДС 21-3.2001. URL: http://pozhproekt.ru/nsis/Rd/Mds/21-3_2001.htm (дата обращения: 10.03.2023).
- 3. Нормы проектирования автоматических установок водяного пожаротушения кабельных сооружений [Электронный ресурс] : Письмо Госнадзора от 21.12.2001 (ред. от 12.02.2021) РД 153-34.0-49.105-01 (ред. 11.06.2021). URL: https://rulaws.ru/acts/Normy-proektirovaniya-avtomaticheskihustanovok-vodyanogo-pozharotusheniya-kabelnyh-sooruzheniy.-RD-153-34/ (дата обращения: 20.01.2023).
- 4. О пожарной безопасности [Электронный ресурс] : Федеральный закон от 21.12.1994 № 69 (ред. 11.06.2021). URL: https://docs.cntd.ru/document/9028718 (дата обращения: 15.10.2022).
- 5. Об охране окружающей среды [Электронный ресурс] (ред. Федеральный закон 10.01.2002 $N_{\underline{0}}$ 7 14.07.2022). URL: othttps://rulaws.ru/laws/Federalnyy-zakon-ot-10.01.2002-N-7-FZ/ (дата обращения: 15.10.2022).
- 6. Об утверждении правил технической эксплуатации электрических станций и сетей РФ и о внесении изменений в приказы МинЭнерго России [Электронный ресурс] : Приказ Министерства энергетики РФ от 13.09.2018 г. № 757. URL:

https://normativ.kontur.ru/document?moduleId=1&documentId=438327 (дата обращения: 15.10.2022).

- 7. Об утверждении Примерного положения о системе управления охраной труда [Электронный ресурс] : Приказ Минтруда России от 29.10.2021 № 776н. URL: https://rulaws.ru/acts/Prikaz-Mintruda-Rossii-ot-29.10.2021-N-776n/ (дата обращения: 16.04.2023).
- 8. Об утверждении Рекомендаций по выбору методов оценки уровней профессиональных рисков и по снижению уровней таких рисков [Электронный ресурс]: Приказ Минтруда России от 28.12.2021 № 926. URL: https://normativ.kontur.ru/document?moduleId=1&documentId=411523 (дата обращения: 16.04.2023).
- 9. Об утверждении требований к оснащению объектов защиты автоматическими установками пожаротушения, системой пожарной сигнализации, системой оповещения и управления эвакуацией людей при пожаре [Электронный ресурс] : Постановление Правительства РФ от 01.09.2021 № 1464. URL: https://rulaws.ru/goverment/Postanovlenie-Pravitelstva-RF-ot-01.09.2021-N-1464/ (дата обращения: 20.04.2023).
- 10. Об утверждении формы отчета об организации и о результатах осуществления производственного экологического контроля [Электронный ресурс]: Приказ Минприроды России от 14.06.2018 № 261 (ред. от 23.06.2020).

URL: https://rulaws.ru/acts/Prikaz-Minprirody-Rossii-ot-14.06.2018-N-261/ (дата обращения: 16.04.2023).

- 11. Пожарная безопасность на понижающих подстанциях Амирханов Ф.Н. [Электронный ресурс]. URL: https://cyberleninka.ru/article/n/pozharnaya-bezopasnost-na-ponizhayuschih-podstantsiyah (дата обращения: 20.04.2023).
- 12. Правила технической эксплуатации электрических станций и сетей РФ [Электронный ресурс] : Приказ Минэнерго России от 19.06.2003 N

- 229. URL: https://bazanpa.ru/minenergo-rossii-prikaz-n229-ot19062003-h741827/pravila/ (дата обращения: 16.04.2023).
- 13. Применение автоматических установок пожаротушения тонкораспыленной водой для защиты кабельных сооружений [Электронный ресурс]. URL: https://dzen.ru/a/XzJPveDq3ypz-rz- (дата обращения: 16.04.2023).
- 14. Противопожарная защита кабельных трасс систем электроснабжения промышленных и общественных зданий [Электронный ресурс]. URL: http://www.technomash.com/primenenie/primenenie/st15 (дата обращения: 16.04.2023).
- РД 153-34.0-03.301-00 (ВППБ 01-02-95*). Правила пожарной 15. безопасности для энергетических предприятий" (утв. РАО «ЕЭС России» 09.03.2000) (вместе с «Положением об ОТВетственности работников энергетических предприятий за обеспечение пожарной безопасности», «Программой подготовки персонала пожарной ПО безопасности электроэнергетической отрасли», «Положением о пожарно-технических комиссиях на предприятиях и в организациях электроэнергетической отрасли») [Электронный ресурс]. URL: https://legalacts.ru/doc/rd-153-340-03301-00-vppb-01-02-95-pravila-pozharnoi-bezopasnosti/ обращения: (дата 16.04.2023).
- 16. Установки автоматического пожаротушения на объектах энергетики [Электронный ресурс]. URL: http://lib.secuteck.ru/articles2/firesec/ustanovki-avtomaticheskogo-pozharotusheniya-na-obektah-energetiki (дата обращения: 16.04.2023).
- 17. Технический регламент о требованиях пожарной безопасности [Электронный ресурс] : Федеральный закон от 28.07.2008 № 123 (ред. от 14.07.2022). URL: https://rulaws.ru/laws/Federalnyy-zakon-ot-22.07.2008-N-123-FZ/ (дата обращения: 16.04.2023).

- 18. Электрическая подстанция [Электронный ресурс] : официальный справочный источник википедия. URL: https://goo.su/VUt5y2C (дата обращения: 16.04.2023).
- 19. Fire alarm system design with Safety Systems Designer. URL: https://www.boschsecurity.com/xc/en/solutions/fire-alarm-systems/fire-alarm-system-design/ (дата обращения: 20.01.2022).
- 20. Fire Protection Technology. URL: https://www.usfa.fema.gov/prevention/technology/ (дата обращения: 20.01.2022).
- 21. Fire technology news & articles. URL: https://www.firerescue1.com/fire-products/technology/articles/ (дата обращения: 20.01.2022).
- 22. Information inversion and dynamic analysis of video-driven fire detection based on object-oriented segmentation Cheng Y., Bai H., Li Z., Zhang Y., Chen L., Chen K. 1599-1616.
- 23. ISO 25523-1:2020. Information about fire and objects. Fires at chemical plants Part 1: Thesauri for information retrieval. URL: https://www.iso.org/standard/53657.html (дата обращения: 20.01.2022).
- 24. Public Fire Information Websites. URL: https://www.fs.usda.gov/science-technology/fire/information (дата обращения: 20.01.2022).
- 25.Об утверждении примерного положения о системе управления охраной труда [Электронный ресурс] : Приказ Министерства труда и соцразвития от 29.10.2021 № 776н. URL: https://rulaws.ru/acts/Prikaz-Mintruda-Rossii-ot-29.10.2021-N-776n/ (дата обращения: 12.05.2023).