

Н.С. Чернов

ДЕТАЛИ МАШИН И ОСНОВЫ ЭКОЛОГИЧЕСКОГО КОНСТРУИРОВАНИЯ

Учебно-методическое пособие по выполнению курсового проекта

Тольятти 2008

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Тольяттинский государственный университет

Н.С. Чернов

ДЕТАЛИ МАШИН И ОСНОВЫ ЭКОЛОГИЧЕСКОГО КОНСТРУИРОВАНИЯ

Учебно-методическое пособие по выполнению курсового проекта УДК 621.81(075.8) ББК 34.44 Ч49

Репензент:

кандидат технических наук, доцент кафедры «Механика и защита окружающей среды» Тольяттинского государственного университета А.Н. Пахоменко.

Ч49 Чернов, Н.С. Детали машин и основы экологического конструирования: учеб.-метод. пособие по выполнению курсового проекта / Н.С. Чернов. — Тольятти: ТГУ, 2008. — 104 с.

Учебно-методическое пособие предназначено в помощь студентам, выполняющим курсовой проект по дисциплине «Детали машин и основы экологического проектирования». Оно содержит круг вопросов по расчету, оформлению, содержанию и объему выполняемого проекта. Представлены примеры выполнения графической части курсового проекта, рекомендации по конструированию отдельных деталей, примеры оформления конструкторской документации, выбора марок сталей и упрочняющей термообработки, необходимые справочные материалы. Издание также может быть использовано студентами машиностроительных и механических специальностей, выполняющих курсовой проект по курсу «Детали машин и основы конструирования».

Рекомендовано к изданию методической комиссией автомеханического института Тольяттинского государственного университета.

[©] Тольяттинский государственный университет, 2008

[©] Н.С. Чернов, 2008

ВВЕДЕНИЕ

Курсовой проект по деталям машин (ДМ) является первой самостоятельной работой студента. При выполнении его закрепляются знания по курсу «Детали машин и основы экологического конструирования», развивается умение использовать для практических приложений сведения ранее изученных дисциплин, приобретаются навыки работы со справочной литературой, государственными и отраслевыми стандартами. Изучение основ экологического конструирования деталей машин способствует их развитию, совершенствованию и творческому подходу к поставленным задачам.

В соответствии с рабочей программой дисциплины объектом курсового проекта являются механические передачи для преобразования вращательного движения, а также преобразования вращательного в поступательное. Наиболее распространенными объектами в курсовом проекте являются передачи цилиндрические, конические, червячные и передачи с гибкой связью. Такой выбор связан с большой распространенностью и важностью их в современной технике. Весьма существенным является то, что в механическом приводе с упомянутыми передачами наиболее полно представляются основные детали, кинематические пары и соединения, изучаемые в курсе «Детали машин и основы экологического конструирования». При проектировании редуктора находят практические приложения такие важнейшие сведения из курса, как расчеты на прочность, вибрацию и шум, тепловые расчеты, выбор материалов и термообработок, масел, посадок, параметров шероховатости поверхности и т. д.

Курсовое проектирование по деталям машин основывается на выполнении студентом графических и расчетных работ по черчению, начертательной геометрии, теории механизмов и машин, а также призвано выработать навыки проектирования машин в целом и тем самым закончить общеинженерную подготовку студента по проектированию.

Автор выражает благодарность студентам физико-технического института Тольяттинского государственного университета А. Глушкову, В. Рачкову, А. Маханову за помощь в подготовке данного издания.

1. ЦЕЛИ И ЗАДАЧИ КУРСОВОГО ПРОЕКТИРОВАНИЯ

1.1. Общие сведения

Курсовое проектирование по деталям машин имеет целью закрепление и углубленное знание, полученные студентами при изучении теоретического курса, а также способствует развитию технической мысли студента и получению навыков конструирования сложной сборочной единицы.

Инженер-конструктор является творцом новой техники, и уровнем его творческой работы в большей степени определяются темпы научно-технического прогресса. Деятельность конструктора принадлежит к числу наиболее сложных проявлений человеческого разума. Решающая роль успеха при создании новой техники определяется тем, что заложено на чертеже конструктора. Одна из важнейших задач в подготовке инженера-эколога (конструктора, технолога, исследователя) — научить творчески применять при решении поставленных задач приобретенные знания.

Важнейшая задача курсового проектирования по деталям машин — развить умение разрабатывать техническую документацию для облечения в материальную форму заданной схемы механизма, учитывая требования, предъявляемые к прочности, надежности, технологичности, эксплуатационными расходами и защиты окружающей среды. Базируясь на исходных предпосылках из курса графики и машиностроительного черчения, в процессе самостоятельной работы над курсовым проектом по деталям машин студенты овладевают свободным решением и чтением чертежей неограниченной сложности.

1.2. Тематика курсового проектирования

Тематика курсового проектирования должна иметь вид комплексной инженерной задачи, включающей кинематические и силовые расчеты, выбор материалов и расчеты на прочность, вопросы конструирования и выполнения конструкторской документации в виде габаритных, сборочных и рабочих чертежей, а также составление спецификации.

Для курсового проектирования предпочтительны объекты, которые не только широко распространены, но и имеют большое практическое значение — это приводы машин и механизмов, включающие различные типы механических передач: цилиндрические и конические, с прямыми и косыми зубьями, гипоидные, червячные, многочисленные варианты планетарных и волновых передач, с гибкой связью и т. д.

Это порождает вопрос о выборе наиболее рационального варианта передачи. При выборе типа передачи руководствуются показателями,

среди которых основными являются коэффициент полезного действия (КПД), габаритные размеры, масса, технические и экологические требования. В рамках курсового проекта не представляется возможным достаточно полно охватить все параметры, необходимые для сравнительной оценки разных типов передач, но по таким характеристикам, как КПД и массогабаритные показатели, студенты смогут обоснованно выбрать схему передачи, удовлетворяющую заданным требованиям. Некоторые варианты заданий курсового проектирования приведены на рис. 1.

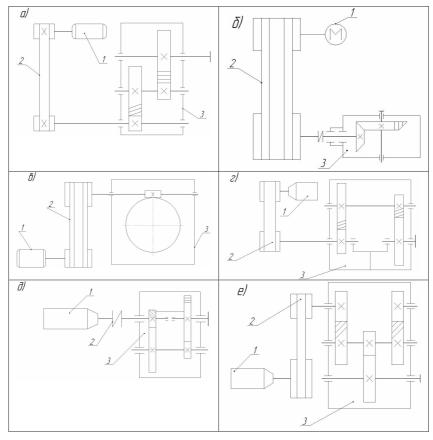


Рис. 1. Кинематические схемы приводов механизмов и машин: а) привод с двухступенчатым редуктором; б) привод с коническим редуктором; в) привод с червячным редуктором; г) привод с двухступенчатым соосным редуктором; д) привод с трехступенчатым редуктором; 1 — электродвигатель; 2 — ременная передача (муфта); 3 — редуктор

Изыскания путем снижения массы, обеспечения защиты окружающей среды проектируемых объектов являются важнейшей предпосылкой дальнейшего прогресса, необходимым условием сбережения природных ресурсов и экологической безопасности. Следует отметить, что большая часть вырабатываемой в настоящее время энергии проходит через механические передачи, поэтому их КПД в известной степени определяет эколого-экономическую эффективность проекта.

В пособии приведен рекомендуемый порядок выполнения курсового проекта и данные, относящиеся к его объему, включая пояснительную записку.

2. ЗАДАНИЕ НА КУРСОВОЕ ПРОЕКТИРОВАНИЕ

2.1. Общие сведения

Задание на курсовой проект по деталям машин (ДМ) выдается на механические передачи общего назначения.

К типовым проектам механических передач относятся объекты проектирования, как приводы машин и механизмов технологического, испытательного и транспортирующего оборудования (рис. 1).

Приводы сложной конструкции могут проектироваться двумя-тремя студентами, в результате чего вырабатываются навыки совместной работы.

Каждый проект должен содержать элементы новизны и выполняется в полном соответствии с индивидуальным заданием установленного образца (прил. 2).

Задание обязательно должно быть подписано руководителем проекта. В отдельных случаях оно утверждается заведующим кафедрой (реальный проект, поисковая работа и т. д.). Индивидуальное задание сохраняется на протяжении всего проектирования и прикладывается к расчетно-пояснительной записке (РПЗ).

Курсовое проектирование по ДМ, также как и все другие проекты, должен выполняться с требованиями ЕСКД.

В курсовом проекте преобладают элементы эскизного и технического проектирования, а также разработки рабочей документации.

С методикой эскизного проектирования студент знакомиться при выполнении предварительных проектировочных расчетов и составлении кинематических и структурных схем механизмов. Методика выполнения технического проекта осваивается при разработке чертежей сложных сборочных единиц, выполнении проверочных расчетов, техническом описании машины, определении ее важнейших технико-экономических показателей. Навыки разработки документации развиваются и углубляются при выполнении чертежей заданных сборочных единиц и деталей, составлении спецификации, проведении уточненных расчетов, составлении списка использованной литературы и окончательном оформлении расчетно-пояснительной записки (РПЗ).

2.2. Стадии разработки курсового проекта

Стандартов на курсовое проектирование нет, но рекомендуется руководствоваться ГОСТ 2.103-68, в котором предусмотрены определенные стадии проектирования и этапы выполнения работ. Стадии разработки, перечень основных работ, форма отчетности по курсовому проекту приведены в табл. 1.

Стадии разработки проекта

Стадии разработки (ГОСТ 2.103-68)	Перечень основных работ	Форма отчетности
Разработка технического предложения (ГОСТ 2.188-73)	Ознакомление с техническим заданием (темой проекта, исходными данными, объемом работ и сроками выполнения). Подбор и изучение литературы и нормативно-проектных материалов. Выбор прототипа конструкции. Составление кинематической схемы механизма	Перечень литературы и нормативно-проектных материалов. Кинематическая схема механизма
Эскизное проектирование (ГОСТ 2.119-73)	Предварительное определение основных параметров стандартных и унифицированных изделий электродвигателей, муфт и др.), входящих в состав механизма, и их подбор (выбор). Предварительное определение основных параметров сборочных единиц, не являющихся унифицированными (зубчатых ременных, цепных передач и др.), входящих в состав механизма. Компонование нескольких вариантов механизма с привязкой их к опорной металлоконструкции. Выбор рационального варианта	Варианты компонования и их обоснование
Техническое проектирование (ГОСТ 2.120-73)	Проверочные расчеты механизма (проверка прочности деталей, сборочной единицы). Уточнение скоростей движения механизма, КПД. Конструирование и расчет на прочность деталей и сборочной единицы (на выбор), не являющейся унифицированной, входящей в состав механизма. Разработка чертежа общего вида	Проверенные ру- ководителем расчеты. Подписанный руководителем чертеж общего вида
Разработка ра- бочей конструк- торской доку- ментации	Составление спецификаций на сборочные чертежи (привод, редуктор). Выполнение сборочных чертежей и чертежей деталей	Подписание руководителем спецификации, сборочные чертежи, чертежи деталей и РПЗ

Продолжение табл. 1

Стадии разработки (ГОСТ 2.103-68)	Перечень основных работ	Форма отчетности
	Оформление РПЗ	Введение; назначение и область приме- нения; техническая характеристика; описание и обос- нование выбран-
		ной конструкции; защита окружаю- щей среды; ожидаемые техни- ко-экономические показатели; уро- вень унификации (ГОСТ 2.106-73)

Изучая техническое задание на проектирование, студент должен усвоить назначение и условия работы привода и его сборочных единиц, порядок сборки и регулировки передач. Необходимо тщательно ознакомиться с конструкциями аналогичных редукторов и открытых передач по литературе, указанной в конце данного учебного пособия, после чего приступить к проектированию заданного привода.

3. СОДЕРЖАНИЕ И ОФОРМЛЕНИЕ КУРСОВОГО ПРОЕКТА

Содержание и оформление курсового проекта должно отвечать требованиям Единой системы конструкторской документации (ЕСКД).

В курсовой проект по деталям машин входят следующие конструкторские документы, регламентированные по ГОСТ 2.102-68:

- текстовый документ расчетно-пояснительная записка (шифр $\Pi 3$);
- графические документы чертеж общего вида привода (шифр ВО или СБ);
- сборочный чертеж редуктора (шифр СБ);
- спецификации на сборочные единицы (на привод и на редуктор);
- рабочие чертежи основных деталей редуктора (2-3 детали);

Сборочные единицы и спецификации должны быть выполнены в соответствии с требованиями, соответственно, ГОСТ 2.109-73 и ГОСТ 2.108-68. (см. рис. 2 в прил. 3, рис. 1 в прил. 4).

3.1. Объём и содержание расчетно-пояснительной записки

Расчетно-пояснительную записку (РПЗ) оформляют в соответствии с ГОСТ 2.106-68 (форма 5 и 5а) как конструкторский документ, содержащий описание устройства и принцип действия разработанного изделия, обоснование приятых при его разработке технических и технико-экономических решений, расчеты деталей на прочность, жесткость и работоспособность, расчеты посадок сопряженных деталей, допусков. Выполняют на листах формата А4 (210×297) одним из следующих способов: машинописным; либо компьютерным на одной стороне листа через 1,5 интервала, с высотой букв не менее 2,5 мм; либо рукописным на одной стороне листа, с высотой букв и цифр не менее 2,5 мм. Цифры и буквы необходимо четко писать чернилами или пастой.

РПЗ оформляется в виде папки скоросшивателя и должна включать:

- титульный лист (первый лист записки) (прил. 1);
- техническое задание на проектирование (прил. 2);
- введение с кратким описанием устройства и назначения проектируемого привода;
- выбор электродвигателя и кинематический расчет привода;
- расчет открытой передачи (ременной, цепной и т. д.);
- расчет (выбор) муфты;
- расчет редукторной передачи;
- эскизную компоновку редуктора;

- предварительный расчет валов, подбор подшипников и проверочный расчет их на долговечность;
- конструктивные проработки и определение основных размеров валов, зубчатых колес, корпуса и корпусных деталей редуктора;
- выбор способа смазывания зубчатых (червячных) зацеплений и подшипников;
- уточненный расчет валов редуктора;
- тепловой расчет редуктора (червячного);
- краткое описание технологии сборки редуктора, регулирование подшипников и деталей зацепления;
- перечень использованной технической литературы или других источников, используемых при выполнении проекта;
- содержание.

Каждый расчет должен содержать:

- заголовок с указанием детали и вида выполняемого расчета (прочность, жесткость, долговечность и т. д.);
- эскизы элементов рассчитываемых деталей, расчетные схемы с указанием сил, эпюр моментов и всех необходимых размеров;
- наименование марки принятого материала с указанием термообработки и характеристик механических свойств;
- обоснование выбора допускаемых напряжений или давлений с указанием использованной литературы;
- заключение по результатам расчета.

Содержание расчетно-пояснительной записки разбивают на разделы, подразделы и пункты. Разделы должны иметь порядковые номера, обозначенные арабскими цифрами с точкой, например:

- 1. Выбор электродвигателя и кинематический расчет привода
- 2. Расчет передач.

Подразделы должны иметь порядковые номера в пределах каждого раздела.

Номера подразделов состоят из номера раздела и подраздела разделенных точкой. Например, подразделы раздела 2 обозначаются:

- 2.1. Расчет зубчатых передач
- 2.2. Расчет валов

И так лалее.

Например, пункты раздела 2, подраздела 2.1 обозначают:

- 2.1.1. Проектировочный расчет зубчатых передач
- 2.1.2. Проверочный расчет зубчатых передач.

И так лалее.

Наименования разделов должны быть краткими, соответствовать содержанию и записываться прописными буквами. Наименования подразделов записывают в виде заголовков строчными буквами. Переносы слов в заголовках не допускаются. Точку в конце заголовка не ставят. При оформлении записки необходимо выдерживать определенные расстояния от строк текста до кромок листа. Расстояние от верхней или нижней строки текста до верхней или нижней кромки листа должно быть не менее 20 мм, а расстояние от кромки листа слева до границ текста — 25 мм (для подшивки), а справа — 15 мм.

Нумерация листов записки должна быть сквозная, номера указывают снизу или сверху в середине листа.

3.2. Графическое оформление чертежей

Все чертежи проекта выполняют карандашом на ватмане или на компьютере, соблюдая правила чертежных стандартов. Форматы чертежей выбирают по табл. 2, а масштабы вычерчиваемых конструкний — по табл. 3.

Таблица 2 Форматы чертежей по ГОСТ 2.301-68

Обозначение формата	A1	A2	A3	A4
Размеры сторон, мм	594×841	594×420	297×420	297×210

Таблица 3 Масштабы чертежей по ГОСТ 2.302-68

Натуральная величина								
Vi com money	1:2	1:2,5	1:4	1:5	1:10	1:15	1:20	1:25
Уменьшение	1:40	1:50						
Увеличение	2:1	2,5:1	4:1	5:1	10:1	-	20:1	_
увеличение	1:40	50:1						

Для всех видов чертежей (сборочных, деталей) ЕСКД дает одну основную надпись (рис. 2), которую располагают в правом нижнем углу конструкторских документов. Основные надписи располагают вдоль короткой стороны листа формата A4.

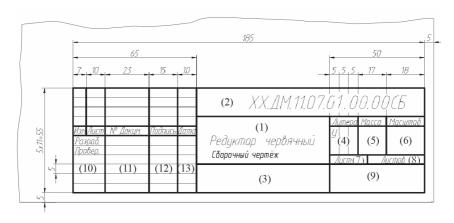


Рис. 2. Основная надпись первого листа сборочных единиц (ГОСТ 2.104-68 форма 1):

- (1) наименование изделия (пример заполнения);
- (2) обозначение документа (общего вида, чертеж детали, спецификации, пояснительной записки);
- (3) обозначение материала детали (заполняют только на чертеже детали);
- (4) литера, присвоенная данному документу (у);
- (5) масса изделия (в учебных проектах не заполняется);
- (6) масштаб;
- (7) порядковый номер листа;
- (8) общее количество листов;
- (9) наименование учебного заведения, выпускающего документ;
- (10), (11), (12), (13) характер работы, выполняемой лицом, подписавшим документ

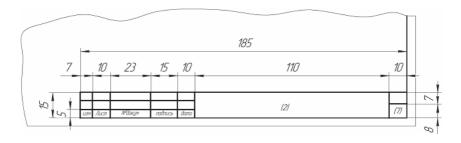


Рис. 3. Основная надпись второго листа сборочных единиц (ГОСТ 2.104-68 форма 2a)

3.3. Спецификация чертежей

- 1. Спецификации составляют на листах формата A4 отдельно на чертеж общего вида привода и на каждую вычерчиваемую сборочную единицу.
- 2. Сборочный чертеж, выполненный на листе формата А4, допускается совмещать со спецификацией на него.
- 3. Первый лист каждой спецификации выполняется по ГОСТ 2.108-68 (форма 1, изображенная на рис. 4). Последующее листы отличаются сокращенной формой основной надписи (рис. 5) (ГОСТ 2.108-68, форма 1а).

Форма 1 (первый лист спецификации)

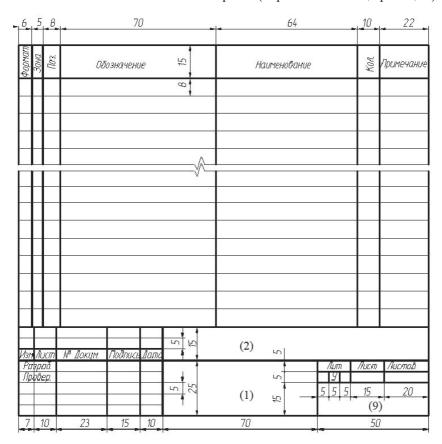


Рис. 4. Основная надпись для первого листа спецификации (ГОСТ 2.104-68 форма 2)

Форма 1а (второй лист спецификации)

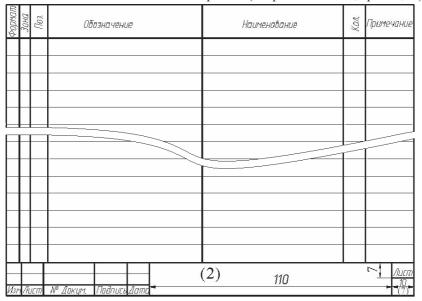


Рис. 5. Основная надпись для последующих листов спецификации (ГОСТ 2.104-68 форма 2a)

- 4. Согласно ГОСТ, спецификация на чертеже должна состоять из восьми разделов, в учебном проекте допускается использование пяти. Наименование каждого раздела указывают в виде заголовка в графе «Наименование» и подчеркивают. На спецификациях (см. рис. 2 в прил. 3, рис. 1 в прил. 4) показаны примеры заполнения бланков спецификаций.
 - 5. Разделы спецификации располагаются в строгом порядке:
- 1) «Документация» наименования документов, входящих в комплект специфицируемого изделия («Чертеж общего вида», «Сборочный чертеж», «Расчетно-пояснительная записка»);
- 2) «Сборочные единицы» наименование единиц, непосредственно входящих в изделие, в соответствии с надписью на их чертежах («Рама», «Редуктор», «Колесо червячное» и т. д.);
- 3) «Детали» наименование деталей в соответствии с надписью на чертежах («Вал-шестерня», «Зубчатое колесо», «Вал» и т. д.);
- 4) «Стандартные изделия» наименование изделий, перечисленные следующим образом:
 - по государственным стандартам (ГОСТ);
 - отраслевым стандартам (ОСТ);
 - стандартам предприятий (СТП).

- 5) «Материалы» наименования материалов, непосредственно входящих в специфицируемое изделие. Их записывают по видам в такой последовательности:
 - металлы черные;
 - металлы цветные;
 - пластмассы и прессматериалы;
 - резиновые и кожевенные материалы;
 - краски, нефтепродукты;
 - прочие материалы.

В пределах каждого раздела наименования записывают в алфавитном порядке, а в пределах каждого наименования — по возрастанию размеров или других технических параметров.

- 6. В разделах «Документация», «Сборочные единицы» и «Детали» указываются обозначения записываемых документов.
- 7. В разделе «Стандартные изделия» в пределах каждой категории стандартов запись производят по однородным группам («крепежные детали», «подшипники» и т. д.); в пределах каждой группы в алфавитном порядке наименований («болт...», «винт...», «гайка...»); в пределах каждого наименования по возрастанию номеров стандартов и далее в порядке возрастания новых параметров или размеров изделий (моменты для муфт, диаметры для болтов и т. д.).
- 8. В учебном проекте графы спецификации заполняют следующим образом:
- 1) в графе «Поз.» порядковые номера составных частей изделий в последовательности записи их в спецификации (такие же номера позиций затем проставляют и на чертеже);
- 2) в графе «Обозначение» шифры чертежей составных частей изделия. В разделе «Стандартные изделия» графу не заполняют;
- 3) в графе «Наименование» наименования изделий. Для стандартных изделий указывают еще и условное обозначение в соответствии со стандартом («Болт M12×40.36 ГОСТ 7805—70»);
- 4) в графе «Кол.» количество составных частей на одно специфицируемое изделие;
- 5) в графе «Прим.» в учебных проектах приводят дополнительные сведения по усмотрению студента (вес и объем материалов, длину проката).
- 9. После каждого раздела спецификации рекомендуется оставлять несколько свободных строк, для дополнительных записей.

Примеры оформления спецификаций приведены в прил. 3 и 4.

3.4. Чертеж общего вида привода

Чертеж общего вида привода предназначен для того, чтобы дать полное представление о приводе в целом (например, привод общего назначения), его эксплуатационной характеристике, основных размерах, взаимной связи отдельных сборочных единиц и деталей, присоединительных поверхностях деталей и их размерах (требования по ГОСТ 2.109-68 см. рис. 2 в прил. 3).

Чертеж выполняют в трех проекциях.

Сборочные единицы и детали привода изображаются на чертеже упрощенно (винты и гайки показывают осевыми линиями, кроме тех, которыми привод крепится к металлоконструкции, фундаменту). На чертеже не изображают мелкие конструктивные элементы деталей, например: зубья звездочек приводных цепей и др.

Чертеж общего вида изделия должен содержать:

- 1) изображение изделия с его видами, сечениями, разрезами;
- 2) габаритные размеры (длину, ширину, высоту);
- 3) установочные и присоединительные размеры (размеры опорных поверхностей, диаметры и координаты крепежных отверстий), монтажные размеры (зазоры между торцами валов, расстояние между осями сборочных единиц) и другие основные размеры (шаг и число зубьев приводных звездочек, расстояние между ними и координаты их расположения, диаметр и длину барабана);
- 4) технические требования к монтажу изделия (допускаемые смещения и перекосы валов);
- 5) техническую характеристику привода (действующие нагрузки, скорости движения, передаваемую мощность).

Техническую характеристику и технические требования на привод размещают на свободном поле чертежа над основной надписью в виде колонок отдельно с самостоятельной нумерацией пунктов и снабжают заголовками «Техническая характеристика» и «Технические требования». Заголовки не подчеркивают.

Например, на чертеже общего вида привода указывают:

Техническая характеристика

1.	Мощность привода, кВт	5
2.	Общее передаточное число привода, и	20
3.	Частота вращения электродвигателя, мин ⁻¹	3000
4.	КПД привода, η	0,88
ИД	p.	

Технические требования

- 1. Смешение валов электродвигателя и редуктора не более:
- 2. Регулировку натяжения ремней передачи производить винтом поз...(указать) и др.

На чертеже общего вида привода на полках линий-выносок записывают номера позиций сборочных единиц и деталей.

В спецификацию записывают сборочные единицы (редуктор, рама), собственные детали привода, стандартные изделия (болты, винты, гайки, муфты, электродвигатель), а также комплект деталей и материалов, необходимых для монтажа (шайбы, прокладки и т. д.).

3.5. Чертеж сборочной единицы

Чертеж сборочной единицы выполняется на основании эскизной компоновки, произведенной в процессе расчетов в соответствии с требованиями ГОСТ 2.109-68. Он должен содержать изображение и отражать взаимосвязь всех ее деталей. Количество видов, разрезов и сечений, а также текстовая часть и надписи должны давать полное представление о конструкции каждой детали сборочной единицы, необходимое для последующего выполнения рабочих чертежей.

Конструкция деталей тел вращения (валы, колеса и др.) полностью выявляется в одной проекции.

Для выявления конструкции других, более сложных деталей (корпус, крышка), требуется несколько проекций, разрезов и сечений.

Разрезы и сечения выполняют по ГОСТ 2.305-68 (см. рис. 1 в прил. 4). Зубчатые (шлицевые) соединения изображают на чертежах по ГОСТ 2.409-68, а изображения зубчатых и червячных зацеплений выполняют по ГОСТ 2.402-68. Окружности и образующие поверхности впадин зубьев и витков в разрезах и сечениях показывают сплошными основными линиями, а на видах не указывают.

На разрезах зубчатых колес или червяка и червячного колеса в зоне зацепления показывают зуб одного из колес (предпочтительно ведущего) или виток червяка, расположенного перед зубом сопрягаемого колеса.

Направление зубьев зубчатых колес показывают на одном из элементов (как правило, вблизи оси) тремя сплошными тонкими линиями с соответствующим наклоном.

На чертеже сборочной единицы должны быть приведены следующие данные:

- 1) габаритные размеры по трем координатным направлениям (длина, ширина, высота), необходимые для определения размеров, места установки изделия;
- 2) установочные и присоединительные размеры, необходимые для установки изделия при монтаже, а также определения размеров и места положения элементов, которые присоединяют к данному изделию. К ним относятся следующие размеры: диаметр и длина выступающих выходных концов валов, размеры шпонок на них или обозначение шлицев, расстояние от упорных буртиков валов до центров отверстий, предназначенных для крепления сборочной единицы на плите, раме, диаметр отверстий под фундаментные болты и координаты этих отверстий, расстояние осей валов до опорной (базовой) плоскости, размеры этих плоскостей;
- 3) основные расчетные размеры, характеризующие сборочную единицу, а также справочные (межосевые расстояния зубчатых передач с предельными отклонениями, ширина колес, конусные расстояния конических колес, углы наклона зубьев, число заходов);
- 4) посадочные (сопряженные) размеры, определяющие характер сопряжений: размеры диаметров и посадки на валах по системе ISO зубчатых, червячных колес, шкивов, муфт, подшипников, стаканов, центрирующих буртиков крышек подшипников; размеры шлицевых соединений, размеры резьб на валах, координаты штифтов и крепежных отверстий в корпусе и крышках и др. Эти размеры используют при разработке чертежей деталей, технологии сборки;
- 5) исполнительные (сборочные) размеры, связанные с выполнением каких-либо технологических операций в процессе сборки, а также задающие условия регулировки изделия (размеры отверстий под штифты с предельными отклонениями, если их обрабатывают в процессе сборки; размеры зазоров между подшипниками и упорными торцами подшипниковых крышек, если их контролируют при сборке с целью гарантии подшипников от защемления);
- 6) размеры элементов, которые конструктор выделяет по тем или иным соображениям (размеры выточек на валу, шпоночных пазов);
- 7) максимальный и минимальный уровни масла, габариты передач (на виде спереди наносят пунктирными линиями внешние окружности колес);
- 8) технические требования, характеристики и таблицы по ГОСТ 2.316-68.

Весь комплекс технических данных, который необходим для изготовления, сборки, регулировки, отладки и контроля изделия, не может быть выражен только линиями чертежа, размерами, предельными отклонениями и условными обозначениями. Поэтому возникает

необходимость заполнять чертеж соответствующими текстовыми техническими требованиями, техническими характеристиками и дополнительными данными в таблицы.

Технические требования. Технические требования должны быть изложены кратко и четко. Следует придерживаться общепринятых в технической литературе терминов. Размещают технические требования под заголовком «Технические требования» на поле чертежа под основной надписью в виде колонки не более ширины основной надписи.

В зависимости от вида сборочной единицы и ее назначения, технические требования могут быть самыми разнообразными. Наиболее четко используются следующие требования:

- 1. Требования к сборке, предъявляемые к регулировке элементов изделия. Указывают регулировочные зазоры между торцами подшипников (если они необходимы и не указаны на чертеже); способ уплотнения плоскости разъема (например, «Плоскость разъема покрыть герметиком при окончательной сборке УГ-31 ГОСТ 13489-79»); указания о дополнительной обработке деталей при сборке (например, « Приварить», «Развальцевать» и др.); требования к точности монтажа сборочных единиц (например, «Допускаемые радиальные, угловые и осевые смещения валов и др.»).
- 2. Требования по отделке. Например, по окраске изделия в сборе с указанием сорта и цвета окраски: «Наружные поверхности редуктора покрыть эмалью НЦ-11, светло-зеленая 369 ГОСТ 9198-83, IV УХЛ 4».
- 3. Требования к эксплуатации. Указывают количество заливаемого масла, сроки замены масла и периодичность смазки отдельных деталей, узлов и др.

Пункты технических требований должны иметь сквозную нумерацию. Каждый пункт технических требований записывают с красной строки.

Текстовую часть технических требований размещают только на первом листе независимо от того, на скольких листах изображен чертеж данного изделия и на каких листах находятся изображения, к которым относятся указания, приведенные в текстовой части.

Например, на чертеже общего вида редуктора могут быть указаны следующие **технические требования**:

- 1. Осевую игру радиально-упорных роликоподшипниковых позиций (указывать номер позиции) обеспечить в пределах 0...0,05 мм подгонкой детали позиции (указать).
- 2. Валы собранного редуктора должны проворачиваться от руки плавно, без заеданий.
- 3. Плоскость разъема корпуса и крышки покрыть тонким слоем герметика УГ-31 ГОСТ 13489-79 при окончательной сборке.

- 4. Наружные поверхности редуктора покрыть эмалью НЦ-11, светло-зеленая 369 ГОСТ 9198-83, IV УХЛ 4.
 - 5. В редуктор залить масло И-32А ГОСТ 20799-88 в количестве 3 л.
 - 6. Редуктор обкатать без нагрузки при частоте вращения быстро-

ходного вала $n_6 = 3000\,\mathrm{MuH}^{-1}$ в течение трех часов. Наружная утечка масла в соединениях, шум и вибрация не допускается.

Техническая характеристика расширяет сведения о конструкции сборочной единицы.

Техническую характеристику размещают на свободном поле чертежа над основной надписью в виде колонки шириной не более ширины основной надписи отдельно и выше технических требований с самостоятельной нумерацией пунктов и снабжают заголовком «Техническая характеристика». Заголовок не подчеркивают.

Например, на чертеже общего вида редуктора указывают следующие **технические характеристики**:

- 1. Общее передаточное число, и...
- 2. Частота вращения выходного вала, мин-1
- 3. Вращающий момент на выходном валу, Нм...
- 4. КПД редуктора, **η** ...

3.6. Чертежи деталей

3.6.1. Общие положения

Деталь изображают на чертеже в положении, при котором производится обработка основных ее поверхностей. В частности, ось детали, представляющей тело вращения, располагают горизонтально (вал, колесо, стакан).

Чертеж должен содержать все данные, определяющие форму, размеры, их предельные отклонения, шероховатость поверхностей, марку материала, термообработку и другие сведения, необходимые для изготовления и контроля детали.

Центровые отверстия на чертежах деталей не изображают и в технических требованиях никаких указаний не приводят. Если в центровом отверстии детали должна быть резьба, на чертеже приводят длину отверстия под резьбу, диаметр и длину нарезки.

Когда обработка отверстий в детали под винты, штифты производится при сборке, на чертеже эти отверстия не изображают и никаких указаний в технических требованиях не помещают. Все необходимые данные для обработки таких отверстий (размеры, шероховатость поверхностей, координаты расположения, количество) помещают на сборочном чертеже.

3.6.2. Простановка размеров

Основанием для определения величины изображаемого изделия и его элементов служат размерные числа, нанесенные на чертеже, а для определения требуемой точности — предельные отклонения размеров, допуски формы и расположения поверхностей. При нанесении размеров необходимо учитывать конструктивные особенности детали, условия ее работы в изделии, способ изготовления.

Размеры, не подлежащие выполнению по данному чертежу и указываемые для большего удобства пользования им, называются справочными. На чертеже их отмечают знаком *, а в технических требованиях записывают: «*Размеры для справок».

Размеры, проставляемые на чертежах деталей, условно разделяют на три группы:

- 1) сопряженные размеры, относящиеся к двум и более сопряженным деталям (\emptyset 58 H7, \emptyset 35 к6);
 - 2) цепные размеры, образующие размерную цепь;
 - 3) свободные.

Сопряженные размеры берут из чертежа сборочной единицы и проставляют на рабочем чертеже детали по ЕСДП соответствующими предельными отклонениями (см. табл. 1 в прил. 14).

Цепные размеры берут из соответствующей схемы размерной цепи и проставляют на рабочем чертеже детали с предельными отклонениями, которые получают из результатов расчета размерной цепи или назначают конструктивно.

Свободные размеры проставляют на рабочих чертежах деталей с учетом последовательности технологических операций изготовления детали и удобства измерений.

Размеры, относящиеся к одному конструктивному элементу, следует группировать в одном месте. На чертежах деталей тел вращения рекомендуется основные размеры, определяющие величину частей детали, располагать под изображением, вспомогательные размеры (длины шпоночных пазов, границы термообработки и разной степени точности) — над изображениям детали.

Не допускается нанесение размеров на чертежах в виде замкнутой цепи. Исключение делается только в том случае, когда один из размеров указан как справочный.

Каждый размер следует приводить на чертеже лишь один раз.

3.6.3. Простановка предельных отклонений размеров

Для всех размеров, нанесенных на рабочих чертежах, указывают предельные отклонения, кроме размеров, определяющих зоны различной шероховатости или термообработки одной и той же поверхности.

Размеры с предельными отклонениями элементов, обрабатываемых совместно, заключают в квадратные скобки и в технических требованиях помещают указание: «Обработку по размерам в квадратных скобках производить совместно с дет...».

При назначении различных предельных отклонений для одного номинального размера границу между ними наносят сплошной тонкой линией, а номинальный размер указывают с соответствующими предельными отклонениями для каждого участка отдельно.

Предельные отклонения размеров указывают непосредственно после номинальных. Предельные отклонения низкой точности на изображении не указывают, а в технических требованиях делают запись: «Неуказанные предельные отклонения размеров: охватывающих — по H14, охватываемых — по h14, прочих — $\pm \frac{1}{2}$ IT14».

При выполнении учебного проекта необходимо на рабочих чертежах деталей предельные отклонения размеров, указывать условными обозначениями с указанием справа в скобках их числовых величин, например:

$$\varnothing$$
12 e9 $\begin{pmatrix} -0.020 \\ -0.070 \end{pmatrix}$, \varnothing 50 H7 $\begin{pmatrix} +0.030 \\ \end{pmatrix}$.

В табл. 4 приведены буквенные обозначения основных отклонений отверстий и валов для посадок системы ИСО.

Предельные отклонения угловых размеров показывают только числовыми величинами, например: $30^{\circ}\pm1^{\circ}$.

Таблица 4

Буквенные обозначения отклонений отверстий и валов для посадок системы ИСО

Отверстия	a	b	с	D	Е	F	G	Н	J_{s}	K	M	N	P	R	S	Т	U	V	X	Y	Z
Валы	a	b	с	d	e	f	g	h	j _s	k	m	n	p	r	S	t	u	v	X	y	Z
	ДЈ	п п	юса	адо	кс	3a3	opo	M	П	переходные для посадок с натягом					M						
	для посадок с тепловым																				
Назначение			3	a30	pon	Л															
Trasma temple		Увеличение зазоров						в Увеличение натягов													
	←								_				=								>

Рекомендуемые (часто применяемые) посадки при размерах от 1 до 500 мм приведены в табл. 5.

Таблица 5 Рекомендуемые посадки при размерах от 1 до 500 мм

Ка	тет			Основі	ные от	клонен	ия вал	ов (сис	стема с	тверст	(кит		
Поле допуска	Квалитет вала	d	e	f	g	h	j _s	k	m	n	p	r	s
II of	Квал вала	Посадки с зазором					Пер	еходнь	не поса	дки	Посадки с натягом		
Н6	5				H6 g5	H6 h5	H6 j₅5	H6 k5	H6 m5	$\frac{\text{H6}}{\text{n2}}$	$\frac{\text{H6}}{\text{p5}}$	$\frac{\text{H6}}{\text{r5}}$	H6 s5
110	6			H6 f6									
	6				$\frac{\mathrm{H}7}{\mathrm{g}6}$	H7 h6	$\frac{H7}{j_s6}$	H7 k6	H7 m6	H7/n6	<u>H7</u>	<u>H7</u>	H7/s6
H7	7		H7 e7	H7 f7									<u>H7</u> s7
	8	H7 d8	$\frac{\mathrm{H7}}{\mathrm{e8}}$										
Н8	7			H8 f7		$\frac{H8}{h7}$	$\frac{H8}{j_s7}$	H8 k7	H8/m7	H8/n7			<u>H8</u> s7
по	8	H8 d8	H8 e8	H8 f8		H8 h8							
Ка	гет			Основі	ные от	клонен	вто кы	ерстий	і (сист	ема ва	ла)		
Поле допуска	Квалитет вала	D	E	F	G	Н	Js	K	M	N	P	R	S
П	Квал]	Тосадк	и с заз	ором			еходнь	не поса	дки	Посад	ки с на	моткт
Н5	6				<u>G6</u> h5	<u>H6</u> h5	<u>j_s6</u> h5	<u>K6</u> h5	<u>M6</u> h5	<u>N6</u> h5	<u>P6</u> h5		
Н6	7			<u>F7</u> h6	G7 h6	H7 h6	<u>j_s7</u> h6	<u>K7</u> h6	<u>M7</u> h6	N7 h6	<u>P7</u> h6	R7 h6	87 h6
110	8	D8 h6	<u>E8</u> h6	F8 h6									
H7	7												
	8	D8/h7	E8 h7	F8 h7		$\frac{\mathrm{H8}}{\mathrm{h7}}$	<u>j_s8</u> h7	<u>K8</u> h7	M8 h7	N8/h7			
Н8	8	D8 h8	E8 h8	F8 h8		H8 h8							
110	9	D9 h8	E9 h8	F9 h8		H9 h8							

3.6.4. Предельные отклонения формы и расположения поверхностей

При изготовлении деталей могут появиться погрешности не только линейных размеров, но и геометрической формы, относительного расположения осей и поверхностей.

По ГОСТ 2.308-79 на чертежах указываются предельные отклонения формы и расположения поверхностей условными знаками

и обозначениями или в технических требованиях текстом (табл. 6 и 7). Желательно применение условных обозначений.

Для различных типов деталей указывают разные виды предельных отклонений форм и расположения поверхностей.

На чертежах валов, осей, валов-шестерен и червяков проставляют согласно изображению на рис. 6.

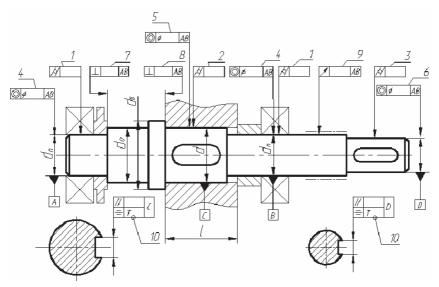


Рис. 6. Предельные отклонения формы и расположения поверхностей вала

Рабочей осью вала является общая ось посадочных поверхностей для подшипников качения. Это ось обозначена на рис. 6 буквами AB. На этом же рисунке приведены обозначения некоторых размеров (d_n, d_6, d_0, d) , а в рамках — условные обозначения допусков формы и расположения.

В табл. 7 в соответствии с позициями, указанными на рис. 6, приведены указания по определению предельных отклонений формы и расположения поверхностей.

Рабочей осью вала является общая ось посадочных поверхностей для подшипников качения. Это ось обозначена на рис. 6 буквами AB. На этом же рисунке приведены обозначения некоторых размеров (d_n, d_6, d_0, d) , а в рамках — условные обозначения допусков формы и расположения.

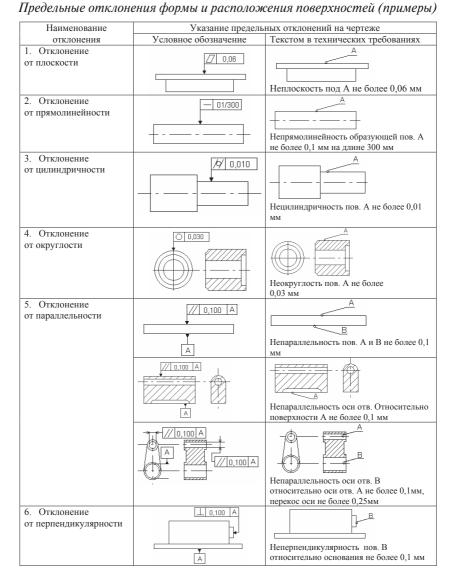

В табл. 7 в соответствии с позициями, указанными на рис. 6, приведены указания по определению предельных отклонений формы и расположения поверхностей.

 Таблица 6

 Условные знаки допусков формы и расположения поверхностей

Группа допуска	Вид допуска	Условный знак
	Допуск прямолинейности	
	Допуск плоскостности	
Допуски формы	Допуск круглости	
	Допуск цилиндричности	/ /
	Допуск профиля продольного сечения	
	Допуск параллельности	//
	Допуск перпендикулярности	
Допуски	Допуск наклона	
расположения	Допуск соосности	
	Допуск симметричности	-=
	Позиционный допуск	\oplus
	Допуск пересечения осей	X
	Допуск радиального биения Допуск торцевого биения Допуск биения в заданном направлении	1
Суммарные допуски формы	Допуск полного радиального биения Допуск полного торцевого биения	11
и расположения	Допуск формы заданного профиля	
	Допуск формы заданной поверхности	
_	. Основные понятия и определения, относящие рмы и расположения, даны в табл. 7	сяк

Таблица 7

Продолжение табл. 7

Наименование	Указание предель	ных отклонений на чертеже
отклонения	Условное обозначение	Текстом в технических требованиях
7. Отклонение от перпендикулярности	10,040	Неперпендикулярность оси отв. В относительно оси отв. А не более 0,04 мм
8. Отклонение от соостности	© \$0.080 A A	Несоостность отв. В относительно отв. А не более 0.08 мм
	(S) \$0,100 (M)	Несоостность пов. А и В не более 0,1 мм (допуск зависимый)
9. Отклонение от симметричности	- 0,050 A	А А Несимметричность паза относительно пов. А не более 0.05 мм
10. Отклонение от осей пересечения	× 0,060 A	Непересечение осей отв. не более 0,06 мм
11. Биение	Ø 0,010 A	Радиальное биение пов. Б и В относительно оси отв. не более 0,01 мм
	A (0,010 AB B	Радиальное биение пов. В относительно общей оси пов. А и В не более 0,04 мм

Предельные отклонения

Позиция	Предельные отклонения
1, 2, 3	$T_{_{\text{цилиндричности}}} pprox 0.3t$, где $t-$ допуск размера поверхности
4	$T_{\text{соосности}}$ на диаметре $d_{\text{п}}$ по табл. 9 Степень точности для групп подшипников: I-7, II-6, III-5
5	${\sf T}_{{}_{\sf соосности}}$ на диаметре d по табл. 9. Степень точности по табл. 11
6	${ m T}_{_{{ m coochoctu}}}{ m ≈}48/n$ для $n{ m \geq}1000$ об/мин; допуск — в мм
7	$T_{\text{перпендикулярности}}$ на d_0 по табл. 10. Степень точности для групп подшипников: I-8, II-7, III-6
8	T перпендикулярности на d_6 при $1/d < 0.8$ по табл. 10. Степень точности по табл. 12
9	$T_{\text{биение}} \approx 48/n$ для $n \ge 1000$ об/мин; допуск — в мм
10	T $_{_{\text{параллельности}}}$ ≈0.6t $_{\text{шп}};$ T $_{_{\text{симметричности}}}$ ≈4t $_{\text{шп}},$ где t $_{\text{шп}}$ — допуск ширины шпоночного паза

Предельные отклонения расположения элементов деталей для базирования подшипников качения зависят от типа подшипника, которые делятся на следующие три группы:

- I шариковые радиальные и радиально-упорные;
- II радиальные с короткими цилиндрическими роликами;
- III конические роликовые.

Назначения каждого из предельных отклонений формы и расположения следующие:

- 1) предельные отклонения цилиндричности посадочных поверхностей для подшипников качения (поз. 1) задают, чтобы ограничить отклонение геометрической формы этих поверхностей и тем самым ограничить отклонение геометрической формы дорожек качения колец подшипников;
- 2) зубчатые и червячные колеса, а также муфты, шкивы, звездочки сажают на валы с натягом. Чтобы ограничить концентрацию давлений, на посадочные поверхности валов задают предельные отклонения цилиндричности (поз. 2, 3);
- 3) предельные отклонения соосности посадочных поверхностей для подшипников качения относительно их общей оси (поз. 4) задают, чтобы ограничить перекос колец подшипников качения;
- 4) предельные отклонения соосности посадочных поверхностей для зубчатого, червячного колес (поз. 5) задают, чтобы обеспечить нормы кинематической точности и контакта зубчатых и червячных передач;

- 5) предельные отклонения соосности посадочных поверхностей для полумуфты, шкива, звездочки (поз. 6) назначают, чтобы снизить дисбаланс вала и деталей, установленных на этой поверхности. Допуск соосности по поз. 6 задается только при частоте вращения вала больше 1000 об./мин, а при меньшей его не задают.
- 6) предельные отклонения перпендикулярности базового торца вала (поз. 7) назначают, чтобы уменьшить перекос колец подшипников и искажения геометрической формы дорожки качения внутреннего кольца подшипника;
- 7) предельные отклонения перпендикулярности базового торца вала (поз. 8) задают для узких колес, у которых $\ell/d < 0.8$. Отклонение задают, чтобы обеспечить выполнение норм контакта зубьев передаче. При отношении $\ell/d \ge 0.8$ предельные отклонения перпендикулярности по поз. 8 не задают:
- 8) предельные отклонения радиального биения поверхности вала (поз. 9), расположенной под резиновой уплотняющей манжетой. Назначение отклонения ограничить амплитуду колебаний рабочей кромки резины, вызывающих ее усталостное разрушение. Это отклонение, также как и в поз. 6, задают при частоте вращения вала ≥ 1000 об./мин.

Таблица 9

	Степень точности отклонений соосности									
Интервалы размеров, мм	5	5 6 7 8								
размеров, мм	Допуск соосности, мкм									
Свыше 18 до 30	10	16	25	40	60					
30-50	12	20	30	50	80					
50-120	16	25	40	60	100					
120-250	20	30	50	80	120					
250-400	25	40	60	100	160					

Таблица 10

	Степень точности отклонений параллельности,										
Интервалы	перпендикулярности										
размеров, мм	5	6	7	8	9	10					
	Допуск параллельности, перпендикулярности, мкм										
Свыше 16 до 25	4	6	10	16	25	40					
25-40	5	8	12	20	30	50					
40-63	6	10	16	25	40	60					
63-100	8	12	20	30	50	80					
100-160	10	16	25	40	60	100					
150-250	12	20	30	50	80	120					
250-400	16	25	40	60	100	160					

Таблица 11

Степень кинема-	Диаметр делительной окружности, мм			
тической точности	Свыше 50 до 125	Свыше 125 до 280	Свыше 280 до 560	
передачи	Степень точности отклонений соосности			
6	5	6	7	
7	6	7	7	
8	7	7	8	
9	7	8	8	

Таблица 12

Тип колес	Степень точности передачи по нормам контакта		
	6	7, 8	9
	Степень точности отклонений перпендикулярности		
Зубчатые	5	6	78
Червячные	6	7	8

Посадка шпонок в паз вала выполняется преимущественно с натягом (P9/h9).

В правом верхнем углу чертежей вала-шестерни и червяка помещают таблицу данных для нарезания зубьев шестерни (рис. 7) или витков червяка (рис. 8).

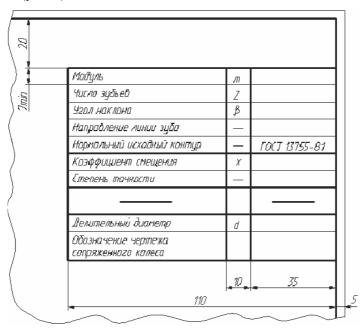


Рис. 7. Форма таблицы параметров зубьев цилиндрического зубчатого колеса

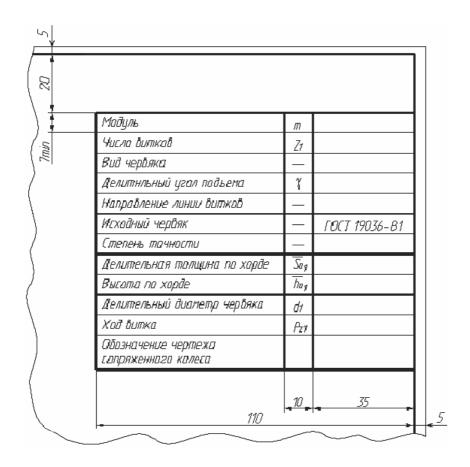


Рис. 8. Форма таблицы параметров витков червяка

На рис. 9, 10, 11, 12, 13 и 14 показаны примеры оформления рабочих чертежей вала, вала-шестерни, зубчатого колеса, шкивов и крышки, а также рекомендации по конструированию зубчатых колес (рис. 15).

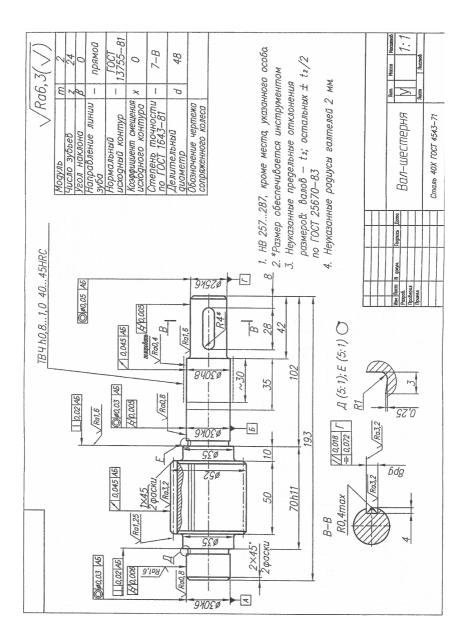


Рис. 9. Чертеж вала-шестерни

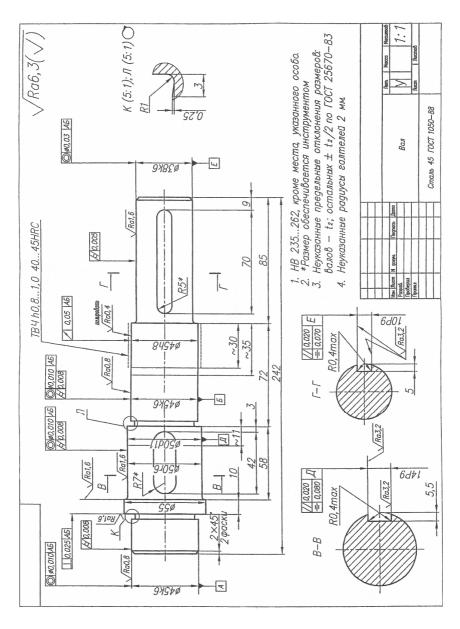


Рис. 10. Чертеж вала

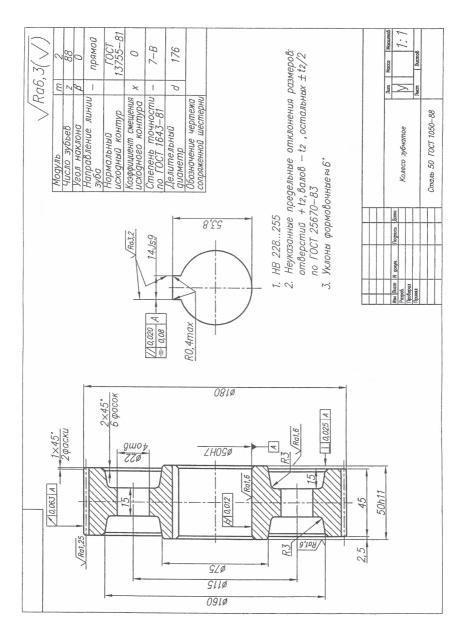


Рис. 11. Чертеж зубчатого колеса

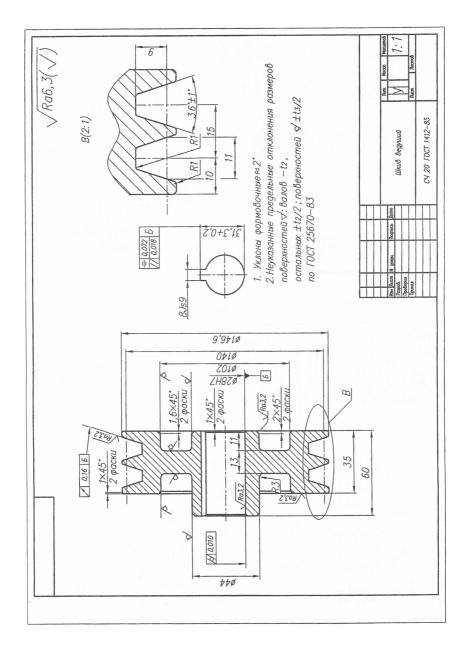


Рис. 12. Чертеж шкива

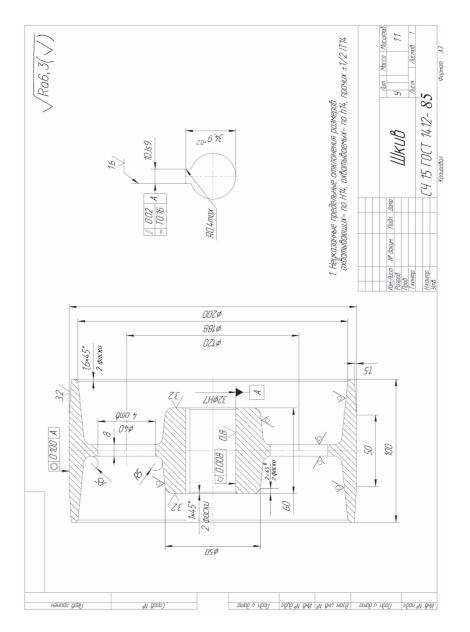


Рис. 13. Чертеж шкива

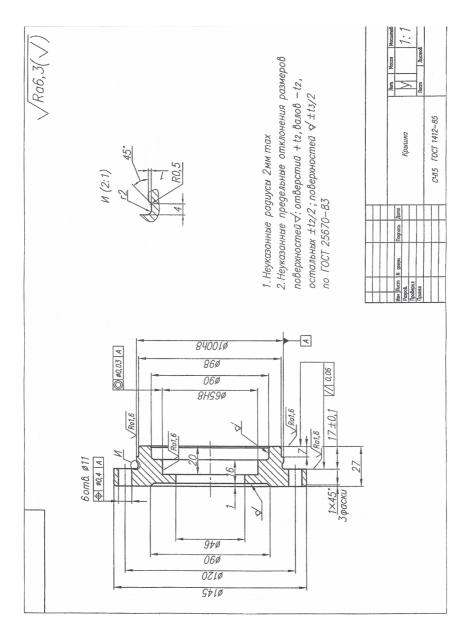


Рис. 14. Чертеж крышки

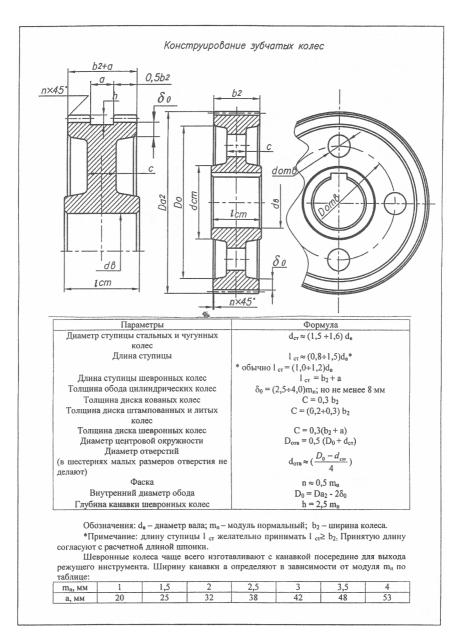


Рис. 15. Рекомендации по конструированию зубчатых колес

На чертежах зубчатых и червячных колес проставляют предельные отклонения формы и расположения поверхностей. На рис. $16a-\epsilon$ показаны несколько зубчатых колес и условное обозначение баз и допусков поверхностей. В соответствии с позициями, приведенными на этом рисунке, в табл. 13 даны указания по расположению допусков и поверхностей. Группа подшипников:

I — шариковые радиальные и радиально-упорные;

II — радиальные с короткими цилиндрическими роликами;

III – конические роликовые.

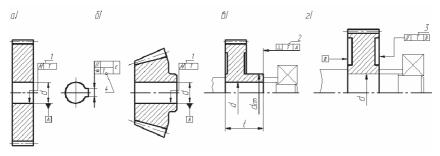


Рис. 16. Допуски формы и расположения поверхностей зубчатых колес

Назначение каждого из допусков формы или расположение поверхностей следующее:

- 1) допуск цилиндричности посадочной поверхности (поз. 1) назначают, чтобы ограничить концентрацию контактных давлений по посадочной поверхности;
- 2) допуск перпендикулярности торца ступицы (поз. 2) задают, чтобы создать точную базу для подшипника качения и уменьшить перекос колец подшипников и искажение геометрической формы качения внутреннего кольца;
- 3) допуск параллельности торцов ступицы узких колес (поз. 3) задают по тем же соображениям, как и допуск перпендикулярности торца ступицы поз. 2.

Если торцы ступиц не участвуют в базировании подшипников, то отклонения по поз. 2 и 3 не назначают.

В технических требованиях чертежей зубчатых колес, вращающихся с высокой частотой, записывают отклонение дисбаланса, который определяют по формуле T=em.

где m — масса колеса, $\kappa \epsilon$;

 $e=2,4\cdot 10^4\ /\ n\$ — удельный дисбаланс по 4-му классу точности балансировки (ГОСТ 22061—76), $e\cdot mm/\kappa e$;

n — частота вращения колеса, *об/мин*.

Отклонение дисбаланса задают для колес, полностью обработанных при $n \ge 1000$ об./мин; для колес, в которых некоторые поверхности обода, диска и ступицы необработанны, — при $n \ge 500$ об./мин. В технических требованиях делают запись по типу: «Допускаемый дисбаланс не более...г.мм».

Таблица 13

Предельные отклонения (Т)

Позиция	Отклонения
1	$T_{_{\text{цилиндричности}}} pprox 0.3t$, где $t-$ допуск размера поверхности
2	Т перпендикулярности на $d_{\rm cr}$ при $1/d \ge 0.8$ по табл. 10. Степень точности для групп подшипников: I-8, II-7, III-6
3	Т параллельности на $d_{\rm cr}$ при l/d < 0.8 по табл. 10. Степень точности для групп подшипников: I-7, II-6, III-5
4	T $_{\text{параллельности}}$ ≈0.6 $t_{\text{шп}}$; T $_{\text{симметричности}}$ ≈4 $t_{\text{шп}}$, где $t_{\text{шп}}$ допуск ширины шпоночного паза

Сопряжение шпонки с пазом ступицы выполняют при постоянной нагрузке по посадке D10/h9, при переменной — Js9/h9 или P9/h9.

На чертежах шкивов проставляют следующие отклонения формы и расположения поверхностей:

- 1) отклонения цилиндрического базового отверстия, параллельности и симметричности шпоночного паза задают по нормам зубчатых колес;
- 2) отклонение (*мм*) соосности рабочей поверхности шкивов плоскоременных передач (отклонение задают в диаметральном выражении) принимают следующим образом:

D свышедо	50120	120260	260500
Отклонение соосности	0,04	0,05	0,06

3) на чертежах шкивов для клиновых и поликлиновых ремней задают отклонение биения перпендикулярно образующей конусной поверхности ручьев.

Это отклонение (мм) определяют по формуле

$$T_{\text{биения}} \approx 0.005 td_{\text{p}}$$

где d_{n} — расчетный диаметр шкива, мм;

t — удельное биение, мм/мм, принимают в зависимости от частоты вращения:

Частота вращения п, об./мин	до 500	свыше 500 до 1000	свыше 1000
Удельное биение t, мм/мм	0,2	0,15	0,1

4) на быстро вращающиеся шкивы (n>1000 об/мин) задают отклонение статического дисбаланса, который принимают равным $2.4\cdot10^4$ /n ε -мм/ κ ε .

На рис. 12 и рис. 13 приведены примеры оформления чертежей шкивов для клинового ремня и плоского ремня.

На чертежах крышек проставляют следующие отклонения формы и расположения поверхностей. Допуски расположения поверхностей принимают по табл. 14 и 15 в соответствии с позициями, указанными на рис. 17:

- допуск параллельности торцов (поз. 1) задают в том случае, когда по торцу крышки базируется подшипник качения, как это показано на рис. 17. Допуск назначают, чтобы ограничить перекос колец подшипников качения;
- допуск соосности (поз. 2) задают, чтобы ограничить радиальное смешение уплотнительной манжеты и уменьшить таким образом неоднородность давления на рабочую кромку манжеты;

 Таблица 14

 Допуски расположения поверхностей

Позиция	Допуск
1	${\rm T}_{\rm параллельности}$ на диаметре D_{ϕ} по табл. 10. Степень точности по табл. 15
2	$T_{\scriptscriptstyle{соосности}}$ на диаметре $D_{\scriptscriptstyle{M}}$ по табл. 9. Степень точности 8
3	$T_{_{ m позиционный}}{pprox} {pprox} 0.4 (d_{_{ m orb}} - d_{_{ m вала}})$, где $d_{_{ m orb}} -$ диаметр отверстия, $d_{_{ m вала}} -$ диаметр вала

Таблина 15

Степень точности

Группа подшипников	Крышки подшипников			
	привертные	закладные		
	Степени точности допусков параллельности			
I	10	9		
II	9	8		
III	8	7		

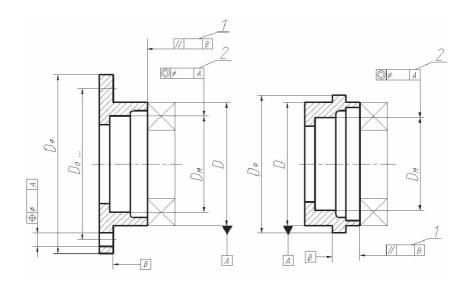


Рис. 17. Отклонения формы и расположения поверхности крышек

На чертежах корпусов редукторов приводят:

- отклонения круглости и цилиндричности базовых отверстий (для посадки подшипников качения 0,25·T, посадки втулок, стаканов 0,40·T. Здесь T— отклонение размера диаметра посадочного отверстия);
- отклонение параллельности и перекосов осей отверстий для опор валов зубчатых колес

$$\Delta X = (0,7...0,8) \frac{T_x \cdot B}{h},$$

где T_x — отклонение параллельности осей вращения валов передачи (табл. 16);

B — ширина корпуса редуктора (рис. 17);

b — ширина зубчатого колеса;

Таблица 16 Отклонения параллельности осей вращения валов, мкм

Степень кинематической точности передачи		6	7	8	9
Допуск \mathbf{T}_{x} при ширине b, мм	до 55	13	17	21	26
	55110	15	19	24	30

Предельные оп	пклонения, мкм
---------------	----------------

Межосевое расстояние, мм		до 80	80125	125180	180250	250315
D	С	±37	±43	±50	±58	±65
Вид	В	±60	±70	± 80	±92	±105
сопряжения	Α	±95	±110	±125	±145	±160

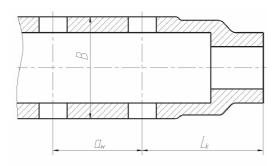


Рис. 18. Корпус коническо-цилиндрического редуктора

Предельные отклонения межосевых расстояний зубчатых передач по ГОСТ 1643-81 принимают по табл. 17.

Отклонения перпендикулярности осей отверстий для опор валов конической передачи

$$\Delta \varphi = (0,7...0,8) \frac{\Delta \varphi_{\text{табл}} \cdot L_k}{L}$$

где $\Delta \phi_{\text{табл}}$ — предельные отклонения для передачи, определяемые по табл. 18.

L – длина образующей делительного конуса;

Lk — расстояние от оси отверстий под опоры вала колеса до торца прилива под опоры шестерни (рис. 18).

Таблица 18

Предельные отклонения $\Delta \phi_{_{\text{ТАБА}}}$, мкм

Вид	<i>L</i> , мм						
сопряжения	до 50	5080	80120	120200	200320		
В	±28	±38	±45	±50	±58		
A	±45	±58	±70	±80	±95		

Допуски перекосов осей отверстий для опор червяка и вала колеса червячной передачи

$$\Delta y = (0,7...0,8) \frac{T_y \cdot L_k}{b}$$
,

где $\mathbf{T}_{\!\scriptscriptstyle \gamma}$ — отклонение перекоса осей вращения червяка и колеса, который принимают по табл. 19;

b — ширина червячного колеса;

 $L_{\it k}$ — расстояние между поверхностями корпуса (рис. 19).

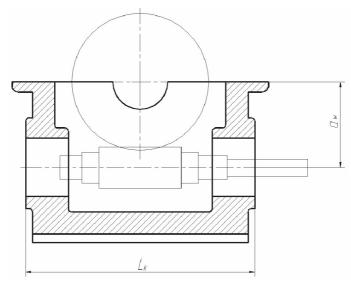


Рис. 19. Корпус червячного редуктора

Предельные отклонения межосевых расстояний червячных принимаем по табл. 20.

Таблица 20 *Допуски перекосов осей, мкм*

	Степень кинематической точности передачи					
Модуль, мм	6	7	8	9		
12,5	10	13	17	21		
2.56	14	18	22	28		
610	21	26	34	42		
1016	28	36	45	55		

Предельные отклонения, мкм

Межцентровое расстояние, мм		80125	125180	180250	250315
	8	±80	±95	±105	±110
Степень точности	9	±130	±150	±160	±180
	10	±200	±220	±260	±280

3.6.5. Обозначение шероховатости поверхностей

На чертежах деталей шероховатость всех поверхностей обозначают различными знаками с указанием высоты неровностей $R_{_{\rm Z}}$ или $R_{_{\rm a}}$ в мкм по ГОСТ 2.309-73.

В зависимости от способа обработки применяют следующие знаки:

- $\sqrt{\,}$ вид обработки конструктором не устанавливается. Применение знака предпочтительное;
- $\sqrt{\ }$ шероховатость поверхности должна быть образована удалением слоя материала (точение, фрезерование и т. д.). Применение знака допускается только в обоснованных случаях;
- \forall шероховатость поверхности должна быть образована без удаления слоя материала (литье, ковка, объемная штамповка, волочение, прокатка).

Высота h знаков должна быть равна высоте цифр размерных чисел на том же чертеже (рис. 20). Высота цифр числа, характеризующего неровность, должна быть равна $\frac{2}{3}h$. Цифры наносятся на расстоянии a=0,6...0,8 мм. Толщина линии знаков составляет приблизительно половину толщины основных линий, применяемых на чертеже.

Преобладающую шероховатость, обычно наиболее грубую, наносят в правом верхнем углу поля чертежа (рис. 21). Знак ($\sqrt{}$) означает, что все остальные поверхности детали, кроме обозначенных на чертеже, должны иметь шероховатость, указанную перед скобкой.

Шероховатость сопрягаемых поверхностей проставляется согласно табл. 21. Некоторых деталей согласно табл. 22.

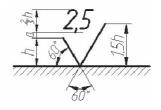


Рис. 20. Размеры знака шероховатости

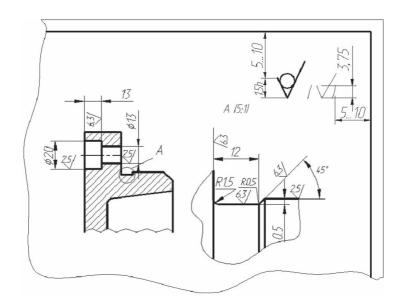


Рис. 21. Обозначение шероховатости поверхностей

Таблица 21 Шероховатость поверхности сопрягаемой детали Ra, мкм

	Отверстие			Вал		
Интервалы	Квалитеты					
размеров, мм	7	8	9	6,7	8	9
	R_{a} , MKM					
Свыше 18 до 50	0,8	1,6	3,2	0	,8	1,6
Свыше 50 до 120	1	,6	3,2	1,6 3,2		,2
Свыше 120 до 500	1,6 3,		,2	1,6	3	,2

Таблица 22 *Шероховатость некоторых элементов детали Ra, мкм*

Вид поверхности	R_{a} , MKM
Торцы заплечиков валов для базирования:	
а) подшипники качения класса точности 0;	1,6
б) зубчатых, червячных колес при отношении длины отверстия к диаметру $l/d \le 0.8$;	1,6
в) то же, при отношении $l/d > 0.8$	3,2
Поверхность валов под резиновые манжеты	0,4
Канавки, фаски, радиусы галтелей на валах	6,3
Поверхности шпоночных пазов на валах:	1.6
- рабочая;	1,6
- нерабочая	6,3
T	
Торцы ступиц зубчатых, червячных колес, базирующихся по торцу	1.6
заплечиков валов, при отношении длины отверстия к диаметру	1,6
$l/d \le 0.8$. То же, при отношении $l/d > 0.8$	2.2
	3,2
Торцы ступиц зубчатых, червячных колес, по которым базируют	
подшипники качения, классов точности 0	1,6
Свободные (нерабочие) торцевые поверхности зубчатых,	6,3
червячных колес	0,3
Профили зубьев зубчатых, червячных колес степеней точности:	
6	0,4
7	0,8
8	1,6
9	3,2
Витки червяков степеней точности	
6	0,2
7	0,4
8	0,8
9	1,6
Поверхности выступов зубьев колес, витков червяков, звездочек	6,3
цепных передач Фаски и выточки на колесах	6,3
Поверхности шпоночных пазов в отверстиях колес:	0,5
- рабочая;	1,6
- нерабочая	3,2
Рабочая поверхность шкивов ременных передач	3,2
Рабочая поверхность зубьев звездочек цепных передач	3,2
Отверстия под болты, винты	12,5
Опорные поверхности под головки болтов, винтов, гаек	6,3

3.6.6. Обозначение термической обработки

ГОСТ 2.310-68 установлены следующие правила нанесения на чертежах указаний о термической и химико-термической обработках, обеспечивающих получение необходимых свойств материала детали.

Если всю деталь подвергают термообработке одного вида, то в технических требованиях чертежа приводят показатели свойств материала; запись типа:

- 1) HB235...265:
- 2) HRC44...50;
- 3) ТВЧ h1,6...2, HRC50...56; ТВЧ $h1,8\pm0.2$ (буквой h обозначена глубина обработки);
 - 4) цементовать h0,8...1,2 или h = 0,8...1,2; HRC56...62.

Если термообработке подвергают отдельный участок детали, то его обводят на чертеже утолщенной штрихпунктирной линией, а на полке линии-выноски наносят показатели свойств материала.

Если всю деталь подвергают одному виду обработки, а некоторые ее части другому или оставляют без обработки, в технических требованиях делают запись по типу:

- 1) «HRC 55...60, кроме места, обозначенного особо» (рис. 22*a*);
- 2) «HRC 55...60, кроме поверхности *A*» (рис. 22*б*).

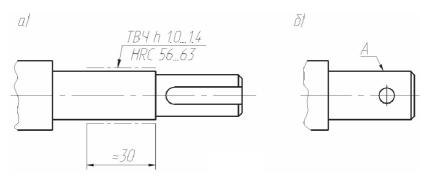


Рис. 22. Обозначение термической обработки

3.7. Чертежи сварных соединений

Чертежи сварных деталей оформляют как чертежи сборочных единиц (ГОСТ 2.312-72). Элементы сварной детали в разрезах и сечениях штрихуют в разных направлениях (рис. 23a). Если же сварную деталь изображают в сборе с другими деталями, то все элементы ее штрихуют в одном направлении (рис. 236).

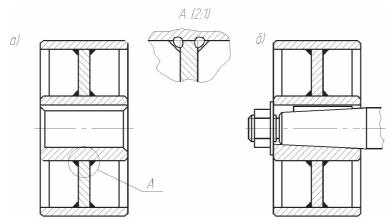


Рис. 23. Чертеж сварной детали

Сварные швы на чертежах деталей изображают и обозначают по ГОСТ 2.312-72. Видимые швы изображают сплошными, а невидимые — штриховыми линиями.

Условное обозначение шва наносят:

- 1) на полке линии-выноски, проведенной от изображения шва с лицевой стороны (рис. 24*a*);
- 2) на полке линии-выноски, проведенной от изображения шва с оборотной стороны (рис. 24δ).

Рис. 24. Обозначение сварного шва

Условное обозначение сварных швов в общем случае должно содержать в порядке, показанном прямоугольниками 1-6 (рис. 24), следующее:

1. Вспомогательные знаки:

- 2. Обозначение стандарта на типы и конструктивные элементы швов сварных соединений:
- 1) ГОСТ 5264-80 основные типы и конструктивные элементы швов, выполненных ручной дуговой сваркой;
- 2) ГОСТ 8713-79 то же, что и ГОСТ 5264-80, но швы выполнены автоматической или полуавтоматической сваркой под флюсом;

- 3) ГОСТ 11533- 75 основные типы, конструктивные элементы и размеры швов при расположении сварных элементов под острым и тупым углами; швы выполнены автоматической и полуавтоматической дуговой сваркой под флюсом;
- 4) Γ ГОСТ 11534-75 то же, что и Γ ОСТ 11533-75, но швы выполнены ручной дуговой сваркой;
- 5) ГОСТ 15878-79 соединения сварные, выполненные контактной сваркой.
- 3. Обозначение по стандартам п. 2 состоит из буквы, обозначающей вид соединения, и цифры, обозначающей форму подготовки кромок (с одбортовкой, без одбортовки, со скосом кромок разной формы), например, С8 шов стыкового, У4 углового, Т3 таврового, Н2 нахлесточного соединений.

В табл. 23 приведена выборка буквенно-цифровых обозначений типов швов по ГОСТ 5264-80 для чертежей учебных проектов.

- 4. Знак и размер катета шва (только для угловых швов).
- 5. Вспомогательные знаки:
- / шов прерывистый или точечный с цепным расположением;
- шов прерывистый или точечный с шахматным расположением;
- шов по незамкнутой линии.

Таблица 23

Примеры обозначения типов швов

Форма поперечнаго сечения сварного шва	Толщина листов, мм	<i>Обозначение</i>	Фарта поперечного сечения сварного шва	Толщина листов, мм	Обозначение
	14	<i>C2</i>		240	T1
<u> </u>	25	<i>C7</i>		240	<i>T3</i>
	360	(8		2. , ,60	Н1
	360	C12		260	H2
	130	<i>9</i> 4			
	16	94			

Обозначение одинаковых швов наносят только у одного из изображений. От изображений остальных швов проводят линии-выноски с полками. Всем одинаковым швам присваивают один порядковый номер (рис. 25), который наносят:

- на линии-выноске, имеющей полку с нанесенным обозначением шва;
- полке линии-выноски, проведенной от изображения видимого шва, не имеющего обозначения;
- под полкой линии-выноски, проведенной от изображения невидимого шва, не имеющего обозначения.

Если все швы на сварной детали одинаковые и изображены на чертеже с одной стороны, допускается не присваивать им порядкового номера, а привести обозначение шва в технических требованиях. Швы отмечают в этом случае линиями-выносками без полок.

Пример условного обозначения шва таврового соединения без скоса кромок, двухстороннего прерывистого с шахматным расположением, выполняемого ручной дуговой сваркой. Катет шва 8 мм, длина провариваемого участка 50 мм, шаг 100 мм. Обозначение: «ГОСТ $5264-80-T4-\ensuremath{\triangleright}8-50\ensuremath{\nearrow}100$ ».

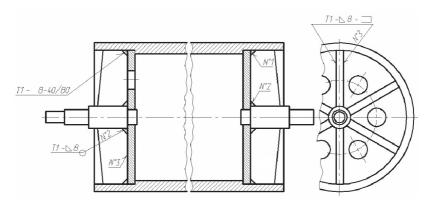


Рис. 25. Обозначение сварных швов

3.8. Оформление расчетно-пояснительной записки

Расчетно-пояснительную записку окончательно оформляют на основе черновых записей, сделанных в процессе работы над проектом в соответствии с требованиями п. 3.1 настоящего пособия.

Текст должен быть изложен от первого лица множественного числа, четко, сжато, технически грамотно. Сокращение слов, за исключением общепринятых, не допускается.

Все расчеты выполняются с использованием Международной системы единиц физических величин СИ.

При выполнении расчетов на ЭВМ в записку следует подшивать заполненный бланк начальных данных, блок-схему алгоритма, бланк конечных данных.

Рисунки выполняются на отдельных страницах. Под ними помещается подрисуночная подпись. При этом сохраняется сквозная нумерация со всеми страницами текста.

Надписи на титульном листе выполняются чертежным шрифтом карандашом или черной тушью. Все надписи, за исключением наименования спроектированного объекта, выполняются шрифтом № 5. Наименование спроектированного объекта пишется заглавными буквами шрифта № 7.

Все документы по проекту должны быть подписаны студентом и руководителем. Это дает право на допуск проекта к защите.

3.9. Обозначение документов

В основную надпись чертежа, дополнительную графу к ней и спецификацию к чертежу записывают обозначение изделия, изображенного на нем.

Для учебных курсовых проектов принимается буквенно-цифровая система обозначений, учитывающая год разработки, название предмета, номер и вариант задания, разбивку изделия на сборочные единицы, а сборочных единиц — на детали. За индекс изделия целесообразно принять номер и вариант задания.

Чертежу общего вида изделия (привода) может быть присвоено обозначение

ХХ.ДМ.11.07.00.00.00ВО.

где XX — год разработки; ДМ — проект по «Деталям машин»; 11 — номер задания; 07 — вариант задания; BO — шифр чертежа общего вида (привода).

Для сборочной единицы изделия (редуктора) записывают:

ХХ.ДМ.11.07.01.00.00 СБ,

где 01 — обозначение редуктора (т. е. в спецификации и на чертеже общего вида редуктор имеет позицию 1); СБ — шифр сборочного чертежа.

Для сборочной единицы, входящей в редуктор (маслоуказатель), записывают:

ХХ.ДМ 11.07.01.01 00 СБ,

где 01 — обозначение маслоуказателя.

Для детали (крышки корпуса), входящей в редуктор, записывают:

ХХ.ДМ.11.07.01.00.05,

где 00 — группа сборочных единиц (оставляется незанятой); 05 — обозначение детали.

4. ВЫБОР МАТЕРИАЛОВ И МЕТОДОВ ИХ УПРОЧНЕНИЯ ДЛЯ ДЕТАЛЕЙ МАШИН

4.1. Общие сведения

Выбор материалов для изготовления тех или иных деталей и методов их обработки зависит от условий работы деталей, вида и характера напряжений, а также конструктивных особенностей.

Первоочередное значение имеют эксплуатационные требования. Материал должен обеспечивать заданную конструкционную прочность, что определяется расчетными данными. При этом, помимо характеристики механической прочности, необходимо также учитывать и свойства надежности и долговечности, характеризующие работоспособность деталей в сложных условиях реального нагружения.

По технологическим требованиям материал должен удовлетворять минимальной трудоемкости изготовления детали.

В соответствии с экономическими требованиями материал должен быть по возможности дешевым с учетом всех затрат, включающих, помимо стоимости самого материала, также затраты на изготовление и эксплуатационную стойкость всей конструкции.

Обычно рассматривают возможность применения нескольких материалов и методов их упрочнения, что позволяет выбрать наиболее рациональный вариант.

До 40% деталей в машиностроении упрочняют закалкой с последующим отпуском.

Закалку с низким отпуском рекомендуют для деталей, требующих высокой твердости (58–62 HRC), сопротивления износу и контактным нагрузкам в условиях статического или циклического их действия. В этом случае применяют высокоуглеродистые стали (углеродистые или легированные). Также низкий отпуск рекомендуют для цементуемых (нитроцементуемых) сталей.

Объемную закалку с последующим средним отпуском рекомендуют для упругих элементов машин.

Подавляющее большинство деталей машин из среднеуглеродистых конструкционных сталей $(0,3-0,5\%\ C)$ подвергают закалке с высоким отпуском (улучшению), что обеспечивает высокую конструкционную прочность.

Поверхностную закалку при индукционном нагреве применяют для деталей машин, испытывающих при работе изгиб, кручение и контактные напряжения, т. е. в случаях, когда рабочие напряжения максимальны на поверхности (валы, коленвалы, зубчатые колеса).

Поверхностная закалка, по сравнению с химико-термической обработкой, менее трудоемка и во многих случаях по качеству деталей не уступает цементации (нитроцементации). Недостатком является трудность унификации, поэтому применение способа в единичном и мелкосерийном производстве должно быть экономически обоснованно.

Химико-термическую обработку применяют для деталей машин, которые должны сопротивляться износу, обладать высокой прочностью при изгибе, а также высокими значениями сопротивления усталости при изгибе, контактных напряжений, сопротивляться схватыванию и задирам.

Одна и та же сталь может иметь различные свойства в зависимости от режимов термообработки и размеров деталей.

4.2. Рекомендации по выбору материалов и упрочняющей термической обработки

Рекомендации по выбору материалов и упрочняющей термической обработки для деталей машин приводов приведены в табл. 24, а свойства сталей — в табл. 25.

Таблица 24 Рекомендации по выбору материалов и упрочняющей термической обработки для деталей машин приводов

Детали	Класс стали	Марки сталей	Метод упрочнения		
Зубчатые колеса, валы, шестерни, оси, фланцы, ступицы, полумуфты	Улучшаемые (среднеуглеродистые, низколегированные или углеродистые)	40, 45, 40X, 30XГСА, 45X, 40XH, 40ХФА, 40XH2MA	Улучшение (закалка + высокий отпуск)		
Зубчатые колеса, шестерни, валы, оси	Цементуемые (низкоуглеродистые и низколегированные или углеродистые)	15,20, 15X, 20X, 18XГТ, 3ОХГТ, 25ХГНМ, 25ХГНМТ, 12X2Н4А, и др.	Цементация (или нитроцемен- тация) + закалка + низкий отпуск		
Крепежные детали: болты, винты, гайки, штифты, пробки, втулки, крюки и др.	Улучшаемые (среднеуглеродистые	20, 35, 40, 45	Улучшение (закалка + высокий отпуск)		
Ответственные тяжелонагруженные детали: зубчатые колеса, валы, оси и др.	Улучшаемые (среднеуглеродистые, низколегированные)	38ХН3МФА, 36Х2Н2МФА, 34ХН3М	Улучшение (закалка + высокий отпуск)		
Шестерни, червяки, опорные шейки валов, зубчатые муфты и венцы втулки	Улучшаемые (среднеуглеродистые, низколегированные)	45, 40X, 50XФА, 50XМ и др.	Поверхностная закалка при индукционном нагреве + низкий отпуск		

Свойства сталей

_						
	HB	Сердцевины не менее 170	Не менее 200	143-179 123-167 111-156	174-217	Сердцевины не менее 250
	HRC	Поверхности 55-63				Поверхности 55-63
	ž	0	0,1	0,1 0,1 0,1	0,1	0,1
	ž	0,05	0,15	0,15 0,15 0,15	0,15	0,15
** 7.	MIIIa	180 0,05	400 0,15	120 110 108	200	240 0,15
** 7-1	MIIa	150	160	130 118 115	140	170
P_1	МПа	223	300	180 170 160	230	412
Q		345	635	245 215 195	345 275	390
p,	МПа	550	780	470 430 390	590	640
	Термообработка	Цементация 920-950°С, закалка 820-840°С, вода, оппуск 180-200°С, водух	Закалка 865- 895°С, масло, отпуск 150- 210°С, воздух	Нормализация 870°С	Закалка 865- 895°С, масло, отпуск 150- 210°С, воздух	Цементация 920-950°С, закалка 800°С, масло, отпуск
Сепение	MM	50	До 250	До 100 100-300 399-500	До 100	До 60
	Марка стали	20* (FOCT 1050- 88)	20X (FOCT 4543- 71)	20X	70)	20X*

Продолжение табл. 25

	I	I	I			
	341 240-300	262-311	Не менее 400	Сердцевины 255-302	187-229	262
•	53-63			Поверхности 59-63		
	0,1	0,1	0,1	0,1	0,1	0,1
	660 0,15 580 0,15	0,15	840 0,15	0,15	0,15	450 0,15
		410		590	430 0,15	450
	280	258	330	250	260	240
	637	685 435 258 410 0,15	650	676	360	362
	1180 930	685	1470 1275	1200 950	730	760
	1180	835	1470	1200	910	880
190°С, воздух	Цементация 920-950°С, закалка 820-860°С, масло, отпуск 180-200°С, воздух	Закалка 830- 850°С, масло, отпуск, 180- 200°С, воздух	Закалка 835- 865°С, масло, отпуск, 150- 200°С, вода	Цементация 920-950°С, закалка 780-800°С, вода, отпуск 180-200°С, воздух	Закалка 860°С, масло, отпуск 500°С, вода	Нормализация
	20	До 100	До 250	09	любое	30
	18XIT* (TOCT 4543- 71)	30XIT (FOCT 8479- 70)	30XIT (FOCT 4543- 71)	12X2H4A (TOCT 4543- 71)	40X (TOCT 4543- 71)	40X

Продолжение табл. 25

207		Не менее 190	Не менее	157_107	/61-/61	174-217	167-217	Не менее 200	Почетоп	пе менее	0 + 1	189-229
	Поверхности не менее 40					,						
0,1		0,05	0,05	0,05	50,0	0	0	0,05	0,05	0,05	0,05	0,05
0,15		0,1	0,0	0,1	1,0	0	0	0,1	0,1	0,1	0,1	0,1
290		200	270	200	1/0	350	200	160	380	300	225	190
220		140	200	180	001	148	138	140	230	210	190	220
350		240	320	300	107	293	230	270	360	350	310	265
490 350 220 290 0,15		335	460	335	6/7	345	315	335	490	430	375	395
700		570	800	750	000	290	570	009	850	800	780	620
850 ⁰ С, воздух, отпуск 660 ⁰ С, воздух	Поверхностная закалка ТВЧ, низкий отпуск	Нормализация 870°С	Закалка 830- 870°С, вода, отпуск, 550-	600°С, воздух	пормализация	Закалка 850°С,	550°С, воздух	Нормализация 860 ⁰ С	Закалка 820-	860°С, вода, отпуск, 550-	600°С, воздух	Нормализация
120	Поверхн ТВЧ, н	До 250	До 16	40-100	40 200	До 100	100-300	До 250	До 16	16-40	40-100	До 100
40X	40X	40	(TOCT 1050- 88)		40	(FOCT 8479-	70)	45	(TOCT 1050-	(88)		45

Продолжение табл. 25

J.	174-217	248-293	167-207	218-248	187-229	167-206	174-217	167-207	156-197	143-179	Не менее 270	235-277	223-262	197-235
	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,05
Ī	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
	207	450	190	280	240	190	207	190	165	147	450	390	328	262
	157	240	140	200	153	140	145	140	130	117	294	235	170	160
	245	588	228	380	246	230	236	228	212	180	490	392	270	220
Ī	345	785	315	490	395	315	345	315	275	245	785	290	540	440
	590	086	570	655	615	570	590	570	530	470	086	735	685	635
	30008	Закалка 840°С, масло, отпуск, 520°С, воздух	Нормализация	Закапка 840°C	масло, отпуск,	550°С, воздух	Нопмализапия	850-870°C	отпуск, 560-	650°С, воздух	Закатка 820°С, масло, отпуск, 500°С, вода	Закалка 840-	860°С, масло, отпуск, 550-	600°С, воздух
	100-300	До 250	До 100	До 300	300-500	200-800	До 100	100-300	300-500	200-800	До 250	До 100	101-300	301-500
	45 (TOCT 8479- 70)	40X (TOCT 4543-	(1)	4044	40A	70)		40X (FOCT 8479-	70)		40XH (FOCT 4543- 71)	40XH	(TOCT 8479-	70)

Продолжение табл. 25

187-229	167-207		Не менее 120	Не менее 270	190	166-183	Не менее
		52-56					
0,05	0,05		0,05		0,05	0,05	0,05
0,1	0,1		0,1	0,05	0,1	0,1	0,1
235	190		225	0,1 0,1 0,1	320	180	210
153	140		155	312 270 240	190	138	140
240	228		250	225 210 200	438	320	225
395	315		375	360 340 320	530	300	350
615	570		630	520 460 400	760	530	550
	Нормализация 860°С	Поверхностная закалка ТВЧ, отпуск, 180-200 ⁰ С	Нормализация 850°С	Закалка 810- 850°С, вода, отпуск, 550- 600°С, воздух	Закалка 850°С, вода, отпуск, 580-600°С, воздух	Нормализация 860-880°C, отпуск, 600- 630°C	Закалка 860- 880 ^о С, вода,
501-800	До 800	Поверхн ТВЧ, отп	До 250	До 16 16-40 40-100	50 120 300	До 100	До 100
	40XH	40XH	50	88)	50 (TOCT 8479- 70)	40JI (TOCT 977-	(00

Продолжение табл. 25

200	206-229	207-269
	0,1	0,1
	324 0,15 0,1	290 0,15 0,1
	324	290
	180	170
	290	490 328
	720 540	
	720	989
отпуск, 600- 630 ⁰ С	Нормализация 880-890°С, закалка 870- 880°С, масло отпуск, 570- 600°С	Закалка 860- 880°С, вода отпуск, 580- 630°С, вода
До 100	До 100	До 100
40Л	40XJI (FOCT 977- 88)	40XHJI (FOCT 977- 88)

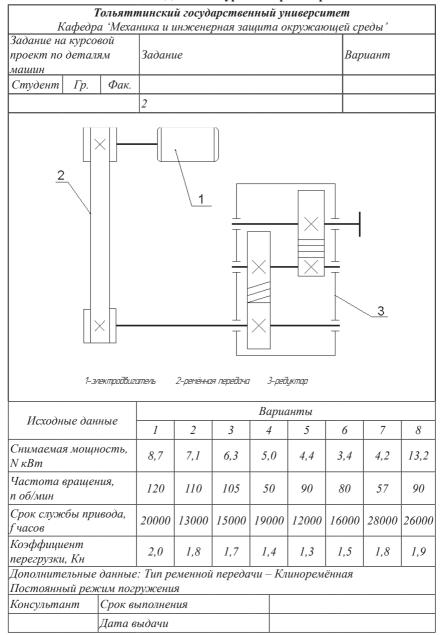
Вид поставки: сортовой прокат - ГОСТ 1050-88,4543-71; поковки - ГОСТ 8479-70; отливки - ГОСТ 977-88. *Механические свойства сердцевины ориентировочные и при изготовлении деталей не определяются.

**Свойства определены расчётным путем по формулам: $\sigma_{-1} \approx (0,4...0,5)\sigma_R$; $\tau_{-1} \approx (0,2...0,3)\sigma_R$; $\tau_\Gamma \approx 0,6\sigma_\Gamma$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Бейзельман, Р.Д. Подшипники качения : справочник / Р.Д. Бейзельман [и др.]. М. : Машиностроение, 1975.
- 2. Дунаев, П.Ф. Конструирование узлов и деталей машин: учебник для вузов / П.Ф. Дунаев [и др.]. М.: Высш. шк., 2000.
- 3. Дунаев, П.Ф. Конструирование узлов и деталей машин: учебник для вузов / П.Ф. Дунаев [и др.]. М.: Высш. шк., 2003.
- 4. Иванов, М.Н. Детали машин : учеб. пособие для вузов / М.Н. Иванов. М. : Высш. шк., 2000.
- 5. Кудрявцев, В.Н. Курсовое проектирование деталей машин: учеб. пособие для вузов / В.Н. Кудрявцев [и др.]. М.: Машиностроение; Ленингр. отд., 1984.
- 6. Решетов, Д.Н. Детали машин : атлас конструкций / Д.Н. Решетов. М. : Машиностроение, 1992.
- 7. Решетов, Д.Н. Детали машин: учеб. пособие для вузов / Д.Н. Решетов. М.: Машиностроение, 1989.
- 8. Чернавский, С.А. Проектирование механических передач: учеб. пособие для вузов / С.А. Чернавский [и др.]. М.: Машиностроение, 1984.

Образец титульного листа РПЗ курсового проекта


Тольяттинский государственный университет Кафедра «Механика и инженерная защита окружающей среды»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовому проекту «Детали машин и основы экологического конструирования»

Студент:	
Группа:	
Руковолитель:	

Тольятти 200_

Техническое задание на курсовое проектирование

Привод

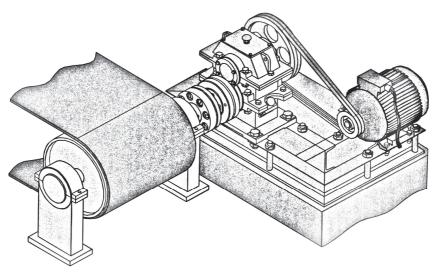


Рис. 1. Общий вид привода

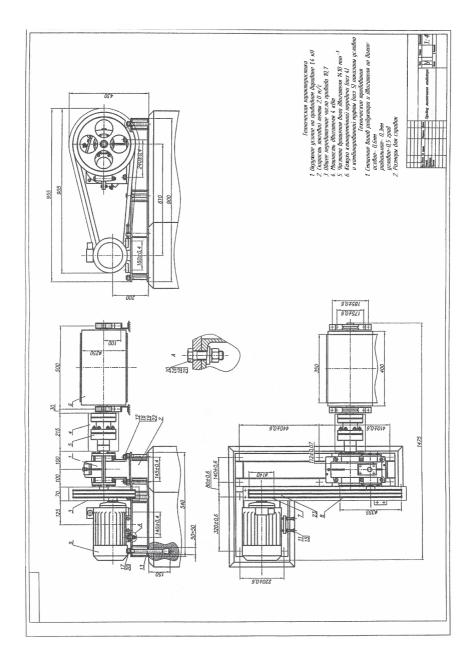


Рис. 2. Чертеж привода

Форк	Зона	flo3		Обозн	иение		Наименование		Кол	Примеч (Матери
				- 1			_Документаци	IA_		7
	П		ХХ.ДМ.02	2.07.00.0	0.00.СБ		Чертеж общего в	uga		1
_		2	ХХ.ДМ.02	2.07.00.0	0.00.П3		Пояснительная за	писка		
	7						Сборочные еди	ницы		7
_		1	ХХ.ДМ.02	2.07.01.0	000		Редуктор цилинар	ический	1	,
		2					Рама		1	
		3					Кожух		1	сетка 20-2 ГОСТ 533
	П	4				;	Кожух		1	сетка 20-2 ГОСТ 533
_	\sqcap	5					Муфта		1	
_		6					Барабан		1	1
_	$\left \cdot \right $						Детали			
- 1	П	7	ХХ.ДМ.02	2.07.00.0	00.01		Шкив ведущий		1	CY 20 FOCT 1412
		8	ХХ.ДМ.02	2.07.00.0	0.02		Шкив ведомый		1	CY 20 FOCT 141.
		7					Стандартные и	зделия		
		9					Электродвигатель AMP 100L4 TY 16—525	IM 108! 5.564–84	1	2 2 2 2 3
		10					Болт M10-6g×35.58 ГОСТ	7798-70	4	Сталь ГОСТ 105
	П	11					Болт M12-6q×90.58 ГОС	7798-70	2	Сталь ГОСТ 105
	П	12					Болт M14-6g×45.58 ГОС	7798-70	4	Сталь ГОСТ 105
		13					Болт фундамені 6.3.M16×335 ГОСТ 243		10	BCm3n FOCT 380
\vdash		14					Гайка M10-6H5 ГОСТ	5915-70	4	Сталь ГОСТ 105
Н		15					Гайка M12-6H.5 ГОСТ		2	Cmanb FOCT 105
\vdash		16					Гайка M14—6H5 ГОСТ		4	Cmans FOCT 105
1/-		T	0.00		Da		ХХ.ДМ.02.07.0	00.00.0	0	
Po	и Ли врас юв.		№ докум	Подп	Дата		Привод	Num.	Лист 1	Nucm 2
1							ного конвейера			

Спецификация к рис. 2

	Форм	Зона	Поз	Обозначение	Наименование	Кол	Примечан
			17		Гайка М16—6Н.5 ГОСТ 5915—70	10	Сталь 3. ГОСТ 1050- Сталь 63 ГОСТ 1050-
	П	\neg	18		Шайба 10 65Г ГОСТ 6402—70	4	Сталь 63 ГОСТ 1050—
			19		Шайба 14 65Г ГОСТ 6402—70	4	FOCT 1050-
			20		Шайба 16 65Г ГОСТ 6402—70	10	Сталь 63 ГОСТ 1050—
			21		Шайба косая 10 ГОСТ 10906—78	4	Cm 3 FOCT 380-
			22		Шайба косая 14 ГОСТ 10906—78	4	Cm 3 FOCT 380-
		1	23		Ремень А-2500 ГОСТ 1284.1	2	
			112				
						1	
	201	٦				-	
		٦					
	П	\neg	\top				
		7	\top				1
		٦	1				
		\exists					
		\dashv	+				
		-	-			-	-
		\dashv	-			2 1	
	\dashv	-	7 1			_	<u> </u>
	\dashv	\dashv	\dashv			-	
	\dashv	\dashv					
	-	-	-			-	
		-	-				
		_	-				1
		4	_			<u> </u>	<u> </u>
		4	-			-	1,
						_	
			1 1				
						. 1	
					Jan Alexander		,
	П	-				20.00	
		1					Tlui
filler i	_		cm 1	з докум Подп. Дата			2

Продолжение спецификации к рис. 2

Редуктор

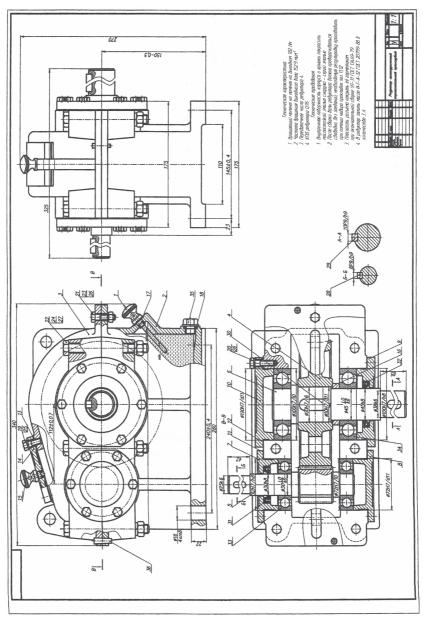


Рис. 1. Редуктор цилиндрический

Форм	Зона	Поз		Обозна	чение		Наименование		Кол	Примечан (Материал
П							Документация			
			ХХ.ДМ.	02.07.01	.00.00	.СБ	Сборочный черте	Ж		
Н	-				***************************************		Сборочные единии	J.bl		
		1	ХХ.ДМ.	02.07.01	.01.00		Маслоуказатель		1	
H	-						Детали			
\vdash	-	2	ХХ ЛМ І	02.07.01	00.01		Корпус редукторо	1	1	CY 15
Н		3		02.07.01			Крышка редуктор		1	CY 15
П		4	ХХ.ДМ.	02.07.01	.00.03		Колесо зубчатое		1	ГОСТ 1412- Сталь 5
		5	ХХ.ДМ.	02.07.01	.00.04		Вал быстроходны	Ŭ	1	ГОСТ 1050- Сталь 4 ГОСТ 4543-
П		6	ХХ.ДМ.	02.07.01	.00.05		Вал тихоходный		1	Сталь 4 ГОСТ 1050-
П		7	ХХ.ДМ.	02.07.01	.00.06		Крышка сквозная		1	CY 15 FOCT 1412-
П		8	ХХ.ДМ.	02.07.01	.00.07		Крышка глухая		1	CY 15 VOCT 1412-
		9	ХХ.ДМ.	02.07.01	.00.08		Крышка сквозная		1	CY 15 FOCT 1412-
		10	ХХ.ДМ.	02.07.01	.00.09		Крышка глухая		1	CY 15 FOCT 1412-
		11	хх дм.	02.07.01	.00.01)	Прокладка регулир	овочная	4	Наибольш количеств СТ2 ГОСТ 380—
		12	ХХ.ДМ.	02.07.01	.00.01	1	Прокладка регулир	овочная	4	ГОСТ 380— Наибольш количеств СТ2 ГОСТ 380—
		13		02.07.01			Прокладка		1	Материа. паронит ГОСТ 481—
		14		02.07.01			Крышка смотрового о	тверстия	1	C ^L I 15 FOCT 1412-
Ш		15		02.07.01.00.014 02.07.01.00.015			Отдушина Втулка		1	Сталь 2: ГОСТ 1050— Сталь 2: ГОСТ 1050—
		16	ХХ.ДМ.							
		17	ХХ.ДМ.О	2.07.01.	00.016		Прокладка		1	Материал Маслобенз стойкая резина
		18	ХХ.ДМ.О	02.07.01.00.017			Прокладка		1	МБС т ГОСТ 7338 Материал Маслобенз стойкая резина
Ë	E	I					XX.ДМ.02.07.01.	00.00	L	M6C no FOCT 7338
Pas	Изм. Лист Разраб. Пров.		№ докум.	№ докум. Подп. Дато		Редукто	р цилиндрический	Лит. У	Лист 1	Листов
Н. контр. Утв.		р								

Спецификация к рис. 1

Форм	Зона	Поз	Обозначение	Наименование	Кол	Прим (Мате
				Стандартные изделия		
_						Стал
		19		Болт M8-6g×25.58 ГОСТ 7798-70	4	FOCT 10
_	_	20		Болт M10-6g×30.58 ГОСТ 7798-70	24	Cmax FOCT 10
	_	21		Болт M10-6g×45.58 ГОСТ 7798-70	1	Cmax FOCT 10
		22		Болт M12-6g×85 ГОСТ 7798-70	6	Стал ГОСТ 10
		23		Гайка M10—6gH.5 ГОСТ 5915—70	1	Стал ГОСТ 10
		24		Гайка M12—6gH.5 ГОСТ 5915—70	6	Стал ГОСТ 10
		25		Шайба 8 65Г ГОСТ 6402—70	4	Стал ГОСТ 14.
		26		Шайба 10 65Г ГОСТ 6402—70	25	Стал ГОСТ 14.
		27		Шайба 12 65Г ГОСТ 6402—70	6	Cmaл ГОСТ 14
		28	24.2	Шпонка 8×7×28 ГОСТ 23360—78	1	Стал ГОСТ 10
		29		Шпонка 10×8×70 ГОСТ 23360-78	1	Стал ГОСТ 10
		30		Шпонка 14×9×42 ГОСТ 23360—78	1	Стал. ГОСТ 10
		31		Манжета 1-30×52 ГОСТ 8752-79	1	
		32		Манжета 1—45×65 ГОСТ 8752—79	1	
		33		Подшипник 306 ГОСТ 8338-75	2	
		34		Подшипник 309 ГОСТ 8338-75	2	
		35		Пробка сливная M16×1,5—6g×20 ГОСТ 12202—66	1	
_		36		Штифт 6×30 ГОСТ 3129—70	2	Стал ГОСТ 10
_		-		Материалы		
				M M. F. A. 70		
				Масло И—Г—А—32 ГОСТ 20799—88	3л	
				Герметик УТ—31 ГОСТ 13489—79	0,3 KE	
				Эмаль серая ПФ—115 ГОСТ 6465—76	0,3 K2	
				Эмаль маслостойкая ПФ-223 ГОСТ 14923—78	0,3 ke	
Изи				XX.ДM.02.07.01.00.00	L	

Продолжение спецификации к рис. 1

Муфты Таблица 1 *Муфты упругие втулочно-пальцевые (по ГОСТ 21424—75)*

d или d₁, мм L, MM L, мм, не более мм, не более Тип T_p , H_M 1-й 2-й 1-й 2-й 1-й ряд 2-е ряд Исполнение _ 6,3 10; 11 12; 14 16; 18 31,5 20; 22 25; 28 32; 36 35; 38 40; 45 40; 45 45; 50; 48; 55 1.10 50; 56 60;65;70 63; 71 65;70;75 80;90 80:90 85:95 100; 110: 125 16000 500 130;150

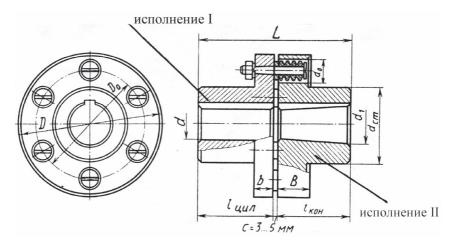


Рис. 1. Муфта упругая втулочно-пальцевая

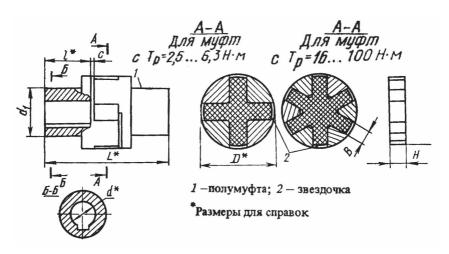


Рис. 2. Муфта упругая со звездочкой

Таблица 2 Муфты упругие со звездочкой. Размеры в мм. ГОСТ 14084-76

I	D			<i>1</i> для и	испол-	Lдля і	испол-				
1-й ряд	2 -й ряд	Т _р . Н.м	D	нен	РИН	нег	ВИН	с	d_1	В	Н
1-и ряд	2-и ряд			1	2	1	2				
1	2	3	4	5	6	7	8	9	10	11	12
6: 7	_	2,5	32	16	_	45,5	_	1,5	20	8,5	10,5
10; 11 12; 14	_ _	6,3	45	23 30	20 25	59,5 73,5	53,5 63,5		22 26	10,5	10,5
12; 14 16: 18	_ _	16	53	30 40	25 28	81 101	71 77		26 28	10,5	10,5
14 16; 18	- 19	25	63	30 40	25 28	81 101	71 77		28 28	12.5	15
20	_			50	36	121	93		30		
16; 18 20;22	19 -	31,5	71	40 50	28 36	101 121	77 93		30 34	12,5	15
20; 22 25; 28	24	63	85	50 60	36 42	128 148	100 112		36 42	14,5	22
25; 28 32; 36	- 30; 35	125	105	80	58	148 188	112 144		45 85	16,5	25
32; 36 40; 45	35; 38 42	250	135	80 110	58 82	191 251	147 195		60 70	18,5	25
38 40; 45	- 42; 48	400	166	80 110	58 82	196 256	152 200		70 75	20,5	30

Таблица 3 Муфты упругие с торообразной оболочкой. Размеры, мм. ГОСТ 20884-82

D		Т _р . Н.м	D	<i>l</i> дл исполн		L д испол		С	d ₁	В	Н
1-й ряд	2-й ряд	11.M		1	2	1	2				
1	2	3	4	5	6	7	8	9	10	11	12
14 16; 18	19	20	100	32 42	28 30	110 130	105 110	40	34	23	5
18 20; 22 25	19 24 —	40	125	42 52 63	30 38 44	140 160 180	115 130 140	50	36	28	6
22 25; 28 30	24 - -	80	160	82 63 82	38 44 60	170 190 230	140 150 185	70	48	38	6
25; 28 30; 32; 35; 36	_ _	125	180	63 82	44 60	195 230	155 190	85	60	50	8
30; 32; 35; 36 40	38	200	200	82	60	245 305	200 250	105	75	55	10
32; 35; 36 40; 45	38 42	250	220	82 112	60 84	250 310	205 255	110	80	60	12
35; 36 40; 45	38 42; 48	315	250	82 112	60 84	260 325	215 270	140	90	75	14
40; 45 50; 55	42; 48 53; 56	500	280	112	84	325	270	180	100	80	16
50; 55 60; 63	48; 53; 56 –	800	320	112 143	84 108	340 400	280 330	200	110	85	18
55 60; 63; 70; 71	56 65; 75	1250	360	112 143	84 108	340 400	280 330	220	120	90	18
63; 70; 71 80; 90	65; 75 85	2000	400	143 172	108 132	420 480	350 400	260	140	100	20
- 80; 90 100	75; 85; 95	3150	450	143 172 214	108 132 168	425 485 565	355 405 475	270	165	115	22
90 100; 110; 125	95; 120	5000	500	172 214	132 168	500 580	415 490	310	190	130	22

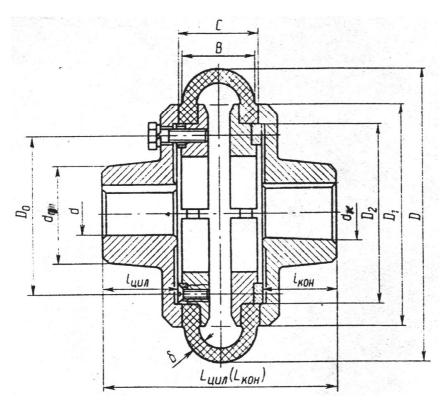


Рис. 3. Муфта упругая с торообразной оболочкой

Таблица 4 Муфты зубчатые. Размеры, мм. ГОСТ 5006-83

		, , ,									
Диаметр вала d, не более	T.10-3 H.m	л _{мах} . мин-1	A	D	$\mathbf{D}_{_{1}}$	D_2	L	В	1	ь	Число зубьев, z
Диам			не менее			не б	олее				Чис
40	0,71	6300	49	170	110	55	115	34	55	12	30
50	1,4	5000	75	185	125	70	145	34	70	15	38
60	3,15	4000	95	220	150	90	170	40	85	20	40
75	5,6	3350	125	250	175	110	215	40	105	25	48
90	8	2800	145	290	200	130	235	50	115	25	56
105	11,8	2500	160	320	230	140	255	50	125	30	48
120	19	2120	185	350	260	170	285	50	140	35	56
140	23,6	1900	210	380	290	190	325	50	160	35	62
160	30	1700	220	430	330	210	335	50	165	35	46
180	50	1400	245	490	350	260	365	50	180	40	56
220	71	1250	280	545	445	300	405	60	200	45	48
250	100	1120	350	590	490	340	485	60	240	50	54
280	150	1000	375	680	555	380	555	70	260	60	48
320	200	900	405	730	610	420	565	70	280	65	54
360	250	800	480	780	660	480	645	70	320	70	58
400	375	710	535	900	755	530	705	90	350	75	56
450	560	630	625	1000	855	630	805	90	400	90	64
500	750	560	710	1100	950	710	905	110	450	90	72
560	1000	500	730	1250	1050	800	975	110	485	100	80

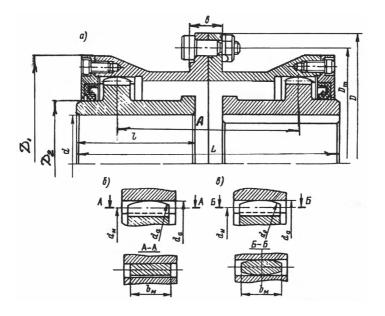


Рис. 4. Зубчатая муфта

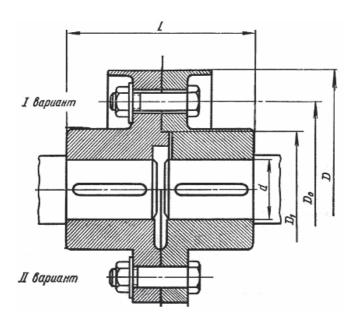
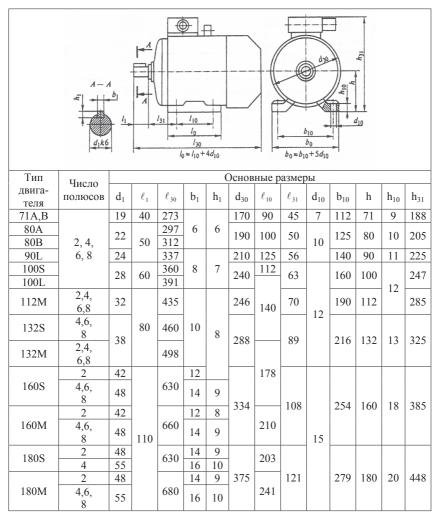


Рис. 5. Фланцевая муфта


Таблица 5 *Муфты фланцевые. Размеры, мм. ГОСТ 20761-80*

d				1, не б	олее,	L, не	более,			
1-й ряд	2-й ряд	Т, Н•м	D, не более	для ис нен		для и неі	спол- ния	D_0	d _{ct}	b
				1	2	1	2			
1	2	3	4	5	6	7	8	9	10	11
11; 12; 14 16; 18	_	16	80	30 40	25 28	63 84	53 60	60 65	25 30	8 10
16; 18 20; 22	19 -	31,5	90	40 50	28 36	84 104	60 76	75	38	12
20; 22 25; 28	24 _	63	100	50 60	36 42	104 124	76 83	75 85	38 50	12 15
25; 28 30; 32; 35; 36	_ _	125	112	60 80	42 58	124 170	83 120	85	50	15
30; 32; 35; 36.	- 38	160	130	80	58	170	120		65	17
32; 35; 36 40; 45	38 42	250	140	80 110	58 82	170 230	120 170	110	65 80	17 20
35; 36. 40; 45; 50	38 42; 48	400	150	80 110	58 82	230 230	170 170	120	65 90	20 22
45; 50; 55 60	48; 53; 56 -	630	170	110 140	82 105	230 290	170 220	130	90	22
50; 55 60; 63; 70; 71	53; 56 -	1000	180	110 140	82 105	230 290	170 220	140	90	22
60; 63; 70; 71. 80	65; 70 85	1600	190	140 170	105 130	290 350	220 270	140 150	120	25
70; 71 80; 90 100	75 85; 95 —	2500	224	140 170 210	105 130 165	290 350 430	220 270 340	150 180 180	120 160 170	25 28 32
80; 90 100; 110	85; 95 105	4000	250	170 210	130 165	350 430	270 340	200 325	160 190	30 36
- 100; 110; 125 -	95 125; 105 130	6300	280	170 210 250	130 165 200	350 430 510	270 340 410	225	190 210 210	36 38 38
110; 125 140 160	120 130; 150 —	10000	320	210 250 300	165 200 240	430 510 610	340 410 490	250	210 220 220	38 40 40

Электродвигатели серии АИР исполнения ІМ 1081

Таблица 1

Основные параметры. Размеры, мм

Технические данные электродвигателей серии АИР

	_	_					_	_	_			_	_	_	_	_	_	_	_	_
				M	\mathbf{H} ·M		2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.4	2.4	2.2		-		
	750	Асин-	хронная	частота	враще-	ния, мин ⁻	705	715	702	709	709	716	712	727	727	731				64-84».
				Типо-	размер		8ST06	90LB8	100L8	112MA 8	112MB8	13288	132M8	16088	160M8	180M8				y 16-525.5
MHH-1				M	\mathbf{H} ·M		2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.5	2.6	2.4			00L2 T
цвигателя,	1000	Асин-	хронная	частота	враще-	ния, мин ⁻	920	920	925	945	950	950	096	096	970	970	086			ель АИР 10
ения вала				Типо-	размер		80A6	80B6	90Te	100L6	112MA 6	112MB6	13286	132M6	160S6	160M6	180M6			я: «Лвигат
а вращ				M	Η·м		2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.9	2.9	2.4	2.7	игателя
Синхронная частота вращения вала двигателя, мин ⁻¹	1500	Асин-	хронная	частота	враще-	ния, мин ⁻	1350	1395	1395	1395	1410	1410	1432	1440	1447	1455	1455	1462	1470	начения дв
Синхро				Типо-	размер		71B4	80A4	80B4	90L4	100S4	100L4	112M4	132S4	132M4	160S4	160M4	180S4	180M4	зного обоз
				M	H·M		2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.7	2.7	2.7	2.7	р услов
	3000	Асин-	хронная	частота	враще-	ния, мин ⁻	2820	2805	2850	2850	2850	2850	2850	2895	2910	2910	2910	2919	2925	Примечание. Пример условного обозначения двигателя: «Двигатель AIIP 100L2 ТУ 16-525.564-84».
				Типо-	размер		71A2	71B2	80A2	80B2	90L2	100S2	100L2	112M2	132M2	160S2	160M2	180S2	180M2	Примеча
		Мош-	HOCTE	(rRT)	(1)		0,75	1,1	1,5	2,2	3	4	5,5	7,5	11	15	18,5	22	30	

Значение символов в условных обозначениях

A - род двигателя - асинхронный;

И – двигатель выполнен новой серией;

P — привязка мощности и установочных размеров по табл. 1, т. е. основного исполнения с одним цилиндрическим концом, шпонкой нормальной точности;

Цифра, стоящая за обозначением АИР, обозначает высоту h от основания до оси вращения;

Буквы А, В обозначают длину сердечника статора;

Буквы $S,\,M$ или L обозначают установочные размеры на длине станины;

Цифры 2, 4, 6, 8 обозначают число полюсов.

Таблица 1 *Подшипники шариковые радиальные однорядные (ГОСТ 8338-75)*

Обозначение n_{max} ,мин $^{-1}$ d. мм D, мм В, мм C, MM C_0 , κH подшипника Легкая серия 12,7 6,2 14,0 6,95 19,5 10,0 25,5 13,7 32,0 17,8 33,2 18,6 35,1 19,8 43,6 25,5 52,0 31,0 56,0 34,0 61,8 37,5 66,3 41,0 70,2 45,0 83,2 53,0 95,6 62,0 Средняя серия 15,9 7,8 22,5 11,4 28,1 14,6 33,2 18,0 41,0 22,4 52,7 30,0 61,8 36,0 71,6 41,5 81,9 48,0 92,3 56,0 104,0 63,0 112,0 72,5

Продолжение табл. 1

316	80	170	39	124,0	80,0	4500
317	85	180	41	133,0	90,0	4000
318	90	190	43	143,0	99,0	3000
		Тя	желая серия	I		
405	25	80	21	36,4	20,4	11000
406	30	90	23	47,0	26,7	10000
407	35	100	25	55,3	31,0	8500
408	40	110	27	63,7	36,5	8000
409	45	120	29	76,1	45,5	7000
410	50	130	31	87,1	52,0	6300
411	55	140	33	100,0	63,0	6000
412	60	150	35	108,0	70,0	5600
413	65	160	37	119,0	78,1	5300
414	70	180	42	143,0	105,0	4500
415	75	200	48	163,0	125,0	4000
416	80	210	52	174,0	135,0	3800

Примечание. Пример обозначения подшипника 209: «Подшипник 209 ГОСТ 8338-75»

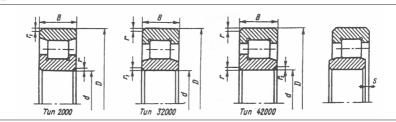


Таблица 2 Подшипники роликовые радиальные с короткими цилиндрическими роликами (ГОСТ 8328-75)

O	бозначег	ние			Разме	ры, мм			Грузоподъ кН	
		s*	C_1	C ₀						
2204	32204	42204	20	47	14	1,5	1	1,0	14,7	7,35
2205	32205	42205	25	52	15	1,5	1	1,1	16,8	8,8
2206	32206	42206	30	62	16	1,5	1	1,0	22,4	12,0
2207	32207	42207	35	72	17	2	1	1,1	31,9	17,6
2208	32208	42208	40	80	18	2	2	1,3	41,8	24,0
2209	32209	42209	45	85	19	2	2	1,2	44,0	25,5
2210	2210 32210 42210 50 90 20 2 2 1,2							1,2	45,7	27,5
2211	32211	42211	55	100	21	2,5	2,5	1,6	56,1	34,0

Продолжение табл. 2

2212 32212 42212 60 110 22 2,5 2,5 1,4 64,4 43,0 2213 32213 42213 65 120 23 2,5 2,5 1,3 76,5 51,0 2214 32214 42214 70 125 24 2,5 2,5 1,2 79,2 51,0 2215 32215 42215 75 130 25 2,5 2,5 1,2 91,3 63,0 2216 32216 42216 80 140 26 3,0 3,0 0,8 106,8 68,0 Средняя серия 2304 32304 42304 20 52 15 2 2 1,0 20,5 10,4 2305 32305 42305 25 62 17 2 2 1,3 36,9 20,0 2307 32307 42307 35 80 21 2,5 2 1,3											
2214 32214 42214 70 125 24 2,5 2,5 1,2 79,2 51,0 2215 32215 42215 75 130 25 2,5 2,5 1,2 91,3 63,0 Средняя серия Средняя серия 2304 32304 42304 20 52 15 2 2 1,0 20,5 10,4 2305 32305 42305 25 62 17 2 2 1,3 28,6 15,0 2306 32306 42306 30 72 19 2 2 1,3 36,9 20,0 2307 32307 42307 35 80 21 2,5 2 1,3 44,6 27,0 2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120	2212	32212	42212	60	110	22	2,5	2,5	1,4	64,4	43,0
2215 32215 42215 75 130 25 2,5 2,5 1,2 91,3 63,0 Средняя серия 2304 32304 42304 20 52 15 2 2 1,0 20,5 10,4 2305 32305 42305 25 62 17 2 2 1,3 28,6 15,0 2306 32306 42306 30 72 19 2 2 1,3 36,9 20,0 2307 32307 42307 35 80 21 2,5 2 1,3 44,6 27,0 2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 </td <td>2213</td> <td>32213</td> <td>42213</td> <td>65</td> <td>120</td> <td>23</td> <td>2,5</td> <td>2,5</td> <td>1,3</td> <td>76,5</td> <td>51,0</td>	2213	32213	42213	65	120	23	2,5	2,5	1,3	76,5	51,0
2216 32216 42216 80 140 26 3,0 3,0 0,8 106,8 68,0 Средняя серия 2304 32304 42304 20 52 15 2 2 1,0 20,5 10,4 2305 32305 42305 25 62 17 2 2 1,3 28,6 15,0 2306 32306 42306 30 72 19 2 2 1,3 36,9 20,0 2307 32307 42307 35 80 21 2,5 2 1,3 44,6 27,0 2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0<	2214	32214	42214	70	125	24	2,5	2,5	1,2	79,2	51,0
Средняя серия 2304 32304 42304 20 52 15 2 2 1,0 20,5 10,4 2305 32305 42305 25 62 17 2 2 1,3 28,6 15,0 2306 32306 42306 30 72 19 2 2 1,3 36,9 20,0 2307 32307 42307 35 80 21 2,5 2 1,3 44,6 27,0 2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120 29 3 3 1,7 102,0	2215	32215	42215	75	130	25	2,5	2,5	1,2	91,3	63,0
2304 32304 42304 20 52 15 2 2 1,0 20,5 10,4 2305 32305 42305 25 62 17 2 2 1,3 28,6 15,0 2306 32306 42306 30 72 19 2 2 1,3 36,9 20,0 2307 32307 42307 35 80 21 2,5 2 1,3 44,6 27,0 2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120 29 3 3 1,7 102,0 67,0 2312	2216	32216	42216	80	140	26	3,0	3,0	0,8	106,8	68,0
2305 32305 42305 25 62 17 2 2 1,3 28,6 15,0 2306 32306 42306 30 72 19 2 2 1,3 36,9 20,0 2307 32307 42307 35 80 21 2,5 2 1,3 44,6 27,0 2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120 29 3 3 1,7 102,0 67,0 2312 32312 42312 60 130 31 3,5 3,5 2,4 123,0 76,5 231					(Средняя	серия				
2306 32306 42306 30 72 19 2 2 1,3 36,9 20,0 2307 32307 42307 35 80 21 2,5 2 1,3 44,6 27,0 2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120 29 3 3 1,7 102,0 67,0 2312 32312 42312 60 130 31 3,5 3,5 2,4 123,0 76,5 2313 32313 42313 65 140 33 3,5 3,5 2,5 138,0 85,0 <	2304	32304	42304	20	52	15	2	2	1,0	20,5	10,4
2307 32307 42307 35 80 21 2,5 2 1,3 44,6 27,0 2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120 29 3 3 1,7 102,0 67,0 2312 32312 42312 60 130 31 3,5 3,5 2,4 123,0 76,5 2313 32313 42313 65 140 33 3,5 3,5 2,5 138,0 85,0 2314 32314 42314 70 150 35 3,5 3,5 2,3 151,0 102,0	2305	32305	42305	25	62	17	2	2	1,3	28,6	15,0
2308 32308 42308 40 90 23 5,5 2,5 1,1 56,1 32,5 2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120 29 3 3 1,7 102,0 67,0 2312 32312 42312 60 130 31 3,5 3,5 2,4 123,0 76,5 2313 32313 42313 65 140 33 3,5 3,5 2,5 138,0 85,0 2314 32314 42314 70 150 35 3,5 3,5 2,3 151,0 102,0 2315 32315 42315 75 160 37 3,5 3,5 2,4 183,0 125,0 <td>2306</td> <td>32306</td> <td>42306</td> <td>30</td> <td>72</td> <td>19</td> <td>2</td> <td>2</td> <td>1,3</td> <td>36,9</td> <td>20,0</td>	2306	32306	42306	30	72	19	2	2	1,3	36,9	20,0
2309 32309 42309 45 100 25 2,5 2,5 1,1 72,1 41,5 2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120 29 3 3 1,7 102,0 67,0 2312 32312 42312 60 130 31 3,5 3,5 2,4 123,0 76,5 2313 32313 42313 65 140 33 3,5 3,5 2,5 138,0 85,0 2314 32314 42314 70 150 35 3,5 3,5 2,3 151,0 102,0 2315 32315 42315 75 160 37 3,5 3,5 2,4 183,0 125,0	2307	32307	42307	35	80	21	2,5	2	1,3	44,6	27,0
2310 32310 42310 50 110 27 3 3 1,6 88,0 52,0 2311 32311 42311 55 120 29 3 3 1,7 102,0 67,0 2312 32312 42312 60 130 31 3,5 3,5 2,4 123,0 76,5 2313 32313 42313 65 140 33 3,5 3,5 2,5 138,0 85,0 2314 32314 42314 70 150 35 3,5 2,3 151,0 102,0 2315 32315 42315 75 160 37 3,5 3,5 2,4 183,0 125,0	2308	32308	42308	40	90	23	5,5	2,5	1,1	56,1	32,5
2311 32311 42311 55 120 29 3 3 1,7 102,0 67,0 2312 32312 42312 60 130 31 3,5 3,5 2,4 123,0 76,5 2313 32313 42313 65 140 33 3,5 3,5 2,5 138,0 85,0 2314 32314 42314 70 150 35 3,5 3,5 2,3 151,0 102,0 2315 32315 42315 75 160 37 3,5 3,5 2,4 183,0 125,0	2309	32309	42309	45	100	25	2,5	2,5	1,1	72,1	41,5
2312 32312 42312 60 130 31 3,5 3,5 2,4 123,0 76,5 2313 32313 42313 65 140 33 3,5 3,5 2,5 138,0 85,0 2314 32314 42314 70 150 35 3,5 3,5 2,3 151,0 102,0 2315 32315 42315 75 160 37 3,5 3,5 2,4 183,0 125,0	2310	32310	42310	50	110	27	3	3	1,6	88,0	52,0
2313 32313 42313 65 140 33 3,5 3,5 2,5 138,0 85,0 2314 32314 42314 70 150 35 3,5 3,5 2,3 151,0 102,0 2315 32315 42315 75 160 37 3,5 3,5 2,4 183,0 125,0	2311	32311	42311	55	120	29	3	3	1,7	102,0	67,0
2314 32314 42314 70 150 35 3,5 3,5 2,3 151,0 102,0 2315 32315 42315 75 160 37 3,5 3,5 2,4 183,0 125,0	2312	32312	42312	60	130	31	3,5	3,5	2,4	123,0	76,5
2315 32315 42315 75 160 37 3,5 3,5 2,4 183,0 125,0	2313	32313	42313	65	140	33	3,5	3,5	2,5	138,0	85,0
	2314	32314	42314	70	150	35	3,5	3,5	2,3	151,0	102,0
2316 32316 42316 80 170 39 3,5 3,5 2,3 190,0 125,0	2315	32315	42315	75	160	37	3,5	3,5	2,4	183,0	125,0
	2316	32316	42316	80	170	39	3,5	3,5	2,3	190,0	125,0

Примечания.

- 1. s* допустимое осевое смещение колец из среднего положения.
- 2. Пример обозначения 2207: «Подшипник 2207 ГОСТ 8328-75»

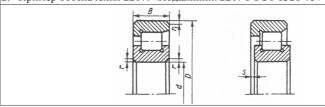


Таблица 3

Подшипники роликовые радиальные с короткими цилиндрическими роликами с одним бортом на наружном кольце (ГОСТ 8328-75)

Обозначения			Размер	оы, мм			Грузопод к	ьемность, Н
	d	D	В	r	r_1	s*	C_1	C_0
			Ле					
12204	20	47	14	1	14,7	7,35		
12205	25	52	15	1,1	16,8	8,8		
12206	30	62	16	1,0	22,4	12,0		

Продолжение табл. 3

12207	35	72	17	2	1	1,1	31,9	17,0
12208	40	80	18	2	2	1,3	41,8	24,0
12209	45	85	19	2	2	1,2	44,0	25,5
12210	50	90	20	2	2	1,2	45,7	27,5
12211	55	100	21	2,5	2	1,6	56,1	34,0
12212	60	110	22	2,5	2,5	1,4	64,4	43,0
12213	65	120	23	2,5	2,5	1,3	76,5	51,0
12214	70	125	24	2,5	2,5	1,2	79,2	51,0
12215	75	130	25	2,5	2,5	1,2	91,3	63,0
12216	80	140	26	3,0	3,0	0,8	106,0	68,0
			Сре	едняя сеј	рия			
12304	20	52	15	2	2	1,0	20,5	10,4
12305	25	62	17	2	2	1,3	28,6	15,0
12306	30	72	19	2	2	1,3	36,9	20,0
12307	35	80	21	2,5	2	1,3	44,6	27,0
12308	40	90	23	2,5	2,5	1	56,1	32,5
12309	45	100	25	2,5	2,5	1,1	72,1	41,5
12310	50	110	27	3	3	1,6	88,0	52,0
12311	55	120	29	3	3	1,7	102,0	67,0
12312	60	130	31	3,5	3,5	2,4	123,0	76,5
12313	65	140	33	3,5	3,5	2,5	138,0	85,0
12314	70	150	35	3,5	3,5	2,3	151,0	102,0
12315	75	160	37	3,5	3,5	2,4	183,0	125,0
12316	80	170	39	3,5	3,5	2,3	190,0	125,0

Примечания.

s* – допустимое осевое смещение колец из среднего положения. Пример обозначения подшипника 12207: «Подшипник 12207 ГОСТ 8328-75».

Шпонки призматические

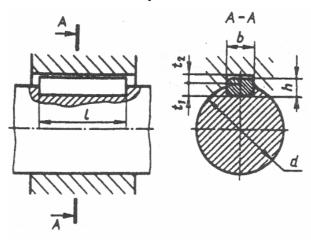


Рис. 1. Шпонки призматические ГОСТ 233360-78

Таблица 1

Основные параметры. Размеры, мм

Диаметр	Сечение	шпонки	Фаска у	Глуби	на паза	Длина, ℓ
вала, d	b	h	шпонки S	Вала, t	Ступицы t2	длина, ℓ
Св. 12 до17	5	5		3	2,3	10-56
»17»22	6	6	0,25-0,4	3,5	2,8	14-70
»22»30	8	7		4	3,3	18–90
»30»38	10	8		5	3,3	22-110
»38»44	12	8		5	3,3	28-140
»44»50	14	9	0,4-0,6	5,5	3,8	36-160
»50»58	16	10		6	4,3	45-180
»58»65	18	11		7	4,4	59-200
»65»75	20	12		7,5	4,9	56-220
»75»85	22	14	0,6-0,8	9	5,4	63-220
»85»95	25	14		9	5,4	70–280

Примечания.

- Длину (мм) призматической шпонки выбирают из ряда: 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 56, 63, 70, 80, 90, 100, 110, 125, 140, 160, 180, 200.
- 2. Пример обозначения шпонки с размерами b = 18 мм, h = 11 мм, ℓ = 80 мм: «Шпонка 18×11×80 ГОСТ 23360-78».

Приложения 9

Таблица 1

Конструкции отдушин

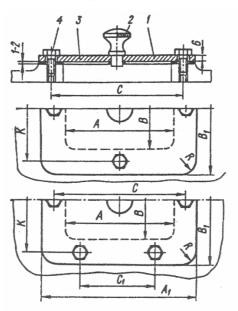


Рис. 1. Крышка смотрового отверстия редуктора: 1 — крышка, 2 — ручка-отдушина, 3 — прокладка (картон), 4 — винт

Основные параметры. Размеры, мм

A	В	A	B ₁	С	C ₁	K	R	Размер винта	Число винтов
100	75	150	100	125	_	100	12	M8×22	4
150	100	190	140	175	_	120	12	M8×22	4
200	150	200	200	230	130	180	15	M10×22	6

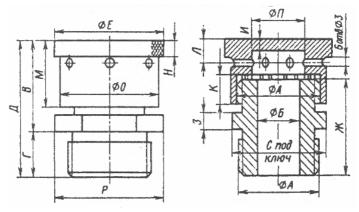


Рис. 2. Отдушина колпачковая

Основные параметры. Размеры, мм

	A	Б	В	Γ	Д	Е	Ж	3	И	K	Л	M	Н	О	П	P	С
	M27×2	15	~30	15	~45	36	32	6	4	10	8	22	6	32	18	36	32
ĺ	M48×3	35	~45	25	~70	62	52	10	5	15	13	52	10	56	36	62	55

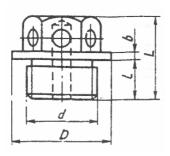


Рис. 3. Пробка-отдушина

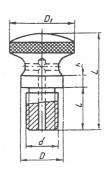


Таблица 2

Рис. 4. Ручка-отдушина

Таблица 3 *Основные параметры, мм*

d	D	1	b	L
M16×1,5	25	10	3	35
M27×1,5	40	18	5	40

Таблица 4 Основные параметры, мм

d	D ₁	1	b	L	В
M12×1,75	20	32	40	12	5,5
M16×2	25	40	50	16	7

Конструкции маслоуказателей

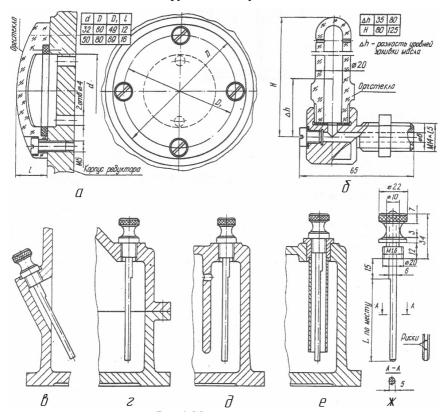


Рис. 1. Маслоуказатели:

a - фонарный; σ - трубчатый; θ , ε , ∂ , e - жезловый (θ , ε - без чехла, ∂ - в камере корпуса, e - в чехле); ∞ - ориентировочные размеры маслоуказателя.

Конструкции ∂ , e позволяют контролировать уровень масла во время работы.

Стандартные изделия

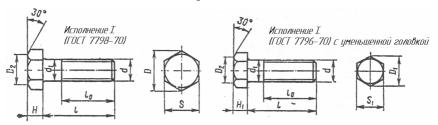


Рис. 1. Болты с шестигранной головкой (класс точности В)

Основные размеры, мм

Таблица 1

d	Шаг р	езьбы	S	C	Н	П	D	$\mathbf{D}_{_{1}}$	
a	крупный	мелкий	3	S ₁	п	H ₁	Не м	енее	Длина резьбы ℓ_0
6	1,0	_	10	_	4,0	_	10,9	_	$\ell_0 = \ell \text{ при } \ell \le 25$ $\ell_0 = 22$ $\text{при } \ell \ge 30$
8	1,25	1,0	13	12	5,5	5	14,2	13,1	$\ell_0 = \ell$ при $\ell \le 25$ $\ell_0 = 22$ при $\ell \ge 30$
10	1,5	1,25	17	14	7,0	6	18,7	15,3	$\ell_0 = \ell \text{ при } \ell \le 30$ $\ell_0 = 26$ $\text{при } \ell \ge 35$
12	1,75	1,25	19	17	8,0	7	20,9	18,7	$\ell_0 = \ell \text{ при } \ell \le 30$ $\ell_0 = 30$ при $\ell \ge 35$
16	2,0	1,5	24	22	10	9	26,2	23,9	$\ell_0 = \ell \text{ при } \ell \le 30$ $\ell_0 = 30$ $\text{при } \ell \ge 35$
20	2,5	1,5	30	27	13	11	33,0	29,6	$\ell_0 = \ell$ при $\ell \le 40$ $\ell_0 = 38$ при $\ell \ge 45$
24	3,0	2,0	36	32	15	13	39,6	35,0	$\ell_0 = \ell$ при $\ell \le 50$ $\ell_0 = 46$ при $\ell \ge 55$

Примечания.

- 1. В порядке понижения точности изготовления различают болты классов точности А. В. С.
- 2. Пример условного обозначения болта диаметром резьбы d=12 мм, длиной $\ell=60$ мм, класса прочности 5.8 с крупным шагом резьбы без покрытия с полем допуска 6g:

Болт M12-6g×60.58. ГОСТ 7798-70.

То же из легированной стали 35X класса прочности 8.8 с мелким шагом резьбы: Болт $M12 \times 1,25-6g \times 60.88.$ 35X ГОСТ 7798-70.

3. Класс прочности болтов обозначен двумя числами. Первое число, умноженное на 100, определяет минимальное значение $\sigma_{\scriptscriptstyle B}$ (МПа), второе число, деленное на 10, соответствует примерному значению $\sigma_{\scriptscriptstyle T}/\sigma_{\scriptscriptstyle B}$; произведение чисел, умноженное на 10, дает $\sigma_{\scriptscriptstyle T}$ (МПа).

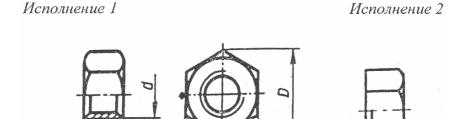


Рис. 2. Гайки шестигранные класса точности В (ГОСТ 5915-70)

Таблина 2

Основные размеры, мм

d	M6	M8	M10	M16	M20	M24
S	10	13	17	24	30	36
D	10,9	14,2	18,7	26,2	33,0	39,6
Н	5,2	6,8	8,4	14,8	18,0	21,5

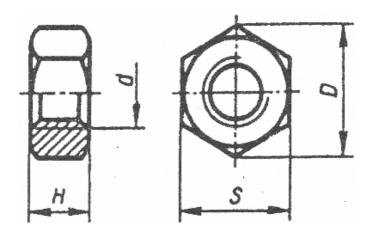


Рис. 3. Гайки шестигранные с уменьшенным размером «под ключ» класса точности В

Основные размеры, мм

Таблица 3

d	8	10	12	16	20	24
S	12	14	17	22	27	32
D	13,1	15,3	18,7	23,9	29,6	35
Н	6,5	8	10	13	16	19

Пример Условного обозначения гайки с диаметром резьбы $d=12\,\mathrm{mm}$, крупным шагом и полем допуска резьбы 6H, класса прочности 5:

«Гайка М12-6H.5 ГОСТ 15521-70».

Класс прочности гаек с номинальной высотой, равной или более 0,8 d, обозначает число, которое при умножении на 100 дает величину напряжения от испытательной нагрузки в МПа и указывает наибольший класс прочности болтов, с которыми они могут сопрягаться в соединении.

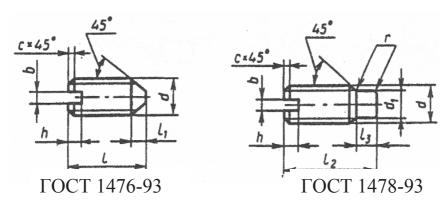


Рис. 4. Винты установочные с прямым шлицем класса точности A и B: с коническим кольцом (ГОСТ 1476-93); с цилиндрическим концом (ГОСТ 1478-93)

Таблица 4 *Основные размеры, мм*

Общие размеры (ГОСТ 1476-93 и ГОСТ 1478-93)					ческим	С цилиндрическим концом			
d	b	h	С	ℓ_1	ℓ	d ₁	r≤	ℓ_3	ℓ_2
5	0,8	1,8	1,0		825	3,5	0,3	2,5	825
6	1,0	2,0	1,0	2,5	830	4,5	0,4	3,0	1035
8	1,2	2,5	1,6	3,0	1040	6,0	0,4	4,0	1240
10	1,6	3,0	1,6	4,0	1250	7,5	0,5	4,5	1250
12	2,0	3,5	1,6	5,0	1250	9,0	0,6	5,0	1650

Примечания.

Пример условного обозначения винта класса точности В диаметром резьбы d=6 мм, с крупным шагом резьбы, полем допуска 6g, длиной $\ell=10$ мм, класса прочности 14H без покрытия:

Винт В М16-6g×10.14Н ГОСТ 1476-93.

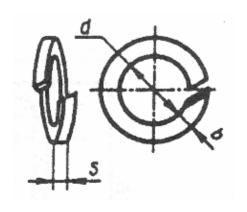


Рис. 5. Шайбы пружинные (ГОСТ 6402-70)

Таблица 5

Основные размеры, мм

Номинальный диаметр резьбы болта, винта, шпильки	d	S = b	Номинальный диаметр резьбы болта, винта, шпильки	d	S = b
6	6,1	1,4	16	16,3	3,5
8	8,2	2,0	20	20,5	4,5
10	10,2	2,5	24	14,5	5,5
12	12,2	3,0			

Пример условного обозначения пружинной шайбы для болта, винта, шпильки диаметром резьбы 12 мм из стали 65Γ :

«Шайба 12 65Г ГОСТ 6402-70».

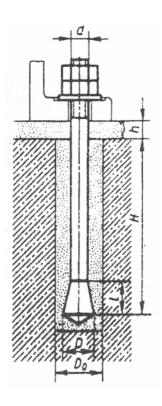


Рис. 6. Болты фундаментные с коническим концом ГОСТ 24379-80. Тип 6, исполнение 2

Таблица 6

Основные размеры, мм

D	D	ℓ	Н	D_0
M16	26	28	150200	3040
M20	32	34	200250	4050
M24	39	41	250300	5060

Пример условного обозначения болта типа 6, исполнение 2 с диаметром резьбы d=24, длиною 330 мм:

«Болт 6.2. M24×330 ГОСТ 24379».

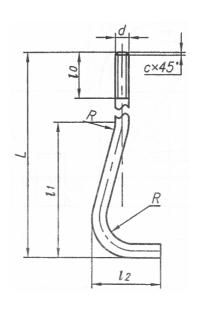


Рис. 7. Болты фундаментные изогнутые (ГОСТ 24379-80). Тип 1, исполнение 2

Таблица 7

Основные размеры, мм

d	L	ℓ_{0}	ℓ_1	ℓ_2	R	С
M16	300 400	90	130	60	16	2
M20	400 500	100	160	80	20	
M24	500 600	110	200	100	24	2,5
M30	600 710 800	120	250	120	30	

Пример условного обозначения болта типа 1, исполнения 2, диаметром резьбы d=20 мм, длиной L=500 мм, из стали BCт3пс2:

«Болт 1.2.М20×500, ВСт3пс2 ГОСТ 24379.1-81»

Клиновые ремни общего назначения ГОСТ 1284.1-89

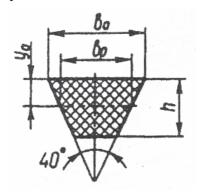


Таблица 1 Основные размеры, мм

Основные	F	Нормальное сечение по ГО	CT 1284-80
размеры, мм	0 A		Б
b ₀	8.5	11	14
b ₀	10	13	17
У ₀	2.1	2.8	4.0
h	6	8	10.5
Площадь сечения A, мм ²	47	81	138
Предельное значение ℓ , мм	4002500	5604000	80063000

Примечания.

- 1. ℓ расчетная длина ремня на уровне нейтральной линии.
- 2. Стандартный ряд длин ℓ в мм 400, 450, 500, 560, 710, 800, 900, 1000, 1120, 1250, 1400, 1600, 1800, 2000, 2240, 2500, 2800, 3150, 3550, 4000, 4500, 5000. Пример условного обозначения ремня сечения A с расчетной длиной 800 мм: «Ремень A-800 ГОСТ 1284.1-89»

98

Приложение 13 *Манжеты резиновые армированные (ГОСТ 8752-79)*

	d, мм	D,мм	Н ₁ , мм	h _{2, мм}
	15, 16, 17, 18,19	30, 32, 35	7	-
ТИП 1 ТИП 11 С ПЫЛЬНИКОМ	20, 21, 22 24 25 26 28 30, 32 35, 36, 38 40 42 45 48, 50 52	40 41 42 45 47 52 58 60 62 65 70 75	10	14
ht hi hz	55, 56, 58 60 63, 65 70, 71 75 80 85 90, 95 100 105	80 85 90 95 100 105 110 120 125 130	12	16

Пример условного обозначения манжеты типа 1 для вала диаметром d=40 мм с наружным диаметром D=60 мм:

«Манжета 1-40×60 ГОСТ 8752-79»

Таблица 1

Поля допусков отверстий и валов по ЕСДП

Поле допуска					Валы					Отв						ЛЫ				
по системе ОСТ	Д1	C1=B1	1 П1	H1	T1	Г1			Пр21	A1	X1	Д	C=B	П	Н	T	Γ			
НОМИНАЛЬНЫ									оля д											
Е РАЗМЕРЫ,	g5	h5	js5	k5	m5	n5	p5	r5	s5	H6	f6	g6	h6	js6	k6	m6	n6	р6	r6	s6
MM	предельные отклонения																			
ОТ 1 ДО 3	-2	0	+2,0	+4	+6	+8	+10	+14	+18	+6	-6	-2	0	+3,0	+6	+8	+10	+12	+16	+20
	-6	-4	-2,0	0	+2	+4	+6	+10	+14	0	-12	-8	-6	-3,0	0	+2	+4	+6	+10	+14
Св. 3 ДО 6	-4	0	+2,5	+6	+9	+13	+17	+20	+24	+8	-10	-4	0	+4,0	+9	+12	+16	+20	+23	+27
ов. 3 до 0	-9	-5	-2,5	0	+4	+8	+12	+15	+19	0	-18	-12	-8	-4,0	+1	+4	+8	+12	+15	+19
Св. 36 ДО 10	-5	0	+3,0	+7	+12	+16	+21	+25	+29	+9	-13	-5	0	+4,5	+10	+15	+19	+24	+28	+32
ов. зо до то	-11	-6	-3,0	+1	+6	+10	+15	+19	+23	0	-22	-14	-9	-4,5	+1	+6	+10	+15	+19	+23
Св. 10 ДО 14																				
ов. 10 до 14	-6	0	+4,0	+9	+15	+20	+25	+31	+36	+11	-16	-6	0	+5,5	+12	+18	+23	+19	+34	+39
Св. 14 ДО 18	-14	-8	-4,0	+1	+7	+12	+18	+23	+28	0	-27	-17	-11	-5,5	+1	+7	+12	+18	+23	+28
ов. 14 до 10																				
Св. 18 ДО 24																				
ов. 10 до 24	-7	0	+4,5	+11	+17	+24	+31	+37	+44	+13	-20	-7	0	+6,5	+15	+21	+28	+35	+41	+48
Св. 24 ДО 30	-16	-9	-4,5	+2	+8	+15	+22	+28	+35	0	-33	-20	-13	-6,5	+2	+8	+15	+22	+28	+35
ОВ. 24 ДО 30																				
Св. 30 ДО 40																				
ов. 30 до 40	-9	0	+5,5	+13	+20	+28	+37	+45	+54	+16	-25	-9	0	+8,0	+18	+25	+33	+42	+50	+59
Св. 40 ДО 50	-20	-11	-5,5	+2	+9	+17	+26	+34	+43	0	-41	-25	-16	-8,0	+2	+9	+17	+26	+34	+43
ОВ. 40 ДО 30																				
Св. 50 ДО 65								+54	+66										+60	+72
Св. 50 ДО 65	-10	0	+6,5	+15	+24	+33	+45	+41	+53	+19	-30	-10	0	+9,5	+21	+30	+39	+51	+41	+53
Св. 65 ДО 80	-23	-13	-6,5	+2	+11	+20	+32	+56	+72	0	-49	-29	-19	-9,5	+2	+11	+20	+32	+62	+78
								+43	+59										+43	+59
Св. 80 ДО 100								+66	+86										+73	+93
СВ. 00 ДО 100	-12	0	+7,5	+18	+28	+38	+52	+51	+71	+22	-36	-12	0	+11,0	+25	+35	+45	+59	+51	+71
Св. 100 ДО 120	-27	-15	-7,5	+3	+13	+23	+37	+69	+94	0	-58	-34	-22	-11,0	+3	+13	+23	+37	+76	+101
СВ. 100 ДО 120								+54	+79										+54	+79
Св. 120 ДО 140								+81	+110										+88	+117
СВ. 120 ДО 140								+63	+92										+63	+92
Св. 140 ДО 160	-14	0	+9,0	+21	+33	+45	+61	+89	+118	+25	-43	-14	0	+12,5	+28	+40	+52	+68	+90	+125
Св. 140 ДО 100	-32	-18	-9,0	+3	+15	+27	+43	+65	+100	0	-68	-39	-25	-12,5	+3	+15	+27	+43	+65	+100
Св. 140 ДО 180								+86	+126										+93	+133
Св. 140 ДО 100								+68	+108										+68	+108
Св. 180 ДО 200								+97	+142										+106	+151
Св. 100 ДО 200								+77	+122										+77	+122
Св. 200 ДО 225	-15	0	+10	+24	+37	+51	+70	+100	+150	+29	-50	-15	0	+14,5	+33	+46	+60	+79	+109	+159
СВ. 200 ДО 225	-35	-20	-10	+4	+17	+31	+50	+80	+130	0	-79	-44	-29	-14,5	+4	+17	+31	+50	+80	+130
Св. 225 ДО 250								+104	+160										+113	+169
Св. 225 ДО 250								+84	+148										+84	+140
Св. 250 ДО 280								+117	+181										+126	+190
ов. 200 до 200	-17	0	+11,5	+27	+43	+57	+79	+94	+158	+32	-56	-17	0	+16,0	+36	+52	+66	+88	+94	+158
Св. 280 ДО 315	-40	-23	-11,5	+4	+20	+34	+56	+121	+193	0	-88	-49	-32	-16,0	+4	+20	+34	+56	+130	+202
ов. 200 до 313								+98	+170										+98	+170
Св. 315 ДО 355								+133	+215										+144	+226
ов. это до эээ	-18	0	+12,5	+29	+46	+62	+87	+108	+190	+36	-62	-18	0	+18,0	+40	+57	+73	+98	+108	+190
Св. 355 ДО 400	-43	-25	-12,5	+4	+21	+37	+62	+139	+233	0	-98	-54	-36	-18,0	+4	+21	+37	+62	+150	+244
ов. 355 до 400								+114	+208										+114	+208
Св. 400 ДО 450								+153	+259										+166	+272
ов. 400 до 450	-20	0	+13,5	+32	+50	+67	+95	+126	+232	+40	-68	-20	0	+20,0	+45	+63	+80	+108	+126	+232
Св. 450 ДО 500	-47	-27	-13,5	+5	+23	+40	+68	+159	+279	0	-108	-60	-40	-20,0	+5	+23	+40	+68	+172	+292
ов. 450 ДО 500								+133	+252										+132	+252

Продолжение табл. 1

Поле допуска	OTB					ВАЛЫ					OTB					ВАЛЬ	l			
по системе ОСТ	A		X	C2a=B	П2а	H2a	T2a	Г2а	Пр12а		A2a	TX	Ш	Л	X2a	C3=B3	5	Пр22а		
НОМИНАЛЬНЫ									ПО	ля до	пуск	ОВ								
Е РАЗМЕРЫ,	H7	e7	f7	h7	js7	k7	m7	n7	s7	u7	H8	c8	d8	e8	f8	h8	js8*	u8	x8	z8
MM								пре,	цельн	ње о	гклог	тения	Ī							
OT 4 BO 2	+10	-14	-6	0	+5	+10		+14	+24	+28	+14	-60	-20	-14	-6	0	+7	+32	+34	+40
ОТ 1 ДО 3	0	-24	-16	-10	-5	0	-	+4	+14	+18	0	-74	-34	-28	-20	-14	-7	+18	+20	+26
Св. 3 ДО 6	+12	-20	-10	0	+6	+13	+16	+20	+31	+35	+18	-70	-30	-20	-10	0	+9	+41	+46	+53
св. з до в	0	-32	-22	-12	-6	+1	+4	+8	+19	+23	0	-88	-48	-38	-28	-18	-7	+23	+28	+35
Св. 36 ДО 10	+15	-23	-13	0	+7	+16	+21	+25	+38	+43	+22	-80	-40	-25	-13	0	+11	+50	+56	+64
ов. 30 до 10	0	-40	-28	-15	-7	+1	6	+10	+23	+28	0	-102	-62	-47	-35	-22	-11	+28	+34	+42
Св. 10 ДО 14																			+67	+77
ов. 10 до 14	+18	-32	-16	0	+9	+19	+25	+30	+46	+51	+27	-95	-50	-32	-16	0	+13	+60	+40	+50
Св. 14 ДО 18	0	-50	-34	-18	-9	+1	+7	+12	+28	+33	0	-122	-77	-59	-43	-27	-13	+33	+72	+87
ов. 14 до 10																			+45	+60
Св. 18 ДО 24										+62								+74	+87	+106
ов. 10 до 24	+21	-40	-20	0	+10	+23	+29	+36	+56	+41	+33	-110	-65	-40	-20	0	+16	+41	+54	+73
Св. 24 ДО 30	0	-61	-41	-21	-10	+2	+8	+15	+35	+69	0	-143	-98	-73	-53	-33	-16	+81	+97	+121
ов. 24 до 30										+48								+48	+64	+88
Св. 30 ДО 40										+85		-120						+99	+119	+151
ов. 30 до 40	+25	-50	-25	0	+12	+27	+34	+42	+68	+60	+39	-159	-80	-50	-25	0	+19	+60	+80	+112
Св. 40 ДО 50	0	-75	-50	-25	-12	+2	+9	+17	+43	+95	0	-130	-119	-89	-64	-39	-19	+109	+136	+175
ов. че до се										+70		-169						+70	+97	+136
Св. 50 ДО 65									+83	+117		-140						+133	+168	+218
ов. 30 до 03	+30	-60	-30	0	+15	+32	+41	+50	+53	+87	+46	-186	-100	-60	-30	0	+23	+87	+122	+172
Св. 65 ДО 80	0	-90	-60	-30	-15	+2	+11	+20	+89	+132	0	-150	-146	-106	-76	-46	-23	+148	+192	+256
ов. 03 до 00									+59	+102		-196						+102	+146	+210
Св. 80 ДО 100									+106	+159		-170						+178	+232	+312
ов. оо до 100	+35	-72	-36	0	+17	+38	+48	+58	+71	+124	+54	-224	-120	-72	-36	0	+27	+124	+178	+258
Св. 100 ДО 120	0	-107	-71	-35	-17	+3	+13	+23	+114	+179	0	-180	-174	-126	-90	-54	-27	+198	+264	+364
									+79	+144		-234						+144	+210	+310
Св. 120 ДО 140									+132	+210		-200						+233	+311	+428
									+92	+170		-263						+170	+248	+365
Св. 140 ДО 160	+40	-85	-43	0	+20	+43	+55	+67	+140	+230	+63	-210	-145	-85	-43	0	+31	+253	+343	+478
	0	-125	-83	-40	-20	+3	15	+27	+100	+190	0	-273	-208	-148	-106	-63	-31	+190	+280	+415
Св. 140 ДО 180									+148	+250		-230						+273	+373	+528
									+108	+210		-293				_		+210	+310	+465
Св. 180 ДО 200									+168	+282		-240						+308	+422	+592
				_					+122	+136		-312						+236	+350	+520
Св. 200 ДО 225	+46	-100	-50	0	+23	+50	+63	+77	+176	+304	+72	-260	-170	-100	-50	0	+36	+330	+457	+647
	0	-146	-96	-46	-23	+4	17	+31	+130	+258	0	-332	-242	-172	-122	-72	-36	+258	+385	+575
Св. 225 ДО 250									+186	+330		-280						+356	+497	+712
									+140	+284		-352				_		+284	+425	+640
Св. 250 ДО 280		440	5.0		. 00	. 50	. 70	.00	+210	+367		-300	400	440			. 40	+396	+556	+791
	+52	-110	-56	0	+26	+56	+72	+86	+158	+315	+81	-381	-190	-110	-56	0	+40	+315	+475	+710
Св. 280 ДО 315	0	-162	-108	-52	-26	+4	+20	+34	+222	+420	0	-330	-271	-191	-137	-81	-40	+431	+606	+871
			_	-	_	_		_	+170	+350		-411				-	-	+350	+525	+790
Св. 315 ДО 355		405			.00		. 70	.07	+247	+447		-360	040	405			. 4.4	+479	+679	+989
Ac ccc	+57	-125	-62	0	+28	+61	+78	+94	+190	+390	+89	-449	-210	-125	-62	0	+44	+390	+590	+900
Св. 355 ДО 400	0	-182	-119	-57	-28	+4	+21	+37	+265	+492	0	-400	-299	-214	-151	-89	-44	+524	+749	+108
[5- 100									+208	+435		-489						+435	+660	+100
Св. 400 ДО 450		405	00		. 24		. 0.0	. 400	+295	+553	. 67	-440	000	405	00		. 40	+587	+837	+119
	+63	-135	-68	0	+31	+68	+86	+103	+232	+490	+97	-537	-230	-135	-68	0	+48	+490	+740	+110
Св. 450 ДО 500	0	-198	-131	-63	-31	+5	+23	+40	+315	+605	0	-480	-327	-232	-165	-97	-48	+637	+917	+134
									+252	+540		-577						+540	+820	+125

Продолжение табл. 14

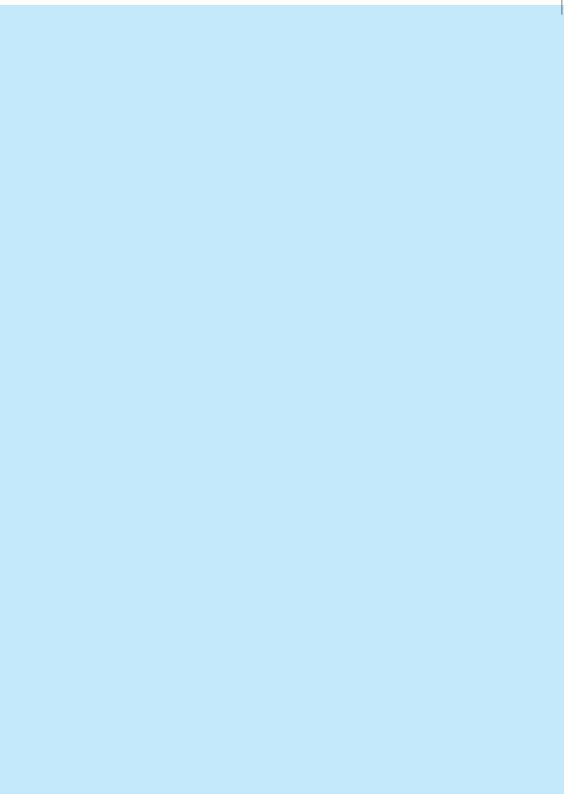
Поле допуска	ОТВ					ВАЛЬ					ОТВ			BA	пы			отв		ВАЛЫ		OTB	BA	ЛЫ	OTB	BA	nы.							
по системе OCT	At	Шэ			C1=B:		A3a	Шз	Da=B:	3	At Wt			X4 C4=B4			A5				A7	B7	CM7	Aa		CMs								
НОМИНАЛЬНЫ				_	,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			пол	ЯД	опу			_																	
Е РАЗМЕРЫ,	H9	d9	e9	f9	h9	js9*	H10	d10	h10	js10								H12	b12	h12	js12*	H14*	h14	js14*	H151	h15	js15*							
MM			_									депь				ЕНИ																		
OT 1 /IO 3	+26	-20	-14	-6	0	+12	+40	-20	0	+20	+60	-270	-140	-60	-20	0	+30	+100	-140	0	+50	+25	0	+125	+400	0	+200							
	+30	-45 -30	-39 -20	-31	-25 0	-12 +15	+48	-60 -30	-40 0	-20 +24	+75	-330	-200 -140	-120 -70	-80 -30	-60	+37	+120	-240 -140	-100	-50 +60	+300	-250	-125 +150	+480	-400 0	-200 +240							
Св. 3 ДО 6	0	-60	-50	-10	-30	-15	0	-78	-48	-24	+25	-345	-215	-145	-105	-75	-37	1 120	-260	-120	-60	+300	-300	-150	0	-480	-240							
	+36	-40	-25	-13	0	+18	+58	-40	0	+29	+90	-280	-150	-80	-40	0	+45	+150	-150	0	+75	+350	0	+180	+580	0	+290							
Св. 36 ДО 10	0	-76	-61	-49	-36	-18	0	-98	-58	-29	0	-370	-240	-170	-130	-90	45	0	-300	-150	-75	0	-360	-180	0	-580	-290							
Св. 10 ДО 14																																		
си. годо га	+43	-50	-32	-16	0	+21	+70	-50	0	+35	+110	-290	-150	-95	-50	0	+55	+160	-150	0	+90	+430	0	+215	+700	0	+350							
Св. 14 ДО 18	0	-93	-75	-59	-43	+21	0	-120	-70	-35	0	-400	-260	-205	-160	-110	-55	0	-330	-180	-90	0	-430	-215	0	-700	-350							
	-			-	-		-		-	-		_		_	_	-	-	-		_		-	-			_								
Св. 18 ДО 24	+62	-65	-40	-20	0	+26	+84	-65	0	+42	+130	-300	-160	-110	-65	0	+65	+210	-160	0	+105	+620	0	+260	+840	0	+420							
	0	-117	-92	-72	-52	-26	0	-149	-84	-42	0	-430	-290	-240	-195	-130	-65	0	-370	-210	-105	0	-520	-260	0	-840	-420							
Св. 24 ДО 30				- 10	- 04		-			- 10	1		200					1					04.0			0.10	- 16.0							
Св. 30 ДО 40												-310	-170	-120					-170															
ов. зо до чо	+62	-80	-50	-25	0	+31	+100	-80	0	+50	+150	-470	-330	-280	-80	0	+80	+250	-420	0		+620	0	+310	+1000		+500							
Св. 40 ДО 50	0	-142	-112	-87	-62	-31	0	-180	-100	-50	0	-320	-180	-130	-240	-160	-80	0	-180	-250	-125	0	-620	-310	0	-1000	-500							
	_			_	_	_	_			_		-480	-340	-290	_	_	_	_	-340			_												
Св. 50 ДО 65	+74	-100	-60	-30	0	+37	+120	-100	0	+60	+190	-340 -530	-190 -380	-140 -330	-100	0	+95	+300	-190 -490	0	+150	+740	0	+370	+1200	0	+600							
	0	-174	-134	-104	-74	-37	0	-220	-120	-60	0	-360	-200	-150	-290	-190	-95	9	-200	-300	-150	0	-740	-370	0	-1200	-600							
Св. 65 ДО 80	١ ،	-114	-134 -104	-14	-51		-220	-120		1	-550	-390	-340	-230	-150	-95	1 "	-500	-500	-100		-140	-514	ľ	-1200	-000								
0. 00 00 100											-								-380	-220	-170					-220								
Св. 80 ДО 100	+67	-120	-72	-36	0	+43	+140	-120	0	+70	+220	-600	-440	-390	-120	0	+110	+350	-570	0	+175	+670	0	+435	+1400	0	+700							
Св. 100 ДО 120	0	-207	-159	-123	-87	-43	0	-260	-140	-70	0	-410	-240	-180	-340	-220	-110	0	-240	-350	-175	0	-870	-435	0	-1400	-700							
	_						-					-630	-460	-400	_		_	_	-590				_	_										
Св. 120 ДО 140		_		-	_	-			-	-		-460 740	-260	-200		-	-		-260				_	_		_	- 1							
	+100	-145	-85	-43	0	+50	+150	-145	0	+80	+250	-710 -520	-510 -280	-450 -210	-145	0	+125	+400	-660 -280	0	+200	+1000	0	+500	+1500	0	+800							
Св. 140 ДО 160	0	-245	-185	-143	-100	-50	0	-305	-160	-80	0	-770	-530	-460	-395	-250	-125	0	-680	-400	-200	9	-1000	-500	0	-1600	-800							
	1	2.10	100	1.40	-100		-				1	-590	-310	-230		2.11	12.0	1	-310		200				1	1000								
Св. 140 ДО 180												-830	-560	-480				1	-710								_							
Св. 180 ДО 200												-660	-340	-240					-340															
GB. 100 AO 200												-950	-630	-530					-800															
Св. 200 ДО 225	+115	-170	-100	-50	0	+57	+185	-170	0	+92	+290	-740	-380	-260	-170	0	+145	+460	-380	0	+230	+1150		+575	+1650		+925							
	0	-285	-215	-165	-115	-57	0	-355	-185	-92	0	-1030 -820	-670 -420	-550 -280	-460	-290	-145	0	-840 -420	-460	-230	0	-1150	-575	0	-1850	-925							
Св. 225 ДО 250			_						-	-		-1110	-710	-570		-	-		-880				_	-		_	_							
												-920	-480	-300					-480															
Св. 250 ДО 280	+130	-190	-110	-56	0	+65	+210	-190	0	+105	+320	-1248	-800	-620	-190	0	+160	+520	-1000	0	+260	+1300	0	+650	+2100	0	+1050							
Св. 280 ДО 315	0	-320	-240	-186	-130	-65	0	-400	-210	-105	0	-1050	-540	-330	-510	-320	-160	0	-540	-520	-260	0	-1300	-650	0	-2100	-1050							
GH. 200 AO 313												-1370	-860	-650					-1060															
Св. 315 ДО 355		040	405	- 00		- 74	-000	010		- 445		-1200	-600	-360	040	-			-600		.005			. 744										
	+140	-210 -350	-125	-62 -202	-14D	+70 -70	+230	-210 -440	-230	+115	+360	-1560 -1350	-960 -680	-720 -400	-210 -570	-360	+180	+670	-1170 -680	-570	+285	+1400	-1400	+700 -700	+2300	-2300	+1150 -1150							
Св. 355 ДО 400	0	-350	-265	-202	-140	-/0		-440	-230	-115		-1710	-1040	-760	-010	-360	-180		-1250	-570	-285		-1400	-/00	٠,	-2300	-1150							
												-1500	-760	-440					-760															
Св. 400 ДО 450	+155	-230	-135	-68	0	+77	+250	-230	0	+125	+400	-1900	-1160	-840	-230	0	+200	+630	-1390	0	+315	+1560	0	+775	+2500	0	+1250							
Св. 450 ДО 500	0	-385	-290	-223	-155	-77	0	-480	-250	-125	0	-1650	-840	-480	-630	-400	-200	0	-840	-630	-315	0	-1550	-775	0	-2500	-1250							
G8. 400 ДО 500												-2050	-1240	-880					-1470															
16	OT 1 IIO 80						z8	Ca. 18	ДО 100					f9		от 1 до	50			_														
Пр		_				Пр3з —	-		-	-			Х3	\vdash				-				пр	EUUUA	пителы	ные по	па пог	NUKUB							
86 C	в. 80 ДС	500					x8	Св. 100 ДО 500		0				e9	С	в. 50 ДС	500						-щпо п	FILLIO	IIDIL I IO	логдог	пусков							
p6 I	ОТ 3 ДО 80						x8	Св. 6 ДО 50						ь11	C	в. 18 ДС	120																	
		-				Пр33 —	_						1_	-				+																
Πn r6	ОТ 1 ДС	3					u8	Ca. 50	ДО 500				Л4	c11		от 1 до	18																	
	в. 80 ДС	500				Т	u8	Св. 3 ДО 65						611	Ce	. 120 Д	500	1																
						Пр33 —	_			_					_		_																	
						- 1	s7	Ca. 65	ДО 500																									

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1. ЦЕЛИ И ЗАДАЧИ КУРСОВОГО ПРОЕКТИРОВАНИЯ	4
1.1. Общие сведения	4
1.2. Тематика курсового проектирования	4
2. ЗАДАНИЕ НА КУРСОВОЕ ПРОЕКТИРОВАНИЕ	7
2.1. Общие сведения	7
2.2. Стадии разработки курсового проекта	7
3. СОДЕРЖАНИЕ И ОФОРМЛЕНИЕ КУРСОВОГО ПРОЕКТА	10
3.1. Объём и содержание расчетно-пояснительной записки	10
3.2. Графическое оформление чертежей	12
3.3. Спецификация чертежей	14
3.4. Чертеж общего вида привода	17
3.5. Чертеж сборочной единицы	18
3.6. Чертежи деталей	21
3.7. Чертежи сварных соединений	49
3.8. Оформление расчетно-пояснительной записки	52
3.9. Обозначение документов	53
4. ВЫБОР МАТЕРИАЛОВ И МЕТОДОВ ИХ УПРОЧНЕНИЯ	
ДЛЯ ДЕТАЛЕЙ МАШИН	54
4.1. Общие сведения	54
4.2. Рекомендации по выбору материалов и упрочняющей	
термической обработки	55
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	62
ПРИЛОЖЕНИЯ	63

Учебное издание

Николай Степанович ЧЕРНОВ


ДЕТАЛИ МАШИН И ОСНОВЫ ЭКОЛОГИЧЕСКОГО КОНСТРУИРОВАНИЯ

Учебно-методическое пособие по выполнению курсового проекта

Редактор *И.В. Шевченко*Технический редактор *З.М. Малявина*Компьютерная вёрстка *И.И. Шишкиной*Дизайн обложки *И.И. Шишкиной*

Подписано в печать 01.07.2008. Формат 60x84/16. Печать оперативная. Усл. п. л. 6,5. Уч.-изд. л. 6,04. Тираж 300 экз. Заказ № 1-54-08.

Тольяттинский государственный университет 445667, г. Тольятти, ул. Белорусская, 14

