МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт химии и энергетики
(наименование института полностью)
Кафедра « <u>Электроснабжение и электротехника</u> » (наименование)
13.03.02 Электроэнергетика и электротехника
(код и наименование направления подготовки/ специальности)
Электроснабжение
(направленность (профиль) / специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Электроснабжение газотурбинной электростанции 12мВт Игольско-Талового нефтяного месторождения

Обучающийся	В. Ю. Колесников				
	(Инициалы Фамилия)				
		(личная подпись)			
Руководитель	к.п.н., доцент, М.Н. Третьякова				
	(ученая степень (при наличии), ученое звание (при наличии), Инициалы Фамилия)				

Тольятти 2022

Аннотация

Выпускная квалифицированная работа состоит из 49 страниц, 9 рисунков, 13 таблиц и 22 источников.

Ключевые слова: электроснабжение, электростанция, ГТЭС, мощность, нагрузка, потребитель, питание, линия, кабель, параметры, заземление, электробезопасность, электроэнергия.

В работе проектируется электроснабжение газотурбинной электростанции.

Объект исследования: газотурбинная электростанция.

Предмет исследования: СЭС электростанции.

Цель работы: разработка надежной и безопасной СЭС электростанции.

Актуальность разработки: технологические процессы почти любого современного промышленного предприятия осуществляются с применением различного электрооборудования (расположенного на производственных участках). ГТЭС будет обеспечивать дополнительную генерацию необходимую электроэнергии, для ввода В эксплуатацию новых производственных объектов месторождения.

Содержание ВКР включает вопросы: анализ объекта электроснабжения и нормативных требований; расчет электрической нагрузки; разработка схемы электроснабжения; расчет, выбор и проверка электрооборудования схемы электроснабжения; разработка системы электробезопасности ГТЭС; разработка системы учета расхода электроэнергии ГТЭС.

Содержание

Введение	4
1 Анализ объекта электроснабжения и нормативных требований	5
1.1 Анализ объекта электроснабжения	5
1.2 Анализ нормативных требований к электроснабжению объек	та6
2 Расчет электрической нагрузки	8
2.1 Расчет силовых нагрузок	8
2.2 Расчет осветительной нагрузки и итоговой нагрузки предпри	ятия 9
3 Разработка схемы электроснабжения	14
3.1 Компенсация реактивной мощности и выбор ТСН	14
3.2 Картограмма нагрузок	16
3.3 Расчет питающих линий 6 кВ	19
3.4 Расчет распределительной сети	21
4 Расчет, выбор и проверка электрооборудования схемы электросн	абжения 24
4.1 Расчет токов КЗ	24
4.2 Выбор выключателей и разъединителей	31
4.3 Выбор измерительных трансформаторов	33
4.4 Выбор ОПН	36
4.5 Выбор автоматических выключателей	36
5 Разработка системы электробезопасности ГТЭС	38
5.1 Разработка контура заземления	38
5.2 Обеспечение электробезопасности	41
6 Разработка системы учета расхода электроэнергии ГТЭС	43
6.1 Выбор оборудования АСТУЭ	43
6.2 Программное обеспечение АСТУЭ	
Заключение	46
Список используемых источников	48

Введение

Производится разработка системы электроснабжения (СЭС) газотурбинной электростанции (ГТЭС) 12 МВт Игольско-Талового нефтяного месторождения.

Актуальность разработки: «технологические процессы почти любого современного промышленного предприятия осуществляются с применением различного электрооборудования (расположенного на производственных участках)» [19].

ГТЭС будет обеспечивать дополнительную генерацию электроэнергии, необходимую для ввода в эксплуатацию новых производственных объектов месторождения.

ГТЭС будет присоединена по кабельной линии (КЛ) к РУ 6 кВ ПС 110/35/6 кВ «Игольская», расположенной на расстоянии 2,612 км.

Объект исследования: газотурбинная электростанция.

Предмет исследования: СЭС электростанции.

Для бесперебойного функционирования системы собственных нужд газотурбинной электростанции Игольско-Талового нефтяного месторождения, в состав которой входят мастерские, вспомогательное производство, компрессорная и пункт подготовки газа, необходима надежная и оптимально спроектированная система электроснабжения.

Цель работы: обеспечение надежного электроснабжения ГТЭС за счет разработки СЭС, соответствующей современным нормативным требованиям.

Задачи работы:

- анализ объекта электроснабжения и нормативных требований;
- расчет электрической нагрузки;
- разработка схемы электроснабжения;
- расчет, выбор и проверка электрооборудования схемы электроснабжения;
 - разработка системы электробезопасности ГТЭС;
 - разработка системы учета расхода электроэнергии ГТЭС .

1 Анализ объекта электроснабжения и нормативных требований

1.1 Анализ объекта электроснабжения

Газотурбинная электростанция (ГТЭС) Игольско-Талового нефтяного месторождения будет обеспечивать дополнительную генерацию электроэнергии, необходимую ДЛЯ ввода В эксплуатацию новых производственных объектов месторождения. Суммарная мощность двух электрогенераторов газотурбинных агрегатов (ГТА) составляет 12 МВт на напряжении 6 кВ. ГТЭС будет присоединена по кабельной линии (КЛ) к РУ 6 кВ ПС 110/35/6 кВ «Игольская», расположенной на расстоянии 2,612 км [15].

На территории ГТЭС расположено 8 производственных участков (ПУ), перечень представлен в таблице 1.

Таблица 1 – Производственные участки ГТЭС

Номер на плане	Участки	<i>Р</i> ном, кВт	Категор. надежн.
1	Вспомогательное производство	25,6	2
2	ГТА №1	120	1
3	ГТА №2	120	1
4	Ремонтная площадка	19,2	2
5	Резервуар воды	27,5	1
6	Мастерская	84,6	2
7	Компрессорная	149,8	1
8	Пункт подготовки газа	168,9	1
	Σ	715,6	1

Генеральный план ГТЭС показан на рисунке 1.

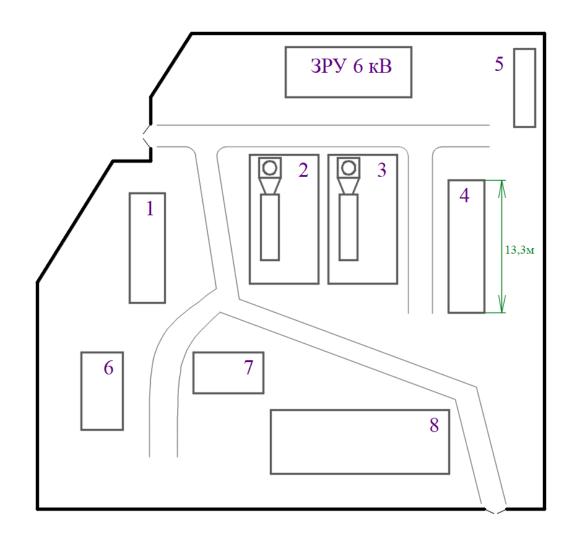


Рисунок 1 – Генплан ГТЭС

ПУ относятся к потребителям 1 и 2 категории надежности, таким образом общие требования к электроснабжению будут рассматриваться как для 1 категории согласно ПУЭ [13].

Далее проводится анализ основных требований к электроснабжению ГТЭС согласно актуальным нормативно-техническим документам (НТД).

1.2 Анализ нормативных требований к электроснабжению объекта

Согласно ПУЭ, электроснабжение ГТЭС требуется обеспечить от двух взаиморезервирующих источников. Таким образом, с учетом технической документации ГТЭС, в ЗРУ 6 кВ принимается к установке три трансформатора собственных нужд (ТСН) 6/0,4 кВ. Два ТСН запитываются от шин 6 кВ ЗРУ,

третий ТСН (резервный) запитывается от отдельного фидера 6 кВ ПС «Игольская» [15]. КЛ 6 кВ от ГТЭС до ПС «Игольская» и КЛ 6 кВ от ГТА до ЗРУ 6 кВ, КЛ 0,4 кВ от шин СН 0,4 кВ до распределительных пунктов (РП) потребителей – двухцепные. Режим нейтрали сети 6 кВ – изолированная, сети 0,4 кВ – глухозаземленная (TN-C-S). Требуется спроектировать контур заземления ГТЭС с эквивалентным сопротивлением до 4 Ом [13]. Необходимо обеспечить защиту электрооборудования (ЭО) с помощью ОПН.

Согласно ФЗ «Об энергосбережении и о повышении энергетической эффективности, и о внесении изменений в отдельные законодательные акты Российской Федерации от 23.11.2009 № 261-ФЗ» [21] принимаются технические решения:

- на шинах собственных нужд (CH) ГТЭС будет реализована автоматическая компенсация реактивной мощности (две установки АУКРМ);
 - для ТСН будут выбраны энергоэффективные трансформаторы;
- освещение участков и территории будет обеспечиваться светодиодными светильниками;
- будет реализован технический учет электроэнергии (АСТУЭ) на основе современного оборудования и программного обеспечения (ПО).

Выводы по разделу 1.

Приведена характеристика предприятия, ГТЭС представляет собой малую электростанцию, которая будет использоваться для выработки дополнительной электроэнергии для ввода в эксплуатацию дополнительного электрооборудования месторождения. Приведены исходные данные для разработки системы электроснабжения (СЭС): генплан предприятия, данные по ПУ (номинальные мощности электроприемников по ПУ составляют от 19,2 кВт до 168,9 кВт). Проанализированы основные требования к электроснабжению ГТЭС согласно актуальным НТД.

2 Расчет электрической нагрузки

2.1 Расчет силовых нагрузок

«Для расчета силовых электрических нагрузок цехов используется метод коэффициента спроса активной мощности нагрузок.

Формула для расчета среднесменных активных мощностей по участкам:

$$P_c = K_c \cdot P_{_{HOM}},\tag{1}$$

где K_c — коэффициент спроса активной мощности для данного конкретного участка;

 $P_{_{\! HOM}}$ — номинальная активная мощность электроприемников данного участка, кВт» [6].

Среднесменные реактивные и полные мощности:

$$Q_c = P_c \cdot tg\varphi \,, \tag{2}$$

$$S_c = \sqrt{P_c^2 + Q_c^2} \,, \tag{3}$$

Для участка №1, по (1,2,3):

$$P_c = 0,52 \cdot 25,6 = 13,312 \,$$
 кВт
$$Q_c = 13,312 \cdot 0,54 = 7,185 \,$$
 квар
$$S_c = \sqrt{13,312^2 + 7,185^2} = 15,127 \,$$
 кВА

Расчет силовых нагрузок – в таблице 2.

Таблица 2 – Расчет силовых нагрузок

Участки	Pном,	, Kc	2050	4~~	Средние нагрузки			
участки	кВт	KC	cosφ	tgφ	Рс, кВт	Qс, квар	Sc, кВА	
Вспомогательное производство	25,6	0,52	0,88	0,540	13,312	7,185	15,127	
ГТА №1	120	0,91	0,86	0,593	109,200	64,795	126,977	
ГТА №2	120	0,91	0,86	0,593	109,200	64,795	126,977	
Ремонтная площадка	19,2	0,6	0,82	0,698	11,520	8,041	14,049	
Резервуар воды	27,5	0,82	0,91	0,456	22,55	10,27	24,78	
Мастерская	84,6	0,5	0,83	0,672	42,3	28,43	50,96	
Компрессорная	149,8	0,7	0,87	0,567	104,86	59,43	120,53	
Пункт подготовки газа		0,8	0,89	0,512	135,12	69,22	151,82	
Σ	715,6	0,766	0,87	0,570	548,062	312,168	630,730	

2.2 Расчет осветительной нагрузки и итоговой нагрузки предприятия

«Электрическая нагрузка освещения территории определяется по удельной мощности на единицу площади. Расчетная активная мощность системы внешнего освещения предприятия определяется по формуле:

$$P'_{po} = P_0 \cdot K_{co} \cdot F, \tag{4}$$

где P_0 — удельная мощность на единицу площади, для наружного светодиодного освещения предприятий составляет 0,2 Вт/м²;

 K_{co} — коэффициент спроса освещения, для наружного освещения предприятий принимается равным 1,0;

F – площадь освещаемой территории, м²» [20].

$$P'_{po} = 0, 2 \cdot 1, 0 \cdot 1731, 37 = 0,346 \text{ kBt}$$

Для освещения территории выбираем светильники SVT-STR-M-24W мощностью 24 Вт.

«Требуемое число светильников определяется исходя из расчетной активной мощности системы внешнего освещения предприятия:

$$N = \frac{P_{po}}{P_{co}},\tag{5}$$

где P_{cs} – паспортная активная мощность одного светильника, кВт» [20].

$$N = \frac{0.346}{0.024} \approx 15$$
 IIIT

Светильники располагаются на опорах ОГКл-9 «Пересвет» высотой 9 м при установке вдоль автотранспортных дорог и на опорах ОГК-6 «Пересвет» высотой 6 м при установке на территории предприятия вдали от автотранспортных дорог.

«Согласно требованиям ВСН-41902-2001 и ГОСТ 33176-2014, автотранспортные дороги являются приоритетным объектом при проектировании систем внешнего освещения, следовательно, основную часть светильников располагаем вдоль дорог» [21].

План осветительной сети территории ГТЭС показан на рисунке 2.

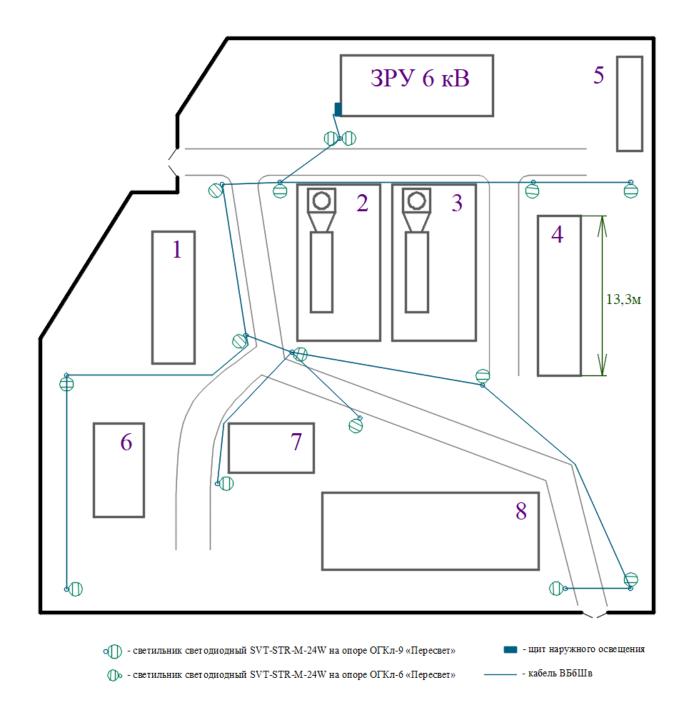


Рисунок 2 – План осветительной сети территории ГТЭС

«Нагрузка внутреннего освещения зданий рассчитывается методом удельной мощности. Формула для определения расчетных активных мощности по участкам:

$$P_{po} = P_0 \cdot K_{co} \cdot F \,, \tag{6}$$

где P_0 – удельная мощность, BT/M^2 ;

 K_{co} — коэффициент спроса освещения, по СН 357-77; F — площадь здания, \mathbf{M}^2 .

Формула для определения расчетных реактивных мощности по участкам:

$$Q_{po} = P_{po} \cdot tg\varphi, \tag{7}$$

Освещение обеспечивается современными светодиодными светильниками» [12].

Для ПУ №1 по (6,7):

$$P_{po}=3,8\cdot 0,85\cdot 38,84=0,125\,$$
 кВт
$$Q_{po}=0,125\cdot 0,88=0,11\,$$
 квар

Итого для ПУ №1 с освещением:

$$P_p$$
'=13,312+0,125=13,437 кВт
$$Q_p$$
'=7,185+0,11=7,295 квар
$$S_p$$
'= $\sqrt{13,437^2+7,295^2}$ =15,29 кВА

Расчеты нагрузок для ПУ и ГТЭС в целом приведены в таблице 3.

Таблица 3 – Расчеты нагрузок участков ГТЭС

Участок	Ксо	<i>F</i> , м ²	<i>P</i> о, Вт/м ²	<i>P</i> ро, кВт	<i>P</i> 'р, кВт	<i>Q</i> 'р, квар	<i>S</i> 'p, кВА
Вспомогательное производство					13,437	7,295	15,290
ГТА №1	0,95	88,97	3,6	0,304	109,504	65,063	127,375

Продолжение таблицы 3

Участок	Ксо	F , M^2	<i>P</i> о, Вт/м ²	<i>P</i> ро, кВт	<i>P</i> 'р, кВт	Q'р, квар	<i>S</i> 'p, кВА
ГТА №2	0,95	88,97	3,6	0,304	109,504	65,063	127,375
Ремонтная площадка	0,95	47,05	4,4	0,197	11,717	8,214	14,309
Резервуар воды	0,95	16,54	2,2	0,035	22,585	10,305	24,824
Мастерская	0,85	32,11	4,4	0,120	42,420	28,531	51,122
Компрессорная	0,95	28,44	3,6	0,097	104,957	59,512	120,656
Пункт подготовки газа	0,95	114,69	3,6	0,392	135,512	69,569	152,327
Территория					0,360	0,317	0,480
Σ					549,997	313,870	633,264

Выводы по разделу 2.

Определены силовые электрические нагрузки и нагрузки освещения. Среднесменная мощность, потребляемая силовыми электроприемниками, составляет 630,73 кВА, из которой 548,062 кВт — это активная мощность и 312,68 квар — реактивная. С учетом расходов на освещения предприятие в среднем за смену потребляет 633,263 кВА, из них почти 550 кВт составляет активная мощность и почти 314 квар — реактивная. Составлен план осветительной сети территории ГТЭС, в соответствии с которым планируется установка пятнадцати светодиодных светильников SVT-STR-M-24W на опорах типа ОГКл-9 и ОГК-6.

3 Разработка схемы электроснабжения

3.1 Компенсация реактивной мощности и выбор ТСН

«Компенсация реактивной мощности (КРМ) производится до нормативного значения коэффициента мощности $\cos \varphi = 0.95$. Требуемая мощность компенсирующих устройств (КУ) определяется по формуле:

$$Q_{\kappa,\nu} = \alpha \cdot P_{p} \cdot (tg\varphi - tg\varphi_{\kappa}), \tag{8}$$

где α — коэффициент учитывающий повышение $\cos \varphi$ естественным способом, принимается α =0,9;

 P_p – активная расчетная мощность нагрузки, кВт;

 $tg\varphi$ – тангенс угла φ до компенсации;

 $tg \varphi_{\kappa}$ — нормативный тангенс угла φ после компенсации (соответствует нормативному значению $\cos \varphi = 0.95$)» [2] .

$$Q_{\kappa,y} = 0.9 \cdot 549,997 \cdot (0.571 - 0.33) = 119,15$$
 квар.

Устанавливается 2хАУКРМ-0,4-60 по 60 квар.

Расчет КРМ показан в таблице 4.

Таблица 4 – Расчет КРМ

Показатели	cosφ	tgφ	Pр, к B т	Qр, квар	Sp, кВА
∑ на НН	0,869	0,571	549,997	313,870	633,264
КУ, квар	-	-	-	120	-
∑ на НН с КУ	0,943	0,352	549,997	193,870	583,166
Потери	-	-	11,663	58,317	-
∑ на ВН с КУ	-	-	561,660	252,187	615,679

«Требуемая мощность трансформаторов ТСН с учетом КРМ:

$$S_m \ge K_{3,\mu} \cdot S_{p,\kappa}, \tag{9}$$

где $K_{_{3.H.}}$ — нормативный коэффициент загрузки трансформаторов для двухтрансформаторной ТП, по ГОСТ 14209-85, $K_{_{3.H.}}=0.7$ [3]; $S_{_{p.\kappa.}}$ — расчетная мощность потребителей с учетом КРМ, кВА» [7].

$$S_m \ge 0.7 \cdot 583,166 = 408,22 \text{ kBA}.$$

Выбираются трансформаторы ТМГ12-630.

«Проводится проверка по коэффициенту загрузки в аварийном режиме:

$$K_{3.as.} = \frac{S_{p.\kappa.}}{S_m},\tag{10}$$

где S_m — номинальная мощность силового трансформатора, кВА» [5].

$$K_{3.a6.} = \frac{583,166}{630} = 0,926 \le 1,4.$$

Приближенные потери мощности в трансформаторах:

$$\Delta P_m = 0.02 \cdot S_p;$$
 (11)
 $\Delta P_m = 0.02 \cdot 583,166 = 11,663 \text{ kBt};$
$$\Delta Q_m = 0.1 \cdot S_p;$$
 (12)
 $\Delta Q_m = 0.1 \cdot 583,166 = 58,317 \text{ kbap}.$

Итого нагрузка СН ГТЭС с учетом потерь в ТСН, по (3):

$$S'_p = \sqrt{(549,997+11,663)^2 + (193,87+58,317)^2} = 615,679 \text{ kBA}.$$

3.2 Картограмма нагрузок

«Картограмма электрических нагрузок представляет собой размещенные на генеральном плане окружности, площади которых в принятом масштабе равны расчетным нагрузкам участков. Радиус окружностей определяется как:

$$r = \sqrt{\frac{S_p}{\pi \cdot m}},\tag{13}$$

где S_p — расчетная нагрузка участка, кВА;

m – масштаб.

Доля осветительной нагрузки:

$$\alpha = 360 \cdot S_{oc} / S_{p}, \tag{14}$$

где S_{oc} – расчетная мощность освещения, кВА.

Центр электрических нагрузок (ЦЭН) определяется для нахождения оптимального местоположения ЗРУ.

Координаты ЦЭН:

$$x_{0} = \frac{\sum_{1}^{n} (S_{p} \cdot x_{i})}{\sum_{1}^{n} S_{p}}; \quad y_{0} = \frac{\sum_{1}^{n} (S_{p} \cdot y_{i})}{\sum_{1}^{n} S_{p}},$$
 (15)

где x_i , y_i – координаты центра участка, м;

n — количество участков предприятия» [16].

Расчёт координат ЦЭН – в таблице 5.

Таблица 5 – Расчет координат ЦЭН

Участок	<i>Хі</i> , м	<i>Yi</i> , м	Ѕр, кВА	Sp·Xi, кВА	Sp·Yi, кВА
Вспомогательное производство	13,5	28,7	15,290	207,0	438,3
ГТА №1	27,3	31,6	127,375	3472,0	4021,6
ΓΤΑ № 2	35,1	31,6	127,375	4476,4	4021,6
Ремонтная площадка	45,5	28,8	14,309	651,2	412,7
Резервуар воды	51,3	44,7	24,824	1274,2	1110,0
Мастерская	9,0	14,3	51,122	459,9	732,6
Компрессорная	21,7	16,1	120,656	2617,6	1947,3
Пункт подготовки газа	34,8	9,3	152,327	5306,4	1409,2
Итого	632,8	18464,7	14093,2		
Wasan wasan a HOH	Х0, м	<i>Y</i> 0, м			
Координаты ЦЭН	29,2	22,3			

Для участка №1, по (13,14):

$$R = \sqrt{\frac{15,25}{2,5 \cdot 3,14}} = 1,4 \text{ M}$$

$$\alpha = 360 \cdot 0,167/15,25 = 3,9^{\circ}$$

Расчёты по картограмме нагрузок – в таблице 6.

Таблица 6 – Расчет картограммы нагрузок

Участок	<i>R</i> , м	m	α	Ѕос, кВА
Вспомогательное производство	1,40	2,5	3,9	0,167
ГТА №1	4,03	2,5	1,1	0,406
ГТА №2	4,03	2,5	1,1	0,406
Ремонтная площадка	1,35	2,5	6,6	0,262
Резервуар воды	1,78	2,5	0,7	0,046
Мастерская	2,55	2,5	1,1	0,160
Компрессорная	3,92	2,5	0,4	0,130

Пункт подготовки газа	4,41	2,5	1,2	0,523
-----------------------	------	-----	-----	-------

Картограмма нагрузок – на рисунке 3.

Рисунок 3 – Картограмма нагрузок

«ЗРУ не должно обязательно располагаться в ЦЭН, а может быть смещено в направлении от ЦЭН к источнику внешнего питания, может быть вынесено за территорию предприятия, чтобы обеспечить удобные подъездные пути, и не мешать производственному процессу предприятия» [8].

Расположить ЗРУ 6 кВ непосредственно в ЦЭН не является возможным ввиду помех для технологического процесса ГТЭС, таким образом ЗРУ 6 кВ

смещено в северную часть территории, к отходящей КЛ 6 кВ от ПС энергосистемы.

3.3 Расчет питающих линий 6 кВ

Суммарная мощность, передаваемая по КЛ 6 кВ от ГТЭС до ПС энергосистемы составляет 12 МВт (два генератора по 6 МВт) при соѕф=0,92 [15].

Расчет КЛ 6 кВ до ПС энергосистемы.

«Рабочий ток КЛ:

$$I_p = \frac{S'_p}{\sqrt{3} \cdot U_{_H} \cdot n},\tag{16}$$

где S'_p — расчетная мощность ТП с учетом потерь в трансформаторах, кВА;

 $U_{_{\scriptscriptstyle H}}$ – номинальное напряжение линии, кВ;

n — число цепей, шт» [16].

$$I_p = \frac{13043.5}{\sqrt{3} \cdot 6 \cdot 2} = 627.555 \text{ A}.$$

«Экономическое сечение жилы кабеля:

$$F_{_{\mathfrak{I}K}} = \frac{I_{_{p}}}{j_{_{\mathfrak{I}K}}},\tag{17}$$

где $j_{\scriptscriptstyle 9\kappa}$ — экономическая плотность тока, А/ мм²» [10].

$$F_{_{9K}} = \frac{627,555}{1.6} = 392,2 \text{ mm}^2.$$

Ток аварийного режима, по (16):

$$I_{ab} = \frac{13043,5}{\sqrt{3} \cdot 6 \cdot 1} = 1255,1 \text{ A}.$$

С поправкой на I_{as} принимаем для каждой фазы КЛ два кабеля АПвП- $1x400 \text{ мм}^2$ (допустимый ток 570 A).

«Допустимый ток кабелей с учетом условий прокладки:

$$I'_{\partial on} = n \cdot I_{\partial on} \cdot K_{nog} \cdot K_{cp} \cdot K_{noh},$$
 (18)

где n — число параллельных кабелей, шт;

 $I_{\scriptscriptstyle \partial on}$ — паспортный допустимый ток кабеля, A;

 K_{nos} , K_{cp} , K_{non} – коэффициенты, учитывающие недогруженность КЛ, среду и групповую прокладку» [17].

$$I'_{\partial on} = 2.570 \cdot 1,25 \cdot 1,08 \cdot 0,93 = 1431,27 \text{ A} > I_{as}.$$

«Потери напряжения в КЛ:

$$\Delta U_{_{I}} = \frac{\sqrt{3} \cdot I_{_{p}} \cdot L \cdot 100}{U_{_{H}}} (r_{_{0}} \cdot \cos \varphi + x_{_{0}} \cdot \sin \varphi), \tag{19}$$

где I_p — максимальный расчетный ток КЛ, А;

L – длина КЛ, км;

 r_0 , x_0 – удельные сопротивления кабеля, Ом/км» [18].

$$\Delta U_{_{I}} = \frac{\sqrt{3} \cdot 1255, 1 \cdot 2,612 \cdot 100}{6} (0,035 \cdot 0,92 + 0,057 \cdot 0,392) = 1,29 \% < 5 \%$$

Расчет КЛ 6 кВ от ГТА до ЗРУ.

Для КЛ от турбогенераторов до ЗРУ, по (16,17):

$$I_p = \frac{6521,75}{\sqrt{3} \cdot 6 \cdot 2} = 313,777 \text{ A.}$$

$$F_{_{9K}} = \frac{313,777}{1,6} = 196,1 \text{ mm}^2.$$

$$I_{ab} = \frac{6521,75}{\sqrt{3} \cdot 6 \cdot 1} = 627,555 \text{ A.}$$

С поправкой на I_{as} принимаем для каждой фазы КЛ кабель АПвП-1х400 мм² (допустимый ток 570 A), по (18,19):

$$I'_{\partial on} = 1.570 \cdot 1,25 \cdot 1,08 \cdot 0,93 = 677,97 \text{ A} > I_{ab}.$$

$$\Delta U_{_{B}} = \frac{\sqrt{3} \cdot 627,555 \cdot 0,0105 \cdot 100}{6} (0,07 \cdot 0,92 + 0,104 \cdot 0,392) = 0,01 \% < 5 \%$$

3.4 Расчет распределительной сети

«Необходимо обеспечить возможность индивидуального отключения участков для удобства обслуживания и вывода оборудования в ремонт, обеспечения надежной и селективной работы аппаратов защиты линий. Таким образом, для распределительной сети выбирается радиальная схема, каждый участок запитывается от ТСН 6/0,4 кВ (расположенных в ЗРУ) по отдельной КЛ 0,4 кВ. Кабельные линии на 0,4 кВ выполняются кабелем АВБШв. Кабели прокладываются в траншеях под землей» [15]. План прокладки КЛ — на рисунке 4.

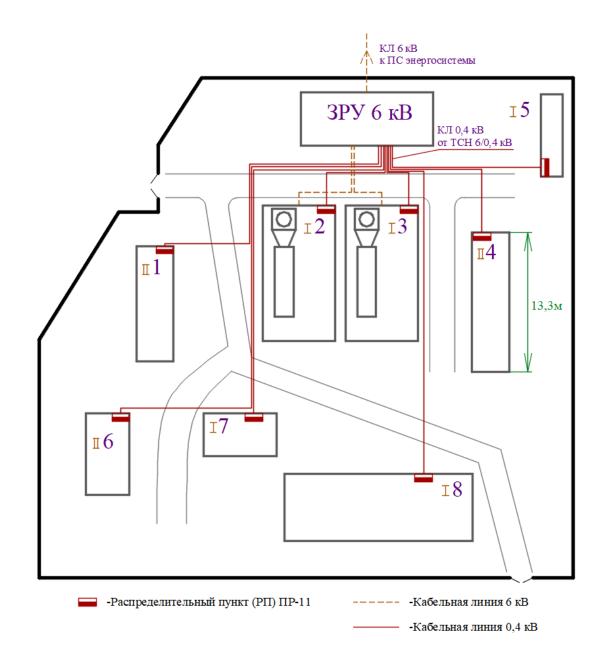


Рисунок 4 – План прокладки КЛ

Расчет для КЛ до ПУ №1. «Наибольший ток линии:

$$I_p = \frac{S_p}{\sqrt{3} \cdot U_{_H}} \tag{20}$$

где S_p- расчетная мощность участка, кВА;

 $U_{\scriptscriptstyle H}$ – напряжение линии, кВ» [18].

$$I_p = \frac{29,091}{\sqrt{3} \cdot 0.38} = 44,2 \text{ A}$$

Выбирается кабель АВБШв-5х10, допустимый 65 А [13].

«При расчете потерь напряжения в сети до 1 кВ индуктивным сопротивлением можно пренебречь» [6]. Потери напряжения в КЛ, по (19):

$$\Delta U_{_{I}} = \frac{\sqrt{3} \cdot 44, 2 \cdot 29, 99 \cdot 100}{0,38} (0,0031 \cdot 0,88 + 0 \cdot 0,315) = 0,824 \% < 5 \%$$

Выбор кабелей сведен в таблице 7.

Таблица 7 – Выбор кабелей сети 0,4 кВ

Участок	Ѕр, кВА	<i>I</i> p, A	Кабель	Ідоп, А	<i>r</i> ₀ , O _M / _M	<i>L</i> , м	ΔU , %
1	29,091	44,20	АВБШв-5х10	65	0,00310	29,99	0,824
2	139,535	212,01	АВБШв-4х95+1х50	240	0,00033	11,38	0,121
3	139,535	212,01	АВБШв-4х95+1х50	240	0,00033	7,85	0,072
4	23,415	35,58	АВБШв-5х6	42	0,00450	17,02	0,359
5	30,220	45,92	АВБШв-5х10	65	0,00310	16,32	0,306
6	101,928	154,87	АВБШв-4х50+1х25	165	0,00062	50,45	0,637
7	172,184	261,61	АВБШв-4х120+1х70	270	0,00026	37,92	0,339
8	189,775	288,34	АВБШв-4х150+1х95	305	0,00021	34,66	0,276

Выводы по разделу 3.

Рассчитана КРМ, требуемая для компенсации РМ составила 119,15 квар. Выбраны две АУКРМ-0,4-60 по 60 квар, после КРМ расчетные мощности ГТЭС составили 549,997 кВт; 193,870 квар; 583,166 кВА. Выбраны ТСН марки ТМГ12-630. Рассчитана картограмма нагрузок, координаты ЦЭН составили 29,2 м и 22,3 м по осям абсцисс и ординат, ЗРУ 6 кВ смещено выше участков ГТА №1 и ГТА №2 в северную часть территории. Выбраны кабели марки АВБШв, составлен план прокладки КЛ.

4 Расчет, выбор и проверка электрооборудования схемы электроснабжения

4.1 Расчет токов КЗ

Расчет токов КЗ на стороне 6 кВ.

Схемы для расчета – на рисунке 5.

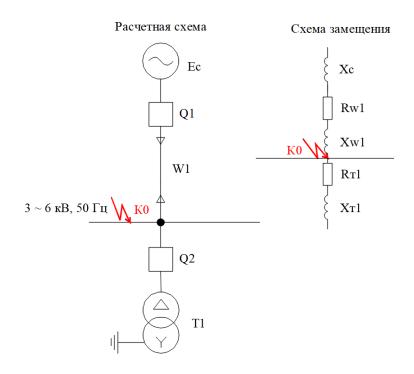


Рисунок 5 – Схемы для расчета токов КЗ

Сопротивление турбогенератора, согласно паспортным данным: X_c =0,646 Ом [18].

«Сопротивления КЛ 6 кВ от турбогенератора до ЗРУ:

$$X_{w1} = x_0 \cdot L_{w1}, \tag{21}$$

где $L_{_{\!w1}}$ – длина КЛ, км» [14].

$$X_{w1} = 0.104 \cdot 0.0105 = 0.0011 \text{ Om};$$

$$R_{w1} = r_0 \cdot L_{w1},$$
 (22)
$$R'_{w1} = 0.07 \cdot 0.0105 = 0.0007 \text{ Om}.$$

Полное сопротивление до точки К0:

$$Z_{\kappa 0} = \sqrt{R_{\kappa 0}^2 + X_{\kappa 0}^2},$$

$$Z_{\kappa 0} = \sqrt{0,0007^2 + (0,646 + 0,011)^2} = 0,647 \text{ Om}.$$
(23)

«Трехфазный ток КЗ:

$$I_{\kappa}^{(3)} = \frac{U_{\kappa}}{\sqrt{3} \cdot Z_{\kappa}},\tag{24}$$

где $U_{\kappa}-$ напряжение КЗ, кВ;

 Z_{κ} – полное сопротивление цепи, Ом» [14].

$$I_{\kappa 0}^{(3)} = \frac{6.3}{\sqrt{3} \cdot 0.647} = 5.62 \text{ KA}.$$

«Ударный ток КЗ:

$$i_{y} = \sqrt{2} \cdot K_{y} \cdot I_{\kappa}^{(3)}, \tag{25}$$

где K_y- ударный коэффициент» [14].

$$i_y = \sqrt{2} \cdot 1,8 \cdot 5,62 = 14,31 \text{ KA}.$$

Двухфазный ток КЗ:

$$I_{\kappa}^{(2)} = \frac{\sqrt{3}}{2} \cdot I_{\kappa}^{(3)}, \tag{20}$$

$$I_{\kappa}^{(2)} = \frac{\sqrt{3}}{2} \cdot 5,62 = 4,13 \text{ KA}.$$

Расчет токов КЗ в сети 0,4 кВ рассмотрим на примере КЗ на вводе РП участка №1. Расчетные схемы – на рисунке 6.

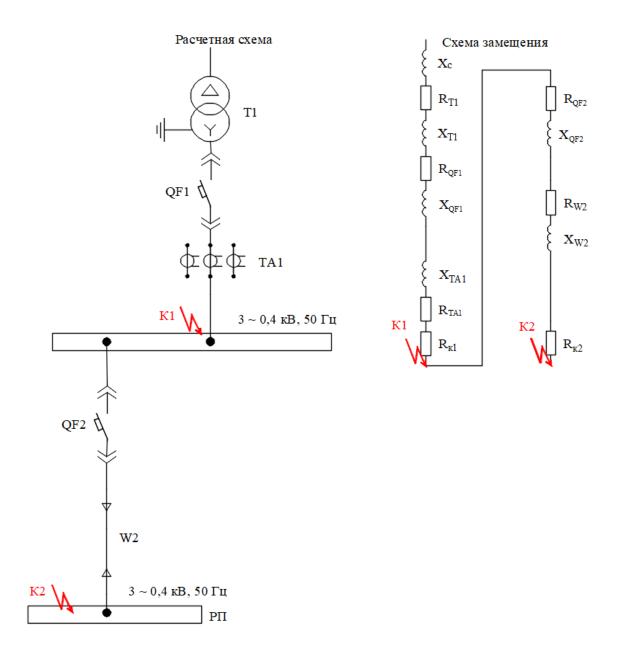


Рисунок 6 – Расчетная схема и схема замещения

«Сопротивление турбогенератора:

$$X'_{c} = \frac{U_{\kappa}}{\sqrt{3} \cdot I_{\kappa \, 3 \, K0}^{(3)}},\tag{26}$$

где U_{κ} – напряжение КЗ, кВ;

 $I_{\kappa_{\beta},K0}^{(3)}$ — трехфазный ток КЗ в точке К0 (на вводе 6 кВ РУ), кА» [14].

$$X'_c = \frac{6.3}{\sqrt{3} \cdot 5.62} = 0.647$$
 Om.

Сопротивление турбогенератора приводится к стороне 0,4 кВ:

$$X_c = X'_c \cdot \frac{U_{_{HH}}}{U_{_{_{GH}}}},\tag{27}$$

$$X_c = 647 \cdot \frac{0.4}{6.3} = 41,074 \text{ MOm}.$$

Сопротивления ТСН и автоматов принимаются согласно справочным данным [18].

«Сопротивления линии W2:

$$R_{W2} = r_0 \cdot L_{W2}, \tag{28}$$

где $L_{\kappa n1}$ – длина КЛ, м» [14].

$$R_{W2} = 3.1 \cdot 29.99 = 92.969 \text{ MOM};$$

$$X_{W2} = x_0 \cdot L_{W2},$$

$$X_{W2} = 0.099 \cdot 29.99 = 2.969 \text{ MOM}.$$
 (29)

«Переходные сопротивления: $R_{\kappa l} = 0,0034$ мОм; $R_{\kappa 2} = 0,85$ мОм» [14].

$$R_{21} = R_{T1} + R_{OF1} + R_{TA1} + R_{K1}, (30)$$

 $R_{91} = 3.1 + 0.06 + 0.07 + 0.0034 = 3.28 \text{ MOM};$

$$X_{1} = X_{m} + X_{OF1} + X_{TA1}, (31)$$

$$X_{91} = 13,6+0,07+0,07=13,74$$
 mOm;

$$R_{22} = R_{OF2} + R_{W2} + R_{K2}, (32)$$

$$R_{22} = 0.112 + 92.969 + 0.85 = 93.931 \text{ MOM};$$

$$X_{,2} = X_{OF2} + X_{W2}, (33)$$

$$X_{22} = 0.13 + 2.969 = 3.099$$
 mOm;

Сопротивления до точек КЗ:

$$R_{\kappa 1} = R_{s1}, \tag{34}$$

$$R_{\kappa 1} = 3,28 \text{ MOm};$$

$$X_{k1} = X_c + X_{k1}, (35)$$

$$X_{\kappa 1} = 41,074 + 13,74 = 54,814 \text{ MOM};$$

$$Z_{\kappa 1} = \sqrt{3,28^2 + 54,814^2} = 54,912 \text{ mOm};$$

$$R_{\kappa 2} = R_{91} + R_{92}, \tag{36}$$

$$R_{\kappa 2} = 3,28 + 93,931 = 97,214 \text{ MOM};$$

$$X_{\kappa 2} = X_c + X_{s1} + X_{s2}, (37)$$

$$X_{\kappa 2} = 41,074 + 13,74 + 3,099 = 57,913 \text{ MOM};$$

$$Z_{\kappa 2} = \sqrt{97,214^2 + 57,913^2} = 113,157 \text{ MOm};$$

«Трехфазные токи КЗ:

$$I_{\kappa}^{(3)} = \frac{U_{\kappa}}{\sqrt{3} \cdot Z_{\kappa}},\tag{38}$$

где $U_{\kappa}-$ напряжение КЗ, кВ;

 Z_{κ} – сопротивление цепи, мОм» [14].

Трехфазный ток КЗ в точке К1:

$$I_{\kappa 1}^{(3)} = \frac{0.4}{\sqrt{3} \cdot 54,912} = 4,21 \text{ KA}.$$

Ударный ток КЗ в точке К1:

$$i_{y} = \sqrt{2} \cdot K_{y} \cdot I_{\kappa}^{(3)},$$

$$i_{y} = \sqrt{2} \cdot 1, 3 \cdot 4, 21 = 7,73 \text{ KA}.$$
(39)

Сопротивления петли «фаза-ноль»:

- для линии W2:

$$R_{nW2} = 2 \cdot r_0 \cdot L_{W2}, \tag{40}$$

$$R_{nW2} = 2 \cdot 3, 1 \cdot 29, 99 = 185,938 \text{ MOM};$$

$$X_{nW2} = x_{0n} \cdot L_{W2}, (41)$$

$$X_{nW2} = 0.15 \cdot 29.99 = 4.499$$
 mOm;

- до точек К1, К2:

$$R_{n1} = R_{\kappa 1}, \tag{42}$$

$$X_{nl} = 2 \cdot X_c, \tag{43}$$

$$X_{n1} = 2 \cdot 41,074 = 82,148 \text{ MOM};$$

$$Z_{n1} = \sqrt{0,0034^2 + 82,148^2} = 82,148 \text{ mOm};$$

$$R_{n2} = R_{\kappa 1} + R_{nW2} + R_{\kappa 2}, \qquad (44)$$

$$R_{n2} = 0,0034 + 185,938 + 0,85 = 186,791 \text{ mOm};$$

$$X_{n2} = X_{nW2} + 2 \cdot X_c, \qquad (45)$$

$$X_{n2} = 4,499 + 2 \cdot 41,074 = 86,647 \text{ mOm};$$

$$Z_{n2} = \sqrt{186,791^2 + 86,647^2} = 205,909 \text{ mOm};$$

«Однофазный ток КЗ в точке К1:

$$I_{\kappa}^{(1)} = \frac{U_{\kappa}}{\sqrt{3} \cdot (Z_n + \frac{Z_m^{(1)}}{3})},\tag{46}$$

где U_{κ} – напряжение КЗ, кВ;

 $Z_m^{(1)}$ – сопротивление трансформатора, мОм» [14].

$$I_{\kappa 1}^{(1)} = \frac{0.23}{\sqrt{3} \cdot (205,909 + \frac{129}{3})} = 1.84 \text{ KA}.$$

Результаты расчетов – в таблице 8.

Таблица 8 – Токи КЗ на вводе РУНН ТП и РП цеха №1

Точка КЗ	I $\kappa^{(3)}$, κ A	$i_{ m y}$, $\kappa { m A}$	I $\kappa^{(1)}$, κ A
К1	4,21	7,73	1,84
К2	3,30	6,06	0,88

Расчет токов КЗ на вводах РП участков – в таблице 9.

Таблица 9 – Токи КЗ в сети 0,4 кВ

№ участка	<i>I</i> к ⁽³⁾ , кА	<i>i</i> _y , кА	$I\kappa^{(1)}$, κA
1	3,30	6,06	0,88
2	3,17	5,85	0,83
3	3,21	5,89	0,83
4	1,97	3,62	0,65
5	2,28	4,20	0,70
6	2,89	5,31	0,79
7	3,14	5,78	0,82
8	3,18	5,84	0,83

4.2 Выбор выключателей и разъединителей

«Условия выбора выключателей:

$$U_{\scriptscriptstyle HOM} \ge U_{\scriptscriptstyle pa6}, \text{ kB};$$
 (47)

$$I_{\text{\tiny HOM}} \ge I_{\text{\tiny DAG}}, \text{ KB}.$$
 (48)

$$I_{\text{HOM.OMK},1} \ge I_{\kappa}, \text{ KA}$$
 (49)

где $I_{{\scriptscriptstyle HOM.OMKR}}$ — номинальный ток отключения выключателя, кA;

 I_{κ} – ток трехфазного КЗ, кА.

$$i_{np.c} \ge i_y$$
, кА (50)

где $i_{np.c}$ –амплитудное значение предельного сквозного тока КЗ, кА.

$$I_m^2 t_m \ge B_{\kappa}, \ \kappa A^2 \cdot c$$
 (51)

где $I_{\scriptscriptstyle m}$ – предельный ток термической стойкости, кA;

 $t_{\scriptscriptstyle m}$ — время протекания тока термической стойкости, с;

 B_{κ} — тепловой импульс тока КЗ, вычисляемый по формуле:

$$B_{\kappa} = I_{\kappa}^{2} \cdot \left(t_{om\kappa n} + T_{a}\right), \ \kappa A^{2} \cdot c, \tag{52}$$

где $t_{om\kappa\pi}$ – время КЗ, с.

$$t_{om\kappa\pi} = t_{p,3} + t_{om\kappa\pi,B_s} , \qquad (53)$$

где $t_{p.з.}$ – время срабатывания РЗ, с;

 $t_{\mathit{omkn.B}}$ — собственное время отключения выключателя, с;

 T_a- постоянная времени затухания апериодической составляющей тока КЗ; $T_a = 0.05 \,$ с» [1].

Принимаются на вводах ЗРУ 6 кВ (фидерах к ГТА) выключатели ВВ/ТЕL-10/1600 (ВВ/ТЕL-10/630), проверка сведена в таблице 10.

Таблица 10 – Проверка выключателей 6 кВ

Паспортные данные	Расчетные данные (ввод, секц. перемычка ЗРУ)	Расчетные данные (фидеры к ГТА)
$U_{\scriptscriptstyle ext{HOM}} = 10 \; ext{кB}$	$U_{ m ycr}$ = 6 кВ	$U_{ m ycr} = 6 \ m \kappa B$
$I_{\text{HOM}} = 1600 (630) \text{ A}$	$I_{\text{р.макс}} = 1255,1 \text{ A}$	$I_{\text{р.макс}} = 627,6 \text{ A}$
$I_{\text{н.откл.}} = 20 \text{ кA}$	$I_{\rm n(0)} = 5,62~{\rm kA}$	$I_{\rm n(0)} = 5,62~{\rm KA}$
$I^2_{\text{Tep}} \cdot t_{\text{Tep}} = 1200 \kappa \text{A}^2 \cdot \text{c}$	$B_{\rm K} = 5.62^{\ 2} \cdot 3 = 94.8 \ {\rm KA}^2 \cdot {\rm c}$	$B_{\rm K} = 6,877^{\ 2} \cdot 3 = 94,8$ $\kappa A^2 \cdot c$
$i_{\text{дин}} = 20 \text{ кA}$	$i_{\rm y} = 14{,}31~{\rm KA}$	$i_{\rm y} = 14{,}31~{\rm KA}$

«Условия выбора разъединителей:

$$U_{H,ann.} \ge U_{H,vcm.} \tag{54}$$

$$I_{n.ann.} \ge I_{pa\delta.\max}. \tag{55}$$

$$I_{mep.}^2 \cdot t_{mep.} \ge B_{\kappa} \tag{56}$$

$$i_{\partial uH} \ge i_{v.} \tag{57}$$

Принимаются разъединители PB-10/1600 на секционной перемычке и PB-10/400 для заземлителей, проверка в таблице 11.

Таблица 11 – Проверка разъединителей 6 кВ

Паспортные данные	Расчетные данные	
$U_{ ext{\tiny HOM}} = 10 \; ext{кB}$	$U_{ m ycr} = 6 \ m kB$	
$I_{\text{HOM}} = 1600 \text{ A}$	$I_{\text{р.макс}} = 1255,1 \text{ A}$	
$I^2_{\text{rep}} \cdot t_{\text{rep}} = 768 \text{ kA}^2 \cdot \text{c}$	$B_{\rm K} = 94.8 \ {\rm KA}^2 \cdot {\rm c}$	
$i_{ m дин} = 40~{ m KA}$	$i_{\rm y} = 14{,}31~{\rm KA}$	

Аппараты подходят по всем параметрам.

4.3 Выбор измерительных трансформаторов

«Условия выбора ТТ:

$$U_{H.ann.} \ge U_{H.ycm.} \tag{58}$$

$$I_{1_{H.}} \ge I_{pa\delta.\max.} \tag{59}$$

$$Z_{H} \ge Z_{2\Sigma} \tag{60}$$

- проверка на термическую стойкость:

$$(\kappa_{mep.} \cdot I_{1H.})^2 \cdot t_{mep.} \ge B_{\kappa}$$
 (61)

где $\kappa_{mep.}$ – кратность термической стойкости;

 I_{1u} — номинальный первичный ток, кА.

- проверка на динамическую стойкость:

$$i_{\partial u H.} = \kappa_{9\partial} \cdot \sqrt{2} \cdot I_{1H.} \ge i_{y.}$$
 (62)

где κ_{ij} – кратность динамической стойкости» [12] .

Выбор и проверка ТТ (ввод, секц. перемычка ЗРУ). Принимаются ТТ марки ТПЛ-10-М, проверка:

$$U_{\text{н.апп.}} = 6 \text{ кB} \ge U_{\text{н.уст.}} = 6 \text{ кB.}$$

$$I_{1\text{н.}} = 1500 \text{ A} \ge I_{\text{раб.max.}} = 1255,1 \text{ A.}$$

$$(95 \cdot 1,5)^2 \cdot 3 = 60919 \text{ кA}^2 \times \text{c} > 94,8 \text{ кA}^2 \cdot \text{c}$$

$$75 \cdot \sqrt{2} \cdot 1,5 = 159,1 \text{ кA} > 14,31 \text{ кA}$$

На фидер к ГТА принимаются ТТ марки ТПЛ-10-М, проверка:

$$U_{\text{н.апп.}} = 6 \text{ kB} \ge U_{\text{н.уст.}} = 6 \text{ kB}.$$

$$I_{1\text{н.}} = 800 \text{ A} \ge I_{\text{раб.max.}} = 627,6 \text{ A}.$$

$$(130 \cdot 0.8)^2 \cdot 3 = 10816 \text{ kA}^2 \cdot c > 94.8 \text{ kA}^2 \cdot c$$

$$90 \cdot \sqrt{2} \cdot 1.5 = 190.89 \text{ kA} > 14.31 \text{ kA}$$

«Сопротивление вторичной нагрузки:

$$Z_{2\Sigma} = Z_{nDu\delta} + Z_{nDos} + Z_{KOHM}. \tag{63}$$

где $Z_{\it npu\emph{o}_{\it .}}$ – сопротивление приборов вторичной нагрузки, Ом;

 $Z_{npos.}$ – сопротивление соединительных проводов, Ом.

$$Z_{npoe.} = \frac{l_{npoe.} \cdot \rho}{s_{npoe.}}, \tag{64}$$

где l_{npoe} . – длина проводов, м;

 ρ – удельное сопротивление проводов, Ом·мм²/м;

 $s_{npos.}$ – сечение проводов, мм²;

 $Z_{_{\!\scriptscriptstyle KOHM.}}$ — сопротивление контактных соединений, около 0,1 Ом.

$$Z_{npu\delta.} = \frac{S_{npu\delta.}}{I_{H,npu\delta.}^2},\tag{65}$$

где $S_{npu\delta}$, $I_{H,npu\delta}$. – мощность, В·А, и номинальный ток прибора, А» [3].

$$Z_{npu\delta} = \frac{1}{5^2} = 0,04 \text{ Om.}$$

$$Z_{npo\delta} = \frac{25 \cdot 0,0175}{4} = 0,109 \text{ Om.}$$

$$Z_{2\Sigma} = 0,04 + 0,109 + 0,1 = 0,249 \text{ Om.}$$

Погрешность ТТ при данном значении $Z_{2\Sigma}$ составит менее 10% [18]. Выбор и проверка трансформаторов напряжения. «Условия выбора ТН:

$$U_{_{HOM}} \ge U_{_{VCM}} \tag{66}$$

$$S_{\text{\tiny HOM}} \ge S_{2\Sigma}.\tag{67}$$

Принимаются ТН марки НАМИ-6.

$$U_{H.ann.} = 6 \text{ кB} \ge U_{H.ycm.} = 6 \text{ кB}.$$

Суммарная нагрузка ТН 43 ВА [15], что менее допустимой 200 ВА. ТТ и ТН проходят проверку по всем условиям.

4.4 Выбор ОПН

Принимаются ОПНп-6, проверка в таблице 12.

Таблица 12 – Проверка ОПН

Паспортные данные	Расчетные данные	
$U_{ ext{hom}} = 6 ext{ кB}$	$U_{ m ycr}=6~{ m \kappa B}$	
$I^2_{\text{тер}} \cdot t_{\text{тер}} = 4800 \text{ кA}^2 \cdot \text{c}$	$B_{\rm K}=94.8~{\rm \kappa A^2 \cdot c}$	
$i_{ m дин}=52~ m \kappa A$	$i_{y} = 14,31 \text{ KA}$	

ОПН проходят проверку по всем условиям.

4.5 Выбор автоматических выключателей

«Выбор автоматических выключателей (АВ) для защиты КЛ 0,4 кВ производится по условиям:

- по напряжению:

$$U_{\scriptscriptstyle HOM} > U_{\scriptscriptstyle C},$$
 (68)

- тепловой расцепитель (TP), ток уставки» [9]:

$$I_{m.p.} > 1, 1 \cdot I_p,$$
 (69)

Пример выбора АВ для защиты КЛ к участку №1:

$$I_{m.p.} > 1,1.44,2 = 48,6$$
 A.

Выбирается ВА-51-35/50, уставка ТР 50 А. Выбор АВ сведен в таблице 13.

Таблица 13 – Выбор автоматических выключателей

№ участка	1,1 <i>·I</i> p, A	Авт. выкл.	<i>I</i> ном, А	<i>I</i> T.p., A
1	48,6	BA-51-35	50	50
2	233,2	BA-52-39	250	250
3	233,2	BA-52-39	250	250
4	39,1	BA-51-35	40	40
5	50,5	BA-51-35	63	57
6	170,4	BA-52-39	250	200
7	287,8	BA-52-39	320	320
8	317,2	BA-52-39	320	320

Выводы по разделу 4.

Рассчитаны токи КЗ, максимальный трехфазный ток КЗ составил 5,62 кА, ударный ток КЗ 14,31 кА. Выбрано и проверено по допустимым параметрам основное оборудование СЭС ГТЭС: выключатели ВВ/ТЕL-10, разъединители РВ-10, ТТ марки ТПЛ-10-М, ТН марки НАМИ-6, ограничители перенапряжений ОПНп-6, АВ марки ВА-51-35 и ВА-52-39.

5 Разработка системы электробезопасности ГТЭС

5.1 Разработка контура заземления

Для безопасной эксплуатации ГТЭС необходим контур заземления [4]. «Максимально допустимое сопротивление со стороны 0,4 кВ R_3 =4 Ом» [13]. «Удельное сопротивление грунта для вертикальных и горизонтальных электродов с учетом коэффициента сезонности определяется по формуле:

$$\rho_{p} = \rho \cdot K_{c}, \tag{70}$$

где ρ — удельное сопротивление грунта (известняк), 2000 Ом · м; K_c — коэффициент сезонности» [12].

$$\rho_{pe}$$
=2000·1,1 = 2200 Om·m
$$\rho_{pe}$$
=2000·1,4 = 2800 Om·m

«Используем контурное заземление. Для вертикальных электродов (ВЭ) используем угловую сталь 50х50 мм, для горизонтального электрода (ГЭ) используем полосовую сталь 50х5 мм» [12],

«Сопротивление растеканию для одного ВЭ определяется по формуле:

$$R_{obs} = \frac{\rho_{ps}}{2 \cdot \pi \cdot l} \left[\ln \left(\frac{2 \cdot l}{d} \right) + 0.5 \cdot \ln \left(\frac{4 \cdot t + l}{4 \cdot t - l} \right) \right]$$
 (71)

где l — длина ВЭ, м;

d — диаметр (для угловой стали приведенный диаметр) ВЭ, м; t — расстояние от поверхности до центра ВЭ, м.

$$d = 0.95 \cdot b,\tag{72}$$

где b — ширина уголка, м» [12].

Для одного ВЭ, по (71,72):

$$d = 0.95 \cdot 0.05 = 0.0475 \text{ M}$$

$$t = 3/2 + 0.8 = 2.3 \text{ M}$$

$$R_{oe9} = \frac{2200}{2 \cdot 3.14 \cdot 3} \left[\ln \left(\frac{2 \cdot 3}{0.0475} \right) + 0.5 \cdot \ln \left(\frac{4 \cdot 2.3 + 3}{4 \cdot 2.3 - 3} \right) \right] = 110.118 \text{ Om}$$

«Расчетное число вертикальных электродов определяется по формуле:

$$n' = R_{\alpha e_3} / R_{\mu} \tag{73}$$

где R_{H} =4 Ом – допустимое сопротивление заземления, Ом» [13].

$$n' = 110,118 / 4 = 27,52 \approx 28$$
 IIIT

«Длина горизонтальной полосы определяется по формуле:

$$l_2 = 1,05 \cdot a \cdot n' \tag{74}$$

где a – расстояние между ВЭ, м.

$$a = l_{nep} / n' \tag{75}$$

где l_{nep} — периметр территории, м» [12].

$$a = 201,1/28 = 7,18 \text{ M}$$

 $l_2 = 1,05 \cdot 7,18 \cdot 28 = 211,09 \text{ M}$

«Сопротивление растеканию горизонтального заземлителя $R_{\rm co}$ (Ом) определяется по формуле:

$$R_{29} = \frac{\rho_{pz}}{2 \cdot \pi \cdot l} \cdot \ln\left(\frac{l^2}{d \cdot t}\right) \tag{76}$$

где l — длина горизонтального электрода, м;

d – диаметр (для полосы расчетный диаметр) электрода, м;

t – расстояние от поверхности до центра Γ \ni , м.

$$d = 0.5 \cdot b, \tag{77}$$

где b — ширина полосы, м» [12].

Для ГЭ, по (76,77):

$$d = 0.5 \cdot 0.05 = 0.025 \text{ M}$$

$$t = 0.05 / 2 + 0.8 = 0.825 \text{ M}$$

$$R_{29} = \frac{2800}{2 \cdot 3.14 \cdot 211.09} \cdot \ln \left(\frac{211.09^2}{0.025 \cdot 0.825} \right) = 2.757 \text{ Om}$$

«Эквивалентное сопротивление группового заземлителя:

$$R_{zp} = \frac{R_{o69} \cdot R_{z9}}{R_{o69} \cdot \eta_{g} \cdot n + R_{z9} \cdot \eta_{z}}$$

$$(78)$$

где $\eta_{\scriptscriptstyle g}$ — коэффициент использования вертикальных электродов;

 η_{ε} – коэффициент использования горизонтальных электродов» [12].

$$R_{p} = \frac{60,962 \cdot 2,757}{60,962 \cdot 0,51 \cdot 28 + 2,757 \cdot 0,3} = 3,792 \text{ Om} < 4 \text{ Om}$$

Схема заземления ГТЭС – на чертеже 5 графической части.

5.2 Обеспечение электробезопасности

«В целом охрана труда (ОТ) и техника безопасности (ТБ) при монтаже, эксплуатации, обслуживании, ремонте системы электроснабжения обеспечиваются согласно действующему ГОСТ 12.0.004-2015. Обеспечение ОТ на предприятии осуществляется организационными и техническими мероприятиями. В целом за организацию и обеспечение охраны труда отвечает специальная служба охраны труда (COT), являющаяся самостоятельным структурным подразделением предприятия. Персонал СОТ включает штат специалистов по ОТ во главе с руководителем службы. Для обеспечения электробезопасности технологического процесса в первую очередь необходимо проводить инструктажи и проверки по работе с оборудованием и использованию СИЗ. На всех производственных участках предусмотрена установка плакатов по ТБ, ОТ и СИЗ, пример плаката приведен на рисунке 7» [11].

Рисунок 7 – Плакат по использованию СИЗ

«Работы на электротехнических установках должны производиться не менее чем двумя лицами, группа по электробезопасности не ниже III.

Организационные мероприятия по обеспечению безопасности:

- оформление работ нарядом или распоряжением;
- оформление разрешения о возможности приступить к работе;
- надзор во время работы, оформление окончания работы.

Технические мероприятия по защите персонала от поражения электрическим током при обслуживании ЗРУ:

- 1) Исключено попадание атмосферных осадков в помещения ЗРУ;
- 2) Защитные блокировки КСО:
- запрет на перемещение моноблока КСО при нахождении вакуумного выключателя во включенном состоянии (механическая блокировка);
- запрет на открывание двери кабельного отсека КСО при разомкнутом положении заземляющего разъединителя (механическая блокировка);
- запрет на включение выключателей КСО при замкнутом положении заземляющего разъединителя (электрическая блокировка);
- запрет на включение заземляющего разъединителя КСО при включенных выключателях (электрическая блокировка).
- 3) Достаточный уровень освещенности, локализованное размещение светильников перед лицевыми панелями камер КСО и ячеек 0,4 кВ.
- 4) Доступ в помещения ограничен. Ключи от дверей имеются у обслуживающего и ремонтного персонала;
- 5) Для цепей индикации, сигнализации и управления используется пониженное напряжение до 42 В;
- 6) Предусмотрена дополнительная индикация напряжения на вводах и выводах КСО и ячеек 0,4 кВ» [19].

Выводы по разделу 5.

Рассчитан контур заземления, эквивалентное сопротивление составило 3,792 Ом что менее предельно допустимого по ПУЭ значения 4 Ом. Заземление состоит из 28 вертикальных электродов (стальной уголок 50х50 мм) длиной 3 м, расположенных по периметру территории ГТЭС и соединенных стальной полосой (50х5 мм) на глубине 0,8 м. Рассмотрено обеспечение электробезопасности при эксплуатации ГТЭС.

6 Разработка системы учета расхода электроэнергии ГТЭС

6.1 Выбор оборудования АСТУЭ

«Предприятию требуется обеспечить максимальную энергоэффективность технологических процессов мониторинг И нормативного электропотребления производственного оборудования для предотвращения ненормативных и аварийных режимов работы» [15]. Распределительные сети предприятия будут подключены к АСТУЭ, выполненной с применением оборудования от АО «Энергомера» с передачей данных по каналу PLC (силовым сетям). Оборудование АСТУЭ приведено на рисунке 8.

Рисунок 8 – Оборудование АСТУЭ

«Реализация современной АСТУЭ позволит обеспечить непрерывный мониторинг электропотребления по всем потребителям, обеспечить максимальную общую энергоэффективность технологических процессов, оптимизировать общий график электропотребления с энергосистемой. В

составе АСТУЭ «Энергомера» промышленных предприятий используется следующее оборудование: счетчики СЕ 201, СЕ 301, СЕ 303, УСПД СЕ 805М, Учет электроэнергии и подключение потребителей к системе АСТУЭ осуществляется счетчиками, установленными на вводах шин 0,4 кВ собственных нужд ГТЭС и вводах РП производственных участков. Программное управление позволяет вести точный учет потерь, профилей мощности нагрузки, а также учитывать специфику электропотребления каждого конкретного потребителя. Также обеспечивается мониторинг основных показателей электропотребления и качества электроэнергии. УСПД и концентраторы установлены на каждой секции шин 0,4 кВ СН. Вместо аналоговых стрелочных измерительных приборов принимаются к установке МИП sm-963e, обеспечивающие передачу данных (напряжения, токи, мощности и т.д.) по интерфейсу RS-485 в общую цифровую сеть предприятия» [22].

6.2 Программное обеспечение АСТУЭ

«Для организации центра обработки информации (ЦОИ) АСТУЭ «Энергомера» используем центральный сервер предприятия Hyperion RS230 G4. Программные средства ЦОИ содержат специализированное ПО сЕпегдо 4.7, которое обеспечивает создание, настройку и администрирование всех необходимых для эффективной работы АСТУЭ баз данных и файлов. Информационно-измерительные средства АСТУЭ сЕпегдо 4.7 АО «Концерн Энергомера» внесены в Госреестр средств измерений под № 52208-12. Имеется декларация соответствия требованиям ГОСТ Р: № РОСС RU.AB67.Д00772» [22].

Анализ баланса отдачи электроэнергии (ЭЭ) и электропотребления позволяет эффективно оптимизировать технологический процесс и обеспечить его максимальный КПД. На рисунке 9 показано окно анализа баланса отдачи ЭЭ и электропотребления.

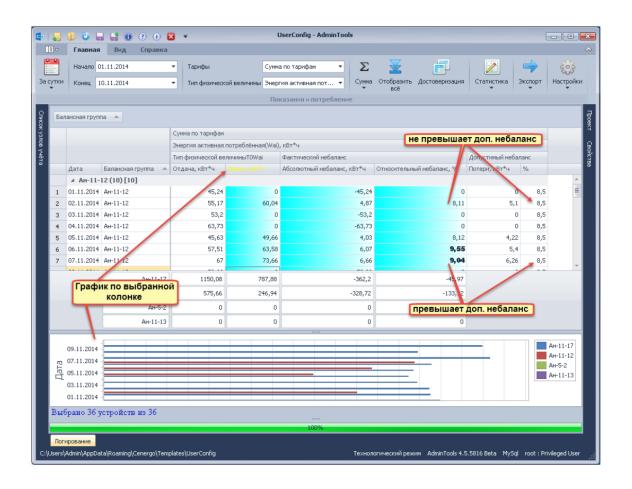


Рисунок 9 – Окно анализа баланса отдачи ЭЭ и электропотребления

«По каждому факту небаланса отдачи ЭЭ и электропотребления ведется учет. Запуск программ, входящих в состав ПО сЕпегдо 4.7, обеспечивается стандартными средствами операционной системы, применяемыми для запуска исполняемых файлов» [22].

Выводы по разделу 6.

Выбрано современное оборудование АСТУЭ от АО «Энергомера» с ПО сЕпегдо 4.7, передача данных — по каналу РLС, используется следующее оборудование: счетчики СЕ 201, СЕ 301, СЕ 303, УСПД СЕ 805М. Программные средства АСТУЭ реализуются на сервере ГТЭС, системное ПО оболочки АСТУЭ — ОС «Windows Pro». Точный автоматизированный учет электроэнергии обеспечит максимальную энергоэффективность распределительной сети ГТЭС и СЭС в целом.

Заключение

Проведена разработка СЭС газотурбинной электростанции 12 МВт Игольско-Талового нефтяного месторождения.

Выполнены задачи:

- проведен анализ объекта и нормативных требований к СЭС. На территории ГТЭС расположено 8 ПУ, номинальные мощности которых составляют от 19,2 кВт до 168,9 кВт;
- определены силовые электрические нагрузки и нагрузки освещения. Суммарные нагрузки ГТЭС составили 549,997 кВт, 313,870 квар, 633,264 кВА. Составлен план осветительной сети, будет остановлено 15 светильников SVT-STR-M-24W на опорах типа ОГКл-9 и ОГК-6;
- проведена разработка схемы электроснабжения. Рассчитана КРМ, требуемая для компенсации РМ составила 119,15 квар. Выбраны две АУКРМ-0,4-60 по 60 квар, после КРМ расчетные мощности ГТЭС составили 549,997 кВт; 193,870 квар; 583,166 кВА. Выбраны ТСН марки ТМГ12-630. Рассчитана картограмма нагрузок, координаты ЦЭН составили 29,2 м и 22,3 м по осям абсцисс и ординат, ЗРУ 6 кВ смещено выше участков ГТА №1 и ГТА №2 в северную часть территории. Выбраны кабели марки АВБШв и проверены по допустимому току, составлен план прокладки КЛ. Проверены КЛ по потерям напряжения, которые не превышают 0,824 %;
- рассчитаны токи КЗ , максимальный трехфазный ток КЗ составил 5,62 кА, ударный ток КЗ 14,31 кА. Выбрано и проверено по допустимым параметрам основное оборудование СЭС ГТЭС: выключатели ВВ/ТЕL-10, разъединители РВ-10, ТТ марки ТПЛ-10-М, ТН марки НАМИ-6, ограничители перенапряжений ОПНп-6;
- выбраны автоматические выключатели марки BA-51-35 и BA-52-39 для обеспечения защиты линий распределительной сети;
- проведена разработка системы электробезопасности ГТЭС. Рассмотрены охрана труда и безопасность. Рассчитан контур заземления

ГТЭС, эквивалентное сопротивление составило 3,792 Ом что менее предельно допустимого по ПУЭ значения 4 Ом. Заземление состоит из 28 вертикальных электродов (стальной уголок 50х50 мм) длиной 3 м, расположенных по периметру территории ГТЭС и соединенных стальной полосой (50х5 мм) на глубине 0,8 м. Рассмотрено обеспечение электробезопасности при эксплуатации ГТЭС;

- разработана система учета расхода электроэнергии ГТЭС. Выбрано современное оборудование АСТУЭ от АО «Энергомера» с ПО сЕпегдо 4.7, передача данных — по каналу РLС, используется следующее оборудование: счетчики СЕ 201, СЕ 301, СЕ 303, УСПД СЕ 805М. Программные средства АСТУЭ реализуются на сервере ГТЭС, системное ПО оболочки АСТУЭ — ОС «Windows Pro».

Разработка СЭС электростанции выполнена согласно требованиям актуальных нормативно-технических документов, предлагаемая СЭС обеспечит надежное электроснабжение и безопасную эксплуатацию оборудования.

Список используемых источников

- 1. Андреев В. А. Релейная защита систем электроснабжения в примерах и задачах. М.: Высшая школа, 2017. 256 с.
- 2. Анчарова, Т. В. Электроснабжение и электрооборудование зданий и сооружений. Вологда: Инфра-Инженерия, 2018. 416 с.
- 3. ГОСТ 14209-85. Руководство по нагрузке силовых масляных трансформаторов. М.: Энергия, 2021. 39 с.
- 4. ГОСТ 12.0.004-2015. Система стандартов безопасности труда. М.: Энергия, 2021. 45 с.
- 5. Гуревич, Ю.Е. Особенности электроснабжения, ориентированного на бесперебойную работу промышленного потребителя. М.: Торус Пресс, 2019. 408 с.
- 6. Кудрин Б.И. Электроснабжение потребителей и режимы: Учебное пособие. М.: МЭИ, 2018. 412 с.
 - 7. Кудрин Б. И. Электроснабжение. M.: Academia, 2017. 352 с.
- 8. Куско А. Сети электроснабжения. Методы и средства обеспечения качества энергии. М.: Додэка XXI, 2018. 336 с.
- 9. Миллер Г. Р. Автоматизация в системах электроснабжения. М.: Государственное энергетическое издательство, 2018. 176 с.
- 10. Можаева С.В. Экономика энергетического производства: Учебное пособие. СПб.: Издательство «Лань», 2018. 208 с., ил.
- 11. Охрана труда в энергетике: Учебник для техникумов / под ред. Князевского Б.А. – М.: Энергопромиздат, 2017. 376 с.
- 12. Полуянович, Н. К. Монтаж и наладка систем электроснабжения. М.: Лань, 2017. 400 с.
 - 13. ПУЭ, издание 7. М.: Энергия, 2022. 648 с.
- 14. РД 153-34.0-20.527-98. Руководящие указания по расчету токов короткого замыкания М.: Энергия, 2022. 69 с.

- 15. Техническая документация. Электроснабжение ГТЭС 12 МВт Игольско-Талового нефтяного месторождения, 2022. 167 с.
 - 16. Фролов Ю. М. Основы электроснабжения. М.: Лань, 2018. 480 с.
- 17. Хорольский В. Я. Эксплуатация систем электроснабжения. М.: Дрофа, 2018. 288 с.
- 18. Шеховцов В. П. Справочное пособие по электрооборудованию. М.: Форум, Инфра-М, 2019. 136 с.
- 19. Школа электрика. Информационный портал. [Электронный ресурс]. http://electricalschool.info/ (дата обращения: 14.03.2022).
- 20. Юндин М. А. Курсовое и дипломное проектирование по электроснабжению. М.: Лань, 2019. 320 с.
- 21. Электронный фонд правовых и нормативно-технических документов. [Электронный ресурс]. https://docs.cntd.ru/ (дата обращения: 17.03.2022).
- 22. Энергомера. Официальный сайт. [Электронный ресурс]. http://www.energomera.com/ (дата обращения: 12.03.2022).