федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ

(институт)

«Теплогазоснабжение, вентиляция, водоснабжение и водоотведение»

(кафедра)

		00.62 (08.03.01) «C				
		нование направления под				
		газоснабжение и і				
	(на	аименование профиля, сп	пециализации)		
DI IIIX/		тера пижите			ОТА	
Выну	КНАЯ	КВАЛИФИКА	ационі	ная Раб	UIA	
на тему <u>г.</u>	Самара.	Реконструкция	участка	тепловых	сетей	ОТ
привокзальной отопи	итепь пой і	уотепі ной				
привокзальной отопи	тельной і	котсльной.				
Студент(ка)	К.	А. Файзуллина				
- 3/1- (/		(И.О. Фамилия)		(личн	ая подпись)	
Руководитель	Ο.	А. Сизенко				
		(И.О. Фамилия)			ая подпись)	
Консультанты	<u>T.</u>	П. Фадеева				
TT	TT 1	(И.О. Фамилия)		(личн	(личная подпись)	
Нормоконтроль	И.	Ю. Амирджанова				
		(И.О. Фамилия)		(личн	ая подпись)	
Допустить к з	ащите					
Заведующий ка	афедрой _	<u>к.т.н., доцент М.Н</u>	Н. Кучерег	нко		
		(ученая степень, звание,	, И.О. Фамилия)	(л	ичная подпис	ь)
« »		2016 г.				

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

<u> АРХИТЕКТУРНО-СТРОИТЕЛ</u> Ј	льні	<u>ый ин</u>	<u>СТИТУТ</u>		
(институт)					
«Теплогазоснабжение, вентиляция, водо	оснаб:	жение и	водоотвед	ение»	-
(кафедра)					
	УТ	ВЕРЖ	ДАЮ		
	Зав	. кафе	дрой ТГЕ	ВВиВ	
			M.H	І. Куче	ренко
		(п	одпись)	(И.О	. Фамилия
	«	>>		20	_Γ.

ЗАДАНИЕ

на выполнение бакалаврской работы

Студент Файзуллина Карина Ашотовна

- 1.Тема г. Самара. Реконструкция участа тепловых сетей от привокзальной отопительной котельной.
- 2. Срок сдачи студентом законченной выпускной квалификационной работы 10.06.2016
- 3. Исходные данные к выпускной квалификационной работе <u>Фрагмент Генплана р-</u> на г. Самара; тепловые нагрузки.
- 4. Содержание выпускной квалификационной работы (перечень подлежащих разработке вопросов, разделов)

<u>Проектирование системы теплоснабжения; разработка функциональной схемы;</u> <u>определение трудоёмкости СМР.</u>

- 5. Ориентировочный перечень графического и иллюстративного материала <u>лист</u> общих данных, генплан, схама монтажная, график пьезометрический, продольный <u>профиль</u>
 - 6. Консультанты по разделам
 - 7. Дата выдачи задания «4» апреля 2016г.

Руководитель выпускной		О.А. Сизенко
квалификационной работы	(подпись)	(И.О. Фамилия)
Задание принял к исполнению		К.А.Файзуллина
	(подпись)	(И.О. Фамилия)

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

КАЛЕНДАРНЫЙ ПЛАН

выполнения бакалаврской работы

Студент Файзуллина Карина Ашотовна

по теме <u>г. Самара. Реконструкция участа тепловых сетей от привокзальной отопительной котельной.</u>

Наименование раздела работы	Плановый срок выполнения раздела	Фактический срок выполнения раздела	Отметка о выполнении	Подпись руководителя
Исходные данные для проектирования	04.04.2016	04.04.2016	Выполнено	
Построение графиков расхода теплоты	18.04.2016	18.04.2016	Выполнено	
Гидравлический расчёт	30.04.2016	30.04.2016	Выполнено	
Тепловая изоляция трубопроводов	08.05.2016	08.05.2016	Выполнено	
Контроль и автоматизация	13.05.2016	13.05.2016	Выполнено	
Организация монтажа	18.05.2016	18.05.2016	Выполнено	
Безопасность и экологичность объекта	24.05.2016	24.05.2016	Выполнено	

Руководитель выпускной		О.А. Сизенко
квалификационной работы	(подпись)	(И.О. Фамилия)
Задание принял к исполнению		К.А. Файзуллина
	(подпись)	(И.О. Фамилия)

АННОТАЦИЯ

В настоящей работе представлены результаты расчётов по реконструкции магистральных трубопроводов тепловых сетей в г. Самара, от привокзальной отопительной котельной.

Проект реконструкции системы теплоснабжения выполнен на основании технического задания на проектирование.

Работа состоит из 6 листов графической части и 62 листов пояснительной записки, в которой приведены основные расчеты по теплоснабжению участка теплосети, разработана разделы по автоматизации насосной станции; организации строительно-монтажных работ, безопасность и экологичность технического объекта.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	5
1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ	6
2 ТЕПЛОВЫЕ НАГРУЗКИ И РЕГУЛИРОВАНИЕ ОТПУСКА ТЕПЛА	10
2.1 Определение расчётных тепловых нагрузок	10
2.2 График часового и годового потребления тепла	10
2.3 Выбор метода регулирования и график регулирования отпуска тепла.	1
3 ТЕПЛОВАЯ СЕТЬ	4
3.1 Определение расчетных расходов теплоносителя	4
3.2 Конструирование и механический расчет тепловой сети, построение монтажной схемы	6
3.3 Гидравлический расчет водяной тепловой сети	13
3.4 Расчет и подбор тепловой изоляции.	20
4 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ	29
5 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ	32
6 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА	39
Список использованных источников	43
ПРИЛОЖЕНИЯ	46

ВВЕДЕНИЕ

Проектирование тепловой сети связано с реконструкцией магистрали системы теплоснабжения от существующей привокзальной отопительной котельной до ТК31, по причине строительства новых жилых и общественных зданий.

Цель – расчёт тепловой сети от привокзальной отопительной котельной до ТК31.

Основными задачами, которые необходимо решить для достижения поставленной цели являются:

- определение расчетных расходов теплоносителя;
- -конструирование участка тепловых сетей;
- -гидравлический расчет тепловой сети, в результате которого строится пьезометрический график;
- расчет необходимого оборудования и тепловой изоляции;
- автоматизация насосной станции;
- организация монтажных работ;
- безопасность и экологичность технического объекта.

1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

Объект строительства расположен в городе Самара по улицам: Московское шоссе, пр-т Карла Маркса, Гагарина, Дачная, Киевская, Николая Панова, Гая, Скляренко, Соколова, пр-т Ленина. Магистраль прокладывается по проезжей части. Теплоснабжение данного квартала осуществляется от существующей Привокзальной отопительной котельной теплоносителям является вода с параметрами 150-70°С, система теплоснабжения района - закрытая. Прокладка сети к тепловой сети в непроходных каналах и коллекторах согласно технического задания и [25].

В целом территория застройки имеет равнинный, сглаженный рельеф.

Климатологические данные для Самарской области [2]:

Температура наружного воздуха:

расчетная для отопления: $t_0 = -30 \, ^{\circ}\text{C}$;

расчетная для вентиляции: $t_B = -18$ °C;

средняя за отопительный период: t_{COII} = -5,2 °C;

продолжительность отопительного периода $Z_{OT.II} = 203$ сут

Максимальная скорость ветра за январь $g_{MAX} = 5,4$ м/с

Средняя скорость ветра $g_{cp} = =4 \text{ м/c}$

Преобладающее направление: ЮВ

Расчетная температура воздуха в отапливаемых помещениях $t_{\text{в}}=18~^{\circ}\text{C}$, температура сетевой воды в подающей и обратной магистралях при $t_{\text{p.o}}$ $\tau_{1,0}=150^{\circ}\text{C}$, $\tau_{2,0}=70^{\circ}\text{C}$, температура воды в системе отопления домов подключенных по независимой схеме составляет $\tau_{3}=105^{\circ}\text{C}$.

Продолжительность стояния температур наружного воздуха (в часах) с интервалом 5°C в течение отопительного периода по [1] заносится в табл.1.1.

Таблица 1.1 – Продолжительность стояния температур наружного воздуха

t° C	Температура наружного воздуха, °С							
i C	-30	-25	-20	-15	-10	-5	0	8
п,ч	112	280	478	584	844	997	968	609

На участке застройки имеются жилые и общественные здания, с максимальной этажностью застройки в 9 этажей. Объем потребляемой тепловой энергии и список потребителей сведен в таблицу 1.2

Таблица 1.2 – Тепловые нагрузки зданий

	Расчетный тепловой поток, МВт					
No	Qотопление+вентиляция	Qгорячее	Всего	Q горячее водоснабжение		
участка		водоснабжение		лет.период		
1	2	3	4	5		
1	34,65	0,25	34,90	0,2		
2	38,38	21,53	59,91	13,8		
3	45,04	23,74	68,78	15,2		
4	64,98	27,30	92,28	17,5		
5	88,12	38,50	126,62	24,6		
6	193,90	51,68	245,58	33,1		
7	201,50	55,01	256,51	35,2		
8	204,78	55,36	260,14	35,4		
9	204,82	56,16	260,98	35,9		
10	206,65	56,46	263,11	36,1		
11	212,05	56,47	268,52	36,1		
12	217,07	61,32	278,39	39,2		
13	229,12	68,59	297,71	43,9		
14	240,00	75,49	315,49	48,3		
15	243,00	78,04	321,04	49,9		
16	259,00	93,94	352,94	60,1		
17	261,00	94,09	355,09	60,2		
18	274,46	102,85	377,31	65,8		
ИТОГО	3218,51	1016,80	4235,31	650,7		

В 1980 году была введена в строй Привокзальная отопительная котельная, которая в настоящее время обеспечивает теплом многоэтажные кварталы Железнодорожного, Ленинского и Советского районов города.

В состав Самарской ГРЭС включены два крупных теплоисточника города — Центральная и Привокзальная отопительные котельные.

Каждый из источников работает на свою зону теплоснабжения. Схема тепловых сетей закольцована в пределах зон теплоисточников и объединяет между собой все источники. Подпитка теплосети осуществляется в основном от собственных химводоподготовительных установок источников. Кроме этого осуществляется подпитка химочищенной водой сетей Самарской ГРЭС водой от ПОК.

Водогрейный котел типа КВГМ-100 был введен в эксплуатацию в 1978 году, изготовлен Дорогобужским котельным заводом.

Газо-мазутный водогрейный котел типа КВГМ-100 производительностью 100 Гкал/час, предназначен для установки на ТЭЦ в целях покрытия пиков тепловых нагрузок и в качестве основного источника теплоснабжения в районных отопительных котельных, предназначен для получения горячей воды с номинальной температурой 150°С, используемой в системах отопления, вентиляции и горячего водоснабжения промышленного и бытового назначения, а также для технологических целей. Характеристику см.в таблице 1.3.

Котел оборудован тремя комбинированными газо-мазутными горелками с ротационными форсунками РГМГ-30Л. Обмуровка котла натрубная.

Капитальный ремонт данного водогрейного котла проводится каждый год.

Насосное оборудование — сетевые насосы Д100-80, в дальнейшем требуется замена в связи с увеличением расхода теплоносителя.

Таблица 1.3 – Технические характеристики котла

Технические характеристики	
Теплопроизводительность номинальная, МВт	116,3
Вид топлива	газ/мазут
Расчетное (избыточное) давление воды на входе в котел, МПа	1,6
Минимальное давление воды на выходе из котла, МПа	1,0
Температура воды на входе, °С, основной режим	70
Температура воды на входе, °С, пиковый режим	110
Температура воды на выходе, ° С	150
Гидравлическое сопротивление, МПа, не более	0,35
Диапазон регулирования теплопроизводительности по отношению к номинальной, %	20-100
Расход воды, т/ч, основной	1235
Расход воды, т/ч, пиковый режим	2460
Расход топлива, м ³ /ч-газ/кг/ч-мазут	12520/11500
Средний срок службы до списания, лет,	20
КПД котла, %, не менее, газ/мазут	93,2/91,8

2 ТЕПЛОВЫЕ НАГРУЗКИ И РЕГУЛИРОВАНИЕ ОТПУСКА ТЕПЛА

2.1 Определение расчётных тепловых нагрузок

Расчетные тепловые нагрузки на отопление, вентиляцию и ГВС приняты по проектным данным (таблица 1.2)

2.2 График часового и годового потребления тепла

График часового расхода теплоты на отопление строится путем сложения соответствующих ординат при $t_{\rm H} = +8$, $-30^{\rm o}{\rm C}$ (линия $Q_{\rm cym}$).

Строится график годового расхода теплоты по продолжительности стояния температур наружного воздуха. где по оси абсцисс откладываем число часов стояния температур наружного воздуха, для г. Самары n_o =4872 ч. [1, табл.1.3]

Продолжительность стояния температур наружного воздуха (в часах) с интервалом 5°C в течение отопительного периода заносится в табл.2.1.

Таблица 2.1 – Зависимость Q_0 от температуры наружного воздуха

n 11	Температура наружного воздуха, °С							
п, ч	-30	-25	-20	-15	-10	-5	0	8
n	112	280	478	584	844	997	968	609
Σn	112	392	870	1454	2298	3295	4263	4872
Q_o	4235,31	4052,99	3878,51	3711,53	3551,74	3398,81	3252,46	3112,41

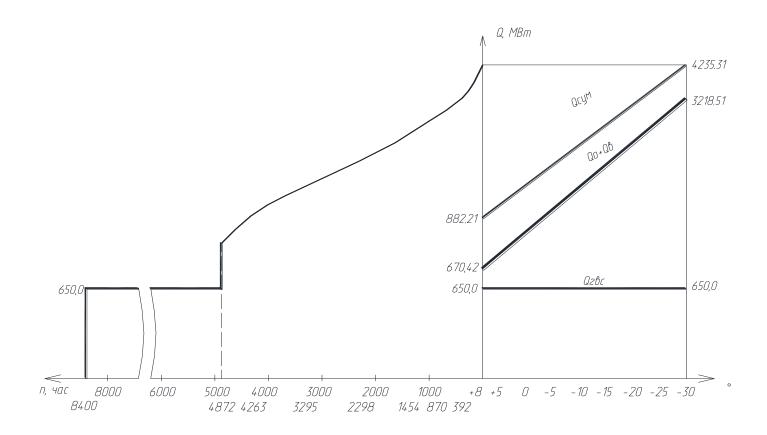


Рисунок 2.1 - График часовых и годовых расходов теплоты на отопление.

2.3 Выбор метода регулирования и график регулирования отпуска тепла.

Температура воды в подающей и обратной магистралях в течение отопительного периода, т.е. в диапазоне температур наружного воздуха +8...-30°C:

$$\tau_{1,0} = t_{s} + \Delta t' \left(\frac{t_{s} - t_{u}}{t_{s} - t_{u,o}} \right)^{0.8} + \left(\Delta \tau' - 0.5\theta' \right) \frac{t_{s} - t_{u}}{t_{s} - t_{u,o}}, {}^{o}C;$$
(2.1)

$$\tau_{2,0} = t_e + \Delta t' \left(\frac{t_e - t_n}{t_e - t_{n.o}} \right)^{0.8} - 0.5\theta' \frac{t_e - t_n}{t_e - t_{n.o}}, \, {}^{\circ}C;$$
(2.2)

где «штрих» означает, что значения величин взяты при t_{p.o};

 Δt ' — температурный напор нагревательного прибора, при расчетной температуре воды в системе отопления τ_3 ' = 105° C, $\tau_{2,0}$ ' = 70° C;

$$\Delta t' = \frac{\tau'_3 + \tau_{2,0}}{2} - t_e, \tag{2.3}$$

 $t_{\scriptscriptstyle H}$ – температура наружного воздуха, °C;

 $\Delta \tau$ ' – расчетный перепад температур воды в тепловой сети,

$$\Delta \tau' = \tau'_{1,0} - \tau'_{2,0}$$
, (2.4)

 θ ' – расчетный перепад температур воды в местной системе отопления ,

$$\theta' = \tau'_{3} - \tau'_{2,0}$$
, (2.5)

Задаваясь различными значениями $t_{\rm H}$ в пределах от +8 до -30 °C, определяется $\tau_{1,0}$ и $\tau_{2,0}$. полученные результаты сводим в табл. 2.1

$$\Delta t' = \frac{105 + 70}{2} - 18 = 87,5^{\circ}\text{C}$$

$$\Delta \tau' = 150 - 70 = 80^{\circ} \text{C};$$

$$\theta$$
'=105 - 70 = 35°C;

По вычисленным значениям $au_{1.0}$ и $au_{2.0}$ строится отопительно-бытовой температурный график $au_{1.0} = f(t_{om})$ и $au_{2.0} = f(t_{om})$ (рисунок 2.2).

Таблица 2.2 - Температура сетевой воды в подающем и обратном трубопроводах в зависимости от температуры наружного воздуха

Температура наружного воздуха ⁰ С	Температура с	етевой воды, ⁰ С
t _H	$ au_{1,0}$	$ au_{2,0}$
8	50,8	34,2
5	59,4	37,7
0	73,1	43,1
-5	86,5	48,2
-10	99,6	52,9
-15	112,5	57,5
-20	125,1	61,8
-25	137,6	66
-30	150	70

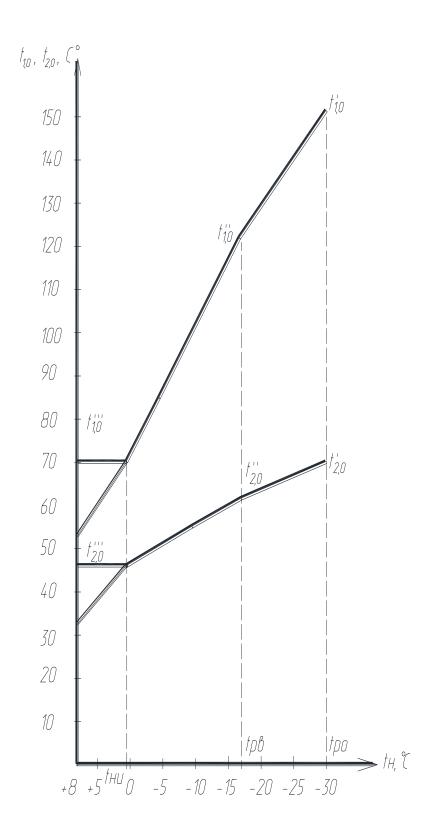


Рисунок 2.2- Отопительно-бытовой температурный график

3 ТЕПЛОВАЯ СЕТЬ

3.1 Определение расчетных расходов теплоносителя

Расчетные расходы сетевой воды на отопление определяются по формуле:

$$G_o = \frac{3.6Q_o}{c(\tau'_{1.0} - \tau'_{2.0})}, \text{ T/Y}, \tag{3.1}$$

где Q₀ -максимальный тепловой поток на отопление, кВт;

Определяется среднечасовой расход воды на ГВС:

$$G_{z.6}^{cp} = \frac{3, 6 \cdot Q_{z.6}^{cp}}{c \cdot (\tau_{1.0}^{"} - \tau_{2.0}^{"})} \cdot \left(\frac{55 - t_n}{55 - t_{x.3}} + 0, 2\right),$$

 $au'_{1,0}$ - $au'_{2,0}$ — расчетный перепад температур сетевой воды в подающей и обратной магистралях при $t_{p.o.}$

$$\Delta \tau' = \tau'_{1,0} - \tau'_{2,0} {^{\circ}C}$$
, (3.2)

Вычисляется суммарный расчетный расход:

$$G_P = G_0 + G_R,$$

c – удельная теплоемкость воды, c = 4,19 кДж/кг°К;

Полученные данные в результате расчетов приведены в табл.3.1

Расчет:

Определяется расчетные расходы сетевой воды для 1- го участка:

$$G_o = \frac{3600 \cdot 3465}{4,19 \cdot (150 - 70)} = 372,104 m / u;$$

$$G_{z.6}^{cp} = \frac{3600 \cdot 0,25}{4,19 \cdot (150 - 70)} \cdot \left(\frac{55 - 30}{55 - 5} + 0,2\right) = 4,262m/v;$$

$$\Delta \tau' = 150-70=80$$
°C.

$$G_P = 372,104 + 4,262 = 376,365m/v;$$

Аналогично определяются расчетные расходы сетевой воды для последующих участков сети, результаты расчета приведены в таблице 3.1

Таблица 3.1 – Расчетные расходы сетевой воды

	Расчетный расход сетевой воды, т/ч						
No	на отопление и	на горячее	Суммарный				
участка	вентиляцию	водоснабжение	расход	в летний период			
		_	_	_			
	$G_0^{p+}G_B^{p}$	$G_{\scriptscriptstyle \Gamma B}$	G _{сум}	$G_{{\scriptscriptstyle \Gamma}{\scriptscriptstyle B}{\scriptscriptstyle \Pi}}$			
1	2	3	4	5			
1	372,104	4,262	376,365	1,705			
2	412,196	369,949	782,145	147,980			
3	483,723	408,011	891,735	163,205			
4	697,876	469,117	1 166,993	187,647			
5	946,407	661,575	1 607,982	264,630			
6	2 082,458	888,057	2 970,516	355,223			
7	2 164,081	945,348	3 109,429	378,139			
8	2 199,308	951,345	3 150,653	380,538			
9	2 199,737	965,092	3 164,830	386,037			
10	2 219,391	970,247	3 189,639	388,099			
11	2 277,365	970,350	3 247,716	388,140			
12	2 331,301	1 053,709	3 385,010	421,484			
13	2 460,662	1 178,669	3 639,332	471,468			
14	2 577,566	1 297,203	3 874,768	518,881			
15	2 609,785	1 341,039	3 950,824	536,415			
16	2 781,623	1 614,243	4 395,866	645,697			
17	2 803,103	1 616,821	4 419,924	646,728			
18	2 947,661	1 767,351	4 715,012	706,940			
Итого	34,566	17 472,389	52 038,737	6 988,956			

3.2 Конструирование и механический расчет тепловой сети, построение монтажной схемы

Продольный профиль тепловых сетей разрабатывается от точки подключения в модульной котельной до; от ПОК до ТК 31. При разработке продольного профиля учитывается необходимость сокращения расходов на земляные работы.

Строится план трассы теплопровода с указанием камер, неподвижных опор, расстояний между ними, углов поворотов трассы (рисунок 3.1) Уклон водяных тепловых сетей, независимо от направления движения теплоносителя, должен быть не менее 0,002. Высоту камер, отметки потолка и дна канала определяем в зависимости от диаметров теплопровода и установленной арматуры.

Глубина заложения камеры (глубина дна камеры) $H_{\mathit{дк}}$,м, определяется как сумма:

где а - расстояние от поверхности земли до верха перекрытия камеры, 0,3 м;

- b расстояние от перекрытия камеры до редуктора арматуры, 0,5 м;
- *l* высота шарового крана с редуктором, 3 м;
- $c\,$ расстояние от оси теплопровода до пола канала, 0,806 м;
- d расстояние от пола канала до дна камеры, 0,5 м;
- H высота канала, принимаем 1,5 м.

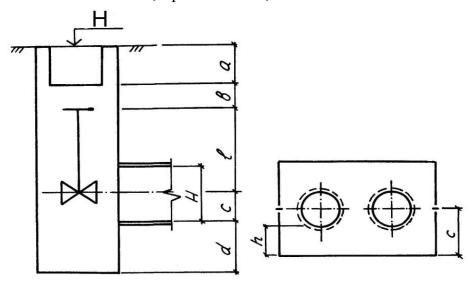


Рисунок 3.1- Разрез тепловой камеры

Зная все выше описанные расстояния, рассчитываются следующие отметки:

пола канала 97-a-b-l-c=97-2=95; потолка канала 95+H=95+1,5=96,5; дна камеры 95-d=95-5,4=91,6.

Компенсация температурных удлинений трубопроводов Расчет П-образных компенсаторов

Расчёт П-образного компенсатора заключается в определении минимальных размеров компенсатора, достаточных для компенсации температурных деформаций трубопровода. [5]

При расчёте труб на компенсацию тепловых удлинений с Побразными компенсаторами определяются также их габариты, при которых продольные изгибающие напряжения, возникающие при упругой деформации труб, не превышают допустимых.

При расчёте трубопроводов на температурную компенсацию, принимаются следующие условия:

неподвижные опоры считаются жёсткими;

сопротивление сил трения неподвижных опор при тепловом удлинении трубопровода не учитывается.

Расчёт трубопроводов на компенсацию тепловых удлинений производится согласно [8, с.183]. Полное тепловое удлинение трубопровода определяется по формуле (2.38), мм:

$$\Delta l = \alpha \cdot L \cdot (\tau - t_0) \tag{3.3}$$

где α - средний коэффициент линейного расширения стали при нагреве от 0 до τ ; мм/(м°С) принимаем $\alpha = 12\cdot10$ -6 1/°С по [4, табл.10.11] в зависимости от τ ;

т- расчетная температура воды в трубопроводе, °С; принимаемая для

подающего трубопровода отопления τ =150°C [2, п.7.34], для обратного τ =70°C.

 t_{o} - расчетная температура воздуха для проектирования системы отопления [2, п.7.34]; принимаем t_{o} = - 30^{o} C.

L=112.0м

Учитывая предварительную растяжку компенсатора, расчетное тепловое удлинение:

$$\Delta l = \varepsilon \cdot \Delta l,\tag{3.4}$$

 $\varepsilon = 0.5 \text{M}$

Изгибающие напряжения в точках определяем по [5]

Если $n_1 = \frac{l_1}{l}$, $n_2 = \frac{L}{l}$, то изгибающее напряжение в точке В

 $l_{1}=27_{M}$

l = 16 M

$$\sigma_{B} = \frac{\Delta l_{p} \cdot E \cdot d_{n}}{l^{2}} \cdot \frac{1.5}{3 \cdot n_{1} + 2 - \frac{n_{1} + 1}{n_{2} - n_{1} + 1}},$$
(3.5)

то изгибающее напряжение в точке А

$$\sigma_{A} = \frac{\Delta l_{p} \cdot E \cdot d_{H}}{l^{2}} \cdot \frac{1,5}{\frac{(3 \cdot n_{1} + 2) \cdot (n_{2} - n_{1} + 1)}{n_{1} + 1} - 1},$$
(3.6)

Полное тепловое удлинение трубопровода

$$\Delta l = 12 \cdot 10^{-6} \cdot 112 \cdot (150 - 30), \Delta l = 0,024 M$$

Учитывая предварительную растяжку компенсатора, расчетное тепловое удлинение:

$$\Delta l = 0, 5 \cdot 0, 024 = 0, 012 M$$

$$n_1 = \frac{27}{16} = 0.871795$$

$$n_{2} = \frac{112}{16} = 7$$

$$\sigma_{A} = \frac{0.012096 \cdot 2 \cdot 105 \cdot 1.02}{16^{2}} \cdot \frac{1.5}{\frac{(3 \cdot 1,6875 + 2) \cdot (7 - 1,6875 + 1)}{1,6875 + 1} - 1} = 0.871795$$

$$\sigma_{A} = \frac{0.012096 \cdot 2 \cdot 105 \cdot 1.02}{16^{2}} \cdot \frac{1.5}{\frac{(3 \cdot 1,6875 + 2) \cdot (7 - 1,6875 + 1)}{1,6875 + 1} - 1} = 2.852535$$

Данные о результатах расчета компенсаторах приведены в табл. 3.2

Обознач. Dy Pacc Расчетное компенса тоя Тепловое тепловое изгибающее тора ние удлинение удлинение напряжение в трубопровода $1_1, M$ n2 трубопровода 1, м L В A В M M К1 1.02 112 2,852 0,024192 0,012096 16 27 1,68 7 0,8717 К2 0.7 80 1,642 0,01728 10 1,8954 0,00864 8 46 5,75

0.009288

Таблица 3.2 - Расчет П-образных компенсаторов

0,018576

К3

1.02

86

Расчет усилия на неподвижную опору

10

12

1,2

8.6

1.3298

7,856

Сумма сил, действующих на опору слева, складывается из неуравновешенных сил внутреннего давления, сил трения в сальниковом компенсаторе и сил трения в подвижных опорах труб на расстоянии $l_1 = 58$ м, а сумма сил, действующих на опору слева — из сил трения в подвижных опорах труб на расстоянии $l_3 = 46$ м, и усилия от Γ -образного компенсатора.

Приняв наружный диаметр стакана сальникового компенсатора, равный наружному диаметру трубы $d_{cm} = 1,02$ м, отношение высоты сальниковой набивки к наружному диаметру стакана в=0,3, отношение удельного давления сальниковой набивки на поверхность стакана к рабочему давлению $a_c = 1.5$, и коэффициент трения набивки по стакану $\mu_c = 0.15$, находим силу трения в сальниковом компенсаторе [30]

$$N_c = \pi \cdot d_{cm}^2 \cdot \mathbf{s} \cdot P \cdot a_c \cdot \mu_c, \tag{3.7}$$

$$N = \alpha \cdot P \cdot \frac{\pi \cdot d_{_{6}}^{2}}{4} + N_{_{c}} + \mu \cdot q \cdot l_{_{1}} - 0.7(N_{_{k}} + \mu \cdot q \cdot l_{_{3}}), \tag{3.8}$$

Результирующее усилие на неподвижную опору:

$$N_c = 3.14 \cdot 1.02^2 \cdot 0.3 \cdot 160000 \cdot 1.5 \cdot 0.15 = 179898, 4H$$

$$N = 12 \cdot 10^{-6} \cdot 160000 \cdot \frac{3.14 \cdot 1.02^{2}}{4} + 35282,0448 + 0.15 \cdot 1683 \cdot 58 - 0.7(35282,0448 + 0.15 \cdot 1683 \cdot 46) = 179898,4H$$

Данные по расчетам сведены в таблицу 3.3.УП5 и УП7 рассчитываются

Таблица 3.3 - Расчет усилия на неподвижную опору	

аналогично.

Обозначение компенсатора	Ду, м	расст	гояние мех	Nc	N		
		l1, м	l2, м	<i>l</i> 3, м	l4, м		кН
УП4	1,02	58	10	46	22	35282,04	179,90
УП5	1,02	18	6	24	16	35282,04	856,17
УП7	0,7	20	81	40	8	16616,88	15,92

В качестве гибких компенсаторов использованы углы поворота трубопроводов от $90^{\rm o}$ до $120^{\rm o}$.

Расчетные тепловые удлинения участка трубопровода (мм) в направлении осей x и y определяют по формулам:

$$\Delta l_x = \alpha \Delta t \, (x_e - x_a); \tag{3.9}$$

$$\Delta l = \alpha \Delta t (y_{\theta} - y_{a}); \tag{3.10}$$

где α - коэффициент линейных расширений, значение коэффициента принято по [6] $\alpha = 12 \cdot 10^{-6}$ 1/°C.

Расчет Γ - образных участков трубопровода производим по методике [6].

Определяются коэффициенты - n; A;B;C,

$$n = \frac{l_{\delta}}{l_{y}}; \tag{3.11}$$

$$A = \frac{3(n^3 + 4n^2 + 3)}{n(n+1)} \tag{3.12}$$

$$B = \frac{3(3n^3 + 4n + 1)}{n^3(n+1)} \tag{3.13}$$

$$C_{(a)} = \frac{1,5(n^3 + 2n^2 + 1)}{n(n+1)}$$
 (3.14)

$$C_{(\delta)} = \frac{1,5(n^3 + 2n + 1)}{n^2(n+1)}$$
 (3.15)

$$C_{(c)} = \frac{3(n^2 + 1)}{n(n+1)} \tag{3.16}$$

Рассчитываются силы упругой деформации: P_x и P_y (кН)

$$P_{x} = A \frac{\alpha \text{EI}\Delta t}{10^{7} l_{x}^{2}} \tag{3.17}$$

$$P_{y} = B \frac{\alpha \text{EI}\Delta t}{10^{7} l_{y}^{2}} \tag{3.18}$$

Изгибающие компенсационные напряжения определяются по формулам (МПа):

$$\sigma_{u(a)}^{\kappa} = C_{(a)} \frac{\alpha E D_{\mu} \Delta t}{10^7 l_{\mu}}; \qquad (3.19)$$

$$\sigma_{u(\delta)}^{\kappa} = C_{(\delta)} \frac{\alpha E D_u \Delta t}{10^7 l_u}$$
(3.20)

$$\sigma_{u(c)}^{\kappa} = C_{(c)} \frac{\alpha E D_{\kappa} \Delta t}{10^7 l_{M}}$$
(3.21)

Результат расчета участков самокомпенсации сведен в табл. 3.4

Таблица 3.4 - Расчет участков самокомпенсации

	La	Lb	n	A	В	Ca	Cb	Cc	Px	Py	σa	σb	σс	dn
	M	M							кН	кН	МПа	МПа	МПа	M
УП9	19	28	0,68	13,58	23,03	2,94	5,18	3,85	139,6	236,9	0,02	57,14	0,02	0,529
УП10	16	20	0,80	12,65	15,34	2,91	4,05	3,42	255,0	309,2	0,07	32,15	0,09	0,529
УП11	24	34	0,71	13,32	20,88	2,93	4,88	3,73	92,9	145,6	0,03	49,70	0,03	0,529
УП12	32	40	0,80	12,65	15,34	2,91	4,05	3,42	63,8	77,3	0,02	64,31	0,02	0,529
УП13	12	22	0,55	15,49	40,00	3,13	7,35	4,62	258,1	666,5	0,05	177,88	0,07	0,375

Перед выполнением гидравлического расчета разрабатывается расчетная схема тепловых сетей. [29] Зная расчетные расходы отдельных участков, находится расход теплоносителя на расчетном участке, длины участков принимаются по генплану участка. Расчетная схема показана в приложении 5.

Потери давления на участках тепловой сети определяются методом удельных потерь давления на трение и приведённых длин.

Для закрытой системы теплоснабжения, где расходы теплоносителя в подающем и обратном трубопроводах одинаковы, гидравлический расчет выполняется для подающего теплопровода, принимая потери давления в обратном теплопроводе такими же, как и в подающем [10].

После составления расчетной схемы тепловых сетей строится монтажная схема магистральных теплопроводов на которой показываются узлы ответвлений, компенсаторы, запорная арматура, неподвижные опоры. Подающий теплопровод располагаем на схеме с правой стороны по ходу движения теплоносителя от источника теплоты. [4].

В данном проекте разработана монтажная схема двухтрубной тепловой сети подземных магистральных трубопроводов (лист 3 графической части).

Наибольшие допускаемые расстояния между неподвижными опорами принимаем по [6, приложению 5, табл.3.7]. При наличии на трассе углов поворотов теплопроводов от 90° до 120°, должны использоваться для самокомпенсации температурных удлинений.

3.3 Гидравлический расчет водяной тепловой сети

Зная расчетные расходы воды по участкам, по таблицам для гидравлического расчета, составленным для труб с коэффициентом эквивалентной шероховатости $K_{2} = 0.5$ мм, находится диаметр теплопровода.

На 1 участке расход G=376,365 м³/ч, при Dy=300мм=0,3м. $\ell = 527$ м. По диаметру (Dy) и расходу воды (G) подбирается скорость движения теплоносителя (ω), м/с. [4, п. 9.11]. $\omega = 1,07$ м/с. Потери давления в местных сопротивлениях заменяются равновеликими потерями давления в прямолинейном трубопроводе того же диаметра длиной l_3 [4, стр.126].

Находится эквивалентная длина l_3 . На 1 участке располагается: 2 тройника на проход и 1 отвод. Выбирается соответствующие коэффициенты при D=300.

$$l_9 = 21,8 \cdot 2 + 6,7 = 50,3M$$

Находится приведенная длина l_{np} :

$$l_{np} = l_{\phi} + l_{\vartheta}, \tag{3.22}$$

Общие потери давления на участке (линейные и в местных сопротивлениях) определяются как произведение удельных линейных потерь давления R на приведенную длину участка ℓ_{np} .

$$\Delta P = R \cdot \ell_{np} = R \cdot (\ell_{\phi} + \ell_{\phi}) \tag{3.23}$$

Далее определяются потери напора на участке:

$$\Delta P = \frac{R \cdot \ell_{np}}{10000},\tag{3.24}$$

$$l_{np} = 527 + 50, 3 = 577, 3M$$

$$\Delta P = 38.7 \cdot 577.3 = 22321\Pi a$$

$$\Delta P = \frac{22321}{10000} = 2,23M$$

Предварительно определив диаметры (см. таблицу 3.5) теплопроводов, разбивается расстояние между узловыми камерами неподвижными опорами на участки. Расстояние между неподвижными опорами устанавливается в зависимости от диаметра трубопровода, типа компенсатора, способа прокладки тепловых сетей, температуры и давления горячей воды [6, табл. 3.7].

Аналогично рассчитываются последующие участки сети. Расчет сводится в таблицу 3.5.

Таблица 3.5 – Гидравлический расчёт

								$\ell_{np} = \ell_{\Phi}$			
$N_{\underline{0}}$	G, м ³ /ч	Dy	Dн x S	ℓф, м	R , Па/м	щ, м/с	ℓэ, м	+ l ₃	R x ℓ _{пр}	Н,м	$\sum R x \ell_{np}$
1	376,365	0,3	377x9	527	38,7	1,07	50,3	577,3	22321,74	2,23	22321,74
2	782,145	0,5	529x6	306	20,8	1,08	134,2	440,2	9135,57	0,91	31457
3	891,735	0,5	529x6	447	26,1	1,23	65,8	512,8	13362,14	1,34	44819
4	1 166,993	0,6	630x8	197	18,2	1,14	69,5	266,5	4840,59	0,48	49660
5	1 607,982	0,7	720x9	466	16,4	1,20	58,2	524,2	8590,10	0,86	58250
6	2 970,516	0,9	920x8	458	14,7	1,35	78,8	536,8	7895,87	0,79	66146
7	3 109,429	1,02	1020x8	78	9,6	1,14	252,6	330,6	3170,98	0,32	69317
8	3 150,653	1,02	1020x8	203	9,9	1,16	90,2	293,2	2899,16	0,29	72216
9	3 164,830	1,02	1020x8	532	9,9	1,16	162,4	694,4	6866,22	0,69	79082
10	3 189,639	1,02	1020x8	101,5	10,0	1,17	90,2	191,7	1924,22	0,19	81007
11	3 247,716	1,02	1020x8	323	10,3	1,19	90,2	413,2	4272,42	0,43	85279
12	3 385,010	1,02	1020x8	37,5	11,1	1,24	90,2	127,7	1419,01	0,14	86698
13	3 639,332	1,02	1020x8	192	12,6	1,33	90,2	282,2	3544,90	0,35	90243
14	3 874,768	1,02	1020x8	319	14,1	1,42	126,3	445,3	6272,83	0,63	96516
15	3 950,824	1,02	1020x8	160	14,3	1,43	90,2	250,2	3568,06	0,36	100084
16	4 395,866	1,02	1020x8	236	17,5	1,61	90,2	326,2	5724,48	0,57	105808
17	4 419,924	1,02	1020x8	342	17,5	1,61	306,8	648,8	11385,78	1,14	117194
18	4 715,012	1,02	1020 x8	79,8	19,1	1,69	234,6	314,4	6006,08	0,60	123200

Зная расчетные расходы воды и потери напора по участкам для зимнего периода (табл 3.5), определяем сопротивление каждого участка сети:

$$S = \frac{H}{G_p^2} \tag{3.25}$$

где: H - потери напора на участке в зимний период, м (таблица 3.5); H=2,23м.

 G_{p} - расчетный расход на участке для отопительного периода, м $^{3}\!/\text{ч}$

$$G_p = 376,365 \text{ m}^3/\text{y}$$

$$S = \frac{2,23}{376,365^2} = 1,575 \text{ M} \cdot \text{H}^2 / M^6$$

Таблица 3.6 – Гидравлический расчет тепловых сетей для летнего периода

	Расход	Потери			
	воды в	напора на	Сопротивление	Расчетный	Потери напора
	зимний	участке в	участка сети	расход воды в	на участке в
	период, т/ч	зимний	S ·10 ⁻⁵	летний период	летний период
№ участка	G_{p}	период, Н,м	$\mathbf{M} \cdot \mathbf{H}^2 / \mathbf{M}^6$	G _п , т/ч	Нп, м
1	376,365	2,23	1,5758	1,705	0,000046
2	782,145	0,91	0,1493	147,980	0,032701
3	891,735	1,34	0,1680	163,205	0,044758
4	1 166,993	0,48	0,0355	187,647	0,012515
5	1 607,982	0,86	0,0332	264,630	0,023266
6	2 970,516	0,79	0,0089	355,223	0,011291
7	3 109,429	0,32	0,0033	378,139	0,004690
8	3 150,653	0,29	0,0029	380,538	0,004229
9	3 164,830	0,69	0,0069	386,037	0,010216
10	3 189,639	0,19	0,0019	388,099	0,002849
11	3 247,716	0,43	0,0041	388,140	0,006102
12	3 385,010	0,14	0,0012	421,484	0,002200
13	3 639,332	0,35	0,0027	471,468	0,005949
14	3 874,768	0,63	0,0042	518,881	0,011249
15	3 950,824	0,36	0,0023	536,415	0,006577
16	4 395,866	0,57	0,0030	645,697	0,012351
17	4 419,924	1,14	0,0058	646,728	0,024377
18	4 715,012	0,60	0,0027	706,940	0,013502

Пьезометрический график

Строится пьезометрический график закрытой двухтрубной тепловой сети от источника теплоты ПОК до ТК 31.

При проектировании и в эксплуатационной практике для учета взаимного влияния геодезического профиля района, высоты абонентских систем, действующих напоров в тепловой сети пользуются пьезометрическими графиками. [6, с. 175-182].

Полный статический напор для всей системы составит:

$$H_{cm} = H_{\kappa g} + Z_1 + H_{cg}, \tag{3.26}$$

где $H_{{\scriptscriptstyle KB}}$ - высота здания, м, при условии, что высота этажа равна 3 м;

Z - геодезическая высота, принимается равной 0 м (низшая точка сети);

 ${\cal H}_{\it CB}$ - величина свободного напора, принимается равной 5 м.

Напор на всасывающем патрубке сетевых насосов

 H_{BC} принимаем равным 20 м.

$$H_{cm} = 27 + 0 + 5 = 32M$$

Зная потери напора на расчетных участках из гидравлического расчета, определяем значения полных напоров в обратной магистрали:

в конце первого участка	$H_1 = 20,0+0,6=20,6 \text{ M}$
в конце второго участка	$H_2 = 20,6+1,14=21,74 \text{ M}$
в конце третьего участка	$H_3 = 21,74+0,57 = 22,31 \text{ M}$
в конце четвертого участка	$H_4 = 22,31+0,36=22,67 \text{ M}$
в конце пятого участка	$H_5 = 22,67+0,63=23,3 \text{ M}$
в конце шестого участка	$H_6 = 23,3+0,63=23,65 \text{ M}$
в конце седьмого участка	$H_7 = 23,65 + 0,35 = 23,79 \text{ M}$
в конце восьмого участка	$H_8 = 23,79 + 0,14 = 24,22 \text{ M}$
в конце девятого участка	$H_9 = 24,22+0,43=24,41 \text{ M}$

 $H_{10} = 24,41+0,19 = 25,1 \text{ M}$ в конце десятого участка $H_{11} = 25,1+0,69 = 25,39 \text{ M}$ в конце одиннадцатого участка $H_{12} = 25,39 + 0,29 = 25,71 \text{ M}$ в конце двенадцатого участка в конце тринадцатого участка $H_{13} = 25,71+0,32=26,49$ M $H_{14} = 26,49+0,79 = 27,35 \text{ M}$ в конце четырнадцатого участка $H_{15} = 27,35 + 0,86 = 27,84 \text{ M}$ в конце пятнадцатого участка в конце шестнадцатого участка $H_{16} = 27,84+0,48 = 29,17$ M в конце семнадцатого участка $H_{17} = 29,17+1,34=30,09 \text{ M}$ $H_{18} = 30,09 + 0,91 = 32,32$ M в конце восемнадцатого участка

Потребители присоединяются к тепловым сетям по зависимой схеме, согласно [8].

Требуемый напор сетевых насосов в отопительный период:

$$H_{cH} = H_{n\kappa} + H_c + H_{a\delta}; \tag{3.27}$$

где $H_{n\kappa}$ – потери напора в котлах и станционных коммуникациях, 19,8 м; H_c – потери напора в подающих и обратных теплопроводах, 32,2м $H_{a\delta}$ – требуемый напор у абонентов, 20 м.

$$H_{CH} = 19,8 + 32,2 + 20,4 = 72,4_{M}$$

Расчет и подбор насосного оборудования

Расход сетевой воды в зимний период: $G = 4715 \text{ м}^3/\text{ч}$

К установке принимаются 3 рабочих и один резервный насос 1Д1600-90а включенных параллельно.

Характеристика сопротивления сети:

$$S = \frac{H_{cn}}{G_{3}^{2}} \tag{4.1}$$

$$S = \frac{72.4}{4700^2} = 3.3 \cdot 10^{-6} \, M \cdot u^2 / M^6,$$

Требуемый напор сетевых насосов в летний период:

$$H_{HI} = H_{nK} + H_c + H_{ab},$$
 (4.2)

Расход сетевой воды в летний период: $G = 707 \text{ м}^3/\text{ч}$

Для работы принимается один насос, остальные в резерве.

Объем воды в ${\rm M}^3$ в системе теплоснабжения определяем по выражению:

$$V = Q \cdot (V_c + V_{_M}), \tag{4.3}$$

где Q - мощность системы теплоснабжения, MBT;

 V_c - удельный объем воды в тепловых сетях, принимаем $V_c = 40 \text{ м}^3/\text{MBr}$ [1].

 $V_{\rm M}$ - удельный объем сетевой воды в системах отопления гражданских зданий, принимаем $V_{\rm M} = 26~{\rm m}^3/{\rm MBt}$ [1].

Требуемый напор подпиточных насосов:

$$H_{nh} = H_{cm} - H_{\delta} + H_{nc},$$
 (4.4)
 $H_{hn} = 20 + 3 + 3, 2 = 26, 2m.$
 $V = 4, 2 \cdot (40 + 26) = 277 \, \text{m}^3$

К установке принимаются 2 рабочих и один резервный насос Grudfoss NK 150-400/412включенных параллельно. Характеристики насосов см. в приложении 2.

3.4 Расчет и подбор тепловой изоляции.

В данной работе приняты предварительно-изолированные пенополиуретаном стальные трубы фирмы Тепло-пайп , производимые согласно ГОСТ 30732-2006 и предназначеные для прокладки тепловых сетей с расчетными параметрами теплоносителя: рабочим давлением до 1,6 Мпа. [7]

Поэтапно приводится расчёт сопротивления тепловой изоляции трубопроводов, расположенного в канале МКЛ-4.

Приведён расчет для подающего и обратного трубопроводов системы отопления $d_{\rm H}=377$ мм = 0,377 м. Принимается толщина изоляционного слоя $\delta_{\rm H3}=42$ мм [23]. Среднегодовая температура теплоносителя $\tau 1=90$ °C, $\tau 2=50$ °C. Температура грунта на глубине заложения 6,7°C [9, Приложение 1]

Размеры канала: МКЛ-4: наружные 1,92х2,1

Эквивалентные наружный и внутренний диаметры канала:

$$d_{B.9} = \frac{4 \cdot F}{P}$$
, (3.28)

 $F_{\text{н}}$ и $F_{\text{в}}$ – площадь канала по наружным и внутренним размерам;

 $P_{\rm H}$ и $P_{\rm B}$ — периметр канала по наружным и внутренним размерам.

Находится термическое сопротивление стенок канала:

Приняв коэффициент теплопроводности канала и наружной поверхности пенополиуретана принимается равным $\lambda = 8,15 \text{ Bt}(\text{M}\cdot{}^{\circ}\text{K})$ [4, стр.263].

$$R_{\kappa} = \frac{1}{2\pi\lambda_{\kappa}} \ln \frac{d_{_{\mathfrak{I},H}}}{d_{_{\mathfrak{I},HH}}},\tag{3.29}$$

Термическое сопротивление грунта при значении его коэффициента теплопроводности $\lambda = 1.92 \text{ Bt}(\text{M}^{.\circ}\text{K})$ [4, табл.13.3]:

$$R_{zp} = \frac{1}{2\pi\lambda_{zp}} \ln\frac{4\cdot h}{d_{_{u,s}}} , \qquad (3.30)$$

При одинаковых диаметрах подающего и обратного трубопроводов и одинаковой толщине слоя изоляции термическое сопротивление основного слоя изоляции для каждой трубы:

Термическое сопротивление основного слоя изоляции для каждой трубы:

$$R_u = \frac{1}{2\pi\lambda_u} \ln \frac{d_u}{d_u} , \qquad (3.31)$$

где $d_{\scriptscriptstyle H}$ - наружный диаметр теплопровода с учетом слоя изоляции, м; $\lambda_{\scriptscriptstyle H}$ - теплопроводность изоляционного слоя, ${\rm Bt/}\,({\rm M}^{.0}{\rm K}).$

Термическое сопротивление покровного слоя для каждой трубы:

$$R_{\text{nc}} = \frac{1}{2\pi\lambda_{nc}} \ln \frac{d_{nc}}{d_{u}} , \qquad (3.32)$$

Суммарное термическое сопротивление каждой трубы:

$$R_{\text{CVM}} = R_{\text{K}} + R_{\text{FP}} , \qquad (3.33)$$

Температура воздуха в канале:

$$t_{\kappa} = \frac{\frac{\tau_{1}}{\sum R} + \frac{\tau_{2}}{\sum R} + \frac{\tau_{3}}{R_{0}}}{\frac{1}{\sum R} + \frac{1}{\sum R} + \frac{1}{R_{0}}},$$
(3.34)

где τ - среднегодовая температура теплоносителя в магистрали, °C; $\tau_1 = 90^{\circ}C$, $\tau_2 = 50^{\circ}C$, $\tau_3 = 6.7^{\circ}C$

Удельные теплопотери изолированными подающими и обратными теплопроводами:

$$q_1 = \frac{\tau_1 - t_k}{\sum R} \,, \tag{3.35}$$

$$q_2 = \frac{\tau_2 - t_k}{\sum R}$$

где τ_i - среднегодовая температура в подающем или обратном теплопроводах, °C;

 $\sum R_i$ - суммарное термическое сопротивление соответствующей трубы, $(\text{м}\cdot ^{\text{o}}\text{K})/\text{Bt}$

Суммарные удельные теплопотери изолированных теплопроводов:

$$q_u = q_1 + q_2, (3.36)$$

Термическое сопротивление на поверхности неизолированного теплопровода:

$$R_{\scriptscriptstyle H} = \frac{1}{\pi \cdot d_{\scriptscriptstyle H} \cdot \lambda},\tag{3.37}$$

Удельные теплопотери неизолированными подающими и обратными теплопроводами:

$$q_{1} = \frac{\tau_{1} - t_{k}}{\sum R},$$

$$q_{2} = \frac{\tau_{2} - t_{k}}{\sum R}.$$
(3.38)

Суммарные удельные теплопотери изолированных теплопроводов:

$$q'' = q_1 + q_2, (3.39)$$

Эффективность тепловой изоляции:

$$\eta = \frac{q'' - q''}{q''} \cdot 100\%, \tag{3.40}$$

Далее приводится пример расчёта эффективности тепловой изоляции для трубы 377х8 проложенной в канале МКЛ-4

$$d_{\text{B.9}} = \frac{4 \cdot 4,032}{8,04} = 2,006 \,\text{M}$$

$$R_{\kappa} = \frac{1}{6,28 \cdot 2,04} \ln \frac{2,207}{2,006} = 0,032 \text{ (M}^{\circ}\text{K)/BT},$$

$$R_{cp} = \frac{1}{6,28 \cdot 1,92} \ln \frac{4 \cdot 1,5}{2,207} = 0,0362 \text{ (M} \cdot \text{°K)/BT},$$

$$R_u = \frac{1}{6.28 \cdot 0.02} ln \frac{0.427}{0.377} = 0.4327 \text{ (M} \cdot \text{°K)/BT}$$

$$R_{\text{nc}} = \frac{1}{6,28 \cdot 0,08} \ln \frac{0,433}{0,427} = 0,0121 \text{ (M} \cdot \text{°K)/BT}$$

$$R_{\text{cym}} = 0.032 + 0.0362 + 0.019 = 0.059 (\text{M} \cdot ^{\circ}\text{K})/\text{Bt}$$

$$t_{\kappa} = \frac{\frac{90}{0.445} + \frac{50}{0.445} + \frac{6.7}{0.059}}{\frac{1}{0.445} + \frac{1}{0.445} + \frac{1}{0.059}} = 20^{\circ}C$$

$$q_{1} = \frac{90 - 20}{0.445} = 157.47Bm / M$$

$$q_{2} = \frac{50 - 20}{0.445} = 67,55Bm / M$$

$$q_{u} = 157,47 + 67,55 = 225,02Bm / M$$

$$R_{u} = \frac{1}{3,14 \cdot 0,377 \cdot 8,15} = 0,1035M \cdot {^{\circ}K} / Bm$$

$$q_{1} = \frac{90 - 20}{0,1035} = 676,79Bm / M$$

$$q_{2} = \frac{50 - 20}{0,1035} = 290,31Bm / M$$

$$q_{u} = 676,79 + 290,31 = 967,1Bm / M$$

$$\eta = \frac{967,1 - 225,02}{967,1} \cdot 100\% = 77\%$$

Аналогично определяются каналы: МКЛ-6, МКЛ-8 и МКЛ 10, результаты расчета приведены в таблице 3.7.

Результаты расчёта эффективности тепловой изоляции приведены в таблице 3.8.

Результаты расчёта толщины, объёма тепловой изоляции, и площади поверхности покровного слоя приведены в таблице 3.9.

Таблица 3.7 - Расчёт сопротивления канала

	Канал МКЛ-4												
a	б	Площа дь F	Пери метр Р	Диаметр внутренний dв	Диаметр наружний dн	Коэф . теплопроводнос ти λ_{κ}	Сопривлени е стенок канала Rк	Глубина заложения h	Коэф.тепл о-отдачи λ _κ	Сопроти вление грунта Rгр	Коэф. теплоо тдачи λ_{κ}	Сопротив ление внутри канала Rвн	Сумма R
M	M	M^3	M	M	M	Вт/(м⋅°К)	(м∙°К)/Вт	M	Вт/(м∙°К)	(м·°К)/В т	Вт/(м·° К)	(м∙°К)/Вт	(м∙°К)/Вт
1,92	2,1	4,032	8,04	2,006	2,207	2,04	0,0032	1,5	1,92	0,0362	8,15	0,01945	0.059
						M	КЛ-6				<u> </u>	0,0155414	0,047
2,41	2,62	6,3142	10,06	2,511	3,264	2,04	0,0089	1,5	1,92	0,0220	8,15	0,0133414	0,047
						M	ІКЛ-8						
2,77	3,06	8,4762	11,66	2,908	4,652	2,04	0,0160	1,5	1,92	0,0092	8,15	0,01342	0,039
						M	КЛ-10						
3,6	3,98	14,328	15,16	3,78	6,805	2,04	0,0200	1,5	1,92	0,0046	8,15	0,01032	0,026

Таблица 3.8 – Результаты расчёта эффективности тепловой изоляции

$t_{_{KAH}}$	$=20^{\circ}C$,																
	$d_{_{\scriptscriptstyle H}}$	$\delta_{\scriptscriptstyle n}$	δ_{nc}	d_{u_3}	d_{nc}	λ_u	λ_{nc}	R_u	R_{nc}	$R_{_{CYM}}$	q_1	q_2	q	R	q_1	q_2	q	η
	M	M	M	M	M	(м·°К)/ Вт	(м·°К)/Вт	(м∙°К)/Вт	(м·°К) /Вт	(м∙°К)/Вт	Вт/м	Вт/м	Вт/м	(м·°К)/ Вт	Вт/м	Вт/м	Вт/м	%
T1	0,377	0,05	0,006	0,42 7	0,433	0,02	0,08	0,4327	0,0121	0,445	157, 47			0,1035	676,79		967	
T2	0,377	0,05	0,006	0,42 7	0,433	0,02	0,08	0,4327	0,0121	0,445		67,5 5	225,02	0,1035		290		77
$t_{\kappa a \mu}$	= 20.9°	${}^{0}C$	1	1	1	I							1					
T1	0,529	0,05	0,006	0,579	0,585	0,02	0,08	0,3128	0,0090	0,3227	214, 22			0,0738	937,33		1332	
T2	0,529	0,05	0,006	0,579	0,585	0,02	0,08	0,3128	0,0090	0,3227		90,2	304,50	0,0738		39		77

.

$t_{_{KAH}}$	= 22,8	⁰ C																
	$d_{_{\scriptscriptstyle H}}$	δ_n	δ_{nc}	d_{u_3}	d_{nc}	λ_u	λ_{nc}	R_{u}	R_{nc}	$R_{_{CYM}}$	q_1	q_2	q	R	q_1	q_2	q	η
	M	M	M	M	M	(M·°K) /BT	(M·°K)/ BT	(м·°К)/Вт	(M·°K) /BT	(м·°К)/Вт	Вт/м	Вт/м	Вт/м	(M·°K) /BT	Вт/м	Вт/м	Вт/м	%
T1	0,63	0,05	0,006	0,68	0,686	0,02	0,08	0,2653	0,0076	0,273	246,2			0,0619	1085,2		1524,6	
T2	0,63	0,05	0,006	0,68	0,686	0,02	0,08	0,2653	0,0076	0,273		99,6	345,9	0,0619		439		77

$$t_{\scriptscriptstyle KAH}=22,1^{0}C$$

	$d_{_{\scriptscriptstyle H}}$	$\delta_{_n}$	δ_{nc}	d_{u^3}	d_{nc}	λ_u	λ_{nc}	R_{u}	R_{nc}	$R_{_{\scriptscriptstyle CYM}}$	q_1	q_2	q	R	q_1	q_2	q	η
						(0IC) /D	(0IO /P	(0IO /P	(OIC) /D	(010 /P	D /	D /	D /	(010)/D	D /	D /	D /	0.4
	M	M	M	M	M	(м·°К)/Вт	(м·°К)/Вт	(м·°К)/Вт	(м·°К)/Вт	(м·°К)/Вт	Вт/м	Вт/м	Вт/м	(м·°К)/Вт	Вт/м	Вт/	Вт/м	%
																M		
T1	0,72	0,05	0,006	0,77	0,776	0,02	0,08	0,2333	0,00674	0,24	282,84			0,0542	1252,7		1767	
T2	0,72	0,05	0,006	0,77	0,776	0,02	0,08	0,2333	0,00674	0,24		116,18	399,02	0,0542		514		77

$$t_{\scriptscriptstyle KAH}=14,8^{\,0}C$$

	$d_{\scriptscriptstyle H}$	δ_n	δ_{nc}	d_{u3}	d_{nc}	λ_u	λ_{nc}	R_{u}	R_{nc}	$R_{_{CYM}}$	q_1	q_2	q	R	q_1	q_2	q	η
	M	M	M	M	M	(м∙°К)/	(м.°К)/	(м∙°К)/	(м∙°К)/Вт	(m.°K)	Вт/м	Вт/м	Вт/м	(m·°K)/	Вт/м	Вт/	Вт/м	%
						Вт	Вт	Вт		/Вт				Вт		M		
T1	0,92	0,08	0,07	1	1,075	0,02	0,08	0,2897	0,062	0,35	213,38			0,0424	1773,6		2604	
T2	0,92	0,08	0,07	1	1,075	0,02	0,08	0,2897	0,062	0,35		99,91	313,3	0,0424		830		87

 $t_{\kappa a \mu} = 15,5^{\circ}C$

	$d_{\scriptscriptstyle H}$	$\delta_{_{n}}$	δ_{nc}	d_{u_3}	d_{nc}	λ_u	λ_{nc}	R_u	R_{nc}	$R_{_{CYM}}$	$q_{_1}$	q_2	q	R	q_1	q_2	q	η
						(OIC)	(OI()/D-	(OIC) /	(9I()/D-	(OIC)	D-/	D-/	D-/	(9I/)/D	D-/	D-/	D-/	0/
	M	M	M	М	M	(M·°K)	(м·°К)/Вт	(M·°K)/	(м·°К)/Вт	(M·°K)	Вт/м	Вт/м	Вт/м	(м.°К)/B	Вт/м	Вт/	Вт/м	%
						/Вт		Вт		/Вт						M		
T1	1,02	0,08	0,075	1,1	1,175	0,02	0,08	0,2623	0,057	0,31	233,1			0,0383	2352,7		3064	
T2	1,02	0,08	0,075	1,1	1,175	0,02	0,08	0,2623	0,057	0,31		107,95	341,05	0,0383		711		88

Таблица 3.9 - Толщины изоляционных конструкций

Наименование и размеры трубопровода	Толщина основного слоя изоляции	наружный диаметр трубы	длина	объём изоляцион- ного материала	площадь покровного слоя	наружный диаметр с изоляцией
MM	M	M	M	куб.м	КВ.М	М
подающий Ø 377x9	0,05	0,377	527	35,33	82,74	0,477
обратный ∅ 377х9	0,05	0,377	527	115,45	82,74	0,477
подающий ∅ 529х6	0,06	0,529	753	83,56	141,87	0,649
обратный ∅ 529х6	0,06	0,529	753	167,08	141,87	0,649
подающий ∅ 630x8	0,06	0,63	197	25,61	37,11	0,750
обратный ∅ 630х8	0,06	0,63	197	47,74	37,11	0,750
подающий ∅ 720х9	0,06	0,72	466	68,48	87,79	0,840
обратный ∅ 720х9	0,06	0,72	466	229,18	87,79	0,840
подающий ∅ 920x8	0,075	0,92	458	107,32	107,86	1,070
обратный ∅ 920х8	0,075	0,92	458	187,85	107,86	1,070
подающий ∅ 1020x8	0,075	1,02	2603	671,24	613,01	1,170
обратный ∅ 1020x8	0,075	1,02	2603	2125,91	613,01	1,170

4 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ

Целью автоматизации насосной станции является, использование комплекса автоматических устройств для управления работы насосных станций систем теплоснабжения.

Автоматизации насосных станций решает следующие задачи:

стабилизация гидравлического режима работы тепловой сети;

обеспечение заданной подачи теплоносителя потребителям;

защита теплоиспользующих установок потребителей от повышенных давлений и опорожнения;

стабилизация или регулирование гидравлического режима;

включение резервного насосного агрегата при аварийном отключении рабочего, изменение положения запорного механизма электрозадвижек на нагнетательных трубопроводах насосов;

включение резервного источника энергопитания при падении напряжения в основном источнике. [11,24]

Принципы и методы регулирования работы насосной станции

Назначение системы автоматизации — контроль и регулирование параметров технологического процесса теплоснабжения. Система автоматизации насосной станции позволяет выполнять следующие функции:

взаимодействие с локальными системами управления групповым запуском насосов;

проверка готовности к пуску и пуск насосов в автоматическом режиме; технологический останов насосов в автоматическом режиме;

аварийный останов при аварийных значениях технологических параметров;

регулирование давления на напоре подающей магистрали последовательным пуском насосов от частотного преобразователя;

регулирование давления на всоси обратной магистрали последовательным пуском насосов от частотного преобразователя;

автоматическое чередование работающих агрегатов через заданные промежутки времени для обеспечения равномерного расходования моторесурса;

формирование сигнализации при выходе параметра за установленные контрольные границы [15].

Для равномерного распределения нагрузки между четырьмя насосными агрегатами, применяются станции группового управления, посредством которых насосы поочередно подключаются преобразователю. Автоматически происходит включение резервных насосов случае возникновения аварийной ситуации. Автоматически с помощью приборов и реле осуществляется контроль 3a основными параметрами станции, давлением в напорных трубопроводах, разряжения на всасывающих линиях, температурой подшипников и т. п. Кроме того, предусматривается защита установок от перегрузок, короткого замыкания и других неполадок. При неполадках в работе оборудования срабатывает реле защиты и агрегат выключается из работы. Последующее включение его блокируется устранения В становится возможным только после неполадок. автоматизированных станциях удобнее осуществлять пуск насосов при открытой запорной арматуры.

В соответствии с перечисленными задачами автоматизации насосных станций автоматические устройства выполняют следующие функции:

1) создают и передают импульсы для пуска и остановки насосных агрегатов;

2) осуществляют выдержку времени между отдельными операциями, связанными с пуском агрегата;

- 3) обеспечивают пуск насосных агрегатов в установленной последовательности (как при прямом пуске, так и при ступенчатом);
- 4) поддерживают необходимое разрежение во всасывающем трубопроводе;
- 5) открывают и закрывают задвижки на трубопроводах в соответствующие периоды пуска или остановки насоса;
- 6) контролируют режимы пуска, работы и остановки агрегатов;
- 7) отключают рабочий агрегат при нарушении режима его работы и включают резервный;
- 8) передают сигналы о состоянии агрегатов на диспетчерский пункт;
- 9) защищают агрегаты от поломок при перегреве подшипников Или при выпадении фазы и перегрузке электродвигателя [28].

Схема автоматизации насосной станции, установленной в привокзальной отопительной котельной см. в приложении 4.

5 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ

5.1. Определение объёмов работ

Общая протяжённость проектируемой тепловой сети составляет 5004 м, монтаж выполняется в две захватки [13, 14].

Для определения объёмов земляных работ определяются наружные размеры лотков каналов (таблица 4.1)

Таблица 5.1 – Типы, размеры, количество лотков каналов

			Разме	еры наруж	ные	К	оличество	
размеры труб-да	длина	тип канала	ширина А	высота В	длина L	станд.	длина	добор ные
MM	M		M	M	M	ШТ	M	ШТ
377x9	527	МКЛ-4	1,92	1,11	3	175	525	2
529x6	753	МКЛ-6	2,41	1,35	3	251	251	0
630x8	197	МКЛ-6	2,41	1,35	3	65	195	2
720x9	466	МКЛ-8	2,77	1,64	3	155	465	1
920x8	458	МКЛ-10	3,19	1,88	3	152	456	2
1020x8	2603	МКЛ-10	3,19	1,88	3	867	2601	2

Длина захватки определяется без учёта тепловых камер и компенсаторных ниш по формуле (5.1), м:

$$l = l_{3AX} - l_{KAM} - l\kappa \cdot n \tag{5.1}$$

где *Ікам* – длина камеры, м; 734

lзах – длина захватки I, м; 2.479

длина захватки II, м; 2.525

lк – длина компенсаторной ниши, м; 108

n – число компенсаторных ниш. 3

1захватка: $l = 2479 - 319 - (108 \cdot 3) = 1757 M$

2 3axbatka: l = 2525 - 364 = 2161M

Объём траншеи с откосами определяется по формуле (5.3), м³:

$$V_{TP} = (h_{TP} \cdot (AH + 0.2) + m \cdot h_{TP}^{2}) \cdot l, \qquad (5.2)$$

где m — коэффициент крутизны откосов траншей, при данном виде грунта равен 0,5 [15, прил.3].

Ширина траншеи по верху определяется по формуле (5.4), м:

$$Ae = AH + 0.2 + 2 \cdot a' \tag{5.3}$$

где AH — наружная ширина канала, м;

a' – определяется по формуле (5.5), м:

$$a' = h_{mn} \cdot m \tag{5.4}$$

где h_{mp} – глубина траншеи, с учётом наружной высота канала и подсыпки, равная 5 м.

$$a' = 5 \cdot 0, 5 = 2,5M$$

$$Ae = 3,19 + 2 \cdot 2,5 = 8,19M$$

$$V_{TP} = (5 \cdot (4.1 + 0.2) + 0.5 \cdot 5^{2}) \cdot 1757 = 59738 M^{3}$$

Определяются объёмы котлованов для камер:

Длина дна котлована камеры определяется по формуле (5.6):

$$AH = a_{\kappa am} + 0.5 \tag{5.5}$$

Ширина дна котлована камеры определяется по формуле (5.7):

$$BH = b_{\kappa a.m} + 0.5 \tag{5.6}$$

Длина верха котлована камеры определяется по формуле (5.8):

$$Ae = AH + 2 \cdot a' \tag{5.7}$$

Ширина верха котлована камеры определяется по формуле (5.9):

$$Be = BH + 2 \cdot b' \tag{5.8}$$

Площадь камеры по низу определяется по формуле (5.10):

$$F_H = A_H \cdot B_H \tag{5.9}$$

Площадь камеры по верху определяется по формуле (5.11):

$$F_{\theta} = A_{\theta} \cdot B_{\theta} \tag{5.10}$$

Объём котлована камеры определяется по формуле (5.12):

$$V_{KOT} = \frac{1}{3}H\kappa(F_{\mathcal{B}} + F_{\mathcal{H}} + \sqrt{F_{\mathcal{B}} + F_{\mathcal{H}}})$$
 (5.11)

где H_{κ} – глубина заложения камеры, определяется по формуле (5.13), м:

$$H_K = h + h_{KAM}^{HAP} + 0.2 (5.12)$$

где *h* равна 5 м.

$$AH = 16 + 0, 5 = 16, 5M$$

$$BH = 18 + 0.5 = 18.5M$$

$$Ae = 16 + 2 \cdot 2, 5 = 21,5M$$

$$Be = 18, 5 + 2 \cdot 2, 5 = 23, 5M$$

$$F_H = 16, 5 \cdot 18, 5 = 305, 25 M^2$$

$$Fe = 21, 5 \cdot 23, 5 = 505, 25 M^2$$

$$V_{KOT} = \frac{1}{3} \cdot 5, 8 \cdot (505, 25 + 305, 25 + \sqrt{505, 25 + 305, 25}) = 1677, 94 M^{3}$$

Суммарный объем котлована составляет 1677,94 м³.

Определяются объёмы существующих коммуникаций:

$$V = (1497 \cdot 10) + (5200 \cdot 2) + (2600 \cdot 4) = 35770 \text{ m}^3$$

Объём обратной засыпки определяется по формуле (5.16):

$$V_{o\delta p}^{sac} = (Vo - V\kappa) \cdot K_P \tag{5.13}$$

где V_o – объём отвала, определяется по формуле (5.17), м³:

$$V_o = V_{TP} + V_{KOTJ} \tag{5.14}$$

где «`» означает, что это объёмы существующих коммуникаций.

Объём избыточного грунта определяется по формуле (5.18), м³:

$$V_{II35} = Vo \cdot K_P - V_{o\delta p}^{sac} \tag{5.15}$$

где K_p – коэффициент разрыхления грунта, равный, согласно 1,24 [16].

$$V_o = 11772 + 37350 = 49122 M^3$$

$$V_{o\delta\rho}^{3ac} = (49122 - 35770) \cdot 1,24 = 16556,48 M^3$$

$$V_{H3E} = 49122 \cdot 1,24 = 60911,28 M^3$$

Площадь планировки определяется по формуле (5.16), м²:

$$F_{nn} = (F^{\sum}_{\kappa om} + F_{mp}) \tag{5.16}$$

где
$$F^{\sum_{kom}}$$
 – суммарная площадь котельной (5.17)

 F_{mp} -площадь траншеи, м.

1 захватка:

$$F^{\sum}_{\kappa om \eta} = 10939 M^2$$

$$F_{mp} = 1757 \cdot 6 = 10542 M^2$$

$$F_{nn} = 10939 + 10542 = 21481 M^2$$

Площадь вскрытия и восстановления дорожного полотна определяется по формуле (5.18), M^2 :

$$F_{o} = 480 M^{2} \tag{5.18}$$

где $l_{\partial op}$ — длина дорожного покрытия, равная 480 м;

n — количество транспортных коммуникаций, шт.

Данные расчётов сводятся в таблицу 5.2.[26]

Таблица 5.2 - Спецификация плетей трубопроводов

No		Объем	Объем	Объем	Площадь	Площадь
захватки	Общий	конструк-	обратной	избыточного	планировки,	вскрытия
	Vo, м3	ций, Vк,	засыпки,	грунта,	Г пл,	и восстановления
		M ³	Vобр, м ³	Vизб,	M ²	дорожного покр.,
				M ³		Гдор, м²
I	49122	35770	16556	60911	21481	480
II	59296	55557	4636	68891	29887	470

Весь перечень монтажных работ указывается в таблице 5.3 и составляется ведомость строительно-монтажных работ.

Таблица 5.3-Ведомость объемов строительно-монтажных работ

№	Наименование работ	Ед.	Объем работ по захватке
пп		изм.	
1	2	3	4
1	Отрывка траншей экскаватором	100м³	491,22
2	Отрывка котлованов экскаватором	100м³	16,77
3	Устройство песчаного основания	M ³	1016,39
4	Монтаж ж/б лотков каналов	M	1757
5	Устройство тепловых камер	ШТ	20
6	Сборка труб в секции на бровке	M	3840
7	Поворотная сварка труб	стык	135
8	Монтаж неподвижных опор	ШТ	26
9	Монтаж подвижных опор	ШТ	148
10	Укладка секций труб в каналы	M	1770
11	Установка арматуры (задвижек)	ШТ	10
12	Монтаж фасонных частей отводов	ШТ	26
	тройники	ШТ	24
13	Монтаж компенсаторов	ШТ	46
14	Неповоротная сварка труб в канале	стык	72
15	Первичное испытание труб на	М	4864
	прочность и плотность		
16	Гидроизоляция сварных стыков	стык	128
17	Тепловая изоляция трубопроводов	M	4864
18	Укладка плит перекрытий каналов	M	1757
	камер	ШТ	20
19	Устройство гидроизоляции перек-		
	рытий каналов, камер	100м²	5,6
20	Устройство защитного слоя по гид-		
	роизоляции каналов, камер	100м²	410
21	Окончательное испытание труб,	M	4864
	промывка и хлорирование		
22	Обратная засыпка траншей и котло-	100м³	16,55
	ванов бульдозером		
23	Планировка площадей бульдозером	1000м²	2.1

2 захватка

№	Наименование работ	Ед.	Объем работ по захватке
пп		изм.	
1	2	3	4
1	Отрывка траншей экскаватором	100м³	592,9
2	Отрывка котлованов экскаватором	100м³	12,02
3	Устройство песчаного основания	M ³	626,69
4	Монтаж ж/б лотков каналов	M	2161
5	Устройство тепловых камер	ШТ	13
6	Сборка труб в секции на бровке	М	4050
7	Поворотная сварка труб	стык	142
8	Монтаж неподвижных опор	ШТ	48
9	Монтаж подвижных опор	ШТ	154
10	Укладка секций труб в каналы	M	2161
11	Установка арматуры (задвижек)	ШТ	30
12	Монтаж фасонных частей отводов	ШТ	28
	тройники	ШТ	20
13	Монтаж компенсаторов	ШТ	30
14	Неповоротная сварка труб в канале	стык	92
15	Первичное испытание труб на	M	4322
	прочность и плотность		
16	Гидроизоляция сварных стыков	стык	234
17	Тепловая изоляция трубопроводов	M	4322
18	Укладка плит перекрытий каналов	M	2161
	камер	ШТ	13
19	Устройство гидроизоляции перек-		
	рытий каналов, камер	100м²	5,18
20	Устройство защитного слоя по гид-		
	роизоляции каналов, камер	100м²	370,8
21	Окончательное испытание труб,	М	4322
	промывка и хлорирование		
22	Обратная засыпка траншей и котло-	100м³	4636
	ванов бульдозером		
23	Планировка площадей бульдозером	1000м²	17,28

Трудоёмкость рассчитывается по[18-22] Ведомость трудоемкости работ описывается [приложение 1].

Технология монтажа тепловых сетей

Монтаж тепловых сетей, который должен вестись поточным методом, включает в себя земляные, монтажно-сварочные, каменные, бетонные, железобетонные, изоляционные, опрессовочные, плотничные и прочие работы.

Сборка стальных труб больших диаметров в звенья с помощью кранатрубоукладчика. До начала работ сборке труб в звенья завозят трубы и раскладывают их по заранее размеченной оси; очищают концы труб от загрязнений и выправляют деформированные кромки.

При установке компенсатора следует тщательно набивать сальниковые уплотнения (сальник), так как замена набивки в период эксплуатации приводит к остановке работы тепловых сетей. Места соединения колец сальника должны быть смещены один относительно другого, швы сальниковых компенсаторов должны быть ровными, а кратеры заварены.

Фланцы приваривают перпендикулярно осям патрубков. Перекос не должен превышать 1 мм на 100 мм наружного диаметра фланца (но не более 3 мм). После пригонки фланцев по месту устанавливают два-три болта для выверки прокладки, затем монтируют остальные болты, навертывают на них гайки и фланцевое соединение затягивают. Чтобы не было перекоса, гайки затягивают постепенно в крестообразном порядке.[30]

При установке трубопроводной арматуры, например задвижек, нельзя допускать чрезмерного стягивания фланцев болтами, так как снижается плотность и прочность фланцевого соединения.

6 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА

6.1 Технологическая характеристика объекта

Профессиональная деятельность человека связана с применением оборудования вызывающего, различной степени, появлением возможных рисков. По природе возникновения риски могут быть классифицированы как профессиональные, техногенные, экологические.

К монтажно-сборочным работам, при укладке труб в траншею, на строительной площадке относятся следующие технологические операции: подготовка концов труб, их стыковка и прихватка; подготовка концов звеньев труб, их стыковка и прихватка; монтаж в камерах и колодцах укрупненных узлов трубопроводов; установка каркасов, кронштейнов, металлоконструкций неподвижных опор; приварка к трубам подвижных и неподвижных опор; установка компенсаторов, тройников; установка арматуры со сбалчиванием фланцевых соединений; монтаж неподвижных опор, растяжка компенсаторов, установка заглушек; монтаж присоединений продувки, промывки И испытания трубопроводов; ДЛЯ установка испытание трубопроводов контрольно-измерительной аппаратуры; прочность и герметичность.[16,17,27]

Таблица 6.1 - Технологический паспорт объекта

	Техноло	Технологическая	Наименование	Оборудование	Материалы,
№	гический	операция , вид	должности	устройство,	вещества
п/п	процесс	выполняемых	работника,	приспособление	
		работ	выполняющего		
			технологический		
			процесс, операцию		
	Монтажно-	Монтаж	Монтажник	Автокран;	Железобетонная
	сборочные	железобетонных	стальных	стропа; лом;	плита
	работы	конструкций в	железобетонных	уровень; отвес	
		тепловых сетях	конструкций		

Таблица6.2 – Идентификация профессиональных рисков.

№	Технологическая	операция,	Опасный	И	вредный	Источник опасного и вредного
---	-----------------	-----------	---------	---	---------	------------------------------

п/п	вид выполняемых работ	производственный	производственного фактора ³
		фактор	
1	Монтаж железобетонных	Двигающиеся	Автокран, плита
	конструкций	предметы	
2		Производственный	Работа двигателя крана,
		шум	громкие голоса рабочих
3		Опасность обрушения	Изменение грунта в различных
		кромок котлована	погодных условиях
4		Напряженность труда	Осуществление действий в
			различных погодных условиях

Таблица 6.3 – Методы и средства снижения воздействия опасных и вредных производственных факторов

	Опасный и вредный	Методы и	Средства
	производственный фактор	средства защиты,	индивидуальной
No		снижения, устранения	защиты работника
Π/Π		опасного и вредного	
		производственного	
		фактора	
	Двигающиеся предметы	Соблюдение требований	Костюм х/б с
1		охраны труда	пропиткой от общих
	Производственный шум	Инженерно-	производственных
2		техническими	загрязнений;
		средствами, применение	ботинки кожаные с
		организационно-	жестким
		технических	подмостком;
		мероприятий	каска защитная;
	Опасность обрушения кромок	Дополнительное	перчатки с
3	котлована	усиление кромок	полимерным
		котлована	покрытием.
	Напряженность труда	Соблюдение	
4		технических перерывов	

6.2 Обеспечение пожарной безопасности технического объекта

Таблица 6.4 – Идентификация классов и опасных факторов пожара.

	Участок,	Оборудование	Класс	Опасные	Сопутствующие
$N_{\underline{0}}$	подразделение		пожара	факторы	проявления
Π/Π				пожара	факторов пожара
	Тепловые сети	Автокран,	Класс	Повышенная	осколки, части
		битумная		температура	разрушившихся
			Б	1 71	зданий,
		мастика,	D	окружающей	сооружений,
		трубоукладчик,		среды	транспортных
		сварочные			средств,
		работы			технологических
		раооты			установок,
					оборудования,
					агрегатов, изделий
					и иного имущества

Таблица 6.5 Средства обеспечения пожарной безопасности.

Первичн	Мобильн	Установк	Средства	Пожарное	Средства	Пожарный	Пожарн
ые	ые	И	пожарно	оборудование	индивиду	инструмент	ые
средства	средства	пожароту	й		альной	(механизиров	сигнализ
пожароту	пожароту	шения	автомати		защиты и	анный и	ация,
шения	шения		ки		спасения	немеханизиро	связь и
					людей	ванный)	оповеще
					при		ние.
					пожаре		
Огнетуши	Пожарны	Пожарны	не	Огнетушители,	Защита	Лом, топор,	01 или с
тель,	e	e	предусмо	пожарный	органов	ведро, клещи,	сот.112
песок,	автомоби	гидранты	трены	водопровод,	дыхания.	лопата, багор	
вода	ли,			насос	Пути		
	механиче				эвакуации		
	ская						
	лопата						

Таблица 6.6 – Мероприятия по обеспечению пожарной безопасности.

Наименование	Наименование видов работ	Требования по обеспечению
технологического процесса,		пожарной безопасности
вид объекта		
Тепловые сети	Укладка труб в траншею,	Работать в специально
	автокран, трубоукладчик,	отведенном месте, выполнение
	сварочные работы	требований пожарной
		безопасности

6.3 Обеспечение экологической безопасности технического объекта

Таблица 6.7 – Идентификация экологических факторов

Наименование	Структурные	Воздействие	Воздействие	Воздействие
технического	составляющие	объекта на	объекта на	объекта на
объекта,	технического	атмосферу	гидросферу	литосферу
технологического	объекта,	(выбросы в	(образующие	(почву,
процесса	технологического	окружающую	сточные воды,	растительный
	процесса (здания	среду)	забор воды из	покров, недра)
	по		источников	(образование
	функциональному		водоснабжения)	отходов, выемка
	назначению,			плодородного
	технологические			слоя почвы,
	операции,			отчуждение
	оборудование)			земель,
				нарушение и
				загрязнение
				растительного
				покрова и т.д.)
Тепловые сети	Монтаж	выхлопные	мойка колес	выемка
	железобетонных	газы, пыль		плодородного
	конструкций			слоя почвы с
	трубоукладчик,			последующим
	автокран,			частичным
	сварочные раюоты			возвратом

Таблица6.8 – Мероприятия по снижению антропогенного воздействия на окружающую среду.

Наименование	Тепловые сети
технического объекта	
Мероприятия по	Снижение стоянки грузового транспорта с включенным двигателем
снижению антропогенного	
воздействия на атмосферу	
Мероприятия по	Использование временных канализаций, выбор в пользу
снижению антропогенного	общественного биотуалета вместо выгребной ямы на строительной
воздействия на гидросферу	площадке
Мероприятия по	Рекультивация земель, вывоз строительного мусора в специально
снижению антропогенного	отведенное место
воздействия на литосферу	

Список использованных источников

- Справочник по наладке и эксплуатации водяных тепловых сетей / В.И. Манюк, Я.И. Калинский, Э.Б. Хиж и др. 2-е изд. М.: Стройиздат, 1982. 215 с.
- 2. СП 131.13330.2011 Актуализированная редакция СНиП 23.01-99*. Строительная климатология / М.: Госстрой России, ГУП ЦПП, 2012.
- 3. СП 124.13330.2012 Актуализированная редакция СНиП 41-02-2003. Тепловые сети / Госстрой СССР-М: ЦНТП, 2013.
- 4. Справочник проектировщика. Проектирование тепловых сетей / Под ред. Л.А. Николаева. М.: Стройиздат, 1965. 359 с.
- Теплоснабжение / Под ред. В.М. Копко. М.: Высш. шк., 1985. 140 с.
- 6. Водяные тепловые сети / Под ред. Н.К. Громова, Е.П. Шубина. М.: Энергоатомиздат, 1988. 376 с.
- 7. СП 61.13330.2012 Актуализированная редакция СНиП 41-03-2003. Тепловая изоляция оборудования и трубопроводов / Госстрой России. М.: ГУП ЦПП, 2013.
- 8. СП 41-101-95. Проектирование тепловых пунктов. / Госстрой России.– М.: ГУП ЦПП, 1997. 78 с.
- 9. Теплоснабжение района города : Методические указания к курсовому проектированию / Писаре В.А, В.Т. Плицын. Тольятти: ТГУ, 2007. (С-135).
- 10. Приложение к методическим указаниям по выполнению курсовой работы. Строительство систем теплоснабжения. Тольятти, 1988. (С-26).
- 11. СП 77.13330.2011 Актуализированная редакция СНиП 3.05.07-85 Системы автоматизации / Госстрой России. М.: ГУП ЦПП, 2012.
- 12. ГОСТ 21605-82 Система проектной документации для строительства (СПДС). Сети тепловые (тепломеханическая часть). Рабочие чертежи

- (с Изменением № 1). МНТКС М.: Госстрой России, ГУП ЦПП, 1997.
- 13. Организация работ по монтажу систем вентиляции и кондиционирования воздуха: Методические указания к курсовому проектированию / Маслова Н.В. Тольятти: ТолПИ, 1995. (С-39).
- 14. Монтаж внутренних санитарно-технических устройств / Ю.Б. Александрович, Б.А. Блюменкранц, Д.Я. Вигдорчик.; Под ред. И.Г. Староверова. 3-е изд., перераб. и доп. М.: Стройиздат, 1984. 783 с., ил. (Справочник строителя).
- 15. Мухин О.А. «Автоматизация систем теплогазоснабжения и вентиляции» Учебное пособие для вузов. –М.:Высш. Шк., 1986. 304с., ил.
- 16. СП 12-135-2002 «Безопасность труда в строительстве. Отраслевые инструкции по охране труда»
- 17. СНиП 12-03-2001 «Безопасность труда в строительстве. Часть 1. Общие требования»
- 18. Единые нормы и расценки на строительные, монтажные и ремонтностроительные работы. Сборник Е1. Земляные работы Выпуск 1 Механизированные и ручные земляные работы / Госстрой России. М.: ГУП ЦПП, 2013.
- 19. ЕНиР сборник 2. Земляные работы. Вып.1. Механизированные и ручные земляные работы / Госстрой СССР М.: Стройиздат, 1988.
- 20. ЕНиР сборник 9. Сооружение систем теплогазоснабжения, водоснабжения и канализации. Вып.2. Наружные сети и сооружения / Госстрой СССР М.: Стройиздат, 1988.
- 21. Единые нормы и расценки на строительные, монтажные и ремонтностроительные работы. Сборник Е11. изоляционные работы / Госстрой России. - М.: ГУП ЦПП, 2013.
- 22. ЕНиР сборник 22. Сварочные работы. Вып. 1. Конструкции зданий и промышленных сооружений / Госстрой СССР М.: Стройиздат, 1987.

- 23. Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана с защитной оболочкой: каталог Тепло-пайп.-Тольятти 2013
- 24. Автоматизация [Электронный ресурс] режим доступа: http://fb.ru/
- 25. Постановление Правительства РФ № 154 «О требованиях к схемам теплоснабжения, порядку их разработки и утверждения» от 22.02.2012 г.
- 26. Справочник мастера строителя / П. Котов, А.П, Новак и др.; Под ред. Д.В. Коротеева.-2-е изд., перераб. и доп.- М.: Стройиздат, 1989.
- 27. Андреев С.В., Ефимова О.С. Охрана труда. М.:Альфа-Пресс, 2003.-288c.
- 28. Пырков В. В.Современные тепловые пункты. Автоматика и регулирование. К.: II ДП «Такі справи», 2007. 252 с.
- 29. Зингер Н.М. Гидравлические и тепловые режимы теплофикационных сетей. М.: Энергоатомиздат, 1986, 319 с.
- 30. Справочник монтажника сетей теплогазоснабжения / Под ред. Мельниковова О.Н., Ежова В.Т. 2-е изд. Л.: Стройиздат, 1980. -208с.

Приложение 1

I захватка

Таблица 5.4-Ведомость трудоемкости работ

Наименование			Норма времени		Трудоемкость		
работ	Ед изм.	ЕНиР	чел.ч	маш.ч	объем работ	чел-дн	маш-см
1	2	3	4	5	6	7	8
1. Отрывка траншей и котлованов эскаватором:		E2-1-10					
					13352	7268,49	3191,04
с погрузкой на транспорт	100м³		3,6	3,6			
на вымет			2,9	2,9	16556	4722,05	1669,99
Состав бригады: машинист 6р-2							
2. Устройство песчаного основания	1 m ³	E9-2-32	0,9		1016,39	111,56	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1							
3. Монтаж ж/б лотков каналов	1м	E9-2-25	0,55		1757	117,85	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1							
4. Устройство днищ камер и дрен.колодцы	1шт	E9-2-28	0,3		20	0,73	
Состав бригады: монтажник наружных трубопроводов 5р-1, 4р-2 3р-2							
5. Устройство стен камер	1M^3	E9-2-28	3		5,6	2,06	

Состав бригады: каменщики 4р-1, 2р-1						
6. Сборка труб в секции на бровке траншей	1м	E9-2-1				
Ø 1020x8			0,24	2479	72,56	
Состав бригады: монтажник наружных трубопроводов 6р-1, 4р-2, 3р-3						
7. Поворотная сварка труб Ø 1020х8	1стык	E22-2-2	2,2	135	3,9512	
Состав бригады: электросварщик 5р-1						
8. Укладка бетонных подушек под подвижные опоры	1шт	E9-2-28				
Ø 1020x8			60	2	16,8	
Состав бригады: монтажник наружных трубопроводов 4р-1, 3р-2						
9. Устройство подвижных опор	1шт	E9-2-18		148	21,7	
Ø 1020x8			1,2			
Состав бригады: монтажник наружных трубопроводов 5р-1, 3р-1						
10. Устройство неподвижных опор	1шт	E9-2-18		26	2,093	
Ø 1020x8			0,66			
Состав бригады: монтажник наружных трубопроводов 5р-1, 3р-1						
11. Укладка труб в каналы	1м	E9-2-1	1	2479	302,32	
Ø 1020x8	1 IVI	L)-2-1				
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1			1			
12. Монтаж фасонных частей:	1шт	E9-2-14				
отводы,тройники						
Ø 1020x8			6,3	50	38,415	
Состав бригады: монтажник наружных трубопроводов 4р-1, 3р-2						

13. Монтаж арматуры∅ 1020х8	ı	ı		, ,	
		E9-2-16	31	1	37,80
Состав бригады: монтажник наружных трубопроводов 5p-1,4p-1, 3p-1					
14. Неповоротная сварка труб	1стык	E22-2-2			
Ø 1020x8			2,9	72	25,46
Состав бригады: электросварщик 5р-1					
15. Первичное гидравлическое испытание на прочность	1м	E9-2-9			
Ø 1020x8			0,31	2479	93,72
Состав бригады: монтажник наружных трубопроводов 5р-1, 4р-2, 3р-2					
16. Гидроизоляция сварных стыков	1стык	E9-2-12			
Ø 1020x8			1,1	128	17,17
Состав бригады: изолировщик на термоизоляцию 4р-2, 3р-2					
17. Тепловая изоляция трубопроводов	1м	E9-2-13			
Ø 1020x8			0,83	2479	250,92
Состав бригады: изолировщик на термоизоляцию 4р-1, 2р-1					
18. Укладка плит перекрытия каналов	1м	E9-2-24	0,95	1757	203,55
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1					
19. Укладка плит перекрытий камер	1шт	E9-2-28	0,3	20	0,73
Состав бригады: монтажник наружных трубопроводов 4р-1, 3р-2					
20. Устройство гидроизоляции каналов	100м²	E9-2-24	0,28	5,18	0,18
Состав бригады: изолировщик на гидроизоляцию 4р-1, 3р-1, 2р-1					
21. Устройство гидроизоляции перекрытий камер Состав бригады: гидроизолировщик 4p-1	100м²	E11-37	11,5	370,8	520,02

1	2	3	4	5			
22. Обратная засыпка траншей и котлованов бульдозером	100м³	E2-1-34	0,66	0,66	16,55	1,33	0,11
Состав бригады: машинист 6р-1							
23. Окончательное испытание трубопроводов	1м	E9-2-9					
			0,16		2479	48,37	
Состав бригады: монтажник наружных трубопроводов 5р-1, 4р-1, 3р-2							
24. Промывка и хлорирование трубопроводов	1м	E9-2-9					
Ø 1020x8			0,16		2479	48,37	
Состав бригады: монтажник наружных трубопроводов 4р-1, 3р-2, 2р-1							
25. Планирование площадей бульдозером	1000м²	E2-1-36	0,49	0,49	2,10	0,13	0,13
Состав бригады: машинист 6р-1							
Bcero:						14011,31	4861,27
BCIO.						2241,80919	
Затраты труда на необъемные работы, выполняемые за счет накладных расходов, принимаемые 16%						28022,61	
от суммарной трудоемкости основных работ Затраты труда на подготовительные работы, принимаемые 8% от суммарной трудоемкости						1120,904595	

II захватка

Наименование		ЕНиР	Норма времени		Трудоемкость		
работ	изм.		чел.ч	маш.ч			
1	2	3	4	5	6	7	8
1. Отрывка траншей и котлованов эскаватором:		E2-1-10					
с погрузкой на транспорт	100м³		3,6	3,6	3739	2035,32	893,55
на вымет			2,9	2,9	4636	1322,33	467,65
Состав бригады: машинист 6р-2							
2. Устройство песчаного основания	1 m ³	E9-2-32	0,9		626	68,71	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1			,				
3. Монтаж ж/б лотков каналов	1м	E9-2-25	0,55		2161	144,95	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1							
4. Устройство днищ камер и дрен.колодцы	1шт	E9-2-28	0,3		13	0,48	
Состав бригады: монтажник наружных трубопроводов 5р-1, 4р-2 3р-2							
5. Устройство стен камер	1 m ³	E9-2-28	3		5,6	2,06	
Состав бригады: каменщики 4p-1, 2p-1							
6. Сборка труб в секции на бровке траншей	1м	E9-2-1					
Ø 377x9					1054	5,14	
Ø 529x6					1506	18,37	
Ø 630x8					394	5,77	

T 11					
Ø 720x9				932	17,05
Ø 920x8				916	23,46
Ø 1020x8			0,24	248	7,26
Состав бригады: монтажник наружных трубопроводов 6р-1, 4р-2, 3р-3					
7. Поворотная сварка труб	1стык	E22-2-2			
Ø 377x9				32	3,90
Ø 529x6				42	7,17
Ø 630x8				14	2,56
Ø 720x9				24	4,68
Ø 920x8				22	5,10
Ø 1020x8			2,2	8	2,15
Состав бригады: электросварщик 5р-1					
8. Укладка бетонных подушек под подвижные опоры	1шт	E9-2-28			
Ø 377x9				57	5,24
Ø 529x6				66	7,73
Ø 630x8				15	2,25
Ø 720x9				34	5,72
Ø 920x8				29	6,28
Ø 1020x8			60	7	2,07
Состав бригады: монтажник наружных трубопроводов 4р-1, 3р-2					
9. Устройство подвижных опор	1шт	E9-2-18			

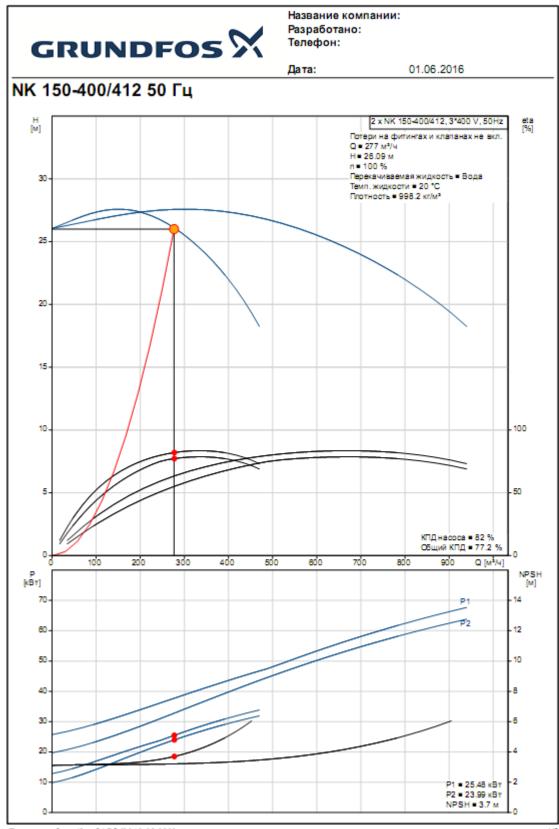
Ø 377x9						
Ø 37/X9				34	1,12	
Ø 529x6				46	1,51	
Ø 630x8				16	1,19	
Ø 720x9				28	2,60	
Ø 920x8				20	2,44	
Ø 1020x8			1,2	10	1,46	
Состав бригады: монтажник наружных трубопроводов 5р-1, 3р-1						
10. Устройство неподвижных опор	1шт	E9-2-18				
Ø 377x9				4	0,10	
Ø 529x6				4	0,13	
Ø 630x8				10	0,41	
Ø 720x9				10	0,51	
Ø 920x8				8	0,57	
Ø 1020x8			0,66	12	0,97	
Состав бригады: монтажник наружных трубопроводов 5р-1, 3р-1						
11. Укладка труб в каналы	1м	E9-2-1				
Ø 377x9				1054	30,85	
Ø 529x6				1506	75,30	
Ø 630x8				394	25,95	
Ø 720x9				932	75,01	
Ø 920x8				916	102,77	

Ø 1020x8				1	248	30,24
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1						
12. Монтаж фасонных частей:	1шт	E9-2-14				
отводы, тройники 377х9				4	0,47	
Ø 377x9				4	1,07	
Ø 529x6				10	3,29	
Ø 630x8				10	4,27	
Ø 720x9				8	5,37	
Ø 920x8			6,3	12	9,22	
Ø 1020x8						
13. Монтаж арматуры	1шт	E9-2-16				
Ø 377x9				2	1,41	
Ø 529x6				4	4,88	
Ø 630x8				2	3,29	
Ø 720x9				2	4,27	
Ø 920x8				4	12,68	
Ø 1020x8			31	2	7,56	
Состав бригады: монтажник наружных трубопроводов 5р-1,4р-1, 3р-1						
14. Неповоротная сварка труб	1стык	E22-2-2				
Ø 377x9				16	2,15	

Ø 529x6				12	2,63	
Ø 630x8				16	3,90	
Ø 720x9				16	4,10	
Ø 920x8				14	4,27	
Ø 1020x8			2,9	18	6,37	
Состав бригады: электросварщик 5р-1						
15. Первичное гидравлическое испытание на прочность	1м	E9-2-9				
Ø 377x9				1054	18,00	
Ø 529x6				1506	36,73	
Ø 630x8				394	10,57	
Ø 720x9				932	28,41	
Ø 1020x8				916	32,40	
Ø 1020x8			0,31	248	9,38	
Состав бригады: монтажник наружных трубопроводов 5р-1, 4р-2, 3р-2			,			
16. Гидроизоляция сварных стыков	1стык	E9-2-12		68	2,82	
Ø 377x9			0,27	70	4,61	
Ø 529x6				15	1,24	
Ø 630x8				42	3,90	
Ø 720x9				29	3,49	
Ø 920x8				10	1,39	
Ø 1020x8			1,1			

Состав бригады: изолировщик на термоизоляцию 4р-2, 3р-2							
17. Тепловая изоляция трубопроводов	1м	E9-2-13			1054	37,28	
Ø 377x9					1506	78,97	
Ø 529x6					394	24,50	
Ø 630x8					932	67,06	
Ø 720x9					916	82,66	
Ø 1020x8					248	25,10	
Ø 1020x8			0,83				
Состав бригады: изолировщик на термоизоляцию 4p-1, 2p-1					2161	250,36	
18. Укладка плит перекрытия каналов	1м	E9-2-24	0,95				
Состав бригады: монтажник наружных трубопроводов 5р-1, 4р-2, 3р-2, 2р-1					13	0,48	
19. Укладка плит перекрытий камер	1шт	E9-2-28	0,3				
Состав бригады: монтажник наружных трубопроводов 4р-1, 3р-2					5,18	0,18	
20. Устройство гидроизоляции каналов	100м²	E9-2-24	0,28				
Состав бригады: изолировщик на гидроизоляцию 4p-1, 3p-1, 2p-1					370,8	520,02	
21. Устройство гидроизоляции перекрытий камер	100м²	E11-37	11,5				
Состав бригады: гидроизолировщик 4р-1							
22. Обратная засыпка траншей и котлованов бульдозером	100м³	E2-1-34	0,66	0,66	4,60	0,37	0,03
Состав бригады: машинист 6р-1							
23. Окончательное испытание трубопроводов	1м	E9-2-9					
Ø 377x9					1054	18,00	
Ø 529x6					1506	51,42	

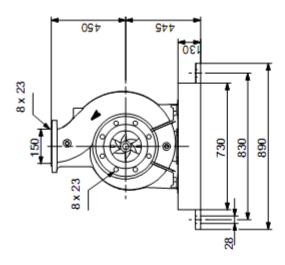
							ı
Ø 630x8					394	14,90	
Ø 720x9					932	35,23	
Ø 920x8					916	34,63	
Ø 1020x8			0,16		248	9,38	
Состав бригады: монтажник наружных трубопроводов 5р-1, 4р-1, 3р-2			,				
24. Промывка и хлорирование трубопроводов	1м	E9-2-9					
Ø 377x9					1054		
Ø 529x6					1506		
Ø 630x8					394		
Ø 720x9					932		
Ø 1020x8					916	15,64	
Ø 1020x8			0,16		248	4,84	
Состав бригады: монтажник наружных трубопроводов 4р-1, 3р-2, 2р-1							
25. Планирование площадей бульдозером	1000м²	E2-1-36	0,49	0,49	17,28	1,03	1,03
Состав бригады: машинист 6р-1							
Bcero:						5593,06	1362,27
Затраты труда на необъемные работы, выполняемые засчет накладных расходов, принимаемые 16%						894,8898721	
от суммарной трудоемкости основных работ						11186,12	
Затраты труда на подготовительные работы, принимаемые 8% от суммарной трудоемкости						447,444936	

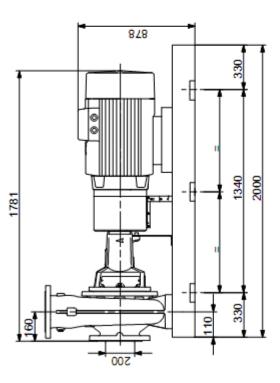

Приложение 2

Характеристика насоса 1Д1600-90а

Продолжение приложения А Характеристика насоса (агрегота) 11/1600–90 Частота бращения 24,2 с⁻¹ (n=1450ob/мин) Хидкость – вода, платностью 1000кг/м³

+ – данные для насаса

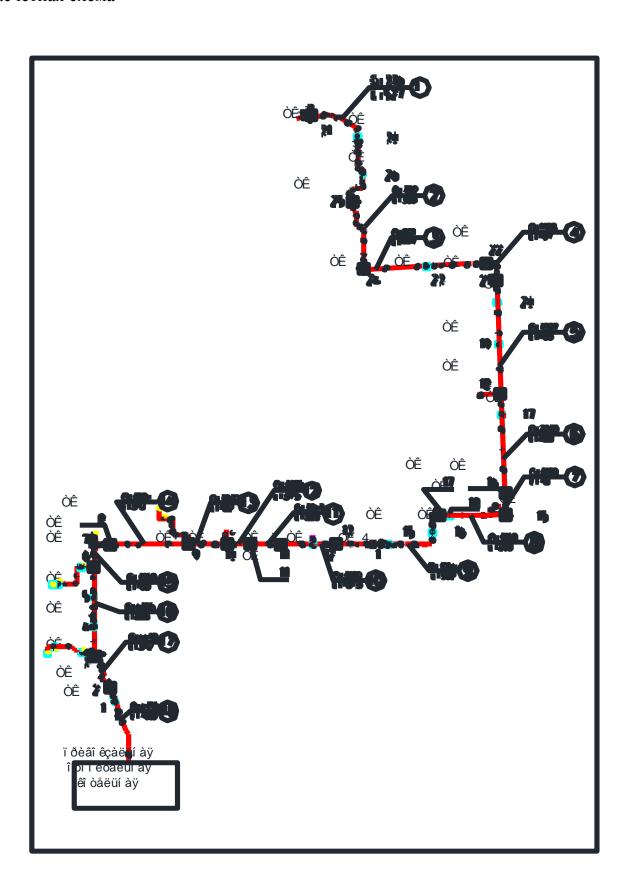




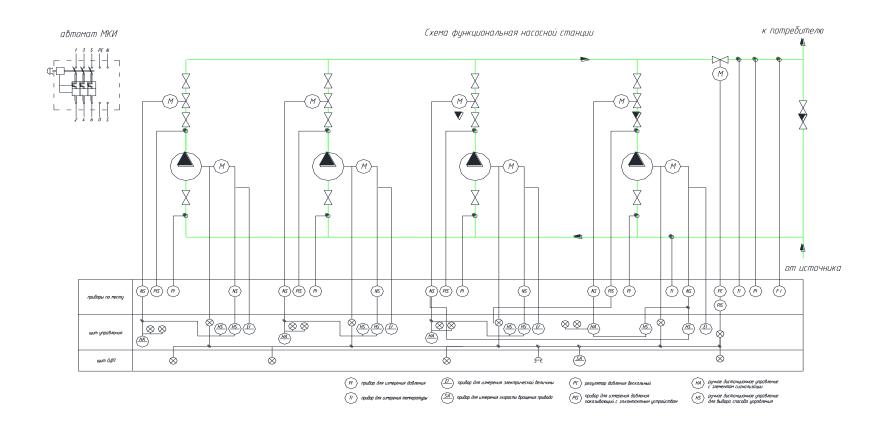
Название компании: Разработано: Телефон:

Дата: 01.06.2016

NK 150-400/412 50 Гц



Внимание! Все размеры даны в[мм], если не указано иное. Правовая оговорка: На данном упрощённом габаритном чертеже представлены не все компоненты.


Приложение 3

Расчётная схема

Приложение 4

Автоматизация насосной станции

