МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт энергетики и электротехники

(наименование института полностью)

Кафедра «Электроснабжение и электротехника» (наименование кафедры)

13.03.02 «Электроэнергетика и электротехника»

(код и наименование направления подготовки)

<u>Электроснабжение</u> (направленность (профиль)

БАКАЛАВРСКАЯ РАБОТА

на тему <u>«Реконструкция системы электроснабжения группы вспомогательных цехов машиностроительного предприятия»</u>

В.В. Машалов

Студент

Руководитель	(И.О. Фамилия) А.Н. Черненко	(личная подпись)
•	(И.О. Фамилия)	(личная подпись)
Допустить к защи	ге	
Заведующий кафед	рой д.т.н., профессор В.В. Вахнина	
1	(ученая степень, звание, И.О. Фамилия)	(личная подпись)
« »	2019 г.	

АННОТАЦИЯ

Бакалаврская работа выполнена на тему: «Реконструкция системы электроснабжения группы вспомогательных цехов машиностроительного предприятия». Для группы цехов был выполнен расчет ожидаемых электрических нагрузок от силовых электроприемников и от системы искусственного освещения. Выполнен выбор числа и мощности трансформаторов, устанавливаемых на трансформаторных подстанциях предприятия. Произведено сравнение и выбор системы внутризаводского электроснабжения и системы внешнего электроснабжения предприятия. Произведен расчет токов короткого замыкания в различных точках электрической сети предприятия. Выполнен выбор проводников и электроаппаратов, все выбранное электрооборудование проверено на стойкость к токам короткого замыкания. Для производственного корпуса предприятия выполнен расчет заземления и молниезащиты.

ВКР выполнена на 51 листе, содержит 9 таблиц и 3 графических рисунка. Пояснительная записка дополняется графической частью, выполненной на шести листах формата A1.

СОДЕРЖАНИЕ

Введение	4
1 Краткая характеристика производственного объекта	6
2 Расчет параметров системы электроснабжения предприятия	8
2.1 Определение ожидаемых электрических нагрузок электроприемник	ЮВ
и системы искусственного освещения	8
2.2 Выбор схемы внутреннего и внешнего электроснабжения	
предприятия	12
2.3 Расчет значений токов короткого замыкания	30
2.4 Выбор электроаппаратов системы электроснабжения	38
3 Расчет параметров заземления и молниезащиты производственного к	орпуса
предприятия	45
Заключение	48
Список используемых источников	49

ВВЕДЕНИЕ

Систему электроснабжения промышленного предприятия (СЭС ПП) принято делить на 3 условные подсистемы:

- подсистему внешнего электроснабжения к которой относятся линии от энергосистемы до ГПП промышленного предприятия, как правило номинальное напряжение этих линий составляет от 35 до 220 кВ;
- подсистему внутризаводского электроснабжения к которой относятся ГПП или ТЭЦ предприятия, сети напряжением 6 или 10 кВ от ГПП до высоковольтных распределительных пунктов или КТП;
- подсистему внутрицехового электроснабжения к которой относятся КТП, внутрицеховые сети 0,4 кВ, низковольтные распределительные пункты и шинопроводы.

СЭС ПП по сравнению с электроэнергосистемой с одной стороны проще из-за низких классов напряжения, меньшей дины сетей и меньшей передаваемой мощности, а с другой стороны сложнее из-за огромного количества используемого электрооборудования, различных технологических установок по преобразованию электроэнергии в другие виды энергии. Эти электротехнологические установки определяют требования к системе электроснабжения и ее будущие параметры [1-4].

СЭС ПП должна удовлетворять ряду требований:

- создание безопасных условий для проведения работ;
- обеспечение требуемой надежности по электроснабжению электроприемников;
- обеспечение потребителей электроэнергией, соответствующей ГОСТ 32144-2013;
- баланс между малыми затратами на строительство и последующую эксплуатацию СЭС ПП;
- готовность к изменению технологического процесса без необходимости коренного переустройства;

- экологичность и минимизация негативного воздействия на окружающую среду.

Соблюдение этих требований должно обеспечиваться как на этапе проектирования системы электроснабжения, так и на этапе ее эксплуатации [5, 6].

Цель бакалаврской работы заключается в проектировании надежной и экономичной системы электроснабжения группы вспомогательных цехов машиностроительного предприятия.

1 Краткая характеристика производственного объекта

Агропромышленный холдинг объединяет группу компаний с направлениями деятельности от растениеводства до производства и последующей продажи мясной продукции.

Предприятия, входящие в холдинг, расположены в пяти регионах Российской Федерации.

На предприятиях холдинга выращиваются животные и птица высокопродуктивной селекции, поэтому питательность кормов должна быть такой, чтобы обеспечить максимальное проявление генетического потенциала. Корма, производящиеся в агрохолдинге, отвечают самым высоким требованиям и способствуют получению высоких производственных результатов в свиноводстве и бройлерном птицеводстве.

Одной из стратегических задач холдинга является обеспечение потребности собственного комбикормового производства стабильными поставками качественного зерна, доля которого в комбикорме достигает 60-70% и достижение себестоимости на уровне ведущих производителей рынка зерна.

Холдинг проводит активную работу по освоению существующих и увеличению сельскохозяйственных угодий в местах нахождения комбикормовых производств для достижения объема пашни, позволяющего обеспечить собственные потребности агрохолдинга.

Наряду с увеличением производства зерна особое внимание уделяется работе по улучшению качества зерна, и, прежде всего, расширению таких сортов, которые обладают всеми необходимыми качествами (высокой урожайностью, устойчивостью к болезням и вредителям и другим неблагоприятным условиям среды).

Для улучшения качества зерна и снижения себестоимости агрохолдинг проводит следующие мероприятия:

- использование семян современной высокопродуктивной селекции;

- соблюдение технологических карт;
- использование современных удобрений и средств защиты растений;
- использование современной сельхозтехники;
- повышение производительности труда.

Одним из важных подразделений холдинга является предприятие по ремонту, обслуживанию и производству сельскохозяйственной техники. Предприятие производит ремонт двигателей и трансмиссий тракторов и уборочных комбайнов, имеется своя окрасочная камера для крупногабаритной техники, налажено производство различного навесного оборудования и специальных установок для сельского хозяйства.

2 Расчет параметров системы электроснабжения предприятия

2.1 Определение ожидаемых электрических нагрузок электроприемников и системы искусственного освещения

Для нахождения расчетной нагрузки используем метод коэффициента спроса [7, 8].

Расчетная активная нагрузка определяется по формуле:

$$P_{p} = k_{c} \cdot P_{ycT}$$
 2.1

Расчетная реактивная нагрузка определяется по формуле:

$$Q_{p} = P_{p} \cdot tg\phi \qquad 2.2$$

Расчетная активная нагрузка системы искусственного освещения, в соответствии с методом удельной нагрузки, определяется по формуле:

$$P_{po} = F \cdot P_{yд}$$
 2.3

Суммарная нагрузка от силовых электроприемников и системы искусственного освещения может быть определена из выражения:

$$P_{p.cyM} = P_p + P_{po}$$
 2.4

Значение полной мощности найдем по формуле:

$$S_{p} = \sqrt{P_{p1}^{2} + Q_{p}^{2}}$$
 2.5

Найдем значение расчетных нагрузок для корпуса цветного литья. Исходные данные по корпусу:

$$P_H = 6510 \text{ BT}$$
; $K_c = 0.8$; $\cos \varphi = 0.65$; $tg \varphi = 1.17$; $P_{yx} = 14 \text{ BT/M}$; $F = 32140 \text{ M}^2$.

Найдем значение расчетной активной нагрузки по формуле (2.1):

$$P_p = 0.8 \cdot 6510 = 5208 \text{ kBt.}$$

Найдем значение расчетной реактивной нагрузки по формуле (2.2):

$$Q_p = 5208 \cdot 1,17 = 6080$$
 квар.

Расчетную активную нагрузку системы искусственного освещения найдем по формуле:

$$P_{p,o} = 14 \cdot 32140/1000 = 450 \text{ kBt}.$$

Суммарная нагрузка от силовых электроприемников и системы искусственного освещения по формуле (2.4):

$$P_{p,cvm} = 5208 + 450 = 5658 \text{ kBt.}$$

Значение полной мощности найдем по формуле (2.5):

$$S_p = \sqrt{5658^2 + 6080^2} = 8300 \text{ kBA}$$

Значения расчетных нагрузок по остальным корпусам предприятия производим аналогичным образом при помощи формул 2.1-2.5, результаты вычислений заносим в таблицу 2.1.

В таблице 2.1 номерам корпусов на генплане предприятия соответствуют следующие корпуса: 1 – корпус цветного литья; 2 - бытовые помещения; 3 – цех испытания двигателей сельхоз техники; 4 - энергоблок предприятия; 5 – складские помещения; 6 - открытые склады; 7 – склады ГСМ; 8 – склад хлора; 9 – отстойник; 10 – градирня; 11 - канализационная насосная станция; 12 - склад газовых баллонов; О – система освещения внутренней территории предприятия.

Таблица 2.1- Значения расчетных нагрузок по корпусам предприятия

№ производственно- го корпуса	Р _{уст} , кВт	S, m ²	K _c	Р _{уд.о.} , Вт/м ²	cos φ	tg φ	Р _p , кВт	Q _p , кВАр	Р _{р.о.} , кВт	Р _{р.сум.} , кВт	S _p , кВА
1	6500	32144	0.8	14	0.65	1.2	5200	6079.5	450	5650	8299.6
2	80	976	0.4	10	0.55	1.5	32	48.6	9.8	41.8	64.1
3	1200	4500	0.6	14	0.7	1	720	734.5	63	783	1073.6
4	3800	1704	0.85	10	0.78	0.8	3230	2591.4	17	3247	4154.3
5	250	7168	0.4	6	0.5	1.7	100	173.2	43	143	224.6
6	120	600	0.4	6	0.5	1.7	48	83.1	3.6	51.6	97.9
7	40	3528	0.4	6	0.5	1.7	16	27.7	21.2	37.2	46.4
8	180	108	0.5	10	0.6	1.3	90	120	1.1	91.1	150.7
9	60	260	0.55	6	0.65	1.2	33	38.6	1.6	34.6	51.8
10	90	480	0.8	10	0.7	1	72	73.5	4.8	76.8	106.3
11	850	72	0.85	5	0.75	0.9	723	637.2	0.4	722.9	963.6
12	130	100	0.4	6	0.5	1.7	52	90.1	0.6	52.6	104.3
О		210000		0.21					44.1	44.1	44.1
Всего								10697	660	10975	15381

2.2 Выбор схемы внутреннего и внешнего электроснабжения предприятия

«Цеховые ТП 10/0,4 кВ выполняются без сборных шин первичного напряжения как при радиальном, так и при магистральном питании. При радиальной схеме питания цеховой трансформатор обычно имеет глухое присоединение к линии 0 кВ, идущей от РП 4УР. Коммутационный аппарат (разъединитель или выключатель нагрузки) перед цеховым трансформатором применяется в следующих случаях: источник питания в ведении другой организации, подстанция значительно (более 3 км) удалена от источника питания, она питается по ВЛ, на стороне НН не установлен отключающий аппарат.

При магистральной схеме питания на вводе к цеховому трансформатору в большинстве случаев устанавливается выключатель нагрузки последовательно с предохранителем или разъединитель в комплекте с предохранителем, позволяющий осуществить селективное отключение цеховой ТП при повреждении или ненормальном режиме работы трансформатора. Рекомендуется схема включения предохранителя — перед выключателем нагрузки. Глухое присоединение трансформаторов при магистральной схеме питания применяется редко, так как повреждение трансформатора приводит к отключению всей магистрали выключателем головного участка. При этом теряют питание все цеховые ТП, подключенные к магистрали. Не рекомендуется подключение к одной магистрали более трех трансформаторов» [9].

Питание складов и бытовых помещений осуществляем по магистральной схеме, обеспечивающей требуемую надежность электроснабжения для электроприемников третьей категории. Основные производственные корпуса относящиеся ко второй категории по надежности электроснабжения запитываем по радиальной схеме.

2.2.1 Надежность электроснабжения потребителей

«Величина ущерба от перерыва электроснабжения» [10, 11]:

$$Y = y \cdot W$$
 2.6

«Величина недоотпущенной электроэнергии при электроснабжении по одноцепной линии» [10]:

$$W = P \cdot T \cdot \omega \cdot T$$
H cp вц ц

«Поток отказов» [10]:

$$\omega = \sum_{i=1}^{k} \omega_{i}$$

$$i=1$$
2.8

«Среднее время возобновления питания по одноцепной линии» [10]:

$$T_{\text{BII}} = \sum_{i=1}^{k} \frac{\omega_{i} \cdot t}{\omega_{\text{II}}}$$

$$2.9$$

«Объем недоотпущенной электроэнергии при наличии второй цепи» [10]:

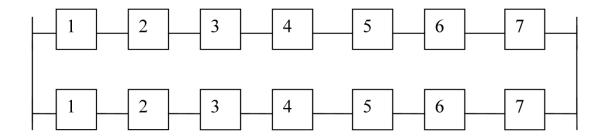
$$W = P \cdot T \cdot \omega \cdot T$$

$$H \cdot cp \cdot Bc \cdot c$$
2.10

«Потока отказов системы» [10]:

$$\omega_{\mathbf{c}} = 2 \cdot \omega_{\mathbf{II}}^2 \cdot \sum_{i=1}^{k} \omega_{i} \cdot t_{\mathbf{B}i}$$
2.11

«Среднее время восстановления питания системы» [10]:


$$T = \frac{T}{BC}$$

$$2.12$$

Расчет производим для корпуса цветного литья. Блок-схема сети представлена на рисунке 2.1.

а) блок-схема одноцепной линии

б) блок-схема двухцепной линии

Рисунок 2.1 – Блок-схемы для двух вариантов электроснабжения

На схемах на рисунке 2.1 используются следующие обозначения: 1 — ячейка распредустройства 10кВ на главной понизительной подстанции предприятия, 2 — кабель номинальным напряжением 10 кВ от главной понизительной подстанции предприятия до цеховой трансформаторной подстанции, 3 — разъединитель напряжением 10 кВ, размещающийся на стороне 10 кВ цеховой трансформаторной подстанции, 4 — трансформатор с классами напряжения 10/0,4 кВ, расположенный на цеховой трансформаторной подстанции,

5 и 6 — вводной автоматический выключатель и выключатель на отходящей линии 0,4 кВ, 7 — кабельная линия к потребителю напряжением 0,38 кВ.

Сначала рассмотрим вариант при питании по одноцепной линии.

Поток отказов определяем по формуле (2.8):

$$\omega_{\text{II}} = 0,021 + 0,07 \cdot 0,22 + 0,01 + 0,04 + 0,025 + 0,025 + 0,07 \cdot 0,08 = 0,14 \quad 1/\Gamma$$

Среднее время возобновления питания по одноцепной линии определяем по формуле (2.9):

$$T_{\text{BII}} = \frac{0,021 \cdot 10}{0,142} + \frac{0,0077 \cdot 8,14}{0,142} + \frac{0,01 \cdot 15}{0,142} + \frac{0,04 \cdot 60}{0,142} + \frac{0,025 \cdot 4}{0,142} + \frac{0,0056 \cdot 5,42}{0,142} = 21,94$$

Величину недоотпущенной электроэнергии при электроснабжении по одноцепной линии определяем по формуле (2.7):

$$\mathbf{W}_{\mathbf{H}} = 226, 2 \cdot 21, 9 \cdot 0, 14 \cdot 1 = 704, 8 \text{ кВт} \cdot \text{ч/год}.$$

Величину ущерба от перерыва электроснабжения определяем по формуле (2.6):

$$\mathbf{y}_1 = 15,75 \cdot 704,8 = 11100$$
 руб/год

Теперь рассмотрим вариант при питании корпуса по двухцепной линии.

Поток отказов системы определяем по формуле (2.11):

$$\omega_{c} = 2 \cdot 0.142^{2} \cdot \begin{pmatrix} 0.021 \cdot 10 + 0.0077 \cdot 8.14 + 0.01 \cdot 15 + \\ +0.04 \cdot 60 + 0.025 \cdot 4 \cdot 2 + 0.0056 \cdot 5.42 \end{pmatrix} = 0.1257 \quad 1/\Gamma$$

Среднее время возобновления питания по двухцепной линии определяем по формуле (2.12)

$$T_{BC} = \frac{21.9}{2} = 11 \text{ y}$$

Объем недоотпущенной электроэнергии при наличии второй цепи определяем по формуле (2.10)

$$W_{_{\mathrm{H}}} = 226, 2 \cdot 11 \cdot 0, 1257 = 312 \,\mathrm{кBr} \cdot \mathrm{ч/год}$$

Величину ущерба от перерыва электроснабжения при питании по двухцепной линии определяем по формуле (2.6):

$$\mathbf{y}_2 = 15,75 \cdot 311,8 = 4910 \,\mathrm{руб/год}$$

Превышение ущерба при питании по одноцепной линии по сравнению с двухцепной равно 6190 руб/год.

Экономическая выгода от снижения величины ущерба при использовании двухцепной линии для питания корпуса цветного литья равна 14,5 тыс.руб/год. Прокладка второй цепи потребует дополнительных затрат в объеме 61,2 тыс.руб. При этом срок окупаемости данного мероприятия будет равен:

$$T_{\text{OK}} = \frac{\sum K_{i}}{9}$$
 2.13

$$T_{\text{ок}} = \frac{61,2}{14,5} = 4,2$$
 года,

что является целесообразным и может быть рекомендовано к внедрению.

2.2.2 Определение расчетных нагрузок цеховых трансформаторных подстанций.

Расчетная нагрузка цеховых ТП определяется как сумма подключенных расчетных нагрузок умноженная на коэффициент разновременности максимумов нагрузки:

$$P_{\text{prij}} = K_{\text{p.m.}} \cdot \Sigma P_{\text{pi}}, \qquad 2.14$$

$$Q_{pm} = K_{p.m.} \cdot \Sigma Q_{pi}, \qquad 2.15$$

$$S_{pm} = \sqrt{P_{pm}^2 + Q_{pm}^2}$$
. 2.16

Определим расчетную нагрузку для второй ТП:

$$\begin{split} P_{\text{ртп-2}} &= \text{K}_{\text{р.M}} \cdot \left(\sum_{\text{p3}} + \sum_{\text{p12}} \right), \\ P_{\text{ртп-2}} &= 0,9 \cdot 783 + 52,6 = 835,6 \text{ кВт,} \\ Q_{\text{ртп-2}} &= 0,9 \cdot 734,6 + 90,1 = 824,7 \text{ кВАр,} \\ S_{\text{p.TII}-2} &= \sqrt{825,6^2 + 824,7^2} = 1056,6 \text{ кВА.} \end{split}$$

Для остальных ТП расчеты выполняем по формулам 2.14-2.16, результаты заносим в таблицу 2.2.

Таблица 2.2 – Расчетные нагрузки цеховых ТП предприятия

No	ΣРр.сум,	ΣQp,	Кр.м	Рр.тп,	Q р.тп,	Ѕр.тп,
ТΠ	кВт	кВАр	Kp.m	кВт	кВАр	кВА
1	2867	3089	0.9	2581	2780	3793
1a	2826	3040	0.9	2543	2736	3735
2	825	824	0.9	752	742	1057
3	723	638	0.9	651	574	868
4	2501	2301	0.9	2251	2071	3058
5	144	174	0.9	129	156	203
6	180	231	0.9	162	208	264

2.2.3 Выбор устройств компенсации реактивной мощности на ТП Выполним выбор КУ для второй трансформаторной подстанции. «Требуемая мощность КУ» [12, 13]:

$$Q_{6\kappa} = Q_p - 0.33 \cdot P_p$$
 2.17
 $Q_{6\kappa} = 742.16 - 0.33 \cdot 752.04 = 494 \text{ kBAp.}$

Принимаем две автоматические установки компенсации реактивной мощности типа АУКРМ-0,4-250.

«Расчетная нагрузка ТП после установки устройств компенсации реактивной мощности» [12]:

$$S_{p.K.} = \sqrt{P_p^2 + (Q_p - Q_{\delta K})^2},$$

$$S_{p.K.} = \sqrt{752^2 + (742, 2 - 500)^2} = 790 \text{ kBA}.$$

«Расчетный коэффициент мощности после установки устройств компенсации реактивной мощности» [12]:

$$\cos \varphi_{\kappa} = P_{p}/S_{p.\kappa.},$$
 2.19
 $\cos \varphi_{\kappa} = 752 / 790 = 0.95.$

Результаты выбора устройств компенсации реактивной мощности и полученные расчетные значения нагрузок по ТП сводим в таблицу 2.3.

Таблица 2.3 - Результаты выбора устройств компенсации реактивной мощности и полученные расчетные значения нагрузок по ТП

M ₂ TH	Рр.тп,	Q р.тп,	Q бк,	Qбк.ст.,	Sp.к,	0000	Ѕр.ном,
№ТП	кВт	кВАр	кВАр	кВАр	кВА	$\cos arphi_{\kappa}$	кВА
1	2581	2779.4	1928	2000	2695.2	0.96	1925
1a	2543	2735.7	1896.7	2000	2646.8	0.96	1891
2	752	742.1	493.9	500	790	0.95	564
3	651	573.4	358.7	400	673.3	0.97	481
4	2251	2070	1327.5	1600	2298.5	0.98	1642
5	129	155.8	113.4	120	133.6	0.96	95
6	162	207.7	154.3	160	168.7	0.96	121

2.2.4 Определение количества и мощности трансформаторов на цеховых трансформаторных подстанциях предприятия

«При решении этого вопроса руководствуются следующими положениями:

- число трансформаторов на подстанции определяется из условия надежности питания с учетом категории потребителей электроэнергии;
- намечаются возможные варианты мощности трансформаторов с учетом допустимой их перегрузки в рабочем и послеаварийном режимах, и на

основании технико-экономического сопоставления выбирается приемлемый вариант с учетом возможного увеличения нагрузок.

Трансформаторные подстанции должны размещаться как можно ближе к центру электрических нагрузок. Для этого должны применяться внутрицеховые ТП, а также встроенные в здание цеха или пристроенные к нему ТП, питающие отдельные цеха или части их.

Однотрансформаторные цеховые ТП применяются при ЭП, допускающих перерыв в электроснабжении на время доставки складского резерва, или при резервировании, осуществляемом по перемычкам на вторичном напряжении.

Двухтрансформаторные цеховые ТП применяются при преобладании потребителей I и II категорий, а также при наличии неравномерного суточного или годового графика нагрузок» [14, 15].

Выбираем силовые трансформаторы для второй трансформаторной подстанции.

Так как потребители, получающие питание, от второй ТП относятся к II и III категориям по надежности электроснабжения, то номинальная мощность трансформаторов определяется с учетом 70% загрузки трансформаторов в нормальном режиме работы:

$$S_{_{\rm H}} \ge S_{_{\rm p}} / 1.4 = 791/1.4 = 565 \text{ kBA}.$$

Рассмотрим два варианта с установкой трансформаторов больше расчетной мощности, это варианты с установкой трансформаторов мощностью 630 кВА и 1000 кВА.

Первый вариант с установкой на ТП трансформаторов типа ТМГ-1000/10 с паспортными данными:

$$K_1$$
=122 тыс.руб; ΔP_{κ} = 11,6 кВт; ΔP_{κ} = 3,3 кВт.

Величина приведенных затрат на вариант с трансформаторами 1000 кВА составит:

$$3 = E_{H} + P_{1}/100 \cdot K_{1} + (\Delta P_{x} \cdot 8760 + K_{3} \cdot \Delta P_{K} \cdot T) \cdot H_{3}, \qquad 2.20$$

$$K_{3} = S_{p}/(2 \cdot S_{H}), \qquad 2.21$$

$$K_{3} = 791/2 \cdot 1000 = 0,395.$$

$$3_1 = 0.12 + 6.4 / 100$$
 · $122 \cdot 10^3 + 3.3 \cdot 8760 + 0.395 \cdot 11.6 \cdot 3000$ · $6.9 = 72.1$ тыс.руб/год.

Первый вариант с установкой на ТП трансформаторов типа ТМГ-630/10 с паспортными данными: K_2 = 90,7 тыс.руб; ΔP_{κ} = 7,6 кВт; ΔP_{κ} = 2,27 кВт.

Величина приведенных затрат на вариант с трансформаторами 630 кВА составит:

$$\mathbf{3}_2 = 0.12 + 6.4 \, / \, 100$$
 $\cdot \, 90.7 \, \cdot \, 10^3 + \, 2.27 \, \cdot \, 8760 + 0.63 \, \cdot \, 2.27 \, \cdot \, 3000$ \cdot $\cdot \, 6.9 = 58.5$ тыс.руб/год.

По минимуму приведенных затрат выбираем вариант с установкой на ТП2 трансформаторов ТМГ-630/10. Результаты выбора трансформаторов на прочих цеховых трансформаторных подстанциях предприятия заносим в таблицу 2.4.

Таблица 2.4 - Результаты выбора трансформаторов на цеховых трансформаторных подстанциях предприятия

№ TП	N _T ,	S _{нт} , кВА	$S_{p.\kappa},$ κBA	$\Delta P_{_{\rm x}},$ кВт	ΔР _{к3} , кВт	К, тыс.руб.	К ₃	K ₃ ²	t, ч	Цэ, руб/кВт•ч	С _а , тыс. руб	С _п , тыс.руб.	3,
1	2	2500	2695	6.2	23.5	188.5	0.54	0.29	3000	1.5	34.6	112.1	147
1a	2	2500	2646	6.2	23.5	188.5	0.53	0.28	3000	1.5	34.6	111.1	146
2	2	630	790	2.27	7.6	90.7	0.63	0.39	3000	1.5	16.6	43.2	60
3	2	630	673	2.27	7.6	90.7	0.53	0.29	3000	1.5	16.6	39.5	56
4	2	2500	2298	6.2	23.5	188.5	0.46	0.21	3000	1.5	34.6	103.8	139
5	1	160	134	0.73	2.65	42.2	0.84	0.70	3000	1.5	7.7	17.9	26
6	1	250	169	1.05	3.7	49.4	0.68	0.46	3000	1.5	9	21.3	31

2.2.5 Расчет кабельных линий

«Расчетный ток в линии для потребителей II категории по надежности электроснабжения определяем по формуле» [16]:

$$I_{p} = \frac{S}{\sqrt{3} \cdot U_{H} \cdot 2}$$
 2.22

«Расчетный ток в линии для потребителей III категории по надежности электроснабжения определяем по формуле» [16]:

$$I_{p} = \frac{S}{\sqrt{3} \cdot U_{H}}$$
 2.23

«Потери в кабеле определяем по формуле» [16]:

$$\Delta P_{H.J} = P_{yJ.} \cdot 1$$
 2.24

«Коэффициент загрузки участка сети определяем по формуле» [16]:

$$K_{3} = \frac{I_{p}}{I_{H.K}}$$
 2.25

«Потери в кабеле с учетом коэффициента загрузки определяем по формуле» [16]:

$$\Delta P_{\mathcal{A}} = \Delta P_{H.\mathcal{A}} \cdot K_3^2$$
 2.26

Величину потерь электроэнергии определяем по формуле:

$$\Delta \, \, \Theta_{\mathbf{a}} = \Delta \, \, \mathbf{P}_{\mathbf{A}} \cdot \mathbf{T}_{\mathbf{\Pi}} \tag{2.27}$$

Годовые потери в денежном выражении:

$$C_{\Pi} = \Delta \, \, \Theta_{a} \cdot C_{O} \qquad \qquad 2.28$$

«Капиталовложения на прокладку участка сети определяем по формуле» [16]:

$$K = K_{yZ} \cdot 1$$
 2.29

«Ежегодные амортизационные отчисления определяем по формуле» [16]:

$$C_{a} = K \cdot k_{a} \cdot 1000 \qquad 2.30$$

«Годовые эксплуатационные расходы определяем по формуле» [16]:

$$C_{3} = C_{\Pi} + C_{a}$$
 2.31

«Годовые приведенные затраты определяем по формуле» [16]:

$$3_{\text{пр}} = C_9 + 0.12 \cdot K$$
 2.32

Выберем по минимуму приведенных затрат кабель для участка сети от ТП №1 до второго распределительного пункта.

Расчетный ток для линии определим по формуле 2.23:

$$I_p = \frac{64,07}{\sqrt{3.0,38}} = 97,3A.$$

Величину потерь в кабельной линии определим по формуле 2.24:

$$\Delta P_{H.II} = 165 \cdot 0,125 = 20,63 \text{ kBt}.$$

Коэффициент загрузки участка сети определяем по формуле 2.25:

$$k_3 = \frac{97.3}{255} = 0.38,$$

 $k_3^2 = 0.146.$

Потери в кабеле с учетом коэффициента загрузки определяем по формуле 2.26:

$$\Delta$$
 Р_Д = 20,63 · 0,146 = 3,0 кВт.

Величину потерь электроэнергии определяем по формуле 2.27:

$$\Delta \exists_{a} = 3,006 \cdot 3000 = 9016,9 \text{ кВт} \cdot \text{ч/год}.$$

Годовые потери в денежном выражении определим по формуле 2.28:

$$C_{\Pi} = 9016, 9 \cdot 1, 5 / 1000 = 13,1$$
 руб/год.

Капиталовложения на прокладку участка сети определяем по формуле 2.29:

$$K = 270.27 \cdot 0,125 = 33,8$$
 тыс.руб.

Ежегодные амортизационные отчисления определяем по формуле 2.30:

$$C_a = 0.15 \cdot 33,77 = 5.1$$
 тыс. руб/год.

Годовые эксплуатационные расходы определяем по формуле 2.31:

$$C_{2} = 13,1 + 5,1 = 18,2$$
 тыс. руб/год.

Годовые приведенные затраты определяем по формуле 2.32:

$$3_{mp} = 18,2 + 0,12 \cdot 33,77 = 22,2$$
 тыс.руб.

Расчеты по формулам 2.23-2.32 производим для остальных сечений кабеля до тех пор, пока не будет найден минимум годовых приведенных затрат, сечение, соответствующее минимуму, принимается к установке. Расчеты для кабельных линий напряжением 0,4 кВ сводим в таблицу 2.5, а для кабельных линий 10 кВ в таблицу 2.6.

2.2.6 Схема внешнего электроснабжения предприятия

Электроэнергия из электроэнергосистемы поступает на главную понизительную подстанцию предприятия по двум воздушным линиям 110 кВ. На подстанции усыновлены два силовых трансформатора 110/10 кВ. На стороне 10 кВ ГПП применяется одиночная секционированная система сборных шин.

Таблица 2.5 – Выбор кабельных линий напряжением 0,4 кВ по минимуму приведенных затрат

№ ли- ли- нии	L, ĸm	S _p , κBA	I _{aB}	s, mm ²	I _{нк}	К _{р.м.}	I _{дл.доп}	$\Delta P_{yд}$ к B т	$\Delta P_{_{\mathrm{H,J}}}$ к B т	K ₃	K_3^2	$\Delta P_{_{ m I}}$ к B т	ΔЭ _а кВт∙ч	с _п , тыс руб	К _{уд} , тыс руб	К, тыс руб	с _а , тыс руб	Сэ, тыс руб	3, тыс руб
	0.125	64.07	97.3	70	210	0.9	189	140	17.50	0.46	0.215	3.76	11280.8	16.92	218	27.25	4.09	21.0	24.3
1	0.125	64.07	97.3	95	255	0.9	230	165	20.63	0.38	0.146	3.006	9016.9	13.53	270	33.75	5.06	18.6	22.6
	0.125	64.07	97.3	120	295	0.9	266	200	25.00	0.33	0.109	2.722	8166.5	12.25	320	40.00	6.00	18.2	23.0
	0.028	104.3	158.5	70	210	0.9	189	140	3.92	0.75	0.569	2.23	6696.5	10.04	218	6.10	0.92	11.0	11.7
	0.028	104.3	158.5	95	255	0.9	230	165	4.62	0.62	0.386	1.78	5352.6	8.03	270	7.56	1.13	9.2	10.1
2	0.028	104.3	158.5	120	295	0.9	266	200	5.60	0.54	0.289	1.62	4847.8	7.27	320	8.96	1.34	8.6	9.7
	0.028	104.3	158.5	150	335	0.9	302	230	6.44	0.47	0.224	1.44	4323.1	6.48	380	10.64	1.60	8.1	9.4
	0.028	104.3	158.5	185	385	0.9	347	260	7.28	0.41	0.169	1.23	3700.1	5.55	451	12.63	1.89	7.4	9.0
	0.095	51.8	78.7	70	210	0.9	189	140	13.30	0.37	0.140	1.87	5604.1	8.41	218	20.71	3.11	11.5	14.0
	0.095	51.8	78.7	95	255	0.9	230	165	15.68	0.31	0.095	1.49	4479.4	6.72	270	25.65	3.85	10.6	13.6
3	0.095	51.8	78.7	120	295	0.9	266	200	19.00	0.27	0.071	1.35	4057.0	6.09	320	30.40	4.56	10.6	14.3
	0.095	51.8	78.7	150	335	0.9	302	230	21.85	0.23	0.055	1.21	3617.9	5.43	380	36.10	5.42	10.8	15.2
	0.095	51.8	78.7	185	385	0.9	347	260	24.70	0.20	0.042	1.03	3096.5	4.64	451	42.85	6.43	11.1	16.2
	0.032	106.2	161.4	70	210	0.9	189	140	4.48	0.77	0.590	2.64	7934.5	11.90	218	6.98	1.05	12.9	13.8
	0.032	106.2	161.4	95	255	0.9	230	165	5.28	0.63	0.400	2.11	6342.1	9.51	270	8.64	1.30	10.8	11.8
4	0.032	106.2	161.4	120	295	0.9	266	200	6.40	0.55	0.299	1.91	5744.0	8.62	320	10.24	1.54	10.2	11.4
	0.032	106.2	161.4	150	335	0.9	302	230	7.36	0.48	0.232	1.71	5122.4	7.68	380	12.16	1.82	9.5	11.0
	0.032	106.2	161.4	185	385	0.9	347	260	8.32	0.42	0.176	1.46	4384.1	6.58	451	14.43	2.16	8.7	10.5
	0.035	46.3	70.3	35	140	0.9	126	95	3.33	0.50	0.252	0.84	2518.4	3.78	148	5.18	0.78	4.6	5.2
5	0.035	46.3	70.3	50	175	0.9	158	110	3.85	0.40	0.162	0.62	1866.3	2.80	178	6.23	0.93	3.7	4.5
	0.035	46.3	70.3	70	210	0.9	189	140	4.90	0.33	0.112	0.55	1649.5	2.47	218	7.63	1.14	3.6	4.5

Продолжение таблицы 2.5

№ ли- ли- нии	L, ĸm	S _p , кВА	I _{aB}	s, MM ²	I _{нк} A	К _{р.м.}	I _{дл.доп}	$\Delta P_{_{yд}}$ к B т	$\Delta P_{\scriptscriptstyle \mathrm{H, J}}$ к B т	K ₃	κ_3^2	$\Delta P_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	ΔЭ _а кВт∙ч	с _п , тыс руб	К _{уд} , тыс руб	К, тыс руб	с _а , тыс руб	Сэ, тыс руб	3, тыс руб
	0.065	150.6	228.8	95	255	0.9	230	165	10.73	0.90	0.805	8.64	25906.0	38.86	270	17.55	2.63	41.5	43.6
6	0.065	150.6	228.8	120	295	0.9	266	200	13.00	0.78	0.602	7.82	23462.9	35.19	320	20.80	3.12	38.3	40.8
6	0.065	150.6	228.8	150	335	0.9	302	230	14.95	0.68	0.467	6.97	20923.5	31.39	380	24.70	3.71	35.1	38.1
	0.065	150.6	228.8	185	385	0.9	347	260	16.90	0.59	0.353	5.97	17908.0	26.86	451	29.32	4.40	31.3	34.8
	0.020	97.9	148.7	95	255	0.9	230	165	3.30	0.58	0.340	1.12	3365.0	5.05	270	5.40	0.81	5.9	6.5
7	0.020	97.9	148.7	120	295	0.9	266	200	4.00	0.50	0.254	1.02	3047.7	4.57	320	6.40	0.96	5.5	6.3
/	0.020	97.9	148.7	150	335	0.9	302	230	4.60	0.44	0.197	0.91	2717.8	4.08	380	7.60	1.14	5.2	6.1
	0.020	97.9	148.7	185	385	0.9	347	260	5.20	0.39	0.149	0.78	2326.1	3.49	451	9.02	1.35	4.8	5.9

Таблица 2.6 - Выбор кабельных линий напряжением 10 кВ по минимуму приведенных затрат

№ линии	L,	S _p , кВА	I _{aB}	I _{раб}	s, mm²	I _{HK}	К _{р.м.}	I _{дл.доп}	$\Delta P_{_{yд}}$ к B т	$\Delta P_{_{\mathrm{H},\mathrm{J}}}$ к B т	K ₃	K ₃ ²	$\Delta P_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	ΔЭ _а кВт∙ч	с _п , тыс руб	К _{уд} , тыс руб	К, тыс руб	с _а , тыс руб	Сэ, тыс руб	3, тыс руб
	0.075	2695.2	155.6	77.8	95	200	0.9	180	46	3.45	0.39	0.151	0.52	1566	2.3	82	6.15	0.92	3.27	4.01
1	0.075	2695.2	155.6	77.8	120	245	0.9	221	49	3.68	0.32	0.101	0.37	1111	1.7	86	6.45	0.97	2.63	3.40
1	0.075	2695.2	155.6	77.8	150	305	0.9	275	54	4.05	0.255	0.065	0.26	791	1.2	161	12.08	1.81	3.0	4.44
	0.075	2695.2	155.6	77.8	185	345	0.9	311	62	4.65	0.226	0.051	0.24	709	1.1	192	14.40	2.16	3.2	4.95
	0.067	2646.8	152.8	76.4	95	200	0.9	180	46	3.08	0.38	0.146	0.45	1349	2.0	82	5.49	0.82	2.84	3.50
2	0.067	2646.8	152.8	76.4	120	245	0.9	221	49	3.28	0.31	0.097	0.32	957	1.4	86	5.76	0.86	2.30	2.99
2	0.067	2646.8	152.8	76.4	150	305	0.9	275	54	3.62	0.251	0.063	0.23	681	1.0	161	10.79	1.62	2.6	3.93
	0.067	2646.8	152.8	76.4	185	345	0.9	311	62	4.15	0.221	0.049	0.20	611	0.9	192	12.86	1.93	2.8	4.39

Продолжение таблицы 2.6

).c	I	S	т	ī	s,	T		T	ΛD	۸D			۸D	4.3	с _п ,	К _{уд} ,	К,	ca,	Сэ,	3,
№	L,	S_p ,	1 _{aB}	раб	2	1 _{HK}	$K_{p.m.}$	1 _{дл.доп}	$\Delta P_{y_{J}}$	$\Delta P_{_{\mathrm{H.Д}}}$	К ₃	K_3^2	$\Delta P_{_{ m I\! I}}$	$\Delta \Theta_{\rm a}$	тыс	тыс	тыс	тыс	тыс	тыс
линии	KM	кВА	A	Α	MM ²	A	,	A	кВт	кВт		·	кВт	кВт∙ч	руб	руб	руб	руб	руб	руб
	0.093	790.07	45.6	22.8	25	90	0.9	81	36	3.35	0.253	0.064	0.22	645	1.0	55	5.12	0.77	1.7	2.35
3	0.093	790.07	45.6	22.8	35	115	0.9	104	40	3.72	0.198	0.039	0.15	439	0.7	59	5.49	0.82	1.5	2.14
3	0.093	790.07	45.6	22.8	50	140	0.9	126	42	3.91	0.163	0.027	0.10	311	0.5	66	6.14	0.92	1.4	2.12
	0.093	790.07	45.6	22.8	70	165	0.9	149	44	4.09	0.138	0.019	0.08	235	0.4	74	6.88	1.03	1.4	2.21
	0.086	673.3	38.9	19.4	25	90	0.9	81	36	3.10	0.216	0.047	0.14	433	0.6	55	4.73	0.71	1.4	1.93
4	0.086	673.3	38.9	19.4	35	115	0.9	104	40	3.44	0.169	0.029	0.10	295	0.4	59	5.07	0.76	1.2	1.81
	0.086	673.3	38.9	19.4	50	140	0.9	126	42	3.61	0.139	0.019	0.07	209	0.3	66	5.68	0.85	1.2	1.85
	0.086	673.3	38.9	19.4	70	165	0.9	149	44	3.78	0.118	0.014	0.05	158	0.2	74	6.36	0.95	1.2	1.95
	0.189	2298.5	132.7	66.4	70	165	0.9	149	44	8.32	0.40	0.162	1.34	4035	6.1	74	13.99	2.10	8.15	9.82
5	0.189	2298.5	132.7	66.4	95	200	0.9	180	46	8.69	0.33	0.110	0.96	2871	4.3	82	15.50	2.32	6.63	8.49
	0.189	2298.5	132.7	66.4	120	245	0.9	221	49	9.26	0.27	0.073	0.68	2037	3.1	86	16.25	2.44	5.49	7.44
	0.189	2298.5	132.7	66.4	150	305	0.9	275	54	10.21	0.218	0.047	0.48	1449	2.2	161	30.43	4.56	6.7	10.3
6	0.242	133.61	7.7	7.7	16	75	0.9	70	33	7.99	0.10	0.011	0.08	253	0.4	50	12.10	1.82	2.19	3.64
U	0.242	133.61	7.7	7.7	25	90	0.9	81	36	8.71	0.086	0.007	0.06	192	0.3	55	13.31	2.00	2.3	3.88
7	0.490	168.75	9.7	9.7	16	75	0.9	70	33	16.17	0.13	0.017	0.27	818	1.2	50	24.50	3.68	4.90	7.84
,	0.490	168.75	9.7	9.7	25	90	0.9	81	36	17.64	0.108	0.012	0.21	620	0.9	55	26.95	4.04	5.0	8.20

2.3 Расчет значений токов короткого замыкания

Расчёт токов КЗ на стороне свыше 1 кВ необходим для проверки питающего кабеля на термическую стойкость, а также для проверки аппаратов ВН, выбираемых в шкафу ввода на высокой стороне (разъединителей, предохранителей, выключателей нагрузки).

При расчетах токов КЗ в электроустановках до 1 кВ необходимо учитывать:

- 1) индуктивные сопротивления всех элементов короткозамкнутой цепи, включая силовые трансформаторы, проводники, трансформаторы тока, реакторы, токовые катушки автоматических выключателей;
 - 2) активные сопротивления элементов короткозамкнутой цепи;
- 3) активные сопротивления различных контактов и контактных соединений. [17, 18]

Базисную мощность принимаем равной 100МВА исходя из условия:

$$S_{\text{HOM.T}} \le \frac{S_{\tilde{0}}}{50}$$
 2.33

Базисные напряжения принимаем равными U_{61} =10,5 кВ, U_{62} =0,4 кВ.

На рисунке 2.2 изображена расчетная схема для определения значений токов K3, а на рисунке 2.3 – ее схема замещения.

Длина питающего кабеля составляет 600 м. Расчетное значение тока трехфазного короткого замыкания на шинах 10 кВ главной понизительной подстанции составляет 8 кА.

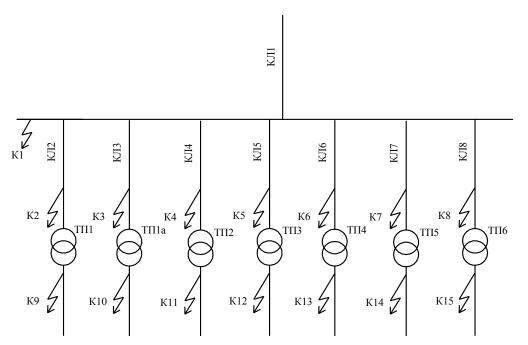


Рисунок 2.2 – Расчетная схема электрической сети для определения значений токов K3

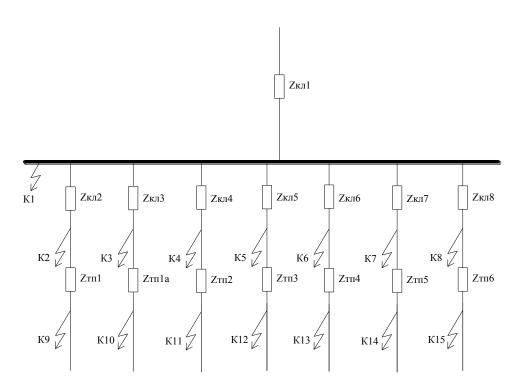


Рисунок 2.3 – Схема замещения для определения значений токов КЗ

«Базисный ток определяем по формуле» [17]:

$$I_{61} = \frac{S_{61}}{\sqrt{3} \cdot U_{61}},$$

$$I_{61} = \frac{100}{\sqrt{3} \cdot 10,5} = 5,5 \text{ kA},$$
2.34

$$I_{62} = \frac{100}{\sqrt{3.0,4}} = 144,3 \text{ KA}.$$

«Сопротивление системы определяем по формуле» [17]:

$$X_{c*} = \frac{I_{61}}{I_{KIII}^{(3)}},$$
 2.35
 $X_{c*} = \frac{5.5}{8} = 0.68.$

«Активное сопротивление питающей кабельной линии 10 кВ определяем по формуле» [3]:

$$r_{\text{KJI}1*} = r_0 \cdot 1 \frac{S_6}{U_{6i}^2},$$
 2.36
$$r_{\text{KJI}1*} = \frac{0.16 \cdot 0.62 \cdot 100}{10^2} = 0.099.$$

«Реактивное сопротивление питающей кабельной линии 10 кВ определяем по формуле» [3]:

$$x_{K\pi 1}^* = x_0 \cdot 1 \frac{S_{\tilde{0}}}{U_{\tilde{0}i}^2},$$
 2.37

$$x_{\text{KII}}^* = \frac{0.08 \cdot 0.62 \cdot 100}{10^2} = 0.0496.$$

Активное сопротивление кабельной линии 10 кВ от распределительного устройства до ТП №1 определяем по формуле 2.36:

$$r_{\text{KJI}2*} = \frac{0.26 \cdot 0.075 \cdot 100}{10.5^2} = 0.0177$$

Реактивное сопротивление кабельной линии 10 кВ от распределительного устройства до ТП №1 определяем по формуле 2.37:

$$x_{\text{KII}}^2 = \frac{0.08 \cdot 0.075 \cdot 100}{10.5^2} = 0.0054$$

«Активное сопротивление силового трансформатора, расположенного на ТП №1 определяем по формуле» [17]:

$$r_{\text{TII}1*} = \frac{\Delta P_{\text{K}} \cdot S_{\tilde{0}}}{S_{\text{H}}^{2}},$$

$$r_{\text{TII}1*} = \frac{23.5 \cdot 100 \cdot 10^{3}}{2500^{2}} = 0.376.$$

«Полное сопротивление силового трансформатора, расположенного на ТП №1 определяем по формуле» [17]:

$$z_{T\Pi1}^* = \frac{U_K \cdot S_{\tilde{0}}}{100 \cdot S_H}, \qquad 2.39$$

$$z_{\text{TII}}^{1*} = \frac{5.5 \cdot 100 \cdot 10^3}{100 \cdot 2500} = 2.2.$$

«Реактивное сопротивление силового трансформатора, расположенного на ТП №1 определяем по формуле» [17]:

$$x_{T\Pi 1*} = \sqrt{z_{T1}^2 - r_{T1}^2},$$
 2.40
 $x_{T\Pi 1*} = \sqrt{2,2^2 - 0,376^2} = 2,168.$

«Результирующие сопротивления до каждой точки КЗ определяем по формуле» [17]:

$$z_{pe3\Sigma*} = \sqrt{(\Sigma r_*)^2 + (\Sigma x_*)^2}$$
 2.41

Определим значение результирующего сопротивления до точки короткого замыкания К1:

$$x_{\text{pe3K1*}} = x_{\text{c*}} + x_{\text{KII}1*} = 0,68 + 0,0496 = 0,729,$$

$$r_{\text{pe3K1*}} = r_{\text{KII}1*} = 0,099,$$

$$z_{\text{pe3K1*}} = \sqrt{0,729^2 + 0,099^2} = 0,735.$$

Определим значение результирующего сопротивления до точки короткого замыкания K2:

$$x_{pe3K2*} = x_{pe3K1*} + x_{KII2*} = 0,729 + 0,0054 = 0,7344,$$

$$r_{\text{pe3K2*}} = r_{\text{pe3K1*}} + r_{\text{KII2*}} = 0,099 + 0,0177 = 0,1167,$$
$$z_{\text{pe3K2*}} = \sqrt{0,7344^2 + 0,1167^2} = 0,74.$$

«Установившееся значение трехфазного тока КЗ в точке К1 определяем по формуле» [17]:

$$I_{K}^{(3)} = \frac{I_{6}}{z_{pe3}*},$$

$$I_{K1}^{(3)} = \frac{I_{61}}{z_{pe3}K1*} = \frac{5.5}{0.735} = 7.48 \text{ kA},$$

$$I_{K2}^{(3)} = \frac{I_{62}}{z_{pe3}K2*} = \frac{5.5}{0.744} = 7.39 \text{ kA}.$$

«Установившееся значение двухфазного тока КЗ определяем по формуле» [17]:

$$I_{\text{Ki}}^{(2)} = \frac{\sqrt{3} \cdot I_{\text{Ki}}^{(3)}}{2},$$

$$I_{\text{K1}}^{(2)} = \frac{\sqrt{3} \cdot I_{\text{K1}}^{(3)}}{2} = \frac{\sqrt{3} \cdot 7,48}{2} = 6,47 \text{ kA},$$

$$I_{\text{K2}}^{(2)} = \frac{\sqrt{3} \cdot I_{\text{K2}}^{(3)}}{2} = \frac{\sqrt{3} \cdot 7,39}{2} = 6,4 \text{ kA}.$$

«Мгновенное значение ударного тока КЗ определяем по формуле» [17]:

$$i_{y} = \sqrt{2} \cdot K_{y} \cdot I_{K}^{(3)}$$

$$i_{yK1} = \sqrt{2} \cdot 1,6 \cdot 7,48 = 16,9 \text{ kA},$$

$$i_{yK2} = \sqrt{2} \cdot 1,58 \cdot 7,39 = 13,8 \text{ kA}.$$

«Действующие значения ударного тока КЗ определяем по формуле» [17]:

$$I_{y} = I_{\kappa}^{(3)} \sqrt{1 + 2(k_{y} - 1)^{2}}$$

$$I_{yK1} = 7,48 \sqrt{1 + 2(1,6-1)^{2}} = 9,79 \text{ kA},$$

$$I_{yK2} = 7,43 \sqrt{1 + 2(1,58-1)^{2}} = 8,11 \text{ kA}.$$

Для остальных точек значения токов КЗ определяем аналогичным образом по формулам 2.35-2.45, а результаты расчетов сводим в таблицу 2.7.

Таблица 2.7 – Результаты определения токов короткого замыкания

T.	116	1.5										I _K ⁽³⁾			I _K ⁽²⁾		
Точ-ка кор. зам.	Иб кВ	Іб кА	X _c *	Х _{лі*}	$r_{\pi i}*$	X _{Ti} *	$r_{{ m T}i}*$	Z _{Ti} *	X _{pe3} *	r _{pe3*}	Z _{pe3} *	I ⁽³⁾ _К кА	$\sum_{p_{e3}*} r_{pe_3*} / \sum_{x_{pe_3}*} x_{pe_3*}$	Ку	Iy, кА	iy, кА	I ⁽²⁾ к, кА
1	10.5	5.5	0.68	0.0496	0.099	-	-	-	0.7296	0.099	0.736	7.47	0.136	1.6	9.797	16.90	6.46
2	10.5	5.5	-	0.0054	0.0177	-	-	-	0.735	0.1167	0.744	7.39	0.159	1.58	9.56	16.51	6.40
3	10.5	5.5	-	0.0054	0.0174	-	-	-	0.735	0.116	0.744	7.391	0.158	1.59	9.63	16.62	6.40
4	10.5	5.5	-	0.0082	0.083	-	-	-	0.7378	0.182	0.760	7.238	0.247	1.43	8.47	14.64	6.27
5	10.5	5.5	ı	0.0076	0.0769	-	1	-	0.7372	0.1759	0.758	7.257	0.239	1.44	8.55	14.78	6.28
6	10.5	5.5	1	0.0151	0.0491	-	-	-	0.7447	0.1481	0.759	7.244	0.199	1.5	8.87	15.37	6.27
7	10.5	5.5	-	0.023	0.4719	-	-	-	0.7526	0.5709	0.945	5.822	0.759	1.08	5.86	8.89	5.04
8	10.5	5.5	-	0.0466	0.9555	-	-	-	0.7762	1.0545	1.309	4.201	1.359	1	4.20	5.94	3.64
9	0.4	144.3	-	-	-	2.168	0.376	2.2	2.9026	0.4927	2.944	49.01	0.170	1.62	65.18	112.3	42.45
10	0.4	144.3	-	-	-	2.168	0.376	2.2	2.9026	0.492	2.944	49.01	0.170	1.62	65.19	112.3	42.45
11	0.4	144.3	-	-	-	8.518	1.915	8.73	9.2554	2.0968	9.490	15.21	0.227	1.45	18.02	31.18	13.17
12	0.4	144.3	-	_	-	8.518	1.915	8.73	9.2547	2.0907	9.488	15.21	0.226	1.45	18.03	31.19	13.17
13	0.4	144.3	-	-	-	2.168	0.376	2.2	2.9123	0.5241	2.959	48.76	0.180	1.63	65.31	112.4	$42.2\overline{3}$
14	0.4	144.3	-	_	-	32.78	10.35	34.3	33.532	10.922	35.266	4.092	0.326	1.36	4.59	7.87	3.54
15	0.4	144.3	-	_	-	21.19	5.92	22	21.965	6.9745	23.045	6.262	0.318	1.36	7.03	12.04	5.42

2.4 Выбор электроаппаратов системы электроснабжения

Электрические аппараты работают в условиях эксплуатации в трех основных режимах: в длительном режиме, в режиме перегрузки и в режиме короткого замыкания.

Аппараты и проводники первичных цепей должны удовлетворять следующим требованиям:

- соответствию окружающей среды и роду установки;
- необходимой прочности изоляции для надежной работы в длительном режиме и в при кратковременных перенапряжениях;
 - допустимому нагреву токами длительных режимов;
 - стойкости в режиме короткого замыкания;
 - технико-экономической целесообразности;
 - достаточной механической прочности;
 - допустимым потерям напряжения в нормальном и послеаварийном режимах [17, 19, 20].

2.4.1 Выбор высоковольтных выключателей

Высоковольтные выключатели выбираются по следующим условиям [20]:

- «по уровню номинального напряжения» [20]:

$$U_{\text{\tiny HOM.B}} \ge U_{\text{\tiny H.YCT}},$$
 2.46

- «по значению номинального тока» [20]:

$$I_{\text{hom.B}} \ge I_{\text{p.makc}},$$
 2.47

- «по отключающей способности» [20]:

$$I_{\text{H,OTKJI}} \ge I_{\text{K}}^{(3)},$$
 2.48

Высоковольтные выключатели проверяются по следующим условиям [20]:

- «на электродинамическую стойкость» [20]:

$$i_{\text{hom,y}} > i_{\text{yd}},$$
 2.49

- «на термическую стойкость» [20]:

$$I_{\text{HOM.T.c}} \ge I_{K}^{(3)} \cdot \sqrt{\frac{t_{\Pi}}{t_{\text{HOM.T.c.}}}},$$
 2.50

Выбираем высоковольтный выключатель для кабельной линии от распределительного устройства до трансформаторной подстанции №1:

Выбираем по напряжению по выражению 2.46:

$$10 = 10 \text{ kB}.$$

Выбираем по номинальному току по выражению 2.47:

$$630 > 155,8$$
 A.

Выбираем по отключающей способности по выражению 2.48:

$$31,5 > 7,39 \text{ KA}.$$

Проверяем на термическую стойкость по выражению 2.50:

$$7,39 \cdot \sqrt{\frac{0,15}{3}} = 1,65 < 31,5 \text{ KA}.$$

Проверяем на электродинамическую стойкость по выражению 2.49:

$$80 > 16,51 \text{ kA}.$$

Выбираем в качестве вводных выключателей ВВЭ-10-31,5/1000, а для защиты отходящих линий - ВВЭ-10-31,5/630.

2.4.2 Выбор измерительных трансформаторов напряжения

Трансформатор напряжения выбирается по уровню напряжения в месте установки:

$$U_{T.H.} = U_{H.\text{yct.}}, \qquad 2.51$$

Величина вторичной нагрузки трансформатора напряжения не должна превышать паспортную:

$$S_{T.H.} \ge S_2 \qquad 2.52$$

при этом полная нагрузка подключенных к ТН приборов определяется как:

$$S_2 = \sqrt{\Sigma P^2 + \Sigma Q^2},$$
 2.53

Выбираем к установке трансформатор напряжения типа ${\rm HAMU}-10-95{\rm YX}{\rm J}2$ с паспортной полной мощностью нагрузки 120 BA в классе точности 0.5.

2.4.3 Выбор измерительных трансформаторов тока

Трансформатор тока выбирается по уровню напряжения и максимальному расчетному значению тока в месте установки:

$$U_{\text{hom.t.t}} \ge U_{\text{h.yct}},$$
 2.54

$$I_{\text{hom.t}} \ge I_{\text{p.make}},$$
 2.55

Трансформатор тока проверяется на термическую устойчивость по формуле:

$$\frac{I_{k}^{(3)} \cdot \sqrt{t_{\pi}}}{I_{\text{H.T.T.}} \cdot \sqrt{t_{\text{T.C.}}}} < K_{\text{T.C.}},$$
2.56

Трансформатор тока проверяется электродинамическую стойкость по формуле:

$$i_{y} \le k_{\text{ДИН}} \cdot \sqrt{2} \cdot I_{\text{HOM.T.T.}},$$
 2.57

Значение коэффициента кратности динамической стойкости определяется из выражения:

$$k_{\text{ДИН.}} = \frac{i_{\text{НОМ.ДИН.}}}{\sqrt{2} \cdot I_{\text{HOM.T.T.}}},$$
 2.58

Выбираем трансформатор тока для линии от распределительного устройства до трансформаторной подстанции №1.

Трансформатор тока выбирается по напряжению по выражению 2.54:

$$10 = 10 \text{ kB}.$$

Выбирается по значению номинального тока по выражению 2.55:

Проверяется на термическую устойчивость по выражению 2.56:

$$\frac{7390 \cdot \sqrt{0,15}}{200 \cdot \sqrt{1}} = 14,3 \le 31,5$$

Проверяется на электродинамическую стойкость по выражению 2.57:

$$200 \cdot \sqrt{2} \cdot 0.09 = 25.45 > 16.51.$$

Выбираем трансформаторы тока проходного типа $T\Pi \Pi - 10$. Результаты выбора заносим в таблицу 2.8.

Таблица 2.8 - Результаты выбора трансформаторов тока 10 кВ

Тиско фолькотор того	Результаті	ы расчетов	Данные из каталога		
Трансформатор тока	Uн, кB	Ip, A	Uн, кВ	Ip, A	
вводной в РУ 10 кВ	10	889	10	1000	
на линии от РУ до ТП №1	10	155,6	10	200	
на линии от РУ до ТП №1а	10	152,8	10	200	
на линии от РУ до ТП №2	10	45,6	10	50	
на линии от РУ до ТП №3	10	38,9	10	50	
на линии от РУ до ТП №4	10	132,7	10	150	
на линии от РУ до ТП №5	10	7,7	10	25	
на линии от РУ до ТП №6	10	9,7	10	25	

2.4.4 Выбор автоматических выключателей 0,4 кВ на трансформаторных подстанциях

Автоматический выключатель выбирается из условия:

$$I_{\text{пр.отк.}} \ge I_y^{(3)},$$
 2.59

Выберем вводной автоматический выключатель для ТП №1.

- условие выбора по напряжению:

$$0,38=0,38 \text{ kB}$$

- условие выбора по номинальному току:

- условие выбора по значению тока расцепителя:

- условие проверки по отключающей способности:

Выбранный выключатель проверяется на выполнение выражения:

$$\frac{I_k^{(1)}}{I_{HP}} \ge 3,$$
 2.60

Выполним проверку автоматического выключателя для защиты линии к РП №2:

$$1700/97,3=17,5 > 3,$$

Автоматический выключатель прошел проверку.

Выбор вводных автоматических выключателей для остальных ТП сводим в таблицу 2.9.

Таблица 2.9 - Выбор вводных автоматических выключателей для остальных Π

Вводной автомат для ТП №	Тип авто- мата	I _{н.}	I _{ном.авт.}	Ток электромаг- нитного расцепи- теля, А	Ток теплового расцепителя, А
1	Э25C	2049	4000	7500	2500
la	Э25C	2013	4000	7500	2500
2	Э06В	600	1000	2500	800
3	Э06В	512	1000	2000	630
4	Э25С	1748	4000	7500	2500
5	A3726	203	250	1250	250
6	A3736	256	630	1600	320

2.4.5 Выбор ОПН

ОПН выбирается по напряжению места установки:

$$U_{\text{h.c.}} \ge U_{\text{h.p}},$$
 2.61
10 kB \ge 10 kB.

Выбираем для установки в РУ ОПН-10.

3 Расчет параметров заземления и молниезащиты производственного корпуса предприятия

Защита от прямых ударов молнии осуществляется с помощью молниеотводов различных типов: стержневых, тросовых, сетчатых, комбинированных.

Для защиты зданий и сооружений чаще применяют стержневые и сетчатые молниеотводы, тросовые в основном используют для защиты ЛЭП.

Произведем расчеты по обеспечению грозозащиты здания энергоблока, защиты выполним тросом. Здание имеет габариты ДхШхВ: 142 х 14 х 10 м. Высоту установки тросового молниеотвода принимаем равной 18 м, длину - 136 м.

«Высота вершины конуса молниеотвода определяется по формуле» [21]:

$$h_0 = 0.85 \cdot h$$
 3.1 $h_0 = 0.85 \cdot 18 = 15.3 \text{ м}.$

«Радиус защиты на уровне земли определяется по формуле» [21]:

$$\mathbf{r}_0 = (1,35 - 25 \cdot 10^{-4} \cdot \mathbf{h}) \cdot \mathbf{h}$$
 3.2
$$\mathbf{r}_0 = (1,35 - 25 \cdot 10^{-4} \cdot 18) \cdot 18 = 23,5 \text{ m}.$$

«Радиус зоны тросового молниеотвода на уровне высоты защищаемого объекта определяется по формуле» [21]:

$$r_x = (1,35 - 25 \cdot 10^{-4} \cdot h) \cdot (h - 1, 2 \cdot h_x)$$

$$r_x = (1,35 - 25 \cdot 10^{-4} \cdot 18) \cdot (18 - 1, 2 \cdot 10) = 7,85 \text{ m}.$$
3.3

Чтобы обеспечить безопасность людей, работающих на установках напряжением до 1000 В и выше, необходимо сооружать заземляющие устройства и заземлять металлические части электрического оборудования и электрических установок.

Заземление электроустановки осуществляется преднамеренным электрическим соединением с заземляющим устройством, которое представляет собой совокупность заземлителя и заземляющих проводников.

Заземлителем (заземляющим электродом) называется металлический проводник или группа проводников, находящихся в непосредственном соприкосновении с землей.

Заземляющими проводниками называются металлические проводники, соединяющие заземляемые части электрической установки с заземлителем.

Удельное сопротивление грунта в месте устройства заземления составляет $\rho = 100 \text{ Om} \cdot \text{м}$. Заземлителями служат стальные стержни диаметром 12 мм и длиной одного стержня 2 м. Для соединения между собой вертикальных заземлителей используем полосу круглого сечения с диаметром 10 мм.

«Сопротивление горизонтальной связующей полосы определяется по формуле» [21]:

$$R_{\Gamma} = \rho \cdot K_{ces} \cdot \frac{0.4}{L_{n}} \cdot \lg\left(\frac{2 \cdot L_{n}^{2}}{b \cdot t}\right)$$

$$R_{\Gamma} = 100 \cdot 2.3 \cdot \frac{0.4}{320} \cdot \lg\left(\frac{2 \cdot 320^{2}}{0.04 \cdot 0.7}\right) = 1.973 \text{ Om.}$$
3.4

«Сопротивление растеканию одиночного вертикального заземлителя, заглубленного в землю определяется по формуле» [21]:

$$R_{_{B}} = \frac{\rho_{_{pB}}}{2 \cdot \pi \cdot l_{_{B}}} \cdot \lg \frac{4 \cdot l_{_{B}}}{d}$$
3.5

«Расчетное удельное сопротивление грунта определяется по формуле» [21]:

$$\rho_{p\text{B}} = \rho_{y\text{д}} \cdot K_{\Pi\text{B}} \eqno 3.6$$

$$\rho_{p\text{B}} = 100 \cdot 1, 4 \ = \ 140 \ \text{Om·m}.$$

Сопротивление растеканию одиночного вертикального заземлителя, заглубленного в землю определим по формуле 3.5:

$$R_{\rm B} = \frac{140}{2 \cdot 3.14 \cdot 2} \cdot \lg \frac{4 \cdot 2}{0.016} = 69,27 \text{ Om.}$$

«Фактическое сопротивление заземляющего устройства определяется по формуле» [21]:

$$R_{3.y} = \frac{R_{B} \cdot R_{\Gamma}}{R_{B} + R_{\Gamma}}$$

$$R_{3.y} = \frac{1,973 \cdot 69,27}{1,973 + 69,27} = 1,92 \text{ Om.}$$
3.7

Сопротивление выбранного заземляющего устройства меньше 4 Ом. «Количество вертикальных заземлителей определяется по формуле» [21]:

$$n \ge \frac{R_{_{B}}}{R_{_{\mathcal{I}}} \cdot \eta_{_{B}}}$$

$$n \ge \frac{69,27}{4 \cdot 0.71} = 24,4$$

Окончательно выбираем 24 стержня в качестве искусственных заземлителей.

ЗАКЛЮЧЕНИЕ

В результате выполнения бакалаврской работы достигнута цель по проектированию надежной и экономичной системы электроснабжения группы вспомогательных цехов машиностроительного предприятия. Определены расчетные электрические нагрузки по каждому производственному корпусу, при этом суммарная нагрузка предприятия составила 10,7 МВт активной мощности и 11 Мвар реактивной. Основные производственные корпуса относящиеся ко второй категории по надежности электроснабжения запитываются по радиальной схеме, а склады и бытовые помещения получают питание по магистральной схеме. Определено, что применение двухцепной линии для питания корпуса цветного литья приводит к снижению ущерба и экономически оправдано. Выбраны цеховые трансформаторные подстанции и устройства компенсации реактивной мощности на них. По минимуму годовых приведенных затрат выбраны оптимальные сечения кабельных линий 10 и 0,4 кВ. Рассчитаны токи короткого замыкания, результаты расчетов использовались для выбора и проверки коммутационно-защитных аппаратов. Произведен расчет молниезащиты и заземления производственного корпуса.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Правила устройства электроустановок ПУЭ-6 и ПУЭ-7. М.: Норматика, 2018. 462 с.
- 2. Хорольский В.Я., Таранов М.А. Надежность электроснабжения : учеб. пособие. М.: ФОРУМ: ИНФРА-М, 2017. 127 с.
- 3. Михайлов В.Е. Современная электросеть. СПб. : Наука и Техника, 2013. 256 с.
- 4. Usman M., Coppo M., Bignucolo F., Turri R., Cerretti, A. A novel methodology for the management of distribution network based on neutral losses allocation factors // International Journal of Electrical Power and Energy Systems. 2019. №1. pp. 613-622.
- 5. Вахнина В.В., Черненко А.Н. Проектирование систем электроснабжения [Электронный ресурс]: электронное учеб.-метод. пособие. Тольятти: Изд-во ТГУ, 2016. 78 с. URL: https://dspace.tltsu.ru/bitstream/123456789/2976/1/Vahnina% 20Chernenko_EUMI_Z.pdf (дата обращения: 29.04.2019).
- 6. Bobby Rauf S. Electrical Engineering for Non-electrical Engineers. Lulu Press. Inc, 2015. 235 p.
- 7. Щербаков Е.Ф., Александров Д.С., Дубов А.Л. Электроснабжение и электропотребление на предприятиях: учебное пособие. М.: Форум, 2019. 496 с.
- 8. Вахнина В.В., Черненко А.Н. Системы электроснабжения [Электронный ресурс]: электронное учеб.-метод. пособие. Тольятти: Изд-во ТГУ, 2015. 46 с. URL: https://dspace.tltsu.ru/bitstream/123456789/2943/1/Vahnina%20Chernenko_EUMI_Z.pdf (дата обращения: 06.05.2019).
- 9. Савоськин В. С. Электроснабжение. Электроснабжение промышленных предприятий: учеб. пособие. Пенза: Изд-во Пенз. гос. ун-та, 2018. 256 с.

- 10. Хорольский В.Я., Таранов М.А. Надежность электроснабжения : учеб. пособие. М.: ФОРУМ: ИНФРА-М, 2017. 127 с.
- 11. Кудрин Б.И. Электроснабжение: учебник. М.: Феникс, 2018. 382 с.
- 12. Сибикин Ю.Д. Электроснабжение промышленных и гражданских зданий [Электронный ресурс]: учебник. 5-е изд., перераб. и доп. М.: ИН-ФРА-М, 2019. 405 с. URL: http://znanium.com/catalog/product/1003810 (дата обращения: 21.04.2019).
- 13. Khan S., Khan S., Ahmed G. Industrial power systems. Boca Raton: CRC Press, 2016. 488 p.
- 14. Мельников М.А. Электроснабжение промышленных предприятий: Учеб. пособие. Томск: Изд. ТПУ, 2001. 140 с.
- 15. Zhang Q., Tang W., Zaccour G., Zhang J. Should a manufacturer give up pricing power in a vertical information-sharing channel // European Journal of Operational Research. 2019. №276, pp. 910-928.
- 16. Справочник инженера по наладке, совершенствованию технологии и эксплуатации электрических станций и сетей. Централизованное и автономное электроснабжение объектов, цехов, промыслов, предприятий и промышленных комплексов [Электронный ресурс]: учеб. пособие. Вологда: "Инфра-Инженерия", 2016. 928 с. URL: https://e.lanbook.com/book/95768 (дата обращения: 07.03.2019).
- 17. Абрамова Е.Я., Алешина С.К., Чиндяскин В.И. Электроснабжение промышленных предприятий: учебное пособие по курсу ЭПП. Оренбург: ГОУ ОГУ, 2015. 103 с.
- 18. IEEE Recommended Practice for Calculating Short-Circuit Currents in Industrial and Commercial Power Systems. IEEE Std 551. NY: IEEE, 2013. 300 p.
- 19. Алиев И.И. Электротехника и электрооборудование : учебное пособие для вузов. Саратов: Вузовское образование, 2014. 1199 с.

- 20. Щербаков Е. Ф., Александров Д. С. Электрические аппараты: учебник. М.: Форум, НИЦ ИНФРА-М, 2015. 304 с.
- 21. Дьяков А.Ф. Электромагнитная совместимость и молниезащита в электроэнергетике: учебник для вузов. Москва: Издательский дом МЭИ, 2016. 543 с.