МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт машиностроения (наименование института полностью)

Кафедра <u>Проектирование и эксплуатация автомобилей</u> (наименование)

23.05.01 Наземные транспортно-технологические средства (код и наименование направления подготовки, специальности)

Автомобили и тракторы

(направленность (профиль)/специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНЫЙ ПРОЕКТ)

Модернизация приводов ведущих колес автомобиля X-Ray с применением электронного блокирующего дифференциала

Студент	М.О. Дубенко				
_	(И.О. Фамилия)	(личная подпись)			
Руководитель	канд. техн. наук, доцен	т И.Р. Галиев			
_	(ученая степень, звание, И.	О. Фамилия)			
Консультанты _	канд. техн. наук, доцент А.Н. Москалюк				
_	(ученая степень, звание, И.О. Фамилия)				
	канд. экон. наук Л.Ј	I. Чумаков			
_	(ученая степень, звание, И.О. Фамилия)				
_	канд. пед. наук, доцент	С.А. Гудкова			
_	(ученая степень, звание, И.	О. Фамилия)			

АННОТАЦИЯ

Для прибыли максимальной достижения И повышения конкурентоспособности автомобильного производства необходимо повышать качество автомобилей, а также налаживать производство автомобилей для разных слоев населения, т.е. занять все ниши мирового рынка автомобилей. В проекте разработаны И спроектированы ДИПЛОМНОМ ведущих колес, для установки его на переднеприводный автомобиль 2-го класса, а именно предлагается установка принудительного электронного блокирующего дифференциала с управлением из салона автомобиля.

В конструкторской части проведены расчеты на прочность, и расчет тягово-динамических параметров автомобиля.

В разделе промышленная безопасность и экология проведены организационно — технические мероприятия по созданию безопасных условий труда при сборке приводов ведущих колес.

расчет экономической части проведен затрат рассчитана себестоимость модернизированной конструкции приводов ведущих колес, рассчитана коммерческая эффективность проекта, а также на основе сравнения затрат на производство и полученной себестоимости изготовления, сделан вывод о целесообразности легковой автомобиль установки на второго класса модернизированных приводов ведущих колес. На основании проведенных расчетов сделан вывод.

ABSTRACT

In order to achieve maximum profit and increase the competitiveness of automobile production, it is necessary to improve the quality of cars, as well as to establish the production of cars for different segments of the population, i.e. to occupy all niches of the world car market. In this diploma project developed and designed the drive wheels, to install it on the front-wheel drive car of the 2nd class, namely, it is proposed to install a forced electronic locking differential with control from the car interior.

In the construction part of the strength calculations, and the calculation of the traction-dynamic parameters of the car.

In the section industrial safety and ecology, organizational and technical measures have been taken to create safe working conditions for the Assembly of drive wheels.

In the economic part of the calculation of costs and calculated the cost of the modernized design of the drive wheels, calculated the commercial efficiency of the project, as well as on the basis of a comparison of production costs and the resulting cost of production, it is concluded that it is advisable to install on a passenger car second class upgraded drive wheels. On the basis of the calculations concluded.

СОДЕРЖАНИЕ

Cip
ВВЕДЕНИЕ5
1 Состояние вопроса
1.1 Назначение и классификация приводов6
1.2 Требования к конструкции привода6
1.3 Выбор и обоснование вносимых изменений в конструкцию
приводов7
1.4 Классификация караднных шарниров11
1.5 Выбор и обоснование вносимых изменений в конструкцию приводов 23
2 Конструкторская часть24
2.1 Тягово-динамический расчет автомобиля24
2.2 Расчет деталей привода ведущих колес
3 Безопасность и экологичность объекта51
4 Экономическая эффективность проекта64
ЗАКЛЮЧЕНИЕ80
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ81
ПРИЛОЖЕНИЕ А Графики тягового расчета83

ВВЕДЕНИЕ

Автомобильный транспорт имеет значительный удельный вес в общей транспортной системе России, на его долю приходится более 1/3 грузовых перевозок.

Основными тенденциями развития автомобильной промышленности являются следующие:

- увеличение производства легковых автомобилей с дизельными двигателями и повышение экономичности бензиновых двигателей,
- расширение производства автомобилей работающих на сжатом и сжимаемом газе,
- снижение удельного расхода топлива за счет совершенствования конструкции двигателя и коробки передач, применения электронных устройств, улучшение аэродинамики автомобиля,
- снижение удельной металлоемкости, увеличение ресурса работы и уменьшение трудоемкости технического обслуживания автомобиля,
- повышение активной безопасности автомобиля, путем применения антиблокировочных систем и увеличения устойчивости автомобиля путем применения гидропневматических элементов подвески с управлением электроникой,
- повышение пассивной безопасности автомобиля, достигаемая оптимизацией конструкции кузова и применением подушек безопасности, предохраняющих водителя и пассажира от лобовых и боковых ударов.

Основной целью дипломного проекта - повышение ходовых качеств автомобиля при движении в различных дорожных условиях, что повысит универсальность автомобиля при минимальных констуктивных изменениях и сохранении общей компоновки всех узлов и агрегатов ходовой части автомобиля и его трансмиссии.

1 СОСТОЯНИЕ ВОПРОСА

1.1 Назначение приводов

Привод автомобиля предназначен для передачи крутящего момента от вторичного вала основной коробки передач под переменным углом. Карданная передача состоит из передней и задней осей, промежуточных опор, поперечин с вилками и шлицами, Соединенных цепными подшипниками, эластичных муфт. Шарнирные вилки и кресты позволяют передавать крутящий момент на шлицах с переменным углом, компенсируя линейное смещение трансмиссии по отношению к кузову, в результате вибрации кузова получается линейное изменение расстояния от коробки передач до задней оси. переменная эластичная муфта сглаживает пульсацию крутящего момента в трансмиссии, особенно когда педаль сцепления используется вместе.[1]

1.2 Требования предъявляемые к конструкции приводов.

Представленные в настоящий момент на мировом авторынке модели, имеет три разновидности привода задний передний и полный, они различаются по тому, какие оси является ведущей. Переднеприводные машины - это автомобили в которых передние колёса одновременно являются ведущими и управляющими, крутящий момент создаваемый двигателем автомобиля передаётся переднюю ось. Первый переднеприводный автомобиль появился в 1929 году, а настояший момент подобная конструкция является встроенной, преимуществам переднего привода относится надежность в сравнении с задним и полным коэффициент полезного действия двигателя в автомобиле с передним приводом выше, благодаря малой потери энергии при передаче от двигателя к колесам, переднеприводные автомобили отличает лучшая управляемость и хорошую чувствительность рулевого механизма, отсутствие карданного вала в переднеприводных автомобилях позволяет создать более просторный салон. К переднего привода относятся более сложная требующая минусам дорогостоящего ремонта конструкции, ощутимая вибрация от силового агрегата и возможная буксовка передних колес при резком разгоне автомобиля. В автомобилях с задним приводом ведущими являются задние колёса, которые приводятся в движение в результате карданной передачи, такая конструкция обеспечивает динамическую нагрузку на заднюю ось, благодаря чему, автомобиль характеризуется лучшей проходимостью, исключением является скользкая заснеженная дорога, где предпочтительнее переднеприводный автомобиль.

Машинами с задним приводом легче управлять в случае возникновения заноса, а сама конструкция привода является более надежной и легче поддается ремонту и техобслуживанию. Значимым минусом заднеприводных автомобилей является необходимость туннеля, что уменьшает пространство в салоне машины, в полноприводных автомобилях ведущими являются все колёса, полный привод может быть подключаемым - при обычном эксплуатации ведущими является только одна ось, а при необходимости подключается все колёса, постоянный полный привод использует все колёса, в качестве ведущих при всех режимах работы существует также, нечто среднее между постоянным и подключаемым приводом это полный привод по требованию в этой разновидности переключением полноприводный режим происходит автоматически, плюсом полноприводных автомобилей относятся повышенная проходимость и хорошая устойчивость на скользкой дороги, а к минусам - расход топлива и усложненная конструкция. Автомобили с задним и полным приводом является более быстрыми именно поэтому эти типы привода устанавливают на спортивные автомобили.

1.3 Описание конструкции приводов.

Приводы колес состоят из карданных валов, карданных шарниров равных угловых скоростей. Такой вид конструкции приводов даёт возможность равномерного вращения ведомых элементов ходовой части автомобиля. [4]

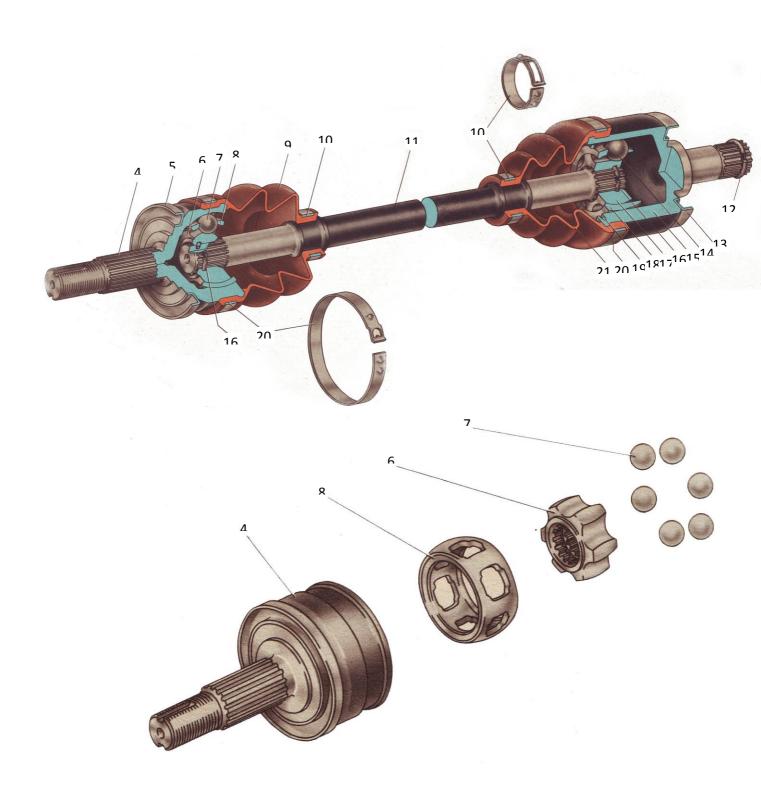


Рисунок 1 - Привод к ведущим и управляемым колесам легкового автомобиля с карданными шарнирами равных угловых скоростей: 4 - Корпус наружного шарнира; 5,13 - Грязеотражатель; 6,17 - Обойма шарнира; 7,14 - Шарик; 8,18 - Сепаратор; 9,21 - Защитный чехол; 10 - Внутренний хомут; 11 - Вал привода колеса; 12 - Стопорное кольцо зубчатого колеса полуоси; 15 - Корпус внутреннего шарнира; 16 - Стопорное кольцо; 19 - Фиксатор внутреннего шарнира; 20 - Наружный хомут чехла;

Универсальные шарниры обычно используются для передачи механической энергии между двумя валами, когда их оси находятся под углом друг другу, эти шарниры были изобретены много веков назад, несмотря на то, что механизм универсальных шарниров кажется простым, физическая основа этого механизма довольно сложная и интересная, универсальный шарнир включает три основных элемента вилки и крестовину.

Рассмотрим различные варианты передачи механической энергии, в первом случае входной и выходной валы соединены по прямой линии в этом случае их движение очень простое ведущий вал поворачивает крестовину, а крестовина поворачивает ведомый вал, очевидно, что ведущий и ведомый вал вращается с одинаковой скоростью, теперь посмотрим, что произойдет, если оси находятся под углом предположим, что ведущий вал движется с постоянной скоростью, здесь движение происходит совсем по-другому.

Обратите внимание на поведение крест на крест противоположнолежащих концов крестовины, как видите одни концы соединённые с ведущим валом вращается в вертикальной плоскости а другие концы соединённые с ведомым валом прощаются в другой наклонной плоскости.

Чтобы одни концы двигались в наклонной плоскости крестовина должна поворачиваться по оси соединяющий другие концы, если вы понаблюдайте за отметки на крестовине вы сможете увидеть как это происходит, чтобы принцип вращения крестовины стал понятнее, рассмотрим гипотетически пример, где вращения первой оси блокирована понятно, что без такого вращения движения универсального шарнира под углом невозможно.

Поворот крестовины значительно сказывается на скорости вращения ведомого вала, ясно, что когда крестовина одновременно поворачивается и вращается скорость ведомого вала будет меняться. Первые 90 градусов вращения ведущего вала вторая ось также вращается достигает максимального угла поворота, поворот вперед способствуют вращения ведомого вала и меняет его характер, но при прохождении следующих 90 градусов первая ось должна

вернуться в исходное положение, поворот назад будет иметь обратное влияние на вращения ведомого вала. Скорость ведомого вала можно рассчитать просто взять производную по времени график и перемещение, ясно, что скорость ведомого вала меняется, это означает, что универсальный шарнир не обеспечивает постоянную скорость вращения, такое неравномерное вращение делает бесполезным использование универсального шарнира в исходном виде. Однако можно добиться постоянной скорости добавить ещё один шарнир, как показано на модели, если при постоянной скорости ведущего вала скорость ведомого вала колеблется, то переменная скорость ведущего вала обеспечит постоянную скорость ведомого, таким образом двойной универсальный шарнир действует как шарнир с постоянной угловой скоростью. ШРУС подвески является одним из ключевых узлов, которые относятся, именно к элементам передней подвески того или иного автомобиля. Заметим, что когда-то в прошлые времена и вот эти компоненты часто использовали даже в задней подвески наравне с передними элементами, однако массового характера установки шарниров на заднюю подвеску не получила, из-за нерентабельности или нецелесообразности в плане затрат.

Сам же по себе ШРУС представляет из себя специально движущийся в разных плоскостях подшипник, который отвечает за передачу момента кручения и как следствие движения колёс транспортного средства. Таким образом как видим шарнир - это действительно важный узел ходовой части автомобиля, который является связующим звеном между колесом и трансмиссией, обеспечивающий передачу крутящего момента к ведущей оси при изменении угла поворота, а также удержание его в правильной плоскости.

1.4 Классификация карданных шарниров

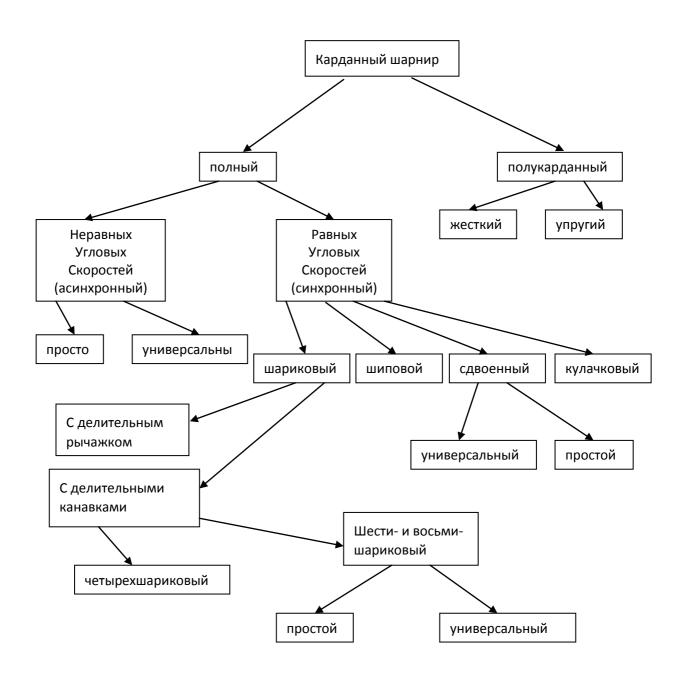


Рисунок 2 - Классификация карданных шарниров

И так, так что же более доступным языком можно сказать, что называется шарниром или ШРУСом подвески. ШРУС - это шарнир равных угловых скоростей, то есть устройство, которое обеспечивает передачу созданного крутящего момента коробки передач к ведущим колесам машины. Главной отличительной особенностью ШРУСа от заднего моста, который всегда функционируют только прямолинейно является возможность обеспечивать поворот колёс на 65-70 градусов. А теперь давайте более подробно рассмотрим

особенности и разновидности их строения ШРУСа подвески. Благодаря шарнирам, которые устанавливается также на некоторые полноприводные автомобили с независимой подвеской происходит передача крутящего момента от двигателя к трансмиссии, а затем на ведущие колёса. ШРУСы, они не только приводят колёса в движение, ну и ещё позволяют водителю ими управлять, при этом имея очень компактный размер и небольшую массу. Что касается ШРУСов расположенных на заднеприводном автомобиле с приводным мостом, то они достаточно сильно ограничены по своему функционалу, так как они не имеют возможности управлять колёсами. Кроме того отметим, что данный механизм выполняет сложные работы и постоянно функционируют под сильной нагрузкой. На сегодняшний день благодаря технологиям автомобилестроения, ШРУСы передней подвески в плане качества и надежности продвинулись очень далеко вперёд, поэтому срок службы некоторых типов шарниров порой может достигать сотен тысяч километров пробега. Детально рассмотрим основные разновидности ШРУСов автомобильной подвески: сухариковые типы или сухариковый ВИД зачастую используются только большегрузных на автомобилях на примере крупнотоннажных грузовиков и пассажирских автобусов, второй тип или вид это трипоидный используется во внутренней конструкции транспортного средства в связи с большим осевым перемещением.

Третий вид - это спаренный угловой карданный, практически не популярен среди автопроизводителей в связи со своей сложностью в плане строения и довольно дорого его производить, заключительный четвёртый вид ШРУСов - это шариковый, считается самым распространённым шарниром автопроизводителей на сегодняшний день. Шариковый ШРУС является основным шарниром в переднеприводных автомобилях. Как мы ответили ранее ШРУСа на сегодняшний основной тип день автопроизводителей шариковый, поэтому мы более подробно рассмотрим именно его строение, конструкция шарового шарнира является сухим по принципу работы, то есть элементы ШРУСа они не находятся в масле в отличие от заднего моста, они лишь компануются специальной смазкой наподобие солидолом. Как некоторым может показаться на первый взгляд, такой узел подвески, как шарнир является чем-то сложным по своему устройству, однако это совсем не так, механизм до

боли прост, типовой ШРУС передней подвески состоит из четырёх элементов, которые обеспечивают оптимальное функционирование механизма, первый идёт корпус шарнира, которые изготавливаются в форме сферической чаши она то и устанавливается на приводной вал автомобиля.

Затем идет нижняя часть ШРУСа, которая называется сферическим кулачком с ведущим валом, следующим компонентом типового шарнира является сепаратор, который изготавливается в форме кольца с отверстиями, в кстатии располагаются И удерживаются них специальные шарики. Завершающим элементом ШРУСа всегда идут металлические шарики про которые только что поговорили, количество которых зачастую составляет не менее 6 единиц. Именно благодаря шарикам, которые находятся в сепараторе шарнира передней подвески такой тип ШРУСа и получил название шариковый. Как видим строение конструкции типового шарнира приводного вала является до боли простым, при этом механизм обладает высокой плавностью в процессе функционирования, благодаря чему транспортное средство способно очень плавно развивать скорость без толчков и рывков по сравнению с карданной передачей, в которой плавность во время работы, как таковой отсутствует, исправный ШРУС всегда обеспечивает плавность хода.

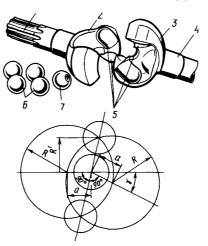


Рисунок 3 - Карданный шарнир типа "Вейс"

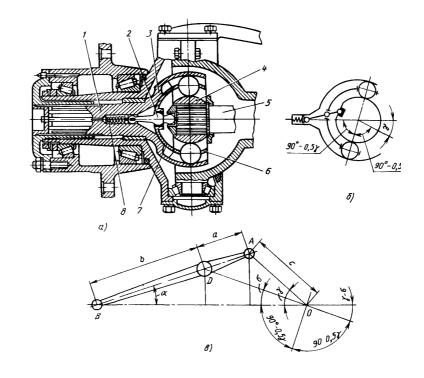


Рисунок 4 - Карданный шарнир типа "Рцепп"

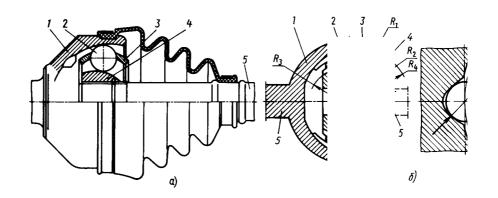


Рисунок 5 - Карданный шарнир типа "Бирфильд"

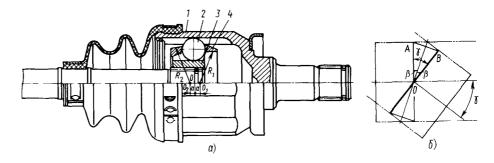


Рисунок 6 - Карданный шарнир типа "ГНК"

Переднеприводные модели, где главная передача добавлена в конструкцию коробки передач, задают маршруты движения параллельно, так как нет необходимости менять угол направления.

В ряде грузовых автомобилей используются двухступенчатые редукторы. Примечательно, что их конструкция может быть разной, но наиболее распространенной является так называемая конструкция, в которой используется центральная коробка передач и два колеса (горизонтальные). Такая конструкция позволяет значительно увеличить крутящий момент и, следовательно, тяговое усилие на колеса.

Свойства коробки передач таковы, что она равномерно делит вращение на два ведущих колеса. При прямой линии движения, это нормальное состояние, но при прохождении поворотов колеса на одной оси проходят разные расстояния, поэтому нужно менять скорость вращения пары. В этой части, функции дифференциала используются в конструкции трансмиссии (которая устанавливается на ведомую шестерню). В результате основная трансмиссия питает вращение элементов привода не непосредственно, но через дифференциал.

Главная передача делится по типу и расположение зубчатых колес.

Существуют следующие типы главных передач: конические и гипоидные, одинарные, двойные, цилиндрические и червячные, центральные и двойные по расстоянию, двойные и двухступенчатые.

Основные характеристики основных типов зубчатых колес и модель зацепления зубьев между ними. Следующий тип коробки передач в основном используется в автомобилях:

Цилиндрический

Конический

Гипоидный

Червячный

Цилиндрическая шестерня используется в главных передачах и переднеприводных автомобилях. Нет необходимости менять направление вращения и позволяет использовать такую коробку передач. Зубья на шестерне косые или Шевронные.

Передаточное отношение такой коробки передач находится в диапазоне 3,5-4,2. Большое передаточное число не используется, так как необходимо увеличить размер шестерни, это сопровождается увеличением шума передачи.

Конические, гипоидные и червячные шестерни используются там, где необходимо только изменить передаточное отношение, но изменить направление вращения.

Конические редукторы часто используются на грузовых автомобилях. Их свойства сводятся к тому, что оси зубчатых колес пересекаются, то есть они находятся на одном уровне. Это зубчатые колеса с использованием косых или криволинейных зубьев. На легковых автомобилях этот тип коробки передач не используется из-за значительных габаритных размеров и повышенного шума.

Одинарный механизм главной передачи - это основная, используемая в легковых автомобилях и легких грузовых автомобилях. Основная гипоидная передача широко используется, она имеет несколько важных преимуществ по сравнению с основной конической: повышенная несущая способность напряжения, большая плавность бесшумность контактного И работы. Использование гипоидной основной передачи обусловлено наличием гипоидного смещения Е, что является фактором, расширяющим возможности компоновки.

Основная трансмиссионная конструкция привода колес состоит из пары конических зубчатых колес. Ведущая шестерня выполнена в виде приводного вала оборудования, запускающего оборудование, оборудование выполнено в виде конического зубчатого венца, который затем привинчивается к дифференциальному фланцу.

Конический дифференциал с двумя сателлитными шестернями, которые установлены на валу и которые удерживаются в корпусе дифференциала с помощью стопорного кольца. На участке, где канавки прорезаются, там лучше смазка на поверхности, которые соприкасаются друг с другом, особенно на сателлитах, и на участке.

Зубчатые колеса среднего вала упираются на конце шайб, и выбрать по толщине осевое смещение всех зубчатых колес нельзя, т.е. нельзя регулировать; оно не должно быть больше 0. 1 мм.

Корпус дифференциала выполнен из конических роликов, в качестве опор, а нагрузка на них так же регулируется подбором толщины регулировочного кольца.

Виды блокировок дифференциала

Блокировка дифференциала — это дополнительное конструктивное решение, позволяющее компенсировать его основные недостатки. Если на сухой ровной дороге дифференциал обеспечивает безопасное маневрирование и комфорт, то при выезде на пересеченную местность или во время движения по скользкому дорожному покрытию он может вообще лишить автомобиль возможности передвигаться. Чтобы этого не происходило, необходимо ограничить функциональность узла или полностью отключить его на некоторое время. Но методы блокировки дифференциала настолько разнообразны, что нужно рассмотреть основные из них по отдельности.

Главный недостаток дифференциала

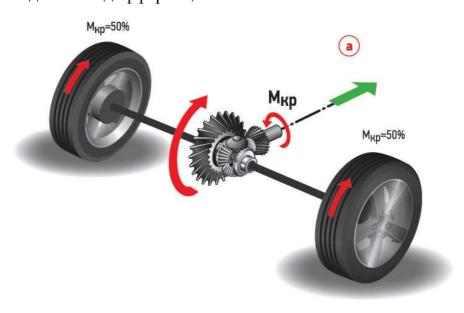


Рисунок 7 - Распределение крутящего момента дифференциалом

Дифференциал используется для распределения крутящего момента от главной передачи между полуосями ведущих колес. Крутящий момент постоянен, но отношение его величины к ведущим колесам в определенных ситуациях должно быть различным. Эта особенность важна, когда автомобиль входит в поворот, внешнее колесо движется по большему радиусу и, как следствие, проходит большее расстояние за тот же промежуток времени по

внутренней стороне колеса. Для этого необходимо увеличить угловую скорость внешней стороны колеса в момент прохождения поворотов.

Из-за изменения направления движения, центра тяжести транспортного средства, сами двигаются в сторону поворота. В результате сопротивление качению увеличивается, и внутренняя часть колеса находится в большем заряде, чем другая. Он снижает скорость, вдобавок загружает свою половину оси. На этом этапе сателлиты начинают вращаться в корпусе дифференциала за счет уменьшения угловой скорости более нагруженной половины оси внутри внешней стороне колеса увеличивается угловая пропорционально величине внутренней части колеса, чтобы уменьшить ее. Благодаря точному соотношению угловых скоростей, автомобиль становится плавным, без скачков и заносов. Тот же принцип распределения пар применяется, когда одно из колес попадает в грязь, на лед или выбоину. Он получает больший крутящий момент, ослабляя силу тяги колеса, которое находится в хорошем сцеплении с дорогой. Критическая ситуация может возникнуть при распределении от 0% до 100%: автомобиль перестает двигаться. Для того чтобы автомобиль двигался, необходимо перераспределить крутящий момент, придавая большее значение нагрузке на колесо. Это невозможно с дифференциальной операцией. Поэтому ОН частично ИЛИ полностью блокируется.

Тип блокировки

Вы можете заблокировать функционирование механизма, чтобы подключить непосредственно к нагрузке половины оси, или ограничив способность вращаться сателлиты.

Замок имеет следующий тип:

Полный: значение передаваемого крутящего момента достигает 100 %. Детали узла соединены жестко, что делает невозможным выполнение их функций.

Парциальная: пара сил в определенной пропорции распределяется по дифференциалу силы и ограничивает действие ее составляющих.

В зависимости от степени вовлеченности водителя блокировка дифференциала может выполняться вручную или автоматически:

Водитель сделал, чтобы принудить замок по мере необходимости (ручной замок). Для этого используйте кулачковый дифференциал.

Автоблокировка дифференциала накладывает ограничения на работу автоматики (auto-lock). Необходимость блокировки и ее степень определяются разностью моментов в полуосях ведущих колес или их угловой скоростью. Некоторые разновидности систем такого типа используют датчик блокировки дифференциала.

Виды блокировки устройств

Устройство, которое блокирует узел, зависит от его типа и используемого механизма. Различная функциональность накладывает ограничения и определяет, можно ли ее использовать в дифференциале от колеса к колесу или от центра к центру.

Принудительная ручная блокировка осуществляется с помощью кулачковой муфты (рис. выделено желтым кружком). В муфте осуществляется полная блокировка механизма, жестко соединяющего корпус с нагрузкой на половину оси. Кулачковые дифференциальные узлы следующие типы узлов: механические; гидравлические; пневматические; электрические.

Которые включаются с помощью механизма для рычага или специальной кнопки на панели управления (для электропривода). Благодаря своей универсальности кулачковый дифференциал используется в межосевых межколесных механизмах.

Автоблокировочный дифференциал и его варианты

В устройстве автоблокировки (автоматики) дифференциала используется принцип увеличения сил трения за счет изменения условий нагружения полуосей ведущих колес. Поэтому его другое название — "дифференциал повышенного трения" или LSD (Limited Slip Differential).

Рисунок 8 - Червячный дифференциал повышенного трения Torsen

Дифференциал с ограниченным скольжением - бывает четырех основных типов, в зависимости от способа увеличения трения: дисковый; червячный; вязкостная муфта; электронный замок.

Дисковые тормоза-дифференциал с ограниченным скольжением, который использует диски сцепления, использует принцип автоматической блокировки при изменении угловой скорости штока: большая разница, больше крутящий момент.

Рисунок 9 - Дисковый дифференциал

В LSD этого вида трение создается между пакетами фрикционных дисков. Один фрикционный пакет имеет жесткое соединение с чашкой дифференциала, другие — с полуосями. При равных скоростях вращения ведущих колес фрикционные пакеты вращаются с одинаковой скоростью. Когда угловая скорость меняется, диски ускоряющейся полуоси передают часть крутящего

момента на другую полуось (частичная блокировка) за счет увеличивающейся силы трения с фрикционным пакетом корпуса (чашки). Степень сжатия в дисковом дифференциале бывает постоянная (осуществляемая пружинами) или переменная (регулируемая гидроприводом).

Сателлиты червячной передачи и полуоси червячной передачи широко использовались для создания ЛСД, она блокировалась из-за разницы крутящих моментов.

Такая система ЛСД с червячным приводом называется torque sensing, или Torsen small. Принцип работы червячного механизма предельно прост: увеличение крутящего момента на одной полуоси приводит к частичной блокировке и передаче его на другую полуось. При этом никаких дополнительных систем или узлов не потребуется: червячный узел является началом самоблокирующегося из-за свойств привода, при которых червячная передача не может приводиться в движение другой шестерней. Червячный привод используется в межколесных и межосевых дифференциалах для различных типов машин.

Вязкостная муфта вязкостная муфта состоит из набора плотно расположенных между собой перфорированных дисков, помещенных в герметичный корпус с жидким кремнием, Соединенных с чашкой и приводным валом.

Рисунок 10 – Вискомуфта

Если угловые скорости равны, то узел работает нормально. Для блокировки происходит увеличение скорости вращения вала: диски, на которых происходит увеличение скорости вращения и, смешиваясь силикон, происходит его затвердевание. Чашечка диска должна принимать и передавать крутящий момент на другой вал, увеличивая его тяговую энергию. В качестве гостя он выполняет функцию блокировки viscomuft, большого габаритного размера и используется в межосевых дифференциалах. Также вязкий композитор может работать на полноприводном автомобиле с дифференциалом, полностью отображающим его функциональность. Но у него есть и серьезный недостаток: возможен перегрев и частота несовместимости с системой ABS. Это привело к тому, что в современном автомобиле вязкостная муфта используется редко.

Электронный замок-это дифференциал с высоким коэффициентом трения, в нем используется электронная система блокировки, обратная связь изменяет угловую скорость ведущих колес. Дифференциальное управление осуществляется с помощью программного обеспечения. У вас увеличивается скорость вращения колеса, давление, создаваемое тормозной системой, и уменьшается его скорость. В этом случае тяговая мощность будет выше, а крутящий момент передается на другое колесо. Таким образом, дифференциал не имеет дополнительных элементов и не ограничивается тем, что он не является гостевым базовым. Перераспределение крутящего момента и выравнивание угловой скорости осуществляется под действием тормозной системы, которая программно управляется противоскользящей системой.

В совокупности блокировка дифференциала является ключевой функцией, обеспечивающей безопасность дорожного движения и улучшающей управление автомобилем в критических ситуациях. Возможность автоматической блокировки ведущего колеса или добавление дополнительных ступеней при смене дорожного покрытия.

1.5 Выбор и обоснование вносимых изменений в конструкцию приводов

Основной задачей проекта является улучшение ходовых качеств при сохранении общей компоновочной схемы и при минимальных изменениях конструкции приводов ведущих колес. Данная цель достигается внедрением блокировки дифференциала в приводе передних ведущих колес, что дает повышенную проходимость автомобиля, которую можно применить включив из салона данную блокировку нажатием кнопки. Блокировка включается посредством электромагнита, который и осуществляет блокировку дифференциала.

2 КОНСТРУКТОРСКАЯ ЧАСТЬ

«2.1 Тягово-динамический расчет автомобиля

2.1.1 Исходные данные

Число ведущих колес
Собственная масса, кг
Количество мест
Максимальная скорость, м/с
Максимальная частота вращения колен. вала, рад/с $\varpi_{max} = 617,5$
Минимальная частота вращения колен. вала, рад/с $\varpi_{min}=104,7$
Коэффициент аэродинамического сопротивления $C_x = 0.30$
Величина максимально преодолеваемого подъема $\alpha_{\max} = 0.28$
Коэффициент полезного действия трансмиссии $\eta_{TP} = 0.91$
Площадь поперечного сечения, м ²
Коэффициент сопротивления качению
Число передач в коробке передач
Распределение массы автомобиля по осям, %:
передняя ось
задняя ось
Плотность воздуха, кг/м 3
Плотность топлива, кг/л
2.1.2. Подготовка исходных данных для тягового расчёта
а) Определение полного веса и его распределение по осям
$G_A = G_0 + G_{II} + G_{E}, \tag{2.1}$
где G_o - собственный вес автомобиля;
G_n - вес пассажиров;
G_{δ} - вес багажа;»[2]

$$\ll G_0 = m_0 \cdot g = 1206 \cdot 9,807 = 11827 \text{ H}$$
 (2.2)

$$G_n = G_{n_1} \cdot 5 = m_{n_1} \cdot g \cdot 5 = 75 \cdot 9,807 \cdot 5 = 3678 \text{ H}$$
 (2.3)

$$G_{E} = G_{E1} \cdot 5 = m_{E1} \cdot g \cdot 5 = 10 \cdot 9,807 \cdot 5 = 490 \text{ H}$$
 (2.4)

$$G_{A} = 11827 + 3678 + 490 = 15995 \text{ H}$$
 (2.5)

$$G_1 = G_A \cdot 51 = 15995 \cdot 51 = 8158 \text{ H}$$
 (2.6)

$$G_2 = G_A \cdot 49 = 15995 \cdot 49 = 7838 \text{ H}$$
 (2.7)

б) Подбор шин

Шины выбираются по нагрузке, приходящейся на колесо с помощью «Краткого автомобильного справочника».

На автомобиле установлены радиальные шины 185/65 R15.

$$r_{\kappa} = r_{CT} = (0.5 \cdot d + \kappa \cdot \lambda \cdot B) \cdot 10^{-3}, \tag{2.8}$$

где r_{κ} – радиус качения колеса;

 r_{CT} — статический радиус колеса;

B = 185 - ширина профиля, мм;

 $\kappa = 0.65$ — отношение высоты профиля к ширине профиля;

d = 381 – посадочный диаметр, мм;

 $\lambda = 0.85$ – коэффициент типа шины.

$$r_K = r_{CT} = (0.5 \cdot 381 + 0.65 \cdot 0.85 \cdot 185) \cdot 10^{-3} = 0.293 \text{ m}$$
 (2.9)

2.1.3. Определение передаточного числа главной передачи

$$U_0 = \frac{r_K}{U_K} \cdot \frac{\omega_{MAX}}{V_{MAX}}, \qquad (2.10)$$

где: $U_{\scriptscriptstyle K}$ - передаточное число высшей передачи в коробке передач, на которой обеспечивается максимальная скорость.

Примем значение передаточное число высшей передачи КП равным 0,784.

$$U_0 = (0.293 \cdot 617.5) / (0.784 \cdot 51.39) = 3.938$$
 (2.11) »[2]

«2.1.4. Внешняя скоростная характеристика двигателя

Определяем мощность двигателя, обеспечивающую движение с заданной максимальной скоростью при заданном дорожном сопротивлении.

$$N_{V} = \frac{1}{\eta_{TP}} \cdot \left(G_{A} \cdot \psi_{V} \cdot V_{MAX} + \frac{C_{X} \cdot \rho}{2} \cdot H \cdot V_{MAX}^{3} \right), \tag{2.12}$$

где: ψ_v - коэффициент сопротивления дороги при максимальной скорости автомобиля.

Для легковых автомобилей принимается, что максимальная скорость достигается на прямолинейном участке, из чего следует, что:

$$\psi_{V} = f_{0} \cdot \left(1 + \frac{V_{MAX}^{2}}{2000} \right) \tag{2.13}$$

$$\psi_{V} = 0.012 \cdot (1 + 51.39^{2} / 2000) = 0.028$$

$$N_{V} = (15995 \cdot 0.028 \cdot 51.39 + 0.30 \cdot 1.293 \cdot 2.00 \cdot 51.39^{3} / 2) / 0.91 = 82999 \text{ BT}$$

$$N_{MAX} = \frac{N_{V}}{a \cdot \lambda + b \cdot \lambda^{2} - c \cdot \lambda^{3}},$$
(2.14)

где: a, b, c – эмпирические коэффициенты (для легковых автомобилей с карбюраторным двигателем a, b, c = 1), $\lambda = \omega_{\text{\tiny MAX}} / \omega_{\text{\tiny N}}$ (примем $\lambda = 1,05$).

$$N_{\text{\tiny MAX}} = 82999 \ / \ (1 \cdot 1,05 + 1 \cdot 1,05^2 - 1 \cdot 1,05^3) = 90000 \ \text{BT}$$

Внешнюю характеристику двигателя с достаточной точностью можно определить по формуле Лейдермана:

$$N_{e} = N_{MAX} \cdot \left[C_{1} \frac{\omega_{e}}{\omega_{N}} + C_{2} \left(\frac{\omega_{e}}{\omega_{N}} \right)^{2} - \left(\frac{\omega_{e}}{\omega_{N}} \right)^{3} \right]$$
(2.15)

где $C_1 = C_2 = 1$ - коэффициенты характеризующие тип двигателя.

Определение значений крутящего момента производится по формуле:

$$Me = \frac{Ne}{\omega_e} \tag{2.16}$$

«Таблица 2.1. Внешняя скоростная характеристика

Обороты дв- ля, об/мин	Угловая скорость, рад/с	Мощность дв-ля, кВт	Момент дв- ля, Н*м
1000	105	18,4	175,4
1350	141	25,6	181,0
1700	178	33,0	185,3
2050	215	40,5	188,5
2400	251	47,9	190,5
2750	288	55,1	191,3
3100	325	62,0	190,9
3450	361	68,4	189,3
3800	398	74,2	186,5
4150	435	79,3	182,6
4500	471	83,6	177,4
4850	508	86,9	171,1
5200	545	89,0	163,5
5550	581	90,0	154,8
5897	618	89,5	145,0

 n_{a} - обороты двигателя, об/мин;

$$n_e = \frac{30 \cdot \omega_e}{\pi} \,. \tag{2.17}$$

2.1.5. Определение передаточных чисел коробки передач

Передаточное число первой передачи определяется по заданному максимальному дорожному сопротивлению и максимальному динамическому фактору на первой передаче.

В соответствии с этим должны выполнятся следующие условия:

1)
$$U_1 \ge \frac{G_A \cdot \psi_{MAX} \cdot r_K}{M_{MAX} \cdot \eta_{TP} \cdot U_0};$$
 (2.18)

где: $\psi_{\text{\tiny MAX}}$ - коэффициент сопротивления дороги при максимальной скорости автомобиля с учётом вылечены преодолеваемого подъёма

$$(\psi_{MAX} = f_{V \max} + \alpha_{MAX} = \psi_{V} + \alpha_{MAX}).$$

$$\psi_{MAX} = 0.028 + 0.28 = 0.308$$
(2.19) »[2]

 $\langle U_1 \ge 15995 \cdot 0.308 \cdot 0.293 / (191.3 \cdot 0.91 \cdot 3.938) = 2.103$

2)
$$U_1 \le \frac{G_{CU} \cdot \varphi \cdot r_K}{M_{MAX} \cdot \eta_{TP} \cdot U_0}$$
, (2.20)

где: G_{CU} - сцепной вес автомобиля ($G_{CU} = G_1 \cdot m_1 = 8158 \cdot 0,9 = 7342 \; \text{H}, \; m_1$ - коэффициент перераспределения нагрузки на передние колёса), φ - коэффициент сцепления ($\varphi = 0,8$).

$$U_1 \le 7342 \cdot 0.8 \cdot 0.293 / (191.3 \cdot 0.91 \cdot 3.938) = 3.636$$
 (2.21)

Примем значение первой передачи равным: $U_1 = 3,600$.

Значения промежуточных ступеней КП рассчитываются на основании закона геометрической прогрессии:

Знаменатель геометрической прогрессии равен:

$$q = (U_1/U_5)^{1/4} = (3,600/0,784)^{1/4} = 1,464$$

$$U_2 = U_1/q = 3,600 / 1,464 = 2,459;$$

$$U_3 = U_2/q = 2,459 / 1,464 = 1,680;$$

$$U_4 = U_3/q = 1,680 / 1,464 = 1,148;$$

$$U_5 = 0,784.$$
(2.22)

2.1.6. Скорость движения автомобиля на различных передачах

Определяем возможные значения скорости на каждой передаче в зависимости от оборотов колен вала:

$$V_{A} = 0.377 \cdot \frac{n_{e} \cdot r_{K}}{U_{KII} \cdot U_{0}}$$
 (2.23) »[2]

«Таблица 2.2. Скорость автомобиля на различных передачах

			_		
Обороти	Скорость	Скорость	Скорость	Скорость	Скорость
Обороты	на 1ой	на 2ой	на Зей	на 4ой	на 5ой
дв-ля, об/мин	передаче,	передаче,	передаче,	передаче,	передаче,
ОО/МИН	м/с	м/с	м/с	м/с	м/с
1000	2,2	3,2	4,6	6,8	9,9
1350	2,9	4,3	6,3	9,2	13,4
1700	3,7	5,4	7,9	11,5	16,9
2050	4,4	6,5	9,5	13,9	20,4
2400	5,2	7,6	11,1	16,3	23,8
2750	5,9	8,7	12,7	18,7	27,3
3100	6,7	9,8	14,4	21,0	30,8
3450	7,5	10,9	16,0	23,4	34,3
3800	8,2	12,0	17,6	25,8	37,7
4150	9,0	13,1	19,2	28,1	41,2
4500	9,7	14,2	20,9	30,5	44,7
4850	10,5	15,4	22,5	32,9	48,2
5200	11,2	16,5	24,1	35,3	51,6
5550	12,0	17,6	25,7	37,6	55,1
5897	12,8	18,7	27,3	40,0	58,5

2.1.7. Сила тяги на ведущих колёсах

$$F_{T} = \frac{M_{E} \cdot U_{K.\Pi.} \cdot U_{0} \cdot \eta_{TP}}{r_{K}}$$
 (2.24)

Таблица 2.3. Тяговый баланс

	Сила	Сила	Сила	Сила	Сила
Cronostr	тяги на				
Скорость,	1ой	2ой	3ей	4ой	5ой
M/C	передаче,	передаче,	передаче,	передаче,	передаче,
	км/ч	км/ч	км/ч	км/ч	км/ч
1000	7732	5282	3608	2465	1684
1350	7976	5449	3722	2543	1737
1700	8169	5580	3812	2604	1779
2050	8308	5676	3877	2649	1809
2400	8395	5735	3918	2676	1828
2750	8430	5759	3934	2688	1836
3100	8413	5747	3926	2682	1832
3450	8343	5699	3893	2660	1817
3800	8221	5616	3836	2621	1790
4150	8046	5496	3755	2565	1752
4500	7819	5341	3649	2493	1703
4850	7539	5150	3518	2403	1642
5200	7207	4924	3363	2298	1570
5550	6823	4661	3184	2175	1486
5897	6391	4366	2982	2037	1392»[2]

«2.1.8. Силы сопротивления движению

Сила сопротивления воздуху:

$$F_{\scriptscriptstyle B} = H \cdot \rho_{\scriptscriptstyle B} \cdot C_{\scriptscriptstyle X} \cdot \frac{V_{\scriptscriptstyle A}^2}{2}. \tag{2.25}$$

Сила сопротивления качению:

$$F_f = G_A \cdot f_K; \tag{2.26}$$

$$f_{K} = f_{0} \cdot (1 + 5 \cdot 10^{-4} \cdot V_{A}^{2}). \tag{2.27}$$

Полученные данные заносим в таблицу и строим графики зависимости сил сопротивления от скорости.

Таблица 2.4. Силы сопротивления движению

		-	
	Сила	Сила	Суммарная
Скорость,	сопр.	сопр.	сила сопр.
M/C	воздуху,	качению,	движению,
	Н	Н	Н
0	0	192	192
5	10	194	204
10	39	202	240
15	87	214	301
20	155	230	385
25	242	252	494
30	349	278	627
35	475	310	785
40	621	345	966
45	785	386	1172
50	970	432	1402
55	1173	482	1656
60	1396	537	1934
65	1639	597	2236»[2]

«2.1.9. Динамический фактор

$$D = \frac{F_T - F_B}{G_A} \quad , \tag{2.28}$$

$$D_{\varphi} = \frac{G_{CU} \cdot \varphi}{G_{A}}, \qquad (2.29)$$

По этим формулам и данным силового баланса рассчитывают и строят динамическую характеристику автомобиля, которая является графическим изображением зависимости динамического фактора D от скорости движения при различных передачах в коробке передач и при полной загрузке автомобиля. Данные расчёта заносят в таблицу и представляют графически.

Таблица 2.5. Динамический фактор на передачах

Обороты дв-ля, об/мин	Динамический фактор на 1ой передаче	Динамичес кий фактор на 20й	Динамичес кий фактор на Зей	Динамич еский фактор на 4ой	Динамическ ий фактор на 5ой передаче
1000	0.492	передаче	передаче	передаче	0.102
1000	0,483	0,330	0,225	0,153	0,103
1350	0,498	0,340	0,232	0,157	0,104
1700	0,510	0,348	0,237	0,160	0,104
2050	0,519	0,354	0,240	0,161	0,103
2400	0,524	0,357	0,242	0,161	0,101
2750	0,526	0,358	0,242	0,160	0,097
3100	0,525	0,357	0,240	0,157	0,092
3450	0,520	0,353	0,237	0,153	0,085
3800	0,512	0,348	0,232	0,148	0,077
4150	0,501	0,339	0,226	0,141	0,068
4500	0,487	0,329	0,218	0,133	0,058
4850	0,469	0,316	0,208	0,124	0,046
5200	0,448	0,301	0,196	0,113	0,033
5550	0,423	0,284	0,183	0,102	0,019
5897	0,396	0,264	0,168	0,089	0,004»[2]

«2.1.10. Ускорения автомобиля

$$j = \frac{(D - \Psi) \cdot g}{\delta_{_{RP}}},\tag{2.30}$$

где: $\delta_{{\scriptscriptstyle BP}}$ - коэффициент учета вращающихся масс,

Ψ - коэффициент суммарного сопротивления дороги

$$\Psi = f + i$$

i – величина преодолеваемого подъёма (i = 0).

$$\delta_{BP} = 1 + (\delta_1 + \delta_2 \cdot U_{KII}^2), \qquad (2.31)$$

где: $\delta_{_1}$ - коэффициент учёта вращающихся масс колёс; $\delta_{_2}$ - коэффициент учёта вращающихся масс двигателя: $\delta_{_1}=\delta_{_2}=0.03$.

Таблица 2.6. Коэффициент учета вращающихся масс

	U1	U2	U3	U4	U5
$\delta \mathcal{R} \angle$	1,419	1,211	1,115	1,070	1,048

Таблица 2.7. Ускорение автомобиля на передачах

Оборот	Ускорени	Ускорени	Ускорени	Ускорени	Ускорени
ы дв-ля,	е на 1ой	е на 2ой	е на Зей	е на 4ой	е на 5ой
об/мин	передаче,	передаче,	передаче,	передаче,	передаче,
ОО/МИН	$\mathrm{m/c}^2$	$\mathrm{m/c}^2$	$\mathrm{m/c}^2$	$\mathrm{m/c}^2$	M/c^2
1000	3,26	2,57	1,87	1,29	0,84
1350	3,36	2,66	1,93	1,32	0,85
1700	3,44	2,72	1,98	1,35	0,85
2050	3,50	2,77	2,00	1,35	0,83
2400	3,54	2,79	2,02	1,35	0,80
2750	3,55	2,80	2,02	1,33	0,75
3100	3,54	2,79	2,00	1,31	0,69
3450	3,51	2,76	1,97	1,26	0,62
3800	3,46	2,71	1,92	1,21	0,53
4150	3,38	2,64	1,86	1,14	0,43
4500	3,28	2,56	1,79	1,06	0,32
4850	3,15	2,45	1,70	0,97	0,19
5200	3,01	2,33	1,59	0,86	0,05
5550	2,84	2,19	1,47	0,74	-
5897	2,65	2,03	1,34	0,61	-»[2]

«2.1.11. Величины обратные ускорениям автомобиля

T ()	D /	_		_
Таблица 2.8.	Кепичины ог	Mathrie vere	мрицам	автомобила
т аолица 2. 0.		Juliibic yeke		abiomodini

		1	J 1		
Обороты	1/ј на 1ой	1/ј на 2ой	1/ј на Зей	1/ј на 4ой	1/ј на 5ой
дв-ля,	передаче,	передаче,	передаче,	передаче,	передаче,
об/мин	с2/м	с2/м	с2/м	с2/м	с2/м
1000	0,31	0,39	0,53	0,77	1,18
1350	0,30	0,38	0,52	0,75	1,17
1700	0,29	0,37	0,51	0,74	1,18
2050	0,29	0,36	0,50	0,74	1,21
2400	0,28	0,36	0,50	0,74	1,26
2750	0,28	0,36	0,50	0,75	1,33
3100	0,28	0,36	0,50	0,77	1,45
3450	0,28	0,36	0,51	0,79	1,62
3800	0,29	0,37	0,52	0,83	1,88
4150	0,30	0,38	0,54	0,88	2,31
4500	0,31	0,39	0,56	0,94	3,14
4850	0,32	0,41	0,59	1,03	5,21
5200	0,33	0,43	0,63	1,16	19,45
5550	0,35	0,46	0,68	1,34	-9,75
5897	0,38	0,49	0,75	1,63	-3,73

2.1.12. Время и путь разгона

Время и путь разгона автомобиля определяем графоаналитическим способом. Смысл этого способа в замене интегрирования суммой конечных величин:

$$\Delta t = \int_{V_i}^{V_{i+1}} \frac{1}{j} dV \approx \left(\frac{1}{j_{CP}}\right)_{i+1} \cdot (V_{i+1} - V_i). \tag{2.32}$$

С этой целью кривую обратных ускорений разбивают на интервалы и считают, что в каждом интервале автомобиль разгоняется с постоянным ускорением j = const, которому соответствуют значения (1/j) = const. Эти величины можно определить следующим образом:

$$\left(\frac{1}{j_{CP}}\right)_{\kappa} = \frac{(1/j)_{\kappa-1} + (1/j)_{\kappa}}{2},$$
 (2.33)

где κ – порядковый номер интервала. »[2]

«Заменяя точное значение площади под кривой (1/j) в интервале $_{\Delta}V_{\kappa}$ на значение площади прямоугольника со сторонами $_{\Delta}V_{\kappa}$ и $(1/j_{CP})_{\kappa}$, переходим к приближённому интегрированию:

$$\Delta t = \left(\frac{1}{j_{CP}}\right)_{\kappa} \cdot (V_{\kappa} - V_{\kappa-1}) \tag{2.34}$$

$$t_1 = \Delta t_1, \ t_2 = \Delta t_1 + \Delta t_2, \ t_n = \sum_{\kappa=1}^n \Delta t_{\kappa}.$$
 (2.35)

где t_I – время разгона от скорости V_o до скорости V_I ,

 t_2 – время разгона до скорости V_2 .

Результаты расчёта, в соответствии с выбранным масштабом графика приведены в таблице:

Диапазон скорости, м/с	Площадь, мм ²	Время, с
0-5	148	0,7
0-10	445	2,2
0-15	824	4,1
0-20	1288	6,4
0-25	1896	9,5
0-30	2638	13,2
0-35	3564	17,8
0-40	4725	23,6
0-45	6173	30,9

Аналогичным образом проводится графическое интегрирование зависимости t = f(V) для получения зависимости пути разгона S от скорости автомобиля.

В данном случае кривая t = f(V) разбивается на интервалы по времени, для каждого из которых находятся соответствующие значения V_{CPk} .

Площадь элементарного прямоугольника в интервале Δt_{κ} есть путь, который проходит автомобиль от отметки $t_{\kappa-1}$ до отметки t_{κ} , двигаясь с постоянной скоростью V_{CPk} .

Величина площади элементарного прямоугольника определяется следующим образом :

$$\Delta \hat{S} = V_{CPk} \cdot (t_k - t_{k-1}) = V_{CPk} \cdot \Delta t_k, \gg [2]$$

«где k=1...m — порядковый номер интервала, m выбирается произвольно (m=n).

Путь разгона от скорости V_o

до скорости V_I : $S_I = \Delta S_I$,

до скорости V_2 : $S_2 = \Delta S_1 + \Delta S_2$,

до скорости V_n : $S_n = \sum_{k=1}^m \Delta S_k$

Результаты расчёта заносятся в таблицу:

Таблица 2.10. Путь разгона автомобиля

Диапазон скорости, м/с	Площадь, мм²	Путь, м
0-5	37	2
0-10	260	13
0-15	733	37
0-20	1546	77
0-25	2914	146
0-30	4953	248
0-35	7962	398
0-40	12317	616
0-45	18470	924

2.1.13. Мощностной баланс

Для решения ряда вопросов, как, например, выбор передаточного числа главной передачи, исследование топливной экономичности автомобиля, удобным является анализ мощностного баланса автомобиля, который выражается уравнением:

$$N_{K} = N_{e} \cdot \eta_{TP} = N_{f} + N_{II} + N_{B} + N_{j}, \qquad (2.36)$$

 N_f - мощность, затрачиваемая на преодоление сопротивления качению;

 N_{B} - мощность, затрачиваемая на преодоление сопротивления воздуха;

 $N_{\it \Pi}$ - мощность, затрачиваемая на преодоление подъема ($N_{\it \Pi}=0$);

 N_j - мощность, затрачиваемая на ускорение автомобиля (N_i = 0).

Это уравнение показывает, как распределяется мощность, развиваемая на ведущих колесах автомобиля, по различным сопротивлениям движению.»[2]

«Таблица 2.11. Мощностной баланс

Скорость, м/с	Мощность	
	на колесе,	
	кВт	
1000	16,7	
1350	23,3	
1700	30,0	
2050	36,8	
2400	43,6	
2750	50,1	
3100	56,4	
3450	62,2	
3800	67,5	
4150	72,2	
4500	76,1	
4850	79,1	
5200	81,0	
5550	81,9	
5897	81,5	

Таблица 2.12. Мощность сопротивления движению

Скорость,	Мощность	Мощность	Суммарная
м/с	сопротивления	сопротивления	мощность
M/C	воздуха	качения	сопротивления
0	0,0	0,0	0,0
5	0,0	1,0	1,0
10	0,4	2,0	2,4
15	1,3	3,2	4,5
20	3,1	4,6	7,7
25	6,1	6,3	12,4
30	10,5	8,3	18,8
35	16,6	10,8	27,5
40	24,8	13,8	38,6
45	35,3	17,4	52,7
50	48,5	21,6	70,1
55	64,5	26,5	91,1
60	83,8	32,2	116,0
65	106,5	38,8	145,4»[2]

«2.1.14. Топливно-экономическая характеристика

Для получения топливно-экономической характеристики следует рассчитать расход топлива при движении автомобиля на высшей передаче по горизонтальной дороге с заданными постоянными скоростями от минимально устойчивой до максимальной.

$$Q_{S} = \frac{1.1 \cdot g_{e \min} K_{H} \cdot K_{E} (N_{f} + N_{B})}{36000 \cdot V_{a} \cdot \rho_{T} \cdot \eta_{TP}}$$
(2.37)

где: $g_{E \text{min}} = 290 \text{ г/(кВт-ч)} - \text{минимальный удельный расход топлива.}$

$$K_{H} = 1,152 \cdot H^{2} - 1,728 \cdot H + 1,523 \tag{2.38}$$

$$K_E = 0.53 \cdot E^2 - 0.753 \cdot E + 1.227$$
 (2.39)

$$H = \frac{N_f + N_B}{N_T}; \quad E = \frac{w_e}{w_{eN}}$$
 (2.40)

Результаты расчётов сводят в таблицу и представляют в виде графика.

Таблица 2.13. Путевой расход топлива на высшей передачи

Обороты дв-ля, об/мин	Скорость,	И	E	K_{U}	K_E	Qs
1000	9,9	0,142	0,178	1,300	1,160	4,9
1350	13,4	0,161	0,240	1,275	1,127	5,4
1700	16,9	0,185	0,303	1,242	1,098	6,1
2050	20,4	0,217	0,365	1,202	1,073	6,8
2400	23,8	0,255	0,427	1,157	1,052	7,7
2750	27,3	0,301	0,490	1,107	1,035	8,6
3100	30,8	0,355	0,552	1,055	1,023	9,5
3450	34,3	0,418	0,614	1,002	1,014	10,4
3800	37,7	0,492	0,677	0,952	1,010	11,5
4150	41,2	0,578	0,739	0,909	1,010	12,6
4500	44,7	0,680	0,801	0,881	1,014	14,0
4850	48,2	0,800	0,864	0,878	1,022	15,9
5200	51,6	0,944	0,926	0,918	1,034	19,0»[2]

«2.2 Расчет дегалей привода ведущих колес

2.2.1 Расчет правого вала привода передних колес. Проверочный расчет

Исходные данные:

$$T_{emax} = 191.3$$
 $U_{I} = 3.6$ $U_{2n} = 3.9$
$$M_{KP} = \frac{T_{emax} \cdot U_{I} \cdot U_{2n}}{2}$$
 (2.41)

$$M_{KP} = \frac{191.3 \cdot 3.6 \cdot 3.9}{2} = 802.94$$
 H_{M}

$$\rho = 0.015$$
 м

$$d = 0.03$$
 M

где р -радиус вала привода; d -диаметр вала привода;

$$\rho_{max} = \rho$$

$$\tau_{max} = \frac{M_{\kappa p} \cdot \rho_{max}}{Jp} \tag{2.42}$$

где Јр -полярный момент инерции поперечного сечения вала;

Расчетполярного момента инерции поперечного сечения вала.

$$Jp = \frac{\pi \cdot d^4}{32} \tag{2.43}$$

$$Jp = \frac{3.14 \cdot 0.03^4}{32} = 7.95 \times 10^{-8} \quad \text{m}^4 \text{ } [5]$$

«Максимальное касательное напряжение будет равно:

$$\tau_{max} = \frac{802.94 \cdot 0.015}{7.95 \times 10^{-8}} = 1.51 \times 10^{8} \quad H_{\text{M}}^{2}$$

Значение допустимого касательного напряжения для данного вала будет равным:

$$[\tau] = 2.3*10^8 \text{ Hm}^2$$

Значение расчетного касательного напряжения меньше чем допустимое, следовательно условие выполняется:

$$\tau < [\tau]$$

Расчет полярного момента сопротивления.

$$W\rho max = \frac{\pi \cdot d^3}{32} \tag{2.44}$$

$$W\rho max = \frac{3.14 \cdot 0.03^3}{32} = 2.65 \times 10^{-6} \text{ m}^3$$

Определяем допустимый момент сопротивления.

$$W\rho = \frac{M_{\kappa p}}{\tau_{\partial}} \tag{2.45}$$

$$W\rho = \frac{802.94}{2.3 \cdot 10^8} = 3.49 \times 10^{-6} \quad \text{m}^3$$

 $W \rho max < [W \rho]$

Условие выполняется. »[5]

«Определение перемещений при кручении вала.

Угол относительного поворота концевых сечений этого участка определяется по формуле:

$$\phi = \frac{180}{\pi} \cdot \frac{M_{\kappa p} \cdot l}{G \cdot Jp} \tag{2.46}$$

где G - модуль сдвига; 1 - длина вала;

$$G = 78 \cdot 10^9 \qquad \frac{H}{M^2}$$

$$l = 0.403$$
 M

$$\phi = \frac{180}{\pi} \cdot \frac{802.94 \cdot 0.403}{\left(78 \cdot 10^9\right) \cdot \left(7.95 \times 10^{-8}\right)} = 2.99$$

Расчет на жесткость.

Для нормальной работы вала и связанных с ним деталей он должен иметь достаточную жесткость, т.е. наибольший относительный угол закручивания бруса не должен превышать допускаемого.

Условие жесткости вала:

$$\Theta$$
max $\leq .[\theta]$ \gg [5]

$$\frac{\mathscr{H}_{\kappa p}}{\pi} \cdot \frac{M_{\kappa p}}{G \cdot Jp} \tag{2.47}$$

$$\Theta$$
max= $\frac{180}{3.14} \cdot \frac{802.94}{\left(78 \cdot 10^9\right) \cdot \left(7.95 \times 10^{-8}\right)} = 7.42$ град/м

$$[\theta] = (2,5...8)$$
 град/м

Условие жесткости вала выполняется.

2.2.2 Расчет левого вала привода передних колес.

Проверочный расчет. Исходные данные:

$$M_{KP} = 802.94$$
 H_{M}
 $\rho = 0.039$ M
 $d = 0.042$ M

$$d_0 = 0.036$$
 м

где ρ - расстояние от оси вала до исследуемой точки; d - диаметр вала привода; d_0 - внутренний диаметр вала;

Расчет касательных напряжений.

Наибольшей величины касательные напряжения достигают в крайних точках сечения, наиболее удаленных от оси вала.

$$\rho_{max} = \rho$$

$$\tau_{max} = \frac{M_{\kappa p} \cdot \rho_{max}}{Jp} \tag{2.48}$$

где: Jp - полярный момент инерции поперечного сечения вала; »[5]

«Расчет полярного момента инерции поперечного сечения вала.

$$Jp = \frac{\pi \cdot d^4 \cdot (1 - c^4)}{32} \tag{2.49}$$

где
$$c = \frac{d_0}{d}$$
 $c = \frac{0.036}{0.042}$ $c = 0.86$

$$Jp = \frac{3.14 \cdot 0.042^4 \cdot \left(1 - 0.86^4\right)}{32} = 1.38 \times \frac{10^{-7}}{7} M^4$$

Максимальное касательное напряжение будет равно:

$$\tau_{max} = \frac{M_{\kappa p} \cdot \rho_{max}}{Jp}$$

$$\tau_{max} = \frac{802.94 \cdot 0.039}{1.38 \times 10^{-7}} = 2.27 \times {}^{10}_{8} H_{M}^{2}$$
(2.50)

Значение допустимого касательного напряжения для данного вала будет равным:

$$[\tau] = 2.3*10^8 \text{ Hm}^2$$

Значение расчетного касательного напряжения меньше чем допустимое, следовательно условие выполняется:

$$\tau < [\tau]$$

Расчет полярного момента сопротивления.

$$W\rho max = \frac{\pi \cdot d^3 \cdot (1 - c^4)}{32}$$

$$W\rho max = \frac{3.14 \cdot 0.042^3 \cdot (1 - 0.86^4)}{32} = 3.29 \times 10^{-6} \text{ m}^3 \text{ m}[5]$$

«Определяем допустимый момент сопротивления.

$$W\rho = \frac{M_{\kappa p}}{\tau_{\partial}}$$

$$W\rho = \frac{802.94}{2.3 \cdot 10^8} = 3.49 \times 10^{-6} \text{ m}^3$$
(2.52)

 $W\rho$ max < $[W\rho]$

Условие выполняется.

Определение перемещений при кручении вала.

Угол относительного поворота концевых сечений этого участка определяется по формуле:

$$\phi = \frac{180}{\pi} \cdot \frac{M_{\kappa p} \cdot l}{G \cdot Jp} \tag{2.53}$$

где: G - модульсдвига; 1 -длина вала;

$$G = 78 \cdot 10^9 \qquad \frac{H}{m^2}$$

$$l = 0.415$$
 м

$$\phi = \frac{180}{\pi} \cdot \frac{802.94 \cdot 0.415}{\left(78 \cdot 10^9\right) \cdot \left(1.38 \times 10^{-7}\right)} = 1.77 \times [5]$$

«Расчет на жесткость.

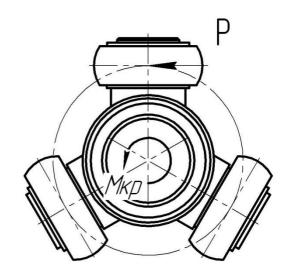
Для нормальной работы вала и связанных с ним деталей он должен иметь достаточную жесткость, т.е. наибольший относительный угол закручивания бруса не должен превышать допускаемого.

Условие жесткости вала:

 $\Theta max \leq [\theta]$

$$\Theta max = \frac{180}{\pi} \cdot \frac{M_{\kappa p}}{G \cdot Jp} \tag{2.54}$$

$$\Theta max = \frac{180}{3.14} \cdot \frac{802.94}{\left(78 \cdot 10^9\right) \cdot \left(1.38 \times 10^{-7}\right)}$$
 $\Theta max = 4.28$ град/м


$$[\theta]$$
=(2,5...8) град/м

Условие жесткости вала выполняется.

$$\Theta$$
 max= 4.28 град/м»[5]

«2.2.3 Расчет крестовины трехшипового КШРУСа привода ведущих колес

На шип карданного шарнира действует сила P.

Величина силы P определяется по формуле:

$$P = \frac{M_{\kappa p}}{2R} = \frac{802,94}{2 \cdot 2,5} = 160 \, \text{kec}$$
 (2.55)

где R - расстояние от оси обоймы до середины шипа, R=2.5 см.

Сила P действует на шип, вызывая его смятие, изгиб и срез.

Напряжение смятия не должно превышать 800 кгс/см²,

напряжение изгиба - $3500 \ \kappa cc/cm^2$,

напряжение среза - $1700 \ \kappa cc/cm^2$.

Напряжение смятия определяется поформуле:

$$\sigma_{\text{CMSIMUS}} = \frac{P}{l \cdot d} = \frac{160}{1.6 \cdot 2.5} = 40 \text{ K2C/CM}^2$$
 (2.56) »[5]

«где d - диаметр шипа, d = 1.6 см

l - длина шипа, $l=1,25\ cм$

Напряжение изгиба:

$$\sigma_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}} = \frac{P \cdot l}{W \cdot 2} = \frac{160 \cdot 1,25}{0,8 \cdot 2} = 125$$

$$\kappa ec/cm^{2} \tag{2.57}$$

для шипа:

$$W = \frac{\pi r^3}{4} = \frac{3,14 \cdot 0,8^3}{4} = 0,8 \, \kappa c / c M^2$$
 (2.58)

Напряжение среза:

$$\tau = \frac{4 \cdot P}{\pi \cdot d^2} = \frac{4 \cdot 160}{3,14 \cdot 1,6^2} = 80 \ \kappa c c / c M^2$$
 (2.59)

2.2.3.1 Определение допустимого усилия, действующего на игольчатый подшипник

$$P_{\mathcal{A}} = 780 \frac{ldk}{\sqrt[3]{n_{\mathcal{A}}}} \tag{2.60}$$

Допустимое усилие определяется по формуле:

где i-число роликов или иголок; l-рабочая длина ролика, см; d — диаметр ролика, см; »[5]

$$n_{II} = \frac{n_{M \text{ max}}}{I_1} \cdot tg\gamma \tag{2.61}$$

«где n_{II} -число оборотов шипа в минуту,

 γ - может достигать $16-18^{\circ}$, примем $\gamma = 17^{\circ}$;

k- поправочный коэффициент, учитывающий твердость.

При твердости поверхностей качения шипа обоймы корпуса подшипника исамих роликов, составляющих по Роквеллу HRC=59-60, k=1.

где i = 40 шт.

 $M_{\text{kp}} = 802,94 \text{ кгм}$

l = 10 MM

при n=3700 об/мин

d = 1,4 MM

$$\gamma = 17^{\circ}$$

k = 1

 $I_1 = 7,44$

$$n_{II} = \frac{n}{i_1} \cdot tg \gamma = \frac{3700 \cdot 0,3057}{7,44} = 15206 /$$
мин. (2.62)

Тогда $P_{\mathcal{A}}$ будет равно

$$P_{\mathcal{A}} = 780 \cdot \frac{40 \cdot 1, 4 \cdot 1}{\sqrt[3]{152}} = 1700 \kappa c$$
 (2.63) »[5]

$$P_{\mathcal{I}} < P$$

«2.2.4 Расчет шлицевого зацепления

Боковые поверхности зубьев шлицевых соединений работают на смятие, а основание их на изгиб и срез.

Для применяемых соотношений элементов шлицевых соединений основным является расчет на смятие:

$$M_{Kp} = 802.94$$

$$\sigma_{cM} := \frac{10^3 \cdot M_{Kp}}{\phi \cdot F \cdot l \cdot r_{cp}}$$
 (2.64)

гле

 $\operatorname{Temax}_{\operatorname{пp}}$ - наибольший допустимый вращающий момент,

передаваемый соеднинением, Н.м.

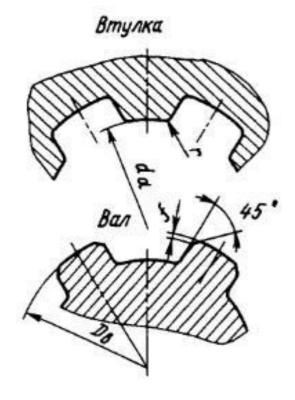
 ϕ - коэффициент, учитывающий неравномерность распределения нагрузок по рабочим поверхностям зубьев; $\phi = (0.7 - 0.8)$;

Принимаем $\phi = 0.75$.

F - площадь всех боковых поверхностей зубьев с одной стороны на 1 мм длины, мм2/мм.

$$F := z \cdot \left[\frac{D_B - d_a}{2} - (f + r) \right]^{\bullet}$$
 (2.65)

где z-число зубьев;


 ${\bf D_B}$ - наружный диаметр зубьев вала, мм;

 d_a - диаметр отверстия шлицевой втулки, мм;

f - размер фаски шлицев, мм;

r - размер закругления, мм;

1- рабочая длина зуба, мм; »[5]

 $D_B := 25$ $d_a := 20$

$$r_{cp} := \frac{D_B + d_a}{4} \tag{2.67}$$

 $r_{cp} = 11.25$ z := 14 f := 0.5 r := 1

$$F := z \cdot \left\lceil \frac{D_B - d_a}{2} - (f + r) \right\rceil \tag{2.68}$$

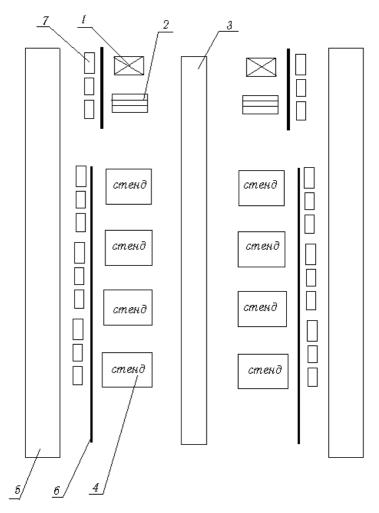
где F = 14 ; 1 := 25; $\phi := 0.75 \gg [5]$

$$σ$$
_{CM} = 271.9 ΜΠα

$$\sigma_{cM}^{\leq} \cdot [\sigma_{cM}^{\leq}]$$

$$[\sigma_{cM}] = 450 \text{ M}\Pi a;$$

Условие выполняется. »[5]


3 Безопасность и экологичность объекта

3.1 Рабочее место, оборудование и выполняемые операции

Монтаж привода передних колес планируется разместить на площадях ПАО "АВТОВАЗ" Тольятти. Система монтажа представляет собой линию конвейера с ленточным транспортером и монтажными стойками. План монтажный площадки представлен на рисунке. 3.1

Таблица 3.1 – Список технического оснащения для сборочного объекта

Номер поз. на схеме объекта	Названия технического оснащения	Стадии исполняемые с использованием технического
1.	Пресовая установка с пневмо-приводом	1. Запрессовка шариков в деталь-корпус шарнира
2.	Зажимное механическое устройство	1. Установка датали-обоймы и сепаратора-шарикового в деталь-корпус КШРУСа.
3.	Специальный стол-установка для сборки приводных валов для ведущих-передних колес, установка для загрузки смазки в КШРУС. Отвертка-плоская. Отвертка-крестовая. Кувалда слесарная стальная по ГОСТ 2311-67. Щипцы установки хомута.	 Загрузка смазки. Установка стопорного кольца. Установка чехла-КШРУСа. Установка КШРУСов на вал. Выпуск избыточного воздуха из чехлов-КШРУСов. Монтаж хомутов.

- 1 Пресовая установка с пневмоприводом, 2 Зажимное механическое устройство, 3 Линия сборки конвейерно-ленточного типа, 4 Специальный стол-установка для сборки, 5 Дорога для доставки боксов для запчастей,
- 6 Отграждающий забор, 7 Контейнер для запчастей Рисунок 3.1 - Схема участка для сборки привода ведущих-передних колес а/м.

3.2 Опасные и вредные производственные факторы, имеющие место при выполнении операции сборки привода передних колес

3.2.1 Механические травмы

Источниками механических травм на описываемом рабочем месте являются:

а) травмы при контакте руки с рабочим органом клещей для установки хомутов. Исключена при соблюдении техники безопасности при работе на исправном станке;

- б) травмы при падении деталей. Исключены при соблюдении техники безопасности. Для уменьшения вероятности такой травмы рекомендуется одновременно работать только с одним узлом; собранный узел укладывать в контейнер; детали и узлы, подлежащие сборке, должны находится в отдельных контейнерах;
- в) травмы при контакте руки с приспособлением для запрессовки шариков. Для избежания таких травм рекомендуется либо оснащать приспособление защитным кожухом или использовать двухкнопочную систему управления, отключающей приспособление при отпускании хотя бы одной кнопки;
- г) травмы при контакте с движущими элементами конвейера. Для их избежания рекомендуется закрыть механизмы привода конвейера защитными кожухами.

3.2.2 Шум

Источники шума:

- а) работающее приспособление для запрессовки шариков; шум тональный, прерывистый;
 - б) молоток; шум прерывистый;
- в) шум механизмов привода конвейера. Его рекомендуется заглушать использованием шумоизоляции.

Уровни звукового давления должны удовлетворять требованиям "Санитарных норм допустимых уровней шума на рабочих местах" (утверждены Минздравом СССР 12 марта 1985 г. № 3223-85), приведенным в таблице 3.2.

Таблица 3.2 -Допустимые уровни звукового давления и эквивалентные уровни звука на рабочих местах в производственных помещениях и на территории предприятий

Уровни звукового давления в дБ в октавных полосах со								Эквивалент-	
среднегеометрическими частотами, Гц							ный уровень		
31,5	63	125	250	250 500 1000 2000 4000 8000					звука, дБ(А)
107	95	87	82	78	75	73	71	69	80

Уровень шума на рабочем месте подлежит проверять не реже одного раза в год.

Защита от шума:

- -изменять направленность излучения шума;
- -рационально планировать рабочие места;
- -производить акустическую обработку помещения (обработка звукопоглощающим материалом, установка штучных звукопоглощателей);
- -уменьшать шум на пути его распространения (звукоизолирующие ограждения, глушители).

3.2.3. Вибрация

Источник вибрации - работающие механизмы. Столы с закрепленными приспособлениями должны быть установлены на резиновых демпфирующих подушках; механизмы привода конвейера должны быть виброизолированы от пола помещения.

3.2.4 Ионизирующие излучения

Источники ионизирующих излучений отсутствуют.

3.2.5. Климатические условия

Температура, относительная влажность и скорость ветра в помещении должны поддерживаться:

- а) в теплый сезон (со среднесуточной температурой выше +10 °C): температура +20...22 °C, относительная влажность воздуха 40...60%, скорость движения воздуха не более 0,4 м/с;
 - б) в холодный сезон (со среднесуточной температурой ниже +10°C):

температура +17...19 °C, относительная влажность воздуха 40...60%, скорость движения воздуха не более 0.3 м/с.

Рабочее производственное освещение в помещении совмещенное - естественное верхнее (через окна в крыше) и искусственное: общее (лампы дневного света) и местное. Плафоны общего освещения расположены сдвоенными рядами - по две лампы в каждом; расстояние между плафонами одного ряда порядка 1,3 м, между рядами около 5м, высота подвеса плафона около 5 метров.

3.2.6 Поражение электрическим током

Получение электротравмы возможно при неисправности проводки освещения или механизмов и приспособлений. По степени опасности поражения электрическим током помещение относится ко 2 классу - помещение с повышенной опасностью, т.к. не исключена вероятность одновременного контакта с имеющими соединение с землей металлическими элементами технологического оборудования (металлоконструкциями здания) и металлическим корпусом электрооборудования. С целью предотвращения поражения электрическим током необходимо предусмотреть заземление электроустановок, находящихся под напряжением. С точки зрения мер, принимаемых для обеспечения электробезопасности, электроустановки относятся к группе с напряжением до 1000 В с изолированной нейтралью. Технические мероприятия по предотвращению поражения электрическим током описаны ниже.

Таблица 3.3 - Опасные и вредные производственные факторы

Наименование опасного и	Виды работ, оборудование, техноло-
вредного производственного	гические операции, при которых
фактора	встречается данный
	производственный фактор.
Движущиеся детали машин и	а) травмы при контакте руки с
механизмов	рабочим органом клещей для
	установки хомутов;
	б) травмы при падении деталей;
	в) травмы при контакте руки с
	приспособлением для запрессовки
	шариков.
	г) травмы при контакте с движущими
	элементами конвейера.
	д) травмы при столкновении с
	погрузчиком
Повышенный уровень шума,	а) работающее приспособление для
99 дБ.	запрессовки шариков;
	б) молоток, на операции когда
	устанавливаются шарниры на вал;
	в) шум механизмов привода
	конвейера
Повышенный уровень напря-	
жения в электрической сети,	и приспособлений.
380 B.	
Напряжение зрительных ана-	Все виды ручного труда при сборке
лизаторов	привода передних колес.
Повышенная запыленность и	На производстве используются
загазованность	погрузчики
Монотонность труда	Использования ручного труда на
	операциях общей сборки привода
	передних колес.

3.3 Мероприятия по разработке безопасных условий труда на производственном участке

1. Организационные мероприятия

В целях охраны труда рабочие и служащие должны быть уведомлены о том, что безопасность, промышленная гигиена,

"Пожарные и другие правила охраны труда.

Существует несколько типов инструкций:

- Все новые абитуриенты, предприятия, а также бывшие в употреблении студенты и студенты, прибывшие на практику, должны были пройти начальное образование. Его проводил инженер по охране труда.
- Начальная учебная работа проводится на всех вновь поступивших предприятиях, при переводе из одной секции в другую, прикомандированных и т.д.
- Повторное обучение проводится не менее чем через полгода. Целью данной инструкции является восстановление в памяти правил работы по охране труда, а также анализ конкретных нарушений практики работы магазина или предприятия.
- При изменении технического процесса, изменении правил охраны труда, введении нового оборудования, за нарушение работниками требований охраны труда, которое может привести или привело к травме, несчастному случаю, взрыву или пожару; при перерывах в работе-работа, требующая дополнительных требований охраны труда не более 30 календарных дней, при других работах— 60 календарных дней.

Выбор специалиста важен для гарантирования безопасности труда, целью которого является выявление лиц, непригодных по своим физическим и антропометрическим данным для участия в том или ином процессе.

На рабочих и служащих, в свою очередь, также возлагаются следующие обязанности: соблюдение инструкций по охране труда, установленных требований

Управление машинами и механизмами и использование средств индивидуальной защиты.

Рабочий день будет проходить с 7: 00 в 15-45, с перерывом на обед с 11: 00 до 11: 45.

График рабочей недели: 5 рабочих дней в неделю, суббота и

воскресенье-выходные дни.

Чтобы обеспечить хорошую производительность и поддерживать здоровье профессиональных пользователей, необходимо установить контрольный перерыв во время рабочей смены. Сотрудникам участка, учитывая их трудовую категорию и уровень тяжести, контрольные перерывы должны устанавливаться через два часа после начала рабочей смены и 1,5-2,0 часа обеденного перерыва через 15 минут или каждые 10 минут после каждого часа работы.

Во время контрольных перерывов меньше нервно-эмоционального напряжения, утомления зрительного анализатора, устраняется влияние гиподинамии и гипокинезии, предотвращается развитие постнатального утомления, необходимо осуществлять физическую нагрузку минут полного воздействия или физических перерывов. Для этого необходимо оборудовать специальное помещение для психологической разгрузки.

2. Мероприятия проекта

- 1. Применение строительной техники должно соответствовать требованиям действующих нормативных правовых актов и настоящих Правил и обеспечивать последовательность функционирования технического процесса.
- 2. Использование строительной техники, сырья, заготовок, деталей, агрегатов, готовой продукции, отходов производства и упаковки в производственных помещениях и на рабочем месте не должно представлять опасности для персонала.
- 3. Расстояние между узлами оборудования, а также между устройством и стенами производственных зданий, сооружений и помещений должно соответствовать требованиям действующего качества технического проектирования, строительных норм и правил.
- 4 .Размещение цехов и перестройка существующей технологии работы оборудования должны быть отражены в техническом плане. Техническое планирование проекта и вновь построенных цехов, секций и категорий должно быть утверждено местными органами

государственного санитарно-пожарного надзора.

5. При размещении строительной техники, организации транспортировочного прохода, распределении агрегатов, узлов, деталей и материалов работы следует учитывать. Ширина прохода устанавливается в зависимости от размера транспортируемого материала и

Транспортные средства и принимаются в соответствии с действующим нормативным правовым актом.

- 6. Ширина основных проходов работ должна определяться с учетом габаритов ремонтного агрегата и обрабатываемых изделий.
- 7. Работы, подъездные пути, проходы и оборудование должны быть свободны и загромождены материалами, агрегатами, деталями, строительными отходами и контейнерами, которые затем собираются погрузчиками и вывозятся обычной посудой.
- 8. Работа должна обеспечивать удобство труда, свободу передвижения, минимальную физическую нагрузку и безопасные высокоэффективные условия труда.
- 9. Инструменты, приспособления и узлы должны быть рядом с работой: что левая рука слева, то правая рука справа; на этом основании размещают и принадлежности (ящики для инструментов, стеллажи и т. д.).
- 10. Материалы, детали, узлы, изделия труда должны быть уложены в стеллажи таким образом, чтобы обеспечить их устойчивость и легкость захвата для вас при использовании тренажеров.
- 11. Изготавливаться для замков должна была жесткая и прочная конструкция, отрегулированная по высоте работы с помощью подставок для них или опор для ног. Чтобы обезопасить людей в непосредственной близости от возможных травм от летящих кусков обрабатываемого материала, необходимо было иметь защитные экраны высотой не менее 750 мм и ячейку размером не более 3 рыб.
 - 12. Установить его крупным планом со стен можно только в том

случае, если в нем размещены радиатор, трубопроводы и другое оборудование.

3. Технические средства

Эффективным методом обеспечения чистоты и приемлемых параметров в рабочей зоне является вентиляция воздуха, которая включает в себя удаление загрязненного и находящегося в отапливаемом помещении приточного воздуха, а именно свежего воздуха. По способу движения воздуха воздух делится на естественный (вентиляция, аэрация), механический и комбинированный.

При необходимости управления микроклиматом участка обеспечивается искусственный (механический) регулярный обмен воздуха, а там, где организован естественный обмен воздуха (ветер).

Для защиты человека от теплового излучения при наличии устройства или участка рабочих органов, излучающих тепло интенсивности, превышающей норму, используется тепло экрана.

Необходимо убедиться в освещенности, участок оборудован комбинированной световой системой, в которой достаточное естественное освещение обеспечивается искусственным освещением. Участок также имеет рабочее световое оформление, общее выполнение производственного процесса, прохождение людей и движения транспорта и является обязательным во всех помещениях.

Безопасное передвижение рабочих на объекте-последний оборудован бамперными устройствами.

Производство, процесс демпфирование вибрации используется для борьбы с вибрацией. Этот процесс основан на низком уровне вибрации защищаемого объекта путем преобразования энергии механических колебаний этой колебательной системы в тепловую энергию. Увеличение потерь энергии в системе осуществляется с использованием в качестве конструкционного материала высокого внутреннего трения: резины, пластмассы, дерева, нейлона, сплавов с добавками никеля, меди, магния; нанесением слоя упруго-вязкого материала с высокими потерями

внутреннего трения на вибрирующую поверхность. Также используется метод виброгашения - он осуществляется при установке оборудования на фундамент.

Для борьбы с шумом на строительной площадке используйте средства индивидуальной защиты (наушники и беруши).

4. Средства индивидуальной защиты

Рекомендуется использовать хлопчатобумажную спецодежду, вязаные перчатки, наушники (или беруши), специальную обувь.

5. Инструкция слесаря МСР

Общие положения

- 1. Лица прошедшие следующие испытания позволяют работать самостоятельно на оборудовании:
 - Начальное образование;
 - Уведомление о пожарной безопасности;
 - Начальное обучение на рабочем месте;
- Курсы по электробезопасности и работе по проверке совместимости ее содержания.
 - 2. Рабочие должны иметь:
- Повышение квалификации по технике безопасности труда не реже одного раза в три месяца;
- Древнее Примечание: при изменении технического процесса или правил охраны труда, замене или модернизации производственного оборудования, приборов и инструментов, изменении правил и профсоюзов, нарушении инструкций по охране труда, перерывах в работе более 60 календарных дней;
 - диспансерное медицинское обследование-ежегодно.
 - 3. Рабочие должны быть:
- Соблюдать установленные на предприятии правила внутреннего трудового распорядка;
- Соблюдать требования настоящей инструкции, инструкции по мерам пожарной безопасности, инструкции по электробезопасности;

- Которые отвечают требованиям, предъявляемым к эксплуатации оборудования;
- Намерены использовать и беречь выданные средства индивидуальной защиты.
 - 4. Рабочие должны быть:
- Уметь оказывать первую помощь (доврачебную) пострадавшему в результате несчастного случая;
- Знать расположение объектов первой медицинской помощи, первичного противопожарного оборудования, главных и аварийных выходов, путей эвакуации в случае аварии или пожара;
- Показывайте только назначенную работу и не передавайте ее другим без разрешения мастера или начальника цеха;
- Во время работы внимание, отсутствие внимания или внимания других людей, не позволяйте людям, связанным с работой, входить в работу;
 - держите рабочее место в чистоте и порядке.
- 5. Работники должны знать и соблюдать правила личной гигиены. Ешьте, курите, а остальное просто отведенные места и зоны. Воду пьют только в специально разработанных установках.
- 3.2 Безопасность объекта при аварийных и чрезвычайных ситуациях

Чрезвычайное положение, в результате возникновения которого возникает угроза жизни, здоровью, имуществу населения, экономике и окружающей среде. Во-первых, разработаны технические и организационные меры, снижающие возможность реализации опасного потенциала современных технических систем.

Для этого в технических системах установлены щиты-средства взрывозащиты и пожаротушения.

Во-вторых, в направлении подготовки объекта, персонала и Службы государственного акта в чрезвычайных ситуациях необходимо создавать детальные сценарии развития и вероятности аварий и катастроф

в момент конкретных объектов. Правительство РФ ввело обязательную для разработки декларацию промышленной безопасности. [21] [22]

Она содержит следующие разделы:

- Общая информация об объекте;
- Анализ рисков промышленного оборудования;
- Обеспечение готовности промышленных объектов, реагирование на чрезвычайные ситуации;
 - Общественная информация.

Компонентно-распределительная компания расположена ПАО "АВТОВАЗ", и все мероприятия, которые были разработаны в этой отрасли компании, направленные на предотвращение и ликвидацию последствий аварий и чрезвычайных ситуаций, относятся именно к этой категории.

В результате работы в этом разделе мы обнаружили следующее:

- Выявлены опасные и вредные производственные факторы, которые могут возникнуть при монтаже распределительной системы;
- Разработка мер по снижению воздействия опасных и вредных производственных факторов;
- Разрешение категории пожарной опасности шаг " б " - противопожарные мероприятия.
- В категории партии по безопасности 2. Определено в классе (помещения повышенной опасности). Разработаны мероприятия по предотвращению поражения электрическим током, а также описаны действия в случае возникновения аварийной ситуации на промышленном объекте.

4 Экономическая эффективность проекта

«4.1 Расчет себестоимости проектируемого узла автомобиля

Таблица 4.1 - Исходные данные

Наименование	Обозна- чение	Ед.изм.	Значение
Годовая программа выпуска изделия	Vгод.	ШТ.	100000
Коэффициент страховых взносов в ПФР, ФОМС, ФСС	Есоц.н.	%	30
Коэффициент общезаводских расходов	Еобзав.	%	197
Коэффициент коммерческих (внепроизводственных) расходов	Еком.	%	0,29
Коэффициент расходов на содержание и эксплуатацию оборудования	Еобор.	%	194
Коэффициенты транспортно – заготовительных расходов	Ктзр.	%	1,45
Коэффициент цеховых расходов	Ецех.	%	172
Коэффициент расходов на инструмент и оснастку	Еинстр.	%	3
Коэффициент рентабельности и плановых накоплений	Крент.	%	30
Коэффициент доплат или выплат не связанных с работой на производстве	Квып.	%	14
Коэффициент премий и доплат за работу на производстве	Кпрем.	%	12
Коэффициент возвратных отходов	Квот.	%	1
Часовая тарифная ставка 5-го разряда	Cp5	руб.	95,29
Часовая тарифная ставка 6-го разряда	Ср6	руб.	99,44
Часовая тарифная ставка 7-го разряда	Cp7	руб.	103,53
Коэффициент капиталообразующих инвестиций	Кинв.	%	0,19

где - Цмі - оптовая цена материала і-го вида, руб.,

Qмi – норма расхода материала і-го вида, кг, м.

Ктзр – коэффициент транспортно-заготовительных расходов, %

Квот – коэффициент возвратных отходов, %.»[8]

«Таблица 4.2 - Расчет затрат на сырье и материалы

Наименование	Ед. изм	Цена за ед.изм,руб	Норма расхода	Сумма, руб
Литье СЧ-21	КГ	145,5	0,7	101,85
Прокат Сталь 3	КГ	47,36	1,1	52,10
Поковка 20ХГНМ	КГ	130,07	0,85	110,56
Бронза (отходы)	КГ	3,1	1,52	4,71
Штамповка Сталь 20	КГ	134,72	0,3	40,42
Черные металлы (отходы)	КГ	4,7	1,23	5,78
Итого	0			315,41
Ктзр)	1,45		4,57
Квот		1		3,15
Beere	0			323,14

M = 323,14 py6.

Расчет статьи затра "Покупные изделия" производится по формуле:

$$\Sigma\Pi u = \Sigma \coprod i \cdot ni + Km \cdot p/100 \tag{4.2}$$

где - U*i* -оптовая цена покупных изделий и полуфабрикатов і-го вида, n*i* -количество покупных изделий и полуфабрикатов і-го вида, шт.

Таблица 4.3 - Покупные изделия

Наименование		Цена за	Кол-во,	0 6
		ед.,руб	ШТ	Сумма, руб
Кожух защитный	ШТ.	85,11	2	170,22
Гайка	шт.	53,21	1	53,21
Хомут малый	шт.	9,8	2	19,60
Хомут	шт.	15,7	2	31,40
Сепаратор внутрений	шт.	133,52	1	133,52
Сепаратор внешний	шт.	157,84	1	157,84
Итого				565,79
Ктзр		1,45		8,20
Всего				573,99

 $\Pi u = 573,99$ руб.

Расчет статьи затрат "Основная заработная плата

$$3o=3m(1+Knpe_{M}/100)$$
 (4.3)

где — 3т — тарифная заработная плата, руб.»[8]

где - Ср.і – часовая тарифная ставка, руб.,

Ti – трудоемкость выполнения операции, час.

Кпрем. – коэффициент премий и доплат, связанных с работой на производстве, %.

Таблица 4.4 - Расчет затрат на выполнение операций [8]

Виды операций	Разряд работы	Трудо- ёмкость	Часовая тарифная ставка, руб	Тарифная зарплата, руб
Заготовительная	5	0,90	95,29	85,76
Токарная	6	0,78	99,44	77,56
Фрезерная	5	0,55	95,29	52,41
Термообработка	7	0,23	103,53	23,81
Шлифовальная	5	1,20	95,29	114,35
Сборочная	7	1,32	103,53	136,66
Итого				490,55
Кпрем		12		58,87
Всего				549,42

3o = 549,42 py6.

Дополнительная заработная плата производственных рабочих

$$3\partial on = 3o\cdot Keыn$$
 (4.5)

где - Квып - коэффициент доплат или выплат

$$3\partial on = 549,42 \cdot 0,14 = 76,92$$
 pyő.

Расчет статьи затрат "Страховые взносы в ПФР, ФОМС, ФСС"

$$Ccou.н. = (3o + 3don) \cdot Ecou.н./100$$
 (4.6)

где - Eco μ .н. - коэффициент страховых взносов в ПФР, ФОМС, ФСС, %

$$Ccou.н. = (549,42 + 76,92)$$
 0,3 = 187,90 руб.

"Расходы на содержание и эксплуатацию оборудования"

$$Ccoo.ofop. = 3o \cdot Eofop./100$$
 (4.7)

где - *Еобор* - коэффициент расходов на содержание и эксплуатацию»[8]

 $«Ссод.обор. = 549,42 \cdot 1,94 = 1065,87$ руб.

Расчет статьи затрат Цеховые расходы выполняются по формуле:

$$Cyex = 3o \cdot Eyex./100 \tag{4.8}$$

где - Ецех. - коэффициент цеховых расходов,%

 $Cyex = 549,42 \cdot 1,72 = 945,002$ pyő.

Расчет статьи затрат Расходы на инструмент и оснастку

$$C$$
инстр. = $3o$ · E инстр./ 100 (4.9)

где - Еинстр. - коэффициент расходов на инструмент и оснастку,%

Cинстр. = $549,42 \cdot 0,03 = 16,48$ руб.

Расчет цеховой себестоимости выполняется по формуле:

$$C$$
 μ ех. c . c . $=M+\Pi u+3o+Cco\mu.н.+3\partial on.+Cco\partial.oбop.+C\mu$ ех. $+C$ μ ех. $+C$ μ ест. (4.10)

$$Cyex.c.c. = 323,14 + 573,99 + 549,42 + 187,90 + 76,92 + 1065,87$$

+ 945,002 + 16,48 = 3738,73 pyő.

Расчет статьи затрат Общезаводские расходы:

$$Coбзав. = 3o \cdot Eoбзав./100$$
 (4.11)

где - Еобзав. - коэффициент общезаводских расходов, %

$$Coбзав. = 549,42 \cdot 1,97 = 1082,36$$
 руб.

Расчет общезаводской себестоимости выполняется по формуле:

$$Coб.зав.c.c. = Coбзав. + Cyex.c.c.$$
 (4.12)

Coб.3ae.c.c. = 1082,36 + 3738,73 = 4821,09 руб.

Расчет статьи Коммерческие расходы выполняется по формуле:

$$C$$
ком. = C об.зав.с.с. \cdot E ком./100 (4.13)

где - *Еком*. - коэффициент коммерческих (внепроизводственных) расходов

$$C$$
ком. = $4821,09 \cdot 0,0029 = 13,98$ руб. »[8]

«Расчет полной себестоимости выполняется по формуле: [8]

$$C$$
noлн.c.c. = C oб.зав.c.c. + C ком. (4.14)

Cnoлн.c.c. = 4821,09 + 13,98 = 4835,07 руб.

Расчет отпускной цены для базового и проектируемого изделия

$$Цотп.б. = Сполн.с.с. \cdot (1 + Крент/100)$$
 (4.15)

где - Крент. - коэффициент рентабельности и плановых накоплений, %

Цотп.б. =
$$4835,07 \cdot (1+0,3) = 6285,59$$
 руб.

Таблица 4.5 - Сравнительная калькуляция себестоимости

Наименование показателей	Обозна- чение	Затраты на единицу изделия (база)	Затраты на единицу изделия (проект)
Стоимость основных материалов	M	355,46	323,14
Стоимость покупных изделий	Пи	631,39	573,99
Основная заработная плата производственных рабочих	30	549,42	549,42
Дополнительная заработная плата производственных рабочих	3доп.	76,92	76,92
Страховые взносы	Ссоц.н.	187,90	187,90
Расходы на содержание и эксплуатацию оборудования	Ссод.обор.	1065,87	1065,87
Цеховые расходы	Сцех.	945,00	945,00
Расходы на инструмент и оснастку	Синстр.	16,48	16,48
Цеховая себестоимость	Сцех.с.с.	3828,45	3738,73
Общезаводские расходы	Собзав.	1082,36	1082,36
Общезаводская себестоимость	Соб.зав.с.с.	4910,80	4821,09
Коммерческие расходы	Ском.	14,24	13,98
Полная себестоимость	Сполн.с.с.	4925,05	4835,07
Отпускная цена	Цотп.	6402,56	6402,56»[8]

4.2 Расчет точки безубыточности

«Определение переменных затрат:

$$3$$
перем. y д.б. = $M + \Pi u + 3o + 3$ доп + C соц. H . (4.16)

$$3$$
перем. y д. $np. = M + \Pi u + 3o + 3дon + Ccou.н. (4.17)$

$$3перем.уд.б. = 355,46 + 631,39 + 549,42 + 76,92 + 187,90 = 1801,09 руб.$$

$$3$$
перем.уд.пр. = 323,14 + 573,99 + 549,42 + 76,92 + 187,90 =

= 1711,38 руб.

на годовую программу выпуска изделия:

$$3перем.б. = 3перем.уд.б. \cdot V год$$
 (4.18)

$$3перем.np. = 3перем.yo.np. \cdot Vгoo$$
 (4.19)

где - *Vгод* - объём производства

$$3перем.б. = 1801,09 \cdot 100000 = 180108954,48$$
 руб.

$$\cdot$$
 100000 = 171137593,37 руб.

3перем.np. = 1711,38

Определение постоянных затрат:

$$3nocm.yo.б. = Ccoo.oбop. + Cuнcmp. + Cuex. + Coosab. + Cкom.$$
 (4.20)

$$3nocm.yd.np. = Ccod.oбop. + Cuнcmp. + Cuex. + Coбзав. + Ском.$$
 (4.21)

$$3nocm.y\partial.\delta. = 1065,87 + 16,48 + 945,00 + 1082,36 + 14,24 =$$

= 3123,96 руб.

$$3nocm.y\partial.np. = 1065,87 + 16,48 + 945,00 + 1082,36 + 13,98 =$$

= 3123,70 pyб.

на годовую программу выпуска изделия:

$$3nocm.\delta. = 3nocm.y \delta.\delta. \cdot V = 0 \delta$$
 (4.22)

$$3nocm.np. = 3nocm.y\partial.np. \cdot Vood$$
 (4.23) »[8]

$$«3пост.б. = 3123,96 \cdot 100000 = 312395617,82 руб.$$

Определение амортизационных отчислений:

$$A$$
м.уд. = (C сод.обор. + C инстр.) · H_A / 100 (4.24)

где - H_A - доля амортизационных отчислений,%

 $H_A = 12$ %

$$Am.y\partial. = (1065,87 + 16,48) \cdot 12 / 100 = 129,88 \text{ py6}.$$

Расчет полной себестоимости годовой программы выпуска изделия:

$$C$$
noлн. c od. n p. = C noлн. c . c . \cdot V cod (4.25)

Cnoлн.год.np. = $4835,07 \cdot 100000 = 483507194,24$ руб.

Расчет выручки от реализации изделия:

$$Выручка = Цотп.пр. \cdot Vгод$$
 (4.26)

 $Выручка = 6402,56 \cdot 100000 = 640255943,98$ руб.

Расчет маржинального дохода:

Дмарж. = Выручка - Зперем.
$$np$$
. (4.27)

Дмарж. = 640255943,98 - 171137593,37 = 469118350,61 руб.

Расчет критического объема продаж:

$$A\kappa pum. = 3nocm.np./(Цотп.np. - 3nepem.yo.np.)$$
 (4.28)

 $A\kappa pum. = 312369600,87 / (6402,56 - 1711,38) = 66586,52$ py6.

 $A\kappa pum. = 66590 \text{ py6. } \%[8]$

«График точки безубыточности

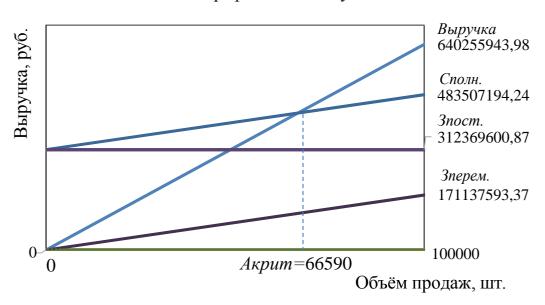


Рисунок 4.1 - График точки безубыточности.»[8]

4.3 Расчет коммерческой эффективности проекта

$$\Delta = \frac{V_{\text{Mak}} - A_{\kappa pum}}{n - 1} \tag{4.29}$$

где — $Vma\kappa = Vrod$ — максимальный объём продукции, шт. $A\kappa pum$ — критический объём продаж проектируемого изделия, шт. n — количество лет, с учётом предпроизводственной подготовки.

 $\Delta = 6682 \text{ шт.}$

Объем продаж по годам:

$$Vnpo\partial.i = A\kappa pum + i\Delta$$
 (4.30)

где – $Vnpo\partial.i$ – объём продаж в i - году, шт.

$$Vnpool.1 = 66590 + 1 \cdot 6682 = 73272$$
 шт.

$$Vnpod.2 = 66590 + 2 \cdot 6682 = 79954$$
 IIIT.

$$Vnpo\partial.3 = 66590 + 3 \cdot 6682 = 86636$$
 шт.

$$Vnpo\partial.4 = 66590 + 4 \cdot 6682 = 93318$$
 шт.

$$Vnpo\partial.5 = 66590 + 5 \cdot 6682 = 100000 \text{ mit.}$$

Выручка по годам:

$$B$$
ыручка. $i = Цотп. \cdot Vпрод.i$ (4.31)

$$Выручка.1 = 6402,56 \cdot 73272 = 469128335,27$$
 руб.

$$Выручка.2 = 6402,56 \cdot 79954 = 511910237,45$$
 руб.

$$B$$
ыручка. $3 = 6402,56$ · $86636 = 554692139,63$ руб.

$$B$$
ыручка. $4 = 6402,56 \cdot 93318 = 597474041,80 руб.$

$$Выручка.5 = 6402,56$$
 · $100000 = 640255943,98$ руб. »[8]

«Переменные затраты по годам

для базового варианта:

$$3перем.б.i = 3перем.уд.б. \cdot Vпрод.i$$
 (4.32)

$$3перем.б.1 = 1801,09 \cdot 73272 = 131969433,12$$
 руб.

$$3перем.б.2 = 1801,09 \cdot 79954 = 144004313,46$$
 руб.

$$3перем.б.3 = 1801,09 \cdot 86636 = 156039193,80$$
 руб.

$$3перем.б.4 = 1801,09 \cdot 93318 = 168074074,14$$
 руб.

$$3$$
перем.б.5 = 1801,09 · 100000 = 180108954,48 руб.

для проектного варианта:

$$3$$
перем. $np.i = 3$ перем. $y\partial.np. \cdot V$ про $\partial.i$ (4.33)

$$3перем.пр.1 = 1711,38 \cdot 73272 = 125395937,42$$
 руб.

$$3перем.пр.2 = 1711,38 \cdot 79954 = 136831351,41$$
 руб.

$$3перем.пр.4 = 1711,38 \cdot 93318 = 159702179,38$$
 руб.

$$3перем.пр.5 = 1711,38 \cdot 100000 = 171137593,37$$
 руб.

Амортизация (определяется только для проектного варианта):

$$A$$
м. = 129,88 · 100000 = 12988278,97 руб.

Полная себестоимость по годам

для базового варианта:

$$C$$
noлн.б. $i = 3$ nepeм.б. $i + 3$ nocm.б (4.35)

$$C$$
noлн.б. $I = 131969433,12 + 312395617,82 = 444365050,94 руб.$

$$C$$
noлн.б.2 = 144004313,46 + 312395617,82 = 456399931,28 руб. »[8]

```
«Сполн.б.3 = 156039193,80
                            + 312395617,82 = 468434811,62
                                                                руб.
 Cnoлн.б.4 = 168074074,14
                             + 312395617,82 = 480469691,96
                                                                руб.
 Cnoлн.б.5 = 180108954,48
                            + 312395617,82 = 492504572,29
                                                                руб.
для проектного варианта:
                  Cnoлн.np.i = 3nepeм.np.i + 3nocm.np.
                                                              (4.36)
Cnoлн.np.I = 125395937,42 + 312369600,87 = 437765538,29
                                                                руб.
Cnoлн.np.2 = 136831351,41 + 312369600,87 = 449200952,28
                                                                руб.
Cnoлн.np.3 = 148266765,40 + 312369600,87 = 460636366,27
                                                                руб.
Cnoлн.np.4 = 159702179,38 + 312369600,87 = 472071780,25
                                                                руб.
Cnoлн.np.5 = 171137593,37 + 312369600,87 = 483507194,24
                                                                руб.
Налогооблагаемая прибыль по годам:
    \Pi p. oбл. i = (Выручка - Сполн. np. i) - (Выручка - Сполн. б. i)
                                                                 (4.37)
\Pi p.o \delta \pi. I = (469128335,27 -437765538,29) - (469128335,27)
-444365050,94 ) = 6599512,65
                                      руб.
\Pi p.o \delta \pi.2 = (511910237,45 - 449200952,28) - (511910237,45)
-456399931,28 ) = 7198979,00
                                      руб.
\Pi p.o \delta \pi.3 = (554692139,63 - 460636366,27) - (554692139,63)
- 468434811,62
                 ) =
                        7798445,35
                                      руб.
\Pi p.o \delta \pi.4 = (597474041,80 - 472071780,25) - (597474041,80)
- 480469691,96
                        8397911,70
                ) =
                                      руб.
\Pi p.o \delta \pi.5 = (640255943.98 - 483507194.24) - (640255943.98)
- 492504572,29
                 ) =
                        8997378,05
                                      руб.
Налог на прибыль – 20% от налогооблагаемой прибыли по годам
                 Hnp.i = \Pi p.oбл.i \cdot 0.20
                                                                     (4.38)
 Hnp.1 =
           6599512,65
                             0,20 = 1319902,53 py6.
 Hnp.2 =
           7198979,00
                             0,20
                                       1439795,80 руб. »[8]
                                   =
```

$$"Mnp.3 = 7798445,35 0,20 = 1559689,07 py6.$$

$$Hnp.4 = 8397911,70$$
 · 0,20 = 1679582,34 py6.

$$Hnp.5 = 8997378,05$$
 · 0,20 = 1799475,61 pyő.

Прибыль чистая по годам

$$\Pi p. u.i = \Pi p. o \delta \pi.i - H n p.i$$
(4.39)

$$\Pi p. u. l = 6599512,65 - 1319902,53 = 5279610,12 \text{ py6}.$$

$$\Pi p. 4.2 = 7198979,00 - 1439795,80 = 5759183,20 \text{ py6}.$$

$$\Pi p. u.3 = 7798445,35 - 1559689,07 = 6238756,28$$
 py6.

$$\Pi p. u. 4 = 8397911,70 - 1679582,34 = 6718329,36$$
 py6.

$$\Pi p. u.5 = 8997378,05 - 1799475,61 = 7197902,44 \text{ py6}.$$

Расчет экономии от повышения надежности и долговечности проектируе-мого узла, конструкции.

где - $\mathcal{I}1$ и $\mathcal{I}2$ - долговечность изделия соответственно по базовому и проектируемому варианту

III = 100000 циклов

D = 150000 циклов

$$\Pi p.o \rightarrow c. \partial. = 6402,56 \cdot 150000 / 100000 - 6402,56 = 3201,28 руб.$$

Следовательно, текущий чистый доход (накопленное сальдо) составит:

$$4\mathcal{I}_{i} = \Pi p. u.i + A_{\mathcal{M}} + \Pi p. o \mathcal{H}. \partial. \cdot Vnpo \partial. i \tag{4.41}$$

$$4/(1) = 5279610,12 + 12988278,97 + 3201,28 \cdot 73272 = 252832056,73$$
 руб

$$4//2 = 5759183,20 + 12988278,97 + 3201,28 \cdot 79954 = 274702580,89$$
 руб

$$4/\sqrt{3} = 6238756,28 + 12988278,97 + 3201,28 \cdot 86636 = 296573105,06 \text{ py}$$

$$4/4 = 6718329,36 + 12988278,97 + 3201,28 \cdot 93318 = 318443629,23 \text{ py6}$$

$$4/\sqrt{5} = 7197902,44 + 12988278,97 + 3201,28 \cdot 100000 = 340314153,40 \text{ py6}$$
[8]

«Дисконтирование денежного потока

$$\alpha_{ti} = 1/(1 + Ecm.i)t \tag{4.42}$$

где - Ест.і - процентная ставка на капитал

t - год приведения затрат и результатов

$$Ecm. = 10 \%$$

$$\alpha_{1} = 0,909$$
 $\alpha_{2} = 0,826$ $\alpha_{3} = 0,751$ $\alpha_{4} = 0,863$ $\alpha_{5} = 0,621$
$$\mathcal{A}C\Pi i = \mathcal{U}\mathcal{A}i \cdot \alpha_{i}$$
 (4.43)

$$\mathcal{A}C\Pi 5 = 340314153,40 \cdot 0,621 = 211335089,26 \text{ py6}.$$

Суммарное дисконтированное сальдо суммарного потока

$$\Sigma \Pi C\Pi = \Sigma \Pi C\Pi i$$
 (4.44)

$$\Sigma \Pi C\Pi = 229824339,56 + 226904331,82 + 222726401,90 +$$

$$+ 274816852,02 + 211335089,26 = 1165607014,57 \text{ py6}.$$

Расчет потребности в капиталообразующих инвестициях составляет:

$$Jo = Kuhe \cdot \Sigma Cnoлн.np.i$$
 (4.45)

где - Кинв. – коэффициент капиталообразующих инвестиций.

$$Jo = 0.19 \cdot (437765538,29 + 449200952,28 + 460636366,27 +$$

$$+$$
 472071780,25 + 483507194,24) = 437604547,95 py6. »[8]

«Чистый дисконтированный доход равен:

$$\Psi \Pi \Pi = \Sigma \Pi C \Pi - Jo$$
(4.46)

$$\mathcal{Y}\mathcal{I}\mathcal{I} = 1165607014,57 - 437604547,95 = 728002466,61 \text{ py6}.$$

Индекс доходности определяется по следующей формуле:

$$JD = 4 \pi J J / Jo \tag{4.47}$$

$$JD = 728002466,61 / 437604547,95 = 1,66$$

Срок окупаемости проекта

$$Tокуп. = Jo / ЧДД$$
 (4.48)

 $To\kappa yn. = 437604547,95 / 728002466,61 = 0,60$

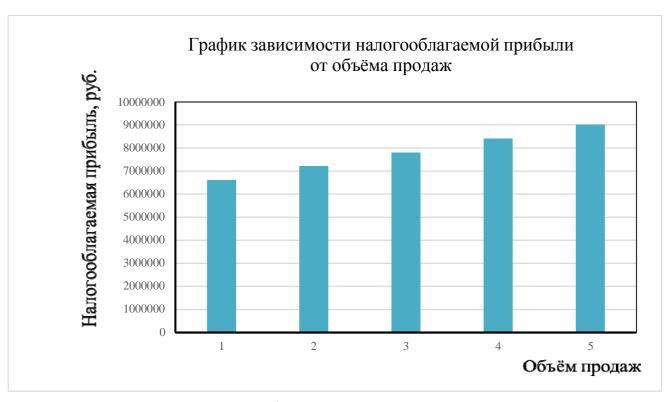


Рисунок 4.2 - График зависимости налогооблагаемой прибыли от объема продаж»[8]

«Выводы и рекомендации

В результате серии технических мероприятий деятельности ресурсы узла автомобиля выросли, в то время как id = 1.66 имеет положительный экономический эффект.

При расчете экономических показателей внедрения спроектированных единиц автомобиля в массовое производство отмечается, что стоимость дизайнерской схемы ниже стоимости базовых вариантов. С этой целью была рассчитана социальная эффективность проекта и рассчитана ожидаемая прибыль от внедрения проекта в производство.

Чистая выручка от реализации обновленного узла составляет 728002466,61 рубля.

Срок окупаемости проекта-0.6 лет, что указывает на самый низкий риск для проекта. Согласно данным, мы можем говорить о его применение в новом дизайне автомобиля. »[8]

«Таблица 4.6 - Показатели коммерческой эффективности проекта

Наименование показателей	Годы					
	0	1	2	3	4	5
1	2	3	4	5	6	7
Объем продаж Vпрод.(шт)		73272	79954	86636	93318	100000
Отпускная цена за единицу продукции (руб.) Цотп.		6402,56				
Выручка.н.(тыс. руб.)		469128	511910	554692	597474	640256
Переменные затраты (тыс. руб) Зперем.б.		131969	144004	156039	168074	180109
Зперем.н.		125396	136831	148267	159702	171138
Амортизация, Ам (тыс. руб.)		12988				
Постоянные затраты, (тыс. руб) Зпост.б.		312396				
Зпост.н.		312370				
Полная себестоимость, (тыс. руб) Спол.б.		444365	456400	468435	480470	492505
Спол.н.		437766	449201	460636	472072	483507
Налогооблагаемая прибыль, б (тыс. руб)		24763	55510	86257	117004	147751
Налогооблагаемая прибыль, н		31363	62709	94056	125402	156749
Налог на прибыль, б (тыс. руб)		4953	11102	17251	23401	29550
Налог на прибыль, н		6273	12542	18811	25080	31350
Прибыль чистая, б		19811	44408	69006	93603	118201
Прибыль чистая, н		25090	50167	75245	100322	125399
Чистый поток реальных денег ЧД (тыс. руб)		252832	274703	296573	318444	340314
Коэф дисконтир at1 при Ест.1		0,909	0,826	0,751	0,863	0,621
Чистый дисконтированный поток реальных денег, ДСП		229824	226904	222726	274817	211335
Капиталообразующие инвестиции Јо (тыс. руб)	437605					
Суммарный чистый дисконтированный поток реальных денег. сумма ЧДД		728002				
Индекс доходности,JD		1,66				
Срок окупаемости проекта Токуп.,год		0,60 » [8]				

ЗАКЛЮЧЕНИЕ

В результате проведенного анализа выбора схем проектируемого узла автомобиля, конструкторского проектирования этапа И сравнения ближайшими аналогами, технологической проработки возможности изготовления выбрана схема, наиболее удачно сочетающая решение всех отмеченных вопросов. Проектируемый вариант конструкции рассматриваемой в данном дипломном проекте дает наименьшее технологическое усложнение в производстве при реализации всех основных задач модернизации.

Экономические расчеты показывают, что с учетом всех рассмотренных аспектов сопоставимости капитальных затрат, конструкция проектируемого обладает очевидными преимуществами потребительских узла свойствах. Дальнейшее улучшение потребительских эксплуатационных качеств может быть достигнуто применением современных конструкционных материалов и использование последних технологических достижений в данной области. Накопленный конструкторских подразделениях В значительный опыт разработки данной конструкции позволяют предполагать появление новых технических решений на модернизированных перспективных автомобилях ВАЗ.

В данном дипломном проекте модернизирован привод ведущих колес с целью улучшенияя ходовых качеств при сохранении общей компоновочной схемы и при минимальных изменениях конструкции приводов ведущих колес. Данная цель достигается внедрением блокировки дифференциала в приводе передних ведущих колес, что дает повышенную проходимость автомобиля, которую можно применить включив из салона данную блокировку нажатием кнопки. Блокировка включается посредством электромагнита, который и осуществляет блокировку дифференциала. Исходя из вышесказанного, конструкторско-технологическое решение применяемое в проекте ведет к повышению технических параметров автомобиля в целом, т.е. к повышению потребительских качеств и конкурентно способности автомобиля.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Васильев, Б.С. Автомобильный справочник / Б.С. Васильев, М. : Машиностроение, 2004. 704 с: ил. Библиогр. : с. 696. Прил. : с. 483-695.
- 2. Черепанов, Л.А. Расчет тяговой динамики и топливной экономичности автомобиля: учеб. Пособие / Л. А. Черепанов; ТолПИ. Тольятти: ТолПИ, 2001.-40 с: ил. Библиогр. : с. 39.
- 3. Кисуленко, Б.В. Краткий автомобильный справочник. Легковые автомобили. / Б.В. Кисуленко, М.: Автополис-плюс, 2005. 482 с.
- 4. Лукин, П.П. Конструирование и расчёт автомобиля / П.П. Лукин;. М. : Машиностроение, 1984. -376 с.
- 5. Анурьев, В.И. Справочник технолога машиностроителя / В.И. Анурьев;.
- M. : Машиностроение, 1980. 688 c.
- 6. Егоров, А.Г. Методические указания к выполнению дипломных проектов технического направления / А.Г. Егоров;. Тольятти 1988. 35 с.
- 7. Горина, Л.Н. Обеспечение безопасности труда на производстве / Л.Н. Горина;. Тольятти 2002. 34 с.
- 8. Капрова, В.Г. Методические указания по технико-экономическому обоснованию дипломного проекта конструкторского и исследовательского направлений для студентов специальности 150100 "Авто-мобиле- и тракторостроение". / В.Г. Капрова;. Тольятти: ТГУ. 2003. 50 с.
- 9. Куклин, Н.Г. Детали машин / Н.Г. Куклин;. М. : Высшая школа, 1973. 384c.
- 10. Кузнецов, Б.А. Краткий автомобильный справочник / Б.А. Кузнецов. М. : Транспорт, 1984. 250 с.
- 11. Гришкевич, А.И. Конструкция, конструирование и расчет автомобиля / А.И. Гришкевич;. М.: Высшая школа, 1987.—377 с.
- 12.Малкин, В.С. Конструкция и расчет автомобиля / В.С. Малкин; КуАИ, 1978. 195 с.
- 13.Лысов, М.И. Машиностроение / М.И. Лысов;. М. : Машиностроение,1972.—233 с.

- 14.Осепчугов, В.В.; Автомобиль: анализ конструкций, элементы расчета / В.В. Осепчугов; А.К. Фрумкин; М.: Машиностроение, 1989.-304с.
- 15.Писаренко, Г.С. Справочник по сопротивлению материалов / Г.С. Писаренко; Киев: Наукова думка, 1988.-736с.
- 16. Бюллетень нормативных актов федеральных органов исполнительной власти, № 39,2003; Информационный фонд НТЦ "Система".
- 17. Раскин, А.М., Основы расчета и указания к дипломному проектированию агрегатов шасси автомобиля / А.М. Раскин; А.Ф. Яшин; Саратов: Ротапринт, 1975.-68с.
- 18. Родионов, В. Ф., Легковые автомобили / В.Ф. Родионов; Б.М. Фиттерман; М.: Машиностроение, 1971.-376с.
- 19. Фчеркан, Н. С. Детали машин. Справочник. Т.3. / Н.С. Фчеркан;. М. : Машиностроение, 1969. 355с.
- 20. Чайковский, И.П. Рулевые управления автомобилей / И.П. Чайковский; П.А. Саломатин; М.: Машиностроение, 1987.-176с.
- 21. Duna, Tariq Yaseen, Graphical user interface (GUI) for design of passenger car system using random road profile / Tariq Yaseen, Duna;. International Journal of Energy and Environment, 2016. 97s.
- 22. Jan, Ziobro. Analysis of element car body on the example silentblock / Ziobro Jan;. Advances in Science and Technology Research Journal, 2015. 37s.
- 23. Lucian, Roman, Mathematical model and software simulation of system from opel cars / Roman, Lucian;. Annals of the Oradea University: Fascicle Management and Technological Engineering, 2014. -77s.
- 24. Dainius, Luneckas. Vilius Bartulis, Research on Probability for Failures in VW Cars During Warranty and Post-Warranty Periods / Luneckas, Dainius. Bartulis, Vilius;. Mokslas: Lietuvos Ateitis, 2014. -85s.
- 25. Catalin, Alexandru. Vlad, Totu, Method for the multi-criteria optimization of car wheel mechanisms / Alexandru, Catalin. Totu, Vlad;. Ingeniería e Investigación, 2016. 137s.

ПРИЛОЖЕНИЕ А

Графики тягово-динамического расчета

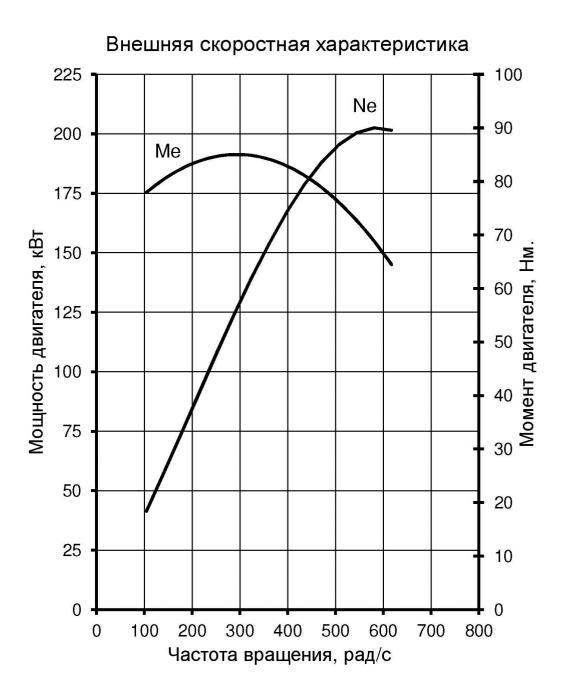


Рисунок А.1 - Внешняя скоростная характеристика

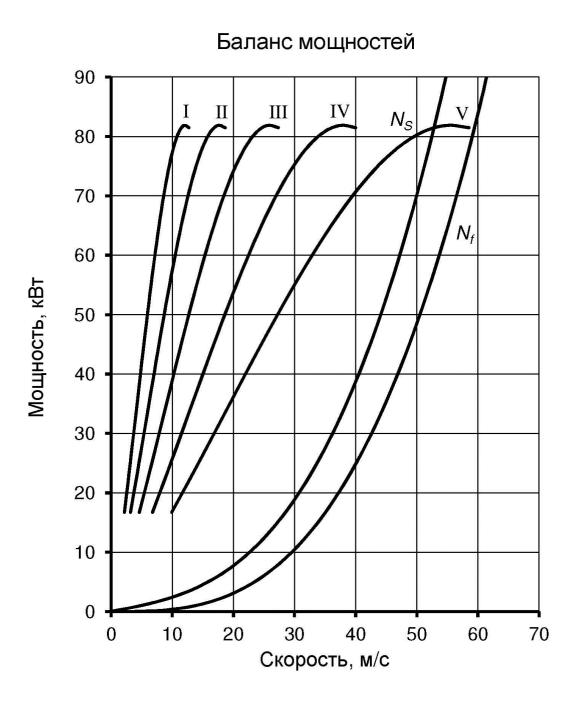


Рисунок А.2 – Баланс мощностей

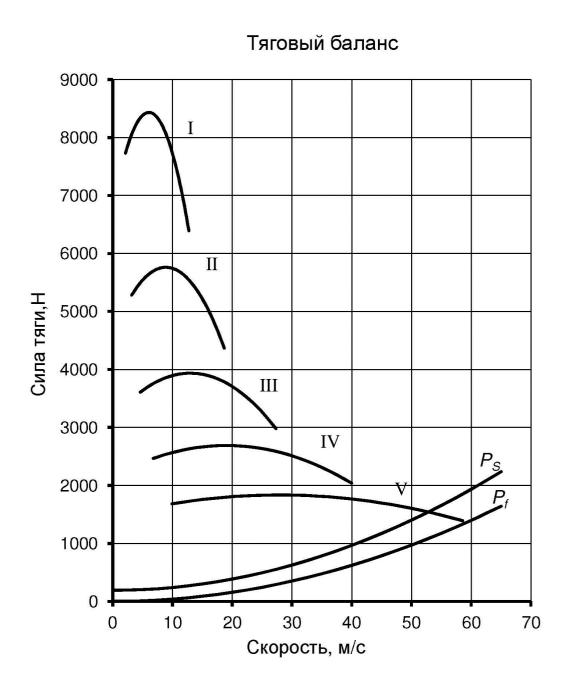


Рисунок А.3 – Тяговый баланс

Динамический баланс 0,55 0,50 0,45 0,40 D_f Динамический фактор 0,35 П 0,30 0,25 III 0,20 0,15 IV 0,10 V 0,05 0,00 30 10 20 40 0 50 60

Рисунок А.4 – Динамический баланс

Скорость, м/с

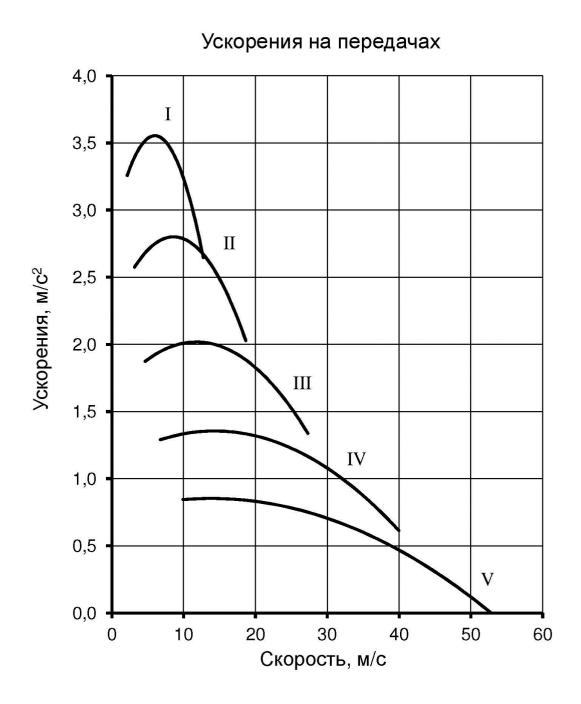


Рисунок А.5 – Ускорение на передачах

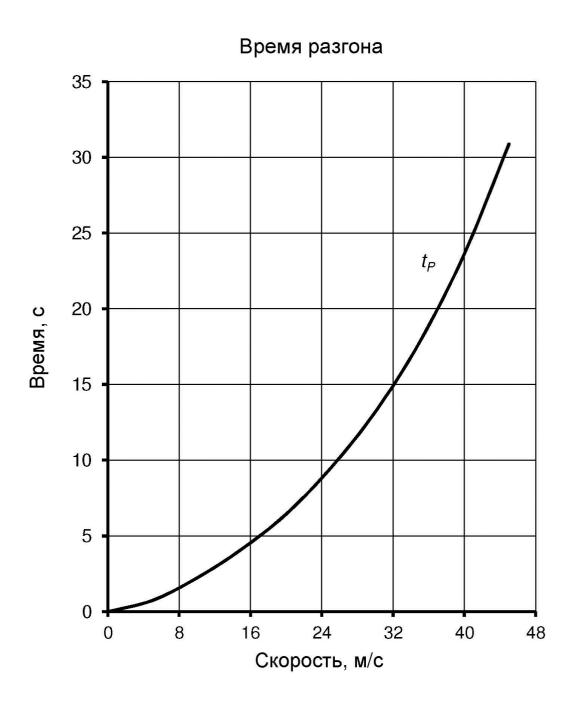


Рисунок А.6 – Время разгона

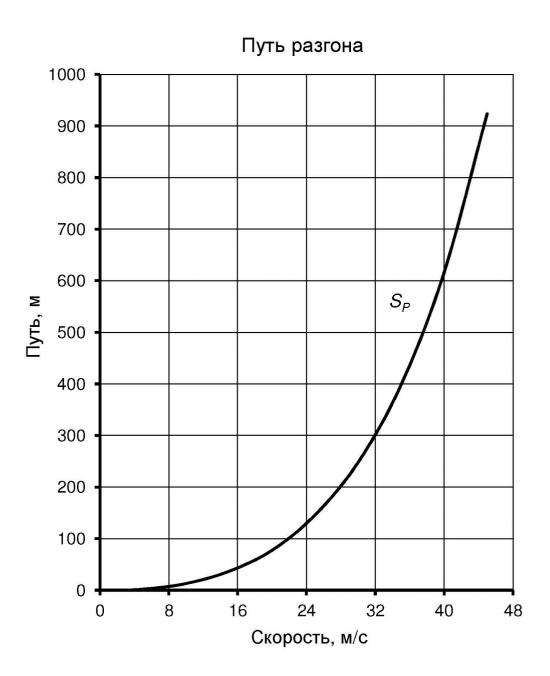


Рисунок А.7 – Пусть разгона

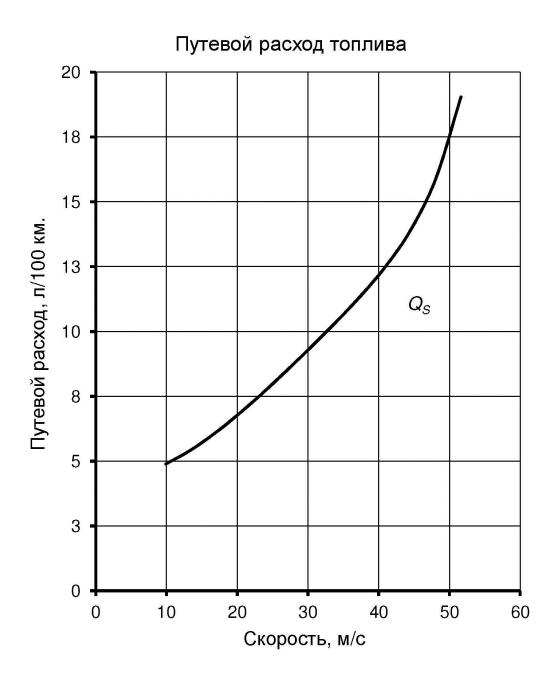


Рисунок А.8 – Путевой расход топлива