федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ ХИМИИ И ИНЖЕНЕРНОЙ ЭКОЛОГИИ

Кафедра «Рациональное природопользование и ресурсосбережение»

18.03.02 «Энерго-, ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии»

БАКАЛАВРСКАЯ РАБОТА

на тему: Совершенствование технологического процесса отделения ректификации в производстве капролактама

Студент(ка)	А.С. Соловьева	
	(И.О. Фамилия)	(личная подпись)
Руководитель	М.В.Кравцова	
	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
Зав. кафедрой		
«Рациональное		
природопользование		
и ресурсосбережение»	к.п.н., М.В.Кравцова	
	(ученая степень, звание, И.О. Фамилия)	(личная подпись)
« »	20 г.	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ ХИМИИ И ИНЖЕНЕРНОЙ ЭКОЛОГИИ Кафедра «Рациональное природопользование и ресурсосбережение»

	УТВЕРЖДАЮ				
	Зав. кафедрой «РПиР»				
	М.В.Кравцова				
	(подпись)	(И.О. Фамилия)			
	« <u></u> »	20r.			
ЗАЛ	АНИЕ				
·	рскую работу				
Студентки: <u>Соловьевой Алексан</u>	ндры Сергеевны				
1. Тема: Совершенствование тех	кнологического про	цесса отделения			
ректификации в производстве капрола	актама				
2. Срок сдачи студентом законч	енной бакалаврской	і работы 01.06.2015			
3. Исходные данные к бакалавро	ской работе: Технол	огический			
регламент цеха №22 производство капролактама					
4. Содержание выпускной квалификационной работы:					
4.1 Характеристика технологического процесса отделения					
ректификации в производстве капрола	актама				
4.2 Технология производства п	иклогексанона на А	O «Куйбышевазот»			
4.3 Совершенствование технологического процесса отделения					
ректификации в производстве капрола	актама				
5. Дата выдачи задания 15.03.20	16				
Руководитель бакалаврской работы		М.В.Кравцова			
-	(подпись)	(И.О. Фамилия)			
Задание принял к исполнению		А.С.Соловьева			
	(подпись)	(И.О. Фамилия)			

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

институт химии и инженерной экологии

Кафедра «Рациональное природопользование и ресурсосбережение»

УТ	ВЕРЖДАІ	O	
3a	в. кафедрой	я́ «РПиР»	
		<u>M.B.K</u>	равцова
	(подпись)	(И.О. Фами	лия)
‹ ‹	>>	20	Γ.

КАЛЕНДАРНЫЙ ПЛАН бакалаврской работы

Студентки: Соловьевой Александры Сергеевны

по теме: Совершенствование технологического процесса отделения

ректификации в производстве капролактама

Наименование раздела	Плановый срок	Фактический	Отметка о	Подпись
работы	выполнения	срок	выполнении	руковод
	раздела	выполнения		ителя
		раздела		
Введение	15.03.2016			
Характеристика	18.03.2016			
технологического				
процесса отделения				
ректификации в				
производстве				
капролактама				
Технология	15.04.2016			
производства				
циклогексанона на АО				
«Куйбышевазот»				
Совершенствование	20.05.2016			
отделения ректификации				
в производстве				
капролактама				

Заключение	31.05.2016			
Руководитель бакалаврской работы			М.В. Крав	вцова
		(подпись)	(И.О. Фамили	(я)
Задание принял к исполнению			А.С. Соло	вьевой
		(подпись)	(И.О. Фа	милия)

АННОТАЦИЯ

Бакалаврскую работу выполнила: Соловьева А.С.

Тема работы: <u>Совершенствование технологического процесса</u> <u>отделения ректификации в производстве капролактама</u>

Научный руководитель: Кравцова. М.В.

Цель бакалаврской работы — повышение эффективности процесса и рациональное использование ресурсов в производстве капролактама при полном разделении продуктов окисления.

В работе проанализирована существующая стадия разделения продуктов на ОА «КуйбышевАзот» и разработано техническое решение по совершенствованию отделения ректификации стадии разделения.

Бакалаврская работа состоит из введения, трех глав, заключения, списка используемых источников.

Во введении обосновывается актуальность проводимого исследования, описывается цель, задачи, объект и предмет исследования.

В первой главе описана характеристика технологического процесса отделения ректификации в производстве капролактама.

Во второй главе описывается технология производства циклогексанона на АО «Куйбышевазот».

В третьей главе предложено совершенствование технологического процесса отделения ректификации в производстве капролактама.

Структура и объем работы. Работа состоит из введения, 3-х разделов, заключения, списка литературы из 65 источников, приложения — 1. Общий объем работы, без приложений 65 страниц машинописного текста, в том числе таблиц — 9, рисунков — 12.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	8
ГЛАВА 1. ХАРАКТЕРИСТИКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ОТДЕЛЕНИЯ РЕКТИФИКАЦИИ В ПРОИЗВОДСТВЕ КАПРОЛАКТАМА	. 10
1.1 Исследование рынка производства капролактама	. 10
1.2 Характеристика предприятия АО «Куйбышев Азот»	
1.3 Разделение продуктов окисления циклогексана	. 13
1.3.1 Основы процесса разделения	
1.3.2 Нейтрализация и омыление	
1.3.3 Выделение непрореагировавшего циклогексана	
1.3.4 Выделение спиртовой фракции, получение циклогексанола и циклогексанона	. 21
ГЛАВА 2. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЦИКЛОГЕКСАНОНА НА А «КУЙБЫШЕВАЗОТ»	
2.1 Принципиальная технологическая схема производства циклогексанона.	. 25
2.2 Производство циклогексанона на АО «КуйбышевАзот»	. 26
2.3 Анализ недостатков технологической схемы	. 27
2.4 Объект реконструкции	. 28
2.4.1 Описание выбранной тарелки	. 28
2.4.2 Преимущества реконструкции	. 30
ГЛАВА 3. СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕСС ОТДЕЛЕНИЯ РЕКТИФИКАЦИИ В ПРОИЗВОДСТВЕ КАПРОЛАКТАМА	
3.1 Описание процесса	. 31
3.2 Отгонка циклогексана и воды	. 31
2.3. Технологическая часть	. 33
2.3.1 Материальный баланс	. 33
2.4 Расчет ректификационной колонны отгонки циклогексана	
2.4.1 Материальный баланс клоны и рабочее флегмовое число	. 34
2.4.2 Скорость пара и диаметр колонны	. 37

2.4.3 Высота слоя жидкости на тарелке и паросодержание барботажного	
	40
2.4.4. Коэффициенты массопередачи и высота колонны	41
2.5 Технико-экономическое обоснование предлагаемой реконструкции	48
2.5.1 Расчет годовой производственной модности	48
2.5.2. Расчет капитальных вложений	49
2.5.3 Расчет капитальных затрат на строительство	51
2.5.4 Расчет себестоимости продукции	51
2.5.5 Расчет расходов на содержание и эксплуатацию оборудования	53
2.5.6 Расчет цеховых расходов	54
2.5.7 Расчет экономической эффективности колонны ректификации	55
ЗАКЛЮЧЕНИЕ	58
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	59

ВВЕДЕНИЕ

Полимерные материалы ведущее развитии занимают место промышленности, появляются полимеры \mathbf{c} каждым ГОДОМ новые различными свойствами. Очень важными по масштабам производства являются капрон нейлон, получения которых, И ДЛЯ основными полупродуктами являются адипиновая кислота и капролактам. В связи с этим выбор правильного направления развития их производства, на основе доступного и дешевого сырья с применением наиболее технически и экономически эффективных процессов при минимальных капитальных вложениях имеет большее значение [62].

С 1899 года, после первого синтеза капролактама, исследователи вели поиск промышленного способа производства. Использование неароматического сырье для получения капролактама: н-бутана, ацетилена, фурфурола и др., не привело к обнадеживающим результатам. На сегодняшний день в производстве используют только ароматическое сырье. Основным исходным сырьем для получения капролактама, до последнего времени, в промышленном масштабе был фенол. Однако он является дефицитным продуктом и основной задачей был поиск более выгодного и доступного сырья. Существует несколько промышленных схем: фенольная, окислительная, фотохимическая, толуольная. Преимущество по техникоэкономическим показателям, имеет окислительная схема. В настоящее время, примерно 70 % производства продуктов для полиамидов основывается на этом методе [3].

В промышленности капролактам получают окислением циклогексана до циклогексанола и циклогексанона. В процессе окисления кроме целевых продуктов образуются побочные реакции, а также в оксидате после реактора окисления присутствует большое количество непрореагировавшего циклогексана [2].

Актуальность данной работы обусловлена ростом потребности в продуктах органического синтеза, при этом необходимо эффективно использовать сырье и энергоресурсы, а самым важным является качество конечного продукта. Качество продукта данного процесса зависит от стадии разделения.

Основным элементом модернизации является колонна ректификации, на которой можно применить конструкцию новой тарелки.

Цель работы: повышение эффективности процесса и рациональное использование ресурсов в производстве капролактама при полном разделении продуктов окисления.

Для достижения поставленной цели необходимо решить следующие задачи:

- 1. Провести теоретический анализ производства капролактама
- 2. Разработать технологическое решение по повышению эффективности процесса стадии разделения продуктов.
 - 3. Провести экономический анализ.

ГЛАВА 1. ХАРАКТЕРИСТИКА ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ОТДЕЛЕНИЯ РЕКТИФИКАЦИИ В ПРОИЗВОДСТВЕ КАПРОЛАКТАМА

1.1 Исследование рынка производства капролактама

Капролактам (лактам ε - аминокапроновой кислоты) — представляет собой кристаллическое вещество белого цвета, впервые был синтезирован в 1899 г. из пимелиновой кислоты О. Валлахом, но несколько десятилетий не имело практического значения. Только после того, как в 1938 году немецкий химик П. Шляк провел полимеризацию и установил, что из расплава полимера можно получать застывающие при охлаждении гибкие нити, отношение к капролактаму изменилось [3]. Тем самым было найдено новое исходное вещество для получения полиамидных волокон. Молекулярная формула $C_6H_{11}NO$. Молекулярный вес — 113,16 г/моль. Температура кипения — 262,5°C. Температура плавления — 68-69°C [2].

Рисунок 1 – Вид молекулы

Капролактам — исходное сырье для производства полиамида, из которого производиться большой спектр химических продуктов, основными из которых являются синтетические волокна и нити, инженерные пластики и пленки. Крупнейшими конечными потребителями капролактамовых производных являются текстильная, автомобильная и шинная отрасли — инженерные пластики широко применяются в производстве автомобилей

(заменитель металла), а кордная ткань – при изготовлении автомобильных шин [19].

Рисунок 2 – Упрощенная схема выпуска капролактама и его производных

Долгое время Европа занимала лидирующие позиции на мировом рынке по выпуску капролактама, однако в последнее время Азия нагнала свои позиции по поставкам на рынок [31].

Азиатский регион занимает значительную долю в мировом производстве капролактама за счет ввода новых и расширения существующих мощностей [31].

В ближайшие годы, спрос на капролактам будет расти примерно на 4% в год.

На 2015 г. моровые мощности по производству капролактама составили 3,5 млн. т/год [31].

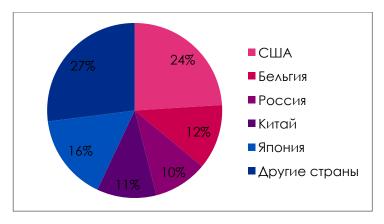


Рисунок 3 – Основные мощности производства капролактама

В России всего три предприятия которые выпускают капролактам, ОАО«Азот» (г. Кемерово), ОАО «Щекиноазот» (Тульская область) и АО «КуйбышевАзот» (г. Тольятти) [53]

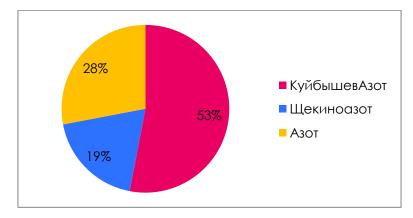


Рисунок 4 – Доли Российских производителей капролактама

АО «КуйбышевАзот» крупнейший производитель капролактама и полиамида-6. Его доля на российском рынке составляет 53%, это первое место по России и восьмое место в мире, объем его мощностей 180 тыс. т/год.

На втором месте в России и на семнадцатом в мире находится ОАО «Азот». Его мощности составляют примерно 110 тыс. т/год.

Третьим производителем капролактама в России является ОАО «Щекиноазот». Его проектная мощность — 50 тыс. т/год. На мировом рынке он занимает тридцатое место [53].

Ведущим предприятием по выпуску капролактама является АО «КуйбышевАзот» [53].

1.2 Характеристика предприятия АО «Куйбышев Азот»

Завод был освоен в 1966 году. Предприятие расположено в 1000 километрах на юго-восток от столицы России - г.Москвы, в г.Тольятти, Самарской области, на берегу самой крупной в Европе реки Волга [38].

Рисунок 5 – Расположение АО «Куйбышев Азот»

Основным направлением деятельности предприятия АО«КуйбышевАзот» являются:

- 1. Капролактам и продукты его производства (кордная ткань, полиамид 6, высокопрочные технические нити, инженерные пластики)
- 2. Аммиак и азотные удобрения [38].

Таблица 1 — Основные показатели за 2000-2015 гг.

Объем производства	2000	2015	Прирост
	тыс. тонн	тыс. тонн	
Капролактам	105	176,3	67,9%
Полиамид-6	0	135,3	новое производство
Техническая нить	0	13,5	новое производство
Кордная ткань	0	4,6	новое производство

На сегодняшний день предприятие является лидером в производстве полиамида – 6 в России, СНГ и Восточной Европе [38].

1.3 Разделение продуктов окисления циклогексана

Окисление циклогексана распространенный способ получения циклогексанола и циклогексанона - основных полупродуктов в синтезе капролактама. Недостатком окисления является большое количество непрореагировавшего циклогексана число побочных продуктов, И

выходящих после реактора. Стадия разделения необходима для получения чистых циклогексанола и циклогексанона. Циклогексанон далее направляется на оксимирование гидроксиламинсульфатом, а циклогексанол на стадию дегидрирования [3].

1.3.1 Основы процесса разделения

Для выделения непрореагировавшего циклогексана, выделение и очистка циклогексанола и циклогексанона осуществляются методами ректификации.

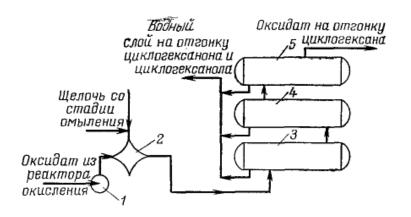
Анализ о фазовом равновесии пар — жидкость для системы циклогексан — циклогексанон позволяет сделать следующие выводы [2]:

- содержание циклогексана в паровой фазе значительно отличается от его содержания в жидкости: в парах его значительно больше; это свидетельствует о высокой относительной летучести циклогексана по отношению к циклогексанолу и циклогексанону.
- отношение концентрации циклогексанон циклогексанол в паровой фазе выше, чем в жидкой; с увеличение концентрации эта разница возрастает.

Циклогексан, циклогексанол и циклогексанон образуют с водой азеотропные смеси. При конденсации паров смесь расслаивается на водный и органический слой, поэтому ее называют гетероазеотропной. Содержание циклогексанола и циклогексанона в азеотропной смеси возрастает с увеличением давления, а содержание воды должно возрастать, с переходом в область вакуума [3].

Побочные продукты, содержащиеся в оксидате, после реактора окисления, условно делят на следующие группы: сложные эфиры, спирты, органические кислоты, альдегиды и кетоны, выкипающие при атмосферном давлении между циклогексаном и циклогексаноном, это тяжелокипящие примеси, входящие в состав так называемого X-масла (кубовый остаток

после ректификации) [62].


Состав побочных продуктов зависит от температуры процесса окисления. Если окисление проводят при 140°C [62], в основном образуется адипиновая кислота и низшие дикарбоновые кислоты — янтарная, щавелевая и глутаровая. При более высоких температурах, в оксидате, главным образом присутствуют монокарбоновые кислоты. Доля монокарбоновых кислот, при высокотемпературном процессе окисления, составляет примерно 70 — 78% от их общего содержания. В состав оксидата также входят окси - и кетокислоты [3].

Относительно легко удалить из оксидата, такие продукты как сложные эфиры и органические кислоты, которые загрязняют циклогексанон, для этого надо обработать оксидат водным раствором щелочи. Удалить спирты и другие кислородсодержащие продукты, весьма затруднительно [3].

1.3.2 Нейтрализация и омыление

Водным раствором едкого натра, обычно нейтрализуют органические кислоты, входящие в состав. После чего разделяют водный слой, который содержит соли и частично неизрасходованную щелочь, а также нейтрализованный органический слой продуктов окисления. Реакция проходит быстро, но важно обеспечить хороший контакт между оксидатом и щелочью [62].

На практике известны два способа нейтрализации оксидата. Первый способ – это предварительная нейтрализация всего оксидата и последующая отгонка циклогексана.

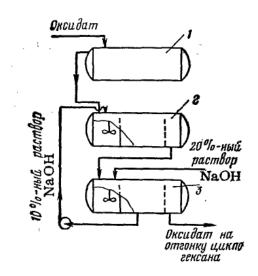

1 – насос; 2 – щелевой смеситель; 3,4,5 – отстойники.

Рисунок 6 – Схема нейтрализации оксидата

Из реактора окисления циклогексана, оксидат с помощью насоса *1* подается в щелевой смеситель *2* с давлением 1,5 МПа. Водный раствор щелочи подается в этот же смеситель, обычно используется частично отработанная щелочь, поданная в избытке на стадию омыления. После щелевого смесителя обе фазы проходят последовательно три горизонтальных отстойника *3,4* и *5*. Время пребывания оксидата в отстойниках 1 ч, температура на несколько градусов ниже температуры в реакторе окисления [3].

Одновременно с реакцией нейтрализации разлагается гидроперекись циклогексила (первичный продукт окисления циклогексана), при этом получается дополнительное количество циклогексанола и циклогексанона. Вместе с разложением гидроперекиси, под действием щелочи, протекает нежелательная реакция конденсации циклогексанона. Этот способ не экономичен, так как соотношение подаваемых объемов щелочи и оксидата равен 1:15, часть щелочи оказывается неизрасходованной, при этом в оксидате остаются кислоты, вызывающие коррозию аппаратуры на последующих стадиях [3].

Ко второму способу относиться нейтрализация оксидата после отгонки большей части циклогексана. Объем оксидата в этом случае уменьшается примерно в три-четыре раза, кислоты концентрируются в кубовом продукте, который и передаются на нейтрализацию [62].

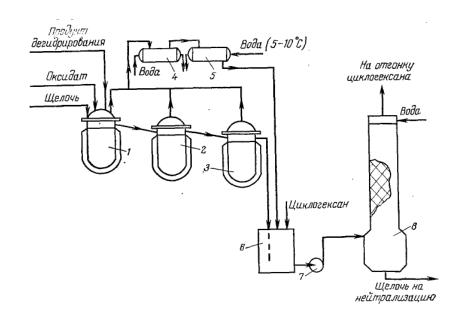

1 – разделительный сосуд; 2 – реактор омыления I ступени; 3 – реактор омыления II ступени.

Рисунок 7 – Схема нейтрализации и омыления продуктов окисления

В этом случае нейтрализация совмещается с процессом омыления сложных эфиров, и проводиться последовательно в двух одинаковых аппаратах 2 и 3. Каждый аппарат состоит из двух секций, в одной из секций водная и органическая фазы перемешиваются мешалкой, а в другой разделяются. Щелочь подают во второй по ходу оксидата аппарат 3, из него она поступает в первый [3].

Такая схема способствует более полному использованию щелочи. Водный раствор солей органических кислот выводиться из первого аппарата на сжигание.

Существуют схемы, в которых нейтрализация и омыление проводятся раздельно, предусматривается отгонки омыление после полной циклогексана. Процесс осуществляется двух или трех одинаковых В реакторах, последовательно соединенных между собой, снабженные паровыми рубашками и мешалками [3].

1,2,3 – реакторы омыления; 4,5 – холодильники-конденсаторы; 6 – смеситель; 7 – насос; 8 – экстрактор.

Рисунок 8 – Схема омыления с экстракцией солей

Водный раствор щелочи подают в первый по ходу реактор *1*, в него также вводят оксидат после предварительной отгонки циклогексана. В реактор *1* могут подаваться продукты дегидрирования. После прохождения реактора *3*, омыленный продукт с избытком щелочи подается в смеситель *6*. Экстракция проводиться в насадочном экстракторе *8*. Смесь из смесителя *6* подается в нижнюю часть колонны, а в верхнюю часть подается деминерализованная вода. Вода вымывает соли из поднимающегося вверх по экстрактору омыленного продукта, который выводиться с верха колонны. Раствор солей, который содержит также неотработанную щелочь, которая выводиться с низа экстрактора, далее этот раствор передается на нейтрализацию органических кислот [3].

В данной технологической схеме имеется недочет, концентрация циклогексана в смесителе низкая, то в этом случае органическая фаза, выходящая из экстрактора, содержит соли органических кислот. При дальнейшей ректификации омыленного продукта попадание солей органических кислот в ректификационную колонну вызывает забивку испарителей колонн и тарелок [2].

Однако, далеко не все эфиры расщепляются при нейтрализации и омылении, некоторая часть остается в смеси, которая направляется на ректификацию [62].

1.3.3 Выделение непрореагировавшего циклогексана

Расчет колонны для непрореагировавшего циклогексана используют данные для тройной системы циклогексан — циклогексанол — циклогексанон. Для всех схем, работающих в производстве капролактама, суммарное содержание циклогексанола и циклогексанона в циклогексане, который возвращается на стадию ректификации, строго регламентировано не более 0,3%. В связи с тем, что концентрации тяжелокипящих компонентов очень низкая, то расчет эффективности колонны по данным фазовых равновесий пар — жидкость, невозможен. Поэтому данные проектируются с учетом практических результатов при эксплуатации промышленных установок [14].

Устройство колонн для отгонки циклогексана подразделяются в зависимости от стадии нейтрализации. Если схеме имеется предварительная нейтрализация органических соединений, TO применяют колонны с клапанными или ситчатыми тарелками. Оксидат после нейтрализации дросселируется, и в виде образовавшейся парожидкостной смеси поступает в колонну. Инертные газы, выходящие ИЗ конденсатора колонны, направляются в абсорбер, где из них улавливается унесенный циклогексан. Ректификационная колонна работает при избыточном давлении, около 50 кПа, температура в верхней части колонны составляет 83 – 84°C, в кубе 92 – 95°C [14].

Предельное значение в 0,3% достигается довольно редко, обычно в дистилляте содержаться около 0,15% циклогексанола и циклогексанона Кроме того, дистиллят содержит кислоты, такие как уксусная, муравьиная, и некоторое содержание спиртов C_5 . Поэтому верхнюю часть колонны и конденсаторы изготавливают из коррозионностойких марок стали [5].

Рабочее флегмовое число в колонне поддерживается равным 0,5. Подача пара ведется автоматически и зависит от температуре в кубе, возможно подачу пара корректировать по уровню в кубе [3].

В условиях нормальной работы стадии нейтрализации, кубовый продукт имеет слабую кислую реакцию. Нижнюю часть колонны и сам испаритель, как и верхнюю часть, изготавливают из коррозионностойких марок стали. Связанно это с гидролизом на нагревательных поверхностях испарителя сложных эфиров и выделением небольших количеств кислоты.

Существенно влияет на режим работы колонны попадание воды, так как в этом случае образуются азеотропные смеси с водой [3].

В колоннах применяются плоско-параллельная насадки, если схема разделения продуктов работает без предварительной нейтрализации. Достоинством данной колонны в том, что они выдерживают высокие нагрузки по пару и жидкости. Колонна и сама насадка изготавливается из коррозионностойких марок стали.

Насадка состоит из отдельных пакетов, высотой 0,75 – 1,0 м; общая 20 м. Между каждыми двумя блоками основных пакетов размещаются перераспределительные пакеты высотой 0,1, которые обтянуты мелкой металлической сеткой. Блоки нужны для перераспределения Ha стекающей жидкости. практике В основном применяют виброраспределители или распределители форсуночного типа, это надо для равномерного распределения флегмы и питания, подаваемые на колонну [14].

Из-за плохого разделения органических и водно-кислых слоев после реактора окисления, в оксидате, поступающем в колонну, может содержаться некоторое количество воды. Поэтому сборник дистиллята снабжается разделительной перегородкой, где отстаивается вода [5].

Тарельчатые колпачковые колонны применяются для отгонки циклогексана после омыления. На этой стадии крайне важно добиться отсутствия циклогексана в кубовом продукте.

1.3.4 Выделение спиртовой фракции, получение циклогексанола и пиклогексанона

Давление важнейший фактор, который влияет на качество разделения смеси. Выделение примесей проводят методом ректификации под атмосферным или близким к атмосферному давлении.[3].

После стадии отгонки циклогексана оксидат направляется в колонну, где циклогексанол и циклогексанон отчищаются от тяжелокипящих продуктов (X-масло), а также выделяется спиртовая фракция. Для этого успешно используются колонны с плоско-параллельной насадкой, или ситчатыми тарелками, которые обладают низким гидравлическим сопротивлением. В большинстве случаев отгонка спиртовой фрактции проводиться на двух последовательно соединенных колоннах.[2].

Дистиллят выделенный на первой колонне, содержит спирты и до 30— 50% циклогексанола и циклогексанона. Полученный дистиллят разгоняют на следующей колонне. На первой колонне снижают присутствие спиртов в кубовом продукте, а во второй – и минимального содержания в дистилляте циклогексанона. В кубовом продукте второй колонны содержится незначительное количество спиртов, и его присоединяют к питанию предыдущей колонны. Выделение из спиртовой фракции индивидуальных продуктов, получаемой на второй колонне, связано со значительными капитальными и энергетическими затратами, поэтому ее направляют на сжигание [5].

От температуры флегмы зависит работа колонн. При низкой температуре флегмы разделение резко ухудшается, это обусловливается тем, что концентрация спиртов сдвигается в нижнюю часть колонны. Недопустимо также попадание в колонну воды: разделение ухудшается из-за образования азеотропных смесей. Для удаления попавшей воды в сборнике дистиллята устанавливается разделительная перегородка [5].

В некоторых схемах предусматриваются отдельные колонны для

отгонки циклогексана и циклогексена из продуктов дегидрирования, в случае, если продукты данного вида попадают в «спиртовую» колонну, ухудшается режим работ колонны. Происходит это из-за повышенного содержания в питании циклогексена и циклогексана, также снижается температура верха, распределение спиртов по тарелкам колонны сдвигается в направлении нижних тарелок и становится вероятным их повышенное содержание в кубовом продукте [14].

Если же на стадии окончательной отгонки циклогексана по технологическим причинам не произошла полная отгонка, кубовый продукт колонн ни в коем случае нельзя передавать на последующую стадию получения циклогексанона, так как циклогексанон неизбежно будет содержать повышенное количество спиртов [3].

Получение циклогексанона осуществляется в две ступени. На первой – выделяется циклогексанон-сырец, который содержит 70—90% кетона. На второй выделяется циклогексанон-ректификат, содержащий не менее 99,9% кетона [2].

В кубовом продукте, выходящим из первой колонны, содержится примерно 1% циклогексанона. На остальной процент приходится циклогексанол и X-масло. Циклогексанол направляется в колонну, где получают циклогексанол-ректификат, после его направляют на стадию дегидрирования [3].

С увеличение вакуума относительная летучесть циклогексанона и циклогексанола возрастает. Расчет эффективности колонн, разделяющих циклогексанон и циклогексанол, по равновесным данным может привести к ошибкам.

Во-первых, вследствие того, что колонна имеет довольно большое гидравлическое сопротивление, абсолютное давление вверху, равное 4—6,5 кПа, возрастает к низу колонны до 26—33 кПа, использование изобарических кривых для расчета не соответствует действительной картине процесса.

Во-вторых, для получения дистиллята с предельно малым содержанием тяжелокипящего продукта следует учитывать характер кривой равновесия пар—жидкость.

В-третьих, надо обратить внимание на колебания давления греющего пара, которое плохо сказывается на качестве разделения. Поэтому двухколонную схему получения циклогексанона следует признать наиболее рациональной [3].

Абсолютное давление меняется по высоте, тарелки для колонны изготавливаются из царг различного диаметра, с увеличением диаметра снизу вверх. Вакуум создается несколькими способами, трехступенчатым паровым эжектором с конденсаторами поверхностного типа, также возможно применение поршневых вакуум-насосов. Автоматические клапаны, которые устанавливают в колонне, нужны для того, чтобы поддерживать вакуум. Это нужно для регулирования подвода воздуха, в зависимости от показаний вакуумметра. Конденсат, содержащий небольшое количество циклогексанона, после эжектора собирается в барометрическом сборнике и возвращается в реактор омыления [62].

Температура верха колонны для отгонки циклогексанона-сырца составляет 68—75°С в зависимости от содержания циклогексанона и установленного вакуума, а колонна для отгонки циклогексанона-ректификата 62—65°С. Флегмовые числа на обеих колоннах равны 3,5—5,0. Если снижается нагрузка, то не рекомендуется изменять количество флегмы, а продолжать работу при увеличенных флегмовых числах. При установлении нормальной нагрузки колонну можно без особых затруднений вывести на режим с отбором требуемого количества дистиллята. Подача пара в испаритель производится автоматически по температуре в кубе либо по температуре выбранной тарелки в колонне [3].

Кубовый продукт второй колонны обычно отправляют в реактор омыления или используется в качестве абсорбента на стадии окисления

циклогексана [2].

Качество циклогексанона-ректификата контролируется газохроматографическим анализом, также определяется перманганатное число. Оно показывает количество примесей в продукте, для получения капролактама высокого качества, перманганатное число должно составлять не менее 10 тыс. сек [2].

Еще одним из побочных продуктов является циклогексенон, который образуется в процессе дегидрирования, он образует вместе с циклогексаноном и циклогексанолом он образует тройную азеотропную смесь, разделить которую в существующих ректификационных системах невозможно [14].

Однако, если на стадии отгонки спиртовой фракции в куб одной из колонны ввести небольшое количество щелочи, то удастся избежать попадания циклогексенона в циклогексанон [5].

Гептанон-2 является специфической примесью для циклогексанона окислительного метода. Его относительная летучесть с циклогексаноном близка к единице и не изменяется при варьировании давления. Причина его появления — присутствие в циклогексане, получаемом гидрированием бензола, *н*-гептана, который окисляется до гептанона-2. В случае появления *н*-гептана в циклогексане необходимо включать в работу, предусмотренную в схеме ректификационную колонну для его отгонки [3].

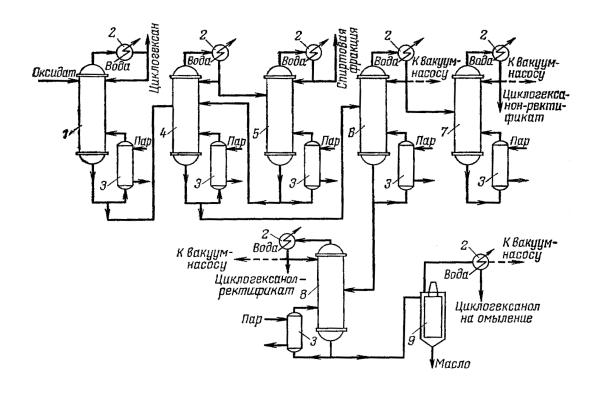
Вывод: стадия разделения продуктов имеет огромное значение в современной промышленности, и в частности в процессе окисления циклогексана, так как кроме целевых продуктов в реакторе образуется масса побочных реакций. Вторые в свою очередь негативно сказываются на выпуске изготовляемых товаров. Процесс разделения продуктов окисления позволяет также сэкономить ресурсы, возвращая непрореагировавший циклогексан на стадию окисления.

ГЛАВА 2. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ЦИКЛОГЕКСАНОНА НА АО «КУЙБЫШЕВАЗОТ»

2.1 Принципиальная технологическая схема производства пиклогексанона

За последние годы было разработано большое число различных промышленных схем. Каждая схема включает стадию гидрирование бензола, окисление циклогексана, стадию разделения продуктов, выделение непрореагировавшего циклогексана и выделение спиртовой фракции, с целью получения чистого циклогексанола и циклогексанона [62].

Рисунок 9 – Блок-схема производства циклогексанона


Стадия разделения продуктов осуществляется методом ректификации.

Ректификация — это процесс многократного частичного испарения жидкости и конденсации паров. Она нашла широкое применение в самых различных отраслях химической промышленности. Особенно где выделение компонентов в чистом виде имеет огромное значение [7].

Процесс осуществляется путём контакта потоков пара и жидкости, имеющих различную температуру. При каждом контакте из жидкости преимущественно испаряется легколетучий компонент, которым обогащаются паров конденсируется пары, ИЗ преимущественно труднолетучий компонент, переходящий в жидкость. Такое многократное контактирование приводит к практически полному разделению исходной смеси [7].

Для отгонки циклогексана применяют колонны с ситчатыми или клапанными тарелками [10].

2.2 Производство циклогексанона на АО «КуйбышевАзот»

1 – колонна для отгонки циклогексана; 2 – холодильникиконденсаторы; 3 – испарители; 4,5 – колонны для отгонки спиртовой
фракции; 6 – колонна для отгонки циклогексанона-сырца; 7 – колонна для
отгонки циклогексанона-ректификата; 8 – колонны для отгонки
циклогексанола; 9 – роторно-пленочный испаритель.

Рисунок 10 – Схема ректификации омыленного оксидата

После разделительного сосуда, оксидат попадает в ректификационную колонну 1, где отгоняется основное количество циклогексана. Дистилят колонны возвращается на окисление, а кубовый продукт передается в колонну 4,5 – в которой отгоняются остатки циклогексана, содержащего небольшие количества циклогексанола И циклогексанона, также легколетучих спиртов. Кубовый продукт 4 колонны поступает на вакуумную колонну 6, где в виде дистиллята получается циклогексанон-сырец, который содержит легколетучие примеси (кетоны, спирты и др.) Кубовый продукт колонны б, представляет собой смесь циклогексанола и Х-масла, который направляют на колонну 8. Дистиллят колонны 6 – циклогексанон сырец – поступает в вакуумную колонну 7, где получается циклогексанонректификат, пригодный для последующей переработки. В 8 колонне дистиллятом служит циклогексанол-ректификат, кубовым продуктом является Х-масло [51].

2.3 Анализ недостатков технологической схемы

В данной схеме ректификации омыленного оксидата, колонна для отгонки циклогексана имеет клапанные провальные тарелки [51].

Тарелки — внутренние барботажные устройства ректификационных колонн, обеспечивающие непосредственный контакт между паровой и жидкой фазами [17].

За последнее время всё более широкое распространение получили клапанные тарелки, особенно для работы в условиях значительно меняющихся скоростей газа. К их достоинствам относятся сравнительная высокая пропускная способность по газу, гидродинамическая устойчивость, постоянная и высокая эффективность в широком интервале нагрузок по газу [20].

К недостаткам этих тарелок следует отнести их повышенное гидравлическое сопротивление, обусловленное весом клапана [18].

Полностью или частично устранив эти недостатки можно увеличить сферу применения клапанных тарелок, снизить энергоёмкость процесса, повысить производительность установки.

2.4 Объект реконструкции

В данном проекте предложена реконструкция тарелки ректификационной колонны отгонки циклогексана.

2.4.1 Описание выбранной тарелки

В настоящее время эксплуатируются клапанные провальные тарелки, которые позволяют за счет энергии газового потока и переменной массы перемещающейся клапанной системы усилить пульсационный характер движения и сообщить дополнительную энергию для перемешивания барботажного слоя на тарелке и дробления струй жидкости в межтарельчатом пространстве, что увеличивает поверхность контакта и эффективность [51].

Конструкция данной клапанной тарелки для массообменных аппаратов, содержит основание, в котором выполнены отверстия с отбортованными кромками, и канал закреплённый на центральном штоке, снабжённый поддоном, расположенным под основание тарелки. Кромки отверстий отогнуты вниз, выполнены U-образной формы и имеют прорези, расположенные внизу на внутренних стенках. Клапан выполнен в виде колпачка с прорезями вверху и на боковой поверхности. Боковые стенки поддона имеют сужающиеся книзу прорези [41].

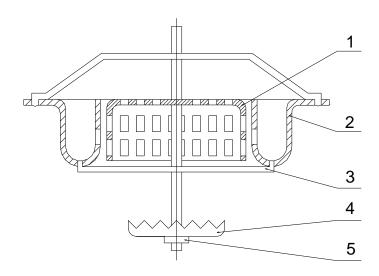


Рисунок 11 – Клапанная провальная тарелка

В предложенной согласно патентам тарелке с целью улучшения гидродинамических условий контактирование и повышения эффективности, под клапанами установлены поворотные диски [42,44,45,46].

В тарелке для массообменных аппаратов содержатся: пластинчатые клапаны, снабжённые устройством для регулирования угла открытия его; поворотные диски установлены под клапанами. Пластинчатые клапаны 3 — саморегулирующиеся устройства, которые сами открывают проходы для пара в зависимости от его количества и поддерживают этим стабильный процесс ректификации [47].

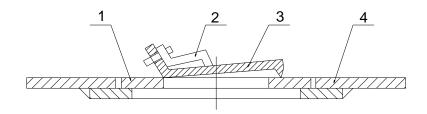


Рисунок 12 – Клапанная тарелка

Угол открывания клапана 3 регулируется специальным устройством 2. Клапан крепится к полотну 4 с помощью поворотного диска 1.

Был проведен анализ торговых компаний, и выбрана высокопроизводительная клапанная тарелка компании FRI, которые имеют наивысший общий показатель эффективности и производительности из всех

поперечноточных тарелок «Superfrac» [28].

2.4.2 Преимущества реконструкции

Увеличение производительности. Колонны рассчитаны на производство 15 тонн циклогексанона в час

Экономия энергии. Предложенные решения, т.е. замена существующих тарелок на новые современные высокоэффективные внутренние устройства (клапанные тарелки), позволяют значительно уменьшить потребление энергии.

ГЛАВА 3. СОВЕРШЕНСТВОВАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА ОТДЕЛЕНИЯ РЕКТИФИКАЦИИ В ПРОИЗВОДСТВЕ КАПРОЛАКТАМА

3.1 Описание процесса

В результате жидкофазного окисления циклогексана в цехе окисления получается смесь сложного состава, которая содержит значительные количества непрореагировавшего циклогексана.

Задачей цеха циклогексанона является выделение непрореагировавшего циклогексана для возврата его в цех окисления и получения чистых циклогексанона и циклогексанола.

Эти процессы протекают в следующей последовательности:

- а) Отгонка циклогексана.
- б) Отгонка спиртовой фракции.
- в) Получение циклогексанона ректификата.
- г) Получение циклогексанола ректификата.

Циклогексанон направляется далее в цех капролактама на стадию оксимирования, a циклогексанол на стадию дегидрирования цеха дегидрирование циклогексанона, где происходит циклогексанола ДО циклогексанона, после чего продукты дегидрирования вновь поступают в колонны ректификации для отделения циклогексанона от циклогексанола и побочных продуктов [51].

3.2 Отгонка циклогексана и воды

Отгонка циклогексана и воды производится при атмосферном давлении вверху колонны. Колонна оборудована высокоэффективными и высокопроизводительными тарелками «Superfrac». Тарелки «Superfrac» принадлежат к категории высокопроизводительных тарелок, которые могут работать при повышенных нагрузках пар-жидкость в сравнении с простыми

тарелками. Их эффективность остается прежней или может быть выше. Кроме того, они имеют очень хорошую сопротивляемость к забиваемости из-за оптимальной схемы расположения потока жидкости на тарелке, а также самоочищающийся эффект из-за распределения паровых параллелей на поверхности тарелки [51].

Органический слой, поступающий из омыления через подогреватели, подается на питание колонны на 30-ю тарелку (сверху). Для подогрева органического слоя используется паровой конденсат. В подогревателе используется водяной пар только во время пусках [51].

Температура верха колонны 78°C, а куба не более 170°C. Необходимое тепло для ректификации подводится в испаритель. Греющий агент — водяной пар давлением не более 1,6 МПа. Колонна работает при флегмовом числе 0,5. Для контроля процесса предусматривается измерение температуры на линии ввода питания и по высоте колонны, а также замер давления верха и в кубе колонны [51].

Пары дистиллята, состоящие из циклогексана, циклогексена и воды с массовой долей циклогексанона и циклогексанола в виде примесей не более 0,2%, направляются в конденсаторы, которые охлаждаются оборотной водой, и в хвостовой конденсатор, охлаждаемый нахоложенной водой. Инертные газы сбрасываются в атмосферу через гидрозатвор с высотой гидравлического затвора 400 мм. Расход конденсата на гидрозатвор 1 м³/ч.

Сконденсировавшийся циклогексан, циклогексен и вода поступают из конденсаторов с температурой не более 65°С в сборник флегмы. В сборнике флегмы выделяется вода. Граница раздела фаз поддерживается автоматически регулятором уровня, отбором водного слоя в бак. Уровень органического слоя циклогексана поддерживается автоматически с помощью регулятора уровня выводом циклогексана насосом. Циклогексан из сборника флегмы подается насосом в качестве флегмы в колонну, а её избыток, после охлаждения в холодильнике до температуры 50°С, в цех окисления (или

промсклад). Подача флегмы поддерживается постоянно с помощью регулятора расхода, клапан которого установлен на линии нагнетания насоса [51].

Заданная температура в кубе колонны регулируется автоматически изменением подачи пара в испаритель. Кубовая жидкость колонны, состоящая из циклогексанона, циклогексанола, спиртов и Х-масел с массовой долей циклогексана не более 0,005%, подается насосами на питание колонны спиртовой фракции. Заданный отгонки уровень кубе колонны автоматически клапаном, установленным поддерживается линии нагнетания насоса [51].

2.3. Технологическая часть

2.3.1 Материальный баланс

Материальный баланс составлен на основании данных из постоянного технического регламента цеха 22 АО «КуйбышевАзот» [51].

Таблица 2 – Материальный баланс колонны отгонки циклогексана

	Питание из	Флегма	Дистилят	Водный	Куб,
	омыления			слой	жидкость
1	2	3	4	5	6
№ потока	110	150	145	160	170
Температура,°С	120,0	60,3	50,0	60,0	146,5
Давление (бар)	4,0	5,8	6,0	1,02	4,7
Молярный поток	738,0	130,599	355,361	67,921	314,722
(кмоль/час)					
Массовый поток (кг/час)	62250,0	10959,668	29821,301	1226,384	31202,318
Объесный поток (м ³ час)	79,4	14,779	39,691	1,279	36,741

Продолжение таблицы 2

1	2	3	4	5	6
Массовый поток (кг/час)					
Циклогексан	29631,0	10889,713	29630,955	0,046	0,00
Циклогексанон	16484,422	12,654	34,432	0,390	16449,602
Циклогексанол	13537,508	2,726	7,419	0,208	13529,882
Циклогексен	38,595	14,184	38,595	0,00	0,00
Спирты	987,908	32,225	87,638	2,958	897,267
Гептпнол -2	2,490	0,00	0,00	0,00	2,490
Тяжелые спирты	323,078	0,00	0,00	0,00	323,078
Вода	1245,0	8,165	22,218	1222,78	0,00
Весовые %					
Циклогексан	47,6	99,362	99,362	0,004	0,00
Циклогексанон	26,481	0,115	0,115	0,032	52,719
Циклогексанол	21,747	0,025	0,025	0,017	43,362
Циклогексен	0,062	0,129	0,129	0,00	0,00
Спирты	1,587	0,294	0,294	0,241	2,876
Гептпнол -2	0,004	0,00	0,00	0,00	0,008
Тяжелые спирты	0,519	0,00	0,00	0,00	1,035
Вода	2,00	0,075	0,075	99,706	0,00

2.4 Расчет ректификационной колонны отгонки циклогексана

Содержание циклогексана в паровой фазе для тройной системы совпадает с данными, полученными для бинарной системы циклогексан — циклогексанон. Расчеты минимального и рабочего флегмового чисел, а также числа для тарелок можно производить по данным для бинарной системы [3].

2.4.1 Материальный баланс клоны и рабочее флегмовое число

Производительность колонны по дистилляту P и кубовому остатку W найдем из уравнения материального баланса [7]:

$$F = P + W -$$
общий баланс (1)

$$F\overline{x}_F = P\overline{x}_P + W\overline{x}_W - \text{ no HK}$$
 (2)

где, F — производительность колонны; P — дистиллят; W — кубовый остаток.

Отсюда находим:

$$W = \frac{F(\overline{x}_P - \overline{x}_F)}{\overline{x}_P - \overline{x}_W}$$

где, \overline{x}_P , \overline{x}_F , \overline{x}_W — мольные доли легколетучего компонента в дистилляте, исходной смеси и кубовом остатке [7].

$$W = \frac{62250(0,99 - 0,47)}{0,99 - 0,006} = 32896,34 \text{ кг/ч}$$

$$P = F - W = 62250 - 32896,34 = 29353,66 \,\mathrm{kr/y}$$

Пересчитаем составы фаз из массовых долей в мольные по соотношению [7]:

$$\overline{x}_F = \frac{\overline{x}_F \ M_{\text{II}-\text{aH}}}{\overline{x}_F \ M_{\text{II}-\text{aH}} + (1 - \overline{x}_F) \ M_{\text{II}-\text{OH}}}$$
(3)

где, $M_{\rm ц-ah}$ и $M_{\rm ц-oh}$ молекулярные массы соответственно циклогексана и циклогексанона.

Питание:

$$\overline{x}_F = \frac{47,6 \ 84,16}{47,6 \ 84,16 + (100 - 47,6) \ 98,14} = 0,514$$
 кмоль кмоль смеси

Дистиллят:

$$\overline{x}_P = \frac{99,4 \ 84,16}{99,4 \ 84,16 + (100 - 99,4) \ 98,14} = 0,995$$
 кмоль кмоль смеси

Кубовый остаток:

$$\overline{x}_W = \frac{0,006 \ 84,16}{0,006 \ 84,16 + (100 - 0,006) \ 98,14} = 0,00007$$
 кмоль кмоль смеси

Относительный мольный расход питания:

$$F = \frac{\overline{x}_P - \overline{x}_W}{\overline{x}_F - \overline{x}_W}$$

$$F = \frac{0,995 - 0,00007}{0,514 - 0,00007} = 1,94$$
(4)

Нагрузки по пару и жидкости ректификационной колоны определяются рабочим флегмовым числом R, по справочным данным оно равно R=0.5 [51].

Средний мольный состав жидкости[7]:

а) верх колонны:

$$x_{\rm cp}' = \frac{\overline{x}_F + \overline{x}_P}{2} \tag{5}$$

$$x'_{\rm cp} = \frac{0,514 + 0,995}{2}; \qquad x'_{\rm cp} = 0,754 \, {\rm кмоль} \, {\rm кмоль} \, {\rm смеси}$$

б) низ колонны:

$$x_{\rm cp}^{\prime\prime} = \frac{\overline{x}_F + \overline{x}_W}{2} \tag{6}$$

$$x_{\rm cp}^{\prime\prime} = \frac{0.514 + 0.00007}{2}; \qquad \qquad x_{\rm cp}^{\prime\prime} = 0.257 \, {\rm кмоль} \, {\rm кмоль} \, {\rm смеси}$$

Теперь найдем средние мольные массы жидкости в каждой части колонны [56]:

а) верх колонны

$$M_{\rm B} = M_{\rm u-aH} * x'_{\rm cp} + M_{\rm u-oH} \ 1 - x'_{\rm cp}$$
 (7)

$$M_{\scriptscriptstyle \mathrm{B}} = 84,16*0,754+98,14\ 1-0,754$$
 $M_{\scriptscriptstyle \mathrm{B}} = 61,98\ \mathrm{kg/kmojb}$

б) низ колонны

$$M_{\rm H} = M_{\rm u-aH} * x_{\rm cp}^{"} + M_{\rm u-oH} 1 - x_{\rm cp}^{"}$$
 (8)

$$M_{\rm H} = 84,16*0,257+98,14\ 1-0,257$$
 $M_{\rm H} = 94,55\ {
m kg/kmojb}$

Мольная масса исходной смеси [46]:

$$M_F = M_{\text{II}-\text{aH}} * \overline{x}_F + M_{\text{II}-\text{OH}} 1 - \overline{x}_F \tag{9}$$

$$M_F = 84,16 * 0,514 + 98,14 \ 1 - 0,514$$
 $M_F = 90,96 \ кг/кмоль$

Найдем средние массовые расходы (нагрузки) по жидкости [7]:

а) верх колонны

$$L_{\rm B} = \frac{PRM_{\rm B}}{M_{\rm B}} \tag{10}$$

$$L_{\scriptscriptstyle \mathrm{B}} = 29353,66*0,5*61,98/84,23$$
 $L_{\scriptscriptstyle \mathrm{B}} = 10799,83$ кг/ч

б) низ колонны:

$$L_{\rm H} = PRM_{\rm H}/M_P + FM_{\rm H}/M_F$$
 (11)
 $L_{\rm H} = 29353,66*0,5*94,55/84,23+62250*94,55/90,96$
 $L_{\rm H} = 81181,94~{\rm kr/Y}$

Средние мольные массы пара [7]:

а) верх колонны

$$M'_{\rm cp} = y'_{\rm cp} * M_{\rm ц-ан} + 1 - y'_{\rm cp} * M_{\rm ц-он}$$
 (12)
 $M'_{\rm cp} = 0.958 * 84.16 + 1 - 0.985 * 98.14 = 82.09 \, {\rm кг/моль}$

б) низ колонны

$$M_{\rm cp}^{\prime\prime} = y_{\rm cp}^{\prime\prime} * M_{\rm ц-ан} + 1 - y_{\rm cp}^{\prime\prime} * M_{\rm ц-он}$$
 (13)
 $M_{\rm cp}^{\prime\prime} = 0.364 * 84.16 + 1 - 0.364 * 98.14 = 93.05 \, {\rm kg/mojh}$

Массовые потоки пара соответствуют[20]:

а) верх колонны

$$G_{\rm B} = P R + 1 * \frac{M_{\rm cp}'}{M_P}$$
 (14)
 $G_{\rm B} = 29353,66 \ 0.5 + 1 * \frac{82,09}{84,23}; \quad G_{\rm B} = 42912,1 \ {\rm kg/y}$

б) низ колонны:

$$G_{\rm H} = P R + 1 * \frac{M_{\rm cp}^{\prime\prime}}{M_P}$$
 (15)
 $G_{\rm B} = 29353,66 \ 0.5 + 1 * \frac{93,05}{84,23}; \quad G_{\rm B} = 48433,5 \ {\rm kg/y}$

2.4.2 Скорость пара и диаметр колонны

Средние концентрации пара [7]:

а) верх колонны

$$y'_{cp} = \frac{R}{R+1}x'_{cp} + \frac{\overline{x}_P}{R+1};$$

$$y'_{cp} = \frac{0.5}{0.5+1} * 0.754 + \frac{0.995}{0.5+1};$$

$$y'_{cp} = 0.911$$
(16)

б) низ колонны:

$$y_{\text{cp}}^{"} = \frac{R+F}{R+1} x_{\text{cp}}^{"} + \frac{1-F}{R+1} \overline{x}_{W};$$

$$y_{\text{cp}}^{"} = \frac{0.5+1.94}{0.5+1} * 0.257 + \frac{1-1.94}{0.5+1} * 0.00007;$$

$$y_{\text{cp}}^{"} = 0.364$$
(17)

По данным о фазовом равновесии пар — жидкость определяем средние температуры пара $t_{
m cp}'$ и $t_{
m cp}''$

$$t'_{\rm cp} = 46^{\circ}{\rm C}$$
 $t''_{\rm cp} = 60^{\circ}{\rm C}$

Определим средние плотности пара [7]:

а) верх колонны

$$\rho_{\rm cp}' = \frac{M_{\rm cp}'}{22.4} * \frac{273}{273 + t_{\rm cp}'}$$

$$\rho_{\rm cp}' = \frac{82.09}{22.4} * \frac{273}{273 + 46} = 3.14 \text{ kg/m}^3$$
(18)

б) низ колонны

$$\rho_{\rm cp}^{"} = \frac{M_{\rm cp}^{"}}{22.4} * \frac{273}{273 + t_{\rm cp}^{"}}$$

$$\rho_{\rm cp}^{"} = \frac{93.05}{22.4} * \frac{273}{273 + 60} = 3.41 \,\text{kg/m}^3$$
(19)

Средняя плотность пара в колонне

$$\rho_n = \frac{\rho'_{\rm cp} + \rho''_{\rm cp}}{2}$$

$$\rho_n = \frac{3,14 + 3,41}{2} = 3,27 \text{ KG/M}^3$$
(20)

Находим среднюю плотность жидкости:

$$\rho_{\mathcal{K}} = \frac{\rho_{\mathcal{U}-a\mathcal{H}} + \rho_{\mathcal{U}-o\mathcal{H}}}{2} \tag{21}$$

где, $\rho_{\text{ц-ан}}$ и $\rho_{\text{ц-он}}$ – плотность циклогексана и циклогексанона при средней температуре по справочнику [52].

$$\rho_{\text{x}} = \frac{753,4 + 919}{2} = 836,2 \text{ kg/m}^3$$

Определим допустимую скорость в колонне, для клапанных тарелок, она ровняется [7]:

$$\frac{\omega_{\text{доп}}}{F_c}^{1,85} = \frac{G}{S_0} * \frac{2g}{\xi \rho_n}$$
 (22)

где, F_c — относительная площадь прохода паров; G — масса клапана, кг; S_0 – площадь отверстия под клапаном, м²; ξ – коэффициент сопротивления [7].

$$\omega_{\text{доп}}^{1,85} = \frac{G S_0 * 2g \xi \rho_n}{F_c^{1.85}} = \frac{90,3/0,198 * 20/3,63 * 3,27}{10,5^{1,85}}$$

$$\omega_{\text{доп}} = 3,44 \text{ M/c}$$

Ориентировочно диаметр колонны определяют из уравнения расхода [7]:

$$d_{\text{pac}} = \overline{4F \pi \omega \rho_{\text{m}}}$$
 (23)
$$d_{\text{pac}} = \overline{4 * 29353,66 \ 3,14 * 3,44 * 836,2}$$

$$d_{\text{pac}} = 3,605 \text{ M}$$

По ГОСТ выберем стандартный диаметр обечайки колонны, $d_{\text{выбр}} =$ 3,6 м.

Тогда рабочая скорость пара равна:

$$\omega_{\text{pa6}} = \omega_{\text{доп}} (d_{\text{pac}}/d_{\text{выбр}})^2$$
 (24)
 $\omega_{\text{pa6}} = 3.44 * (3.605/3.6)^2 = 3.45 \text{ m/c}$

По каталогу для колонны диаметром 3600 мм выбираем клапанную тарелку со следующими конструктивными размерами [25].

Диаметр отверстий в тарелке $d_0 - 42$ мм

Шаг между отверстиями t - 75 мм

Свободное сечение тарелки $F_c - 9,84\%$

Периметр слива – 2,85 м

Рабочее сечение тарелки $S_t-7,39~{
m M}^2$

Скорость пара в рабочем сечении тарелки:

$$\omega_{\mathrm{T}} = \omega * 0.785 d^2 / S_t \tag{25}$$

$$\omega_{\rm T} = 3.45 * 0.785 * \frac{3.6^2}{7.39}; \qquad \omega_{\rm T} = 4.75 \,\text{m/c}$$

2.4.3 Высота слоя жидкости на тарелке и паросодержание барботажного слоя

$$h_0 = 0.787_q^{0.2} * h_{\text{пер}}^{0.56} \omega_T^m * 1 - 0.31 \exp(-0.11 \mu_{\text{ж}}) * (\sigma_{\text{ж}} \sigma_{\text{B}})^{0.09}$$
 (26)

где, $q = L \ \rho_{\text{ж}} b$ — удельный расход жидкости на 1 м ширины сливной перегородки, м²/с; b — ширина сливной перегородки, м; $h_{\text{пер}}$ — высота переливной перегородки, м; $\mu_{\text{ж}}$ — вязкость жидкости при температуре в колонне; $\sigma_{\text{ж}}$ и $\sigma_{\text{в}}$ — поверхностное натяжение соответственно жидкости и воды при средней температуре в колонне [17];

$$m = 0.05 - 4.6h_{\text{пер}} = 0.05 * 4.6 * 0.015 = -0.019$$

$$lg\mu_{\text{ж}} = x'_{\text{cp}} lg\mu_{\text{ц-ан}} + 1 + x'_{\text{cp}} lg\mu_{\text{ц-он}}$$
 (27)

а) для верхней части колонны

$$lg\mu_{\text{B}} = 0.754lg0.4 + 1 - 0.754 lg2.86$$

 $\mu_{\text{B}} = 0.649$

б) для нижней части колонны

$$lg\mu_{\text{H}} = 0.257 lg 0.359 + 1 - 0.257 lg 2.264$$

 $\mu_{\text{H}} = 0.586$

Средняя вязкость жидкости $\mu_{\rm ж} = 0.617$

а) для верхней части колонны

$$h_{0\text{B}} = 0.757 \; rac{2.99}{836.2 * 0.525} \; ^{0.2} * 0.015^{0.56} * 4.75^{-0.019} \ * \; 1 - 0.31 * 2.72^{-0.11*0.045} \; * \; rac{8.87}{61.86} \; ^{0.09} \ h_{0\text{R}} = 0.0156 \; \text{M}$$

б) для нижней части колонны

$$h_{0\mathrm{H}} = 0.757 \; rac{22.5}{836.2*0.525} \, ^{0.2} * 0.015^{0.56} * 4.75^{-0.019} \ * \; 1 - 0.31*2.72^{-0.11*(-0.4)} \; * \; rac{6.91}{59.825} \, ^{0.09} \ h_{0\mathrm{H}} = 0.0215 \; \mathrm{M}$$

Паросодержание барботажного слоя ε находят по формуле [7]:

$$\varepsilon = \overline{Fr} \ (1 + \overline{Fr}) \tag{28}$$

где,
$$Fr = \omega_T^2 (gh_0)$$
 (29)

а) для верхней части колонны

$$Fr = \frac{4,75^2}{9,8 * 0,0156} = 147,6;$$
 $\varepsilon = \frac{\overline{147,6}}{1 + \overline{147,6}} = 0,92$

б) для нижней части колонны

$$Fr = \frac{4,75^2}{9,8*0,0215} = 107;$$
 $\varepsilon = \frac{\overline{107}}{1+\overline{107}} = 0.91$

2.4.4. Коэффициенты массопередачи и высота колонны

Рассчитаем коэффициенты диффузии в жидкой D_x и паровой D_y фазах.

В жидкой среде при средней температуре [17]:

$$D_x = D_{x20} \ 1 + b \ t - 20 \tag{30}$$

Температурный коэффициент *b* определяют:

$$b = 0.2 \ \overline{\mu_{\text{m}}}/^{3} \ \overline{\rho_{\text{m}}}$$

$$b = 0.2 * \frac{\overline{0.617}}{836.2} = 0.017$$
(31)

 D_{x20} – рассчитывается по формуле:

$$D_{\chi 20} = \frac{10^{-6} \ \overline{1} \ M_{\text{II}-\text{aH}} + 1 \ M_{\text{II}-\text{OH}}}{AB \ \overline{\mu_{\text{II}}} (v_{\text{II}-\text{aH}}^{1/3} + v_{\text{II}-\text{OH}}^{1/3})^2}$$
(32)

где, A и B — коэффициенты, зависящие от свойств растворенного вещества и растворителя; $v_{\rm ц-ан}$ и $v_{\rm ц-он}$ - мольные объемы компонентов в

жидком состоянии при температуре кипения, см 3 /моль; $\mu_{\rm ж}$ - вязкость жидкости при температуре м Π а*с [60].

а) для верхней части колонны:

$$D_{x20} = \frac{10^{-6} * \overline{1/84,16 + 1/98,14}}{1 * 1 * \overline{0,649} * (117^{1/3} + 123^{1/3})^2}$$

$$D_{x20} = 1,96 * 10^{-9} \text{ m}^2/\text{c}$$

$$D_x = 1,96 * 10^{-9} 1 + 0,017(89 - 20)$$

$$D_x = 4,26 * 10^{-9} \text{m}^2/\text{c}$$

б) для нижней части колонны:

$$D_{x20} = \frac{10^{-6} * 1/84,16 + 1/98,14}{1 * 1 * 0,586 * (117^{1/3} + 123^{1/3})^2}$$

$$D_{x20} = 2,06 * 10^{-9} \text{ m}^2/\text{c}$$

$$D_x = 2,06 * 10^{-9} 1 + 0,017(89 - 20)$$

$$D_x = 4,48 * 10^{-9} \text{m}^2/\text{c}$$

Находим коэффициент диффузии в паровой фазе [17]:

а) для верхней части колонны:

$$D_{y_{\rm B}} = \frac{4,22 * 10^{-2} * T^{3/2}}{P(v_{_{\rm II}-a_{\rm H}}^{1/3} + v_{_{\rm II}-o_{\rm H}}^{1/3})^2} * \overline{1 M_{_{\rm II}-a_{\rm H}} + 1 M_{_{\rm II}-o_{\rm H}}}$$
(33)

где, T — средняя температура в соответствующей части колонны, K; P — давление в колонне, Π а.

а) для верхней и нижней части колонны:

$$D_y = \frac{4,22 * 10^{-2} * (273 + 89)^{3/2}}{5^4 (117^{1/3} + 123^{1/3})^2} * \frac{1/84,16 + 1/98,14}{D_y = 0,32 \text{M}^2/\text{c}}$$

Вычисляем коэффициенты массоотдачи по формулам:

$$eta_{xf} = 6,24*10^5*D_x^{0,5} \quad rac{U}{1-arepsilon}^{0,5}*h_0 \quad rac{\mu_y}{\mu_x+\mu_y}^{0,5} -$$
жидкая фаза (34)

$$eta_{yf} = 6,24*10^5*F_eD_y^{0,5} \ \frac{\omega_T}{arepsilon} \ ^{0,5}*h_0 \ \frac{\mu_y}{\mu_x+\mu_y} \ ^{0,5} -$$
 паровая фаза(35)

Найдем вязкость пара в каждой части колонны:

а) для верхней части колонны

$$\mu_{y_{\rm B}} = \frac{M_{\rm cp}'}{y_{\rm cp}' * M_{\rm II-aH}/\mu_{y_{\rm II-aH}} + (1 - y_{\rm cp}') M_{\rm II-oH}/\mu_{y_{\rm II-oH}}}$$
(36)

а) для верхней части колонны:

$$\mu_{y_{\rm B}} = \frac{82,09}{0,11*84,16/0,0082 + (1-0,911)*98,14/0,0092}$$

$$\mu_{y_{\rm B}} = 0,00797~{\rm M}\Pi{\rm a}*{\rm c}$$

б) для нижней части колонны:

$$\mu_{y_{\mathrm{B}}} = \frac{93,05}{0,364*84,16/0,0082 + (1-0,364)*98,14/0,0092}$$
 $\mu_{y_{\mathrm{B}}} = 0,00884 \ \mathrm{m\Pia*c}$

коэффициент массоотдачи в жидкой фазе

$$\beta_{xf} = 6.24 * 10^{5} * (4.26 * 10^{-9})^{0.5} \frac{2.99}{836.2 * 7.39 \ 1 - 0.92}$$

$$* 0.0156 \frac{0.00797}{0.649 + 0.00797}^{0.5}$$

$$\beta_{xf} = 0.00545 \text{ m/c}$$

коэффициент массоотдачи в паровой фазе

$$eta_{yf} = 6,24*10^5*0,32*0,158 \ \frac{4,75}{0,92}^{0,5}*0,0156 \ \frac{0,00797}{0,649+0,00797}^{0,5}$$
 $eta_{yf} = 1,23 \ \text{m/c}$

б) для нижней части колонны:

коэффициент массоотдачи в жидкой фазе

$$eta_{xf} = 6.24 * 10^5 * (4.48 * 10^{-9})^{0.5} \frac{22.5}{836.2 * 7.39 \ 1 - 0.91}$$

$$* 0.0215 \frac{0.00884}{0.586 + 0.00884} ^{0.5}$$
 $eta_{xf} = 0.0028 \text{ m/c}$

коэффициент массоотдачи в паровой фазе

$$\beta_{yf} = 6,24*10^5*0,32*0,158 \ \frac{4,75}{0,91}^{0,5}*0,0215 \ \frac{0,00884}{0,586+0,00884}^{0,5}$$

$$\beta_{yf} = 2,3 \ \text{M/c}$$

Пересчитаем коэффициенты массотдачи на кмоль/ (m^2*c)

а) для верхней части колонны

$$\beta_{xf} = 0.0138 \frac{\rho_x}{M_{\scriptscriptstyle B}} \tag{37}$$

$$eta_{xf} = 0.0138 \frac{836.2}{61.98} = 0.186 \text{ кмоль/(м}^2 * c)$$

$$eta_{yf} = 1.22 \frac{\rho_{y_{\rm B}}}{M_{\rm B}'} \qquad (38)$$

$$eta_{yf} = 1.22 \frac{3.14}{82.09} = 0.047 \text{кмоль/(м}^2 * c)$$

б) для нижней части колонны

$$\beta_{\chi f} = 0.0282 \frac{\rho_{\chi}}{M_{\rm B}} \tag{39}$$

$$\beta_{xf} = 0.0282 \frac{836.2}{94.55} = 0.249 \text{ кмоль/(м}^2 * c)$$

$$\beta_{yf} = 1.6 \frac{\rho_{y_B}}{M_H'} \tag{40}$$

$$\beta_{yf} = 1.6 \frac{3.41}{93.05} = 0.059 \text{ кмоль/(м}^2 * c)$$

Коэффициенты массоотдачи, рассчитанные по средним значениям скоростей и физических свойств жидкой и паровой фаз, постоянны для верхней и нижней части колонны. А коэффициент массоотдачи — величина переменная, которая зависит от кривизны линии равновесия, т.е. от коэффициента распределения. Для определения данных, по которым строиться кинетическая линия, необходимо вычислить несколько значений коэффициента массопередачи в интервале изменения состава жидкости от x_W до x_ρ [7].

Коэффициент массопередачи K_{yf} вычисляем по коэффициентам массоотдачи в верхней части колонны [7]:

$$K_{yf} = \frac{1}{1 \beta_{yf} + m \beta_{xf}} \tag{41}$$

где, m — коэффициент распределения компонента по фазам (тангнс угла наклона равновесной линии в этой точке) m=0.77

$$K_{yf} = \frac{1}{1/0,047 + 0,77/0,186}$$
 $K_{vf} = 0,039 \text{ кмоль/(м}^2 * c)$

Общее число единиц переноса на тарелку:

$$n_{0y} = K_{yf} * \frac{M'_{B}}{\omega_{T} \rho_{y}}$$

$$n_{0y} = 0.039 * 82.09/(4.75 * 3.14)$$

$$n_{0y} = 1.1$$
(42)

Локальная эффективность:

$$E_y = 1 - e^{-n_{0y}}$$

$$E_y = 1 - 2.72^{1.1} = 0.67$$
(43)

Число действительных тарелок в колонне может быть определено графоаналитическим методом (построение кинетической линии). Для этого необходимо рассчитать фактор массопередачи λ , долю байпасирующей жидкости θ , число ячеек полного перемешивания S и межтарельчатый унос e [17].

Фактор массопередачи для верхней части колонны:

$$\lambda = m R + 1$$
 (44)
 $\lambda = 0.77 \ 0.5 + 1 = 1.155$

Долю байпасирующей жидкости θ для различных конструкций тарелок находим по монографии. Для тарелок при факторе скорости $F=\omega_T$ $\overline{\rho_y}=$ принимают $\theta=0,1.$

Число ячеек полного перемешивания *S*, для колонн диаметром более 600 мм с ситчатыми, колпачковыми и клапанными тарелками отсутствуют надежные данные по продольному перемешиванию жидкости, поэтому

можно считать, что одна ячейка перемешивания соответствует длине пути жидкости l=300-400 мм [7].

Примем l=350 мм и определим число ячеек полного перемешивания S как отношение длины пути жидкости на тарелке l_T к длине l. Определим длину пути жидкости l_T как расстояние между переливными устройствами:

$$l_T = \overline{d^2 - b^2}$$

$$l_T = \overline{3,6^2 - 0,525^2} = 3,56 \text{ M}$$
(45)

Тогда число ячеек полного перемешивания на тарелке

$$S = 3,56/0,35 \approx 10$$

Коэффициент m учитывает влияние на унос физических свойств жидкости и пара, определяют по уравнению:

$$m = 1,15 * 10^{-3} \frac{\sigma_x}{\rho_y} * \frac{\rho_x - \rho_y}{\rho_y} ^{0.425}$$

$$m = 1,15 * 10^{-3} * \frac{8,86 * 10^{-3}}{3,41} * \frac{836,2 - 3,14}{0,00884 * 10^{-3}} ^{0.425}$$

$$m = 0,632$$

$$(46)$$

Высота сепарационного пространства H_c равна расстоянию между верхним уровнем барботажного слоя и плоскостью тарелки, расаоложенной выше [17]:

$$H_c = H - h_n \tag{47}$$

где, H — межтарельчатое расстояние, м; $h_n = h_0/(1-\varepsilon)$ — высота барботажного слоя (пены), м.

$$h_n = 0.0215/(1 - 0.91) = 0.24$$

тогда, $H_c = 0.5 - 0.24 = 0.26$

Эффективность тарелки по Мэрфри E_{My} находиться по следующим уравнениям:

$$B = \frac{\lambda E_y + \frac{e}{m}}{1 - \theta 1 + \frac{e\lambda}{m}}$$
 (48)

$$B = \frac{1,155(0,67 + 0,12/0,77)}{1 - 0,12 (1 + 0,12 * 1,155/0,77)} = 0,918$$

$$E''_{My} = \frac{E_y}{B} \quad 1 + \frac{B}{S} \quad -1 \qquad (49)$$

$$E''_{My} = \frac{0,67}{0,918} \quad 1 - \frac{0,918}{10} \quad -1 = 0,451$$

$$E'_{My} = \frac{E''_{My}}{1 + \lambda \theta E''_{My}/(1 - \theta)} \qquad (50)$$

$$E'_{My} = \frac{0,451}{1 + 1,155 * 0,1 * 0,451/(1 - 0,1)} = 0,386$$

$$E_{My} = \frac{E'_{My}}{1 + e\lambda E'_{My}/[m \ 1 - \theta]} \qquad (51)$$

$$E_{My} = \frac{0,386}{1 + 0,12 * 1,155 * 0,1 * 0,451/[0,77 \ 1 - 0,1]} = 0,254$$

С помощью коэффициент Мерфри определяем концентрацию легколетучего компонента в паре на выходе из тарелки:

$$E_{My} = (y_{K} - y_{H})/(y^{*} - y_{H})$$
 (52)

где, $y_{\rm H}$ и y^* - концентрация легколетучего компонента в паре на входе в тарелку и равновесная с жидкостью на тарелке.

$$y_{\kappa} = 0.538 + 0.254(0.79 - 0.538)$$

 $y_{\kappa} = 0.6$

За основу берем теоретические данные и практические расчеты и определяем число действительных тарелок ректификационной колонны N=56

Высоту ректификационной колонны определяем по формуле:

$$H_{K} = N - 1 h + Z_{B} + Z_{H}$$
 (53)

где, h —расстояние между тарелками, м; $z_{\rm B}$ и $z_{\rm H}$ — расстояние между верхней тарелкой и крышкой и между днищем колонны и нижней тарелкой, м.

$$H_{\rm K} = 56 - 1 \ 0.5 + 1.4 + 2.5$$

$$H_{\rm K} = 31.4 \, \rm M$$

2.5 Технико-экономическое обоснование предлагаемой реконструкции

Задание для расчета.

Рассчитать экономический эффект от реконструкции отделения ректификации, если стоимость нового оборудования составляет 150 млн. рублей.

В результате осуществления проекта:

- 1. Производительность цеха увеличиться в 2 раза
- 2. Расход пара на единицу продукции снизиться в 2,5 раза

2.5.1 Расчет годовой производственной модности

В данном пункте мы найдем время работы оборудования с учетом остановок и плановых ремонтов. Полученные данные занесем в таблицу [54].

Базовый вариант

Производственная мощность определяется:

$$M = Q_{\text{vac}} * \Phi_{3\phi}$$
 (54)

где, $Q_{\rm час}$ – часовая производительность агрегата (т/час),

 $\Phi_{\vartheta\varphi}$ – эффективный фонд рабочего времени оборудования (час)

$$\Phi_{9\phi} = \mathcal{L}_{K} - \mathcal{L}_{pem} * 24 \tag{55}$$

где, Д $_{\rm K}$ – календарная продолжительность года (сут),

Д_{рем} – плановый простой оборудования для ремонта (сут)

$$\Phi_{9\phi} = 365 - 32 * 24 = 7992 (4)$$

$$M = 7.5 * 7992 = 59940 (т/год)$$

Проектный вариант

Производственная мощность определяется [54]:

$$M = Q_{\text{vac}} * \Phi_{3\phi}$$
 (56)

$$M = 15 * 7992 = 119880 (т/год)$$

Таблица 3 — Расчет годовой производственной мощности основного оборудования

№	Показатели	Количество	
		Базовый	Проектный
1	2	3	4
1	Календарная продолжительность года (сут)	365	365
2	Плановые простои оборудования (сут)	32	32
3	Эффективное время работы оборудования (сут)	333	333
4	Эффективное время работы оборудования (час)	7992	7992
5	Часовая производительность оборудования (т/час)	7,5	15
6	Годовая производственная мощность (т/год)	59940	119880

Данные о продолжительности простоя оборудования в году, часовой производительности оборудования взятии из технологического регламента цеха №22 АО «КуйбышевАзот».

2.5.2. Расчет капитальных вложений

В данном пункте рассчитываются все капитальные затраты, связанные с внедрением разрабатываемого проекта [54]:

- 1. затраты на приобретение вводимого оборудования;
- 2. затраты на монтаж оборудования;
- 3. затраты на строительство;
- 4. затраты на демонтаж старого оборудования;
- 5. затраты на проектирование.

Капитальные затраты на оборудование складываются из прямых затрат на его приобретение и сопутствующих затрат:

$$K_{\Pi,o6} = K_{o6} + K_{co\pi} \tag{57}$$

где, K_{o6} – капитальные вложения на основное оборудование; K_{con} – сопутствующие затраты на установку.

Таблица 4 – Капитальные вложения на основное оборудование

	Наименование		Стоимость		Амортизация	
		Кол-во	Кол-во оборудования		ттмортизиция	
	ооорудования		за ед.	всего	%	(руб.)
1	2	3	4	5	6	7
1	Ректификационная колонна	1	1800000	1800000	5	90000

Затраты на проектирование рассчитываются по формуле:

$$K_{\text{np}} = T_{\text{np}} * 3_{\text{Kyac}}$$
(58)

где, T_{np} — трудоемкость проектирования (час); 3_{Kyac} — часовая зарплата конструктора (руб./час.).

$$3_{\text{Kyac}} = \frac{0\kappa}{4} \tag{59}$$

где, Ок — оклад конструктора; Ч — часовая занятость при 8 часовом рабочем дне.

$$3_{\text{Kyac}} = \frac{25600}{176} = 145,5 \text{ (руб/час)}$$

Данные о заработной плате конструктора взяты в соответствии с тарифной сеткой АО «КуйбышевАзот». Трудоемкость берем условно равной 16 недель или 640 часов[36].

$$K_{nn} = 640 * 145,5 = 93120 \text{ py6}$$

Сопутствующие затраты на установку колонны ректификации рассчитываются по формуле[50]:

$$K_{\text{con}} = K_{\text{пр}} + K_{\text{o6}} \frac{K_{\text{дост}} + K_{\text{монт}} + K_{\text{тру6}} + K_{\text{кип}} + K_{\text{пн}} + K_{\text{дем}}}{100} - K_{\text{ост}}$$
(60)

где, $K_{\text{дост}}$ – доставка (руб.); $K_{\text{монт}}$ – монтаж оборудования (руб.);

 $K_{\text{труб}}$ – обвязка трубопровода (руб.); $K_{\text{кип}}$ – оснащение КИП (руб.); $K_{\text{пн}}$ – пуско-наладочные работы (руб.)

Данные затраты взяты из сметы на установку аналогичного

оборудования в цехе №11 AO «КуйбышевАзот». В данном варианте не требуется демонтаж старого оборудования, и соответственно с этим получам[38]:

$$K_{\text{con}} = 93120 + \frac{136100 + 285650 + 150400 + 305200 + 78900}{100}$$

$$= 102682,5 \text{ (py6)}$$

2.5.3 Расчет капитальных затрат на строительство

Для реализации проекта требуется строительство дополнительных сооружений. Результат вычислений заносим в таблицу.

Таблица 5 – Прямые капитальные вложения в строительство

No	Тип здания	Площадь, м ²	Стоимость строительных работ, (руб)		Аморті	Амортизация	
			за 1 м ²	всего	%	руб.	
1	2	3	4	5	6	7	
1	Обслуживающая площадка	25	13000	325000	3	9750	

Стоимость строительных работ взята из цеховой сметы затрат на строительство. Амортизация принята на основании плановой калькуляции продуктов АО «КуйбышевАзот»[51].

Общая сумма капитальных вложений определяются по формуле:

$$K_{\text{общ}} = K_{\text{об}} + K_{\text{соп}} + K_{\text{ст}}$$
 (61)
 $K_{\text{общ}} = 1800000 + 102682,5 + 325000 = 2227682,5 \text{ (руб.)}$

2.5.4 Расчет себестоимости продукции

Рассчитывается себестоимость одной тонны продукта.

Расчет расходов на сырье и полуфабрикаты

Годовой расход сырья:

$$P_{c.roд}$$

$$= P_{\text{час}} * \Phi_{3\Phi}$$
 (62)

где, $P_{c.rog}$ – годовой расход сырья на одну тонну продукции (тон)

Р_{час} – часовой расход сырья (тон/час)

$$P_{c,y,\chi} = \frac{P_{c,ro,\chi}}{M} \tag{63}$$

Часовой расход сырья взят из материального баланса постоянного регламента цеха №22 АО «КуйбушевАзот». Стоимость сырья взята из сметы калькуляции продуктов цеха АО «Куйбышевазот» на апрель 2016г [51].

Таблица 6 – Расход материалов и энергоносителей на 1 тонну продукта

Наименование статей	Ед. изм	и Норма расхода		Цена	Сумма (руб.)	
расхода				(руб.)		
		базовый	проект		базовый	проект
1	2	3	4	5	6	7
1.Сырье и материалы						
Природный газ	т.м ³	0,3010	0,3010	341,50	102,79	102,79
Бензол	Т	1,1784	1,1784	8050,00	9486,12	9486,12
ИТОГО					9588,91	9588,91
2.Полуфабрикаты						
своего производства						
Водород (13 цех)	T.M ³	1,1080	1,1080	559,73	620,18	620,18
Азот	T.M ³	1,0000	1,0000	335,64	335,64	335,64
Водород с аргона	T.M ³	0,0000	0,0000	0,00	0,00	0,00
ИТОГО					955,82	955,82
3.Вспомогательные						
материалы						
Едкий натр марки РД	Т	0,1674	0,1674	1840,00	308,01	308,01
100%						
Калий едкий	КГ	0,0400	0,0400	24,47	0,98	0,98
ИТОГО					308,99	308,99

Продолжение таблица 6

1	2	3	4	5	6	7
4.Катализаторы						
Нафтенат кобальта	КГ	0,2270	0,2270	319,77	72,59	72,59
Катализатор К-СО	КГ	0,0000	0,0000	6,50	0,00	0,00
Никель хромовый	КГ	0,0000	0,0000	0,00	0,00	0,00
ГИАП-10	КГ	0,0000	0,0000	0,00	0,00	0,00
Катализатор Н-5-15	КГ	0,0760	0,0760	117,65	8,94	8,94
Катализатор СМС-4	КГ	0,4900	0,4900	150,00	73,50	73,50
Катализатор G-33RS	КГ	0,0970	0,0970	545,00	52,87	52,87
ИТОГО					207,89	207,89
5.Энергоресурсы						
Электроэнергия	т.кВТ	1,2000	1,2000	405,56	486,67	486,67
Пар	Гкал	9,8000	3,9200	85,38	836,72	334,69
Вода речная	\mathbf{M}^3	30,0000	30,000	1,10	33,00	33,00
Конденсат паровой	Т	14,0000	14,000	4,93	69,02	69,02
ИТОГО					1425,42	1425,42
Всего					12487,04	11985,01

2.5.5 Расчет расходов на содержание и эксплуатацию оборудования

Затраты на одну тонну продукции
$$P_{06.yд.} = \frac{P_{o6}}{M}$$
 (64)

Стоимость оборудования взята условно. Срок службы оборудования взят из технического регламента цеха №22 АО «КуйбыщевАзот»[51].

Таблица 7 – Расход на содержание и эксплуатацию оборудования

Наименование статей	Сумма (тыс. руб)		
паименование статей	Базовый	Проектный	
1	2	3	
Амортизация оборудования	10560	10632,2	
Текущий ремонт и содержание оборудования	48996,7	48998,7	
Износ и восстановление инструментов	3429,7	3429,9	
Прочие расходы	105,6	106,3	
Итого	63092	63167,1	
Затраты на одну тонну продукции	0,1027	0,1028	

2.5.6 Расчет цеховых расходов

Цеховые расходы на одну тонну циклогексанона

$$P_{\mu,y\mu} = \frac{P_{\mu}}{M} \tag{65}$$

где, P_{μ} – цеховые затраты (руб.)

Стоимость зданий взята условно. Срок службы зданий взят из технического регламента цеха №22 АО «КуйбыщевАзот»[51]

Таблица 9 – Расчет цеховых расходов

Наименование статей	Сумма (руб)		
	Базовый	Проектный	
1	2	3	
Амортизация зданий	640000	640000	
Содержание зданий	1920000	1920000	
Затраты на НИОКР	157000	157000	
Затраты на охрану труда	1729000	1729000	
Прочие расходы	150000	150000	
Итого	4596000	4596000	
Расходы на одну тонну циклогексанона	13,5	7,8	

2.5.7 Расчет экономической эффективности колонны ректификации

Определим годовую прибыль цеха №22 AO «КуйбышевАзот» от продажи готовой продукции в базовом варианте[54]:

$$\Pi p_{om} = C_{\pi p} - C_{\pi.6a3} * M_{6a3}$$
 (66)

где, С_{п.баз} – базовая себестоимость 1т. продукции (руб./т.)

 C_{np} – рыночная стоимость 1 т. продукции (руб./т.)

Рыночная цена 1т. продукции взята с ценового обзора 2015 г.

$$\Pi p_{\text{ож}} = 6550 - 2393,3 * 613800 = 2551382460 (руб/год)$$

Определим налог на прибыль. Ставка налога на прибыль 13% взята из налогового кодекса РФ.

$$H_{\rm np} = \frac{\Pi p_{\rm ow} * K_{\rm Ha, I}}{100} \tag{67}$$

где, К_{нал} – ставка налога на прибыль (13%)

$$H_{\pi p} = \frac{2551382460 * 13}{100} = 331679720 (руб/год)$$

Чистая ожидаемая прибыль от продажи

$$\Pi p_{\text{чист1}} = \Pi p_{\text{ож}} - H_{\text{пр}} \tag{68}$$

 $\Pi p_{\text{чист1}} = 2551382460 - 331679720 = 2219702740 (руб/год)$

Рассчитаем прибыль от продажи продукции цехом №22 ОАО«Куйбышевазот» в проектном варианте[54]:

$$\Pi p_{\text{ож}} = C_{\text{пр}} - C_{\text{п.проект}} * M_{\text{пр}}$$
 (69)

$$\Pi p_{\text{ож}} = 6550 - 2393,3 * 614511 = 2554337874 (руб/год)$$

Определим налог на прибыль

$$H_{np} = \frac{\Pi p_{ox} * K_{han}}{100}$$
 (70)

$$H_{\text{пр}} = \frac{2554337874 * 13}{100} = 332063923 (руб/год)$$

Чистая годовая прибыль от продажи продукции [50]:

$$\Pi p_{\text{чист2}} = \Pi p_{\text{ож}} - H_{\text{пр}} \tag{71}$$

$$\Pi p_{\text{чист2}} = 2554337874 - 332063923 = 2222273951 (руб/год)$$

Определяем годовую прибыль от внедрения проекта [54]:

$$\Pi p_{\text{чист}} = \Pi p_{\text{чист2}} - \Pi p_{\text{чист1}}$$

$$= 2222272051 - 2210702760 - 2571101$$
(72)

 $\Pi p_{\text{чист}} = 2222273951 - 2219702760 = 2571191$

Определяем срок окупаемости проекта [54]:

$$T_{o\kappa} = \frac{K_{o\delta\iota\iota\iota}}{\Pi p_{\iota\iota\iota}} \tag{73}$$

$$T_{\text{ок}} = \frac{2227682,5}{2571191} = 0,86$$
 год

Общая текущая стоимость доходов:

$$\mathcal{L}_{\text{общ.дох}} = \Pi p_{\text{чист}} \frac{1}{1 + E^{t}}$$
(74)

где, E – процентная ставка на капитал – 0,08; t – горизонт расчета равный 0,8 года.

Процентная ставка на капитал взята с официального сайта Сбербанка России[35].

$$\mathcal{A}_{\text{общ.дох}} = 2571191 * \frac{1}{(1+0.08)^{0.86}}$$
 $\mathcal{A}_{\text{общ.дох}} = 2406522,4 \text{ (руб.)}$

Интегральный экономический эффект (чистый дисконтированный доход) [50]:

$$\Theta_{\text{ИНТ}} = \Pi_{\text{общ.дох}} - K_{\text{общ}}$$
 (75)

$$\theta_{\text{UHT}} = 2406522,4 - 2227682,5 = 178839,9$$
 py6.

Общая стоимость доходов больше текущей стоимости затрат, следовательно проект эффективен.

Определим индекс доходности:

Индекс доходности показывает прибыль на каждый вложенный рубль.

Таблица 9 – Технико-экономические показатели.

$N_{\overline{0}}$	Показатели	Значения показателей
1	Производственная мощность	120000 т/год
2	Себестоимость продукции	2393,3
3	Условно годовая экономия	-
4	Капитальные вложения	2227682,5
5	Чистая прибыль	2571191
6	Интегральный экономический эффект	178839,9
7	Срок окупаемости	9 месяцев
8	Индекс доходности	1,1

Вывод: Данный расчет эффективности проекта показывает, что при капитальных вложениях в сумме 2227682,5 рублей, проект является эффективным. Срок окупаемости 9 месяцев. Менее чем за год, получим прибыль в размере 2571191 рублей.

ЗАКЛЮЧЕНИЕ

- 1. В данной бакалаврской работе представлено совершенствование ректификационной колонны, а именно введена новая тарелка.
- 2. Стадия разделения продуктов имеет огромное значение в получении капролактама. С помощью данной процесса мы экономим исходное сырье (циклогексан), так как до 95% непрореагировавшего циклогексана находиться в смеси после реактора окисления. Выделение в чистом виде целевых продуктов без этой стадии было бы невозможно.
- 3. Внедрение новых тарелок для ректификационной колонны, не только позволяют повысить производительность аппарата, также могут работать при повышенных нагрузках пар-жидкость в сравнении с простыми тарелками. Кроме того, они имеют очень хорошую сопротивляемость к забиваемости из-за оптимальной схемы расположения потока жидкости на тарелке, а также самоочищающийся эффект из-за распределения паровых параллелей на поверхности тарелки.
- 4. Была просчитана экономическая оценка эффективности процесса. Срок окупаемости данного проекта меньше года, прибыль предприятие получает за счет увеличения производительности.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Айштейн, В.Г. Общий курс процессов и аппаратов химической технологии/ В.Г. Айштейн, М.К. Захаров, [и д.р.]/под редакцией В.Г. Айштейн М.: Логос; Высшая школа, 2002. 872 с.
- 2. Аристов, Г.Е. Полупродукты для синтеза полиамидов/ Г.Е. Аристов, А.М. Проскурнин. М.: Госхимиздат, 1963. 13 с.
- 3. Бадриан, А.С. Производство капролактама/А.С. Бадриан, Ф.Г. Кокоулин, [и д.р.] / под редакцией В.И. Овчиников, В.Р. Ручинский м.:Химия, 1977. 264с.
- 4. Балаев, Г.А. Полимерные материалы / Г.А. Балаев. Л.: Химия, 1982. 195с.
- 5. Березин, Б.Д. Курс современной органической химии / Б.Д. Березин. М.: Высшая школа, 2001. 258с.
- 6. Бесков, С.Д. Технохимические расчеты / С.Д. Бесков. М.: Высшая школа, 1965. 519с.
- 7. Борисов, Г.С. Основные процессы и аппараты химической технологии: Пособие по проектированию / Г.С. Борисов, В.П. Брыков [и д.р.] / под редакцией Ю.И.Дытнерского, 2-е издание, перераб. и дополн. М.: Химия,1991. 496 с.
- 8. Вагафтик, Н.Б. Справочник по теплопроводности жидкостей и газов / Н.Б. Варгафтик, Л.П.Филиппов, [и д.р.] М.: Энергоатомиздат, 1990. 352с.
- 9. Вагафтик, Н.Б. Справочник по теплофизическим свойствам газов и жидкостей/ Н.Б. Варгафтик. 2-е издание, переработанное и дополненное. М.: Наука, 1972. 721 с.
- 10. Гельперин, Н.И. Основные процессы и аппараты химической технологии / Н.И. Гельперин. М.: Химия, 1981. 812c.

- 11. Глинка, Н.Л. Общая химия / под ред. В.А. Рабиновича. Л.: Химия, 1986. 706с.
- 12. Голубев, И.Ф. Вязкость газов и газовых смесей/И.Ф. Голубев. М.: Госхимиздат, 1960. 235 с.
- 13. ГОСТ 12.02.003 91 ССБТ.Оборудование производственное. Общее требования безопасности. Взамен ГОСТ 12.2.003.74; введ. 1992-01-01.— М.: ИПК Издательство стандартов, 1992. 11 с.
- 14. Денисов, Е.Т. Окисление циклогексана / Е.Т. Денисов, Н.М.
 Эмануэль, И.В. Березин. М.: Издательство Московский университет, 1962.
 304с.
- 15. Долин, П.А. Справочник по технике безопасности / П.А. Долин. М.: Энергоиздат, 1998. 800с.
- 16. Доманский, И.В. Машины и аппараты химических производств: Примеры и задачи. Учебное пособие для студентов вузов, обучающихся по специальности «Машины и аппараты химических производств» / И.В. Доманский, В.П. Исаков, [и д.р.] Л.: Машиностроение, Ленинрг.отд-ние, 1982. 384 с.
- 17. Дытнерский, Ю.И. Основные процессы и аппараты химической технологии: учебное пособие /под редакцией Ю.И. Дытнерского. М.: Химия, 1991.—497с.
- 18. Игнатович, Э. Химическая техника. Процессы и аппараты. Часть 1-3/Э. Игнатович. М.: Техносфера, 2007. 656с.
- 19. Капролактам [Электронный ресурс] режим доступа: https://ru.wikipedia.org/wiki/%D0%9A%D0%B0%D0%BF%D1%80%D0%BE%
 D0%BB%D0%B0%D0%BA%D1%82%D0%B0%D0%BC, свободный, Загл. с экрана.
- 20. Касаткин, А.Г. Основы процессов и аппаратов в химической технологии/А.Г. Касаткин. М.: Государственное научно-техническое издание химической литератыры, 1961. 832 с.

- 21. Клапанная тарелка EDV [Электронный ресурс] режим доступа: http://bts.net.ua/column/edv, свободный, Загл. с экрана.
- 22. Косинцев, В.И. Основы проектирования химических производств / В.И. Косинцев., А.И. Михайличенко М.: Академкника, 2005. 332c.
- 23. Краткий справочник по химии. 4-е издание, переработанное и дополненное/ под редакцией О.Д. Куриленко. Киев.:Наукова-думка,1974. –
- 24. Курочкин, А.А. Основные расчеты и конструирования машин и аппаратов перерабатывающих производств / А.А. Курочкин, В.М. Зимняков. М.: КолосС, 2006. 320с.
- 25. Лащинский, А.А. Основы конструирования и расчеты химической аппаратуры / А.А. Лащинский, А.Р. Толчинский. Л.: Машиностроение, 1970. 752 с.
- 26. Левченко, Г.Т. Полупродукты для синтезов полиамидов/ Г.Т. Левченко, И.Г. Соловьева, Л.Г. Малкова. М.: Госхимиздат, 1963, 240 с.
- 27. Маркелова, А.Т. Справочник конструктора-технолога теплоэнергетика/ А.Т. Маркелова. М.: Энергия, 2003. 860 с.
- 28. Массообменное оборудование [Электронный ресурс] режим доступа: http://www.koch-glitsch.com/ru/Pages/authenticity.aspx, свободный, Загл. с экрана.
- 29. Машины и аппараты химических производств: учебное пособие для студ. вузов / под ред. А.С. Тимонин. Калуга.: Изд. Н. Бочкаревой, 2007. 872с.
- 30. Методическое пособие. Расчет тарелок ректификационных колонн [Электронный ресурс] режим доступа: http://www.studfiles.ru/preview/1078046/, свободный, Загл с экрана.
- 31. Мировой рынок капролактама и продукция на его основе [Электронный ресурс] режим доступа: http://ukrchem.dp.ua/2012/09/01/mirovoj-rynok-kaprolaktama-i-produkcii-na-ego-osnove-2005-2011-gody.html, свободный, Загл. с экрана.

- 32. Надежность оборудования химических и нефтеперерабатывающих производств: учеб. пособие для студ. вузов / В.С. Шубин, Ю.А. Рюмин. М.: КолосС, 2006. 359 с.
- 33. Налоговый кодекс Российской Федерации (часть вторая) от 05.08.2000 №117-ФЗ//Налоговые ставки. №284.
- 34. Олевский, В.М. Ректификация термически нестойких продуктов/ В.М. Олевский, В.Р. Ручинский. М.: Наука, 1972. 263 с.
- 35. ОСТ 26.260.3-2001. Сварка в химическом машиностроении. Взамен ОСТ 26-3-87: введ. 2002-06-01. М.: Издательство стандартов, 2002. 177 с.
- 36. ОСТ 26-291-94. Сосуды и аппараты стальные сварные. Технические условия. Взамен ОСТ 26291-87; введ. 1996-01-01. М.: Издательство стандартов, 1996. 151 с.
- 37. Официальный сайт «Сбербанк России» [Электронный ресурс] режим доступа: http://www.sberbank.ru/ru/person, свободный. Загл. с экрана.
- 38. Официальный сайт АО «КуйбышевАзот» [Электронный ресурс] режим доступа: http://www.kuazot.ru, свободный, Загл. с экрана.
- 39. Павлов, К.Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии /К.Ф. Павлов, П.Г. Романков, А.А. Носков. 13-е издание, стереотипное М.: «Альянс», 2006. 576 с.
- 40. Патент РФ №1104106/23-4, 26.09.1966. Лупанов П.А., Укше А.А., Клейман Б.С., Лурье Б.И. Способ разделения продуктов реакции окисления// Патент СССР №209433, 1968. Бюл. №5.
- 41. Патент РФ №1911894, 19.04.1983. Щегай В.Р., Щелкунов В.А., Круглов С.А. Клапанная провальная тарелка// Патент СССР №452347, 1974.
- 42. Патент РФ №2768526, 04.06.1979. Институт кибернетики АН Азербайджанский ССР. Клапанная тарелка ректификационной колонны// Патент СССР №856481, 1981.

- 43. Патент РФ №634039, 17.07.1959. Бляхман Л.И., Вигдоров А.С., Кафаров В.В. Ситчатая или колпачковая тарелка для проведения процессов тепло- и масообмена// Патент СССР №129159,1960.
- 44. Патент РФ №687589, 02.12.1960. Малежик И.Ф. Клапанная тарелка для ректификационной колонны// Патент СССР №138911, 1961.
- 45. Патент РФ №94020204/25, 31.05.1994. Слободяник И.П. Клапанная тарелка// Патент России №2097094, 1997.
- 46. Патент РФ №98110621/25, 03.06.1998. Калимуллин М.М., Набережнев В.В., Чекменев В.Г., Миннуллин М.Н., Ганцев В.А. Клапанная тарелка//Патент России №2135251, 1999. Бюл. №5
- 47. Патент РФ. №3343470, 02.10.1981. Щелкунов В.А., Круглов С.А., Исаев Б.Н. [и д.р.] Клапанная тарелка для массообменных аппаратах// Патент СССР №997711, 1983.
- 48. Плановский, А.Н. Процессы и аппараты химической технологии / А.Н. Плановский, В.М. Рамм, С.З. Каган. 2-е издание, перераб. и дополн. М.: Гомударственное научно-техническое издательство химической литературы, 1962. 421 с.
- 49. Полянин, А.Д. Краткий справочник для инженеров и студентов / А.Д. Полянин, В.Д. Полянин, В.А.Попов [и д.р.] М.: Международная программа образования, 1996. 432 с.
- 50. Поникаров, И.И. Машины и аппараты химических производств: Учебник вузов по специальности «Машины и аппараты химических производств и предприятий строительных материалов» / И.И. Поникаров, О.А. Перелыгин [и д.р.]. М.: Машиностроение, 1989. 368 с.
- 51. Постоянный технологический регламент №ТР-22Б. Получение циклогексанона цеха №22. Книга 1. 271 с.
- 52. Равинович, З.Я. Краткий химический справочник / В.А. Равиновия, З.Я. Хавин/ 2-е издание, переработанное и дополненное. М.: Химия, 1978. –

- 53. Рынок капролактама в России [Электронный ресурс] режим доступа: http://roif-expert.ru/khimicheskaya-promyshlennost/kaprolaktam.html, свободный, Загл. с экрана.
- 54. Сергеев, А.В. Методические указания к выпускной квалификационной работе (экономическое обоснование работы) / А.В. Сергеев. Тольятти.: ТГУ, 2007. 29с.
- 55. Справочник химика в 6 т. Т.2 Химическое равновесие и кинетика. Свойства растворов. Электродные процессы. 2-е издание, переработанное и дополненное.— Л.: Химия, 1965. 1008 с.
- 56. Справочник химика в 6 т. Т.3 Химическое равновесие и кинетика. Свойства растворов. Электродные процессы. 2-е издание, переработанное и дополненное.— Л.: Химия, 1965. 1008 с.
- 57. Справочник химика в 6 т. Т.6 Сырье и продукты промышленности органических веществ. 2-е издание, переработанное и дополненное. Л.: Химия, 1967. 1012 с.
- 58. Тарелки для переноса массы фирмы RVT Process Equipment (Раушерт) [Электронный ресурс] режим доступа: http://www.rubbersealing.com/trays-RU.html, свободный, Загл. с экрана.
- 59. Тарельчатые колонны. Требования и типы конструкций тарелок [Электронный ресурс] режим доступа: http://nhmt.ru/uchebnik/TOO/520.php, с экрана.
- 60. Термодинамика равновесия жидкость пар/под ред. А.Г. Морачевского. Л.: Химия, 1989. 344 с.
- 61. Флореа, О. Расчеты по процессам и аппаратам химической технологии / О. Флореа, О. Смигельский. М.: Химия, 1971 784 с.
- 62. Фурман, М.С. Производство циклогексанона и адипиновой кислоты окислением циклогексана/М.С. Фурман, А.С. Бадриан, [и д.р.] М.: Химия, 1967. 240с.

- 63. Чичибабин, А.Е. Основы начала органической химии / А.Е. Чичибабин. М.: Госхимиздат, 1963. 922 с.
- 64. Эмануэль, Н.М. Теория и практика жидкофазного окисления/ Н.М. Эмануэль. – М.: Наука,1974. – 395 с.
- 65. Эмануэль, Н.М. Цепные реакции окисления углеводородов в жидкой фазе/ Н.М. Эмануэль, Е.Т. Денисов, З.К. Майзус. М.: Наука, 1965. 274 с.