МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт машиностроения					
(наименование института полностью)					
Кафедра «Сварка, обработка материалов давлением и родственные процессы»					
(наименование)					
15.04.01 «Машиностроение»					
(код и наименование направления подготовки, специальности)					
Производство и ремонт сварных конструкций газонефтехимического оборудования					

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ)

(направленность (профиль)/ специализация)

на тему «Исследование и разработка технологий восстановления изношенных валов наплавкой»

Студент	И.А. Задворнов				
	(И.О. Фамилия)	(личная подпись)			
Руководитель	к.т.н., профессор Г.М. Короткова				
	(ученая степень, звание, И.О	. Фамилия)			

Содержание

Введение
1 Анализ конструкций валопроводов5
1.1 Состав валопроводов
1.2 Анализ конструкции гребного вала
1.3 Свойства металла изношенного вала
1.4 Дефекты изношенных гребных валов
1.5 Анализ способов восстановления валов
2 Исследование прочностных свойств покрытия при ремонте валов20
2.1Определение химического состава порошка и размерности, повышающих
прочность сцепления наплавленного металла с основой20
2.2 Современное оборудование и технологии изготовления порошка,
сепарации и хранения21
2.3 Увеличение прочности сцепления наплавленного металла за счет
галтелей вала
3 Проектирование схемы поста для плазменно-порошковой наплавки43
3.1Доработка схемы плазменно-порошковой наплавки прямого
действия
3.2 Выбор схемы подачи порошка
4 Разработка технологии восстановления изношенного гребного вала
плазменно-порошковой наплавкой51
4.1 Предварительная механическая обработка вала. Расчет параметров51
4.2 Выбор параметров плазменно-порошковой наплавки56
4.3 Технологический процесс плазменно-порошковой
наплавки58
4.4 Чистовая механическая обработка. Расчет параметров обработки60
Заключение
Список используемых источников
Приложение А Технологическая Карта 71

Введение

В наше время у человека появляются все больше потребностей, которые способствуют развитию техники и науки в современном мире, что в свою очередь способствует появлению новых способов производства и ремонта изделий. Одни из важнейших частей производственного цикла деталей занимают сборка агрегатов, технологические установки и ремонт деталей. Задачами технологии восстановления и ремонта деталей является продление срока деталей, и экономия средств при изготовлении новых деталей.

В современном машиностроении наиболее широкое применение нашли детали с вращательным движением, менее широко распространенно поступательное и комбинированное – поступательное и вращательное движение или иначе винтовое движение.

Валы – это детали, предназначенные для передачи крутящего момента. Валы крепятся и располагаются на специально изготовленных и отведенных для этого участков таких, как цапфы, предназначение этих участках это закрепление вала в опорных устройствах таких как подшипниках.

В процессе эксплуатации валы подвержены нагрузкам таким, как растяжение, сжатие, изгиб и кручение.

Гребной вал — это один из узлов валопровода предназначенный для удержания гребного винта. Длина гребного вала может достигать до 30 метров. Материалом для гребного вала чаще всего применяются стали углеродистые или легированные.

В современном мире производство крупногабаритных гребных валов включает в себя большое количество затрат как физического плана, так и материального. В большой своей части поломки деталей возникают вследствие длительной эксплуатации и износа деталей. Из-за чего появляется актуальность восстановления гребных валов путем ремонта восстановительных работ, а не производством новой детали.

Объектом исследования в магистерской диссертации станет, собственно, один из таких гребных валов.

Так как валы и оси в результате длительной эксплуатации поддержаны к износу и появлению дефектов, таких как: задиры и износы посадочных шеек под подшипники; смятие и износ рабочих поверхностей, шлицев, резьбы, шпоночных канавок и т. д.; изгиб и скручивание вала; изломы и трещины. Существует множество способ восстановления деталей в зависимости от конструкции, материала изделия, его эксплуатационных свойств.

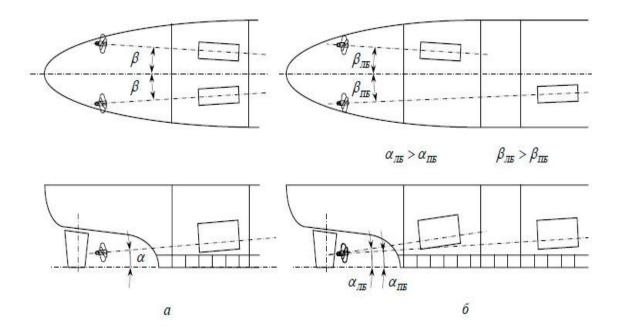
Наиболее применяемыми способами восстановления валов являются напыление и наплавка, так как они восстановить качественную и пригодную поверхность для дальнейшего эксплуатации детали.

Решение же какой из способов более предпочтительный в той или иной ситуации зависит от некоторых факторов таких как, размеры детали, вид дефекта, размеры дефекта и толщина наносимого покрытия, т.е. повышать качество восстановления гребного вала за счет изменения параметров процесса восстановления и разработки технологического процесса.

Цель магистерской диссертации: повышение качества восстановления гребного вала.

Объектом диссертационного исследования является прочность сцепления наплавленного слоя с подготовленной поверхностью вала.

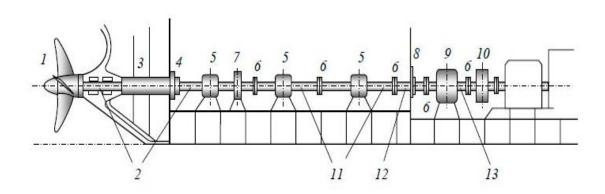
Предметом диссертационного исследования являются процессы обработки поверхности вала плазменно-порошковой наплавкой.


1 Анализ конструкций валопроводов

1.1 Состав валопровода

Валопровод — это комплекс механизмов и валов, соединенных между собой и служащих для передачи крутящего момента от коленчатого вала двигателя корабля к гребному винту. Длина, число судовых линий и размещение элементов валопровода зависят от следующих факторов: тип и назначение судна; тип, мощность и схема размещения СЭУ (судовая энергетическая установка) на судне; требования по надежности, манёвренности и другим эксплуатационным факторам, предъявляемым к энергетической установке данного судна; условия обслуживания валопровода, проведения ремонтных и монтажных работ [1].

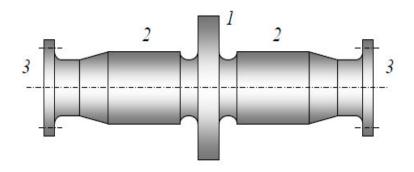
Валопроводы разделяются по числу линий на одновальные и многовальные, у которых может быть два или более линий вала. Использование многовальных линий имеет несколько преимуществ перед использованием одновальных линий. Такие как передача большой мощности на один движитель.


Использование многовальных установок и их размещение на судне обосновывает располагать эти линии под углом к основной и диаметральной плоскости. Угол наклона α — это угол между валопроводом и основной плоскостью, а угол β — это угол между валопроводом и диаметральной плоскостью он называется углом сходимости или расходимости. Если двигатели на многовальных линиях располагаются в разных частях судна, то углы α и β будут различны. Параметры для двухвального судна представлены на рисунке 1

- а) с симметричным расположение главных двигателей;
 б) с несимметричным расположение главных двигателей;
 α угол наклона вала; β угол сходимости и расходимости вала

Рисунок 1 – Параметры двухвального судна

Валопровод состоит из следующих элементов: главного двигателя, несколько видов валов, упорного и опорного подшипника, гребного винта и переборочных уплотнений [2]. Схема валопровода представлена на рисунке 2.

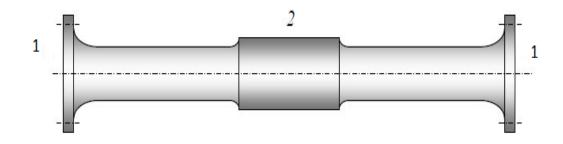


1 — гребной винт; 2 — гребной вал; 3 — дейдвудная трубка; 4 — уплотнение гребного вала; 5 -опорные подшипника вала; 6 — фланцевые соединения вала; 7 — тормоз линии вала; 8 — переборочное уплотнение; 9 — главный упорный подшипник; 10 — главная муфта; 11 — промежуточный вал; 12 — проставочный вал; 13 — упорный вал

Рисунок 2 – Схема валопровода одновального судна

На одновальной линии элементы от двигателя к движителю размещены следующим образом: 1) упорный вал, который находится в составе главного упорного подшипника, 2) проставочный вал, 3) промежуточный вал, 4) дейдвудный вал, который конструктивно может соединяться с гребным валом, 5) гребной вал, который непосредственно соединяется с гребным винтом.

Основной задачей упорного вала и главного упорного подшипника является передача осевой силы, которая появляется на гребном винте на корпус судна для его движения. С одной стороны, упорный вал имеет соединение с фланцем главной муфты, а с другой стороны с промежуточным валом. В работе валопровода гребень упорного вала прислоняется на ГУП (главный упорный подшипник) и его подушки, передавая через них осевые силы на корпус корабля. Конструкция упорного вала представлена на рисунке 3.



1 – упорный гребень; 2 – шейка опорного подшипника 3 – присоединительный фланец

Рисунок 3 – Конструкция упорного вала

Промежуточный вал служит для соединения гребного вала и упорного вала. Количество этого вала определяется валопровода и диаметром линии вала. Промежуточный вал или промежуточные валы если их несколько опираются на опорный подшипник шейкой вала. Чаще всего соединение между промежуточными валами или же с гребным и упорным валом производится с помощью фланцев. Чаще всего опорные подшипники представляют собой подшипники скольжения и устанавливаются на

фундамент, который крепится к корпусу судна. Конструкция промежуточного вала представлена на рисунке 4

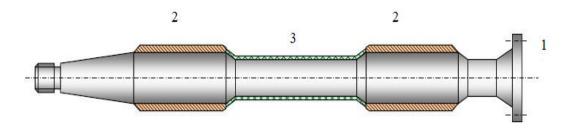
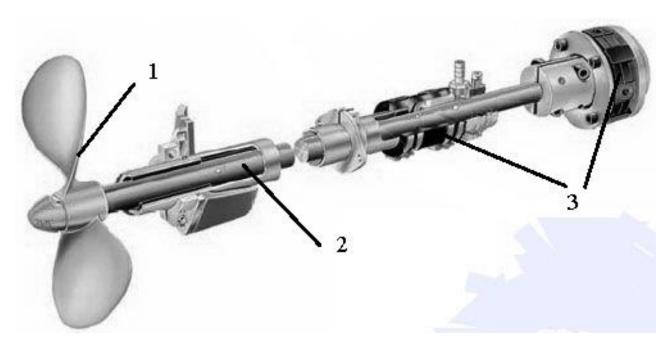

1 – присоединительный фланец; 2 – шейка опорного подшипника

Рисунок 4 – конструкция промежуточного вала

Гребной вал предназначен для крепления гребного винта. Чаще всего он изготавливается из легированной или углеродистой стали. Гребной вал – это один из основных узлов плавсредств. Гребной вал относится к детали типа «вал». В длину гребной вал может достигать до 30 метров. Так как длина гребного вала может достигать до 30 метров, то технологию изготовления его заготовок можно разделить на две части: 1) кормовая — это непосредственно сам гребной вал, который соединяется с грибным винтом, 2) носовая, так называемый дейдвудный вал. Данное деление вала характерно в большой мере двухвальной линии судов. Соединение ДЛЯ данных видов осуществляется глухим коническим соединением. Для одновальных же линий валов гребной и дейдвудный вал представляет собой единую конструкцию вследствие того, что одновальные линии судов в большой степени не слишком большие.

Для предотвращения контакта с морской водой гребной вал покрывают латунной или бронзовой облицовкой. Покрытие облицовки может быть, как и на всем валу, так и лишь на частях вала. Если вал облицовка покрывает только


части вала, то остальную часть вала покрывают стеклопластиковым покрытием на основе эпоксидной смолы. Конструкция гребного вала представлена на рисунке 5.

1-присоединительный фланец; 2 - бронзовая облицовка; 3-стеклопластиковое покрытие

Рисунок 5 – Конструкция гребного вала

Гребной вал опирается на три опоры – подшипник кронштейна гребного вала и два подшипника дейдвудного устройства – носовой и кормовой [1]. На рисунке 6 показан вид гребного вала в сборе.

1 - винт; 2 - вал; 3 - подшипник;

Рисунок 6 – Гребной вал в сборе

1.2 Анализ конструкции гребного вала

В магистерской диссертации в качестве объекта исследования рассматривается гребной вал, параметры которого представлены на рисунке 7.

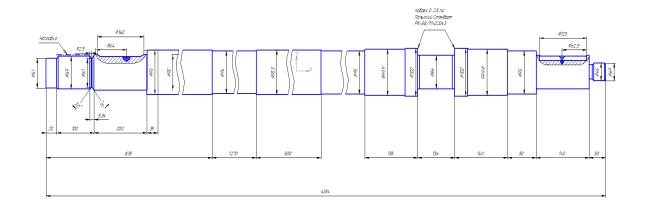


Рисунок 7 – Эскиз гребного вала

Вал имеет 2 отверстия, отличающиеся друг от друга, предназначенные для фиксации вала в его рабочем положении. Так же вал имеет фаски и два шпоночных паза. Деталь вал имеет удобные базовые поверхности, что позволяет на всех операциях использовать стандартные приспособления. Конструктивно считается технологичной.

1.3 Свойства металла изношенного вала

Гребной вал изготавливают из углеродистых и легированных сталей, так как вал должен обладать следующими свойствами: прочность, противостоять усталостным нагрузка высокими механическим свойства повышенной корзинной стойкостью, а также хорошей для ремонта пригодностью. Так же сталь должна быть с временным сопротивлением от 430 до 690 МПА. Исходя из выше указанных параметров, вал данной конструкции изготавливается из стали 40X.

Сталь 40X является легированной хромистой сталью, что дает ей защиту от коррозии. Сталь 40X является твердой и прочной, что обуславливается большим содержанием углерода. Показатели прочности твердости равны 217 МПА. Главным достоинством стали является ее износоустойчивость. Так же необходимо отметить то, что несмотря на присутствие в стали хрома, она не является нержавеющий сталью так как процентное содержание хрома составляет менее 1,5%. По маркировке стали, 40X можно понять какие, химические элементы входят в ее состав: углерод 0,40% и 1 % хрома. Однако маркировка не отображает весь химический состав стали. В состав входит так же никель кремний марганец. Но их концентрация составляет менее 1%. Полный химический состав представлен в таблице 1.

Таблица 1 – Химический состав стали 40Х

Si	С	S	P	Mn	Cu	Fe	Ni	Cr
Кремний	Углерод	Cepa	Фосф	марга	медь	Желез	никил	хром
			op	нец		o	Ь	
0,17 –	0,36-0,44	До 0,035	До	0,50 -	До 0,3	~ 97	До 0,3	0.8 - 1.1
0,37			0,035	0,80				

Но сталь не лишена недостатков. Один из них является отпускная хрупкость. После закалки структура восприимчива к ударной нагрузке. Но вероятность повышения хрупкости можно снизить путем соблюдения технологии термической обработки.

Свариваемость стали 40X ограничена. Сталь считается трудно свариваемой. Это объясняется высоким содержанием углерода и хрома [12].

Характеристики металла можно повысить путем закаливания и отпуска. Закаливания и охлаждение лучше всего проводить в масле, так как это благоприятно сказываться на верхнем слое. Если же охлаждение не удается провести в масле, тогда его можно провести на воздухе. Охлаждение же в воде не рекомендуется, так как это может привести к дефектам.

Из-за повышенной прочности, твердости, упругости сталь может выдерживать большие нагрузки, не подвергаясь разрушению. Однако, это является минусом и негативно сказывается на процессе обработки, затрудняя его, так как токарный станок сильно нагревается, что приводит к использованию специально режущей оснастки. Отпускная хрупкость стали так же вводит дополнительный минус в процесс обработки стали из-за чего стали сталь уязвима к ударной нагрузке. Но этот минус можно избежать с помощью правильного выбора охлаждающей жидкости режимов обработки и режущего инструмента.

1.4 Дефекты изношенного гребного вала

В ходе эксплуатации гребной вал испытывает большое количество разных видов нагрузок таких как:

- осевые силы,
- поперечные нагрузки, в которые входят центробежные и гравитационные силы,
- действие изгибающего момента и крутящего.

Наиболее часто дефекты у валов образуются на посадочных поверхностях под подшипники и резьбовых поверхностях [3].

В случае гребного вала наиболее часто дефекты появляются в шпоночном пазе, у кромок облицовок, в местах перехода вала из конуса в цилиндр кормовых оконечностей, непосредственно в облицовках и в сварных швах. На рисунке 8 показан эскиз дефектов вала.

Рисунок 8 – Эскиз дефектов вала

В шпоночных пазах вполне характерно образование трещин в гребных валах, так как паз является концентратором напряжения.

Большой диаметр конуса посадки винта на вал обуславливает большую нагрузку на этом участке вала, из-за чего появляются трещины.

Причиной возникновения трещин у кромок облицовок является электрохимическая коррозия, что приводит к снижению предела усталости за счет концентрации напряжения.

Основной причиной появления трещин в сварных швах являются изменение механических свойств материала и наличия высокого остаточного напряжение. А появление трещин непосредственно в теле вала и облицовки могут вызываться вследствие некачественной механической обработки или наличия дефектов у материала [11].

Из всех представленных дефектов выше в качестве восстанавливаемой поверхности была выбрана поверхность шейки вала под посадку подшипника. Было установлено, что износ гребного вала на выделенном участке составляет 2 мм, на рисунке 9 приведен фрагмент вала с обозначение геометрического параметра износа

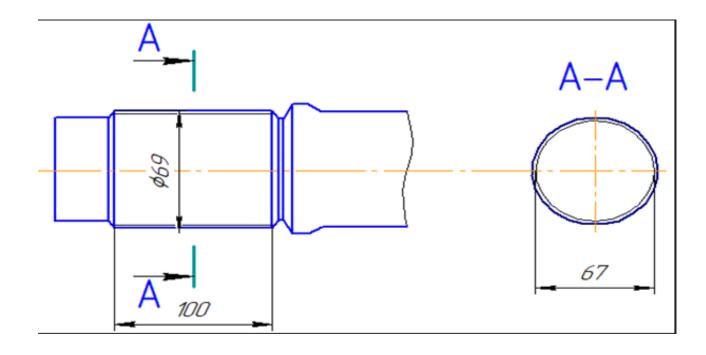
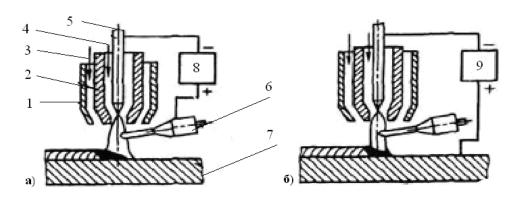


Рисунок 9 – геометрические параметры износа

В ВКР рассматривается возможность восстановления дефектов данной конструкции гребного вала с помощью плазменно-порошковой наплавки.

1.5 Анализ способов восстановления валов

Восстановление валов в большей части проводятся при капитальном или текущем ремонте. При возможности восстановить вал должно быть принято решение о способе ремонта. Основными факторами при выборе способа восстановления вала являются: материал, форма и масса детали, вид дефекта и величина износа, размер, точность и вид обработки, себестоимость восстановления, специализация производства и какое количество времени прослужит деталь после восстановления [8].


В производстве способы восстановления разделяют на те, что позволяют восстановить номинальные размеры и начальную геометрию вала, и способы так называемых «ремонтных размеров», то есть под такую геометрию вала его можно будет применять по назначению[17].

Для восстановления посадочных поверхностей вала использую такие способы как: напыления, наплавка, термопластическое деформирование и гальваническое осаждение [13]. Из перечисленных способов восстановления выделим способы, которые обеспечивают наименьшую глубину проплавления, учитывая диаметр гребного вала на дефектном участке, составляет d = 69 мм.

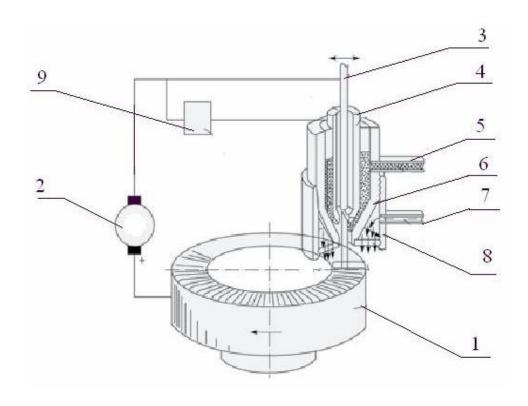
Плазменная наплавка — это операция, при которой с помощью сжатой дуги наносится слой металла на поверхность детали. Применение плазменной наплавки осуществляется при необходимости восстановления изношенных изделий, чтобы восстановить исходные размеры деталей и приблизить свойства наплавленного металла к свойствам основного металла. При использовании плазменной наплавки стараются, чтобы наплавленный слой металла не перемешивался с основным слоем металла для обеспечения высоких свойств наплавленного металла [10 14].

Наплавка сжатой дугой производится неплавящимся электродом в защитной среде аргона с присадочной проволокой, химический состав которой подбирается близким по составу к металлу вала. Проволока подается в зону наплавки автоматически. Сжатие дуги обеспечивается специальной конструкцией плазмотрона и зависит от диаметра сопла плазмотрона [15].

Схемы плазменной наплавки представлены на рисунке 10.

1 — защитное сопло; 2 — сопло плазмотрона; 3 — защитный газ; 4 — плазмообразующий газ; 5 — электрод; 6 — присадочный материал; 7 — изделие; 8 — источник питания косвенной дуги; 9 — источник питания дуги прямого действия

Известны две схемы наплавки сжатой дугой: косвенной дугой от специального источники питания (8) и схема наплавки дугой прямого действия от источника питания постоянного тока (9).


Основными преимуществами данной плазменной наплавки перед другими способами является:

- после наплавки остается гладкая и ровная поверхность, которая оставляет припуск под механическую обработку в диапазоне от 0,4 до 0,9 мм;
- небольшая глубина проплавления от 0,3 до 2,5 мм и так же небольшая зона термического влияния;
- незначительные термическое воздействие на деталь за счет малой отдачи тепла в обрабатываемую деталь;
- небольшая толщина (от 0,2 до 6,5 мм) и ширина наплавленного слоя (от 1,2 до 45) мм.

В магистерской диссертации будут рассмотрены такие задачи как:

- разработка технологического процесса восстановления изношенного вала плазменно порошковой наплавкой;
- определение химического состава порошка и его размерности и других факторов, повышающих прочность сцепления наплавленного металла с основным;
- доработка схемы восстановления плазменно порошковой наплавки гребного вала;
- повышение прочности сцепления наплавленного металла с основным
 за счет конфигурации галтелей вала.

Плазменно — порошковая наплавка (ППН) — это механизированный процесс, в котором сжатая дуга, так называемая плазма служит источником теплоты. А в качестве присадочного материала используется гранулированный металлический порошок, который направляется в плазматрон с помощью питателя [16]. Схема плазменно — порошковой наплавки представлена на рисунке 11.

1 – изделие; 2 – источник питания плазменной дуги; 3 – волфрамовый электрод; 4 – стабилизирующее сопло; 5 – ввод траспортирующего газа с порошком; 6 – фокусируюузее сопло; 7 – ввод защитного газа; 8 – защитное сопло; 9 – устройство поджига дуги

Рисунок 11 – Схема плазменно – порошковой наплавки

Сущность плазменно — порошковой налавки заключается в том что присадочный металла и основной металл расплаяются плазменным потоком создоваемым между неплавящимся электродом и деталью (прямое действие) или же между водоохлажающим соплом плазматрона и электрода при косвенном действии. В качестве придаочного материала используется гранулированный металический порошок [20 21].

Плазменно — порошковый процесс наплавки выделяется особенными технологическими возможностями такими как :

- небольшая глубина проплавления оснвного металла;
- прецизионная точность;
- большая возможность и производство наплавки для разных сплавов.

Важнешая особенность плазменно – порошковой наплавки это наилучшее формирование наплавленных валиков, отличная воссоздаемость

размеров и стабольность. Отклонение толщины у 95 % наплавленных изделей состовляет не более 0,5 мм от номинальных размеров, что в свою очередь позволяет уменьшить расход наплавочных материалов, затраты на механическую обработку и время наплавки.

Основными преимуществами плазменно-порошковой наплавки являются:

- высокая производительность,
- минимальные потери присадочного материла,
- малая глубина проплавления основного металла,
- высокое качество наплавленного металла,
- возможность наплавки относительно тонких слоев.

Однако при выборе этого способа придется столкнутся с трудностями комплектования сварочного поста, проблемами выбора материала порошка и прочности сцепления наплавленного металла с подготовленной поверхностью гребного вала [17].

В магистерской диссертации следует рассмотреть такие задачи как:

- определение химического состава порошка, его размерности и других факторов, повышающих прочность сцепления наплавленного металла с основным;
- повышение прочности сцепления наплавленного металла с основным за счет конфигурации галтелей вала;
- доработка схемы восстановления плазменно порошковой наплавки гребного вала;
- разработка технологического процесса восстановления изношенного вала плазменно порошковой наплавкой.

2 Исследование прочностных свойств покрытия при ремонте валов

2.1Определение размерности и химического состава порошка, повышающих прочность сцепления наплавленного металла с основой

В зависимости от гранулометрического состава порошки из сплавов для наплавки изготовляют следующих классов крупный (К), средний (С), мелкий (М) и очень мелкий (ОМ). В условном обозначении порошков из сплавов для наплавки сначала указывают марку по химическому составу, затем класс по гранулометрическому составу [4].

Для плазменно-порошкового способа выбирается порошок, который близок по химическому составу стали, из которого изготовлен вал. В данном случае - это сталь 40X.

Проводим сравнение химического состава порошков, которые рекомендуются для наплавки валов. Данные по сравнению химического состава приведены в таблице 2.

Таблица 2 – Сравнительный анализ химического состава порошков [5]

С	Si	Mn	Cr	Ni	Cu	S	P	Fe	
0.5	0.5	13	25	3				основа	ПР65Х25Г12Н3
0.5	0.5	13	23	3				основа	
0,3	0,5	0,6	0,5	0,6				основа	54585PC
0.26	0.17	0.50	0.0	0.2	0.2			07	G 4037
0,36 -	0,17-	0,50 -	0,8 –	до 0,3	до 0,3	до	до	97	Ст.40Х
0,44	0,37	0,80	1,1			0,035	0,035		

В результате сравнения химического состава порошков с химическим составом гребного вала выбираем порошок ПР-65Х25Г12Н3, который более

всего подходит по своему химическому составу. Выделим его химический состав в отдельную таблицу 3.

Таблица 3 - Химический состав порошка ПР-65Х25Г12Н3

С	Si	Mn	Cr	Ni	Cu	S	P	Fe
0.5	0.5	13	25	3				основа

В настоящее время известны работы, в которых проведены исследования определившие влияние размерности порошков на прочность сцепления наплавленного металла с основой [6]. Установлено, что размерность порошков 34-50 мкм повышает прочность сцепления наплавленного металла.

Прочностные свойства покрытия при ремонте валов увеличивают срок эксплуатации валов. В настоящее время наибольшее распространение находят порошки с размерностью от 60 — до 70 мкм. Тем не менее, известны в порошковой металлургии способы получения размерность порошка от 34мкм [30, 31].

2.2 Современное оборудование и технологии изготовления порошка, сепарации и хранения

Изготовление порошков — это сложный в порошковой металлургии в техническом отношении и чрезвычайно трудоемкий процесс. На данный момент существует большое количество способ изготовления порошков, что дает в конечный продукт обладать нужными свойствами в той или иной сфере, где он применяется.

На данный момент методы изготовления делятся на два способа:

физико – механический,

- химико - металлургический.

Сущность физико — механического процесса изготовления порошка заключается в механическом измельчении исходного сырья как жидком расплаве, так и в твердом его состоянии, не нарушая при этом его химической состав.

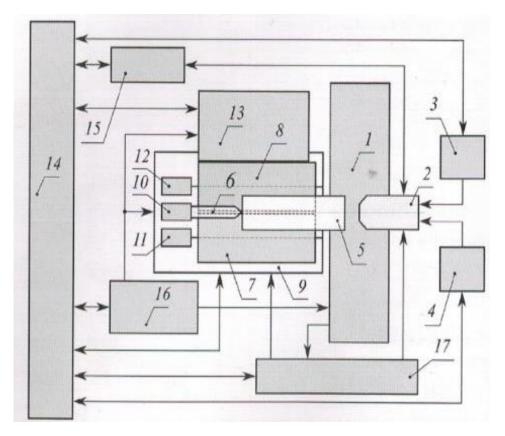
При химико – металлургическом методе порошок можно изготовлять разными способами такими как:

- восстановительным способом это восстановление металла из исходного сырья химией,
 - электрическим способом путем электролиза,
 - карбонильным способом путем термокарбонильной диссоциацией.

Способ изготовления порошка, который предлагается в работе, категорически отличается от обычных способов, основанных на механическом измельчении тем, что после изготовления частицы имеют правильную форму, чистый химический состав и определяемый гранулированный состав.

Гранулометрический состав порошка подчиняется нормальному закону распределения и подлежит дальнейшему сепарированию с целью разбиения на фракции с равномерным гранулометрическим составом [6].

В работе представлено 2 способа получения порошка. Методом PREP с установкой «Гранула 2500» и способ диспергирования посредства обдува с помощью газовых форсунок.


Рассмотрим первый способ получения порошка с помощью установки «Гранула 2500».

Установка для получения порошка методом PREP предназначена для получения металлических порошков с размерностью на выходе – от 5 мкм до 2 мм.

Центральным (инструментальным) звеном технологического процесса (ТП) распыления методом PREP (Plasma Rotating Electrode Process – плазменной плавки и центробежного распыления быстровращающейся литой заготовки) является плазматрон. На входе технологического процесса –

быстровращающаяся тугоплавкая заготовка — электрод. На выходе сферические частицы порошка [31].

Структурная схема данной установки представлена на рисунке 12

1 — камера распыления; 2 — плазматрон; 3 — источник питания; 4 — привод плазмотрона; 5 — заготовка; 6 — толкатель; 7 — барабан №1; 8 — барабан №2; 9 — блок приводов; 10 —привод продольного перемещения заготовки; 11 — привод вращения барабана 1; 12 — привод вращен ия барабана 2; 13- загрузочное устройство; 14- система управления; 15 — система охлаждения; 16 — вакуумная станция; 17 — газовая система

Рисунок 12 — Структурная схема технологической установки для получения порошка методом PREP

Получение металлического порошка на установке «Гранула – 2500» центробежного распыления основано методе расплава быстровращающейся цилиндрической заготовки, оплавляемой плазменной расплава, оторвавшиеся струей. Капли \mathbf{OT} вращающейся заготовки, перемещаются в инертной среде и остывают. Скорость, с которой остывают частицы составляет $10^{-4}...10^{-7}$ град/сек, образуя частицы металла — порошок. Порошок из камеры распыления перемещается в приемный контейнер. В

контейнере металлический порошок в инертной среде, в которой был получен, герметизируется. Контейнер отсоединяется от камеры распыления и передается на дальнейшую обработку [31].

Конструкционный вид установки «Гранула – 2500» представлен на рисунке 13.

Рисунок 13 – Конструкционный вид установки «Гранула – 2500

Процесс производства порошка состоит из нескольких этапов. В начале подготовленные электроды складывают в накопитель, который перемещает их в загрузочное устройство. Оттуда они направляются в барабан и прижимаются роликами.

Вращающиеся электроды отпаяются в распылительную камеру. В распылительные камеры торцы электродов нагреваются до температуры плавления. Расплавленный металл рассеивается вследствие центробежной силы.

Инертный газ способствует кристаллизации рассеянного металла. Далее порошок перемещается в пересыпное устройство, где охлаждается. Нерасплавленная часть электрода сбрасывается в специальный бункер.

Техническая характеристика установки «Гранула – 2500» представлена в таблице 4.

Таблица 4 – Техническая характеристика установки «Гранула – 2500»

Напряжение питающей сети, В	380
Номинальная частота, ГЦ	50
Установленная мощность, кВт	300
Тип установки	плазменная, центробежного распыления
Производительность установки по	75
плавлению технологическая, кг/час не более	
Размер частиц	От 5 мкм до 2 мм
Газовая среда	смесь газов Ar+He, в соотношении 1:9
Система водоснабжения	замкнутая
Используемая вода внутри контура	умягченная или дистиллированная
Мощность плазматрона, кВт	не более 110
Тип источника питания	ВПУ-2500М
Длина, мм	8600
Ширина, мм	8000
Высота, мм	6260
Масса, кг	23500

Широкий диапазон размерности порошка на выходе от 5 мкм до 2 мм позволяет использовать данную установку в широком спектре для производства порошков.

Рассмотрим следующий способ получения порошка. В данной технологии изготовления используется процесс диспергирования посредствам обдува с помощью газовых форсунок. Расплав доводится до рабочей температуры с помощью цилиндрического тигля. Нижняя часть тигля имеет коническую форму (под углом 20° к горизонту). Переходы между конической и цилиндрической формой тигля скруглены. Верхняя часть тигля имеет

крышку, которая закрывает его. Образец данного типа тигля представлен на рисунке 14.

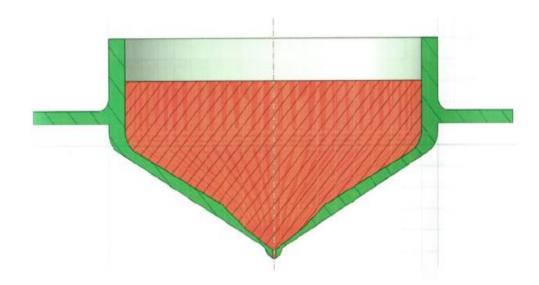


Рисунок 14 – Эскиз донного тигля

Тигель содержит расплав стали с температурой 1420°С. Температура тигля и температура расплава одинаковы. Расплав алюминия течет в конический сток, расположенный в нижней части тигля. Нижняя часть стокового канала на внешней стороне тигля окружена кольцевым выступом конического профиля для предотвращения смачивания дна тигля расплавом с внешней стороны [6].

Далее расплав перетекает в приемную камеру, которая размещена прямо под тиглем и соединена с тиглем фланцем. Образец данной приемной камеры представлен на рисунке 15.

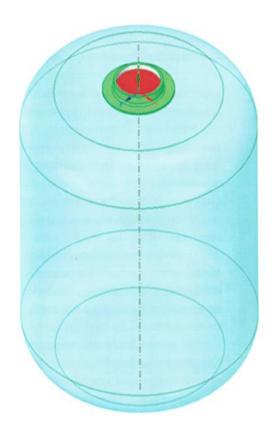


Рисунок 15 – Эскиз приемной камеры

Как видно из рисунка 16 диспергирование расплава происходит в два этапа. Первое это беспрепятственное течение расплава из тигля в приемную камеру, второе воздействие газового потока на расплав.

Газ в тигле, в форсунке и приёмной камере должен быть инертный и иметь такую же температуру, как и расплав, чтобы минимизировать обмен температуры между частями конструкции.

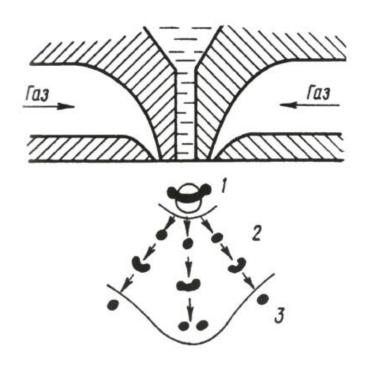
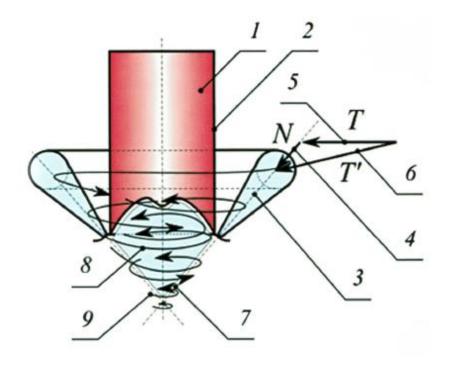



Рисунок 16 – Схема диспергирование расплава

Благодаря математической модели процесса мы можем наблюдать весь процесс зарождения частиц порошка. В данном процессе мы используем порошка. тангенциальный обдув расплав для получения частиц Тангенциальный обдув представляет собой некий поток, который закручивает газ, придавая газу закрученность И упорядоченность. Благодаря тангенциальному обдуву поверхность расплава не рвётся, а сохраняется и даже немного сглаживается. На поверхности отчетливо виден волнообразный подъем, который является границей зарождения жидких частиц расплава. Математическая модель процесса представлена на рисунке 17.

На рисунке 18 в различных ракурсах показана картина зарождения жидких частиц расплава в процессе тангенциального обдува. В свою очередь, поверхность оторвавшихся частиц также является боле плотной, нежели при нормальном обдуве, следовательно, они более интенсивно сфероидизируются. Практически сразу после отрыва частицы имеют форму,

близкую к сфере, чего не видно при обычном обдуве [6].

1 - струя расплава 2 - канал стока донного тигля 3 - коаксиальная коническая инжекционная газовая форсунка 4 - нормальные составляющие скоростных векторов газовых потоков 5 - тангенциальные составляющие скоростных векторов газовых потоков 6 - суммарные составляющие скоростных векторов газовых потоков 7 - конус обдува 8 - вихревая газовая подушка высокого давления 9 - вихревая газовая подушка высокого давления

Рисунок 17 – Математическая модель процесса

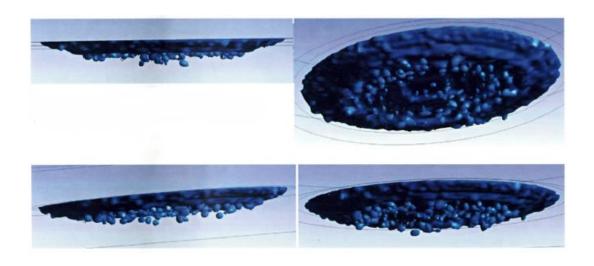
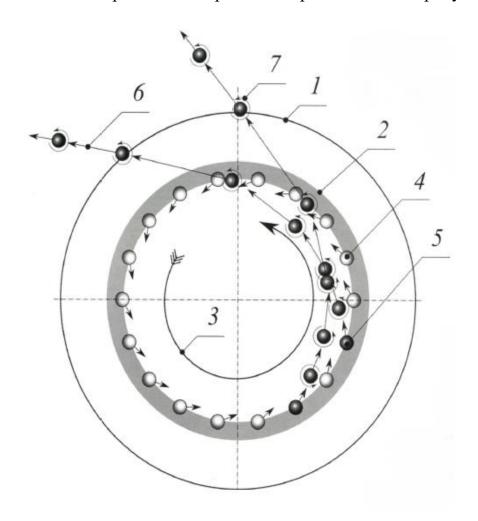



Рисунок 18 – Зарождение частиц расплава

Схематичная модель отрыва частиц расплава представлена на рисунке 19.

1- внутренняя окружность щелевого сопла коаксиальной форсунки 2- волнообразный подъем поверхности струи расплава 3 - направление закручивания газового тангенциального обдува 4 - сформировавшиеся на волнообразном подъеме частицы в момент отрыва 5 - трассировка полета оторвавшихся частиц 6 - пример плоской проекции вектора мгновенной скорости частиц 7 - направление вращения частиц вокруг собственной оси в полете

Рисунок 19 — Схематичная модель отрыва частиц

Преимущества, которые получаются при использовании данного способа это:

- поверхность струи расплава стабилизируется,
- низкая вероятность слияния частиц в жидком состоянии,
- сокращение необходимой траектории сфероидизации,
- снижение потребной траектории кристаллизации,
- снижение вероятности заливания дна приемной камеры,

- уменьшение габаритов приемной камеры,
- удобное управление процессом,
- обеспечение прогноза гранулометрического состава порошка.

Параметры, полученные при диспергировании приведены в таблице 5.

Таблица 5 – Параметры диспергирования порошка

Параметры	Значение
Материал расплава	Сталь
Газ	Аргон
Давление газа в тигле, Мпа	
Параметры форсунки	
Тип	Коаксиальная
Диаметр стока, мм	4,0
Зазор щелевого сопла, мм	0,2
Угол наклона сопла к продольной оси стока, град	45,0
Температура расплава, °С	1420,0
Температура газа, °С	1420,2
Давление газа в форсунке, МПа	36,2
Скорость газа на выходе сопла, м/с	125,0
Нормальная составляющая скорости газа на выходе сопла %	20,0
Тангенциальная составляющая скорости газа на выходе сопла %	80,0
Параметры частиц в конусе обдува	
Диапазон размера частиц, мкм	30,0 – 90,0
Мода, нормального закона распределения размера частиц, мкм	40,0

На рисунке 20 представлено влияния размера фракции порошка на его прочность сцепления. Проведенные исследования позволили оценить влияние размерности порошка на прочность сцепления покрытия с основой.

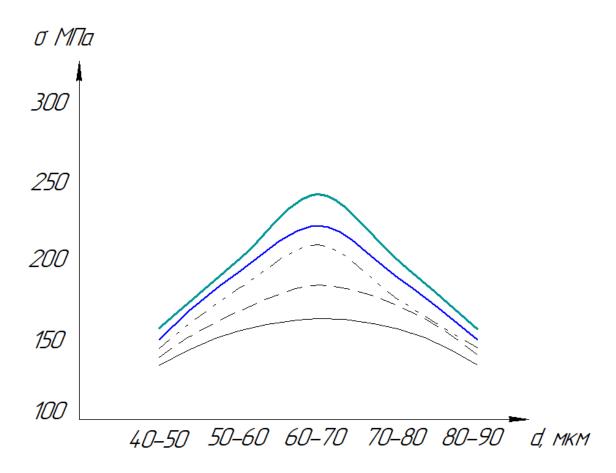
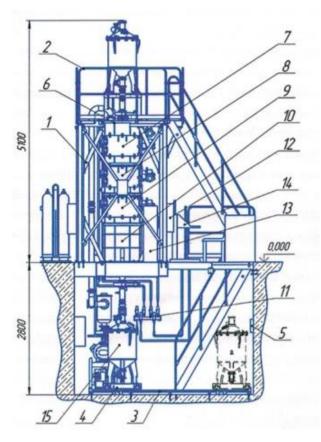
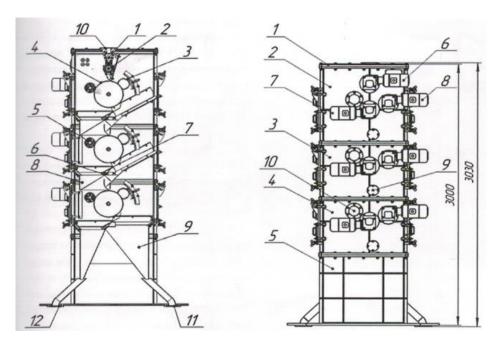



Рисунок 20 — Влияние размера фракции порошка на прочность сцепления

Установлено, что наиболее сильное сцепление с поверхностью у фракции порошка 60–70 мкм. Из этого можно сделать вывод, что лучшим вариантом изготовления порошка в нашем случае - второй способ, так как диапазон размера частиц во втором способе лучше подходит для восстановления изношенного вала, чем в первом способе.

После того, как порошок изготовлен, его следует разделить на разные фракции. Для этого используются установки для сепарации гранул типа УСГ – 1, Установка сепарации гранул «УСГ – 1» предназначена для разделения сыпучих материалов, компоненты которых отличаются электрической проводимостью, методом электростатической сепарации. Процесс происходит в среде смеси инертных газов с одновременным транспортированием получаемых порошковых материалов в объемную герметичную емкость без контакта с воздухом [31]. Эскиз Установки «УСГ – 1» представлен на рисунке 21.

1 — металлоконструкция; 2 — площадка обслуживания; 3 — путь рельсовый; 4 — тележка; 5 — пульт управления перемещением сепаратора; 6 — крышка сепаратора; 7 — секция 1; 8 — секция 2; 9 — секция 3; 10 — секция разгрузки сепаратора; 11 — система регулирования давления; 12 — шкаф регулирования; 13 — шкаф источника высокого напряжения; 14 — центральный пульт управления; 15 — контейнер


Рисунок 21 - Эскиз установки «УСГ – 1»

Работа установки организуется следующим образом. Материал направляется в питатель из подающего контейнера через распределитель. В распределителе порошок нагревается. После питателя материал следует на поверхность осадительного электрода и далее выносится в зону коронного разряда под коронирующий электрод. Здесь частицы коронного разряда получают коронирующий заряд электрода и прижимаются к поверхности осадительного электрода. Вследствие контакта с осадительным электродом частицы теряют свой заряд. Вследствие чего, частицы хорошо проводящие электрический ток, сбрасываются в барабан под действием центробежной силы. А частицы, с более низкой электропроводностью, оседают на поверхности осадительного электрода. Далее, отсекатель ведет материал в

секции разделительных бункеров. Частицы с низкой электропроводностью счищаются с осадительного электрода щеткой. Частицы же с высокой электропроводностью следуют на переочистку. Из бункеров частицы делятся на более проводящие и менее проводящие и следуют в приемные контейнеры. Вид сепаратора представлен на рисунке 22.

Давление в камере подается с помощью двух газовых баллонов аргона и гелия. Процентное содержание 80 % аргона и 20 % гелия, так же допускается 100 % содержания гелия.

После достижения нужного вакуума начинается подача аргона. После достижения нужного давления начинается подача гелия. За тем порошок подается в сепаратор и далее в приемные контейнеры. Далее контейнеры отсоединяются и устанавливаются новые. Давление в камере приводится до уровня равного контейнерам и продолжается сепарация.

1 — распределитель; 2 — питатель; 3 — коронирующий электрод; 4 — осадительный электрод; 5 — щетка; 6 — отсекатель; 7 — насадка на отсекатель; 8, 9 — разделительные бункера; 10 — смотровые окна; 11, 12 — фланцы соединяющие приемные контейнера.

Рисунок 22 – Сепаратор «УСГ – 1»

Таким образом, установка сепарации гранул «УСГ — 1» обеспечивает качественное использование большей части объёма произведенного порошка, распределяя его по соответствующему гранулометрическому спектру [29]. Технические возможности установки отражены в таблице 6, Размерность порошка находится в диапазоне от 15 мкм до 150 мкм.

Таблица 6 – Технические характеристики установки «УСГ – 1»

Напряжение питающей сети, В	380
Номинальная частота ГЦ,	50
Установленная мощность, кВт	Не более 50
Тип установки	Вакуумная электростатической сепарации
Производительность установки, кг/час	300
Размер частиц	От 15 мкм до 150 мкм
Газовая среда	Семь Аг+Не соотношение 20% - гелия 80%
	- аргона, допускается 100% использования
	аргона
Тип источника питания	ВПУ-2500М
Длина, мм	4000
Ширина, мм	5300
Высота, мм	4095

После того, как процесс сепарации завершен, порошок необходимо хранить в специальных для этого отведённых установках. Например, таких как установка типа «УЗГК – 6М», предназначенная для заполнения, термической дегазации и герметизации гранул в широкой номенклатуре капсул с целью подготовки их к последующему горячему газостатическому прессованию для получения изделий ответственного назначения. Конструкция установки «УЗГК – 6М» представлена на рисунке 23 [29].

Рисунок 23 – Конструкция установки «УЗГК – 6М»

Главным узел установки — это рабочая камера, которая представляет собой конструкцию цилиндрической формы и необходима для заполнения капсул при заданной температуре и термической дегазации. Имеется форвакуумная камера для транспортировки капсул во время процесса.

Имеется узел стыковки для подачи гранул из контейнеров в гранулопровод. Он состоит из вакуумных затворов, предназначенных для герметичной стыковки. Так же механизм загрузки – выгрузки капсул.

В состав сварочного узла входят вакуумная камера; электронно-лучевая пушка, закрепленная на подвижной каретке сварочного манипулятора; вакуммный затвор, отделяющий камеру сварочного узла от рабочей камеры. Электронно-лучевой комплекс предназначен для сварки пробки капсул под вакуумом после заполнения капсул порошком. Основными его составляющими является вакуумная камера с электронно-лучевой пушкой [29].

Так же имеется вибрационный узел. Он нужен для производства виброколебаний. Главный элемент этого узла — механический вибромотор, кроме этого, сюда же входят пневмоподушки.

Система управления (СУ) установки «УЗГК – 6М» построена на базе программируемого логического контролёра (ПЛК). Оснащение установки мультипроцессорной СУ обеспечивает управление, контроль и регистрацию параметров технологического процесса, существенно расширяет технологические и технические возможности оборудования данного класса. При этом решаются задачи автоматизации и информационной поддержки. А протокол ведения технологического процесса с заданной оператором периодичностью записывается; температура на капсуле (на выдержке); остаточное давление в рабочей камере; ускоряющие напряжение и ток электронно-лучевой пушки при заварке капсул; частота колебаний [29]. Техническая характеристика установки приведены в таблице 7.

Таблица 7 – Технические характеристики установки «УЗГК – 6М»

Напряжение питающей сети, В	380
Номинальная частота ГЦ,	50
Установленная мощность, кВт	Не более 50
Тип установки	Термическая дегазация и герметизация
	капсул
Производительность установки, кг/час	350
Размер частиц	От 15 мкм до 150 мкм
Температура дегазации	500°C
Тип источника питания	ВПУ-2500М
Длина, мм	8300
Ширина, мм	7500
Высота, мм	4250

2.3 Увеличение прочности сцепления наплавленного металла за счет галтелей вала

Существует множество способов увеличения прочностных характеристик вала и снижения концентрации напряжения при восстановительных работах. Таких как увеличение радиуса галтелей, выполнением дополнительных разгружающих выточек и другие [34].

Кроме этого, известны способы повышения прочностных характеристик вала при выборе технологий восстановления валов таких как:

- снижение размеров зерна при наплавке сжатой дугой порошком,
- восстановление сжатой дугой с присадочной проволокой,
- восстановление напылением и др.

В данной работе рассматриваются способы увеличения прочностных характеристик вала за счет конструктивных особенностей вала.

Как говорилось ранее один и способов уменьшения концентрации напряжения и увлечения прочностных характеристик является увеличения радиуса галтели. Галтель — это переход между цилиндрическими поверхностями вала, наиболее сильное напряжение наблюдается у галтелей с малыми радиусами. На рисунке 24 представлен тип галтели на валу.

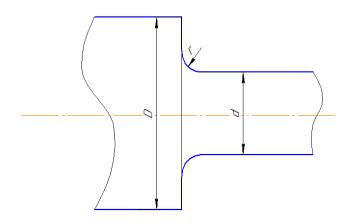


Рисунок 24 – Галтель вала

При восстановительных ремонтах валов по возможности следует выполнять галтели с максимально большим радиусом. Так как концентрация напряжения на валу зависит от радиуса галтели при переходе к цилиндрическому диаметру вала. Чем плавнее переход между ступенями вала, тем меньше концентрация напряжения.

При плавном переходе между ступенями вала концентрация напряжения практически устраняется полностью. В таблице 8 приведены размерные данные галтели, при которых концентрация напряжения устраняется [7]. На рисунке 25 представлен вид галтели без концентрации напряжения.

Таблица 8 – Данные для конструирования галтели

$\frac{y}{d}$		0	0,005	0,01	0,04	0,1	0,2	0,5	1	1,6
$\frac{d_y}{d}$	Растяжение- сжатие или	1,636	1,594	1,572	1,483	1,374	1,260	1,096	1,019	1
	кручение Изгиб	1,475	1,377	1,336	1,230	1,145	1,082	1,026	1,01	1

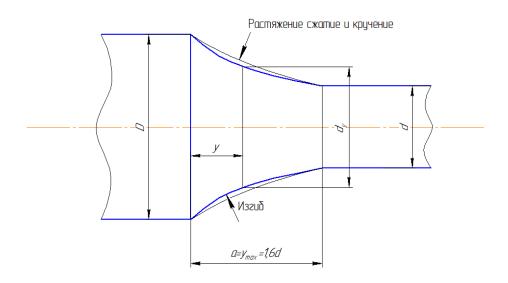


Рисунок 25 – Галтель без концентрации напряжения

Но из этого вытекает следующая проблема, чем больше радиус галтели, тем больше места она требует. Для решения этой проблемы и сокращения длины участка галтели используют эллиптический вид галтели с плавным уменьшением радиуса кривизны. Данный вид галтели представлен на рисунке 26 [32, 33].

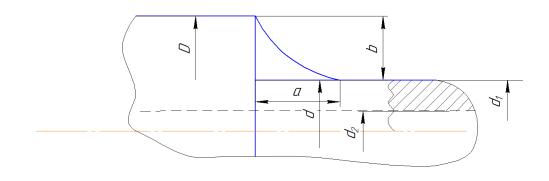


Рисунок 26 – Эллиптическая галтель

Для построения эллиптической галтели по заданным параметрам — диаметральным размерам d и D (сплошной вал) и d_1 , d_2 и D (полный вал) — следует определить полуоси эллипса — большую а и малую b. Для сплошного вала отношение (a/b) применяют от 1 до 2,5 (a/b); для полого вала рекомендуется (a/b) = 1–2,5 [a/ $(d_1 - d_2)$], где d_1 и d_2 — соответственно, наружный и внутренний диаметральные размеры полого вала [7].

Так же для уменьшения напряжения можно использовать вместо эллиптической галтели, галтель с описанными радиусами.

Bo конструктивных особенностей многих случаях из-за невозможно увеличить радиус галтели. Поэтому ДЛЯ уменьшения концентрации напряжений можно использовать различные конструктивные мероприятия. На рисунке 27 показан вал, у которого радиус галтели увеличен за чет кольца А. Если такое кольцо отсутствует, то пришлось бы выполнить вал с меньшим радиусом галтели. Это приводит к росту концентрации напряжений [7].

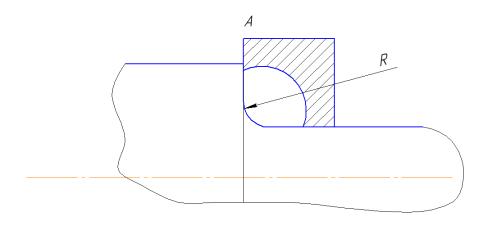
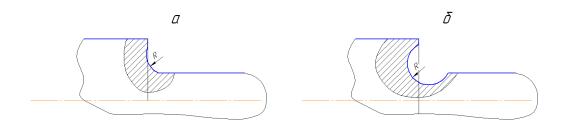



Рисунок 27 - Увеличения радиуса галтели с помощью промежуточного кольца

Также хороший способ уменьшение концентрации напряжение — это выполнить закругление радиуса галтели внутрь детали (поднутрение). Поднутрение может быть выполнено также с некоторым углублением галтели в тело вала, что дает возможность еще больше увеличить радиус R и уменьшить концентрацию напряжений. Однако значительное увеличение радиуса R может привести к ослаблению прочности вала, а шлифование такой галтели затруднено [7]. Данный тип галтелей представлен на рисунке 28.

а) галтель с поднутрением уступа б) галтель с поднутрением и уступа и вала $Pисунок \ 28 - \Gamma алтели \ c \ поднутрением$

Таким образом, проведя анализ 5 вариантов, самыми перспективными следует принять 2 или 3 вариант. Остановим выбор на 3 варианте, так как он более изучен и прошел испытания на реальных конструкциях валов. Выбранный вариант представлен на рисунке 29,

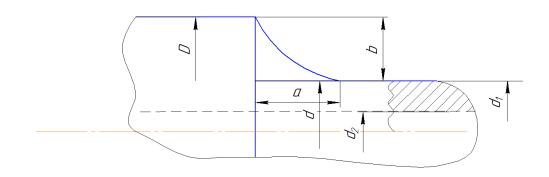


Рисунок 29 – Эллиптическая галтель

При заданных параметрах изношенного вала D=69 мм и $d_1=61$ мм выбираем соотношение, a/B=1,7.

Рассчитаем величину a = 6.8 и $b = (D-d_1)/2 = 4$, которые следует учесть при построении галтели на валу.

Полученные расчетные данные используются при определении параметров обработке вала.

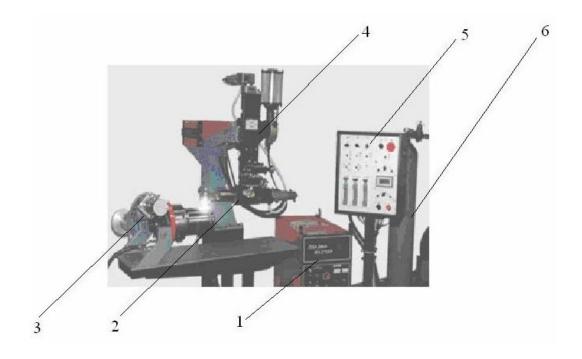
Выводы по разделу

Исследование прочностных свойств покрытия при ремонте валов показали, что размерность и химический состав порошка, повышают прочность сцепления наплавленного металла с основой. При этом, проведя сравнительный анализ химического состава различных порошков, определена марка порошка для плазменной наплавки. Это порошок ПР-65X25Г12Н3, химический состав которого приведен в таблице.

Установлено влияние размерности порошка для наплавки на прочность сцепления наплавленного металла на основу.

Изучив современные технологий порошковой металлургии, осмеливаемся рекомендовать оборудование и технологию РПКО «Электромеханика» получения порошков заданного химического состава и размерности (34-50)мкм для плазменно - порошковой наплавки изношенных гребных валов. Предложенная технология изготовления порошков заданного химического состава и размерности обеспечит необходимые прочностные свойства покрытия при ремонте.

Кроме этого для уменьшения концентрации напряжения и увлечения прочностных характеристик восстановленного вала используем результаты исследования А.Г. Схиртладзе [7], произведя расчет параметров галтелей для своей конструкции изношенного вала.


Таким образом, для повышения прочности сцепления покрытия используем современные технологии изготовления порошка, которые позволяют контролировать химический состав порошка и его размерность, обеспечивая $d_{\text{порошка}} = (34-50)$ мкм. Кроме этого, рассчитываем параметры галтелей вала (максимальный радиус галтели) при предварительной подготовке вала под наплавку, что также способствует увлечению прочностных характеристик и уменьшению концентрации напряжения.

3 Проектирование схемы поста для плазменно – порошковой наплавки

3.1 Доработка схемы наплавки сжатой дугой прямого действия

Для плазменно — порошковой наплавки используется специализированное оборудование, состоящее из источника питания постоянного тока, плазмотрона, устройства для подачи порошка, системы управления, блока охлаждения и газобаллонной арматруры.

Установка типа ПМ – 300 предназначены для плазменно – порошковой наплавки плоских, цилиндрических и других поверхностей различных деталей [4]. Данный тип установки представлен на рисунке 30.

1 – источник питания; 2 – плазмотрон; 3 – манипулятор – вращатель; 4 – механизм регулировки плазмотрона и подачи порошка; 5 – пульт управления; 6 – баллон с аргоном

Рисунок 30 – Установка для плазменно – порошковой наплавки ПМ – 300В

Вследствии того, что рабочая зона станка $\Pi M - 300$ не подходит для обработки гребного вала из-за того, что общая длина вала более 4 метров. Принято решение дороботать установку с учетом габаритных размеров вала.

Для этого взят токарно – фрезерный станок NT 6600 DCG с более крупной рабочей зоной подходящей для данного вала. Технические параметры станка NT 6600DCG представлены в таблице 9 и на рисунке 31.

Таблица 9 – Техническая характеристика станка NT 6600DCG

Название	Значение	Единица измерения
Рабочая Зона		
Максимальный диаметр точения	1070	MM
Максимальная длина точения	6076	MM
Максимальное росаатояние от главного шпинделя до задней бабаки (без патрона)	6620	MM
Галавный шпиндель		
Частота вращения встренного мотора — шпинедля с осью C	1500	об/мин
Максимальный внутренний диаметр зажимной втулки	164	MM
Противошпиндель		
Частота вращения встренного мотора — шпинедля с осью С	1500	об/мин
Мощность (длительностьвключения 100%)	22	кВт
Крутящий момент (длительность включения 100%)	147	Нм
Токарно – фрезерный шпиндель		
Максимальная частота вращения токарно – фрезерного шпинделя	8000	об/мин
Инструментальный магазин		
Максимальное количество позиций инструмента	180	позиций
Максимальный диаметр инструмента	250	MM
Размеры станка		
Занимаемая площадь в базовой комплектации с транспортером для стружки, без внутренней подачи СОЖ	58,1	M ²

От станка ПМ – 300 взят плазматрон, механизм регулировки плазматрона и подачи порошка, пульт управления, баллон с аргоном.

Рисунок 31– Внешний вид станка NT 6600DCG

В качестве источника питания было решено использовать сварочный выпрямитель для ручной дуговой сварки ВСВУ -400, представленный на рисунке 32 [18].

Рисунок 32 – Сварочный выпрямитель ВСВУ- 400

Технические характеристики данного выпрямителя представлены в таблице 10.

Таблица 10- Технические характеристики ВСВУ-400 [19,27]

Наименование параметров	Величина, единицы
	измерения
Номинальное напряжение питающей сети	380 B
Частота питающей сети	50 ГЦ
Номинальный сварочный ток и продолжительность цикла сварки	400 А, 60 мин
Диапазон регулирования сварочного тока	5- 400 A
Диапазон регулирования дежурного тока	5-100 A
Напряжение холостого хода	100 B
Номинальное рабочее напряжение	30 B
Потребляемая мощность	21 Kb·A
Габаритные размер	920×590×800 мм
Macca	240 кг

Упрощенная схема сварочного поста для плазменной сварки представлена на рисунке 33.

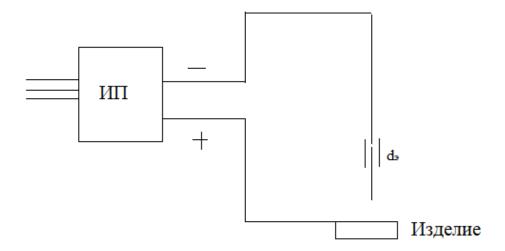


Рисунок 33 - Упрощенная схема сварочного поста

Для плазменно - порошковой наплавки существует множество видов плазмотронов рассчитанных под различные поверхности детали и различную мощность как для ручной, так и автоматической наплавки.

В данном случае использутся плазмотрон для автоматической наплавки прямого действия. Схема включения такого плазмотрона представлена на рисунке 34, на котором обозначена полятность подключения источника питания[24, 25]. Начальное возбуждение дуги производится автоматически с вольфрамового электрода на медное стабилизирующее сопло плазмотрона генератором высокой частоты (г-р в.ч.).

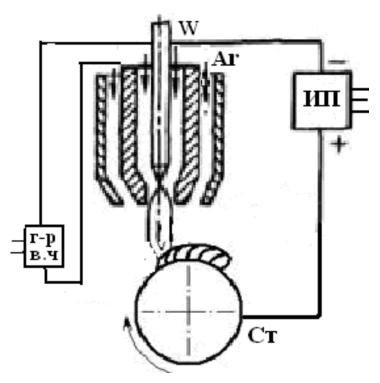
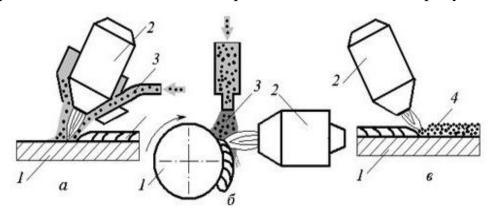


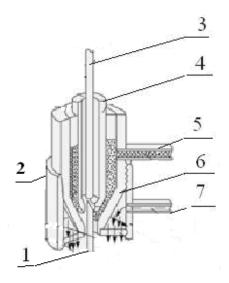
Рисунок 34 — Схема включения плазмотрона прямого действия и подачи защитного и плазмообразующего газа


При использовании сжатой дуги расход защитного и плазмообразующего газов отличаются по величине, поэтому необходимо предусмотреть в доработанной установке второго балона с аргоном и провести доработку системы подачи газа [22, 23].

3.2 Выбор схемы подачи порошка

В плазмотронах для наплавки чаще всего используют три схемы подачи порошка в дугу:

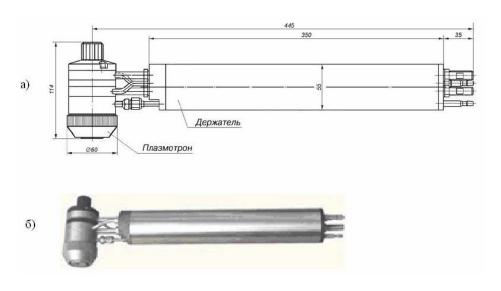
- схема подачи присадочного материла через сопло;
- схема подачи с помощью мундштука;
- схема подачи посредствам предварительного уложенной порошкообразной присадки.


Перечисленные схемы представлены на рисунке 35.

а — схема подачи присадочного материла через сопло; б — схема подачи с помощью мундштука; в — посредствам предварительного уложенной порошкообразной присадки; 1 — основной материал; 2 — плазматрон; 3 — присадочный материал; 4 — порошкообразная присадка

Рисунок 35 – Схемы подачи порошка

В нашем случае используется схема подачи присадочного материала через сопло. Для этого в конструкции плазмотрона предусмотрен ввод порошка транспортирующим газом. На рисунке 35 представлена схема подачи порошка через фокусирующее сопло плазмотрона.



1 — сжатая дуга; 2 — защитное сопло; 3 — вольфрамовый электрод; 4 — стабилизирующее сопло; 5 — ввод траспортирующего газа с порошком; 6 — фокусирующее сопло; 7 — ввод защитного газа

Рисунок 36 – Схема подачи порошка через фокусирующее сопла

В качестве транспортирующего газа разрешается использовать и аргон. На рисунке 36 представлен эскиз плазмотрона для автоматической наплавки сжатой дугой [26].

Выбор схемы подачи порошка основан на изучении конструкции плазмотрона $\Pi\Pi-6-03$, который предназначен специально для наплавки изделей на основе Fe, Ni и Co (рисунок 31) [4].

а – эскиз плазмотрона; б – внешний вид плазмотрона

Рисунок 37 — Внешний вид и эскиз плазматрона $\Pi\Pi - 6 - 03$

Конструктивно плазматрон состоит из двух частей — собственно плазмотрона и держателя с горизонтальным расположением коммуникаций, являющегося неотемлемой его частью. Плазмотрон присоединяется к держателю с помощью четырех питающих трубок и фиксируется четырьмя винтами, что позволяет очень быстро присоединять или отсоединять его при монтаже и обслуживании [4]. Эскиз плазмотрона и внешний вид представлены на рисунке 37.

Выводы по разделу

Для восстановления гребного вала плазменно-порошковой наплавкой выбрано и доработано оборудование.

В результате организован специальный пост, в состав которого входит следующее оборудование.

Элементы установки ПМ-300:

- доработанный плазмотрон для автоматической наплавки (2),
- -доработанная система подачи газов (плазмообразущего и защитного) (6),
- манипулятор вращатель (3);
- механизм регулировки плазмотрона и подачи порошка (4);
- пульт управления (5); баллон с аргоном (6).

Токарный станок NT 6600DCG для черновой, чистовой механической обработки и наплавки.

Сварочный выпрямитель ВСВУ-400 с повышенным напряжением Х.Х.

Дополнительный балон с Ar.

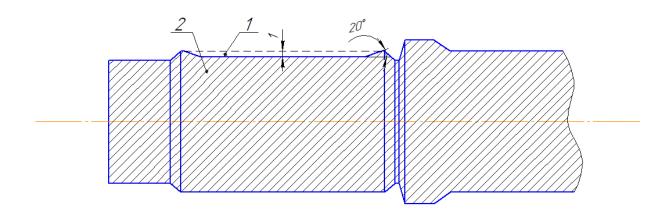
Выбранное и доработанное оборудование обеспечит восстановление изношенного гребного вала

4 Разработка технологии восстановления изношенного гребного вала плазменно-порошковой наплавкой

4.1 Предварительная механическая обработка вала. Рачет параметров

Предварительно перед получением наплавочного слоя должен быть выполнен ряд подготовительных работ. А именно вал должен быть осмотрен на наличие дефектов. Должны быть установлены размеры износа, участки износа и выявлены другие дефекты.

Так же если есть загрязнённые поверхности вала, подлежащие наплавке, то они должны быть обезжирены уайт - спиртом, ацетоном или другими летучими растворителями, не содержащим масел. При этом следует руководствоваться заводской инструкцией по применению этих растворителей.


После того как поверхности вала были отмыты от загрязнений и осмотрены на наличие дефектов, поверхность вала должна быть проточена до чистого металла и не должна иметь следов выработки, коррозионных разрушений, наклепанных мест, забоин, задиров, трещин, расслоений, металлических включений, жировых загрязнений. Глубина снимаемого слоя выбирается из условия минимальной толщины подслоя и коррозионного слоя не более 3 мм.

Шероховатость подготовленных под наплавку поверхностей вала после механической обработке должна быть в пределах Rz (20–10) мкм по ГОСТ 2789–73. Радиальное биение участков вала под наплавку не должно превышать 0,50 мм.

В начале и конце проточки, при механической обработке дефектов, необходимо выполнить плавный переход от проточенного участка к остальному участку вала под углом 20-30° к образующей вала либо с галтелью

радиусом не менее радиуса наплавленного вала с последующей зачисткой прилегающих поверхностей на 20–25 мм до чистого металла.

Схема подготовки изношенного участка гребного вала приведена на рисунке 38.

1-участок наплавки, 2-основной металл

Рисунок 38 – Схема подготовки изношенного участка гребного вала

Вал устанавливается на станок. Он должен крепится в патроне станка.

Для предварительно механической обработки используется резец прямой проходной 16х16 2103–1125 ГОСТ 18879–73, токарно – фрезерный станок NT 6600DCG, токарный 3-х кулачковый самоцентрирующийся патрон – специальный.

Технологический процесс восстановления вала включает следующие операции:

- 000 Моечная;
- 005 Входной контроль;
- 010 Токарная; черновое точение
- 015 Восстановительная; наплавка изношенного участка
- 020 Токарная; черновое и чистовое точение
- 025 Моечная;

030 – Контроль.

Проводим расчет параметров обработки на операции 010 – «токарное черновое точение».

Параметры обработки рассчитываем с помощью методов расчета режимов резанья. Режимы резанья можно рассчитать с помощью двух способов [28]:

- расчётно аналитического;
- статического.

Расчётно — аналитическим способом определяем параметры резания, так как этот способ обеспечивает лучший результат в отличии статического.

Рассчитаем режимы резанья для операции 010 по формулам, приведенным ниже.

Переход – 1 точить Ø 66 мм на l = 100 мм.

Скорость резанья рассчитываем по формуле 1:

$$V = \frac{C_{\nu}}{T^m \cdot t^x \cdot S^y} \cdot K_{\nu}, \frac{M}{c}$$
 (1)

Известные данные операции 010; $C_v = 280; m = 0.20; x = 0.15; y = 0.45; T = 60$ мин — период стойкости материала; t = 1 мм — глубина резания; S = 0.8 мм/об — подача;

Остается неизвестный коэффициент K_{v} . Его определим по формуле 2:

$$K_{\nu} = K_{\mu\nu} \cdot K_{\mu\nu} \cdot K_{\mu\nu}, \tag{2}$$

Коэффициенты — поправочный коэффициент, учитывающий влияние состояния поверхности заготовки на скорость резания и коэффициент поправочный, учитывающий влияние инструментального материала на скорость резания будут равны соответственно. Коэффициент K_{mv} — поправочный коэффициент, учитывающий механические свойства обрабатываемого материала на скорость резанья, рассчитывается по формуле 3 [9].

$$K_{\rm M}v = K_{\rm r} \cdot \left(\frac{750}{\sigma_{\rm R}}\right)^{n_{\rm v}},\tag{3}$$

где $\sigma_{\!\scriptscriptstyle B}$ — предел прочности при растяжении равным 610 МПА; $K_{\!\scriptscriptstyle \Gamma}=1$; $n_v=1$; рассчитаем K_{mv} (формула 4).

$$K_{mv} = 1 \cdot \left(\frac{750}{610}\right)^1 = 1.2. \tag{4}$$

Далее рассчитаем коэффициент K_{v} (формула) 5.

$$K_{\nu} = 1.2 \cdot 1 \cdot 1.15 = 1.38$$
 (5)

Теперь рассчитаем скорость резанья (формула 6):

$$V = \frac{280}{60^{0.2} \cdot 1^{0.15} \cdot 0.6^{0.45}} \cdot 1,38 = 215,47 \text{м/мин}$$
 (6)

После расчета скорости резанья рассчитаем частоту вращения шпинделя по формулам 7, 8:

$$n = 1000 \cdot \frac{V}{\pi \cdot d} \tag{7}$$

$$n = 1000 \cdot \frac{215,47}{\pi \cdot 68} = 1008,6106$$
/мин (8)

Полученной значение частоты вращения шпинделя необходимо скорректировать по паспорту станка, тогда частота вращения шпинделя будет равна n=1000об/мин.

Рассчитаем фактическую скорость резанья по формулам 9, 10:

$$V_{\Phi} = \frac{\pi \cdot d \cdot n}{1000} \tag{9}$$

$$V_{\phi} = \frac{\pi \cdot 68 \cdot 1000}{1000} = 214 \text{м/мин} \tag{10}$$

Так же следует рассчитать главную составляющую силы резанья по формуле 11:

$$P_z = 10 \cdot C_p \cdot t^x \cdot S^y \cdot V^n \cdot K_p, \tag{11}$$

Известные данные $C_p = 300$; x = 1; y = 0.75; n = -0.15

Рассчитаем поправочный коэффициент K_p по формуле 12

$$K_p = K_{mp} \cdot K_{\varphi p} \cdot K_{\gamma p} \cdot K_{\lambda p} \cdot K_{rp}, \tag{12}$$

 K_{mp} — поправочный коэффициент, который учитывает качество обрабатываемого материала, который рассчитывается по формулам 13, 14 [9].

$$K_{mp} = \left(\frac{\sigma_{\rm B}}{750}\right)^n,\tag{13}$$

$$K_{mp} = \left(\frac{610}{750}\right)^1 = 0.81\tag{14}$$

Ряд коэффициентов, учитывающих фактическое условия резания соответственно равный $K_{\varphi p}=0.89;\,K_{\gamma p}=1.1;\,K_{\lambda p}=1;\,K_{rp}=0.93$ [9].

Рассчитаем K_p (формула 15):

$$K_p = 0.81 \cdot 0.89 \cdot 1.1 \cdot 1 \cdot 0.93 = 0.74$$
 (15)

Рассчитаем главную составляющую силы резанья (формула) 16:

$$P_z = 10 \cdot 300 \cdot 1^1 \cdot 0.8^{0.75} \cdot 214^{-0.15} \cdot 0.74 = 850$$
 (16)

Определим мощность резанья по формулам 17, 18:

$$N = P_z \cdot \frac{V}{1020 \cdot 60} \tag{17}$$

$$N = 850 \cdot \frac{214}{1020 \cdot 60} = 3 \text{ kBT}$$
 (18)

Далее определим мощность главного привода по формулам 19, 20:

$$N_{\rm np} = \frac{N}{\eta'},\tag{19}$$

$$N_{\rm np} = \frac{3}{0.85} = 4 \text{ kBT}$$
 (20)

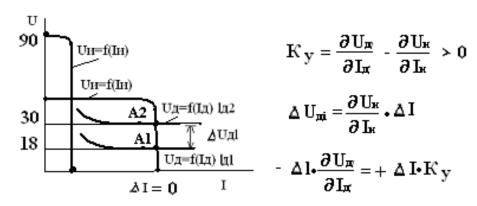

Данные по черновой токарной операции 010 сведены в таблицу 11.

Таблица 11 - Результаты расчета параметров черновой обработки вала

Диаметр,	Длина,	Скорость	Шероховатость,	Радиальное	Частота	Глубина	Подача,
MM	MM	резанья	МКМ	биение, мм	вращения	резанья,	MM
		V, M/c			шпинделя,	MM	
					об/мин		
66	100	215	25	0,2	1000	1	0,8

4.2 Выбор параметров плазменно-порошковой наплавки

Сжатая дуга и источник питания постоянного тока образуют устойчивую систему И-Д, если выполняются следующие условия: $I_{д}=I_{u}$, $U_{д}=U_{u}$, т.е существуют точки пересечения A1 и A2 статической BAX дуги и внешней BAX источника питания (ВСВУ-400У2).

 $U_{\text{и}} = f(I_{\text{и}})$ – внешняя BAX BCBУ-400, $U_{\text{д}} = f(I_{\text{д}})$ - статическая BAX сжатой дуги, A1,A2- точки устойчивого равновесия, $K_{\text{у}}$ – коэффициент устойчивости системы И-Д

Рисунок 39 – Система И-Д при наплавке вала от ВСВУ-400

Форма внешней ВАХ сварочного выпрямителя ВСВУ-400У2 и статическая ВАХ сжатой дуги обеспечивают точки пересечения этих ВАХ во всем диапазоне регулирования тока. Следовательно, устойчивое горение дуги обеспечено, так как $K_y > 0$ (рисунок 39).

Параметры режима плазменно-порошковой наплавки обеспечиваются следующими элементами специального поста для наплавки.

Источник питания — сжатая дуга: $I_{\text{д}} = I_{\text{и}}, \ U_{\text{д}} = U_{\text{и}}$ (рисунок 39). Перечисленные параметры выбираются в соответствие с РД . Созданная система И-Д при возмущениях по длине дуги $1_{\text{д откр}}$ не дает отклонения по току.

Плазмотрон: $1_{\text{д откр.}}$, $1_{\text{канала}}$, $1_{\text{скр}}$, $d_{\text{с}}$, d_{w} (рисунок 40).

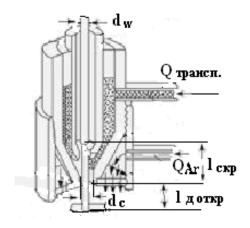


Рисунок 40 – Эскиз плазмотрона с указанием его параметров

Диаметр вольфрамового электрода d_w выбирается по допустимой плотности тока $j_w = (20\text{-}25) \text{ A/mm}^2$ для W.

Длина открытой дуги 1 $_{\rm д}$ откр выбирается, исходя из экспериментов. равной от 1,5 до 3мм (1 $_{\rm д}$ откр = (1,5 - 3,0)мм.

Диаметр сопла и канала заданы конструкцией плазмотрона от установки ПМ-300.

Пульт управления установки ПМ- 300 и баллоны с защитным газом: $Q_{Ar}, Q_{трансп.}, Q_{плазм.}, Q_{порошка.}$

Расход плазмообразующего и защитного газа выбирается в соответствие с рекомендациями для сварки и сжатой дугой: $Q_{\text{плазм}} = (5 - 8) \text{ л/мин}, \quad Q_{\text{Ar}} = (10 - 15) \text{л/мин}.$

Расход транспортирующего газа и порошка определены экспериментально в работах $Q_{\text{трансп.}} = 10$ л/мин, $Q_{\text{порошка}} = 20$ г/мин.

Токарно – фрезерный станок NT 6600DCG : $V_{\text{наплавки}}$, шаг наплавки.

Параметры определяются экспериментально.

Размерность порошка $d_{\text{порош}}$ выбирается по рекомендации автора работы равной $d_{\text{порош.}} = (34\text{-}50)$ мкм.

Таким образом, количество параметров, которые выбираются и контролируются при плазменно- порошковой наплавке достигает 14: I_{π} , U_{π} , 1

 $_{\rm J}$ откр., $1_{\rm канала}$, $1_{\rm скр}$, $d_{\rm c}$, $d_{\rm w}$, $Q_{\rm Ar}$, $Q_{\rm трансп.}$, $Q_{\rm плазм.}$, $Q_{\rm порошка}$, $V_{\rm наплавки}$, шаг наплавки. $d_{\rm порош}$.

4.3 Технологический процесс плазменно-порошковой наплавки

Для восстановления изношенной поверхности гребного вала выбран способ наплавки плазменно – порошковой наплавки.

Наплавка гребных валов осуществляется на приспособленном токарно - фрезерный станке с плавной скоростью вращения вала марки NT 6600DCG. Установка вращает вал со скорость (0,1–6) об/мин и перемещает вдоль образующей вала со скоростью от 5 до 65 мм – об. Скорость вращения вала и сварочной головки должны быть взаимосвязаны. Для этого производится доработка станка типа NT 6600DCG.

В качестве источника питания сварочной дуги используется универсальный выпрямитель типа ВСВУ – 400 У2 с напряжением X.X.- 90В и крутопадающей внешней ВАХ (рисунок 33).

При наплавке в защитных газах применяется специальный сварочный плазмотрон с охлаждением, позволяющий транспортировать порошок в зону наплавки (рисунок 34).

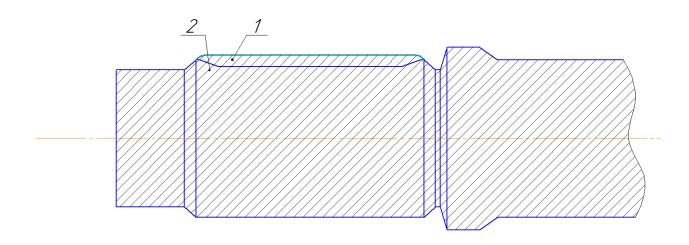
Установка для наплавки гребных валов должна быть расположена в специальном сухом закрытом помещении с плюсовой температурой при полном отсутствии сквозняков и при достаточно хорошей освещенности.

Так же установка обеспечивается оборудованием для предварительного подогрева, подъемно-транспортными средствами, вытяжкой.

Сварочный пост для плазменной наплавки оснащается воздушной турбиной, воздушной «шарошкой для очистки металла от шлака и ржавчины. Выполнять наплавочные работы должен сварщик имеющий разряд не ниже 5 и прошедший дополнительно теоретическую и практическую подготовку.

Выбранный источник питания постоянного тока ВСВУ-400У2 оснащен амперметром, поэтому дополнительной измерительной аппаратуры не требуется.

Технология восстановления гребных валов включает наплавку высокопрочного подслоя непосредственно на основной металл с последующей наплавкой тонкого коррозионностойкого слоя. Толщина коррозионностойкого слоя, не зависимо от диаметра вала, должна быть не более 3 мм. $Q_{порошка}$


Первый слой металла наплавляется на режиме: $I_{\rm Z}=180~{\rm A},\,U_{\rm Z}=22~{\rm B},\,dw$ = 3 мм, Qпорошка = 20 г/мин, Qтр.газа $A_{\rm Z}=10~{\rm J/M}$ ин, Vнапл = (0,6 - 0,8)см/с, шаг наплавки (4-5) мм.

После выполнения первого прохода тщательно очищается поверхность наплавленного металла. Для этого используется воздушная «шарошка», которая применяется для очистки корпусов судов в доках. Процесс очистки в этом случае может быть механизирован.

После окончания наплавки 1-го слоя и очистки производится визуальный контроль. Наплавленный слой не должен иметь дефектов: трещин, пор и шлаковых включений.

Второй слой наплавляется на режиме: Ід = 200 A, Uд = 25 B, dw = 3 мм, Qпорошка = 20 г/ мин, $Q_{\text{тр.газа Ar}} = 10$ л/ мм, $V_{\text{напл}} = (0.6-0.8)$ см/с.

Суммарная толщина наплавленных слоев не превышает 5мм (рисунок 35). ШЦ-I-125-0,1 Штангенциркуль ГОСТ 166-89

1- наплавленный металл, 2-основной металл Рисунок 41 — Схема наплавки дефектного участка

После окончания наплавки 2-го слоя и очистки производится визуальный контроль. Наплавленный слой не должен иметь дефектов: трещин, пор и шлаковых включений. На рисунке 41 представлена схема наплавки дефектного участка.

В поверхностных слоях наплавки допускается не более 2–3 мелких шлаковых включений. Наличие трещин в наплавленном слое не допускается.

Параметры плазменно-порошковой наплавки гребного вала, приведенные в примечание таблицы 12 в процессе наплавки не изменяются.

Таблица 12 - Параметры плазменно-порошковой наплавки дефектного участка

	dвала,	Інапл,	I ,A	U, B	Q _{трансп}	Q _{плазм}	Q пор,	QAr	h ,мм	1 д,
	MM	MM			л/мин	л/мин	г/мин	л/мин		MM
1	66	100	180	22	10,0	8,0	20	12	1,5	2,0
слой										
2слой	71	135	200	25	10,0	8,0	20	12	1,5	3,0

Примечание: dw = 3мм, lckp = 4,0мм, lkah. = 3,0 мм, dkah. = 2,0 мм

После проведения контрольной операции производится чистовая механическая обработка вала.

4.4 Чистовая механическая обработка. Расчет параметров

Механическая обработка производится после приемки наплавленного вала ОТК (внешний осмотр и измерения по ГОСТ 3242-79).

Механическая обработка производится в соответствии с параметрами, указанными на чертеже гребного вала. Припуск на обработку определяется в зависимости от принятого на предприятии способа упрочнения.

Механическая обработка после наплавки производится в два прохода черновое точение и чистовое точение.

При черновом точение, как и раньше шероховатость должна быть в пределе от Rz (20–10) мкм по ГОСТ 2789–73. Так как глубина резания и подача остаются такими же, то расчет параметров режима резанья при черновом точении проводить не нужно.

При чистовом точении шероховатость поверхности должна быть высокой Ra 1,25. В этом случае изменяется подача инструмента, из-за чего придется перешить режимы резанья для чистового точения по формулам.

Переход – 1 точить Ø 69 мм на 1 = 100 мм.

Скорость резанья рассчитываем по формуле 21:

$$V = \frac{C_v}{T^m \cdot t^x \cdot S^y} \cdot K_v, \frac{M}{c}$$
 (21)

Известные данные операции 010; $C_v = 280$; m = 0.20; x = 0.15; y = 0.45; T = 60 мин — период стойкости материала; t = 1 мм — глубина резания; S = 0.13 мм/об — подача;

Коэффициент K_v определим по формуле 22:

$$K_{\nu} = K_{\text{M}\nu} \cdot K_{\Pi\nu} \cdot K_{\mu\nu}, \tag{22}$$

Рассчитаем коэффициент по формулам 23, 24:

$$K_{\text{M}\nu} = K_{\Gamma} \cdot \left(\frac{750}{\sigma_{\text{B}}}\right)^{n_{\nu}},\tag{23}$$

$$K_{mv} = 1 \cdot \left(\frac{750}{610}\right)^1 = 1,2. \tag{24}$$

Рассчитываем коэффициент K_{v} (формула 25).

$$K_v = 1,2 \cdot 1 \cdot 1,15 = 1,38$$
 (25)

Теперь рассчитаем скорость резанья (формула 26):

$$V = \frac{280}{60^{0.2} \cdot 1^{0.15} \cdot 0.13^{0.45}} \cdot 1.38 = 425.6 \text{м/мин}$$
 (26)

Далее рассчитаем частоту вращения шпинделя по формулам 27, 28:

$$n = 1000 \cdot \frac{V}{\pi \cdot d} \tag{27}$$

$$n = 1000 \cdot \frac{425,6}{\pi \cdot 70} = 1935,306/мин$$
 (28)

Полученной значение частоты вращения шпинделя необходимо скорректировать по паспорту станка, тогда частота вращения шпинделя будет равна n=2000об/мин.

Рассчитаем фактическую скорость резанья по формулам 29, 30:

$$V_{\phi} = \frac{\pi \cdot d \cdot n}{1000} \tag{29}$$

$$V_{\phi} = \frac{\pi \cdot 70 \cdot 2000}{2000} = 220 \text{м/мин} \tag{30}$$

Данные по черновой токарной и чистовой токарной операции 020 представлены в таблице 13.

Таблица 13 – Параметры режима черновой и чистовой токарных операций

Диаметр,	Длина,	Скорость	Шероховатость,	Радиальное	Частота	Глубина	Подача,		
MM	MM	резанья	MKM	биение, мм	вращения	резанья,	MM		
		V, м/с			шпинделя,	MM			
					об/мин				
Точение ч	Точение черновое на операции 020								
70	100	214	25	0,2	1000	1	0,8		
Точение чистовое на операции 020									
69	100	425	1,25	0,2	2000	1	0,13		

Выводы по разделу

На основании выполненной работы проектируются технологические карты следующих процессов.

- технологический процесс черновой обработки изношенного вала с параметрами, специально рассчитанными галтелями;
- технологический процесс плазменно порошковой наплавки с применением доработанного оборудования;
- технологический процесс черновой обработки наплавленного вала;
- технологический процесс чистовой обработки наплавленного вала.

Технологические карты представлены в приложение А. Рисунки А.1 – А.2 содержат маршрутную карту технологического процесса восстановления гребного вала плазменно – порошковой наплавкой. Так же на рисунках А.3 – А.8 составлены операционные карты восстановительного процесса, в которых по операционное расписана механическая обработка ее режимы резанья и указаны параметры процесса плазменно – порошковой наплавки.

Заключение

В процессе эксплуатации гребные валы подвержены нагрузкам таким, как растяжение, сжатие, изгиб и кручение.

Для гребного вала чаще всего применяются стали углеродистые или легированные.

Валы в результате длительной эксплуатации поддержаны износу и появлению дефектов, таких как: задиры и износы посадочных шеек под подшипники; смятие и износ рабочих поверхностей, шлицев, резьбы, шпоночных канавок и т. д.; изгиб и скручивание вала; изломы и трещины. Существует множество способ восстановления деталей в зависимости от конструкции, материала изделия, его эксплуатационных свойств.

Один из наиболее прогрессивных способов восстановления изношенных деталей - это способ плазменно- порошковой наплавки. Однако, при выборе этого способа придется столкнутся с трудностями комплектования сварочного поста, проблемами выбора материала порошка и прочности сцепления наплавленного металла с подготовленной поверхностью гребного вала.

В магистерской диссертации решены такие задачи как:

- определен химический состав порошка, его размерность и других факторов, повышающих прочность сцепления наплавленного металла с основным;
- изменена конфигурация галтелей вала, повышающая прочностиь сцепления наплавленного металла с основой;
- разработан технологический процесс восстановления изношенного вала плазменно порошковой наплавкой.

Согласно полученным данным расчётно-исследовательской части выпускной квалификационной работы, были рассмотрены методы

предварительной механической обработки объекта (детали), разработан процесс изготовления и маршрут обработки,

Следовательно, можно утверждать, что цель магистерской работы — повышение качества восстанавливаемого гребного вала путём разработки технологического процесса, достигнута.

Список используемых источников

- 1. Судовой валопровод [Электронный ресурс] URL: https://mirmarine.net/dvs/811-sudovoj-valoprovod (дата обращения 29.04.2022).
- 2. Элементы судового валопровода [Электронный ресурс] URL: https://www.bz.ru/mashinostroenie/produktsiya-dlya-sudostroeniya/elementi-sudovogo-voloprovoda/ (дата обращения 29.04.2022).
- 3. Анализ основных дефектов и способов восстановления деталей автомобилей типа «вал» и «ось» [Электронный ресурс] URL: https://moluch.ru/archive/79/14046/ (дата обращения 07.05.2022).
- 4. Плазменно порошковая наплавка [Электронный ресурс] URL: https://extxe.com/2827/plazmennaja-i-plazmenno-poroshkovaja-naplavka/ (дата обращения 09.05.2022).
- 6. Гусев С.А., Клепов Д.В. Способ диспергирования металлического расплава: Научно-технический журнал "Электромеханик", 2021. № 21, с.8-13.

- 7. Схиртладзе А.Г. Увеличение прочности валов при ремонте машин: РЕМОНТ, А\ВОСТАНОВЛЕНИЕ, МОДЕРНИЗАЦИЯ, 2012. - №6. – С. 30-34.
- 8. Ремонт валопроводов и судовых гребных винтов [Электронный ресурс] URL: https://sea-man.org/remont-grebnyh-vintov.html (дата обращения 06.11.2020).
- 9. Технологический процесс восстановления вала [Электронный ресурс] URL: https://privetstudent.com/kursovyye/kursovye-mashinostroenie/3882-tehnologicheskiy-process-vosstanovleniya-vala.html (дата обращения 06.11.2020).
- 10. Восстановления деталей наплавкой, какие способы существуют? [Электронный ресурс] URL: https://tutmet.ru/vosstanovlenie-uprochnenie-detalej-valov-svarkoj-naplavkoj.html (дата обращения 06.11.2020).
- 11. М.Н. Чура, А.В. Файвисович. Эксплуатация поврежденных гребных валов [Электронный ресурс] URL: https://cyberleninka.ru/article/n/ekspluatatsionnye-povrezhdeniya-grebnyh-valov (дата обращения 06.11.2020).
- 12. А.С. Артюхов. Сталь 40X [Электронный ресурс] URL: https://stankiexpert.ru/spravochnik/materialovedenie/stal-40h.html#%D0%A0%D0%B0%D1%81%D1%88%D0%B8%D1%84%D1%80%D0%B8%D0%BB%D0%B
- 13. Николаев Г.А., Ольшанский Н.А. Специальные методы сварки. М.: Изд-во «Машиностроение».- 1975. 231 с.
- 14. Фролов В.В. Теоретические основы сварки : учебное пособие / В.В.Фролов, В.А.Винокуров [и др.] под ред. Фролова В.В. М. : Высшая школа, 1970. 592 с.

- 15. Шнайдер Б.И. Применение микроплазменной сварки для исправления дефектов узлов из нержавеющей стали / Б.И. Шнайдер, В.Г. Вербицкий, И.С. Вангтниц // Автоматическая сварка,.- 1970.- № 5, с.71-75.
- 16. Эсибян Э.М. Плазменно-дуговая аппаратура. Киев : Техника, 1971. 164с.
- 17. Сидоров В.П. Особенности наплавки свободной разветвленной дугой / В.П.Сидоров, Н.А Борисов // Сб. матер. 5-й междун. науч.- практ. конф. «Глобальный научный потенциал».: 16-17 июня 2009 Тамбов: ТАМБОВПРИНТ, 2009. С. 54—57.
- 18.
 СпецТехноРусурс
 [Электронный ресурс]
 URL:

 http://www.laborant.ru/eltech/11/0/3/56-00.htm (дата обращения 23.05.2021)
- 19. Короткова Г. М., Моторин К.В., Сварочные выпрямители: лабораторный практикум. Тольятти: изд-во Тгу, 2021
- 20. Методы порошковой металлургии: принципы и технологии [Электронный ресурс] URL: https://www.metotech.ru/art_poroshki_4.htm (дата обращения 11.05.2022)
- 21. Сидоров В.П., Борисов Н.А. Критерий проплавляющей способности дуги при сварке [Текст] // Сварка и диагностика.- 2013. С.24-27.
- 22. Сидоров В.П., Борисов Н.А. Вклад в проплавление изделия мощности электродного металла при сварке под флюсом [Текст] // Пайка 2013: сборник материалов международной научно-технической конференции (Тольятти, 10-12 сентября 2013 года) / редкол.: А.Ю. Краснопевцев (отв. ред.) [и др.] Тольятти: ТГУ. 2013. С. 232—239.
- 23. Николаев Г.А., Ольшанский Н.А. Специальные методы сварки. М.: Изд-во «Машиностроение».- 1975. 231 с.
- 24. Фролов В.В. Теоретические основы сварки : учебное пособие / В.В.Фролов, В.А.Винокуров [и др.] под ред. Фролова В.В. М. : Высшая школа, 1970. 592 с.

- 25. Эсибян Э.М. Плазменно-дуговая аппаратура. Киев : Техника, 1971. 164с.
- 26. Сидоров В.П. Особенности наплавки свободной разветвленной дугой / В.П.Сидоров, Н.А Борисов // Сб. матер. 5-й междун. науч.- практ. конф. «Глобальный научный потенциал».: 16-17 июня 2009 Тамбов: ТАМБОВПРИНТ, 2009. С. 54–57.
- 27. СпецТехноРусурс [Электронный ресурс] URL: http://www.laborant.ru/eltech/11/0/3/56-00.htm (дата обращения 23.05.2021)
- 28. Справочник технолога машиностроителя. В 2 т. Т.2 / А.М. Дальский [и др.]; под ред. А. М. Дальского [и др.]. 5 е изд., испр. Москва.: Машиностроение 1, 2003. 359.
- 29. Гусев С.А. Комплексная триада оборудования для производства металлических порошков и гранул: ЭЛЕКТРОМЕХАНИК, 2021. № 22. С. 2–10.
- 30. Durejko T., Lazinska M., Wojcik J.D., Lipinski S., Varin R.F., Czujko T. The Tribaloy T-800 Coatings Deposited by Laser Engineered Net Shaping (LENSTM) [Электронный ресурс] //Materials. 2019. Vol. 12. р. 1366. URL: https://www.mdpi.com/1996-1944/12/9/1366/htm (дата обращения 15.11.2020)
- 31. Saadat A., Shiran M. K.G., Amini K., Bakhtiari H. and Samimi B. Effect of Molybdenum on Metallurgical and Wear Properties of Fe–Cr–C Hard facing alloy [Электронный ресурс] // Springer Link. 2019. Vol. 55. URL: https://link.springer.com/article/10.1134/S2070205119050228 (дата обращения 15.11.2020).
- 32. Srikarun B., Oo. H.Z., Muangjunburee P. Effectiveness of metal powder additions for martensitic hardfacing alloy on its wear properties [Электронный ресурс] // IOPscience. 2019. Vol. 2. URL: https://iopscience.iop.org/article/10.1088/2051-672X/ab941a (дата обращения 15.11.2020).

- 33. Munim A.A., Dilawary S.A.A., Motallebzadeh A., Arisoy C.F. Effect of electron beam surface melting on the microstructure and wear behavior of Stellite 12 hardfacing [Электронный ресурс] // Industrial Lubrication and Tribology. 2019. Vol. 71(3). PP. 636-641. URL: https://www.researchgate.net/publication/332392300 Effect of electron beam su rface melting on the microstructure and wear behavior of Stellite 12 hardfacing (дата обращения 02.03.2021).
- 34. Srisuman N., Kumsri N., Yingsamphancharoen T., Kaewvilai A. Hardfacing Welded ASTM A572-Based, High-Strength, Low-Alloy Steel: Welding, Characterization, and Surface Properties Related to the Wear Resistance [Электронный ресурс] // Metals. 2019. Vol. 9(2). PP. 244. URL: https://www.mdpi.com/2075-4701/9/2/244/htm (дата обращения 02.03.2021).

Приложение А

Технологическая Карта

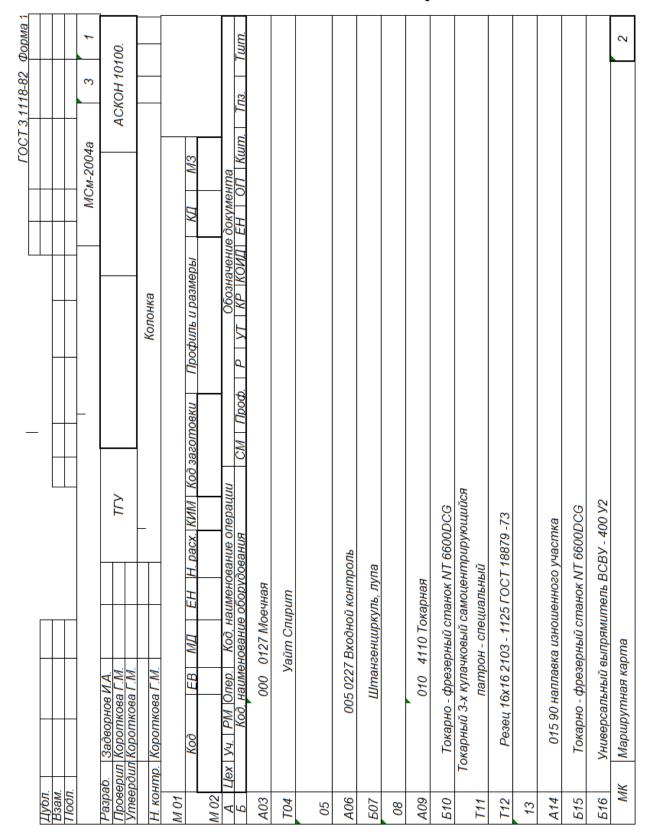


Рисунок A.1 - лист 1 маршрутная карта

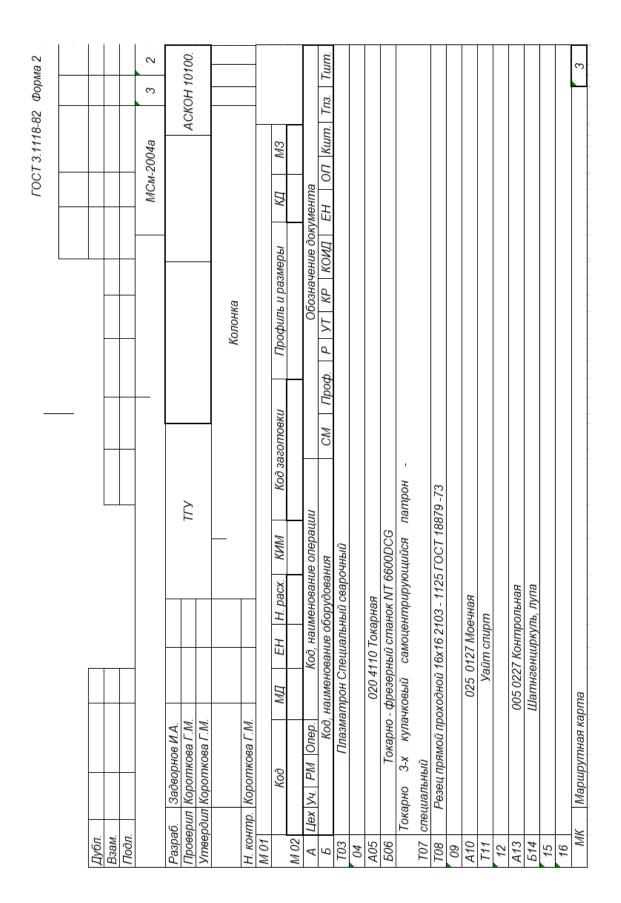


Рисунок А.2 – лист 2 маршрутная карта

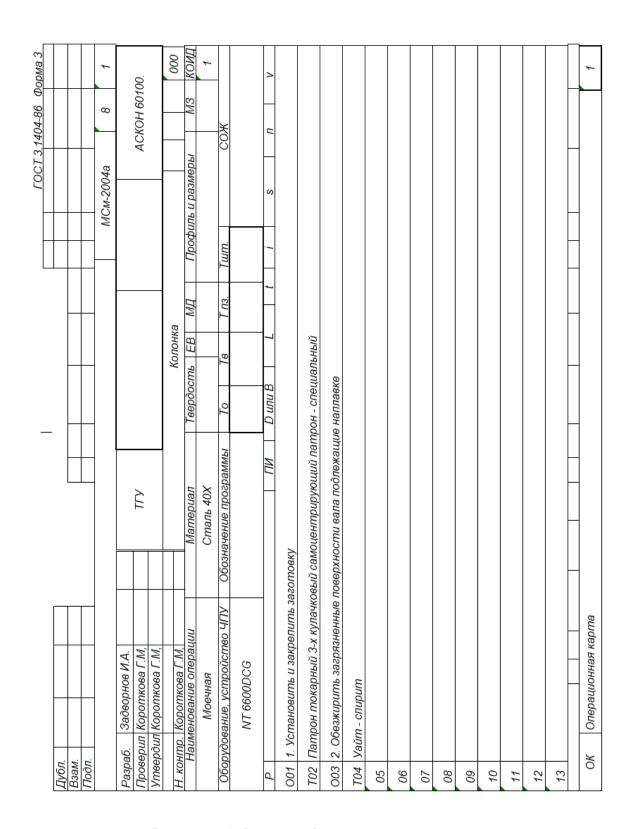


Рисунок А.3 – лист 1 операционная карта

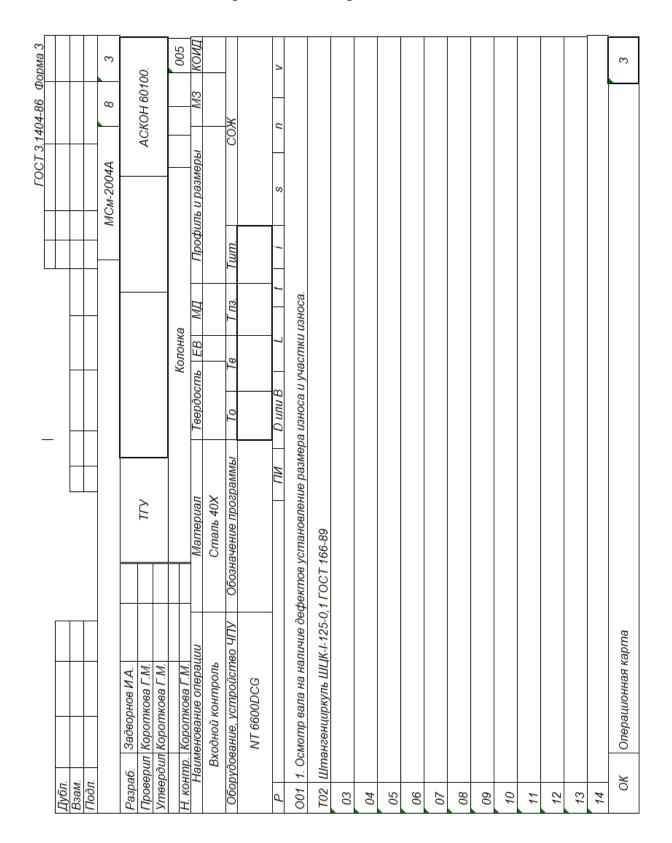


Рисунок А.4 – лист 2 операционная карта

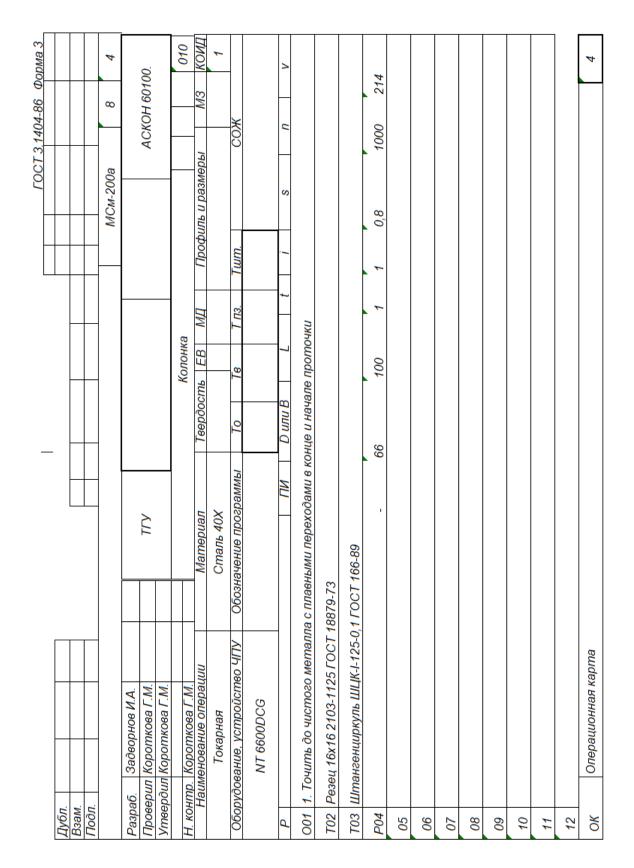


Рисунок А.5 – лист 3 операционная карта

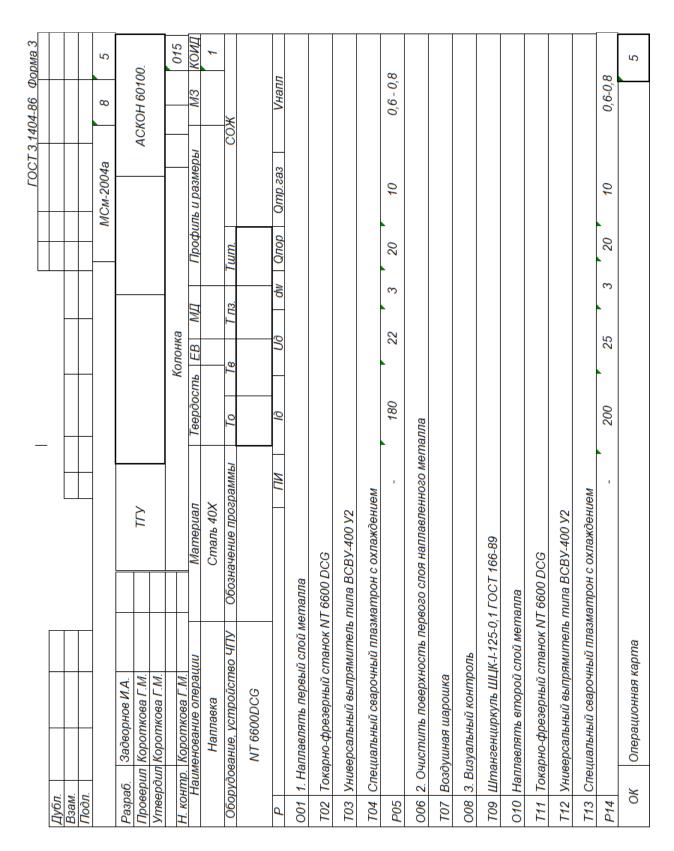


Рисунок А.6 – лист 4 операционная карта

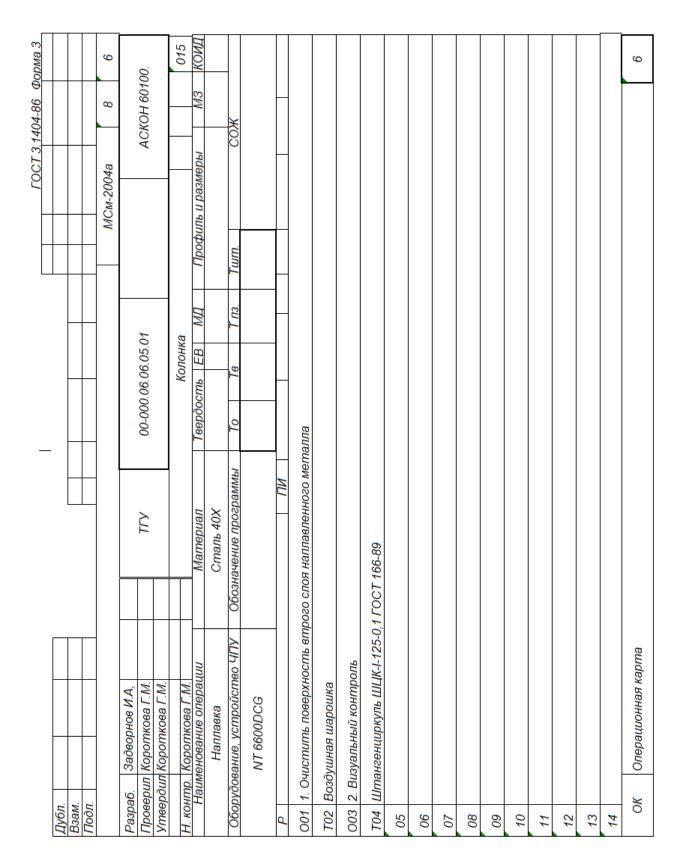


Рисунок А.7 – лист 5 операционная карта

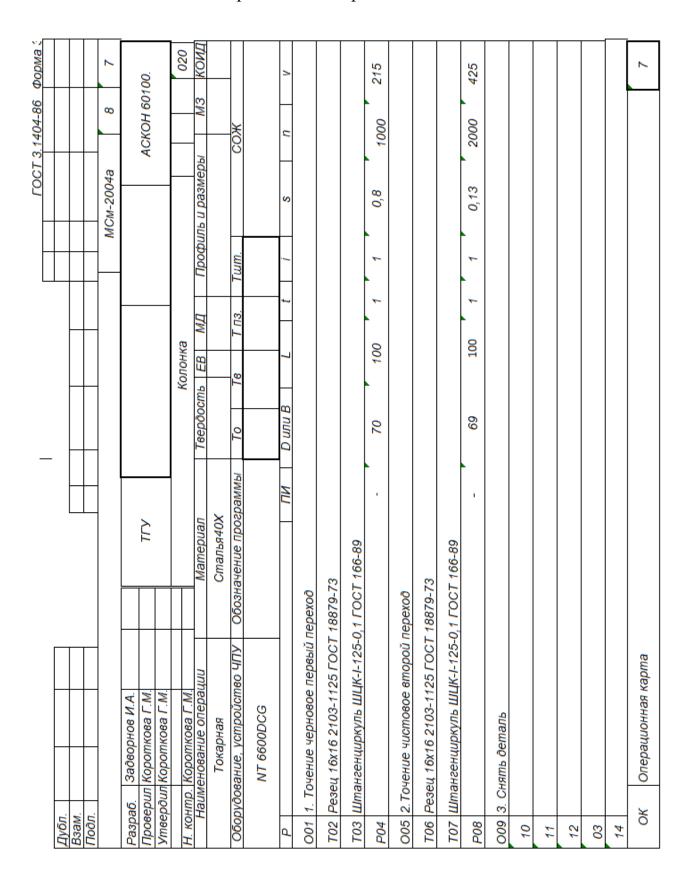


Рисунок А.8 – лист 6 операционная карта