МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ ХИМИИ И ИНЖЕНЕРНОЙ ЭКОЛОГИИ

(наименование института полностью)

Кафедра «Химия, химические процессы и технологии»

(наименование кафедры)

04.03.01 Химия

(код и наименование направления подготовки, специальности)

Органическая и биоорганическая химия

(направленность(профиль)/ специализация)

БАКАЛАВРСКАЯ РАБОТА

на тему: Высокопроизводительный виртуальный скрининг ингибиторов EGFR

Студент	Н.А. Калашникова		
_	(И.О. Фамилия)	(личная подпись)	
Руководитель	Д.А. Хоченков		
_	(И.О. Фамилия)	(личная подпись)	
Консультанты	О.А. Головач		
-	(И.О. Фамилия)	(личная подпись)	
Допустить к защите			
Заведующий кафедро	й д.х.н., профессор Г.И. Остапенко (ученая степень, звание, И.О. Фамилия)	(личная подпись)	
«»_	2019 г.		

АННОТАЦИЯ

Целью данного исследования является поиск новых структурных типов ингибиторов EGFR и их разработка в программном обеспечении Schrödinger.

В работе описана теоретическая информация о протеинкиназах, типах ингибиторов протеинкиназ и процедуре высокопроизводительного виртуального скрининга. Была создана виртуальная комбинаторная библиотека производных азаиндола. Результаты молекулярного докинга проанализировали и оценили относительное сродство лигандов методом ММ/GBSA.

Для найденных соединений-хитовполучены детальные структурные данные об особенностях межмолекулярного взаимодействия с активным сайтом связывания киназного домена EGFR дикого типа, и несущего мутацию T790M/L858R.

ABSTRACT

The title of the graduation work is "High-throughput virtual screening of inhibitors of EGFR".

The aim of this work is to search for new structural types of inhibitors of EGFR and their design in Schrödinger software.

The graduation work consists of an introduction, three chapters, a conclusion, list of 163 references, all of which are foreign sources. The text of the work contains 34 figures, 5 tables and one appendix.

The graduation work describes a theoretical information about protein kinases, types of inhibitors of protein kinases and the procedure of high-performance virtual screening. A virtual combinatorial library of azaindole derivatives is built. The results of molecular docking are analyzed and the relative affinity of the ligands is estimated by MM/GBSA method.

The first chapter describes the catalytic mechanism of action of protein kinases, strategies for constructing inhibitors of protein kinases, types of inhibitors and also gives a theory about the docking procedure and virtual high-throughput screening.

The second chapter describes the results of the study performed.

The third chapter presents the software and experimental aspects of completed study.

Compounds-hits, derivatives of 7-azaindole, are found and detailed structural data about the features of intermolecular interaction with the active binding site of the wild-type EGFR kinase domain and carrying the T790M / L858R mutation are given.

СОДЕРЖАНИЕ

Стр. ВВЕДЕНИЕ 7				
1. ЛИТЕРАТУРНЫЙ ОБЗОР				
1.1 Активный сайт протеинкиназ Ошибка! Закладка не определена.				
1.2 Каталитический механизм действия протеинкиназ				
определена.				
1.3 Стратегия конструирования ингибиторов протеинкиназыОшибка! Закладка не				
определена.				
1.4 Природа ингибиторов киназы на основе различных типов связывания Ошибка!				
Закладка не определена.				
1.4.1 Ингибиторы I типа				
1.4.2 Ингибиторы II типа Ошибка! Закладка не определена.				
1.4.3 Аллостерические ингибиторы Ошибка! Закладка не определена.				
1.4.4 Ковалентные ингибиторы Ошибка! Закладка не определена.				
1.5 Докинг Ошибка! Закладка не определена.				
1.5.1 Гибкость белков и лигандов Ошибка! Закладка не определена.				
1.5.2 Алгоритм выборки				
1.5.3 Оценочные функции				
1.5.4 Производительность				
1.6 Виртуальный высокопроизводительный скрининг Ошибка! Закладка не				
определена.				
1.6.1 vHTS на основе лигандов Ошибка! Закладка не определена.				
1.6.2 vHTS на основе структуры Ошибка! Закладка не определена.				
1.7 Дизайн на основе <i>insilico</i> фрагментов Ошибка! Закладка не определена.				
1.7.1 Преимущества FBD Ошибка! Закладка не определена.				
1.7.2 Методы фрагмент-ориентированного докинга Ошибка! Закладка не				
определена.				

1.7.3 Синтетическая доступность молекул, разработанных с помощью фрагмент-
ориентированного докинга Ошибка! Закладка не определена.
2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ Ошибка! Закладка не определена.
2.1 Построение комбинаторной библиотеки низкомолекулярных производных
азаиндола
2.2 Выбор структур белковых мишеней
2.3 Молекулярный докинг
3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ Ошибка! Закладка не определена.
3.1 Подготовка комбинаторной библиотеки Ошибка! Закладка не определена.
3.2 Подготовка молекулы белка Ошибка! Закладка не определена.
3.3 Молекулярный докинг Ошибка! Закладка не определена.
3.4 Вычисление PrimeMM/GBSA Ошибка! Закладка не определена.
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ Ошибка! Закладка не определена.
ПРИЛОЖЕНИЕ А

ПРИНЯТЫЕ СОКРАЩЕНИЯ

АТФ аденозинтрифосфат

CML хронический миелогенный лейкоз

DOF степени свободы

EGFR рецепторы эпидермального фактора роста

FAK киназа фокальной адгезии

FBD фрагмент-ориентированный докинг

FDA Управление США по санитарному надзору за качеством пищевых

продуктов и медикаментов

HTS высокопроизводительный скрининг

IC₅₀ 50% концентрация ингибирования

JNK с-Jun N-терминальная киназа

с-КІТ рецептор фактора роста тучных и стволовых клеток

МАР митоген-активируемая протеинкиназа

PDGFR рецепторы тромбоцинарного фактора роста

VEGFR рецепторы васкулярного эндотелиального фактора роста

ВВЕДЕНИЕ

На сегодняшний день одним из главных направлений современной медицинской химии является поиск и разработка низкомолекулярных органических соединений, способных к ингибированию протеинказ. Примерами таких структур могут послужить высокоэффективные ингибиторы EGFR-киназы, одобренные FDA. Они находят применение в лечении немелкоклеточного рака легких (НМРЛ), хронического миелоидного лейкоза, колоректального рака и других видов онкологических заболеваний. Однако возникновение лекарственной резистентности является основным препятствием для дальнейшего успешного клинического применения таргентных препаратов, нацеленных на EGFR-киназу в качестве терапевтической мишени.

Вследствие этого возникает необходимость в поиске и разработке новых ингибиторов EGFR-киназ. Процедуры молекулярного моделирования и молекулярного докинга позволяют решить эту задачу.

Для высокопроизводительного виртуального скрининга были выбраны производные азоиндола, т.к. они обладают высокой биологической активностью, а также имеют уникальный паттерн межмолекулярных взаимодействий.

Целью работы является поиск новых структурных типов ингибиторов EGFR и их конструрирование с помощью программного обеспечения Schrödinger.

Для достижения цели поставлены следующие задачи:

- 1. Создание виртуальной комбинаторной библиотеки производных азоиндола;
- 2. Отбор структур по значениям оценочной функции XPgscore и MMGBSAdGBind;
- 3. Анализ ключевых взаимодействий между лигандом и белком для отобранных соединений;
- 4. Выработка рекомендаций по синтезу и биологическим испытаниям исследуемых соединений.

1. ЛИТЕРАТУРНЫЙ ОБЗОР

В настоящее время протеинкиназы являются основными мишенями для разработки противоопухолевых препаратов. На 2012 год было разработано 22 ингибитора киназы, которые получили одобрение FDA для лечения рака. Киназные мишени также исследуются для лечения других заболеваний, включая нейрональные расстройства, воспаления и метаболические заболевания. Ряд обзорных статей подробно освещает эти темы [1-3]. В геноме человека закодировано более 500 киназ, играющих важную роль в путях сигнальной трансдукции, которые регулируют все аспекты клеточной жизни [4]. Протеинкиназы катализируют перенос у-фосфата из аденозин 5'-трифосфата (АТФ) к акцепторам гидроксильных групп сериновых, треониновых или тирозиновых остатков субстратного белка. Фосфорилирование белка активирует целевые белки и регулирует различные критические клеточные процессы, включая рост, дифференцировку и апоптоз клеток. Аберрантная киназная активность запускает неправильную передачу сигналов или неконтролируемый рост клеток, что приводит к различным патологиям болезней, в частности к раку. Таким образом, разработка и открытие низкомолекулярных ингибиторов киназы стали основным направлением исследований в академических и фармацевтических лабораториях.

1.1 Активный сайт протеинкиназ

Каталитические домены всех киназ имеют сходные каталитические механизмы и трехмерное строение [5]. В каталитическом домене есть несколько функциональных субдоменов, представляющих консервативные аминокислотные остатки [6]. Как видно на рисунке 1, структура ядра образована небольшой N-концевой (зеленый) и большой C-концевой (синий) долями, соединенными шарнирной областью (серый). N-концевая доля сформирована в основном из β -цепей, тогда как C-концевая доля образована несколькими α -спиралями. Сайт связывания АТФ расположен в промежутке между N- и C-концевыми долями. Шарнирная область, соединяющая N- и C-концевые домены, образована участком аминокислот, которые взаимодействуют с адениновым кольцом АТФ через водородные связи. Через P-петлю (оранжевая) происходит взаимодействие с фосфатной группой АТФ. Состояние активации киназы регулируется положением петли активации (пурпурный).

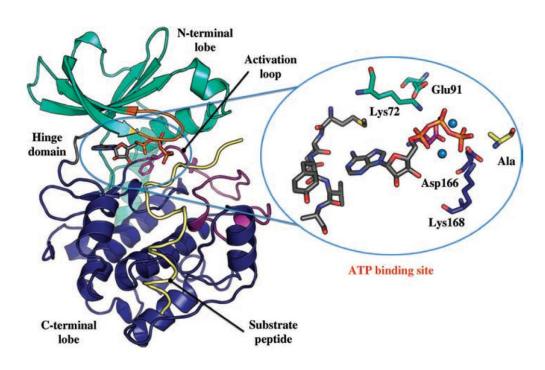


Рисунок 1 — Кристаллическая структура киназного домена cAMP-зависимой киназы в комплексе с ATФ. Увеличенный сайт связывания ATФ: ATФ, каталитические и шарнирные остатки, показанные в виде палочек.

1.2 Каталитический механизм действия протеинкиназ

Каталитический механизм реакции фосфорилирования показан на рисунке 2. АТФ образует комплекс с двумя ионами ${\rm Mg}^{2+}$ в активном центре. Нетрансферабельные α - и γ фосфатные группы удерживаются положении В путем взаимодействия высококонсервативными остатками в *N*-концевой доле белка. В частности, Lys72 взаимодействует с атомами кислорода из α - и γ -фосфатных групп, тогда как Glu91 стабилизирует взаимодействия Lys72 с фосфатами. Lys168, который является частью каталитической петли, локализован в C-концевой доле и взаимодействует с γ -фосфатной группой. Гидроксильная группа в остатке белкового субстрата расположена таким образом, чтобы осуществить нуклеофильную атаку у-фосфора. Asp166 функционирует как каталитическая основа в месте переноса фосфорила. Для облегчения процесса переноса, отрицательный заряд на нуклеотиде стабилизируется двумя ионами Mg²⁺, Lys168, Lys72 и несколькими остатками NH основной цепи [7,8].

Рисунок 2 — Схематическое изображение каталитического механизма протеинкиназы.

1.3 Стратегия конструирования ингибиторов протеинкиназы

Структурный дизайн сыграл важную роль в разработке ряда низкомолекулярных ингибиторов протеинкиназы, одобренных FDA. Большинство препаратов-ингибиторов протеинкиназы перорально биодоступны и принимаются один или два раза в день, что похоже на другие традиционные методы лечения. Кроме того, киназные препараты ограничивают токсичность для тканей и костного мозга, а также побочные эффекты сердечнососудистой системы [9,10]. Рентгеноструктурные исследования белка оказали большое влияние на успех разработки лекарств, ингибирующих киназу. Со времени появления первой рентгеновской кристаллической структуры протеинкиназы A, о которой было сообщено в 1991 году, в банке белковых данных было зарегистрировано более 1000 рентгеновских структур, большинство из которых являются структурами высокого разрешения и охватывают практически все семейства киназ. Многие рентгеновские структуры ингибиторов предоставили молекулярную информацию о ключевых взаимодействиях с активным центром, которые были использованы для оптимизации эффективности и селективности ингибиторов.

Как видно на рисунке 1, две доли каталитического домена связаны «шарнирной областью». Эта область содержит критические донорные и акцепторные группы в основной цепи, которые закрепляют АТФ-связывание облегчают процесс фосфорилирования субстрата. Практический ингибированию подход к заключается в блокировании этого сайта связывания АТФ. Действительно, большинство ингибиторов киназы содержат связывающие элементы, которые подвергаются, по меньшей мере, одному взаимодействию водородных связей с шарнирной областью. Сродство специфичность ингибитора будут зависеть дополнительных OT взаимодействий в области рибозы и полярного фосфата, занятых АТФ, или взаимодействий в гидрофобных областях, не занятых АТФ. «Шарнирные» связывающие элементы имеют решающее значение для достижения высокой эффективности, поскольку их взаимодействия вносят почти 40-60% от общей энергии связывания ингибитора. Таким образом, природа шарнирно-связывающих гетероциклов с донорными/акцепторными функциональными группами важна для разработки новых ингибиторов различных целевых киназ.

Боллаг и его коллеги из Plexxikon сообщили о структурно-ориентированном дизайне и разработке мощного и селективного ингибитора онкогенной В-Raf киназы PLX4032 [11]. Азаиндольный каркас 1 (рис. 3) был идентифицирован как одно из главных исходных соединений [12]. Последующая оптимизация на основе рентгеновской структуры в конечном итоге привела к разработке и открытию PLX4032, получившего одобрение FDA в 2011 году для лечения В-Raf мутанта меланомы. Рентгеновская структура PLX4032, связанного с В-Raf киназой (V600E), показала ряд ключевых взаимодействий, которые имеют решающее значение для эффективности и селективности ингибитора. Как показано, матрица азаиндола образует две сильные водородные связи с NH основной цепи Cys532 и карбонилом основной цепи Gln530 в «шарнирной» области сайта связывания АТФ. Кроме того, сульфонамидная функциональная группа образует водородные связи с NH основной цепи Asp594 и Phe595 в петле DFG в активной конформации, также известной как «DFG-in», где остаток аспарагиновой кислоты в DFG направлен к АТФ-связывающему фрагменту, а остаток фенилаланина направлен наружу[11].

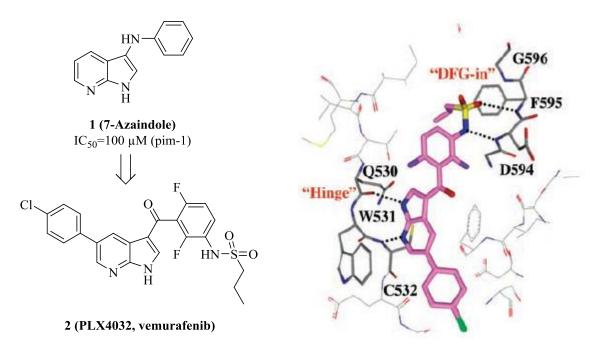


Рисунок 3 — Структуры азаиндола, вемурафениба и рентгеновская структура ингибитора **2** с B-Raf (V600E)

На рисунке 4 показан ряд шарнирно-связывающих гетероциклических каркасов, используемых при разработке одобренных FDA лекарств. Многие из этих соединений были использованы при разработке мощных ингибиторов различных киназных мишеней, включая рецептор фактора роста эндотелия сосудов (VEGFR), KIT, B-Raf, PLK1, EGFR, рецептор домена вставки киназы (КДР), АКТ-1 и Chk-1 [1–3]. Большинство низкомолекулярных ингибиторов киназы обычно идентифицируют с помошью высокопроизводительного, виртуального или фрагментного скрининга библиотек соединений. Для улучшения разнообразия и новизны структур были разработаны библиотеки гетероциклических соединений c донорными/акцепторными функциональными группами. В частности, исследователи заинтересованы в библиотеках с фрагментами ядра, которые могут взаимодействовать с шарнирной областью сайта связывания киназы.

После того как ключевые структуры идентифицированы, усилия медицинской химии направляются на их оптимизацию с помощью структурного дизайна, синтеза, рентгеновской кристаллографии и биологического профилирования. Определение режима связывания в активном сайте киназы очень важно, т.к. эта информация используется для определения приоритетов в исследовании заместителей с целью улучшения активности, селективности и свойств соединения. Когда кристаллографии оказывается недостаточно, доступная рентгеноструктурная информация и гомологическое моделирование надежно используются в прогнозировании режима связывания для оптимизации соединения.

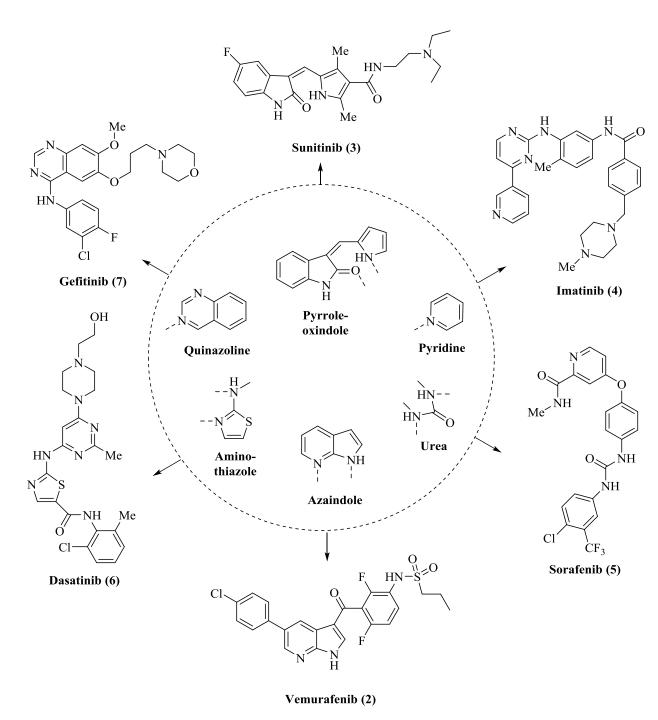


Рисунок 4 – Типичные гетероциклы и функциональные группы в FDA-одобренных киназных препаратах (2–7).

1.4 Природа ингибиторов киназы на основе различных типов связывания

Ингибиторы киназы классифицируются на основании их сайтов связывания [13]. Низкомолекулярные ингибиторы, которые нацелены на АТФ-связывающий сайт киназы в ее активной форме, являются ингибиторами киназы I типа. Большинство одобренных FDA препаратов-ингибиторов киназы являются ингибиторами I типа. Ингибиторы, которые нацелены на АТФ-связывающий карман и осуществляют взаимодействия с соседним гидрофобным карманом (гидрофобный карман II) АТФ, являются ингибиторами типа II.

Тип III, или аллостерические ингибиторы, представляют собой ингибиторы, которые связываются с гидрофобным карманом, удаленным от АТФ, и индуцируют конформационные изменения АТФ-связывающего кармана для модуляции киназной активности. Ингибиторы типа IV представляют собой ковалентные ингибиторы, которые образуют ковалентные связи с остатками активного сайта киназы, часто с нуклеофильным остатком цистеина.

1.4.1 Ингибиторы І типа

Ингибиторы I типа являются АТФ конкурентными, поскольку они связываются с активной конформацией киназы, способной к фосфорилированию субстрата. Поскольку эти ингибиторы связываются с сайтом АТФ, который является высоко консервативным среди всех киназ, большинство из них проявляют широкую реакционную способность среди других членов семейства целевых киназ. Отсутствие селективности часто приводит к побочным эффектам и токсичности. Однако оптимизация медицинской химии, особенно ингибиторов, расширяющих взаимодействие в гидрофобных областях, обеспечивает селективные ингибиторы для разработки лекарств.

Все киназы имеют консервативную петлю активации, которая регулирует активность киназы. Эта активационная петля обозначается мотивами DFG и APE в начале и конце петли. Петля активации может принимать множество различных конформаций, начиная от каталитически активной формы, которая способна фосфорилировать субстрат, до неактивной конформации, которая блокирует проникновение и связывание субстрата. В активной конформации «DFG-in» остаток аспарагиновой кислоты направлен к карману связывания ATФ. Остаток фенилаланина направлен в сторону, как показано на рентгеновской структуре PL-4032 (2)-связанной B-Raf-киназы (V600E) на рис. 3 [11,12].

Ингибиторы типа I обладают гетероциклическим каркасом, который занимает сайт связывания аденина и образует до трех водородных связей, подобных аденину АТФ в «шарнирной» области. Оптимизация ингибитора представляет собой включение заместителей, которые могут распространяться в один или оба смежных гидрофобных кармана I и II. На рисунке 5 показан дазатиниб (6)-ингибитор Всг-Аbl-киназы, одобренный FDA в 2006 году для лечения СМL у взрослых [14]. Дасатиниб является примером ингибитора типа I, он был разработан на основе тиазольного фрагмента 8. Фармакофорная модель конструкции АТФ-конкурентного ингибитора типа I показана на рисунке 5 [13].

Рисунок 5 – Строение дазатиниба и фармакофорной модели ингибитора типа I.

Рентгеновская структура дазатиниба, связанного с человеческой Abl-киназой (рис. 6), показывает, что дазатиниб занимает сайт связывания ATФ, а аминотиазол образует две водородные связи в шарнирном домене [15]. Хлорметилфенильное кольцо ортогонально тиазольному кольцу и находится в гидрофобном кармане II около Thr315, где оно образует водородную связь с боковой цепью треонина. Пиперазиновая группа вступает в ван-дер-ваальсовое взаимодействие в гидрофобном кармане I вблизи конца карбоновой кислотышарнирного домена. Большинство ингибиторов типа I не используют сайты связывания рибозы или трифосфата.

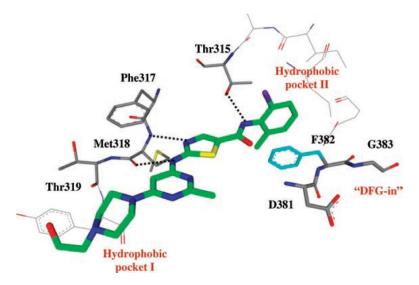


Рисунок 6 – Рентгеновская структура ингибитора дазатиниба с Abl-киназой.

Наггіз и др. из GSK сообщили о серии мощных ингибиторов VEGFR, которые связываются внутри сайта связывания АТФ [16]. Это исследование в конечном итоге привело к открытию пазопаниба для лечения крупных опухолей [17]. Как показано на рисунке 7, производное фторпиримидина 9 идентифицировано после скрининга образца как ведущий ингибитор.

Первоначальная структурная модификация на основе модельного киназного домена привела к появлению мощного ингибитора 10. Рентгеновская структура 10-связанного VEGFR-2 показала его связывание в сайте связывания АТФ. Дальнейшая оптимизация связывания лиганда привела к появлению ингибитора 11, который перешел в полное клиническое развитие и в конечном итоге был одобрен FDA как пазопаниб [17]. Рентгеноструктурные исследования 11-связанного VEGFR-2 показали, что ингибитор связывается с шарнирным доменом, а также с гидрофобными карманами I и II.

11 (Pazopanib)

 $IC_{50} = 30 \text{ nM (VEGFR-2)}$ $IC_{50} = 21 \text{ nM (cell)}$

Рисунок 7 – Структуры и активности ингибиторов VEGFR и пазопаниба.

Протеинкиназа СК2 представляет собой серин/треонинкиназу. Она была зафиксирована в патологиях различных заболеваний человека [18,19]. Nakanishi и его коллеги сообщили о разработке мощных ингибиторов протеинкиназы СК2 [20]. Производное фенилтиадиазола **12** (рис. 8) было идентифицировано путем виртуального

скрининга в качестве соединения-портотипа, способного к ингибированию протеинкиназы СК2. Рентгеновская структура соответствующего производного бензойной кислоты с СК2αпоказала способ связывания тиадиазольного кольца в АТФ-адениновом сайте. Последующая модификация на основе рентгеновской структуры привела к появлению мощного и селективного ингибитора 13, который предположительно связывается с остатками шарнирного остова, карбонилом Glu114 и NH Val116, а также занимает оба гидрофобных кармана I и II.

O
$$=$$

NO₂

NO₂

OMe

12

13

IC₅₀ = 26.8 nM (CK2a)
IC₅₀ = 32.2 nM (CK2a)
IC₅₀ = 46 nM (CK2a')

Рисунок 8 – Структуры и активности ингибиторов СК2.

Роlо-подобная киназа 1 (PLK1) представляет собой серин/треонинкиназу, которая играет критическую роль в фазовом переходе G2/M и в ключевой регуляции клеточного митоза [21,22]. Ряд ингибиторов PLK1 прогрессирует благодаря клинической разработке [23,24]. Chen из Roche и Nie из Takeda сообщили о том, что идентифицируют пиримидодиазепины как мощный класс АТФ-конкурентных ингибиторов PLK1. Как показано на рисунке 9, скрининг идентифицировал N-арилпиримидин-2-амин 14 как шарнирный мотив для ингибитора PLK1 [25, 26]. Последующий дизайн этого хита привел к появлению ряда производных 2-ариламинопиримидодиазепинона в качестве мощных ингибиторов PLK1.

Рисунок 9 – Структуры и активности ингибиторов PLK1.

Соединение **15** проявило хорошую ингибирующую активность, однако клеточная активность была недостаточной. Последующий структурный дизайн привел к появлению сильных ингибиторов **16** и **17**. Ингибитор **17**, также известный как ТАК-960, прогрессировал до клинической разработки. Как показано на рисунке 10, рентгеновская структура **17**, связанного с PLK1, показала, что ингибитор образовывает водородную связь в шарнирном домене и взаимодействует с гидрофобными карманами I и II. Ингибитор амида NH скручивали для осуществления взаимодействия с карбонилом главной цепи Leu59, стабилизируя *P*-петлю. Карбонил пиримидодиазепинонового кольца участвует в водно-опосредованном взаимодействии с Asp194 [26].

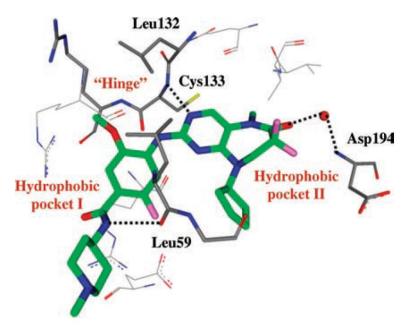


Рисунок 10 – Рентгеновская структура ингибитора 17 (ТАК-960) с PLK1.

1.4.2 Ингибиторы II типа

Ингибиторы киназы типа II связываются с сайтом связывания АТФ, подобно ингибиторам типа I, но распространяются далее на аллостерический сайт, который доступен только тогда, когда фермент находится в неактивном состоянии. Ингибитор вызывает конформационные изменения и фермент больше не функционирует. Это состояние называется «DFG-out», когда остаток аспарагиновой кислоты направлен в сторону от сайта АТФ, а остаток фенилаланина перемещается в сторону сайта АТФ, обнажая гидрофобный карман в аллостерической области, прилегающей к сайту связывания АТФ [27]. Эти ингибиторы обычно содержат гетероциклические или гетероатомные группы, которые образуют одну или две водородные связи в шарнирной области, а также занимают аллостерический сайт. Поскольку аллостерический сайт не

является консервативным и отличается от одной киназы к другой, ингибиторы этого класса демонстрируют лучшие характеристики селективности и безопасности [28].

Есть только несколько одобренных ингибиторов типа II: иматиниб, нилотиниб и сорафениб. Эти ингибиторы являются одними из самых успешных ингибиторов киназы. Иматиниб был первым FDA-одобренным препаратом. Основное внимание было уделено дизайну и разработке ингибиторов типа II, нацеленных на конформацию неактивной киназы [29–31]. Сорафениб (5), представленный на рисунке 4, является мультикиназным ингибитором, нацеленным на рецепторную тирозинкиназу Raf, VEGF и PDGF, и был одобрен FDA в 2005 году для лечения почечно-клеточного рака и гепатоцеллюлярного рака [32]. Рентгеновская структура сорафениба, связанного с р38α (рис. 11), показывает, что он занимает сайт связывания АТФ в неактивной конформации DFG-out [33]. Структура также показывает, что он образует две водородные связи в шарнирном домене, дополнительные водородные связи с консервативными Glu71 и Asp168, стабилизирует конформацию DFG-out и занимает аллостерический карман [15]. Фармакофорная модель ингибиторов типа II показана на рисунке 11 [13].

Wang и др. из Pfizer сообщили о структурной разработке ингибиторов типа II в качестве ингибиторов B-Raf-киназы [34]. На основе рентгеновской структуры ингибиторов типа I и типа II, связанных с B-Raf, были разработаны изоиндолин-1,3-дионы 18 и 2,3-дигидрофталазин-1,4-дионы 19, показанные на рисунке 12. Эти скаффолды показали активность в микромолярном диапазоне против B-Raf. Первоначальное моделирование показало, что они связываются с B-Raf в активной DFG-конформации.

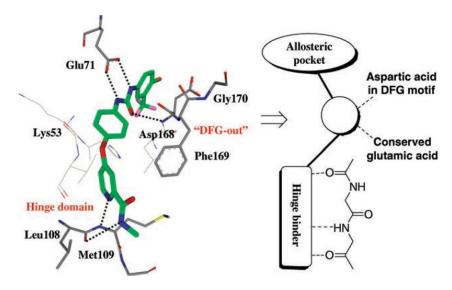


Рисунок 11 — Рентгеновская структура сорафениба (5), связанного с р 38α .

В попытке создать ингибиторы типа II были введены липофильные группы для взаимодействия с аллостерическим карманом, образованным в результате движения

мотива DFG. В частности, были введены заместители для взаимодействия с Glu501 и Asp594. Это привело к появлению мощных ингибиторов BRaf **20** и **21**, содержащих скаффолды изоиндолина и дигидрофталазина. Оба ингибитора были оценены по панели киназ и показали отличную селективность.

Одиго и др. из Takeda сообщили об ингибиторах киназы VEGFR-2 типа II на основе пирролопиримидина [35]. Как показано на рисунке 13, функционализация пирролопиримидинового скаффолда с фенилмочевиной давала ингибиторам 22 и 23 заметную разницу в эффективности *мета*- и *пара*-производных. Дальнейшее включение заместителей в фенильное кольцо мочевины дало множество производных. Соединение 24 с *мета*-трифторметильной группой улучшало активность VEGFR-2, а также ингибировало рост в эндотелиальных клетках пупочной вены человека (HUVEC).

Рисунок 12 – Структуры и активности ингибиторов B-Raf.

Дальнейшее исследование заместителей в кольце фенилового эфира привело к получению сильного ингибитора **25**. Пероральная обработка ингибитора **25** с ксенотрансплантатом мыши показала противоопухолевые эффекты. Это соединение также показало интересное, зависящее от времени, ингибирование нефосфорилированного каталитического сайта VEGFR-2 [36].

Рентгеновская структура **25**, связанного с VEGFR-2, показала, что ингибитор связывается с VEGFR-2 в его неактивной конформации [35]. Как видно из рисунка 14,

один из атомов азота пиримидина образует водородную связь с главной цепью NH Cys919 в шарнирной области. Функциональная группа мочевины образует две водородные связи с белком в консервативном карбониле Glu885 и с основной цепью NH Asp1046 мотива DFG-out. Фрагмент м-трифторметилфенила занимает аллостерический участок, созданный конформационным изменением Phe1047 в DFG-out конформации.

Рисунок 13 – Структуры и активности ингибиторов VEGFR-2.

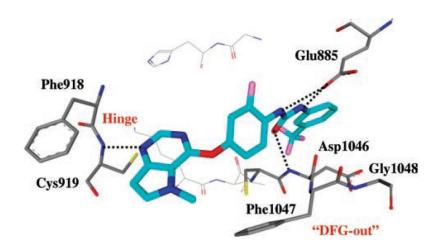


Рисунок 14 – Рентгеновская структура ингибитора **25 с** VEGFR-2.

Dai и др. из Abbott Laboratories разработали ингибитор тирозинкиназы на основе 3-аминоиндазола, который предположительно связывается с KDR, также известным как VEGFR-2, в неактивной конформации [37]. Как показано на рисунке 15, начиная со скаффолда тиенопиримидина **26**, исследователи сконструировали 3-аминоиндазол

27 путем удаления СН-звена из пиримидинового кольца, чтобы получить пятичленное кольцо для имитации сайта связывания аденина АТФ с шарнирной областью киназы. Производное анилина 28 продемонстрировало хорошую эффективность против подсемейства fms-подобной тирозинкиназы (FLT1). Включение диарилмочевины в С4-положение индазола привело к появлению множества сильнодействующих соединений. Соединение 29 продемонстрировало хорошую активность против KDR, FLT1 и *c*-KIT. Соединение 30 сильно ингибирует киназы VEGFR и PDGFR, а также проявляет хорошую клеточную активность. Также на мышином ксенотрансплантате было показано, что он обладает мощной оральной активностью. Впоследствии он перешел к клинической разработке.

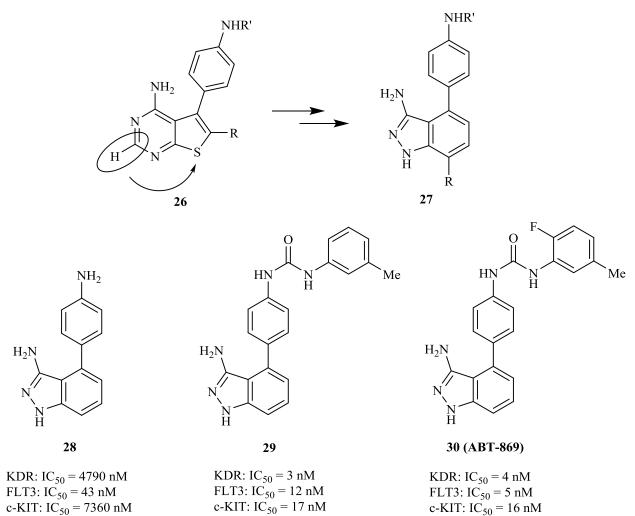


Рисунок 15 – Структуры и активности 3-аминоиндазолов – ингибиторов VEGFR-2

1.4.3 Аллостерические ингибиторы

Аллостерические ингибиторы также известны как ингибиторы типа III. Они связываются с аллостерическим сайтом, который не является сайтом связывания АТФ, и модулируют связывание АТФ с киназой, внося конформационные изменения, которые

делают киназу неактивной. Аллостерические ингибиторы проявляют наибольшую селективность, поскольку они занимают аллостерический сайт связывания, который является уникальным для конкретной киназы. Многочисленные аллостерические ингибиторы достигли клинической разработки и описаны в ряде обзоров [2, 13,38,39].

Сигнальные пути киназы, активируемые митогеном (МАР), участвуют в управлении различными клеточными функциями [40,41]. Путь передачи сигнала RAG-MEK-ERK является критическим для роста, дифференцировки и апоптоза клеток. Сверхэкспрессия и активация MEK/ERK были вовлечены в несколько раковых заболеваний человека. Значительные усилия были посвящены разработке и синтезу ингибиторов МЕК. Как показано на рисунке 16, в клинике был оценен мощный аллостерический ингибитор МЕК 31 [42]. Однако этот ингибитор страдал от низкого системного воздействия из-за растворимости и проблем с быстрым метаболизмом. Для решения этих проблем для оценки было подготовлено производное 32 (PD-0325901). И **31**, и **32** показали превосходную активность в клеточном анализе (IC_{50} =35 и 0.33 нМ, соединение 32 соответственно). Однако показало значительно улучшенную растворимость (<1 мкг/мл для 31 и 190 мкг/мл для 32) [42]. Для получения информации о структурных взаимодействиях в активном центре была определена рентгеновская структура бромпроизводного 33 с МАР-киназой1 (МЕК1) и МЕК2 [43]. Структурный анализ показал, что ингибитор **33** и MgATP связываются одновременно и неконкурентно. Структуры показали, что МЕК1 и МЕК2 имеют уникальный карман связывания ингибитора вблизи сайта MgATP. Ингибитор вызывает конформационное изменение в нефосфорилированном состоянии и блокирует ферменты в каталитически неактивном состояния. Как показано на рисунке 17, гидроксаматный кислород и карбонильный кислород образуют водородные связи с боковой цепью Lys97. Один из атомов фтора расположен в непосредственной близости, чтобы взаимодействовать с NH главной цепи Val211 и Ser212. Фторйоданилиновый фрагмент занимает гидрофобный карман, окружающий Phe209, Ile141, Met143 и Val127.

Рисунок 16 – Структуры различных ингибиторов МЕК.

Производное **34** (AZD6244) продемонстрировало хорошую активность по ингибированию ферментов (IC₅₀=14.1 нМ). Это соединение также проходит клиническую разработку [44]. Walles и др. из Takeda осуществили структурный дизайн и синтез производных пиррола в качестве ингибиторов МЕК [45]. Соединение **35** (МЕК1, IC₅₀ = 18 нМ; клетка Colo 205, EC₅₀ = 12 нМ) показало превосходные активность по ингибированию ферментов и клеточную активность. Рентгеноструктурные исследования показали, что соединение **35** связывается в аллостерическом сайте МЕК1 подобно ингибитору **33**(рис. 17).

АКТ, также известная как протеинкиназа В, серин/треонинкиназа, играет критическую роль в путях трансдукции сигналов клеточной пролиферации, апоптоза, ангиогенеза и диабета. Нарушение регуляции путей АКТ приводит к многочисленным раковым заболеваниям человека [46].

Разработка ингибиторов путей АКТ проводилась рядом лабораторий. Соединения **36** и **37**, показанные на рисунке 18, были спроектированы и разработаны в Merck [47,48]. Соединение **37** (МК-2206) является преорально биодоступным ингибитором против АКТ1–АКТ3. Оба соединения являются аллостерическими ингибиторами. Рентгеновские исследования **36**, связанного с АКТ1, показали, что соединение связывается с АКТ1 в аллостерическом сайте связывания [49].

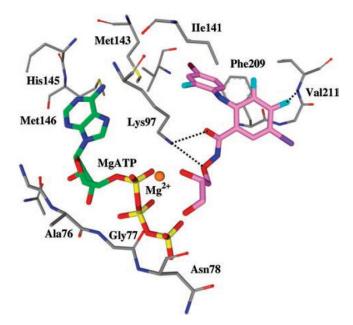


Рисунок 17 – Рентгеновская структура ингибитора 33

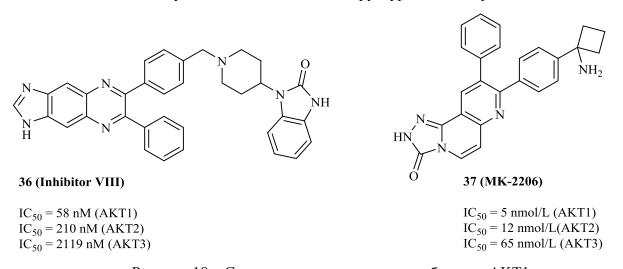


Рисунок 18 – Структуры и активности ингибиторов АКТ1.

Тотіта и др. из Такеdа сообщили о структурном дизайне и разработке клеточноактивных и аллостерических ингибиторов киназы фокальной адгезии (FAK) [50]. FAK является нерецепторной протеинтирозинкиназой, также известной как РТК2. Было установлено, что эта киназа играет важную роль в пролиферации, устойчивости, миграции и инвазии клеток [51,52]. Сверхэкспрессия FAK связана с множеством раковых заболеваний человека. Ряд двойных ингибиторов типа I были оценены клинически [53, 54]. Тотіта и коллеги проводили систематический поиск неконкурентного ингибитора АТФ. В своих НТЅ попытках, в присутствии высокой концентрации АТФ, они идентифицировали 1,5-дигидропиразол производное бензотиазина 38 (рис. 19) в качестве слабомикромолярного ингибитора. Рентгеноструктурные исследования 38 с FAK показали, что ингибитор занимает аллостерический сайт связывания. Последующая структурная оптимизация привела к получению производного **39** с повышением эффективности. Однако рентгеноструктурные исследования показали, что пиразольные атомы азота взаимодействуют с шарнирной областью и ингибитор не занимает аллостерический участок. С целью нарушения шарнирного взаимодействия было проведено алкилирование пиразольного азота, с получением мощного ингибитора **40**, показавшего превосходную селективность по отношению к другим киназам (РуК2, Aurora, MEK1). Алкилирование азота 2 приводило к потере активности (IC₅₀ > 30 нМ). Соединение **40** показало плохую клеточную активность (31% ингибирования клеточного FAK). Оптимизация бифенильного кольца привела к ингибитору **41** с улучшенной клеточной активностью (IC₅₀ = 7.1 нМ).

Рентгеновская структура **41** с FAK показала аллостерическую форму связывания, аналогичную **38** [50]. Рентгеновские структуры ингибиторов **39** и **41** в сайте связывания FAK показаны на рисунке 20. Оба ингибитора взаимодействуют с сайтом связывания FAK в разных местах. Ингибитор **39** четко связывается с сайтом связывания АТФ, тогда как ингибитор **41** связывается с аллостерическим сайтом связывания FAK. Пиразольная группа ингибитора **39** взаимодействует с Glu500 и Cys502 в шарнирной области. Кроме того, один из сульфоноксидов образует водородную связь с концевой аминогруппой Lys454.

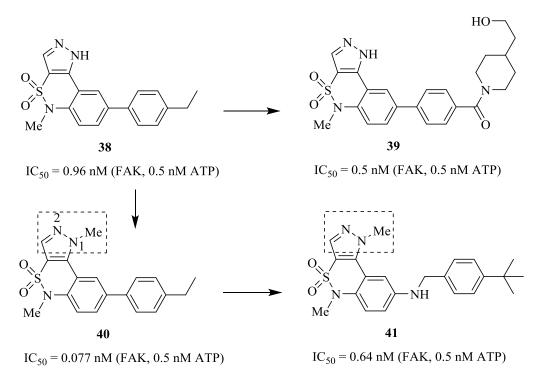


Рисунок 19 – Структуры и активности ингибиторов FAK

Терминальная гидроксильная группа соединения **39** образует опосредованные водой водородные связи в сайте связывания АТФ. С другой стороны, метильная группа

пиразола соединения **41** ориентирована на гидрофильное пространство, окруженное Asp604 и His544. Терминальная *трет*-бутильная группа расположена в гидрофобном кармане, окруженном Met475, Leu486 и Met499 (привратник FAK).

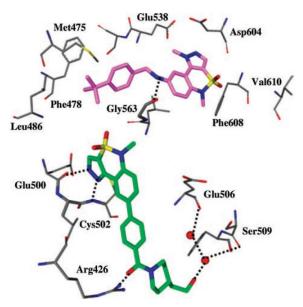


Рисунок 20 — Наложение рентгеновских структур ингибиторов **39** и **41** в сайте связывания FAK.

1.4.4 Ковалентные ингибиторы

Ковалентные игибиторы образуют ковалентные и необратимые связи с активным центром киназы. Ингибиторы часто реагируют с нуклеофильным остатком цистеина в активном центре. Дизайн ковалентных ингибиторов включает присоединение электрофильной функциональной группы к соответствующему каркасу, способному реагировать с обогащенной электронами серой остатка цистеина. В идеале, ингибитор должен сначала связываться нековалентным образом, а затем образовывать ковалентную связь с соответствующей электрофильной функциональной группой, расположенной в непосредственной близости от остатков цистеина в сайте связывания АТФ. Ковалентный ингибитор должен плохо реагировать с глутатионами и тиолами других белков, но предпочтительно селективно взаимодействовать с цистеином при связывании с сайтом связывания киназы. Могут быть использованы различные функциональные группы: эпоксиды, азиридины, галогенкетоны и акцепторы Михаэля. На данный момент разработан целый ряд ковалентных ингибиторов, рассмотренный в нескольких обзорных статьях [55–57].

ЕGFR имеет Cys797, расположенный в консервативной α-спирали в области сайта связывания ATΦ [58,59]. Это стало мишенью в дизайне ковалентных ингибиторов. Как показано на рисунке 21, EGFR-селективные производные анилинохиназолина и анилинохинолина были превращены в ковалентные ингибиторы **42** и **43** [60,61].

Рентгеновские структуры скаффолдов без акцепторных групп Михаэля позволяют предположить оптимальное положение, в котором α,β -ненасыщенные карбонильные группы могут быть присоединены в **42** и **43** [62]. Механизм действия включает присоединение Михаэля остатка цистеина EGFR для образования ковалентной связи. Это приводит к блокированию связывания АТФ в активном сайте и инактивации киназы. Рентгеновская структура EGFR, связанного с ингибитором **43**, показала образование ковалентной связи с боковой цепью Cys797 (рис. 21). Кроме того, азот хинолина образовал водородную связь с главной цепью Met793 NH в шарнирной области. Ингибитор **43** в настоящее время находится в клинической разработке [63,64].

Рисунок 21– Структура ингибиторов EGFR **42**, **43** и рентгеновская структура ингибитора **43** с EGFR.

С-Jun N-терминальная киназа (JNK) является частью сигнальных путей МАР-киназы и играет важную роль в клеточных реакциях на митогенные раздражители, экологические стрессы и выступает в качестве апоптотического агента [65]. Существует три изоформы JNK, известные как JNK1, JNK2 и JNK3. Они кодируются тремя независимыми генами. JNK1 и JNK2 демонстрируют широкие профили экспрессии в

тканях, тогда как JNK3 в основном экспрессируется в центральной нервной системе. Передача сигналов JNK связана с патофизиологией ряда заболеваний, включая сердечнососудистые заболевания, воспаление, рак и нейродегенерацию [66].

Grey и его коллеги разработали множество ковалентных ингибиторов JNK с использованием фениламинопиримидиновых скаффолдов, которые свойственны многим мощным нековалентным ингибиторам, включая иматиниб [67]. Основываясь на близости Суѕ788 и метилпиперазина, вместо метилпиперазина иматиниба вводили электрофильный акриламид. Полученный ингибитор 44 (рис. 22) замедлял JNK1-JNK3 в микромолярном диапазоне. Предполагая, что иматиниб будет связываться с JNK в альтернативной конформации, метил в 44 был удален, т. к. он был ответственен за селективность по отношению к c-KIT, Abl и PDGF относительно других киназ. Это обеспечило ингибитору 45 повышение эффективности в 4–10 раз. Исследование комбинации 1,4-диамина и 1,3-бензамида привело к получению ингибитора 46 с 500-кратным улучшением эффективности против JNK1-JNK3. Рентгеновская структура 46 с JNK3 показала, что Cys154 образует ковалентную связь с акриламидом, а мотив аминопиримидина образует две водородные связи с шарнирной областью. Впоследствии были получены различные метилированные производные, биохимические и клеточные анализы которых показали их способность ингибировать активность и селективность JNK. Ингибитор 46, который является относительно селективным ингибитором JNK в клетках, проявлял повышенную селективность при введении метильной группы, с образованием производного 47.

Митоген- и стресс-активируемая киназа 1 (MSK1) представляет собой ядерную протеинкиназу, которая регулирует транскрипцию после внеклеточных сигнальнорегулируемых киназ и азот-активированных протеинкиназ р38 посредством фосфорилирования белка, связывающего элемент ответа сАМР, и гистона Н3. Сверхэкспрессия MSK1 участвует в многочисленных раковых заболеваниях человека [68]. Специфические ингибиторы MSK1 могут быть использованы при химиотерапии рака, а также при изучении функции MSK в клетках. Таunton и его коллеги выполнили электрофильный фрагментный дизайн обратимых ингибиторов MSK1, которые проявляли высокую селективность по сравнению с киназами семейства MSK/RSK [69].

Рисунок 22 – Структуры и активности ковалентных ингибиторов JNK.

JNK3: $IC_{50} = 0.98 \text{ nM}$

JNK2: $IC_{50} = 1.99 \text{ nM}$

JNK3: $IC_{50} = 0.75 \text{ nM}$

MSK1 тесно связан с рибосомальной протеин-S6-киназой (RSK). Оба имеют одинаковые киназные домены и структурно гомологичный цистеин в своем С-концевом киназном домене (CTD). В более раннем исследовании Taunton и др. сообщили о разработке обратимых ковалентных ингибиторов CTD RSK2 путем нацеливания на некаталитические остатки цистеина с использованием производных на основе акриламида [70]. Как показано на рисунке 23, соединение 48 является высокоселективным для RSK1-СТD и RSK4-СТD. Профилирование киназы показало, что только 6 из 442 киназ показали > 90% ингибирования. KD для RSK1-CTD составлял 0.54 нМ, а его сродство было в 80 раз выше, чем у MAP3K1, и более чем в 400 раз выше, чем у STK16, R1PK2, RET, MEK5 и **PDGFRB** [70]. Рентгеновская структура соответствующего трет-бутильного производного 49 показала, что Cys436 связан с углеродом цианоакрилата. Другой цистеин (Cys560) в непосредственной близости (~7Å) не смог образовать ковалентную связь. Пирролопиримидиновый скаффолд образовывал ряд водородных связей с боковой цепью Thr493, а также карбонилом основной цепи Glu494 и NH главной цепи Met496. Кроме

того, *п*-толильная группа появлялась у боковой цепи привратника Thr493 и продлевалась в гидрофобный карман.

Me

HO

$$K_D = 0.54 \text{ nM (RSK1)}$$
 $K_D = 1.2 \text{ nM (RSK4)}$

Me

Thr493

Me

49 IC_{S0} = 7 nM (RSK2)

Рисунок 23 – Структура ингибиторов RSK1-CTD **48** и **49** и рентгеновская структура ингибитора **49** с RSK2-CTD.

На основании вышеупомянутых исследований Таunton и соавторы разработали серию ингибиторов на основе цианоакриламида, которые проявляли активность против киназ семейства MSK/RSK, но сохраняли высокую селективность по отношению к NEK2 и PLK1, даже несмотря на то, что они содержали гомологичный остаток цистеина [69]. Как показано на рисунке 24, соединения 50–52 ингибировали RSK2 в субмикромолярных концентрациях. Интересно, что рентгеноструктурные исследования ингибиторов 50 и 52, связанных с RSK2, показали, что оба ингибитора связываются в активном сайте RSK2 поразному.

Рисунок 24 — Структура ингибиторов RSK2 **50–52** и наложение рентгеновкой структуры ингибиторов **50** и **52** на RSK2 (ингибитор **50**: углеродная цепь-зеленый; ингибитор **52**: углеродная цепь - пурпурный).

Как показано на рисунке 24, наложение обеих кристаллических структур показало, что ингибитор 50 можно оптимизировать путем добавления ароматических заместителей в положении 3 индазольного кольца. На основании этого исследователи разработали триметоксифенилзамещенное производное 53, которое продемонстрировало 20-кратное улучшение активности RSK2, однако его селективность по отношению к NEK2 и PLK1 была низкой. Включение объемного амидного заместителя в 54 (рис. 25) сохранило активность RSK2 и значительно улучшило селективность по сравнению с NEK2 и PLK1 [70]. Кристаллическая структура 54, связанная с Т493М RSK2, показала режим связывания. Индазольный фрагмент, расположенный против привратника Меt493 и производного триметоксифенила, занимал гидрофобный карман вокруг Ile428, Met496 и Leu546.

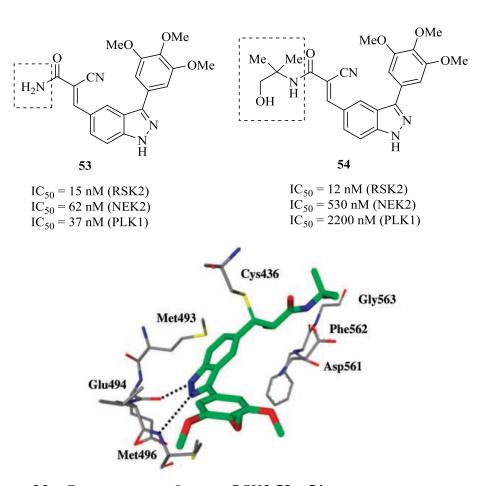


Рисунок 25 – Структура ингибиторов RSK2 **53** и **54** и рентгеновская структура ингибитора **54** с T493M RSK2

1.5 Докинг

Молекулярный докинг позволяет предсказать нативное положение, ориентацию и конформацию (так называемая нативная поза или нативный режим связывания) низкомолекулярного лиганда в пределах сайта связывания целевой макромолекулы. Обеспечивая базовое понимание взаимодействий, происходящих между лигандом и его рецептором, докинг открывает дверь для оценки сродства до осуществления синтеза, а также для методов оптимизации лиганда. В качестве примера на рисунке 26 показан успешный молекулы циленгитида поверхности $\alpha V\beta 3$ интегрина, докинг на реализованный с помощью EADock [71]. Начиная с 1980-х годов [72] и на сегодняшний день докинг остается активной областью исследований и является одним из наиболее полезных инструментов для разработки лекарств in silico, а также основным компонентом многих программ по обнаружению лекарств [73–77].

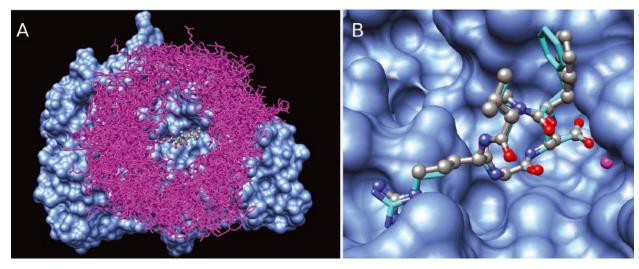


Рисунок 26 – Пример успешного докинга молекулы Циленгитида на поверхности $\alpha V \beta 3$ интегрина, реализованной с помощью EADock

Докинг может быть описан как комбинация алгоритма поиска, который намеревается предложить несколько возможных положений лиганда, и функции оценки, выявление истинного (нативного) режима нацеленной на связывания. Число предполагаемых способов связывания лиганда на поверхности белка практически бесконечно. Следовательно, алгоритм поиска должен быть быстрым и эффективным для покрытия соответствующего конформационного пространства, в том числе в положениях, очень близких к нативному режиму связывания. Со своей стороны, функция оценки должна адекватно фиксировать термодинамику взаимодействия лиганд-белок, чтобы отличить истинные моды связывания, идеально соответствующие глобальному минимуму функции, от всех других предполагаемых, предложенных алгоритмом поиска. Она также должна быть достаточно быстрой для обработки большого количества потенциальных решений.

На сегодняшний день доступны более 30 различных программ докинга [74]. Наиболее широко используются AutoDock [78, 79], GOLD [80, 81], FlexX [82] / FlexE [83], DOCK [72, 84] и ICM [85] / ICM-гибкий рецептор стыковки рецепторов (IFREDA) [86]. Таблица 1 дает краткое описание некоторых типичных программ. Программное обеспечение для докинга различается по способу обработки гибкости белка и лиганда, алгоритму отбора проб и функции оценки. Эти аспекты подробно описаны ниже.

Таблица 1 – Программы для докинга (ЭА-эволюционный алгоритм, МК – метод Монте-Карло)

Программа	Гибкость лиганда	Гибкость белка	Функция подсчета
1	2	3	4
AutoDock [9, 10]	ЭА	Гибкие боковые цепи	Силовое поле

Продолжение таблицы 1

1	2	3	4
(GOLD) [11, 12]	ЭА	Белковая боковая цепь и гибкий остов	Эмпирическая оценка
FlexX [13] / FlexE [14]	Инкрементная сборка	Ансамбль белковой структуры	Эмпирическая оценка
DOCK 6.2 [3, 15]	Инкрементная сборка	Белковая боковая цепь и	Силовое поле или
		гибкий остов	оценка контакта
Glide [18, 21, 22]	Исчерпывающий поиск	-	Эмпирическая оценка
ICM [16], IFREDA [17]	Псевдо-броуновская выборка и локальная минимизация	Гибкие боковые цепи	Силовое поле и эмпирическая оценка
QXP [20]	МК	-	Силовое поле
Hammerhead [19]	Инкрементная сборка	-	Эмпирическая оценка
EADock	ЭА	Гибкие остов и боковые цепи	Силовое поле

1.5.1 Гибкость белков и лигандов

Во время физического связывания лиганд и белок адаптируют свои конформации друг к другу. Это явление называется наведением. Как следствие, алгоритмы стыковки должны обрабатывать гибкость обеих молекул. Однако учет всех степеней свободы (DOF) приводит к комбинаторному взрыву конформационного пространства, что делает докинг еще более сложной задачей. Поэтому почти все программы докинга выполняют гибкую стыковку лигандов, в то время как рецептор остается жестким. Основными исключениями являются GOLD, AutoDock, DOCK и EADock, которые применяют некоторую гибкость к белку во время стыковки посредством поворотов боковых цепей активного сайта и более глобальных минимизаций, а также FlexE и IFREDA, которые используют набор различных предварительно сгенерированных конформаций рецепторов, полученные экспериментально или *in silico* подходами.

1.5.2 Алгоритм выборки

Несколько алгоритмов используются для определения способов связывания лигандов, а в некоторых случаях - для определения гибкости белка. Эти алгоритмы можно разделить на три основные категории: алгоритмы систематического поиска (FlexX или

FlexE, DOCK, Glide [87], Hammerhead [88]), стохастические методы [AutoDock, GOLD, Quick Explore (QXP) [89], EADock] и имитационные подходы.

Идеальное систематическое исследование всех степеней свободы в молекуле для нахождения ее нативного режима связывания обычно является невозможной задачей из-за комбинаторного взрыва пространства поиска. Поэтому методы, которые попадают в категорию «алгоритмов систематического поиска», используют технику пошагового восстановления лиганда, чтобы компенсировать эту экспоненциальную зависимость от размера молекулы. В основном есть два способа выполнить пошаговую реконструкцию. В первом (FlexX, FlexE) молекула разделена на один жесткий фрагмент и несколько оболочек гибких удлинений. Жесткий фрагмент, отобранный по его способности совершать наибольшее количество взаимодействий с рецептором, закрепляется первым. Затем постепенно соединяются гибкие части. После добавления одного гибкого компонента выполняется поиск новых взаимодействий, в соответствии с торсионной базой данных, а функция оценки используется для выбора наилучших частичных решений, которые будут использоваться для следующего шага расширения. Во втором варианте инкрементальной реконструкции (Hammerhead и оригинальная версия DOCK) молекула разбивается на различные фрагменты, которые закрепляются независимо и впоследствии сливаются в активный сайт с использованием алгоритма изгибания шарнира. В дополнение к этим алгоритмам реконструкции другие программы аппроксимируют полный систематический поиск пространства режимов связывания лиганда путем сужения последнего с использованием нескольких фильтров. Например, Glide [87, 90, 91] выполняет начальную грубую фазу позиционирования и оценки, чтобы сузить пространство поиска, после чего следует гибкая торсионная оптимизация энергии для нескольких сотен отобранных поз. Самые лучшие кандидаты дополнительно уточняются путем выборки конформации по методу Монте-Карло (МС) с повышением их точности.

В стохастических методах лиганд рассматривается как единое целое и пошаговые изменения применяются к начальной позе или совокупности поз. Такие методы впоследствии оценивают новые позы на каждом этапе, пытаясь улучшить взаимодействие с белком, что приводит к нативному способу связывания. Эволюционные алгоритмы (ЭА) и моделирование МК попадают в эту категорию.

ЭА имитирует процесс дарвиновской эволюции. Отправной точкой является набор поз, соответствующих правдоподобным лигандрецепторным комплексам, также называемым исходной популяцией или источниками. Целевая функция назначает оценку каждому режиму привязки, так что менее вероятные могут быть заменены новыми, чтобы

сформировать новое поколение. Эти новые позы генерируются с помощью вычислительных процедур, называемых операторами, которые имитируют биологические мутации и кроссоверы. Мутация будет вводить возмущения в режиме привязки, например, поворот на один двугранный угол, в то время как кроссовер объединяет две позы. Операторы применяются в позах, выбранных из наиболее приспособленных членов популяции, в надежде, что будут найдены более подходящие решения. Алгоритм заканчивается после определенного числа поколений, или оценки энергии, или если он сходится к решению. Самыми известными программами в этой категории являются GOLD и AutoDock, но есть несколько новых многообещающих алгоритмов на основе ЭА, таких как EADock или MolDock [92]. Эти программы различаются по способу работы с позами, по операторам и функциям подсчета.

Методы на основе МК начинаются с одной случайно сгенерированной позы и применяют последующие случайные движения, такие как вращение на один двугранный угол и глобальный перенос, или вращение всего лиганда. После каждой модификации оценивается новая поза и применяется критерий Метрополиса [93], чтобы выбрать, будет ли новая поза сохранена в качестве отправной точки для следующей модификации или алгоритм будет продолжен с предыдущей. Алгоритм заканчивается аналогично подходам на основе ЭА. Например, к этой категории относится программа QXP [89].

Методы моделирования групповой молекулярной динамики и методы минимизации часто не способны пересечь высокоэнергетические барьеры, в течение допустимых периодов времени моделирования, и поэтому могут размещать лиганды только в локальных минимумах энергетической поверхности [74]. Как следствие, они редко используются в качестве автономных методов поиска. Однако они могут эффективно дополнять другие методы поиска.

1.5.3 Оценочные функции

Оценочные функции, обычно реализуемые в докинге белок-лиганд, можно разделить на три основные категории: основанные на знаниях, эмпирические и основанные на силовом поле[74]. Оценочные функции, основанные на знаниях, используют потенциалы межатомного взаимодействия, полученные в результате обратного Больцмановского анализа при возникновении различных парных контактов атом-атом в известных экспериментальных сложных структурах [94, 95]. Эмпирические оценочные функции основаны на идее, что свободные энергии связывания могут быть записаны в виде взвешенной суммы некоррелированных членов, таких как водородные связи, неполярные и ароматические контакты или энтропийные штрафы. Весовые

коэффициенты этих терминов определяются с помощью регрессионного анализа с использованием комплексов белок-лиганд с известной экспериментальной связывающей свободной энергией и трехмерной структурой [82, 96, 97]. Хотя эти методы просты и быстры, они страдают от ограниченного описания физических аспектов процесса связывания и зависимости от экспериментального набора данных, используемого для их параметризации. Напротив, для оценки свободной энергии связи с помощью методов силового поля используются несогласованные и универсальные энергетические функции, такие как энергии Ван-дер-Ваальса и электростатического взаимодействия, а также энергии внутримолекулярного взаимодействия [79, 81]. Недавно в оценки стыковки были введены неявные модели сольватации, чтобы уловить эффекты растворителя при ассоциации [71, 79, 98]. Программы докинга обычно аппроксимируют точную энергию силового поля с помощью суммирования по сетке, в котором энергия взаимодействия между белком и атомным образцом рассчитывается по разным точкам с регулярным разнесением. Затем рассчитывается энергия связи лиганда путем суммирования вклада точек сетки, занимаемых малой молекулой, с учетом фактической природы и заряда атомов лиганда. EADock является одной из очень немногих программ докинга, которая непосредственно использует универсальное и детализированное силовое поле, такое как CHARMM22, и точную модель сольватации, такую как Generalized Born, используя молекулярный объем (GB-MV2) [99, 100].

1.5.4 Производительность

Производительность программ для докинга обычно оценивается с помощью вычислений повторной стыковки. Сначала собираются от нескольких сотен до нескольких тысяч экспериментально определенных репрезентативных лиганд-белковых комплексов, таких как база данных лиганд-белок [101], центр кристаллографических данных (СССС) Astex / Cambridge [102] и наборы Astex / Diverse [103] или МОАD [104]. Затем лиганды удаляются с их сайтов связывания и оценивается способность программ воспроизводить нативный режим связывания. Как правило, стыковка считается успешной, если среднеквадратичное отклонение (RMSD) между экспериментальным и расчетным режимами связывания составляет менее 2 Å. Хотя это текущий стандарт, это определение является спорным, поскольку было показано, что два способа связывания в пределах 2 Å RMSD могут создавать очень разные взаимодействия с белком [105]. Имеется несколько тестов различных алгоритмов стыковки [106–108], которые показывают, что типичный показатель успешности повторной стыковки варьируется от 70% до 80%, в зависимости от авторов и тестовых наборов. Важно отметить, что эти цифры переоценивают

эффективность этих программ для типичных исследований дизайна лекарств. Действительно, процесс повторной стыковки игнорирует проблему индуцированной подгонки, поскольку конформер белка, который используется для стыковки данного лиганда, образуется из экспериментальной структуры комплекса и, таким образом, адаптирован для соответствия этому конкретному соединению. Это не тот случай, когда лиганд берется из базы данных скрининга или разрабатывается методами *in silico*. Недавно было подтверждено, что стыковка лиганда с ненативным конформером белка, т.е. выполнение так называемой перекрестной стыковки, является более сложной задачей, в которой вероятность успеха программ стыковки снижается как минимум на 20% [109]. Однако можно ожидать прогресса от методов, разработанных для быстрой и эффективной обработки гибкости белка. Несколько анализов также показали, что производительность большинства программ докинга сильно зависит от конкретных характеристик сайта связывания и лиганда, так что вряд ли возможно определить априори, какой метод или комбинация алгоритма поиска и функции оценки является более подходящим для конкретного исследования [106, 110–112].

1.6 Виртуальный высокопроизводительный скрининг

Высокопроизводительный скрининг (HTS) обычно используется на ранней стадии процесса разработки лекарственного средства, чтобы проверить большой набор соединений на потенциальную активность в отношении выбранной мишени [73–76]. К сожалению, HTS требует много времени и средств. По этой причине его вычислительное следствие, vHTS, стало важным инструментом, предшествующим крупным скрининговым исследованиям *in vitro*, проводимым в фармацевтических компаниях [113–115]. Целью vHTS является использование вычислительных инструментов для оценки из всей базы данных существующих соединений (или соединений, которые могут быть получены), которые наиболее вероятно имеют некоторое сродство к мишени. Существует два основных подхода к этой теме: vHTS на основе лигандов и на основе структур.

1.6.1 vHTS на основе лигандов

Когда структура мишени неизвестна, измеренные активности для некоторых известных соединений могут быть использованы для построения модели фармакофора. Последний обобщает положение ключевых характеристик, таких как водородные связи и гидрофобные группы, которые должны сочетаться с предполагаемыми лигандами. Такая модель может быть использована в качестве шаблона для отбора наиболее перспективных кандидатов из библиотеки [116, 117]. Эту стратегию также можно использовать в качестве

фильтра перед применением структурной vHTS, так что только 1-10% исходной базы данных должно быть окончательно состыковано [115].

1.6.2 vHTS на основе структуры

VHTS на основе структуры является наиболее простым применением алгоритмов стыковки. Он заключается в использовании программы молекулярного докинга для определения режима связывания белка-мишени для всей базы данных существующих или виртуальных соединений [113, 115, 118]. Связанные конформации используются для аппроксимации свободной энергии связи или связанного сродства соединения. Затем наиболее перспективные соединения сохраняются для дальнейших экспериментальных испытаний. Наиболее широко используемыми программами докинга для vHTS являются DOCK, FlexX, Glide, GOLD и AutoDock. Размер библиотек, используемых в таком подходе, варьируется от сотен тысяч до нескольких миллионов соединений, ограничивая время, доступное для каждой стыковки, до нескольких минут или меньше. Размер базы данных представляет собой компромисс между количеством молекул, которые можно обработать за разумное время, и химическим пространством, которое желательно охватить. Несмотря на постоянное совершенствование компьютерного оборудования, конформационная выборка очень ограничена и vHTS страдает от множества ошибочных негативов. Несмотря на огромное количество ресурсов, вложенных в HTS и vHTS, и несколько успешных исследований [119-124], результаты, с точки зрения новых соединений поступающих в клиническую разработку, могут рассматриваться как довольно разочаровывающие [125, 126].

1.7 Дизайн на основе *insilico* фрагментов

За несколько лет фрагмент-ориентированный докинг стал привлекательной альтернативой экспериментальному или виртуальному HTS. В отличие от HTS, где молекулы подвергаются скринингу на активность, FBD стремится к поэтапному созданию новых лигандов путем соединения небольших и хорошо выбранных соединений, которые достаточно близко связываются в отдельные карманы связывания, чтобы быть химически связанными в их относительно благоприятных положениях [127]. При экспериментальном тестировании хиты проявляют, как правило, только слабое сродство с IC₅₀ порядка от 1 нМ до 30 нМ. Однако они обеспечивают интересные отправные точки для последующих стратегий, пытающихся соединить несколько из них, чтобы получить новые эффективные соединения-портотипы. Фрагментарное проектирование может быть выполнено *in*

silico[128] или экспериментально, с использованием ядерного магнитного резонанса (ЯМР) или рентгеновской кристаллографии [129].

1.7.1 Преимущества FBD

У FBD есть несколько преимуществ перед vHTS. Во-первых, образцы FBD имеют большее химическое разнообразие, чем HTS. Действительно, химические библиотеки HTS обычно содержат $10^5 - 10^6$ отдельных соединений. Обработать такое количество молекул экспериментально или *in silico*—огромное усилие, однако это покрывает лишь небольшое количество химического пространства, доступного для маленьких молекул. В нескольких исследованиях было установлено, что число молекул, обрабатываемых в FBD, составляет около 10^{60} – 10^{100} [116, 130–133], что намного превышает то, что может быть проверено vHTS. Даже самое большое усилие, которое можно себе представить в настоящее время, с использованием примерно 120 миллионов соединений доступных по всему миру [134], лишь задевает поверхность химического пространства. FBD позволяет отобрать гораздо большее количествосоединений, используя меньшее количество исходных молекул. Например, химическое пространство из 10^6 молекул может быть получено путем комбинаторного соединения трех фрагментов, принадлежащих базе данных из 100 фрагментов. Но, в отличие от HTS, он требует только одного виртуального или экспериментального анализа для каждого из 100 фрагментов и нескольких молекул, которые могут быть построены из наиболее перспективных. Кроме того, было подсчитано, что число стабильных и синтетически доступных молекулярных фрагментов составляет около 44*106 [135]. Это число примерно того же порядка, что тестируется с HTS, но охватывает гораздо большую часть химического пространства.

Во-вторых, FBD приводит к более высоким показателям попадания. Это иллюстрируется тем фактом, что вероятность плохого взаимодействия лиганд-белок возрастает экспоненциально с размером и сложностью молекулы [136]. Как следствие, вероятность того, что маленькие и простые молекулы свяжутся с белком, даже с низким сродством, намного выше, чем для соединений размера HTS. Эта вероятность возрастает до 30-40% для простых фрагментов [136]. Это поддерживает использование молекулярных фрагментов для закрепления процесса разработки лекарств, а не комплексных и крупных молекул.

Наконец, FBD приводит к молекулам с более высокой эффективностью лиганда. Химические библиотеки HTS состоят из сложных молекул, изначально разработанных для других целей, помимо связывания с текущей мишенью. Как следствие, ожидается, что даже хит HTS сформирует субоптимальные связывающие взаимодействия с мишенью. Напротив, из-за своего размера, высокая доля атомов во фрагменте хита непосредственно участвует в белок-связывающем взаимодействии. Таким образом, их оптимизация с большей вероятностью приведет к получению более эффективных и, следовательно, меньшим препаратам (рис. 27), с большими шансами на благоприятные фармакокинетических свойств [126].

Интересно отметить, что свободная энергия связи молекулы, полученная в результате оптимального связывания двух фрагментов, в ожидании будет ниже и, следовательно, более благоприятной, чем сумма свободных энергий связи двух изолированных фрагментов (рис. 28) [137]. Это объясняется тем, что энтропийные потери твердого тела при связывании молекулы велики, тогда как энтропийный штраф, связанный с замораживанием вращающихся связей, в некоторых обстоятельствах невелик.

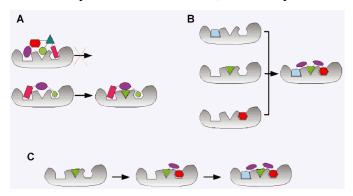


Рисунок 27 – HTS по сравнению с FBD (A: Типичные хиты HTS, B: FBD с использованием связующего подхода, C: FBD, с использованием растущего подхода).

Энтропийные потери твердого тела при связывании одной молекулы обусловлены замораживанием 6 степеней свободы: три жестких сдвига и три жестких поворота малой молекулы. 12 DOF замораживаются при связывании двух разделенных фрагментов A и B. Это приводит к более высокому энтропийному штрафу, чем при замораживании 6 DOF объединенной молекулы A:B. Это благоприятное различие в энтропии твердого тела преобладает над конформационной энтропийной потерей молекулы A:B, обусловленной замораживанием вращающихся связей, которые не существуют во фрагментах A и B.

HN NH OH OH
$$K_i$$
= 34 nM K_i = 260 nM K_i = 0.00000041 nM

Рисунок 28 – Влияние связи фрагментов на экспериментальную аффинность в исследовании FBD, нацеленном на авидин [163].

1.7.2 Методы фрагмент-ориентированного докинга

Свойства 40 фрагментов хитов, идентифицированных экспериментально по нескольким мишеням, показали, что они проявляют свойства, согласующиеся с «правилом трех» [138], то есть: молекулярная масса не больше 300 г/моль, число доноров водородной связи ≤3, число акцепторы водородных связей ≤3, рассчитанные LogP ≤3. Кроме того, было обнаружено, что число вращающихся связей и площадь полярной поверхности обычно были ниже или равны 3 и 60 Ų, соответственно. Фрагменты получают с использованием хемоинформатического подхода, разбивая биологически активные соединения на ограниченное количество фрагментов. В зависимости от используемого определения молекулярных фрагментов, химическое пространство потенциальных лекарственных молекул сокращается до нескольких сотен [139, 140] и тысяч фрагментов [141]. Существует несколько подходов для автоматического разложения молекул на жесткие фрагменты [142, 143].

Для *in silico* FBD было разработано несколько методов, которые отличаются строительными блоками, используемыми для конструирования лигандов (атомов или фрагментов), применяемыми ограничениями мишени (на основе рецепторов лигандоров), стратегией, используемой для отбора образцов химического пространство (глубина [128], ширина [128], МС, ЕА), структурной выборкой (в основном растущими, связывающими и случайными структурными мутациями) и функцией подсчета, используемой для ранжирования предполагаемых лигандов. Среди наиболее представительных методов можно найти LUDI [144], MCSS [145] / HOOK [146], PRO_LIGAND [147], SMOG (DeWitte и Shakhnovich), LigBuilder [148] LeapFrog (Tripos Inc., Tripos, Ceнт-Луис, Миссури, США), ССLD [149] и GANDI [150].

В FBD на основе лигандов новые молекулы конструируются исходя из существующих лигандов. Из последнего могут быть получены различные ограничения и оценочные функции, такие как фармакофорные модели, молекулярное сходство или оценочные функции количественной зависимости структура-структура (QSAR). Напротив, FBD на основе рецепторов использует для конструирования молекул трехмерную структуру сайта связывания белка, которая оптимизирует лиганд-белковые взаимодействия.

Несколько оценочных функций, называемых первичными ограничениями, могут быть использованы для ранжирования предлагаемых молекул и управления поиском в химическом пространстве. Они соответствуют тем функциям, которые используются докинг-программами, т. е. эмпирических, основанных на силовых полях и на знаниях функциях оценки. Кроме того, некоторые другие физико-химические параметры,

связанные с лекарственным подобием соединений, а также термины, объясняющие молекулярное и пространственное сходство с известными лигандами, могут быть использованы в качестве фильтров или добавлены к функциям оценки [150, 151]. Последние называются вторичными ограничениями.

Подход связывания (рис. 27В) начинается с размещения строительных блоков в ключевых местах взаимодействия рецептора. Это можно сделать с помощью самого программного обеспечения для проектирования на основе фрагментов или с помощью специального программного обеспечения, такого как MCSS [145], SEED [152] или EADock [71]. Последнее особенно подходит для подхода, основанного на фрагментах, так как благодаря своему алгоритму выборки на основе кластеров и его универсально используемой функции оценки, он способен отображать выгодные позиции фрагментов, так и стыковать полные молекулы [71]. Позиционированные фрагменты затем автоматически соединяются друг с другом с помощью линкеров, в результате чего получается несколько полных молекул, которые удовлетворяют всем ключевым сайтам взаимодействия. Напротив, процедура роста (рис. 27 С) начинается с одного фрагмента, расположенного в одном из ключевых сайтов взаимодействия мишени. Этот фрагмент может быть выбран пользователем или программой. Затем структура вырастает из этого первого фрагмента итеративно, шаг за шагом. Каждое добавление делается так, чтобы обеспечить благоприятные взаимодействия между мишенью и новыми фрагментами, сохраняя те, которые уже показаны исходной молекулой. Правила соединения вытекают из наличия определенных связей в органических соединениях или из реакций органического синтеза. Стратегии роста и связывания имеют свои сильные и слабые стороны [128]. Процесс роста может столкнуться с трудностями, если активный сайт содержит несколько отдельных карманов, разделенных большим промежутком, в котором взаимодействия между лигандом и белком ограничены. При использовании подхода неуместные фрагменты co слабо определенной связывания пространственной ориентацией (например, фенильное кольцо без предпочтительной ориентации в большом липофильном связывающем кармане) могут привести к созданию субоптимальной молекулы.

Не стоит ожидать, что *ab initio* FBD в первую очередь даст наномолярные соединения. Скорее, эти методы позволят разработать новые перспективные соединения со средним сродством, что станет отправной точкой дальнейшей оптимизации [128]. Тем не менее, методы FBD уже способствовали созданию впечатляющего числа лигандов с высоким сродством [153–159] и соединений для клинических испытаний, хотя они были

приняты только недавно в процессе разработки лекарств. FBD представляет собой многообещающий метод для решения будущих проблем, связанных с открытием лекарств.

1.7.3 Синтетическая доступность молекул, разработанных с помощью фрагмент-ориентированного докинга

Одним из важнейших аспектов in silico FBD является синтетическая доступность предлагаемых соединений. Очевидно, что экспериментальные HTS хиты, как известно, являются синтезируемыми, поскольку они уже были синтезированы для присутствия в базе протестированных молекул. Можно ожидать, что их производные будут доступны для использования подхода, аналогичного тому, который используется для родительского соединения. Напротив, все молекулы, собранные на экране компьютера с использованием in vitro FBD, не гарантированы для легкого синтеза. Тем не менее, несколько стратегий могут быть разработаны для оптимизации этого аспекта. Во-первых, исследования по разработке лекарств часто направлены на получение новых элементов известного класса лекарств (так называемый подход «я тоже»). В этом случае проблема синтеза может быть ограничена благодаря знаниям, уже доступным для молекул таких семейств. Во-вторых, фрагменты, которые используются in silico, могут быть выбраны так, чтобы они включали органические реакции, входящие в сферу компетенции фармакохимика, или набор других виртуальных схем органических реакций, как в процедуре ретросинтетического комбинаторного анализа (RECAP) [160] и оптимизации систем insilico (SYNOPSIS) [157]. Как только несколько фрагментов успешно собраны на активном сайте, другой вариант проверить базы данных, такие как Zinc, на наличие соединений, содержащих этот мотив. Результаты этого поиска позволят получить коммерчески доступные молекулы. Также возможно оценить синтетическую доступность соединений-кандидатов с помощью дополнительного программного обеспечения, пытающегося определить пути синтеза, и выбрать потенциальные предшественники из баз данных доступных соединений [158, 161]. Аналогичным образом, недавно были установлены оценочные функции, которые пытаются имитировать интуицию химика-органика и оценивают синтетическую доступность молекул, исследуя их химическую структуру, не предлагая какого-либо ретросинтеза [162].

2. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

2.1 Построение комбинаторной библиотеки низкомолекулярных производных азаиндола

В качестве объекта исследования нами использовалась комбинаторная библиотека низкомолекулярных производных азаиндола, построенная на основе соединений депонированных в базу данных ZINC. Для осуществления молекулярного докинга мы отбирали азаиндолы полностью соответствующие правилам Липински. Основные этапы отбора соединений, построения комбинаторной библиотеки и проведения молекулярного докинга представлены на рисунке ниже.

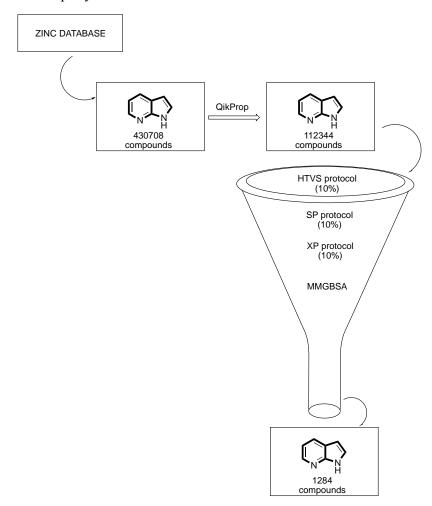


Рисунок 29 - Основные этапы построение комбинаторной библиотеки

Как видно из представленных данных, коммерчески доступных производных азаиндола набирается чуть более 400 тыс., при этом в ходе фильтрации соединений, используя правила Липински, выборка соединений составляет 112344 соединений.

2.2 Выбор структур белковых мишеней

Основной белковой мишенью исследуемой в данной работе является внутриклеточный домен рецептора эпидермального фактора роста EGFR (HER1), активно

участвующий в патологической пролиферации онкотрансформированных клеток. На данный момент в ProteinDataBank охарактеризовано более 70 кристаллических структур разного качества, представляющих из себя комплексы EGFRс низкомолекулярными лигандами-ингибиторами или с биогенным лигандом АТФ. Наравне с EGFR дикого типа в банке представлены данные для ряда белков, несущих ключевые мутации, обуславливающие резистентную устойчивость опухолевых клеток. На основании ранее проделанного анализа качества кристаллических структур в Центре медицинской химии нами для осуществления молекулярного докинга в активный сайт EGFRкиназы дикого типа выбраны структуры (3W32, 3W33, 2RGP, 3BEL, 1XKK), EGFR^{T790M/L858R}(5HIC, 5HCX, 5C8N, 3W2R).

2.3 Молекулярный докинг

Молекулярный докинг производили с применением оригинального алгоритма Glide в программном пакете Schrodinger 2017-1. Для анализа режимов стыковки исследуемых лигандов использовались два разных протокола стыковки, протокол стандартной точности (SP) и протокол дополнительной точности (XP). Для оценки относительной аффинности лигандов используется метод молекулярной механики с обобщенной поверхностью (MM/GBSA). Полные результаты молекулярного докинга представлены в приложении A, в таблице 2 и 3 представлены обобщенные данные для производных азаиндола, которые показали наиболее высокие значения скоринговых функций стыковки. Как можно видеть из представленных данных, установлено, что наиболее значимой аминокислотой активного сайта связывания для рассматриваемых производных азаиндола является МЕТ793, обуславливающей межмолекулярное взаимодействие посредством водородной связи между белком и паттерном лиганда (рис. 30-34). Дополнительная стабилизация комплексов обуславливается пи-пи стекингом гидрофобного остатка РНЕ856 лиганда. Стоит отметить, что наибольшее количество соединений-хитов, выявленных по данным молекулярного докинга, являются производными азаиндола по положению 3 и 4, что в первую очередь обуславливается их синтетической доступностью.

Следует отметить, что, несмотря на то, что многопараметрических молекулярный докинг позволил выявить кагорту соединений-хитов, высокие значения скоринговых функций отнюдь не гарантируют высокую аффинность к активному сайту исследуемого белка. Для полноценного ранжирования и отбора соединений хитов в представленной работе была осуществлена оценка аффинности с применением методов молекулярной механики, реализованных в программном пакете SchrodingerSuite 2017-1. В таблице 4 и 5

представлены значения энергии связывания соединений-хитов, оцененные методом молекулярной механики с обобщенной поверхностью (MM/GBSA).

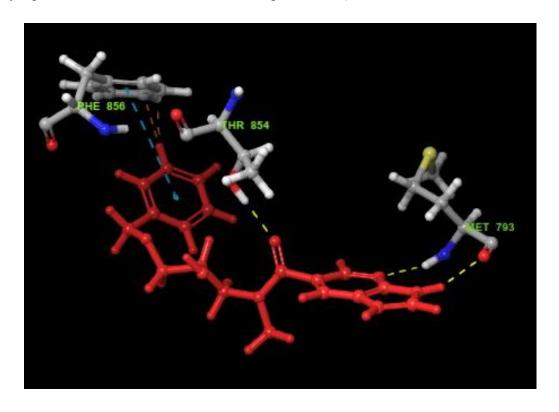


Рисунок 30 – Комплекс KN3 с 3W33

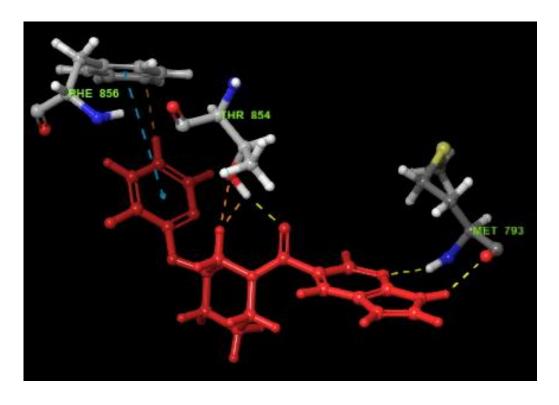


Рисунок 31 – Комплекс KN7c 3W32

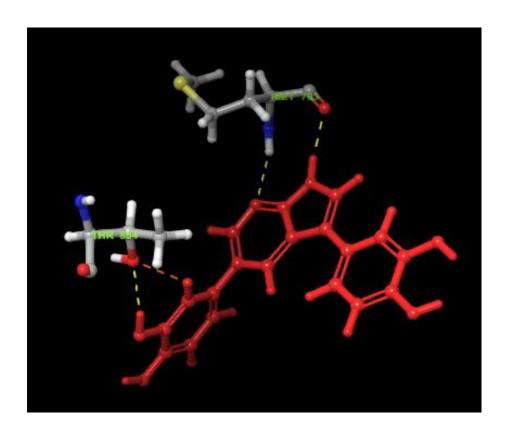


Рисунок 32 – Комплекс KN635c2JIU

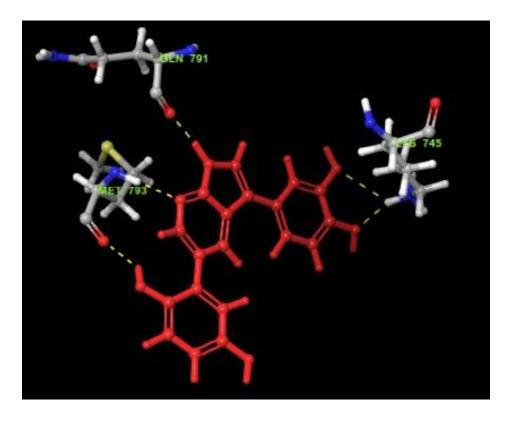


Рисунок 33 – Комплекс KN774c 5HCX

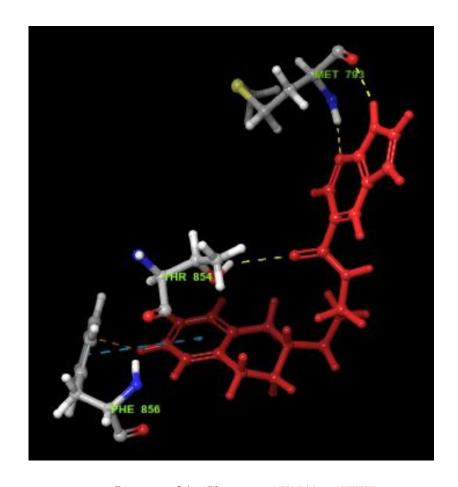


Рисунок 34 – Комплекс KN49 с 1XKK

Как видно из представленных данных, ряд соединений наравне с высокими значениями скоринговой функции оценки стыковки имеют высокие значения аффинности, как в случае EGFRдикого типа (соединение KN60), так и в случае EGFR T790M/L858R (соединение KN803).

Таблица 2. **Общие структуры по XPgscore**

Код соедине- ния	Структура	EGFR	Dockings core	XPgscore	Ключевые взаимодействия	Категория	Примечания
1	2	3	4	5	6	7	8
	N N N	Wt1	-13.202	-12.807	МЕТ793 (водородная) THR854 (водородная) PHE856 (<i>п</i> - <i>п</i> , водородная)	Наиболее	
KN3	ÖH NH	Wt2	-12.710	-11.845	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)	Наиболее	-
		Wt4	-12.653	-12.653	МЕТ793 (водородная) LEU788 (водородная) THR854 (водородная) PHE856 (π-π)	Наиболее	
	HN	Wt1	-12.895	-12.895	МЕТ793 (водородная)ТНR854 (водородная) РНЕ856 (<i>п</i> - <i>п</i> , водородная)	Наиболее	
KN7	N F	Wt2	-12.662	-12.663	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)	Наиболее	-
	HN N A	Wt1	-11.752	-11.755	ASP855(водородная) МЕТ793 (водородная) РНЕ856 (π-π)	Наиболее	
KN139	O NH	Wt5	-11.601	-11.604	МЕТ793 (водородная) РНЕ856 (π-π)	Наиболее	-
	H H	T790M/ L858R2	-12.166	-12.166	ARG841(водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)	Наиболее	

1	2	3	4	5	6	7	8
	HN O	Wt3	-12.475	-12.479	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная)	Наиболее	
KN265		Wt4	-12.352	-12.355	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)	Наиболее	-
		T790M	-12.298	-12.298	МЕТ793 (водородная) THR854 (водородная)	Наиболее	
	ОН	T790M/L858R1	-12.810	-12.810	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) LEU718 (водородная)	Наиболее	С EGFRT790M/L858R4 данное соединение
KN635	HO N N N H	T790M/L858R2	-12.065	-12.065	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная)	Наиболее	проявляет следующие ключевые взаимодействия: ASP855 (водородная), CYS797 (водородная), GLN791 (водородная),
		T790M/L858R3	-11.989	-11.989	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LEU718 (водородная) LYS745 (водородная)	Наиболее	МЕТ793 (водородная)

1	2	3	4	5	6	7	8
KN774	ОН	T790M/L858R1	-13.455	-13.455	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LEU718 (водородная) LYS745 (водородная)	Наиболее	-
	HO N N N	T790M/L858R2	-12.984	-12.984	GLN791 (водородная) МЕТ793 (водородная) LEU718 (водородная)	Наиболее	
VNI775	KN775	T790M/L858R1	-12.994	-12.994	ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)	Наиболее	_
KN775		T790M/L858R2	-12.166	-12.166	ARG841(водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)	Наиболее	

Таблица 3. Соединения без совпадений по **XPgscore**

Код соедине- ния	Структура	EGFR	Dockingsc ore	XPgscore	Ключевые взаимодействия	Категория	Примечания
1	2	3	4	5	6	7	8
KN49	HN N H	Wt5	-12.119	-12.139	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)	Наиболее	Для KN49 с EGFRwt 1 характерны водородные ключевые взаимодействия с MET793, THR854 и PHE856 (π-π). Аналогично для EGFRwt3, но данное соединение в конце списка. Для EGFRwt4 взаимодействия с MET793 (водородная) и PHE856 (π-π).
KN91	H N N N N N N N N N N N N N N N N N N N	Wt5	-11.476	-11.476	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)	Наиболее	Для KN491 cEGFRwt 1 характерны ключевые взаимодействия: МЕТ793 (водородная), LYS745 (<i>п</i> -катионная), THR854 (водородная).

1	2	3	4	5	6	7	8
KN789	HN-N H2 N N	T790M/ L858R2	-12.313	-12.313	ASP800 (водородная, солевой мостик) ARG841(водородная) GLN791 (водородная) MET793 (водородная)	Наиболее	С EGFRT790M/L858R1 взаимодействия: ASP800 (водородная, солевой мостик),ARG841 (водородная), GLN791 (водородная)и MET793 (водородная).
KN929	H_3N N N N N N	T790M/ L858R3	-10.815	-10.815	АSP800 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная, солевой мостик)	Наиболее	С EGFRT790M/L858R2 взаимодействия: ASP800 (водородная, солевой мостик),GLN791 (водородная),MET793 (водородная)и LYS745 (водородная).

Таблица 4.**Общие структуры по MMGBSAdGBind**

Код Соедине- ния	Структура	EGFR	MMGBSAd GBind	Ключевые взаимодействия	Категория	Примечания
1	2	3	4	5	6	7
KN60 H_2N N N N N N N N N N	Wt1	-34.668	МЕТ793 (водородная) THR790 (водородная) THR854 (водородная)	Наименее	-	
	N H	Wt3	-97.410	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)	Наиболее	
		Wt2	-67.146	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)	Наиболее	-
KN49	HN N N N N N N N N N N N N N N N N N N	Wt3	-70.163	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)	Наиболее	
		Wt4	-68.662	МЕТ793 (водородная) РНЕ856 (π-π)	Наиболее	

1	2	3	4	5	6	7
	но	Wt3	-42.071	GLN791(водородная) MET793 (водородная) PHE856 (<i>π-п</i> , водородная)	Наименее	
KN272	NH	Wt4	-36.849	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)	Наименее	-
KN803	KN803 H N O N H N N N N N N N N N N N N N N	T790M/ L858R 1	-73.107	ASP800 (водородная) ASP855 (водородная, солевой мостик) CYS797 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)	Наиболее	-
		T790M/ L858R 2	-69.781	ASP800 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)	Наиболее	
KN782	H ₂ N	T790M/ L858R 1	-72.228	ASP800 (водородная) GLU804 (солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE795 (водородная)	Наиболее	-
		T790M/ L858R 2	-69.781	ASP800 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)	Наиболее	

Таблица 5. Соединения без совпадений по MMGBSAdGBind

Код Соедине- ния	Структура	EGFR	MMGBSA dGBind	Ключевые взаимодействия	Категория	Примечания
1	2	3	4	5	6	7
KN635	HO OH OH N N N H	T790M/ L858R 3	-57.747	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LEU718 (водородная) LYS745 (водородная)	Наиболее	ДляКN635 сЕGFRT790М характерны водородные взаимодействия с МЕТ793 и ТНR854. Для KN635 с EGFRT790M/L858R1 характерны водородные взаимодействия с ASP855,GLN791,MET793,LYS745и LEU718. Для KN635 с EGFRT790M/L858R2 характерны водородные взаимодействия с ASP855,GLN791,GLU762,MET793 и LYS745. Для KN635 с EGFRT790M/L858R2 характерны водородные взаимодействия с ASP855,GLN791,GLU762,MET793 и LYS745.
KN253	HN N-O	Wt2	-65.816	GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная) PHE856 (π-π)	Наиболее	C EGFRwt5характерны водородные взаимодействия с GLN791 и MET793.

1	2	3	4	5	6	7
KN292	HO N N N H	Wt3	-49.423	ASP855 (водородная) CYS775 (водородная) GLN791(водородная) MET793 (водородная)	Наименее	CEGFRwt4 характерны водородные взаимодействия с GLN791 и MET793.
KN846	O NH N NH ₂	T790M/ L858R 3	-44.256	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)	Наименее	С EGFRT790M/L858R1характерны водородные взаимодействиясASP800,CYS797, GLN791, MET793

3. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Все расчеты в рамках выполненной работы проводили с применением программного пакета SchrodingerSuite 2017-1 (demo-лицензия).

3.1 Подготовка комбинаторной библиотеки

Исходные 2D-структуры исследуемых азаиндолов импортировались с базы данных ZINC (http://zinc15.docking.org). Трехмерные структуры исследуемых соединений были построены с использованием панели сборки Maestro в пакете Schrödinger. Модуль Ligprep был использован для генерации всех возможных состояний в физиологическом диапазоне рН 7 ± 2 с учетом наименьшей потенциальной энергии конформации лиганда, с использованием силового поля OPLS_2005. Все полученные структуры соединений были использованы для исследований молекулярной стыковки и свойств ADME с использованием модуля Qikprop.

3.2Подготовка молекулы белка

Кристаллические структуры тирозинкиназы EGFR дикого типа и несущие мутации, выше 2.4 Å, загружали разрешение ИЗ банка данных белков RCSB (http://www.rcsb.org/pdb/) (PDB: 3W32, 3W33, 2RGP, 3BEL, 1XKK, 2JIU, 5HIC, 5HCX, 5C8N, 3W2R). Белок был приготовлен с использованием модуля мастера подготовки ProteinPreparationWizard. Все молекулы воды и гетероатомы, кроме нативного лиганда, были удалены и атомы водорода были добавлены к кристаллической структуре. Комплекс был оптимизирован, чтобы уменьшить стерические столкновения, с применением силового поля OPLS 2005. Модуль Sitemap использовался для оценки характеристики функций сайтов связывания. На его основе генерируются карты гидрофобных и гидрофильных взаимодействий, которые определяют донорные, акцепторные и гидрофобные области сайта связывания.

3.3 Молекулярный докинг

Активный сайт для стыковки лигандов определялся с использованием модуля Generate Grid Generation в Glide. В качестве модельного был выбран сокристаллизованный нативный лиганд, сетка генерировалась вокруг активного участка собственной области EGFR с использованием масштабирующего коэффициента ван-дер-ваальсовых взаимодействий равного 0.9. Для анализа режимов стыковки исследуемых ингибиторов использовались два разных протокола стыковки, протокол стандартной точности (SP) и протокол дополнительной точности (XP).

3.4 Вычисление PrimeMM/GBSA

Для оценки относительной аффинности лигандов используется метод молекулярной механики с обобщенной поверхностью (MM/GBSA). PrimeMM/GBSA модуль использовался для расчета свободной энергии связывания для каждой молекулы. Комплексы лиганд-белок, полученные из стыковки XP, были подвергнуты расчетам MM/GBSA.

ЗАКЛЮЧЕНИЕ

На основании проделанной работы можно сделать следующие выводы:

- Впервые осуществлен многопараметрический молекулярный докинг большой (более 100 тыс. соединений) комбинаторной библиотеки коммерчески (синтетически) доступных производных 7-азаиндола.
- На основании современных представлений о drug-like профиле соединений, данных молекулярной стыковки и данных аффинности предложена малая комбинаторная библиотека для химического синтеза и изучения ингибирования EGFR методами *invitro*. Установлено, что наиболее значимой аминокислотой активного сайта связывания для рассматриваемых производных азаиндола является МЕТ793, обуславливающей межмолекулярное взаимодействие посредством водородной связи между белком и паттерном лиганда. Дополнительная стабилизация комплексов обуславливается пи-пи стэкингом гидрофобного остатка PHE856 с лигандом.
- найденных соединений-хитов,производных 7-азаиндола, Для получены детальные структурные данные об особенностях межмолекулярного взаимодействия с активным сайтом связывания киназного домена рецептора эпидермального фактора роста дикого типа, несущего мутацию T790M/L858R. Полученные данные имеют большое значение для дальнейшего синтеза и модификации структуры найденных соединений, с целью повышения аффинности к исследуемой биологической мишени.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Dar, A.C. Theevolutionofproteinkinaseinhibitorsfromantagoniststoagonists of cellular signaling / A.C. Dar, K.M. Shokat // Annu. Rev. Biochem. 2011. № 80. P. 769–795.
- Zhang, J. Targeting cancer with small molecule kinase inhibitors / J. Zhang, P.L. Yang, N.S. Gray // Nat. Rev. Cancer. 2009. № 9. P. 28–39.
- 3. Noble, M.E. Protein kinase inhibitors: insights into drug design from structure / M.E. Noble, J.A. Endicott, L.N. Johnson // Science. 2004. № 303. P. 1800–1805.
- 4. The protein kinase complement of the human genome / G. Manning [et al.] // Science. 2002. № 298. P. 1912–1934.
- Endicott, J.A. The structural basis for control of eukaryotic protein kinases / J.A. Endicott,
 M.E. Noble, L.N. Johnson // Annu. Rev. Biochem. 2012. № 81. P. 587–613.
- 6. Hanks, S.K. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification / S.K. Hanks, T. Hunter // FASEB J. − 1995. − № 9. − P. 576–596.
- 7. Trafny, E.A. cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer / E.A. Trafny [et al.] // Protein Sci. − 1994. − № 3. − P. 176–187.
- Zheng, J. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor / J. Zheng [et al.] // Biochemistry. – 1993. – № 32. – P. 2154–2161.
- 9. Cohen, P. Kinase drug discovery: what's next in the field? / P. Cohen, D.R. Alessi // ACS Chem. Biol. 2013. № 8. P. 96–104.
- 10. Bradbury, R.H. Kinase inhibitors: approved drugs and clinical candidates, in Burger's Medicinal Chemistry, Drug Discovery and Development / R.H. Bradbury // N. J. Chem. 2010. № 7. P. 295–344.
- 11. Bollag, G. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma / G. Bollag [et al.] // Nature. − 2010. − № 467. − P. 596–599.
- 12. Tsai, J. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity / J. Tsai [et al.] // Proc. Natl. Acad. Sci. (USA). − 2008. − № 105. − P. 3041–3046.
- 13. Chahrour, O. Small molecule kinase inhibitors as anti-cancer therapeutics / O. Chahrour, D. Cairns, Z. Omran // Mini Rev. Med. Chem. 2012. №12. P. 399–411.

- 14. O'Hare, T. *In vitro* activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants / T. O'Hare [et al.] // Cancer Res. − 2005. − № 65. − P. 4500–4505.
- 15. Tokarski, J.S. The structure of dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants / J.S. Tokarski [et al.] // Cancer Res. − 2006. − № 66. − P. 5790–5797.
- 16. Harris, P.A. Discovery of 5-[[4-[(2,3-dimethyl-2Hindazol-6-yl)methylamino]-2-pyrimidinyl] amino]-2-methylbenzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor / P.A. Harris [et al.] // J. Med. Chem. − 2008. − № 51. − P. 4632–4640.
- 17. Sleijfer, S. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European Organisation for Research and Treatment of Cancer − Soft Tissue and Bone Sarcoma Group / S. Sleijfer [et al.] // J. Clin. Oncol. − 2009. − № 27. − P. 3126–3132.
- 18. Piazza, F.A Multiple myeloma cell survival relies on high activity of protein kinase CK2 / F.A. Piazza [et al.] // Blood. 2006. № 108. P. 1698–1707.
- 19. Mishra, S.Treatment of P190 Bcr/Abl lymphoblastic leukemia cells with inhibitors of the serine/threonine kinase CK2 / S. Mishra [et al.] // Leukemia. 2007. № 21. P. 178–180.
- 20. Hou, Z. Structurebased design of novel potent protein kinase CK2 (CK2) inhibitors with phenyl-azole scaffolds / Z. Hou [et al.] // J. Med. Chem. 2012. № 55. P. 2899–2903.
- 21. Degenhardt, Y. Targeting Polo-like kinase in cancer therapy / Y. Degenhardt, T. Lampkin // Clin. Cancer Res. 2010. № 16. P. 384–389.
- 22. Chopra, P. Polo-like kinase inhibitors: an emerging opportunity for cancer therapeutics / P. Chopra [et al.] // Expert Opin. Invest. Drugs. 2010. № 19. P. 27–43.
- 23. Pierre, F. Discovery and SAR of 5-(3- chlorophenylamino)benzo[c][2,6] naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer / F. Pierre [et al.] // J. Med. Chem. − 2011. − № 54. − P. 635–654.
- 24. Battistutta, R. Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer / R. Battistutta [et al.] // Biochemistry. − 2011. − № 50. − P. 8478–8488.
- 25. Chen, S.Q. Identification of novel, potent and selective inhibitors of Polo-like kinase / S.Q. Chen [et al.] // Bioorg. Med. Chem. Lett. 2012. № 22. P. 1247–1250.
- 26. Nie, Z. Discovery of TAK- 960: an orally available small molecule inhibitor of polo-like kinase 1 (PLK1) / Z. Nie [et al.] // Med. Chem. Lett. − 2013. − № 23. − P. 3662–3666.

- 27. Traxler, P. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors / P. Traxler, P. Furet // Pharmacol. Ther. 1999. № 82. P. 195–206.
- 28. Kufareva, I. Type-II kinase inhibitor docking, screening, and profiling using modified structures of active kinase states / I. Kufareva, R. Abagyan // J. Med. Chem. − 2008. − № 51. − P. 7921–7932.
- 29. Kirkland, L.O. Non-ATP competitive protein kinase inhibitors as anti-tumor therapeutics/ L.O. Kirkland, C. McInnes // Biochem. Pharmacol. − 2009. − № 77. − P. 1561–1571.
- 30. Hosfield, D.J. Targeting inactive kinases: structure as a foundation for cancer drug discovery, in Cancer Drug Design and Discovery / D.J. Hosfield, C.D. Mol // Academic Press. (New York). 2008. P. 229–252.
- 31. Bogoyevitch, M.A. A new paradigm for protein kinase inhibition: blocking phosphorylation without directly targeting ATP binding / M.A. Bogoyevitch, D.P. Fairlie // Drug Discov. Today. − 2007. − № 12. − P. 622–633.
- 32. Wilhelm, S.M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling / S.M. Wilhelm [et al.] // Mol. Cancer Ther. − 2008. − № 7. − P. 3129–3140.
- 33. Namboodiri, H.V. Analysis of imatinib and sorafenib binding to p38 alpha compared with c-Abl and b-Raf provides structural insights for understanding the selectivity of inhibitors targeting the DFG-out form of protein kinases / N.V. Namboodiri [et al.] // Biochemistry. − 2010. − № 49. − P. 3611–3618.
- 34. Wang, X.L. Structure-based design of isoindoline-1,3-diones and 2,3 dihydrophthalazine-1,4- diones as novel B-Raf inhibitors / X.L. Wang [et al.] // Bioorg. Med. Chem. Lett. −2011. № 21. P. 6941–6944.
- 35. Oguro, Y. Design, synthesis, and evaluation of 5- methyl-4-phenoxy-5H-pyrrolo[3,2-d] pyrimidine derivatives: novel VEGFR2 kinase inhibitors binding to inactive kinase conformation / Y. Oguro [et al.] // Bioorg. Med. Chem. − 2010. − № 18. − P. 7260–7273.
- 36. Iwata, H. Biochemical characterization of a novel type- II VEGFR2 kinase inhibitor: comparison of binding to non-phosphorylated and phosphorylated VEGFR2 / H. Iwata [et al.] // Bioorg. Med. Chem. − 2011. − № 19. − P. 5342–5351.
- 37. Dai, Y.J. Discovery of N-(4-(3-amino-1H-indazol-4-yl)phenyl)- N0-(2-fluoro-5-methylphenyl)urea (ABT- 869), a 3-aminoindazole-based orally active multitargeted receptor tyrosine kinase inhibitor / Y.J. Dai [et al.] // J. Med. Chem. − 2007. − № 50. − P. 1584–1597.
- 38. Gavrin, L.K. Approaches to discover non-ATP site kinase inhibitors / L.K. Gavrin, E. Saiah // Med. Chem. Commun. 2013. № 4. P. 41–51.

- 39. Bonnet, P. Targeting the inactive conformation of protein kinases: computational screening based on ligand conformation / P. Bonnet, D. Mucs, R.A. Bryce // Med. Chem. Commun. 2012. № 3. P. 434–440.
- 40. Davis, R.J. The mitogen-activated protein-kinase signal transduction pathway / R.J. Davis // J. Biol. Chem. − 1993. − № 268. − P. 14553–14556.
- 41. Cowan, K.J. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress / K.J. Cowan, K.B. Storey // J. Exp. Biol. − 2003. − № 206. − P. 1107–1115.
- 42. Barrett, S.D. The discovery of the benzhydroxamate MEK inhibitors CI-1040 and PD 0325901 / S.D. Barrett [et al.] // Bioorg. Med. Chem. Lett. − 2008. − № 18. − P. 6501–6504.
- 43. Ohren, J.F. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition / J.F. Ohren [et al.] // Nat. Struct. Mol. Biol. − 2004. − № 11. − P. 1192–1197.
- 44. Yeh, T.C. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor / T.C. Yeh [et al.] // Clin. Cancer Res. − 2007. − № 13. − P. 1576–1583.
- 45. Wallace, M.B.Structure-based design and synthesis of pyrrole derivatives as MEK inhibitors.

 / M.B. Wallace [et al.] // Bioorg. Med. Chem. Lett. − 2010. − № 20. − P. 4156–4158.
- 46. Graff, J.R. Emerging targets in the AKT pathway for treatment of androgenindependent prostatic adenocarcinoma / J.R. Graff // Expert Opin. Ther. Targets. − 2002. − № 6. − P. 103–113.
- 47. Lindsley, C.W. Allosteric Akt (PKB) inhibitors: discovery and SAR of isozyme selective inhibitors / C.W. Lindsley [et al.] // Med. Chem. Lett. − 2005. − № 15. − P. 761–764.
- 48. Hirai, H. MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs *in vitro* and *in vivo* / H. Hirai [et al.] // Mol. Cancer Ther. − 2010. − № 9. − P. 1956–1967.
- 49. Wu, W.I. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition / W.I. Wu [et al.] // PLoS One. 2010. № 5. P. 1–9.
- 50. Tomita, N. Structure-based discovery of cellular-active allosteric inhibitors of FAK / N. Tomita [et al.] // Bioorg. Med. Chem. Lett. 2013. № 23. P. 1779–1785.
- 51. Schwock, J. Targeting focal adhesion kinase signaling in tumor growth and metastasis / J. Schwock, N. Dhani, D.W. Hedley // Expert Opin. Ther. Targets. 2010. № 14. P. 77–94.
- 52. McLean, G.W. The role of focal-adhesion kinase in cancer: a new therapeutic opportunity / G.W. McLean [et al.] // Nat. Rev. Cancer. − 2005. − № 5. − P. 505–515.

- 53. Roberts, W.G.Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271 / W.G. Roberts [et al.] // Cancer Res. 2008. № 68. P. 1935–1944.
- 54. Sakurama, K. Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor / K. Sakurama [et al.] // Mol. Cancer Ther. 2009. № 8. P. 127–134.
- 55. Liu, Q.S. Developing irreversible inhibitors of the protein kinase cysteinome / Q.S. Liu [et al.] // Chem. Biol. 2013. № 20. P. 146–159.
- 56. Leproult, E. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors / E. Leproult [et al.] // J. Med. Chem. − 2011. − № 54. − P. 1347–1355.
- 57. Potashman, M.H. Covalent modifiers: an orthogonal approach to drug design / M.H. Potashman, M.E. Duggan // J. Med. Chem. 2009. № 52. P. 1231–1246.
- 58. Ono, M. Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs / M. Ono, M. Kuwano // Clin. Cancer Res. − 2006. − № 12. − P. 7242–7251.
- 59. Fry, D.W. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor / D.W. Fry [et al.] // Proc. Natl. Acad. Sci. (USA). − 1998. − № 95. − P. 12022–12027.
- 60. Tsou, H.R. Optimization of 6,7-disubstituted-4-(arylamino)quinoline-3- carbonitriles as orally active, irreversible inhibitors of human epidermal growth factor receptor-2 kinase activity / H.R. Tsou [et al.] // J. Med. Chem. − 2005. − № 48. − P. 1107–1131.
- 61. Li, D. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models / D. Li [et al.] // Oncogene. 2008. № 27. P. 4702–4711.
- 62. Yun, C.H. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP / C.H. Yun [et al.] // Proc. Natl. Acad. Sci. (USA). − 2008. − № 105. − P. 2070–2075.
- 63. Wissner, A. The development of HKI-272 and related compounds for the treatment of cancer

 / A. Wissner, T.S. Mansour // Arch. Pharm. − 2008. − № 341. − P. 465–477.
- 64. Wong, K.K. A phase I study with neratinib (HKI- 272), an irreversible pan ErbB receptor tyrosine kinase inhibitor, in patients with solid tumors /K.K. Wong [et al.] // Clin. Cancer Res. − 2009. − № 15. − P. 2552–2558.
- 65. Derijard, B. Jnk1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain / B. Derijard [et al.] // Cell. − 1994. − № 76. − P. 1025–1037.

- 66. Manning, A.M. Targeting JNK for therapeutic benefit: from junk to gold? / A.M. Manning, R.J. Davis // Nat. Rev. Drug Discov. 2003. № 2. P. 554–565.
- 67. Zhang, T. Discovery of potent and selective covalent inhibitors of JNK / T. Zhang [et al.] // Chem. Biol. 2012. № 19. P. 140–154.
- 68. Deak, M. Mitogen- and stressactivated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/ p38, and may mediate activation of CREB / M. Deak [et al.] // EMBO J. 1998. № 17. P. 4426–4441.
- 69. Miller, R.M. Electrophilic fragment-based design of reversible covalent kinase inhibitors / R.M. Miller [et al.] // J. Am. Chem. Soc. № 135. P. 5298–5301.
- 70. Serafimova, I.M. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles / I.M. Serafimova [et al.] // Nat. Chem. Biol. 2012. № 8. P. 471–476.
- 71. Grosdidier, A. EADock: docking of small molecules intoprotein active sites with a multiobjective evolutionary optimization / A. Grosdidier, V. Zoete, O. Michielin // Proteins. 2007. № 67. P. 1010–1025.
- 72. A geometricapproach to macromolecule-ligand interactions / I.D. Kuntz [et al.] // J. Mol. Biol. 1982. № 161. P. 269–288.
- 73. Theoretical and practical considerations in virtual screening: a beatenfield? / M. Kontoyianni [et al.] // Curr. Med. Chem. 2008. № 15. P. 107–116.
- 74. Sousa, S.F. Protein-ligand docking: current status and future challenges / S.F. Sousa, P.A. Fernandes // Proteins. 2006. № 65. P. 15–26.
- 75. Docking and scoring in virtualscreening for drug discovery: methodsand applications / D.B. Kitchen [et al.] // Nat. Rev. Drug Discov. 2004. № 3. P. 935–949.
- 76. Brooijmans, N. Molecular recognition and docking algorithms / N. Brooijmans, I.D. Kuntz //
 Annu Rev Biophys Biomol Struct. 2003. № 32. P. 335–373.
- 77. Taylor, R.D. A review of protein-small molecule docking methods / R.D. Taylor, P.J. Jewsbury, J.W. Essex // J Comput Aided Mol Des. − 2002. − № 6. − P. 151–166.
- 78. Automated docking using a Lamarckiangenetic algorithm and an empirical bindingfree energy function / G.M. Morris [et al.] // Journal of Computational Chemistry. 1998. № 19. P. 1639–1662.
- 79. A semiempirical free energy force fieldwith charge-based desolvation / R.J. Huey [et al.] // ComputChem. 2007. № 28. P. 1145–1152.
- 80. Development and validation of agenetic algorithm for flexible docking / G. Jones [et al.] // JMol Biol. 1997. № 267. P. 727–748.
- 81. Improved proteinliganddocking using GOLD / M.L. Verdonk [et al.] // Proteins. 2003. № 52. P. 609–623.

- 82. Fast flexible docking method using anincremental construction algorithm / M. Rarey [et al.] // J MolBiol. 1996. № 261. P. 470–489.
- 83. FlexE: efficient moleculardocking considering protein structure variations / H. Claussen [et al.] // J Mol Biol. 2001. № 308. P. 377–395.
- 84. DOCK 4.0: search strategies for automatedmolecular docking of flexible moleculedatabases / T.J. Ewing [et al.] // J Comput Aided Mol Des. 2001. № 15. P. 411–428.
- 85. Abagyan, R. D. ICM-A new method for protein modeling and design: applications to docking and structure prediction from the distorted native conformation / R. Abagyan, M. Totrov, D. Kuznetsov // Journal of Computational Chemistry. − 1994. − № 15. − P. 488–506.
- 86. Cavasotto, C.N. Protein flexibility in ligand docking and virtual screening to protein kinases / C.N. Cavasotto, R.A. Abagyan // J Mol Biol. 2004. № 337. P. 209–225.
- 87. Glide: a newapproach for rapid, accurate docking andscoring. 1. Method and assessment ofdocking accuracy / A.R. Friesner [et al.] // J Med Chem. − 2004. –№ 47. P. 1739–1749.
- 88. Welch, W. Hammerhead: fast, fully automated dockingof flexible ligands to protein bindingsites / W. Welch, J. Ruppert, A.N. Jain // Chem Biol. − 1996. − № 3. − P. 449–462.
- 89. McMartin, C. QXP: powerful, rapid computer algorithms for structurebased drug design / C. McMartin, R.S. Bohacek // J Comput Aided Mol Des. − 1997. − № 11. − P. 333–344.
- 90. Glide: a new approach for rapid, accuratedocking and scoring. 2. Enrichment factors in database screening / T.A. Halgren [et al.] // J Med Chem. 2004. № 47. P. 1750–1759.
- 91. Extra precision glide: docking and scoringincorporating a model of hydrophobicenclosure for protein-ligand complexes / R.A. Friesner [et al.] // JMed Chem. 2006. № 49. P. 6177–6196.
- 92. Thomsen, R. MolDock: a new technique for high-accuracy molecular docking / R. Thomsen, M.H. Christensen // J Med Chem. 2006. № 49. P. 3315–3321.
- 93. Equations of State Calculations by FastComputing Machines / N. Metropolis [et al.] // J Chem Phys. 1953. № 21. P. 1087–1092.
- 94. Muegge, I. A general and fast scoring function for protein-ligand interactions: a simplified potential approach / I. Muegge, Y.C. Martin // J Med Chem. − 1999. − № 42. − P. 791–804.
- 95. Gohlke, H. Knowledge-based scoring function to predictprotein-ligand interactions / H. Gohlke, M. Hendlich, G. Klebe // J Mol Biol. 2000. № 295. P. 337–356.
- 96. Prediction of bindingconstants of protein ligands: a fast methodfor the prioritization of hits obtained fromde novo design or 3D database search programs / M.D. Eldridge [et al.] // J Comput Aided Mol Des. − 1998. − № 12. − P. 309–323.

- 97. Eldridge, M.D. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes / M.D. Eldridge // J Comput Aided Mol Des. − 1997. − № 11. − P. 425–445.
- 98. Zou, X. Inclusion of solvation in ligand binding free energy calculations using the generalized-born model / X. Zou, S. Yaxiong, I.D. Kuntz. // J. Am. Chem. Soc. − 1999. − № 121. − P. 8033–8043.
- 99. Lee, M.S. Novel generalized Born methods / M.S. Lee, F.R. Salsbury, C.L. Brooks // Journal of Chemical Physics. 2002. № 116. P. 10606–10614.
 - 100. New analytic approximation to the standardmolecular volume definition and its application to generalized born calculations / M.S. Lee [et al.] // Journal of Computational Chemistry. -2003. N = 24. P. 1348-1356.
 - 101. Roche, O. Ligandprotein database: linking protein-ligand complex structures to binding data / O. Roche, R. Kiyama, C.L. Brooks // J Med Chem. 2001. № 44. P. 3592–3598.
 - 102. A newtest set for validating predictions of protein-ligand interaction / L.W. Nissink [et al.] // Proteins. 2002. № 49. P. 457–471.
 - 103. Diverse, high-quality testset for the validation of protein-liganddocking performance / M.J. Hartshorn [et al.] // J Med Chem. 2007. № 50. P. 726–741.
 - 104. Binding MOAD (Mother Of AllDatabases) / L. Hu [et al.] // Proteins. 2005. № 60. P. 333–340.
 - 105. Comparing proteinliganddocking programs is difficult. Proteins: Struct Funct Bioinform / J.C. Cole [et al.] //Proteins: Struct Funct Bioinform. 2005. № 60. P. 325–332.
 - 106. Comparative evaluation of eight docking tools for docking and virtualscreening accuracy / E. Kellenberger [et al.] // Proteins. 2004. № 57. P. 225–242.
 - 107. Westhead, D.R. A comparison of heuristic search algorithms for molecular docking / D.R. Westhead, D.E. Clark, C.W. Murray // J Comput Aided Mol Des. 1997. № 11. P. 209–228.
 - 108. Comparative study of several algorithms for flexible ligand docking / B.D. Bursulaya [et al.] // JComput Aided Mol Des. 2003. № 17. P. 755–763.
 - 109. Protein-liganddocking against non-native protein conformers / M.L. Verdonk [et al.] // J Chem Inf Model. 2008.
 - 110. A critical assessment of docking programs and scoring functions / G.L. Warren [et al.] // J Med Chem. -2006. No 49. P. 5912-5931.

- 111. Schulz-Gasch, T. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools / T. Schulz-Gasch, M. Stahl // J Mol Model. – 2003. – № 9. – P. 47–57.
- 112. Wang, R. Comparative evaluation of 11 scoring functions for molecular docking / R. Wang, Y. Lu, S. Wang. // J. Med. Chem. − 2003. − № 46. − P. 2287–2303.
- 113. McInnes, C. Virtual screening strategies in drug discovery / C. McInnes // Curr Opin Chem Biol. 2007. 11. P. 494–502.
- 114. Schneider, G. Trends in virtual combinatorial library design / G. Schneider // Curr Med Chem. − 2002. − № 9. − P. 2095–2101.
- 115. Klebe, G. Virtual ligand screening: strategies, perspectives and limitations / G. Klebe // Drug Discovery Today −2006. № 11. P. 580–594.
- 116. Kurogi, Y. Pharmacophore modeling and three-dimensional database searching for drug design using catalyst / Y. Kurogi, O.F. Güner // Curr Med Chem. − 2001. − № 8. − P. 1035–1055.
- 117. Rarey, M. Feature trees: a new molecular similarity measure based on tree matching / M. Rarey, J.S. Dixon // J. Comput Aided Mol Des. 1998. № 12. P. 471–490.
- 118. Alvarez, J.C. High-throughput docking as a source of novel drug leads / J.C. Alvarez // Curr Opin Chem Biol. 2004. 8. P. 365–370.
- 119. Structurebased virtual screening of chemical libraries for drug discovery / S. Ghosh [et al.] // Curr Opin Chem Biol. 2006. № 10. P. 194–202.
- 120. Discovery of kinase inhibitors by highthroughputdocking and scoring based ona transferable linear interaction energymodel / P. Kolb [et al.] // J. Med. Chem. $-2008. N_{2}51. P. 1179-1188.$
- 121. Sulfonylureas and glinidesexhibit peroxisome proliferator-activated receptor gamma activity: a combined virtual screening and biological assay approach / M. Scarsi [et al.] // Mol Pharmacol. − 2007. − № 71. − P. 398–406.
- 122. Virtual screening for inhibitors ofhuman aldose reductase / O. Kraemer [et al.] // Proteins. 2004. № 55. P. 814–823.
- 123. Structure-based drug design and structural biology study of novel nonpeptideinhibitors of severe acute respiratory syndrome coronavirus main protease / I.L. Lu [et al.] // J. Med. Chem. -2006. $-N_{2}$ 49. -P. 5154–5161.
- 124. Discovery of a nanomolar inhibitor of thehuman murine double minute 2 (MDM2)-p53 interaction through an integrated, virtualdatabase screening strategy / Y. Lu [et al.] // J. Med. Chem. − 2006. − № 49. − P. 3759–3762.

- 125. Lahana, R. How many leads from HTS? / R. Lahana // Drug Discov Today. −1999. − № 4. − P. 447–448.
- 126. Fragment-based lead discovery: leadsby design / R.A. Carr [et al.] // Drug Discov Today. − 2005. − № 10. − P. 987–992.
- 127. Erlanson, D.A. Fragment-based approches in drug discovery / D.A. Erlanson, W. Jahnke // Wiley-VCH. (Germany). 2006.
- 128. Schneider, G. Computer-basedde novo design of drug-like molecules / G. Schneider, U. Fechner // Nat Rev Drug Discov. 2005. № 4. P. 649–663.
- 129. Recent developments infragment-based drug discovery / M. Congreve [et al.] // J. Med.Chem. 2008. № 51. P. 3661–3680.
- 130. Bohacek, R.S. The art and practice of structure-based drug design: a molecular modeling perspective / R.S. Bohacek, C. McMartin, W.C. Guida // Med. Res. Rev. 1996. № 16. P. 3–50.
- 131. Dobson, C.M. Chemical space and biology / C.M. Dobson // Nature. 2004. № 432. P. 824–828.
- 132. Lipinski, C. Navigating chemical space for biology and medicine / C. Lipinski, A. Hopkins // Nature. 2004. № 432. P. 855–861.
- 133. Walters, W.P. Virtual screening an overview / W.P. Walters, M.T. Stahl, M.A. Murcko // DrugDiscov Today. 1998. № 3. P. 160–178.
- 134. Hann, M.M. Pursuing the leadlikeness concept in pharmaceutical research / M.M. Hann, T.I. Oprea // Curr Opin Chem Biol. 2004. № 8. P. 255–263.
- 135. Fink, T. Virtual exploration of the small-molecule chemical universe below 160 Daltons / T. Fink, H. Bruggesser, J.L. Reymond // Angew Chem Int Ed Engl. − 2005. − № 44. − P. 1504–1508.
- 136. Hann, M.M. Molecular complexity and its impact on the probability of finding leads for drug discovery / M.M. Hann, A.R. Leach, G. Harper // J. Chem. Inf. Comput. Sci. − 2001. − № 41. − P. 856–864.
- 137. Murray, C.W. Fragment-based approaches in drug discovery / C.W. Murray, M.L. Verdonk // Wiley-VCH. (Germany). 2006.
- 138. A 'rule of three' for fragment-based lead discovery? / M. Congreve [et al.] // Drug Discov Today. 2003. № 8. P. 876–877.
- 139. Bemis, G.W. The properties of known drugs. 1. Molecular frameworks / G.W. Bemis, M.A. Murcko // J. Med. Chem. 1996. № 39. P. 2887–2893.
- 140. Bemis, G.W. Properties of known drugs. 2. Side chains / G.W. Bemis, M.A. Murcko // J. Med. Chem. 1999. № 42. P. 5095–5099.

- 141. Mauser, H. Chemical fragment spaces for de novo design / H. Mauser, M.J. Stahl // Chem. Inf. Model. 2007. № 47. P. 318–324.
- 142. Characteristic physical properties and structural fragments of marketedoral drugs / M. Vieth [et al.] // J. Med. Chem. -2004. N $_{2}$ 47. P. 224-232.
- 143. Kolb, P. Automatic and efficient decomposition of two-dimensional structures of small molecules for fragment-based high-throughput docking / P. Kolb, A. Caflisch // J. Med. Chem. 2006. № 49. P. 7384–7392.
- 144. Böhm, H.J. The computer program LUDI: a new method for the de novo design of enzyme inhibitors / H.J. Böhm // J. Comput Aided Mol. Des. − 1992. − № 6. − P. 61–78.
- 145. Miranker, A. Functionality maps of binding sites: a multiple copy simultaneous search method / A. Miranker, M. Karplus // Proteins. − 1991. − № 11. − P. 29–34.
- 146. HOOK: a program for finding novelmolecular architectures that satisfy thechemical and steric requirements of amacromolecule binding site / M.B. Eisen [et al.] // Proteins.— $1994. N_{\odot} 19. P. 199-221.$
- 147. PRO-LIGAND: an approachto de novo molecular design. 1.Application to the design of organic molecules / D.E. Clark [et al.] // J. Comput Aided Mol. Des. 1995. № 9. P. 13–32.
- 148. Wang, R. LigBuilder: A multipurpose program for structure-based drug design / R. Wang, Y. Gao, L. Lai // J. Mol. Model. −2000. − № 6. −P. 498–516.
- 149. Caflisch, A. Computational combinatorial ligand design: application to human alphathrombin / A. Caflisch // J. Comput Aided Mol. Des. − 1996. − № 10. − P. 372–396.
- 150. Dey, F. Fragment-based de novo ligand design by multiobjective evolutionary optimization / F. Dey, A. Caflisch // J. Chem. Inf. Model. 2008. № 48. P. 679–690.
- 151. LEA3D: a computer-aided liganddesign for structure-based drugdesign / D. Douguet [et al.] // J. Med. Chem. -2005. No. 48. P. 2457–2468.
- 152. Efficient electrostatic solvation model for proteinfragment docking / N. Majeux [et al.] // Prot-Struct Funct Genet. 2001. № 42. P. 256–268.
- 153. Benzodioxoles: novelcannabinoid-1 receptor inverse agonists for the treatment of obesity / L. Alig // J. Med. Chem. 2008. № 51. P. 2115–2127.
- 154. Generation and selection of novelestrogen receptor ligands using the de novostructure-based design tool, SkelGen / S. Firth-Clark [et al.] // J.Chem. Inf. Model. 2006. № 46. P. 642–647.
- 155. Computer-aided design of non-nucleoside inhibitors of HIV-1 reverse transcriptase / W.L. Jorgensen [et al.] // Bioorg. Med. Chem. Lett. − 2006. − № 16. − P. 663–667.

- 156. Pierce, A.C. BREED: Generating novel inhibitors through hybridization of known ligands. Application to CDK2, p38, and HIV protease / A.C. Pierce, G. Rao, G.W. Bemis // J. Med. Chem. 2004. № 47. P. 2768–2775.
- 157. Synopsis: synthesizeand optimize system in silico / H.M. Vinkers [et al.] // J. Med.Chem. 2003. № 46. P. 2765–2773.
- 158. Structurebasedgeneration of a new class of potentCdk4 inhibitors: new de novo design strategyand library design / T. Honma [et al.] // J. Med. Chem. 2001. № 44. P. 4615–4627.
- 159. Böhm, H.J. Combinatorial docking and combinatorialchemistry: design of potent non-peptidethrombin inhibitors / H.J. Böhm, D.W. Banner, L. Weber // J. Comput. Aided Mo.lDes. −1999. − № 13. − P. 51–56.
- 160. RECAP-retrosynthetic combinatorialanalysis procedure: a powerful new techniquefor identifying privileged molecularfragments with useful applications in combinatorialchemistry / X.Q. Lewell [et al.] // J. Chem. Inf. ComputSci. −1998. − № 38. − P. 511–522.
- 161. Gillet, V. SPROUT, HIPPO and CAESA: Tools for denovo structure generation and estimation of synthetic accessibility / V. Gillet, G. Myatt, Z. // Perspect. DrugDiscov. Design. 1995. № 3. P. 34–50.
- 162. Boda, K. Structure and reaction based evaluation of synthetic accessibility / T. Boda, T. Seidel, J. Gasteiger // J. Comput Aided Mol. Des. 2007. № 21. P. 311–325.
- 163. Green, N.M. Avidin / N.M. Green // Adv. Protein Chem. 1975. № 29. P. 85–133.

приложение а

Таблица A.1 –EGFRwt (1) (PDB: 3W32)

Код соединения	№	Структура	Glidegsc ore	Glideemod el	Dockings core	XPgscore	MMGBSAdG Bind	Ключевые взаимодействия
1	2	3	4	5	6	7	8	9
KN1	1	O NH NH	-13.735	-98.711	-13.732	-13.735	-56.471	МЕТ793 (водородная) РНЕ856 (π - π , водородная)
KN2	2	H N O N OH	-13.409	-96.297	-13.409	-13.409	-65.098	МЕТ793 (водородная) ТНR854 (водородная) ASP855 (водородная)
KN3	3	O O N N N N N N N N N N N N N N N N N N	-13.203	-84.430	-13.202	-13.202	-45.192	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π - π , водородная)
KN4	4	O N N N N O F	-13.172	-91.825	-13.171	-13.172	-52.179	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN5	5	$\begin{array}{c c} F & O & O \\ \hline & N & N \\ \hline & H & N \\ \hline & N & N \\ \hline & H \end{array}$	-13.001	-102.269	-13.001	-13.001	-63.446	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π, водородная)

1	2	3	4	5	6	7	8	9
KN6	6	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	-12.939	-82.744	-12.939	-12.939	-44.258	МЕТ793 (водородная) ТНR854 (водородная) ASP855 (водородная)
KN7	7	HN N O N F	-12.895	-76.036	-12.895	-12.895	-56.229	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN8	8	$\begin{array}{c c} & O \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	-12.807	-90.270	-12.807	-12.807	-55.592	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN9	9	O N N N N N N N N N N N N N N N N N N N	-12.828	-81.989	-12.805	-12.805	-59.868	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π, водородная)

1	2	3	4	5	6	7	8	9
KN10	10	HN CI ON NH	-12.805	-94.742	-12.805	-12.805	-67.310	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN11	11	N O N N N N N N N N N N N N N N N N N N	-12.755	-94.301	-12.751	-12.755	-66.172	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π, водородная)
KN12	12	N O NH N H H	-12.733	-94.465	-12.799	-12.733	-62.312	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π, водородная)
KN13	13	O N H N N N N N N N N N N N N N N N N N	-12.754	-73.828	-12.732	-12.754	-58.133	МЕТ793 (водородная) ТНR854 (водородная)
KN14	14	N+ N N N N N N N N N N N N N N N N N N	-12.760	-86.185	-12.711	-12.760	-47.837	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN15	15	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	-12.700	-88.159	-12.700	-12.700	-54.794	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN16	16	O + NH NH NH	-12.706	-86.690	-12.688	-12.706	-63.576	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN17	17	HN O N N	-12.666	-94.771	-12.716	-12.666	-60.797	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π - π , водородная)
KN18	18	O N N O O	-12.634	-108.741	-12.634	-12.634	-63.853	МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)
KN19	19	OH ON HN O	-12.601	-92.979	-12.601	-12.601	-58.839	МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN20	20	O O O O N NH	-12.574	-83.550	-12.574	-12.574	-61.957	МЕТ793 (водородная) ASP855 (водородная)
KN21	21	HN H N NH	-12.870	-95.813	-12.526	-12.870	-65.361	ASP855 (водородная) МЕТ793 (водородная) GLN791(водородная) РНЕ856 (π-π, водородная)
KN22	22	HN-N O NH NH NH	-12.524	-105.130	-12.524	-12.524	-61.207	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN23	23	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	-12.454	-87.087	-12.454	-12.454	-53.055	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN24	24	H N O O N H H N H	-12.446	-60.717	-12.446	-12.446	-55.001	THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN25	25	O O NH	-12.445	-64.442	-12.445	-12.445	-44.780	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN26	26	$\begin{array}{c c} Cl & H & O \\ \hline \\ N & N & H \\ \hline \\ N & M \\ \end{array}$	-12.444	-91.872	-12.444	-12.444	-53.148	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN27	27	$\begin{array}{c c} Cl & H & O \\ N & H & N \\ N & H \end{array}$	-12.444	-81.356	-12.444	-12.444	-49.673	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN28	28	HO,, O H N N N H	-12.457	-77.289	-12.435	-12.457	-61.988	СҮS775 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-катионная)
KN29	29	H N O O O	-12.435	-81.934	-12.434	-12.435	-40.854	ASP855 (водородная) MET793 (водородная) THR854 (водородная)
KN30	30	NH ON NH	-12.419	-79.813	-12.431	-12.431	-47.999	ASP855 (водородная) PHE856 (π-π, водородная)

1	2	3	4	5	6	7	8	9
KN31	31	OH H ₂ N N N N N N N N N N N N N N N N N N N	-12.411	-99.101	-12.477	-12.411	-67.446	СҮЅ775 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (водородная)
KN32	32	H N O O	-12.409	-84.910	-12.409	-12.409	-53.397	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN33	33	HN O F F N H H H	-12.399	-90.132	-12.403	-12.399	-74.998	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN34	34	ON NO N	-12.390	-84.414	-12.390	-12.390	-56.333	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN35	35	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-12.374	-80.730	-12.374	-12.374	-34.389	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN37	37	N N N N N N N N N N N N N N N N N N N	-12.352	-101.265	-12.357	-12.352	-68.503	МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (π-π, водородная)
KN38	38	H O O N N N N N N N N N N N N N N N N N	-12.369	-80.248	-12.349	-12.369	-57.017	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN39	39	OH N N N N N N N N N N N N N N N N N N N	-12.343	-105.691	-12.343	-12.343	-60.275	ASN842 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN40	40		-12.336	-95.318	-12.336	-12.336	-56.454	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN41	41	$N = \bigvee_{\substack{H_2N + \\ N \\ H}} \bigvee_{\substack{N \\ H}} \bigvee_{\substack{N \\ H}}$	-12.333	-89.317	-12.362	-12.333	-60.218	ASN842 (водородная) ASP855 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (π-π, водородная)

1	2	3	4	5	6	7	8	9
KN42	42	O T T N H T N H	-12.336	-84.331	-12.323	-12.336	-55.857	МЕТ793 (водородная) ТНR854 (водородная)
KN43	43	H N-O N-O N	-12.317	-89.369	-12.319	-12.317	-60.623	МЕТ793 (водородная) РНЕ856 (π - π , водородная)
KN44	44	HN O O NH	-12.319	-95.033	-12.317	-12.319	-59.319	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN45	45	N N N O N N N N N N N N N N N N N N N N	-12.316	-97.468	-12.367	-12.316	-65.272	МЕТ793 (водородная) РНЕ856 (π-π, водородная)

1	2	3	4	5	6	7	8	9
KN46	46	H N N N N F	-12.315	-78.559	-12.314	-12.315	-55.781	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN47	47	O N N H OH	-12.292	-81.023	-12.291	-12.292	-55.851	МЕТ793 (водородная) ТНR854 (водородная)
KN48	48	N= HN O=S=O NH	-12.277	-83.372	-12.277	-12.277	-56.227	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN49	49	O HN ⁺ N H	-12.275	-82.695	-12.248	-12.275	-60.556	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN50	50	O N H N H	-12.485	-84.556	-12.246	-12.485	-58.892	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-катионная)
KN51	51	O NH H ₂ N H	-12.245	-68.570	-12.250	-12.245	-59.042	СҮЅ775 (водородная) GLN791 (водородная) MЕТ793 (водородная) THR854 (водородная)
KN52	52	O O NH	-12.240	-79.774	-12.239	-12.240	-64.880	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN53	53	HO NH NH	-12.238	-81.617	-12.238	-12.238	-53.093	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (водородная)
KN54	54	O O O N N N N N N N N N N N N N N N N N	-12.234	-85.423	-12.233	-12.234	-46.484	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN55	55	N O NH	-12.222	-101.965	-12.222	-12.222	-69.157	ASP855(водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)

1	2	3	4	5	6	7	8	9
KN56	56	O H N F	-12.221	-83.823	-12.221	-12.221	-39.067	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN57	57	HO NH NH	-12.294	-88.602	-12.204	-12.294	-60.678	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π - π , водородная)
KN58	58	OH O NH	-12.194	-97.326	-12.194	-12.194	-44.484	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π - π , водородная)
KN59	59	HN O N H	-12.190	-87.187	-12.189	-12.190	-66.374	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN60	60	H_2N N N N N N N N N N	-12.187	-64.602	-12.186	-12.187	-34.668	МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)
KN61	61	HO NH, NH	-12.184	-74.900	-12.184	-12.184	-63.352	МЕТ793 (водородная) THR854 (водородная) PHE856 (π -катионная, водородная)

1	2	3	4	5	6	7	8	9
KN62	62	O NH N S NH	-12.179	-77.081	-12.179	-12.179	-58.092	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN63	63	$\begin{array}{c c} F & O \\ \hline \\ O & H \\ \hline \\ O & H \\ \end{array}$	-12.173	-86.375	-12.172	-12.173	-52.326	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN64	64	HO O NH NH H H	-12.154	-89.062	-12.157	-12.154	-63.584	МЕТ793 (водородная) LEU788(водородная) THR854 (водородная) PHE856 (π-π)
KN65	65	CI F HN OH	-12.140	-80.122	-12.141	-12.140	-67.406	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN66	66	O NH HÖ H	-12.130	-70.003	-12.129	-12.130	-65.535	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN67	67	HN O HN + E	-12.200	-81.436	-12.122	-12.200	-60.849	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π) PRO794 (водородная)
KN68	68	H N N O N N N N N N N N N N N N N N N N	-12.119	-69.276	-12.119	-12.119	-54.386	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN69	69	$\begin{array}{c c} & & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	-12.115	-77.665	-12.115	-12.115	-47.320	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN70	70	$\bigcap_{N \in \mathbb{N}} \bigcap_{H \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} F$	-12.109	-92.557	-12.109	-12.109	-57.643	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN71	71	H N O	-12.101	-84.098	-12.100	-12.101	-52.252	МЕТ793 (водородная) ТНR854 (водородная)
KN72	72	H ₂ OH +N O	-12.097	-95.612	-12.087	-12.097	-72.796	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN73	73		-12.087	-77.085	-12.087	-12.087	-53.340	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN74	74	HO NH CI NH	-12.087	-80.180	-12.087	-12.087	-69.651	GLN791 (водородная) МЕТ793 (водородная) LEU788 (водородная) ТНR790 (водородная) РНЕ856 (<i>п</i> - <i>п</i>)
KN75	75	F E O NH	-12.085	-74.235	-12.086	-12.085	-66.366	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)

1	2	3	4	5	6	7	8	9
KN76	76		-12.064	-82.634	-12.063	-12.064	-53.760	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN77	77	HN O N N F	-12.057	-82.485	-12.057	-12.057	-62.319	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN78	78	N O O N HN N	-12.048	-106.878	-12.050	-12.048	-66.952	МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN79	79	S N N NH	-12.038	-89.267	-12.036	-12.038	-52.088	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN80	80	O NH ONH	-12.028	-81.202	-12.027	-12.028	-44.448	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN81	81	$\bigvee_{O} \bigvee_{H} \bigvee_{N} \bigvee_{N$	-12.026	-76.525	-12.026	-12.026	-40.949	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN82	82	F N NH NH NH	-12.023	-77.326	-12.023	-12.023	-62.329	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN83	83	HO NH	-12.017	-80.138	-12.017	-12.017	-70.312	МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN84	84	HN O N OH CI	-12.016	-92.526	-12.015	-12.016	-68.334	МЕТ793 (водородная) РНЕ856 (π-π)
KN85	85	O=S=O NH	-12.010	-76.660	-12.010	-12.010	-64.383	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN86	86	O NH NH NH	-12.000	-87.009	-12.003	-12.000	-64.571	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN87	87	O THE STATE OF THE	-12.042	-84.414	-11.997	-12.042	-50.435	МЕТ793 (водородная) ТНR854 (водородная)
KN88	88	O N N N N N N N N	-11.995	-88.224	-11.994	-11.995	-49.304	МЕТ793 (водородная) ТНR854 (водородная)
KN89	89	HN O OH OH	-12.022	-71.937	-11.988	-12.022	-46.312	МЕТ793 (водородная) РНЕ856 (водородная)
KN90	90	O O O N N N N N N N N N N N N N N N N N	-11.983	-88.489	-11.983	-11.983	-49.604	МЕТ793 (водородная) ТНR854 (водородная)
KN91	91	O N N H	-11.972	-78.772	-11.972	-11.972	-60.347	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN92	92	ON N N N N N N N N N N N N N N N N N N	-11.967	-85.261	-11.969	-11.967	-55.744	МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN93	93	NH N N	-11.966	-85.507	-11.951	-11.966	-66.438	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (водородная)
KN94	94	S N O N N N N N N N N N N N N N N N N N	-11.949	-87.268	-11.949	-11.949	-54.676	МЕТ793 (водородная) ТНR854 (водородная)
KN95	95	H N O N T N T N T N T N T N T N T N T N T	-11.940	-58.377	-11.940	-11.940	-57.764	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-катионная)

1	2	3	4	5	6	7	8	9
KN96	96	HN H	-11.939	-75.678	-11.939	-11.939	-58.591	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-катионная)
KN97	97	HN O	-11.919	-80.869	-11.919	-11.919	-54.974	МЕТ793 (водородная) THR854 (водородная)
KN98	98	F—NON NON NON NON NON NON NON NON NON NON	-11.919	-76.289	-11.919	-11.919	-54.223	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN99	99	O O N NH	-11.917	-72.317	-11.917	-11.917	-39.655	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN100	100	F F F F F F F F F F F F F F F F F F F	-11.917	-82.759	-11.917	-11.917	-68.025	GLN791 (водородная) МЕТ793 (водородная) THR854 (водородная)
KN101	101	F O NH NH O	-11.916	-84.644	-11.916	-11.916	-66.620	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN102	102	HO NH	-11.916	-81.355	-11.915	-11.916	-66.317	GLN791 (водородная) THR854 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN103	103	F O H N N	-11.915	-67.165	-11.916	-11.915	-58.487	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN104	104	O NH NH	-11.909	-75.048	-11.909	-11.909	-59.315	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN105	105	HN OH	-11.900	-67.413	-11.899	-11.900	-64.769	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN106	106	HO NH	-11.888	-75.938	-11.887	-11.888	-64.718	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN107	107	OH ON NH	-11.884	-70.123	-11.884	-11.884	-33.278	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN108	108	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.883	-80.578	-11.883	-11.883	-49.160	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (водородная)
KN109	109	N O N O O O O O O O O O O O O O O O O O	-11.878	-89.680	-11.875	-11.878	-62.001	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π, водородная)
KN110	110	HO NH	-11.873	-80.339	-11.883	-11.873	-56.663	GLN791 (водородная) МЕТ793 (водородная) LEU788 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN111	111	O N N O N N N N N N N N N N N N N N N N	-11.870	-80.746	-11.870	-11.870	-51.525	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN112	112	$\begin{array}{c c} O & O \\ \hline N & N \\ H & O \end{array}$	-11.868	-88.362	-11.868	-11.868	-49.521	МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)
KN113	113	F O NH NH O NH	-11.863	-82.298	-11.863	-11.863	-61.322	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN114	114	HN N O NH F	-11.860	-78.228	-11.859	-11.860	-62.951	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN115	115	HO S O N NH	-11.858	-97.420	-11.858	-11.858	-70.329	ASP855 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)

1	2	3	4	5	6	7	8	9
KN116	116	H N O O O O O O O O O O O O O O O O O O	-11.858	-80.296	-11.858	-11.858	-62.681	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN117	117	O NH HN	-11.851	-83.218	-11.850	-11.851	-51.432	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN118	118	O O NH	-11.847	-76.980	-11.847	-11.847	-40.946	МЕТ793 (водородная) ТНR854 (водородная)
KN119	119	HO NH H H	-11.842	-93.238	-11.845	-11.842	-56.490	GLN791 (водородная) THR854 (водородная) PHE856 (π - π , водородная)

1	2	3	4	5	6	7	8	9
KN120	120	ON NH NH ON NH	-11.838	-84.542	-11.838	-11.838	-65.977	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN121	121		-11.820	-79.005	-11.820	-11.820	-58.912	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN122	122	NH O=S=O NH	-11.806	-77.082	-11.806	-11.806	-61.914	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN123	123	Cl O NH	-11.808	-84.828	-11.806	-11.806	-62.049	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN124	124	HO NH NH	-11.803	-85.615	-11.803	-11.803	-62.461	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)

1	2	3	4	5	6	7	8	9
KN125	125	O NH NH	-11.815	-78.084	-11.801	-11.815	-52.573	МЕТ793 (водородная) THR854 (водородная)
KN126	126	$\bigcup_{O} \bigcup_{H} \bigcup_{N} \bigcup_{N} \bigcup_{H} \bigcup_{N} \bigcup_{N} \bigcup_{H} \bigcup_{N} \bigcup_{N$	-11.798	-85.474	-11.978	-11.978	-55.493	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN127	127	HN O H O OH	-11.795	-94.545	-11.795	-11.795	-71.751	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная) РНЕ856 (<i>п</i> - <i>п</i>)
KN128	128	O O NH	-11.795	-74.952	-11.794	-11.795	-64.991	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN129	129	F O NH NH	-11.796	-86.746	-11.793	-11.796	-57.593	GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN130	130	HO NH NH	-11.786	-92.450	-11.786	-11.786	-69.620	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (водородная)
KN131	131	HO NH	-11.786	-76.292	-11.783	-11.786	-56.585	МЕТ793 (водородная) РНЕ856 (водородная)
KN132	132	O NH HO N S O	-11.774	-79.936	-11.774	-11.774	-64.094	GLN791 (водородная) МЕТ793 (водородная) LEU788 (водородная) THR854 (водородная) PHE856 (π-π)
KN133	133	N NH NH	-11.795	-61.298	-11.774	-11.795	-47.894	GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN134	134	H O OH	-11.773	-80.429	-11.772	-11.773	-64.241	ASP855(водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN135	135	N O N H	-11.773	-92.163	-11.769	-11.773	-60.973	ASP855(водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN136	136	O O O O O O O O O O O O O O O O O O O	-11.769	-81.614	-11.769	-11.769	-52.751	МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)
KN137	137	HO O NH	-11.761	-83.858	-11.758	-11.758	-69.488	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (водородная)
KN138	138	$F \xrightarrow{H} O \xrightarrow{N} H$	-11.757	-73.540	-11.757	-11.757	-40.869	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN139	139	HN N O NH NH	-11.755	-95.759	-11.752	-11.755	-61.127	ASP855(водородная) МЕТ793 (водородная) РНЕ856 (π-π)

Таблица A.2–EGFRwt (2) (PDB: 3W33)

Код соединения	№	Структура	Glide gscore	Glide emodel	Docking score	XP gscore	MMGBSA dG Bind	Ключевые взаимодействия
1	2	3	4	5	6	7	8	9
KN141	1	HN O H O	-13.584	-86.658	-13.584	-13.584	-46.396	МЕТ793 (водородная) ТНR854 (водородная)
KN33	2	HN O F F N H H F	-13.212	-86.114	-13.215	-13.212	-60.276	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN142	3	HO N H	-13.001	-92.278	-13.001	-13.001	-64.975	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN143	4	O OH N N N N N H	-12.915	-92.42	-13.001	-12.915	-57.947	ASP855 (водородная, солевой мостик) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN15	5	$\bigcup_{O} \bigcup_{H} \bigcup_{N} \bigcup_{N} \bigcup_{N} \bigcup_{N} \bigcup_{H} \bigcup_{N} \bigcup_{N$	-12.818	-90.386	-12.818	-12.818	-56.528	МЕТ793 (водородная) ТНR854 (водородная)
KN22	6	HN-N O N H	-12.815	-105.602	-12.818	-12.818	-66.150	МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN144	7	O O O O O O O O O O O O O O O O O O O	-12.790	-98.567	-12.789	-12.790	-56.676	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN3	8	O O NH	-12.710	-89.624	-12.710	-12.710	-59.452	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN145	9	HN O O O O O O O O O O O O O O O O O O O	-12.697	-81.353	-12.697	-12.697	-54.830	МЕТ793 (водородная) ТНR854 (водородная)
KN7	10	H N O N F	-12.663	-69.525	-12.662	-12.663	-64.868	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN146	11	$ \begin{array}{c c} & O \\ & N \\ & H \end{array} $	-12.578	-77.841	-12.578	-12.578	-62.262	МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN147	12	O N H	-12.558	-90.609	-12.558	-12.558	-64.595	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN148	13	HN O N CI	-12.488	-76.173	-12.488	-12.488	-60.440	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN49	14	O HN ⁺ N H	-12.512	-77.423	-12.485	-12.512	-67.146	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN48	15	N HN O=S=O NH	-12.457	-79.810	-12.457	-12.457	-49.879	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN59	16	HN O N H	-12.430	-77.671	-12.428	-12.430	-54.444	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN149	17	O H O F N N N N N N N N N N N N N N N N N N	-12.413	-81.402	-12.413	-12.413	-50.145	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN150	18	CI NH NH NH NH O	-12.404	-73.044	-12.404	-12.404	-60.910	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN151	19		-12.392	-90.719	-12.392	-12.392	-59.822	МЕТ793 (водородная) ТНR854 (водородная)
KN152	20	HN O TO O TO O	-12.376	-89.990	-12.379	-12.376	-60.053	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN153	21	N H N N N N N N H	-12.424	-77.148	-12.375	-12.424	-54.657	МЕТ793 (водородная) ТНR854 (водородная)
KN154	22	O OH N NH	-12.369	-85.937	-12.369	-12.369	-59.524	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN155	23	HO O NH NH NH NH	-12.353	-86.450	-12.357	-86.450	-54.423	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN156	24	NH ₂ OSSSO NH N N N N N N N N N N N N	-12.347	-71.246	-12.388	-12.347	-51.073	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN157	25	$Cl \longrightarrow \begin{matrix} O \\ H \\ N \\ O \end{matrix} \qquad \begin{matrix} NH \\ N \\ O \end{matrix}$	-12.346	-89.130	-12.346	-12.346	-59.345	МЕТ793 (водородная) ТНR854 (водородная)
KN158	26	HO OH NH	-12.346	-85.648	-12.344	-12.346	-54.777	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN159	27	Br HN O NH N	-12.344	-78.569	-12.342	-12.344	-58.730	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN160	28	O NH	-12.344	-75.209	-12.333	-12.344	-41.965	ASP855 (водородная) GLN791 (водородная) THR854 (водородная) PHE856 (π-π)
KN161	29	HZ Z O Z	-12.329	-81.313	-12.329	-12.329	-62.015	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)THR854 (водородная) PHE856 (π-π)
KN162	30	O NH NO NH	-12.327	-82.994	-12.327	-12.327	-67.911	GLN791 (водородная) THR854 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN163	31	HO N N N N N N N N N N N N N N N N N N N	-12.280	-63.955	-12.280	-12.280	-47.559	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN164	32	O H ₂ N	-12.250	-86.947	-12.248	-12.250	-65.191	СҮЅ775 (водородная) GLN791 (водородная) MЕТ793 (водородная) LYЅ745 (π-катионная)
KN165	33	N N N N N N N N N N N N N N N N N N N	-12.245	-78.599	-12.243	-12.245	-66.064	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN166	34	O H O H O H	-12.238	-93.056	-12.238	-12.238	-57.452	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN167	35	F F N O N N H	-12.217	-77.298	-12.219	-12.217	-59.266	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)ТНR854 (водородная) РНЕ856 (π-π)
KN168	36	O N H O	-12.185	-74.925	-12.185	-12.185	-63.288	МЕТ793 (водородная) ТНR854 (водородная)
KN169	37	O N H	-12.181	-82.602	-12.181	-12.181	-61.392	АLA743(водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN170	38	N NH N N N N N N N N N N N N N N N N N	-12.174	-93.816	-12.218	-12.174	-49.146	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN171	39	HN O F CI	-12.168	-80.015	-12.168	-12.168	-60.143	GLN791 (водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN172	40	CI N O NH NH3	-12.168	-74.027	-12.222	-12.168	-52.589	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π - π)
KN57	41	HN O-N OH	-12.257	-85.696	-12.167	-12.257	-61.698	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)ТНR854 (водородная)СYS775 (водородная)
KN173	42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-12.156	-91.139	-12.156	-12.156	-64.432	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN174	43	HN O N H	-12.153	-71.300	-12.152	-12.153	-52.287	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN175	44	O N N N N N N N N N N N N N N N N N N N	-12.152	-75.725	-12.151	-12.152	-61.920	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN176	45	O O NH NH	-12.144	-75.937	-12.142	-12.144	-54.578	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN177	46	O N NH	-12.140	-84.432	-12.140	-12.140	-62.458	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)THR854 (водородная)
KN68	47	H N N NH	-12.126	-68771	-12.126	-12.126	-61.907	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN178	48	HN O N F F	-12.121	-80.625	-12.119	-12.121	-58.720	GLN791 (водородная) THR854 (водородная) PHE856 (π-π)
KN71	49	H N O O	-12.116	-73.792	-12.116	-12.116	-58.787	МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN66	50	HN OH	-12.108	-69517	-12.107	-12.108	-45.906	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-π)
KN179	51	$\bigcup_{i=1}^{O} \bigvee_{i=1}^{N} \bigvee_{i=1}^{H} \bigvee_{i=1}^{N} \bigvee_{i$	-12.103	-77.948	-12.103	-12.103	-62.944	МЕТ793 (водородная) ТНR854 (водородная)
KN180	52	HN H O N	-12.100	-91.643	-12.100	-12.100	-62.636	МЕТ793 (водородная) ТНR854 (водородная)
KN181	53	CI NH	-12.091	-76.905	-12.111	-12.091	-51.042	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN182	54	H N O O N I N I N I N I N I N I N I N I N	-12.069	-59.327	-12.069	-12.069	-72.154	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-катионная)

1	2	3	4	5	6	7	8	9
KN183	55	Cl O NH	-12.053	-87.408	-12.055	-12.053	-58.925	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN184	56	$\bigcup_{N \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcup_{$	-12.050	-91.028	-12.050	-12.050	-58.717	МЕТ793 (водородная) ТНR854 (водородная)
KN185	57	$\bigcap_{N \in \mathbb{N}} \bigcap_{H} \bigcap_{O} \bigcap_{N \in \mathbb{N}} \bigcap_{H \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} \bigcap_{M \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} \bigcap_{M \in \mathbb{N}} \bigcap_{M$	-12.045	-94.175	-12.045	-12.045	-49.015	МЕТ793 (водородная) РНЕ856 (π-π)
KN186	58	O N H OH	-12.039	-74.725	-12.039	-12.039	-61.782	МЕТ793 (водородная) LEU788 (водородная)
KN54	59	$\bigcup_{O}^{H}\bigcup_{H}^{O}\bigcup_{N}\bigcup_{N}^{N}\bigcup_{H}^{N}$	-12.038	-83.673	-12.038	-12.038	-55.624	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN187	60	N NH NH	-12.036	-78.695	-12.036	-12.036	-59.917	GLN791 (водородная) МЕТ793 (водородная) LYS745 (<i>π</i> -катионная)THR854 (водородная) PHE856 (<i>π</i> - <i>π</i>)

1	2	3	4	5	6	7	8	9
KN188	61	O F S NH N N N O N O	-12.024	-88.114	-12.034	-12.024	-61.082	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN189	62	N O N N N N N N N N N N N N N N N N N N	-12.006	-86.738	-12.006	-86.738	-63.853	МЕТ793 (водородная) ТНR854 (водородная)
KN190	63	O NH NH	-12.007	-87.485	-12.004	-12.007	-59.298	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (водородная)
KN191	64	F O NH	-12.000	-71.445	-11.999	-12.000	-48.562	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (<i>π</i> - <i>π</i>)
KN192	65	HN O N	-11.997	-79.107	-11.997	-11.997	-51.495	МЕТ793 (водородная) ТНR854 (водородная)
KN193	66	O H N N	-11.992	-80.519	-12.045	-11.992	-58.069	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN194	67	$ \begin{array}{c} & H_2 \\ & N \\$	-12.004	-81.762	-11.991	-12.004	-52.775	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная, - катионная)
KN195	68	$\bigcap_{N^+}^H \bigcap_{N^-}^N \bigcap_{H^-}^N$	-11.996	-83.220	-11.967	-11.996	-68.281	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-катионная)
KN196	69	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.941	-85.807	-11.940	-11.941	-62.725	МЕТ793 (водородная)
KN197	70	HN O F	-11.937	-76.441	-11.937	-11.937	-55.015	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN198	71	HN O N N N N N N N N N N N N N N N N N N	-11.938	-61.542	-11.937	-11.938	-42.606	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN199	72	HN O O O O O O O O O O O O O O O O O O O	-11.937	-88.659	-11.940	-11.937	-59.875	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN200	73	N N N N N N N N N N N N N N N N N N N	-11.915	-59.459	-11.914	-11.915	-52.183	МЕТ793 (водородная) ТНR854 (водородная)
KN201	74	O NH NH	-11.907	-65.902	-11.906	-11.907	-52.496	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN202	75		-11.906	-101.598	-11.906	-11.906	-64.258	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN203	76	HNO	-11.898	-74.551	-11.898	-11.898	-63.350	МЕТ793 (водородная) ТНR854 (водородная)
KN204	77	O N N N N N H	-11.874	-71.710	-11.874	-11.874	-44.276	МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN205	78	N NH NH	-11.864	-74.508	-11.865	-11.864	-45.368	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN206	79	O O NH	-11.855	-71.273	-11.853	-11.855	-49.980	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN207	80	H N O N N NH	-11.845	-75.955	-11.845	-11.845	-53.613	МЕТ793 (водородная) LYS745 (π-катионная)РНЕ856 (π-π)
KN8	81	$\begin{array}{c c} O \\ \hline \\ O \\ \end{array}$	-11.845	-92.641	-11.845	-11.845	-68.077	МЕТ793 (водородная)
KN208	82	Br NH NH	-11.843	-87.408	-11.842	-11.843	-51.195	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN209	83	HO NH NH	-11.837	-88.717	-11.837	-11.837	-49.494	СҮЅ775 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN210	84	Cl O NH	-11.836	-76.235	-11.834	-11.834	-48.682	GLN791 (водородная) THR854 (водородная) PHE856 (π-π)
KN98	85	H N N N N N N N N N N N N N N N N N N N	-11.833	-70.764	-11.833	-11.833	-54.546	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN211	86	O NH	-11.834	-70.666	-11.833	-11.833	-54.168	GLN791 (водородная) THR854 (водородная) PHE856 (π-π)
KN54	87	$\begin{array}{c c} O & O \\ \hline \\ N & H \\ \end{array}$	-11.827	-80.805	-11.827	-11.827	-58.292	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN212	88	S N N N N N N N N N N N N N N N N N N N	-11.825	-81.621	-11.825	-11.825	-62.449	МЕТ793 (водородная) ТНR854 (водородная)
KN213	89		-11.920	-81.457	-11.819	-11.920	-62.449	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN214	90		-11.813	-74.938	-11.815	-11.813	-57.284	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN63	91	$F \longrightarrow H \longrightarrow N \longrightarrow N$	-11.808	-90.369	-11.808	-11.808	-56.687	МЕТ793 (водородная) ТНR854 (водородная)
KN215	92	NH NH OH	-11.804	-75.557	-11.804	-11.804	-52.729	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN216	93	$\bigcup_{N \in \mathbb{N}} \bigcup_{H} \bigcup_{O} \bigcup_{$	-11.796	-84.617	-11.796	-11.796	-54.824	МЕТ793 (водородная) ТНR854 (водородная)
KN217	94	OH ON NH NH NH NH	-11.788	-77.258	-11.788	-11.788	-49.216	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN218	95	O H N N	-11.784	-78.716	-11.785	-11.784	-52.327	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN219	96	O N N H N H O	-11.783	-87.224	-11.783	-11.783	-63.646	МЕТ793 (водородная) ТНR854 (водородная)
KN220	97	F O NH NH	-11.784	-77.109	-11.783	-11.784	-62.081	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN221	98	F N S N NH	-11.779	-70.132	-11.779	-11.779	-38.257	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN222	99	HO NH	-11.777	-74.772	-11.775	-11.777	-52.502	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN223	100	F O NH	-11.773	-76.174	-11.773	-11.773	-49.882	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN224	101	CI NH ON NH	-11.771	-79.175	-11.771	-11.771	-54.823	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (<i>π</i> - <i>π</i>)
KN225	102	OH ON NH	-11.767	-74.091	-11.767	-11.767	-48.840	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN226	103	O S O N O	-11.766	-86.624	-11.766	-11.766	-51.671	GLN791 (водородная) THR854 (водородная) PHE856 (π-π)
KN227	104	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.767	-75.956	-11.765	-11.767	-56.116	GLN791 (водородная) МЕТ793 (водородная) THR854 (водородная)
KN228	105	CI NH ON NH	-11.761	-78.496	-11.761	-11.761	-51.842	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN229	106	F O O NH	-11.760	-72.610	-11.759	-11.760	-49.223	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (<i>π-π</i>)
KN230	107	HN N	-11.757	-65.230	-11.756	-11.757	-43.982	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN231	108	HN O N H	-11.748	-76.886	-11.747	-11.748	-59.596	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN232	109	$\bigcup_{N \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcup_{$	-11.743	-79.488	-11.743	-11.743	-62.205	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN233	110	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.738	-87.702	-11.738	-11.738	-56.738	МЕТ793 (водородная) РНЕ856 (π-π)
KN234	111	OH NH NH	-11.728	-87.039	-11.728	-11.728	-53.798	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN235	112	$\begin{array}{c c} & O \\ & &$	-11.743	-77.619	-11.722	-11.743	-61.671	МЕТ793 (водородная) РНЕ856 (π-π)
KN236	113	O N O N N N N N N N N N N N N N N N N N	-11.720	-109.257	-11.713	-11.720	-59.293	ASP855 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)

1	2	3	4	5	6	7	8	9
KN237	114	$ \begin{array}{c c} N & O & O \\ N & H & N \\ N & N \\ H \end{array} $	-11.705	-81.222	-11.705	-11.705	-49.397	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN238	115	O N N NH	-11.703	-85.095	-11.703	-11.703	-61.741	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)THR854 (водородная)
KN239	116	O HN-S NH	-11.699	-76.338	-11.699	-11.699	-47.350	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN68	117	H N O NH	-11.699	-64.495	-11.699	-11.699	-61.437	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN240	118	HN N H O	-11.700	-92.665	-11.699	-11.700	-56.492	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN241	119	NH NH NH	-11.703	-65.930	-11.698	-11.703	-54.606	МЕТ793 (водородная)
KN242	120	N NH NH H	-11.695	-72.174	-11.694	-11.695	-48.201	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN243	121	O H O NH HN S-N N O N H	-11.693	-90.976	-11.693	-11.693	-56.118	GLN791 (водородная) THR854 (водородная) PHE856 (π-π)
KN244	122	HN O NH	-11.693	-82.000	-11.692	-11.693	-57.818	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN42	123	O T H H H	-11.728	-79.797	-11.685	-11.728	-57.714	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN245	124	O O O O N N N N N N N N N N N N N N N N	-11.681	-96.640	-11.681	-11.681	-72.039	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN246	125	HN O N O NH ₂	-11.680	-74.961	-11.676	-11.680	-50.368	МЕТ793 (водородная) ТНR854 (водородная)
KN247	126	NH O S NH O	-11.675	-82.087	-11.675	-11.675	-56.500	GLN791 (водородная) МЕТ793 (водородная) THR854 (водородная)
KN248	127	HN N O O N N N N H	-11.659	-83.141	-11.659	-11.659	-55.017	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN48	128	ON NH N	-11.656	-75.328	-11.656	-11.656	-54.643	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN249	129	$\bigcap_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N}} O$	-11.650	-87.906	-11.650	-11.650	-63.838	МЕТ793 (водородная)
KN250	130	CI O NH	-11.650	-72.868	-11.650	-11.650	-39.951	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN251	131	HN O N O	-11.652	-80.403	-11.649	-11.652	-39.992	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN252	132	N N N H	-11.626	-73.612	-11.626	-11.626	-53.699	МЕТ793 (водородная) ТНR854 (водородная)
KN253	133	HN N-O	-11.627	-73.409	-11.625	-11.627	-65.816	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN254	134	O NH O NH N N N N N N N N N N N N N N N N N N	-11.625	-63.714	-11.625	-11.625	-51.431	МЕТ793 (водородная) ТНR854 (водородная)
KN255	135	NH O NH NH	-11.621	-57.943	-11.621	-11.621	-45.118	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN256	136	$\begin{array}{c c} O & O \\ H & H \\ \end{array}$	-11.619	-91.277	-11.619	-11.619	-61.437	ASP855 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN257	137	O NH CI NH H	-11.620	-74.297	-11.620	-11.620	-51.749	GLN791 (водородная) THR854 (водородная) PHE856 (π-π)
KN258	138	HN N-O N-NH	-11.625	-87.000	-11.619	-11.625	-63.042	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN259	139	HN O	-11.617	-63.768	-11.614	-11.617	-45.736	МЕТ793 (водородная) ТНR854 (водородная)
KN260	140	H N HN	-11.631	-72.366	-11.599	-11.631	-58.760	МЕТ793 (водородная) РНЕ856 (π-π)

Таблица A.3–EGFRwt (3) (PDB: 2RGP)

Код	No	Структура	Glide	Glide	Docking	XP gscore	MMGBSA	Ключевые взаимодействия
соединения			gscore	emodel	score		dG Bind	
1	2	3	4	5	6	7	8	9
KN261	1	HN NO	-13.241	-88.730	-13.237	-13.241	-66.086	ASP855 (водородная) CYS775 (водородная) MET793 (водородная) THR890 (водородная) PHE856 (π-π)
KN262	2	O O O NH NH O	-12.634	-73.167	-12.544	-12.634	-57.652	СҮЅ775 (водородная) GLN791(водородная) MЕТ793 (водородная) THR790 (водородная)

1	2	3	4	5	6	7	8	9
KN263	3	H ₂ N O H NH	-12.544	-69.512	-12.542	-12.544	-51.703	CYS775 (водородная) GLN791(водородная) MET793 (водородная) THR790 (водородная) THR854 (водородная)
KN264	4	HN O O O	-12.512	-93.086	-12.509	-12.512	-64.922	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN265	5	HN O O O	-12.479	-76.850	-12.475	-12.479	-68.052	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN266	6	HN O O NH	-12.429	-100.976	-12.427	-12.429	-65.727	CYS775 (водородная) GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)
KN267	7	H H O NH NH S H	-12.407	-90.238	-12.408	-12.407	-65.287	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-π)
KN268	8	HN N H	-12.400	-89.791	-12.403	-12.400	-57.681	GLN791(водородная) МЕТ793 (водородная) LEU788 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN269	9	HN O H	-12.359	-91.466	-12.368	-12.359	-55.653	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN270	10	O NH	-12.347	-73.708	-12.346	-12.347	-55.726	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN271	11	N O N CI	-12.261	-75.786	-12.263	-12.261	-60.244	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN272	12	HO NH	-12.252	-80.966	-12.252	-12.252	-42.071	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN273	13	HN N N O H N H	-12.245	-83.554	-12.242	-12.245	-61.646	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная)

1	2	3	4	5	6	7	8	9
KN274	14	H ₂ N O O O N N H	-12.243	-86.339	-12.239	-12.243	-51.384	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная)
KN275	15	HO NH	-12.198	-88.150	-12.195	-12.198	-61.134	СҮЅ775 (водородная) GLN791(водородная) MЕТ793 (водородная) THR854 (водородная)
KN276	16	HO CI NH	-12.179	-79.448	-12.179	-12.179	-56.777	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN277	17	HO NH NH	-12.178	-82.080	-12.175	-12.178	-57.009	СҮЅ775 (водородная) GLN791(водородная) MЕТ793 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN278	18	F F OH NH NH NH	-12.167	-75.157	-12.170	-12.167	-43.467	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN279	19	HO O NH	-12.155	-79.582	-12.165	-12.155	-59.732	GLN791(водородная) MET793 (водородная) LEU788 (водородная) THR854 (водородная) РНЕ856 (<i>п</i> - <i>п</i>)
KN280	20	OH O NH	-12.125	-88.277	-12.124	-12.125	-62.790	ASP855 (водородная) GLN791(водородная) MET793 (водородная)
KN281	21	HN O F CI	-12.117	-76.203	-12.115	-12.117	-63.808	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (<i>п</i> - <i>п</i>)
KN167	22	F F F N N N N N N N N N N N N N N N N N	-12.100	-80.167	-12.101	-12.100	-64.692	GLN791(водородная) МЕТ793 (водородная) LYS745 (солевой мостик) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN282	23	HN O HN	-12.078	-77.429	-12.077	-12.078	-58.311	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN283	24	HN O N N F	-12.071	-86.638	-12.071	-12.071	-60.505	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)
KN158	25	HO ON NH	-12.063	-90.595	-12.062	-12.063	-57.806	ALA743 (водородная) ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная) PHE856 (<i>п</i> - <i>п</i>)
KN284	26	H O O OH	-12.057	-87.064	-12.059	-12.057	-54.547	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная)
KN285	27	NH O=S=O HN N	-12.033	-82.919	-12.033	-12.033	-63.608	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN286	28	HN N O	-12.035	-68.966	-12.032	-12.035	-60.517	GLN791(водородная) МЕТ793 (водородная) THR790 (водородная)
KN287	29	O-N N N N N N	-12.033	-81.532	-12.032	-12.033	-65.954	GLN791(водородная) МЕТ793 (водородная) LYS745 (солевой мостик) PHE856 (<i>п</i> - <i>п</i> , водородная)
KN288	30	OH NH	-12.009	-79.275	-12.008	-12.009	-58.625	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-π)
KN289	31	HO N N N N H	-12.007	-69.721	-12.003	-12.007	-52.497	СҮЅ775 (водородная) GLN791(водородная) MЕТ793 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN290	32	H F F F F F F F F F F F F F F F F F F F	-12.002	-69.833	-12.004	-12.002	-55.287	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN291	33	H N O N O N O N O N O N O N O N O N O N	-11.997	-74.582	-11.997	-11.97	-69.858	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN292	34	HO N N N N H	-11.982	-73.798	-11.979	-11.982	-49.423	ASP855 (водородная) CYS775 (водородная) GLN791(водородная) MET793 (водородная)
KN293	35	CI N O NH F F H O	-11.960	-80.639	-11.979	-11.960	-60.737	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN294	36	O NH O NH NH	-11.958	-74.052	-11.958	-11.958	-53.643	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN295	37	ON NH SO NH	-11.958	-80.446	-11.958	-11.958	-60.945	GLN791(водородная) MET793 (водородная) LEU788 (водородная) THR854 (водородная) PHE856 (<i>п-п</i>)
KN296	38	F O NH	-11.958	-80.446	-11.958	-11.958	-60.698	GLN791(водородная) THR854 (водородная) PHE856 (π-π)
KN297	39	N NH NH NH O	-11.943	-80.645	-11.943	-11.943	-52.365	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-π)
KN298	40	HN O N H	-11.926	-74.773	-11.924	-11.926	-57.851	GLN791(водородная) MET793 (водородная) THR854 (водородная) PHE856 (<i>π-π</i>)

1	2	3	4	5	6	7	8	9
KN299	41	O NH NH	-11.926	-83.233	-11.924	-11.926	-58.013	GLN791(водородная) МЕТ793 (водородная) LEU788 (водородная)
KN154	42	O OH N NH	-11.903	-89.678	-11.903	-11.903	-74.556	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN300	43	HN O H	-11.898	-91.197	-11.898	-11.898	-63.012	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN2	44	OH ON HN O	-11.878	-92.224	-11.878	-11.878	-61.925	МЕТ793 (водородная) LYS745 (солевой мостик) THR854 (водородная) PHE856 (водородная)

1	2	3	4	5	6	7	8	9
KN301	45	O N NH NH	-12.195	-80.907	-11.874	-12.195	-54.284	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN302	46	HO O NH	-11.873	-94.456	-11.876	-11.873	-59.979	МЕТ793 (водородная) LEU788 (водородная) THR854 (водородная) PHE856 (π-π)
KN303	47	O O NH	-11.870	-82.345	-11.872	-11.870	-55.467	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN304	48	HN O O NH ₂	-11.868	-87.492	-11.870	-11.868	-60.807	CYS775 (водородная) GLN791(водородная) MET793 (водородная) THR790 (водородная) THR854 (водородная)
KN98	49	F NH O	-11.866	-77.393	-11.866	-11.866	-51.640	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN305	50	H H O NH S H	-11.863	-89.947	-11.862	-11.863	-64.750	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная)
KN306	51	O N NH	-11.854	-74.588	-11.851	-11.854	-62.555	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная)
KN307	52	HN N	-11.834	-76.097	-11.834	-11.834	-53.316	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN308	53	F O NH	-11.825	-77.597	-11.825	-11.825	-55.349	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN309	54	O NH NH	-11.823	-65.120	-11.822	-11.823	-49.206	GLN791(водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN310	55	, OH +N H	-11.821	-65.298	-11.821	-11.821	-55.434	ASP855 (водородная) GLN791(водородная) MET793 (водородная) PHE856 (π-π)
KN311	56	H N N	-11.820	-73.004	-11.818	-11.820	-62.971	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN312	57	HN O NH	-11.818	-80.472	-11.820	-11.818	-46.143	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN313	58	CI NH NH N	-11.805	-74.917	-11.804	-11.805	-58.284	GLN791(водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9	
KN314	59	H_2N O N N N N N N	-11.803	-78.310	-11.801	-11.803	-54.958	ASP855 (водородная) GLN791(водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)	
KN103	60	F O N N N	-11.801	-71.945	-11.803	-11.801	-54.607	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)	
KN315	61	HO O N N N	-11.845	-94.707	-11.800	-11.845	-60.995	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)	
KN316	62	H_2N N N N N N	-11.803	-85.485	-11.799	-11.803	-56.834	СҮЅ775 (водородная) GLN791(водородная) MЕТ793 (водородная) THR790 (водородная)	
Тродолжение таблицы А.3									

KN317	63	F O O NH	-11.797	-71.432	-11.795	-11.797	-53.332	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN318	64	N NH NH	-11.785	-88.261	-11.787	-11.785	-71.276	GLN791(водородная) МЕТ793 (водородная) LYS745 (солевой мостик) ТНR790 (водородная) ТНR854 (водородная)
KN319	65	H N N O N O	-11.777	-82.821	-11.777	-11.777	-65.661	МЕТ793 (водородная) LYS745 (солевой мостик) THR854 (водородная)
KN320	66	HN S'N	-11.770	-91.589	-11.770	-11.770	-63.949	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN321	67	HO H N N N	-11.788	-81.672	-11.768	-11.788	-71.017	ALA743(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN322	68	NH NH	-11.767	-81.645	-11.766	-11.767	-59.391	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN324	69	O NH NH N	-12.176	-72.603	-11.762	-11.176	-54.688	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN325	70	NH NH	-11.761	-69.019	-11.761	-11.761	61.311	МЕТ793 (водородная) ТНR854 (водородная)
KN326	71	HN NH NH	-12.077	-75.841	-11.759	-12.077	-61.469	СҮЅ775 (водородная) GLN791(водородная) THR790 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN327	72		-11.747	-72.917	-11.745	-11.747	-61.028	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN328	73	N N N N N N N N N N N N N N N N N N N	-12.057	-76.780	-11.735	-12.057	-57.138	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)
KN329	74	HN O NH	-11.734	-85.069	-11.737	-11.734	-61.178	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN330	75	HN O N	-11.755	-78.303	-11.722	-11.755	-57.147	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN331	76	F N N N N N N N N N N N N N N N N N N N	-11.726	-80.584	-11.722	-11.726	-50.139	GLN791(водородная) МЕТ793 (водородная)
KN161	77	NH O-N N	-11.715	-88.025	-11.715	-11.715	-62.551	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN332	78	HN O THE O	-11.702	-80.666	-11.704	-11.702	-55.369	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN333	79	O N NH	-11.700	-73.952	-11.697	-11.700	-51.267	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)
KN334	80	HO NH	-11.696	-83.235	-11.696	-11.696	-65.271	ASP855 (водородная) GLN791(водородная) MET793 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN335	81	H N O	-11.697	-81.651	-11.696	-11.697	-62.632	GLN791(водородная) МЕТ793 (водородная)
KN336	82	F O NH	-11.688	-86.573	-11.687	-11.688	-59.453	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная)
KN337	83	O NH NH H	-11.681	-73.760	-11.679	-11.681	-54.295	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN338	84	F N O=S=O N N N	-11.670	-86.725	-11.670	-11.670	-57.214	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9

KN339	85	O'N NH	-11.662	-83.157	-11.662	-11.662	-63.952	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN340	86		-11.661	-80.468	-11.659	-11.661	-70.467	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN341	87	O H H O NH S H	-11.658	-84.757	-11.656	-11.658	-57.046	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная)
KN342	88	O NH NH F	-11.650	-64.528	-11.652	-11.650	-52.246	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9

KN343	89	HN S N H N O	-11.650	-98.100	-11.650	-11.650	-59.654	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная) РНЕ856 (<i>π</i> - <i>π</i>)	
KN344	90	O N N N	-11.648	-71.539	-11.645	-11.648	-61.547	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)	
KN345	91	O NH NH N	-11.636	-85.967	-11.633	-11.636	-65.726	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная) PHE856 (<i>π</i> - <i>π</i>)	
KN346	92	HN O H	-11.629	-1.517	-11.629	-11.629	-55.948	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)	
KN347	93	HO NH NH	-11.617	-86.540	-11.627	-11.617	-63.313	ASP855 (водородная) GLN791(водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-π)	
Продолжение таблицы А.3									

KN348	94	CI NH N	-11.616	-75.475	-11.614	-11.616	-53.343	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)	
KN349	95	HN O N H	-11.608	-69.435	-11.307	-11.608	-53.772	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)	
KN350	96	HN OH OH	-11.605	-79.438	-11.603	-11.605	-46.750	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)	
KN351	97	HO'NH O=S=O HN	-11.602	-74.633	-11.602	-11.602	-56.536	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)	
KN352	98	O O NH N S NH O	-11.629	-76.035	-11.600	-11.629	-58.173	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)	
Продолжение таблицы А.3									

KN353	99	O N N N H	-11.593	-86.295	-11.595	-11.593	-55.258	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN354	100	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	-11.595	-86.295	-11.593	-11.595	-55.258	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN355	101	O NH NH O	-12.100	-91.738	-11.593	-12.100	-75.718	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная) РНЕ856 (π-π)

ı	1	2	2	1	5	6	7	0	0
	1	2	3	4	3	O	/	0	9

KN356	102	HN N N N N N N N N N N N N N N N N N N	-11.593	-84.224	-11.593	-11.593	-59.977	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)	
KN178	103	HN O N E F F F	-11.593	-85.748	-11.592	-11.593	-63.707	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)	
KN357	104	HN O OH	-11.594	-81.791	-11.590	-11.594	-57.687	СҮЅ775 (водородная) GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)	
KN60	105	H_2N N N N N N N	-11.591	-70.056	-11.589	-11.591	-97.410	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)	
KN359	106	O N N N N	-11.589	-80.647	-11.589	-11.589	-58.272	СҮЅ775 (водородная) GLN791(водородная) MЕТ793 (водородная)	
Продолжение таблицы А.3									

KN360	107	H O NH CI N	-11.588	-75.854	-11.588	-11.588	-58.849	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN361	108	HN SO CI	-11.580	-75.115	-11.580	-11.580	-64.790	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN362	109	O N H N N N N N N N	-11.593	-82.469	-11.579	-11.593	-54.616	ASP855 (водородная) GLN791(водородная) MET793 (водородная) PHE856 (π-π)
KN363	110	O NH NH	-11.577	-75.091	-11.579	-11.577	-54.525	ASP855 (водородная) GLN791(водородная) MET793 (водородная)

1	2.	3	4	5	6	7	8	9

KN364	111	H_2N N N N N	-11.723	-74.246	-11.573	-11.723	-56.469	ASP855 (солевой мостик) GLN791(водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-π)
KN365	112	H H O NH	-11.564	-91.599	-11.563	-11.564	-62.020	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN366	113	O NH N S O	-11.562	-67.922	-11.562	-11.562	-54.940	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)
KN367	114	O HN-S NH	-11.560	-72.583	-11.560	-11.560	-48.766	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN368	115	N O N O N O N O N O N O N O O O O O O O	-11.558	-91.962	-11.568	-11.558	-66.835	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN369	116	HN N N O NH ₂	-11.560	-77.963	-11.597	-11.560	-60.072	CYS775 (водородная) GLN791(водородная) MET793 (водородная) THR790 (водородная)
KN370	117	O N N N N N N N N N N N N N N N N N N N	-11.558	-80.896	-11.556	-11.558	-64.356	GLN791(водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (π-π)
KN225	118	OH ONNH	-11.553	-80.787	-11.551	-11.553	-56.932	ASP855 (водородная) GLN791(водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN371	119	O O NH NH	-11.553	-81.468	-11.550	-11.553	-52.663	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN372	120	O O S N N N N N N N N N N N N N N N N N	-11.542	-97.816	-11.542	-11.542	-75.522	ASP855 (водородная) МЕТ793 (водородная) ТНR790(водородная) РНЕ856 (π-π)
KN373	121	H N N N N N	-11.851	-86.497	-11.541	-11.851	-51.809	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)
KN374	122	N= HN O N	-11.539	-66.43	-11.537	-11.539	-55.383	ASP855 (водородная) GLN791(водородная) MET793 (водородная)
KN375	123	NH NH	-11.536	-84.007	-11.548	-11.536	-61.066	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN376	124	$\bigcup_{N \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \bigcup_{$	-11.529	-83.413	-11.528	-11.529	-53.667	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN377	125	O NH N NH	-11.617	-79.387	-11.516	-11.617	-53.117	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN378	126	S O NH NH	-11.498	-77.982	-11.499	-11.498	-57.434	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (<i>π</i> - <i>π</i>)
KN34	127	O N N N N N N N N N N N N N N N N N N N	-11.493	-72.562	-11.493	-11.493	-51.088	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN379	128	HO THE NAME OF THE	-11.499	-67.068	-11.490	-11.499	-59.167	ASP855 (водородная) GLN791(водородная) MET793 (водородная)
KN49	129	O HN+ N H	-11.507	-77.702	-11.487	-11.507	-70.163	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN380	130	O NH NH N	-11.495	-79.469	-11.486	-11.495	-60.724	ASP855 (водородная) GLN791(водородная) MET793 (водородная) PHE856 (π-π)
KN381	131	N S O N N H	-11.485	-59.502	-11.485	-11.485	-54.950	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN382	132	HN O H	-11.484	-88.367	-11.484	-11.484	-57.090	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN383	133	HN O N-N	-11.480	-109.223	-11.480	-11.480	-73.023	ASN842 (водородная) LYS745 (водородная) MET793 (водородная) PHE856 (π-π, водородная)
KN384	134	F O N NH	-11.479	-69.821	-11.481	-11.479	-59.745	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN385	135	O NH	-11.478	-77.052	-11.477	-11.478	-49.449	GLN791(водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN386	136	HN O CI OH	-11.777	-82.013	-11.475	-11.777	-62.556	GLN791(водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN387	137	O O NH NH H	-11.474	-83.660	-11.481	-11.474	-57.879	GLN791(водородная) МЕТ793 (водородная)
KN388	138	HN O N NH	-11.554	-68.066	-11.472	-11.554	-56.319	GLN791(водородная) МЕТ793 (водородная) THR854 (водородная)
KN389	139	HNNON	-11.472	-74.356	-11.469	-11.472	-60.318	GLN791(водородная) МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)
KN390	140	$O_{\stackrel{+}{\circ}_{N}} \bigvee_{O^{-}} \bigvee_{N+} \bigvee_$	-11.467	-85.032	-11.465	-11.467	-62.336	GLN791(водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (π-катионная)

ТаблицаA.4 –EGFRwt (4) (PDB: 3BEL)

Код соединения	№	Структура	Glide gscore	Glide emodel	Docking score	XP gscore	MMGBSA dG Bind	Ключевые взаимодействия	
1	2	3	4	5	6	7	8	9	
KN3	1	O O NH	-12.653	-93.961	-12.653	-12.653	-65.697	МЕТ793 (водородная) LEU788 (водородная) THR854 (водородная) PHE856 (π-π)	
KN391	2	HN N N N NH ₂	-12.537	-85.193	-12.533	-12.537	-55.059	CYS775 (водородная) GLN791 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)	
KN392	3	HN O O NH ₂	-12.436	-83.863	-12.433	-12.436	-47.725	ASP855 (водородная) CYS775 (водородная) GLN791 (водородная) MET793 (водородная)	
KN265	4	HN O O	-12.355	-61.879	-12.352	-12.355	-61.290	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)	
KN393	5	O O O O O O O O O O	-12.289	-99.222	-12.286	-12.289	-58.902	CYS775 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)	
Продолжение таблицы А.4									

1	2	3	4	5	6	7	8	9

KN394	6	OH NH NH	-12.541	-96.161	-12.216	-12.541	-66.173	GLN791 (водородная) LEU788 (водородная) THR854 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN395	7	NH NH NH N	-12.205	-61.078	-12.184	-12.205	-55.511	ASP855 (водородная) CYS775 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN396	8	HN N O	-12.170	-76.493	-12.167	-12.170	-51.441	GLN791 (водородная) МЕТ793 (водородная) THR854 (водородная)
KN397	9	O N N N N N N N N N N N N N N N N N N N	-12.114	-93.026	-12.113	-12.114	-59.438	МЕТ793 (водородная)
KN398	10	HN O F F H OH	-12.092	-92.047	-12.089	-12.092	-67.440	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)

1 2 3 4 5 6 7 8 9	_									
	ſ	1	2	3	4	5	6	7	8	9

KN399	11	HN N N N N N N N N N N N N N N N N N N	-11.981	-71.361	-11.979	-11.981	-57.293	GLN791 (водородная) МЕТ793 (водородная) LYS745(водородная) PHE856 (π-π, водородная)
KN400	12	HZ Z NH	-11.976	-89.119	-11.972	-11.976	-60.439	ASP855 (водородная) CYS775 (водородная) GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная) РНЕ856 (π-π)
KN401	13	$\bigcup_{O} \bigvee_{H} \bigvee_{N} \bigvee_{N} \bigvee_{H}$	-11.966	-96.294	-11.966	-11.966	-60.421	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN402	14	HN.,, O O NH ₂	-12.020	-67.943	-11.954	-12.020	-51.433	CYS775 (водородная) МЕТ793 (водородная) THR854 (водородная)

_									
	1	2	3	4	5	6	7	8	9

KN357	15	HN NO OH	-11.926	-76.414	-11.923	-11.926	-56.364	СҮЅ775 (водородная) GLN791 (водородная) MЕТ793 (водородная) THR854 (водородная)
KN403	16	HN O OH H H	-11.921	-85.942	-11.918	-11.921	-51.627	МЕТ793 (водородная) LEU788 (водородная) THR854 (водородная) PHE856 (π-π)
KN404	17	HN O F F	-11.920	-86.749	-11.917	-11.920	-57.986	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN292	18	HO N N N H	-11.904	-72.598	-11.901	-11.904	-54.311	GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
-	_	e	•		•	· ·	•	

KN405	19	HO NH	-11.906	-59.721	-11.887	-11.906	-65.348	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN246	20	HN N N O NH ₂	-11.801	-85.277	-11.798	-11.801	-60.585	CYS775 (водородная) GLN791 (водородная) MET793 (водородная) THR790 (водородная)
KN406	21	HN N N NH ₂ O NH ₂ O	-11.794	-82.177	-11.791	-11.794	-61.274	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная) РНЕ856 (водородная)
KN407	22	O N NH	-11.787	-81.526	-11.787	-11.787	-69.283	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
1	_	3	•	5	U	,	O	7

KN408	23	$\begin{array}{c c} O & O & S \\ \hline \\ H_2N & S & N & N \\ H & N & N \\ H & N & H \end{array}$	-11.753	-94.814	-11.753	-11.753	-57.140	ASP855 (водородная) CYS775 (водородная) GLN791 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)
KN409	24	$\begin{array}{c} O \\ H_2N \longrightarrow \begin{array}{c} O \\ \vdots \\ S - N \end{array} \end{array} $	-11.739	-72.003	-11.736	-11.739	-46.840	СҮЅ775 (водородная) GLN791 (водородная) MЕТ793 (водородная)
KN410	25	H N N	-11.734	-79.211	-11.730	-11.734	-44.954	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN411	26	HN O O NH NH	-11.694	-94.979	-11.691	-11.694	-64.684	СҮS775 (водородная) GLN791 (водородная) MET793 (водородная) THR790 (водородная) PHE856 (<i>π</i> - <i>π</i>)

1	2.	3	4	5	6	7	8	9

KN412	27	HO F HN HN H	-11.743	-57.177	-11.689	-11.743	-54.773	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN413	28	HO O NH	-11.672	-87.388	-11.669	-11.672	-67.251	CYS775 (водородная) MET793 (водородная) THR854 (водородная)
KN414	29	H ₂ N O O O O O O O O O O O O O O O O O O O	-11.642	-87.963	-11.639	-11.642	-56.613	ASP855 (водородная) CYS775 (водородная) GLN791 (водородная) МЕТ766 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN415	30	O NH N	-11.648	-55.766	-11.628	-11.648	-51.557	GLN791 (водородная) МЕТ793 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9

KN416	31	O NH HN O S HN S N N N H	-11.638	-99.558	-11.626	-11.638	-65.804	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR790 (водородная)
KN417	32	N HN NH	-11.644	-53.324	-11.623	-11.644	-48.162	GLN791 (водородная) МЕТ793 (водородная)
KN420 Продолжень	33	HN O	-11.586	-97.517	-11.586	-11.586	-65.939	МЕТ793 (водородная) ТНR790 (водородная)

KN421	34	H O NH	-11.587	-74.944	-11.585	-11.587	-52.153	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN422	35	O=S=O HN N	-11.556	-81.843	-11.556	-11.556	-55.925	GLN791 (водородная) МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN423	36	HO CI N N N N N N N N N N N N N N N N N N	-11.539	-79.712	-11.539	-11.539	-71.101	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (π-π, водородная)
KN424	37	F H N N N N N N N N N N N N N N N N N N	-11.742	-76.834	-11.538	-11.742	44.773	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

9

KN425	38	$\begin{array}{c c} H_2N & H & O & S \\ \hline N & N & NH \\ \hline O & NH \\ \end{array}$	-11.518	-86.908	-11.518	-11.518	-55.265	ASP855 (водородная) CYS775 (водородная) GLN791 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)
KN426	39	HN O O O O O O O O O O O O O O O O O O O	-11.516	-80.499	-11.514	-11.516	-52.297	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN427	40	F N HN O N N H	-11.679	-72.731	-11.512	-11.679	-54.114	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN428	41	HO NH	-11.477	-79.330	-11.477	-11.477	-52.007	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN351	42	HO NH O=S=O N N N	-11.471	-70.543	-11.471	-11.471	-52.696	GLN791 (водородная) MET793 (водородная) THR854 (водородная) PHE856 (<i>π-</i> π)

1	2	3	4	5	6	7	8	9

KN429	43	HN N O	-11.473	-73.235	-11.469	-11.473	-53.414	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN430	44	O NH N	-11.461	-76.009	-11.458	-11.461	-61.412	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN431	45	HN O NH O NH	-11.540	-68.606	-11.458	-11.540	-53.152	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
	46	ицы A.4	-11.452	-72.133	-11.451	-11.452	-55.855	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)

KN433	47	OH ON HN O	-11.446	-103.219	-11.446	-11.446	-62.008	ASP855 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)
KN434	48	HN N N N N N N N N N N N N N N N N N N	-11.846	-94.638	-11.432	-11.846	-62.762	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN435	49	H_2N N N N N N N N	-11.427	-78.933	-11.427	-11.427	-49.205	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN130 Продолжени	50	HO NH NH	-11.419	-91.557	-11.419	-11.419	-60.621	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π, водородная)

KN436	51		-11.412	-82.401	-11.412	-11.412	-64.835	МЕТ793 (водородная) ТНR790 (водородная) РНЕ856 (π-π)
KN328	52	N N N N N N N N N N N N N N N N N N N	-11.725	-75.216	-11.403	-11.725	-53.042	GLN791 (водородная) THR854 (водородная)
KN437	53	H_2N O S H_2N HN N N N N N N N	-11.900	-89.292	-11.401	-11.900	-59.783	ASP855 (водородная) CYS775 (водородная) GLN791 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)
KN438	54	HO NO	-11.458	-74.625	-11.392	-11.458	-57.436	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная) РНЕ856 (π-π)

1	2.	3	4	5	6	7	8	9
-	_	3		2	O .	,	O	

KN439	55	NH NH	-11.399	-72.066	-11.386	-11.399	-47.533	СҮЅ775 (водородная) GLN791 (водородная) MЕТ793 (водородная)
KN440	56	HN O NH	-11.383	-77.970	-11.382	-11.383	-48.391	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN273	57	HN N O H N O H	-11.382	-71.003	-11.379	-11.382	-56.323	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN441	58	H + N N N N N N N	-11.385	-72.818	-11.375	-11.385	-58.296	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN442	59	HN N O NH ₂	-11.374	-73.170	-11.370	-11.374	-52.130	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (водородная)
KN443	60	HO, HO, H	-11.371	-74.322	-11.370	-11.371	-54.007	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN444	61	OH NH	-11.370	-82.809	-11.368	-11.370	-57.929	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN445	62	H N O	-11.359	-62.088	-11.356	-11.359	-54.412	GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN446	63		-11.343	-77.808	-11.335	-11.343	-59.386	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN110	64	HO O NH	-11.333	-73.384	-11.323	-11.333	-55.125	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN447	65		-11.388	-66.926	-11.322	-11.388	-53.197	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN314	66	H_2N O N N N N N N	-11.323	-78.182	-11.321	-11.323	-53.098	ASP855 (водородная) CYS775 (водородная) GLN791 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)
KN448	67	O O NH N S O NH	-11.318	-72.239	-11.318	-11.318	-54.726	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN49	68	HN N N N N N N N N N N N N N N N N N N	-11.339	-80.651	-11.318	-11.339	-68.662	МЕТ793 (водородная) РНЕ856 (π-π)
KN449	69	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-11.303	-82.255	-11.303	-11.303	-63.590	ASP855 (водородная) GLN791 (водородная) THR854 (водородная) PHE856 (π-π)
KN450	70	HN N O HO N	-11.300	-78.929	-11.300	-11.300	-54.431	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR790 (водородная) PHE856 (π-π)
KN451	71	O O S N NH	-11.289	-85.863	-11.289	-11.289	-57.626	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR790 (водородная) THR854 (водородная)
KN452	72	HN N N N N N N N N N O O	-11.309	-57.576	-11.288	-11.309	-55.013	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-катионная)

1	2	3	4	5	6	7	8	9
KN453	73	HN O H	-11.287	-80.115	-11.287	-11.287	-54.910	GLN791 (водородная) MET793 (водородная) THR854 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN454	74	HN N O HN N	-11.295	-71.263	-11.286	-11.295	-52.154	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN455	75	HO N N N N H	-11.289	-68.658	-11.285	-11.289	-47.206	CYS775 (водородная) GLN791 (водородная) THR854 (водородная)
KN456	76	HN N O OH	-11.283	-78.049	-11.283	-11.283	-61.045	GLN791 (водородная) THR790 (водородная)

1	2	3	4	5	6	7	8	9
KN457	77	HN O N F	-11.278	-82.358	-11.278	-11.278	-61.896	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN458	78	OH Cl HN	-11.496	-58.410	-11.271	-11.496	-55.883	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN459	79	HN NH	-11.272	-68.633	-11.271	-11.272	-54.056	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN460	80	HN O CI	-11.259	-74.998	-11.259	-11.259	-63.944	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN461	81	HN O NH	-11.253	-78.832	-11.250	-11.253	-52.390	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN462	82	HN N O CI OH	-11.544	-79.941	-11.242	11.544	-57.119	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN463	83	O N O	-11.239	-73.033	-11.237	-11.239	66.813	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN464	84	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.236	-95.696	-11.233	-11.236	-47.522	ASP855 (водородная) CYS775 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)
KN465	85	N O N N N O H N O F	-11.238	-89.480	-11.228	-11.238	-67.259	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (<i>π-π</i>)
KN466	86	F O NH	-11.227	-63.350	-11.226	-11.227	-42.000	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN467	87	O NH NH	-11.220	-73.051	-11.222	-11.220	-57.993	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN468	88	N CI HN O NH	-11.198	-84.494	-11.198	-11.198	-54.107	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN469	89	HN O N N N N N N N N N N N N N N N N N N	-11.195	-85.383	-11.195	-11.195	-50.977	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN470	90	O N H N N	-11.188	-82.775	-11.188	-11.188	-58.361	МЕТ793 (водородная) ТНR854 (водородная)
KN471	91	O NH	-11.167	-75.535	-11.166	-11.167	-64.710	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN472	92	NH N N	-11.166	-71.749	-11.163	-11.166	-50.636	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN124	93	HN N-O OH	-11.163	-82.745	-11.163	-11.163	-60.792	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (водородная)
KN473	94	O NH NH	-11.166	-66.934	-11.163	-11.166	-51.174	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN474	95	HN N N H	-11.482	-78.224	-11.160	-11.482	-50.166	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN475	96	O N N N N N N N N	-11.166	-72.834	-11.159	-11.166	-54.738	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN476	97	O S N NH	-11.158	-76.094	-11.158	-11.158	-61.389	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN147	98	O N H N	-11.155	-87.231	-11.155	-11.155	-60.073	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN477	99	OH OH	-11.200	-59.903	-11.144	-11.200	-58.895	GLN791 (водородная) МЕТ793 (водородная)
KN478	100	F O NH NH H	-11.146	-81.351	-11.143	-11.146	-56.820	МЕТ793 (водородная) ТНR854 (водородная)
KN230	101	HN N	-11.143	-71.257	-11.141	-11.143	-59.012	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN479	102	N N N N N N N	-11.144	-80.433	-11.141	-11.144	-64.080	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR790(водородная)
KN85	103	HN N O=S=O NH	-11.140	-69.998	-11.140	-11.140	-52.642	GLN791 (водородная) МЕТ793 (водородная) ТНR854(водородная) РНЕ856 (π-π)
KN480	104	N S N N N N N N N N N N N N N N N N N N	-11.135	-59.040	-11.135	-11.135	-53.514	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN481	105	HN NH	-11.143	-59.07	-11.125	-11.143	-59.931	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN482	106	F F O NH O O O O O O O O O O O O O O O O O	-11.106	-73.016	-11.106	-11.106	-51.858	GLN791 (водородная) МЕТ793 (водородная) ТНR854(водородная) РНЕ856 (<i>π-π</i>)

1	2	3	4	5	6	7	8	9
KN483	107	O O S N NH	-11.090	-92.063	-11.090	-11.090	-65.172	GLN791 (водородная) МЕТ793 (водородная) ТНR790(водородная) РНЕ856 (π-π)
KN484	108	$\begin{array}{c c} O & O & \\ \hline \\ H_2N & N & \\ H & N & H \\ \end{array}$	-11.091	-103.234	-11.088	-11.091	-50.769	ASP855 (водородная) CYS775 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)
KN485	109	HN O O NH ₂	-11.151	-69.957	-11.084	-11.151	-42.017	ASP855 (водородная) MET793 (водородная) THR854 (водородная)
KN486	110	H N O O N O O O O O O O O O O O O O O O	-11.084	-81.824	-11.084	-11.084	-62.547	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN487	111	H_2N N N N N N N N N	-11.079	-84.302	-11.079	-11.079	-50.625	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)

1	2	3	4	5	6	7	8	9
KN488	112	OH HN+	-11.107	-57.887	-11.076	-11.107	-65.276	GLN791 (водородная) МЕТ793 (водородная)
KN489	113	HN N O HN S	-11.068	-78.544	-11.065	-11.068	48.909	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN490	114	HN O S	-11.068	-87.906	-11.065	-11.068	-56.675	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN234	115	OH NH NH	-11.063	-87.986	-11.063	-11.063	-66.266	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π, водородная)
KN491	116	HO NH	-11.063	-85.860	-11.060	-11.063	-59.138	CYS775 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN492	117	$\begin{array}{c} H \\ N \\ \end{array}$	-11.062	-83.184	-11.059	-11.062	-58.553	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN493	118	HO NH NH	-11.055	-67.985	-11.054	-11.055	-42.103	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная) РНЕ856(водородная)
KN494	119	O NH NH	-11.053	-82.361	-11.051	-11.053	-53.749	МЕТ793 (водородная) THR854 (водородная) PHE856 (водородная)
KN495	120	O NH O NH O N H ₂ N H O N	-11.052	-69.056	-11.050	-11.052	-57.009	ALA722 (водородная) ASN842 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN496	121	HN N N N N N N N N N N N N N N N N N N	-11.048	-79.334	-11.046	-11.048	-61.022	GLN791 (водородная) МЕТ793 (водородная)
KN497	122	CI NH NH	-11.175	-51.225	-11.045	-11.175	-65.527	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN498	123	Cl N N N N N N N N N N	-11.044	-69.764	-11.044	-11.044	-46.661	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN499	124	HN O HN N N N N N N N N N N N N N N N N	-11.046	-73.897	-11.043	-11.046	-56.578	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN500	125	H N N N H O HN O	-11.029	-92.220	-11.029	-11.029	-56.043	МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)
KN501	126	HN N O N N N	-11.031	-70.305	-11.031	-11.031	50.889	GLN791 (водородная) МЕТ793 (водородная)
KN502	127	OH = O NH	-11.029	-77.749	-11.027	-11.029	-52.360	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN272	128	HO NH	-11.026	-81.917	-11.026	-11.026	-36.849	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN503	129	N N N N N N N N N N N N N N N N N N N	-11.368	-59.128	-11.024	-11.368	-56.174	GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN504	130	O N HN NH	-11.021	-76.121	-11.021	-11.021	-48.648	СҮЅ775 (водородная) GLN791 (водородная) MЕТ793 (водородная) PHE856 (π-π)
KN505	131	O N O O O O O O O O O O O O O O O O O O	-11.019	-65.669	-11.018	-11.019	-52.823	ASN842 (водородная) МЕТ793 (водородная)
KN506	132	O NH ON NH	-11.021	-76.371	-11.018	-11.021	-54.555	GLN791 (водородная) МЕТ793 (водородная)
KN507	133	ON NH N	-11.297	-74.387	-11.017	-11.297	-51.008	GLN791 (водородная) МЕТ793 (водородная) LYS745 (солевой мостик)

1	2	3	4	5	6	7	8	9
KN508	134	H O S	-11.010	-84.475	-11.007	-11.010	-60.476	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)
KN509	135	HN N O N N N	-11.009	-77.955	-11.006	-11.009	-58.111	GLN791 (водородная) МЕТ793 (водородная)
KN510	136	O O O S NH	-11.015	-80.478	-11.000	-11.015	-49.795	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN511	137	H ₂ N N N NH	-11.004	-70.156	-11.000	-11.004	-52.589	СҮS775 (водородная) GLN791 (водородная) MET766 (водородная) MET793 (водородная) THR854 (водородная)
KN512	138	N-O O NH	-10.980	-66.419	-10.977	-10.980	-48.967	GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN513	139	O NH NH	-10.980	-70.665	-10.976	-10.980	-63.588	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN514	140	H N N N N N HO	-10.964	-79.607	-10.962	-10.964	-50.919	GLN791 (водородная) МЕТ793 (водородная)

Таблица A.5 – EGFRwt (5) (PDB: 1XKK)

т иолиции т.э	LOI	KWI (3) (I DD. IAKKI)						
Код соединения	№	Структура	Glidegscore	Glideemodel	Dockingscore	XPgscore	MMGBSAdGBind	Ключевые взаимодействия
1	2	3	4	5	6	7	8	9
KN513	1	H N O N N N N N N N N N N N N N N N N N	-12.191	-67.996	-12.191	-12.191	-66.024	МЕТ793 (водородная) THR854 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN49	2	HN H N N N N N N N N N N N N N N N N N	-12.139	-74.636	-12.119	-12.139	-66.183	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN514	3	H N OH	-12.084	-78.962	-12.082	-12.084	-51.818	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN515	4	H N O N N N N N N N N N N N N N N N N N	-11.654	-64.281	-11.654	-11.654	-62.859	МЕТ793 (водородная) ТНR854 (водородная)
KN516	5	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$	-11.604	-82.778	-11.601	-11.604	-57.129	МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN517	6	HO NH NH	-11.596	-87.783	-11.959	-11.596	-54.105	ASP855 (водородная) МЕТ793 (водородная) LEU788 (водородная) PHE856 (π-π)
KN518	7	F O S N	-11.590	-63.985	-11.593	-11.590	-60.510	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN296	8	H N O N F	-11.580	-76.213	-11.580	-11.580	-60.510	МЕТ793 (водородная) ТНR854 (водородная)
KN519	9	H_2N N N N N N N N N N	-11.554	-72.401	-11.557	-11.554	-64.479	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (<i>п-п</i> , водородная)

1	2	3	4	5	6	7	8	9
KN91	10	$\begin{array}{c} H \\ N \\ \end{array}$	-11.476	-71.786	-11.476	-11.476	-63.254	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN520	11	O', O S N NH	-11.472	-77.693	-11.471	-11.472	-65.553	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN521	12	O NH NH NH NH	-11.463	-83.294	-11.482	-11.463	-58.873	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN17	13	HN O N N	-11.419	-83.829	-11.369	-11.419	-66.403	МЕТ793 (водородная) РНЕ856 (π-π)
KN522	14	HN OH	-11.316	-80.301	-11.316	-11.316	-63.261	GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN523	15	O NH NH NH O	-11.293	-82.757	-11.316	-11.293	-58.698	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR790 (водородная)
KN524	16	O N N-N OH N-N HN	-11.544	-98.118	-11.284	-11.544	-57.450	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN525	17	$H_2N \longrightarrow N \\ N \\ H$	-11.274	-87.528	-11.274	-12.274	-62.787	МЕТ793 (водородная) LEU788 (водородная)
KN526	18	HO NH NH	-11.264	-71.802	-11.264	-11.264	-57.291	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN527	19	H N O	-11.260	-70.452	-11.260	-11.260	-65.914	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN528	20	HN NH	-11.263	-75.734	-12.257	-12.263	-64.416	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN529	21	HN NH	-11.645	-90.994	-11.234	-11.645	-61.389	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π, водородная)
KN530	22	CI NH NH O	-11.230	-77.013	-11.230	-11.230	-58.188	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN531	23	HN OH	-11.226	-88.077	-11.223	-11.226	-54.560	МЕТ793 (водородная)
KN532	24	O NH HN S O	-11.207	-79.117	-11.207	-11.207	-62.465	GLN791 (водородная) МЕТ793 (водородная)
KN533	25	HN N	-11.177	-62.742	-11.177	-11.177	-33.940	GLN791 (водородная) LYS745 (солевой мостик)
KN534	26	F NH NH	-11.177	-70.890	-11.176	-11.177	-59.568	GLN791 (водородная) МЕТ793 (водородная)
KN535	27	HN HN O N	-11.142	-78.640	-11.142	-11.142	-55.864	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN536	28	O NH NH NH O	-11.168	-77.765	-11.138	-11.168	-55.362	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN537	29	O NH N	-11.140	-83.597	-11.117	-11.140	-49.145	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN538	30	F HO O NH	-11.089	-69.767	-11.089	-11.089	-49.433	ALA743 (водородная) GLN791 (водородная) MET793 (водородная) LEU788 (водородная)
KN539	31	ON NH2 ON	-11.091	-94.087	-11.088	-11.091	-70.037	ALA722 (водородная) ASN842 (водородная) ASP855 (водородная) CYS797 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN540	32	NH NH S	-11.077	-64.301	-11.080	-11.077	-51.960	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN541	33	HO NH NH	-11.077	-83.553	-11.080	-11.077	-58.161	МЕТ793 (водородная) PHE856 (π-π)
KN542	34	O F N H O	-11.073	-65.652	-11.073	-11.073	-45.989	МЕТ793 (водородная) ТНR854 (водородная)
KN45	35	O-N NH	-11.118	-85.226	-11.067	-11.118	-52.078	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN542	36	N O N N	-11.070	-68.278	-11.063	-11.070	-55.533	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная)
KN543	37	HN N-O F	-11.064	-79.200	-11.062	-11.064	-63.682	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная)
KN544	38		-11.060	-86.139	-11.076	-11.060	-62.494	GLN791 (водородная) МЕТ793 (водородная)
KN545	39	N N N N N N N N N N N N N N N N N N N	-11.044	-91.229	-11.043	-11.044	-52.775	МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN546	40	O NH N N N N N N N N N N N N N N N N N N	-11.034	-86.809	-11.050	-11.034	-62.647	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN547	41	O H O NH	-11.285	-82.983	-11.026	-11.285	-62.803	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN548	42	HN H NO NH	-11.079	-80.892	-11.013	-11.079	-55.715	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (<i>π-</i> π)
KN549	43	O O N N S	-11.004	-69.172	-11.003	-11.004	-53.222	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)

1	2	3	4	5	6	7	8	9
KN550	44	HN O NH	-10.998	-67.448	-10.989	-10.998	-57.876	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN551	45	O NH NH N	-10.982	-78.278	-10.979	-10.982	-50.062	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (π-π)
KN552	46	OH O NH	-10.979	-74.749	-11.980	-10.979	-57.692	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN553	47	H_2N N N N N N N N N N	-10.964	-87.279	-10.964	-10.964	-47.739	МЕТ793 (водородная)
KN554	48	H_2N O O N	-10.956	-85.086	-11.336	-10.956	-60.345	ALA722 (водородная) ASN842 (водородная) ASP837 (водородная) ASP855 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN555	49	O N N HO N-N	-10.943	-90.329	-11.204	-10.943	-49.648	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN556	50	O NH N S NH	-10.934	-68.949	-10.934	-10.934	-63.597	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN557	51	F N-O NH	-10.926	-76.401	-10.928	-10.926	-60.294	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN558	52	H N N N N N N N N N N N N N N N N N N N	-10.935	-79.302	-10.916	-10.935	-59.582	МЕТ793 (водородная) ТНR854 (водородная)
KN559	53	HN OOH	-10.904	-68.718	-10.904	-10.904	-49.234	GLN791 (водородная) РНЕ856(водородная)

1	2	3	4	5	6	7	8	9
KN560	54	O N NH NH	-10.905	-99.710	-10.901	-10.905	-55.311	МЕТ793 (водородная)
KN561	55	O O O O O O O O O O O O O O O O O O O	-10.934	-76.539	-10.887	-10.934	-54.039	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN562	56	H ₂ N NH NH	-10.893	-77.264	-10.886	-10.893	-72.998	ALA722 (водородная) ASN842 (водородная) ASP837 (водородная) ASP855 (водородная) MET793 (водородная)
KN563	57	N H O H O	-10.884	-77.958	-10.884	-10.884	-46.087	ASP855 (водородная) МЕТ793 (водородная)
KN564	58	H O NH	-10.966	-75.266	-10.875	-10.966	-61.559	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (<i>π-</i> π)

1	2	3	4	5	6	7	8	9
KN565	59	O NH ONNH ONNH ONNH	-10.869	-78.728	-10.869	-10.869	-56.815	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN566	60	O S N NH	-11.275	-83.205	-10.864	-11.275	-54.488	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π, водородная)
KN567	61		-10.860	-63.691	-10.860	-10.860	-57.615	МЕТ793 (водородная) THR854 (водородная)
KN568	62	HN O HN -N	-10.863	-81.537	-10.859	-10.863	-51.105	ASP855 (водородная) GLN791 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN248	63	HN O N H	-10.855	-81.337	-10.855	-10.855	-54.602	МЕТ793 (водородная) РНЕ856 (π-π)
KN256	64	$ \begin{array}{c c} O & O \\ N & H \end{array} $ $ \begin{array}{c c} N & N \\ N & N \end{array} $	-10.855	-84.681	-10.855	-10.855	-53.573	МЕТ793 (водородная)
KN569	65		-10.829	-65.439	-10.829	-10.829	-50.810	МЕТ793 (водородная) ТНR854 (водородная)
KN570	66	HN O H O N N N N N N N N N N N N N N N N	-10.825	-80.067	-10.825	-10.825	-57.089	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN571	67	HN N N N N N N N N N N H	-11.824	-76.361	-10.821	-11.824	-53.549	СҮЅ775 (водородная) GLN791 (водородная) MЕТ793 (водородная) PHE856 (π-π)
KN572	68	H N N N H N H O O O O O O O O O O O O O	-10.821	-80.614	-10.824	-10.821	-63.881	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN573	69	H ₂ N O O O O N N N H	-10.823	-76.217	-10.819	-10.823	-55.668	ALA722 (водородная) ASN842 (водородная) ASP837 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (водородная)

1	2	3	4	5	6	7	8	9
KN574	70	O NH HN O N N N N N N N N N N N N N N N N N N	-10.823	-63.379	-10.819	-10.823	-39.363	АSP855 (водородная) GLN791 (водородная) MET793 (водородная) THR790 (водородная) THR854 (водородная)
KN575	71	HN S NH	-10.813	-67.252	-10.822	-10.813	-53.986	GLN791 (водородная) МЕТ793 (водородная)
KN576	72	H N N N S N	-10.807	-75.087	-10.806	-10.807	-64.065	МЕТ793 (водородная) ТНR854 (водородная)
KN577	73	N N N N N N N N N N N N N N N N N N N	-10.804	-83.829	-10.801	-10.804	-51.972	ASP800 (водородная) CYS797 (водородная) MET793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN193	74	NH N HN O	-10.799	-81.800	-10.799	-10.799	-60.201	МЕТ793 (водородная)
KN578	75	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.797	-71.166	-10.797	-10.797	-49.229	МЕТ793 (водородная) ТНR790 (водородная) ТНR854 (водородная)
KN579	76	N O NH NH NH	-10.827	-94.023	-10.792	-10.827	-67.770	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN580	77	H N N N N N N N N N N N N N N N N N N N	-10.792	-84.592	-10.827	-10.792	-64.138	МЕТ793 (водородная) РНЕ856 (<i>π-π</i>)
KN581	78	HN N O NH	-10.789	-57.825	-10.788	-10.789	-51.258	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN16	79	O + NH	-10.789	-57.825	-10.788	-10.789	-72.762	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN582	80	O O NH	-10.781	-81.709	-10.783	-10.781	-60.395	МЕТ793 (водородная) LYS745 (водородная)
KN380	81	O N N N N N N N	-10.789	-68.845	-10.780	-10.789	-57.047	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN583	82	HN N O N N N N N N N N N N N N N N N N N	-10.960	-87.468	-10.765	-10.960	-59.046	ASP837 (водородная) CYS797 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN584	83	H O N	-10.764	-69.819	-10.764	-10.764	-53.462	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN585	84	O N H N NH	-10.767	-66.547	-10.764	-10.767	-57.327	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная) PHE856 (π-π)
KN586	85	HN O F	-10.763	-71.610	-10.761	-10.763	-47.689	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN587	86	N N-O NH	-10.760	-88.388	-10.811	-10.760	-49.022	МЕТ793 (водородная) РНЕ856 (π-π)
KN588	87	HN O O O N N N N N N N N N N N N N N N N	-10.753	-78.681	-10.753	-10.753	-56.109	МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN589	88	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-10.749	-88.812	-10.749	-10.749	-63.009	МЕТ793 (водородная)
KN590	89	ONH NHNSON	-10.749	-74.898	-10.797	-10.749	-52.854	GLN791 (водородная) МЕТ793 (водородная)
KN591	90	HO NH NH H	-10.748	-87.104	-10.752	-10.748	-55.702	ASP855 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN592	91	H O NH N	-10.747	-89.296	-10.747	-10.747	-53.000	МЕТ793 (водородная) ТНR854 (водородная)
KN593	92	NH ONH OH F	-10.748	-71.358	-10.747	-10.748	-50.242	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN594	93	F N NH NH	-10.747	-63.188	-10.745	-10.747	-54.876	GLN791 (водородная) МЕТ793 (водородная)
KN595	94	F O NH	-10.746	-69.111	-10.743	-10.746	-54.205	GLN791 (водородная) МЕТ793 (водородная)
KN596	95	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.742	-84.058	-10.741	-10.742	-64.030	ASN842 (водородная) ASP855 (водородная) MET793 (водородная)
KN597	96	O NH	-10.737	-72.804	-10.737	-10.737	-50.163	ASP855 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN598	97	ON NH N	-10.735	-74.880	-10.735	-10.735	-55.524	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN599	98	HN ON N	-10.733	-70.622	-10.733	-10.733	-60.035	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN600	99	F O NH	-10.731	-67.026	-10.731	-10.731	-40.381	GLN791 (водородная) МЕТ793 (водородная)
KN273	100	O N NH NH	-10.731	-82.535	-10.731	-10.731	-57.417	ALA722 (водородная) ASP855 (водородная) CYS797 (водородная) MET793 (водородная)
KN601	101		-10.723	-69.571	-10.723	-10.723	-56.602	МЕТ793 (водородная) ТНR854 (водородная)
KN602	102	O N NH	-10.720	-76.023	-10.719	-10.720	-65.417	ASP855 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN603	103	N O NH N H	-10.716	-80.917	-10.776	-10.716	-53.978	МЕТ793 (водородная) РНЕ856 (π-π)
KN604	104	O E O NH N'S	-10.713	-74.861	-10.713	-10.713	-53.624	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN605	105		-10.708	-63.933	-10.704	-10.708	-55.726	GLN791 (водородная) МЕТ793 (водородная)
KN606	106		-10.703	-87.289	-10.705	-10.703	-66.076	ТНR854 (водородная) РНE856 (π-π)

1	2	3	4	5	6	7	8	9
KN607	107	HN O H	-10.705	-78.508	-10.703	-10.705	-65.041	МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)
KN608	108	N-NH N HN O NH	-10.721	-76.956	-10.702	-10.721	-52.339	МЕТ793 (водородная) ТНR854 (водородная)
KN609	109	N N N N N N N N N N N N N N N N N N N	-10.702	-87.944	-10.752	-10.702	-50.496	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN610	110	H O NH N	-10.738	-77.151	-10.699	-10.738	-58.797	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-катионная)

1	2	3	4	5	6	7	8	9
KN611	111	N-O NH	-10.696	-79.051	-10.698	-10.696	-66.195	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (π-π)
KN612	112	OH OH HN NN NH	-10.696	-82.924	-10.683	-10.696	-60.532	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN613	113	ONH N N N CI	-10.668	-82.180	-10.668	-10.668	-61.241	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN614	114	F F O NH	-10.665	-75.723	-10.667	-10.665	-55.398	МЕТ793 (водородная) ТНR854 (водородная) РНЕ856 (π-π)
KN615	115	O O NH N S NH N O	-10.664	-72.175	-10.664	-10.664	-51.079	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)

1	2	3	4	5	6	7	8	9
KN616	116		-10.661	-63.904	-10.658	-10.661	-51.230	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN617	117	O O O O O O O O O O O O O O O O O O O	-10.656	-80.479	-10.687	-10.656	-63.435	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)
KN618	118	N N N N N N N N N N N N N N N N N N N	-10.654	-77.674	-10.654	-10.654	-60.835	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (π-π)
KN619	119	Cl NH NH	-10.776	-54.044	-10.647	-10.776	-62.609	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN620	120	CI—N ON HN-S O	-10.645	-82.267	-10.645	-10.645	-61.170	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN380	121	O NH NH	-10.651	-68.288	-10.644	-10.651	-59.200	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN621	122	HN O NH	-10.661	-83.133	-10.643	-10.661	-60.843	ASP855 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN622	123	HN N N H ₂ N	-10.680	-79.813	-10.640	-10.680	-57.247	ASP855 (водородная, солевой мостик) МЕТ793 (водородная) РНЕ856 (π-π)
KN383	124	OH OH NH	-10.640	-93.907	-10.640	-10.640	-67.408	ASP855 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN623	125	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.639	-81.596	-10.635	-10.639	-63.606	ALA722 (водородная) ASN842 (водородная) ASP837 (водородная) ASP855 (водородная) MET793 (водородная)
KN624	126	N N S O NH	-10.630	-69.195	-10.630	-10.630	-58.799	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная) PHE856 (π-π)
KN253	127	Cl NH NH	-10.628	-79.464	-10.630	-10.628	-65.951	GLN791 (водородная) МЕТ793 (водородная)
KN625	128	H N O O N	-10.630	-73.483	-10.627	-10.630	-25.994	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)

1	2	3	4	5	6	7	8	9
KN626	129	O H O N F F	-10.625	-76.155	-10.625	-10.625	-53.547	GLN791 (водородная) МЕТ793 (водородная)
KN627	130	NH NH	-10.625	-73.655	-10.623	-10.625	-42.302	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN628	131	N N N N N N	-10.718	-87.991	-10.621	-10.718	-60.974	МЕТ793 (водородная) РНЕ856 (π-π)
KN629	132	+H ₂ NH	-10.673	-70.289	-10.619	-10.673	-61.398	ASP855 (водородная) МЕТ793 (водородная)
KN630	133	O N N N N N N N N N N N N N N N N N N N	-10.616	-90.488	-10.615	-10.616	-65.099	GLN791 (водородная) МЕТ793 (водородная) ТНR790 (водородная)

1	2	3	4	5	6	7	8	9
KN631	134	O O NH	-10.611	-75.161	-10.611	-10.611	-68.558	ALA722 (водородная) ASN842 (водородная) ASP837 (водородная) ASP855 (водородная) MET793 (водородная)
KN632	135	HN O N N N N N N N N N N N N N N N N N N	-10.612	-85.882	-10.608	-10.612	-63.380	LYS745 (водородная) PHE856 (π-π)
KN633	136	O N O O O O O O O O O O O O O O O O O O	-10.608	-64.605	-10.608	-10.608	-44.134	ASN842 (водородная) ASP855 (водородная) MET793 (водородная)
KN428	137	O NH N	-10.609	-81.259	-10.607	-10.609	-63.564	ASP855 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

Таблица A.6 –EGFRT790M (PDB: 2JIU)

Код	No	Структура	Glide	Glide	Docking	XP	MMGBSA	Ключевые взаимодействия
соединения			gscore	emodel	score	gscore	dG Bind	
1	2	3	4	5	6	7	8	9
KN634	1	HO OH NH	-12.429	-77.901	-12.427	-12.429	-64.483	ASN842 (водородная) ASP855 (водородная) ARG841 (водородная) MET793 (водородная)
KN635	2	HO OH OH N N N H	-12.298	-73.602	-12.298	-12.298	-53.473	МЕТ793 (водородная) THR854 (водородная)
KN636	3	HN O NH	-11.452	-82.906	-11.450	-11.452	-55.759	МЕТ793 (водородная) LEU788 (водородная) LYS745 (π-катионная)
KN637	4	HN N N N N N N N N N N N N N N N N N N	-11.439	-77.052	-11.439	-11.439	-45.160	ASN842 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (π — π)

1	2	3	4	5	6	7	8	9
KN638	5	O O NH	-11.356	-77.591	-11.354	-11.356	-56.711	ASP855 (водородная) МЕТ793 (водородная)
KN639	6	ON NH ON NH ON NH	-11.339	-75.790	-11.339	-11.339	-42.063	ASP855 (водородная) МЕТ793 (водородная)
KN640	7	O NH NH	-11.323	-75.764	-11.321	-11.323	-54.369	ASN842 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)
KN641	8	F NH ONH NH ON NH NH	-11.314	-81.969	-11.314	-11.314	-48.697	ASP855 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN642	9	F H O NH	-11.247	-80.720	-11.246	-11.247	-52.996	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN643	10	HO N N N H	-11.232	-70.908	-11.232	-11.232	-51.962	МЕТ793 (водородная) ТНR854 (водородная)
KN644	11	HN-N N N N N	-11.503	-88.497	-11.228	-11.503	-53.586	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN645	12	O NH N S N O NH HO HO NH	-11.225	-78.352	-11.225	-11.225	-29.507	МЕТ793 (водородная) ТНR854 (водородная)
KN646	13	HN O O O	-11.143	-77.004	-11.140	-11.143	-46.227	ASP855 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN647	14	HN., NH ON NH	-11.159	-78.882	-11.131	-11.159	-50.201	ASP855 (водородная) МЕТ793 (водородная)
KN648	15	F NH NH NH H ₂	-11.131	-74.087	-11.121	-11.131	-59.823	МЕТ793 (водородная)
KN649	16	O NH N N S N	-11.112	-84.137	-11.112	-11.112	-49.268	МЕТ793 (водородная) LYS745 (π-катионная)
KN650	17	P NH NH N	-11.099	-78.908	-11.096	-11.099	-44.126	МЕТ793 (водородная) LYS745 (π-катионная)
KN651	18	O NH NH O	-11.071	-77.061	-11.071	-11.071	-44.757	МЕТ793 (водородная) ТНR854 (водородная)
KN652	19	F N N N N N N N N N N N N N N N N N N N	-11.065	-85.667	-11.063	-11.065	-60.031	МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN653	20	O NH O S NH	-11.056	-78.655	-11.053	-11.056	-51.977	МЕТ793 (водородная)
KN654	21	O NH NH	-11.050	-66.712	-11.048	-11.050	-39.502	МЕТ793 (водородная) LYS745 (π-катионная)
KN655	22	CI N N NH	-11.044	-90.197	-11.043	-11.044	-62.817	МЕТ793 (водородная) THR854 (водородная)
KN656	23	The second secon	-11.011	-71.967	-11.006	-11.011	-52.213	АSP855 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN657	24	F O NH NH O NH	-10.994	-81.410	-10.994	-10.994	-57.725	МЕТ793 (водородная)
KN658	25	N O F OH F	-10.939	-63.558	-10.938	-10.939	-44.935	ASP855 (водородная) МЕТ793 (водородная)
KN659	26	H + H O N-NH O	-11.097	-64.982	-10.924	-11.097	-42.132	GLI791 (водородная) MET793 (водородная) PRO794 (водородная)
KN660	27	N N N N NH	-10.930	-75.240	-10.910	-10.930	-51.722	МЕТ793 (водородная) РНЕ723 (водородная)
KN661	28		-10.909	-83.124	-10.909	-10.909	-38.320	МЕТ793 (водородная)
KN662	29	H O NH	-10.882	-77.054	-10.882	-10.882	-49.147	ASP855(водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN663	30	O H O O O O O O O O O O O O O O O O O O	-10.853	-76.479	-10.853	-10.853	-40.982	ASN842(водородная) МЕТ793 (водородная)
KN664	31	HN O N F	-10.841	-83.344	-10.841	-10.841	-53.363	МЕТ793 (водородная) LYS745 (водородная)
KN665	32	OH NH O	-10.819	-77.419	-10.819	-10.819	-47.991	ASP855(водородная) МЕТ793 (водородная)
KN666	33	O NH NH	-10.809	-70.773	-10.807	-10.809	-58.879	МЕТ793 (водородная)
KN667	34	HN O N	-10.805	-67.526	-10.798	-10.805	-46.900	МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN668	35	O NH NH	-10.797	-78.827	-10.797	-10.797	-50.354	МЕТ793 (водородная)
KN669	36	O H N NH	-10.875	-73.455	-10.796	-10.875	-54.513	МЕТ793 (водородная) LYS745 (π-катионная)
KN670	37	O N N N H N N N N N N	-10.791	-75.604	-10.790	-10.791	-52.322	МЕТ793 (водородная) LYS745 (π-катионная) PHE723 (водородная)
KN671	38	NH OH OH	-10.790	-77.770	-10.789	-10.790	-52.417	ASP855(водородная) МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN672	39	H HO O NH	-10.780	-72.969	-10.780	-10.780	-54.841	МЕТ793 (водородная) LYS745 (π-катионная)
KN673	40	N NH NH2	-10.820	-71.372	-10.780	-10.820	-51.044	ASP855 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (π-катионная)
KN674	41	HN O O O	-10.781	-76.625	-10.778	-10.781	-49.933	МЕТ793 (водородная) LYS745 (π-катионная)
KN675	42	O NH N NH N NH ₂	-10.805	-64.956	-10.775	-10.805	-57.261	ASP855 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN676	43	CI N NH NH	-10.767	-74.259	-10.764	-10.767	-51.953	МЕТ793 (водородная)
KN677	44	HO O NH	-10.763	-68.078	-10.762	-10.763	-45.126	МЕТ793 (водородная) LYS745 (π-катионная)
KN678	45	O S N N N N N N N N N N N N N N N N N N	-10.743	-66.932	-10.743	-10.743	-56.067	МЕТ793 (водородная) РНЕ723 (водородная)
KN679	46	HO HO N N H	-10.729	-72.606	-10.729	-10.729	-52.368	МЕТ793 (водородная) ТНR854 (водородная)
KN680	47	O N NH NH	-10.720	-79.541	-10.718	-10.720	-61.954	МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN681	48	O NH	-10.717	-73.038	-10.716	-10.717	-62.668	МЕТ793 (водородная) LYS745 (π-катионная)
KN682	49	O N N N O-N NH	-10.712	-81.422	-10.710	-10.712	-50.685	МЕТ793 (водородная)
KN683	50	O NH NH NH	-10.708	-62.745	-10.708	-10.708	-38.108	АSP855 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (π-катионная)
KN684	51	N H HN NH	-10.711	-73.807	-10.708	-10.711	-44.134	МЕТ793 (водородная) LYS745 (π-катионная)
KN685	52	H_2N N N N N N N N N N	-10.698	-72.414	-10.698	-10.698	-55.339	МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN686	53	H N N N N N N N N N N N N N N N N N N N	-10.728	-77.611	-10.692	-10.728	-53.819	МЕТ793 (водородная) ТНR854 (водородная) LYS745 (π-катионная)
KN687	54	F O NH S NH	-10.687	-73.321	-10.687	-10.687	-42.661	ASP855 (водородная) МЕТ793 (водородная)
KN688	55	N N N N N N N N N N N N N N N N N N N	-10.685	-85.021	-10.682	-10.685	-61.716	МЕТ793 (водородная)
KN689	56	H_2N N N N N N N N N N	-10.650	-67.322	-10.650	-10.650	-53.464	МЕТ793 (водородная) ТНR854 (водородная)
KN689	57	HN O N O	-10.647	-77.463	-10.647	-10.647	-56.574	МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN690	58	O H N NH NH	-10.646	-79.190	-10.644	-10.646	-63.779	МЕТ793 (водородная)
KN691	59	H N N N H ₂	-10.697	-64.806	-10.644	-10.697	-50.747	ASP855 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (π-катионная)
KN692	60	F O N NH	-10.645	-74.492	-10.642	-10.645	-60.049	МЕТ793 (водородная)
KN693	61	F N NH	-10.640	-76.529	-10.638	-10.640	-49.813	МЕТ793 (водородная)
KN694	62	HN O O O	-10.638	-80.944	-10.638	-10.638	-54.791	МЕТ793 (водородная)
KN695	63	OH ON NH	-10.622	-76.299	-10.622	-10.622	-53.907	МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN696	64	O OH	-10.616	-72.959	-10.616	-10.616	-43.215	ARG841 (водородная) МЕТ793 (водородная)
KN697	65	HN S' NH	-10.615	-74.013	-10.615	-10.615	-49.500	МЕТ793 (водородная)
KN698	66	O HN O N S N S N N N N N N N N N N N N N N N N	-10.590	-68.150	-10.590	-10.590	-51.434	МЕТ793 (водородная) РНЕ723 (водородная)
KN699	67	ON SOO	-10.587	-74.205	-10.587	-10.587	-37.969	ASP855 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)
KN700	68	F N N N N H	-10.583	-67.685	-10.582	-10.583	-56.363	МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN701	69	N N N N N N N N N N N N N N N N N N N	-10.674	-75.091	-10.575	-10.674	-62.502	ASP855 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (π-катионная)
KN702	70	HN O OH	-10.576	-63.140	-10.573	-10.576	-51.457	ASN842 (водородная) ARG841 (водородная) MET793 (водородная)
KN703	71	HN N O N N H	-10.568	-64.420	-10.568	-10.568	-54.182	МЕТ793 (водородная) РНЕ723 (водородная)

1	2	3	4	5	6	7	8	9
KN704	72	HN O O O	-10.562	-74.975	-10.559	-10.562	-44.850	МЕТ793 (водородная) LYS745 (π-катионная)
KN705	73	ON N N NH2 HN N N N NH2	-10.573	-75.368	-10.558	-10.573	-52.299	ASN842 (водородная) МЕТ793 (водородная)
KN706	74	H NH NH	-10.603	-85.678	-10.556	-10.603	-62.679	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN707	75	O NH NH	-10.551	-74.167	-10.548	-10.551	-52.510	МЕТ793 (водородная) LYS745 (π-катионная)
KN708	76	HN O H O N N N N N N N N N N N N N N N N	-10.547	-81.325	-10.547	-10.547	-50.637	МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN709	77	N O O O H N N N N N N N N N N N N N N N	-10.583	-82.332	-10.540	-10.583	-56.204	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN710	78	F—————————————————————————————————————	-10.540	-73.329	-10.540	-10.540	-49.240	МЕТ793 (водородная) LYS745 (π-катионная)
KN711	79	HO'.	-10.526	-72.835	-10.526	-10.526	-46.270	ASP855 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN712	80	HN HN O	-10.531	-72.356	-10.524	-10.531	-46.425	МЕТ793 (водородная)
KN713	81	Cl O NH	-10.526	-78.543	-10.524	-10.526	-62.509	МЕТ793 (водородная) LYS745 (π-катионная)
KN714	82	$S \longrightarrow N$ N N N N N N N N N	-10.526	-71.294	-10.524	-10.526	-57.167	МЕТ793 (водородная)
KN715	83	CI F O N S NH O NH	-10.523	-83.671	-10.523	-10.523	-47.567	ASP855 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN716	84	H N O O O O O O O O O O O O O O O O O O	-10.559	-69.271	-10.520	-10.559	-43.773	МЕТ793 (водородная) РНЕ723 (водородная)
KN717	85	N N N N N N N N N N N N N N N N N N N	-10.520	-74.818	-10.518	-10.520	-56.217	МЕТ793 (водородная) LYS745 (π-катионная)
KN718	86	$F \stackrel{\text{O}}{\longleftarrow} N \\ F \stackrel{\text{N}}{\longleftarrow} N \\ H \stackrel{\text{N}}{\longrightarrow} N \\ H$	-10.521	-74.558	-10.517	-10.521	-44.041	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN719	87	HN O O	-10.503	-73.404	-10.500	-10.503	-54.720	МЕТ793 (водородная) LYS745 (π-катионная)
KN720	88	N N N NH NH N NH H	-10.492	-78.938	-10.491	-10.492	-57.986	МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN721	89	HN O N O	-10.486	-76.171	-10.486	-10.486	-51.964	МЕТ793 (водородная)
KN722	90	HN O NO	-10.486	-64.436	-10.486	-10.486	-51.180	МЕТ793 (водородная) РНЕ723 (водородная)
KN723	91	O NH NH3	-10.504	-65.921	-10.475	-10.504	-55.815	ASP855 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (π-катионная)
KN724	92	ON NH ON NH	-10.472	-74.262	-10.472	-10.472	55.815	МЕТ793 (водородная) ТНR854 (водородная)

1	2	3	4	5	6	7	8	9
KN725	93	$ \begin{array}{c c} N & O & N \\ N-O & HN-S & NH \end{array} $	-10.481	-82.355	-10.471	-10.481	-42.665	МЕТ793 (водородная)
KN726	94	F O N NH	-10.470	-70.091	-10.467	-10.470	-55.043	МЕТ793 (водородная)
KN727	95	H N O NH	-10.466	-77.977	-10.465	-10.466	-47.209	МЕТ793 (водородная) LYS745 (π-катионная) THR854 (водородная)
KN728	96	HN NH ON NH	-10.472	-62.560	-10.461	-10.472	-36.522	МЕТ793 (водородная) РНЕ723 (водородная)
KN729	97	O S N NH	-10.455	-69.243	-10.455	-10.455	-53.702	МЕТ793 (водородная) РНЕ723 (водородная)

1	2	3	4	5	6	7	8	9
KN730	98	HN O S S S S S S S S S S S S S S S S S S	-10.452	-77.279	-10.450	-10.452	-47.131	ASN842 (водородная) ASP855 (водородная) MET793 (водородная) LYS745 (π-катионная)
KN731	99	O H N N N N N N N N N N N N N N N N N N	-10.445	-77.992	-10.445	-10.445	-42.895	ASN842 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)
KN732	100	O NH NH N	-10.445	-70.095	-10.445	-10.445	-54.903	МЕТ793 (водородная) LYS745 (π-катионная)
KN733	101	H_2N N N N N N N N N N	-10.444	-68.651	-10.444	-10.444	-51.624	МЕТ793 (водородная) ТНR854 (водородная)
KN734	102	HN O NH NH	-10.525	-62.806	-10.443	-10.525	-48.787	МЕТ793 (водородная) LYS745 (водородная) PHE723 (водородная)

1	2	3	4	5	6	7	8	9
KN735	103	HO OH N N N H	-10.441	-71.859	-10.441	-10.441	-48.298	МЕТ793 (водородная) THR854 (водородная)
KN736	104	HN O H O NH	-10.434	-67.145	-10.434	-10.434	-43.000	МЕТ793 (водородная) РНЕ723 (водородная)
KN737	105	HN O	-10.436	-67.816	-10.433	-10.436	-54.553	МЕТ793 (водородная) LYS745 (водородная) PHE723 (водородная)
KN738	106	S O NH N H N N	-10.429	-80.621	-10.426	-10.429	-51.167	МЕТ793 (водородная) LYS745 (водородная)
KN739	107	HN O NH NH	-10.428	-71.582	-10.426	-10.428	-37.737	МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN740	108	ON NO NO OH	-10.416	-84.038	-10.416	-10.416	-48.864	МЕТ793 (водородная)
KN741	109	N N N N N N N N N N N N N N N N N N N	-10.417	-66.764	-10.415	-10.417	-51.966	МЕТ793 (водородная) LYS745 (π-катионная)
KN742	110	O H O N N N N N N N N N N N N N N N N N	-10.407	-79.372	-10.407	-10.407	-48.562	МЕТ793 (водородная) LYS745 (π-катионная)
KN743	111	HN O HN NH	-10.409	-77.912	-10.407	-10.409	-57.827	ASP855 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)
KN744	112	CI O NH	-10.405	-72.685	-10.402	-10.405	-51.536	МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN745	113	O NH NH NH	-10.401	-71.529	-10.398	-10.401	-47.811	МЕТ793 (водородная)
KN746	114	H N NH2	-10.393	-67.957	-10.393	-10.393	-50.232	МЕТ793 (водородная)
KN747	115	O HN N N N N N N N N	-10.389	-79.687	-10.386	-10.389	-56.696	МЕТ793 (водородная) LYS745 (π-катионная)
KN748	116	HN O N N	-10.384	-72.378	-10.384	-10.384	-50.129	МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN749	117	H_2N H N H N H N H N	-10.380	-77.354	-10.380	-10.380	-51.641	МЕТ793 (водородная) LYS745 (водородная) PHE723 (водородная)
KN750	118	F S N NH	-10.377	-66.922	-10.375	-10.377	-53.800	МЕТ793 (водородная)
KN751	119	HN O HO O	-10.380	-75.643	-10.373	-10.380	-52.239	МЕТ793 (водородная)
KN752	120	N=N O NH	-10.411	-86.352	-10.361	-10.411	-44.802	МЕТ793 (водородная)
KN753	121	HN O N N H	-10.385	-61.057	-10.360	-10.385	-46.612	МЕТ793 (водородная) РНЕ723 (водородная)

1	2	3	4	5	6	7	8	9
KN754	122	$\begin{array}{c} N \\ N $	-10.357	-67.186	-10.357	-10.357	-48.512	АSN842 (водородная) АSP834 (водородная, солевой мостик) АSP855 (водородная, солевой мостик) АRG841 (водородная) МЕТ793 (водородная) РНЕ723 (π-катионная, водородная)
KN755	123	F O S NH	-10.356	-77.700	-10.356	-10.356	-52.548	МЕТ793 (водородная)
KN756	124	O NH NH H	-10.355	-73.209	-10.352	-10.355	-60.898	МЕТ793 (водородная)
KN757	125	O O O H N O NH	-10.350	-78.829	-10.350	-10.350	-41.192	ASN842 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN758	126	H ₂ N N	-10.345	-56.648	-10.334	-10.345	-37.316	GLN721 (водородная) МЕТ793 (водородная)
KN759	127	O NH HO	-10.331	-64.757	-10.327	-10.331	-45.098	GLN721 (водородная) LYS745 (π-катионная) PHE723 (водородная)
KN760	128	F N N N N N N N N N N N N N N N N N N N	-10.329	-71.869	-10.326	-10.329	-46.803	МЕТ793 (водородная) LYS745 (π-катионная)
KN761	129	H_2 H_1 H_2 H_2 H_1 H_2 H_2 H_3 H_4 H_5 H_5 H_7 H_8	-10.337	-77.858	-10.322	-10.337	-59.978	МЕТ793 (водородная) LYS745 (π-катионная)
KN762	130	HN O O O O O O O O O O O O O O O O O O O	-10.321	-78.491	-10.321	-10.321	-56.138	МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN763	131	HN O N N N N N N N N N N N N N N N N N N	-10.318	-82.403	-10.314	-10.318	-50.291	МЕТ793 (водородная) LYS745 (π -катионная)
KN764	132	HN O H OH	-10.312	-74.256	-10.312	-10.312	-47.263	ASP855 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN765	133	HN O O O NH NH	-10.314	-74.947	-10.311	-10.314	-39.094	МЕТ793 (водородная) LEU788 (водородная)
KN766	134	HO NH NH	-10.311	-76.264	-10.311	-10.311	-57.950	МЕТ793 (водородная) LYS745 (π-катионная)
KN767	135	$0 \qquad 0 \qquad S \qquad N \qquad N$	-10.309	-79.327	-10.309	-10.309	-56.309	GLY724 (водородная) МЕТ793 (водородная) РНЕ723 (водородная)
KN768	136	O NH NH NH	-10.323	-77.175	-10.299	-10.323	-52.902	ASP855 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN769	137	O NH NHO HO NHO	-10.297	-75.304	-10.297	-10.297	-49.968	ARG841 (водородная) МЕТ793 (водородная)
KN770	138	$H_2N \xrightarrow{N} H$	-10.294	-66.174	-10.294	-10.294	-54.616	ASP855 (водородная) GLU762 (водородная) MET793 (водородная)
KN771	139	+NH HN S O N NH	-10.356	-68.570	-10.289	-10.356	-50.817	ASP855 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)
KN772	140	HN NH	-10.963	-68.205	-10.287	-10.963	-52.563	МЕТ793 (водородная) РНЕ723 (водородная)

Таблица A.7 –EGFRT790M/L858R (1) (PDB: 5HIC)

Код соединения	№	Структура	Glide gscore	Glide emodel	Docking score	XP gscore	MMGBSA dG Bind	Ключевые взаимодействия
1	2	3	4	5	6	7	8	9
KN773	1	OH OH OH	-13.455	-88.395	-13.455	-13.455	-58.996	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LEU718 (водородная) LYS745 (водородная)
KN774	2	OH OH OH	-13.372	-83.595	-13.372	-13.372	-59.245	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN775	3	HO NH NH	-12.994	-77.306	-12.994	-12.994	-59.860	ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN776	4	O NH NH NH N	-12.863	-83.007	-12.863	-12.863	-55.884	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN635	5	HO OH OH N N N H	-12.810	-85.513	-12.810	-12.810	-63.334	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) LEU718 (водородная)
KN777	6	N-NH O NH NH	-13.151	-79.151	-12.695	-13.151	-69.765	АRG841 (водородная) ASP855 (водородная) CYS797 (водородная) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE723 (<i>п</i> - <i>п</i>)
KN778	7	S N N N N N N N N N N N N N N N N N N N	-12.619	-93.280	-12.619	-12.619	-57.204	ARG841 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN779	8	O H N NH HN N N	-12.982	-85.412	-12.588	-12.982	-62.553	ARG841 (водородная) ASP855 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN780	9	S NH	-12.498	-71.937	-12.415	-12.498	-57.387	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE723 (π-катионная)

1	2	3	4	5	6	7	8	9
KN781	10	O N N N N H	-12.380	-76.748	-12.378	-12.380	-57.423	ARG841 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN782	11	H ₂ N N N N	-12.310	-87.269	-12.290	-12.310	-72.228	ARG841 (водородная) ASP800 (водородная) GLU804 (солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE795 (водородная)
KN783	12	O NH NH N	-12.287	-60.496	-12.283	-12.287	-44.055	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN784	13	ON NH NH	-12.257	-69.535	-12.255	-12.257	-52.222	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN785	14	O O NH NH	-12.193	-67.320	-12.193	-12.193	-48.852	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN786	15	NH OH H	-12.144	-68.985	-12.144	-12.144	-44.339	АSP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная) PHE723 (π-катионная)
KN787	16	HN O NH, NH, F	-12.170	-74.449	-12.143	-12.170	-64.002	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)
KN788	17	NH ₂ NH NH NH NH NH	-12.136	-87.170	-12.116	-12.136	-67.216	ASP800 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN789	18	H ₂ HN-N N H	-12.115	-84.382	-12.115	-12.115	-62.007	ASP800 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) МЕТ793 (водородная)
KN790	19	HN-N O HN-N H	-12.082	-77.192	-12.073	-12.082	-56.046	GLN791 (водородная) МЕТ793 (водородная) РНЕ723 (π-π)
KN791	20	H_2N N H_2 H_N N	-12.053	-89.638	-12.053	-12.053	-68.431	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLU762 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN792	21	N O NH NH	-12.052	-73.873	-12.052	-12.052	-57.505	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN679	22	HO HO N H	-12.042	-75.696	-12.042	-12.042	-61.359	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN793	23	HN N NH	-12.396	-61.515	-11.983	-12.396	-41.547	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN794	24	HN-S O NH	-11.944	-71.527	-11.940	-11.944	-51.359	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN795	25	N-NH O NH	-11.188	-75.980	-11.861	-11.188	-64.336	ARG841 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN796	26	HN H N NH	-11.863	-67.744	-11.848	-1.863	-64.974	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)

1	2	3	4	5	6	7	8	9
KN800	27	HN N O N O N O N O N O N O N O N O N O N	-11.836	-72.222	-11.834	-11.836	-55.852	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-π)
KN801	28	HN O O NH NH	-11.823	-72.317	-11.823	-11.823	-58.119	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN802	29	NH O NH NH H	-11.863	-84.293	-11.801	-11.863	-53.385	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN158	30	HN N O O HN	-11.787	-63.854	-11.785	-11.787	-46.180	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-π)
KN803	31	H O H N NH NH O NH	-11.823	-89.918	-11.765	-11.823	-73.107	ASP800 (водородная) ASP855 (водородная, солевой мостик) CYS797 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN804	32	HO O NH	-11.767	-82.274	-11.763	-11.767	-64.201	ARG841 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN805	33	NH ₃ O N N N N N N N N N N N N N N N N N N	-11.785	-68.325	-11.759	-11.785	-50.148	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN806	34	N S NH NH	-12.258	-82.786	-11.748	-12.258	-61.646	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN807	35	O NH NH	-11.744	-67.079	-11.743	-11.744	-53.932	АSP855 (водородная, солевой мостик)
KN808	36	HN N N OH	-11.728	-78.567	-11.728	-11.728	-55.173	ASN842 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN809	37	H ₃ N ₁ , N _N N	-11.670	-90.157	-11.669	-11.670	-52.421	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN810	38	N-NH H H	-12.242	-78.022	-11.666	-12.242	-61.562	ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN811	39	H ₃ N,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-11.649	-82.183	-11.648	-11.649	-59.310	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN812	40	HN N N N N N N N N N N N N N N N N N N	-11.655	-71.399	-11.647	-11.655	-56.189	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN813	41	HO NH	-11.636	-73.517	-11.636	-11.636	-61.881	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная)
KN814	42	HN O N N N N N N N N N N N N N N N N N N	-11.669	-64.098	-11.629	-11.669	-57.267	ASP855 (водородная) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN815	43	Br O N H NH	-11.610	-66.349	-11.610	-11.610	-59.371	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN816	44	H_2N N N N N N N N N N	-11.609	-87.096	-11.609	-11.609	-66.319	АSP855 (водородная, солевой мостик)

1	2	3	4	5	6	7	8	9
KN817	45	N NH	-11.651	-83.417	-11.607	-11.651	-50.974	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) МЕТ793 (водородная)
KN818	46	HO O NH	-11.600	-78.266	-11.600	-11.600	-51.482	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная)
KN819	47	NH O NH	-11.626	-74.789	-11.583	-11.626	-54.946	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN820	48	O N NH NH	-11.607	-87.880	-11.583	-11.607	-49.973	ASP855 (водородная) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN821	49	H_{3N} H_{N} N	-11.573	-80.517	-11.572	-11.573	-57.362	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN822	50	HN N H	-11.977	-75.139	-11.567	-11.977	-66.514	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN823	51	O NH NH	-11.583	-63.909	-11.563	-11.583	-47.506	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) РНЕ723 (π-катионная)
KN824	52	H ₃ N,,, HN N N CI	-11.534	-89.071	-11.534	-11.534	-57.194	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN825	53	S NH NH	-11.636	-74.005	-11.512	-11.636	-56.669	ARG841 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN826	54	O NH N N N H OH	-11.503	-71.193	-11.503	-11.503	-65.739	GLN791 (водородная) МЕТ793 (водородная) LEU718 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN827	55	O NH NH ₂ NH	-11.515	-94.056	-11.500	-11.515	-57.512	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN828	56	O NH NH	-11.495	-76.096	-11.494	-11.495	-63.924	ARG841 (водородная) MET793 (водородная) LYS745 (водородная)
KN829	57	HN O H NH	-11.517	-69.798	-11.491	-11.517	-66.515	АSP855 (водородная, солевой мостик)
KN830	58	HN F	-11.490	-85.389	-11.489	-11.490	-56.026	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN831	59	H_2N N N N N N N N N N	-11.592	-84.029	-11.485	-11.592	-61.833	GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LEU718 (водородная) THR854 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN832	60	O NH NH NH H	-11.504	-87.188	-11.477	-11.504	-58.709	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN833	61	HO. N H N H N N N N N N N N N N N N N N N	-11.488	-71.078	-11.475	-11.488	-56.157	ASP855 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN834	62	F-NH O NH	-12.079	-75.648	-11.472	-12.079	-55.651	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN835	63	O OH NH	-11.472	-78.496	-11.471	-11.472	-64.133	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN836	64	O N N N N H	-11.473	-66.017	-11.455	-11.473	-53.148	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN837	65	O NH HN O N N N NH	-11.453	-62.979	-11.449	-11.453	-40.769	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN838	66	H O NH NH	-12.167	-71.995	-11.447	-12.167	-50.856	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN839	67	$\bigvee_{\substack{N\\N\\H}}\bigvee_{H_2}^{\uparrow}\bigvee_{NH}^{NH}$	-11.854	-72.714	-11.443	-11.854	-63.021	ASP855 (водородная, солевой мостик)
KN840	68	H ₃ N' N H N N H	-11.543	-70.880	-11.440	-11.543	-52.949	ASP855 (водородная, солевой мостик) СҮS797 (водородная) GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN841	69	H ₃ [†] NH NH S	-11.486	-86.962	-11.439	-11.486	-59.675	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN842	70	NH ₃ H NH N	-11.438	-85.502	-11.438	-11.438	-65.267	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная)
KN843	71	HOOOOH2.N.H	-11.450	-62.755	-11.437	-11.450	-57.258	АSP855 (водородная, солевой мостик) ASN842 (водородная) ARG841 (водородная) GLN791 (водородная) МЕТ793 (водородная)
KN844	72	HN O O N N N N N N N N N N N N N N N N N	-11.695	-60.646	-11.437	-11.695	-23.833	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN845	73	HN NO NH ₂	-11.411	-79.219	-11.410	-11.411	-55.818	ASP800 (водородная) GLU762 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN846	74	O NH N O NH ₂	-11.405	-71.007	-11.405	-11.405	-54.002	ASP800 (водородная) GYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN847	75	F O NH	-11.440	-80.535	-11.397	-11.440	-59.749	АSP855 (водородная, солевой мостик)
KN848	76	HO N N H	-11.378	-75.883	-11.378	-11.378	-60.135	GLN791 (водородная) МЕТ793 (водородная) LYU718 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN849	77	H ₃ N, O	-11.372	-67.126	-11.372	-11.372	-47.928	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN850	78	N N N N N N N N N N N N N N N N N N N	-11.361	-66.268	-11.361	-11.361	-39.249	ARG841 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN851	79	O N NH N	-11.402	-87.228	-11.356	-11.402	-48.881	ASP855 (водородная) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN852	80		-11.354	-70.630	-11.351	-11.354	-81.882	АSP855 (водородная, солевой мостик) АSN842 (водородная) GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9

KN853	81	N N N N N N N N	-11.335	-70.719	-11.333	-11.335	-45.548	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN854	82	O S N N N N N N N N N N N N N N N N N N	-11.329	-80.819	-11.328	-11.329	-60.575	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) МЕТ793 (водородная)
KN855	83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.321	-79.255	-11.315	-11.321	-60.590	АSP855 (водородная, солевой мостик)
KN856 Продолжени	84	N NH NH	-11.511	-67.886	-11.308	-11.511	-59.856	ASP800 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная)

KN857	85		-11.307	-79.493	-11.307	-11.307	-59.805	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN858	86	H ₃ N,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-11.306	-80.157	-11.306	-11.306	-58.354	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN859	87	HN O NH3	-11.296	-75.097	-11.296	-11.296	-56.606	АSP855 (водородная, солевой мостик) АSN842 (водородная) GLN791 (водородная) МЕТ793 (водородная)
KN860	88	HO N N N N N N N N N N N N N N N N N N N	-11.295	-71.448	-11.295	-11.295	-41.769	ASP855 (водородная) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN861	89	HO N N H	-11.294	-74.386	-11.294	-11.294	-61.732	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LEU718 (водородная) LYS745 (водородная)

1 2	2 3	4	5	6	7	8	9

KN862	90	H N N H N N N N H	-11.699	-80.661	-11.286	-11.699	-61.003	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN863	91	H ₃ N NH	-11.281	-57.025	-11.281	-11.281	-36.563	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN864	92	H_2N N N N N N N N N N	-11.276	-84.331	-11.276	-11.276	-56.951	GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN865	93	HN O NH ₂	-11.257	-73.162	-11.257	-11.257	-51.670	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная)
KN866	94	HO NH NH	-11.249	-72.449	-11.249	-11.249	-68.949	АSP855 (водородная, солевой мостик)

KN867	95	N N N N N N N N N N N N N N N N N N N	-11.308	-70.903	-11.247	-11.308	-53.451	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) МЕТ793 (водородная)
KN868	96	HN O O N N N N N N N N N N N N N N N N N	-11.247	-75.071	-11.247	-11.247	-52.584	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN869	97	H +N OH H NH	-11.319	-67.801	-11.239	-11.319	-51.223	АSP855 (водородная, солевой мостик)

1	2	3	4	5	6	7	8	9

	N N N N N N N N N N N N N N N N N N N	-11.640	-76.056	-11.229	-11.640	-62.655	ASP855 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
99	N N N N N N N N N N N N N N N N N N N	-11.810	-76.011	-11.221	-11.810	-59.995	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ723 (π-π)
100	O S N N N N N N N N N N N N N N N N N N	-11.204	-79.221	-11.204	-11.204	-61.358	ASP855 (водородная, солевой мостик)
101	+ NH ₃	-11.188	-56.133	-11.188	-11.188	-46.113	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
102	H_2N N N N N N N N	-11.295	-73.850	-11.188	-11.295	-59.848	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
•	100	$100 \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

KN875	103	Ost, O ON ON NH	-11.189	-81.401	-11.187	-11.189	-51.212	ASP800 (водородная, солевой мостик) ARG841 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN876	104	O NH	-11.188	- 81.985	-11.186	-11.188	-57.443	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN877	105	O NH NH ₂ N H	-11.199	-81.428	-11.184	-11.199	-58.216	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN878	106	H_2N H_1 H_2 H_2 H_3 H_4	-11.181	-73.909	-11.181	-11.181	-58.910	ASP800 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)

1	2	3	4	5	6	7	8	9
KN879	107	H_3 N N O N H	-11.241	-47.476	-11.175	-11.241	-36.124	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN880	108	N NH NH NH	-11.255	-73.9520	-11.174	-11.255	-53.024	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN881	109	NH ₂ N S N N N N N N N N N N N N N N N N N	-11.291	-65.742	-11.172	-11.291	-55.983	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) МЕТ793 (водородная)
Продолжени	е табл	пицы А.7						

KKN882	110	O H O NH NH	-11.168	-72.046	-11.168	-11.168	-55.097	ASP855 (водородная) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN883	111	HO NH N	-11.169	-71.765	-11.167	-11.169	-56.744	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-π)
KN884	112	HN-N O NH	-11.172	-72.192	-11.163	-11.172	-53.903	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN885	113	H ₂ N O F O F N N N H	-11.155	-78.916	-11.155	-11.155	-63.641	GLU762 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN886	114	HN O N H	-11.144	-80.846	-11.141	-11.144	-59.598	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
Продолжени	е табл	пицы А.7						

KN887	115	HN O OH	-11.143	-63.954	-11.139	-11.143	-50.941	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN888	116	H ₃ N N N N N N N N N N N N N N N N N N N	-11.129	-81.720	-11.129	-11.129	-56.722	АSP855 (водородная, солевой мостик)
KN889	117	H ₂ N O	-11.120	-74.812	-11.116	-11.120	-62.148	ASP800 (водородная) GYS797 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9

KN890	118	O NH	-11.184	-77.947	-11.114	-11.184	-50.180	АSP800 (водородная, солевой мостик) GYS797 (водородная) GLN791 (водородная) МЕТ793 (водородная)
KN891	119	HN OH N H H	-11.117	-75.252	-11.114	-11.117	-66.170	ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN892	120	H ₃ N O NH	-11.223	-64.008	-11.108	-11.223	-46.623	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная)
KN893	121	H ₂ N N N N N N N N N N N N N N N N N N N	-11.107	-82.595	-11.107	-11.107	-58.892	GLU762 (водородная) GLN791 (водородная) MET793 (водородная) THR845(водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9		
KN894	122	HN-N O NH	-11.113	-74.408	-11.104	-11.113	-53.103	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)		
KN895	123	H_3N N N N N N N N N N	-11.105	-85.741	-11.104	-11.105	-63.819	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)		
KN896	124	H C Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	-11.093	-69.575	-11.093	-11.093	-62.016	ASN842 (водородная) GLN791 (водородная) MET793 (водородная)		
KN897	125	O NH NH NH H H	-11.180	-74.990	-11.089	-11.180	-69.170	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) РНЕ723 (π-π)		
KN898	126	O S NH	-11.123	-78.184	-11.088	-11.123	-63.799	ASP800 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)		
Продолжени	Продолжение таблицы А.7									

KN899	127	O NH ₂ O S	-11.087	-83.628	-11.085	-11.087	-55.192	ASP800 (водородная) CYS777(водородная) GLN791 (водородная) MET793 (водородная)
KN900	128	HN O N-NH N	-11.487	-72.960	-11.076	-11.487	-57.953	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN901	129	HN O H N H	-11.104	-79.248	-11.071	-11.104	-46.075	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN902	130	HN N N O HN + NH ₃	-11.068	-62.853	-11.068	-11.068	-53.972	АSP855 (водородная, солевой мостик) ASN842 (водородная) ARG841 (водородная) GLN791 (водородная) МЕТ793 (водородная) РНЕ723 (π-катионная)
KN903	131	HN O TOH	-11.067	-77.690	-11.065	-11.067	-56.968	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE723 (π-π)
Продолжени	е табл	ицы А.7						

KN904	132	O NH NH	-11.064	-71.330	-11.064	-11.064	-80.987	АSP855 (водородная, солевой мостик)
KN905	133	O NH NH NH O	-11.063	-66.105	-11.061	-11.063	-42.065	ASP855 (водородная) ASN842 (водородная) ARG841 (водородная) GLN791 (водородная)
KN906	134	$\begin{array}{c} H_3 N \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	-11.061	-65.697	-11.061	-11.061	-45.108	ASP855 (водородная, солевой мостик) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN907	135	HN-N N H	-11.064	-69.865	-11.055	-11.064	-51.586	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
КN908 Продолжени	136	NH N+ H	-11.061	-78.441	-11.052	-11.061	-45.876	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)

KN909	137	HN N HO''	-11.052	-55.958	-11.050	-11.052	-40.148	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN910	138	HO NO	-11.049	-76.833	-11.049	-11.049	-63.127	GLN791 (водородная) МЕТ793 (водородная) РНЕ723 (π-π)

Код	№	Структура	Glidegsco	Glideem	Dockingsc	XPgscor	MMGBSAd	Ключевые взаимодействия
соединения			re	odel	ore	e	GBind	
1	2	3	4	5	6	7	8	9
KN773	1	HO OH OH N N N H	-12.984	-89.864	-12.984	-12.984	-61.659	GLN791 (водородная) МЕТ793 (водородная) LEU718 (водородная)
KN911	2	O NH NO NH NH NH	-12.418	-68.982	-12.412	-12.418	-52.008	ARG841(водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN789	3	HN-N H2 N	-12.313	-82.705	-12.313	-12.313	-62.509	ASP800 (водородная, солевой мостик) ARG841(водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
_	_	-	<u> </u>	-	-		-	

KN679	4	HO OH N N N H	-12.286	-85.393	-12.286	-12.286	-56.815	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LEU718 (водородная) LYS745 (водородная)
KN774	5	OH OH OH	-12.192	-83.892	-12.192	-12.192	-59.040	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN775	6	HO NH NH	-12.166	-88.296	-12.166	-12.166	-62.132	ARG841(водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN912	7	HO OH NH NH	-12.130	-88.884	-12.127	-12.130	-49.575	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)

KN158	8	HN N N O HN	-12.073	-69.626	-12.072	-12.073	-47.595	ARG841(водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-π)
KN635	9	HO OH OH N N N H	-12.065	-85.910	-12.065	-12.065	-61.833	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная)
KN782	10	H ₂ N H N	-12.075	-84.069	-12.055	-12.075	-69.781	ASP800 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN914	11	HN N O O NH	-11.970	-69.437	-11.968	-11.970	-47.417	ARG841(водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9

KN915	12	H N N NH	-12.207	-70.568	-11.52	-12.207	-61.174	ARG841(водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-π)
KN916	13	$\begin{array}{c} H \\ N \\ \end{array}$	-11.943	-70.912	-11.941	-11.943	-55.538	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN917	14	H N O N H O N N O N N H +NH ₃	-11.871	-74.247	-11.871	-11.871	-46.470	АSP837 (водородная, солевой мостик) АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) РНЕ723 (<i>п</i> - <i>п</i>)
KN918	15	H ₃ N N N N N N N N N N N N N N N N N N N	-11.826	-91.890	-11.820	-11.826	-67.646	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN919	16	N N N N N N N N N N N N N N N N N N N	-12.368	-75.585	-11.694	-12.368	-51.380	ARG841(водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-π)
KN793	17	O N N N N N N N N N N N N N N N N N N N	-12.104	-63.638	-11.690	-12.104	-40.281	ARG841(водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN778	18	S NH NH	-11.684	-91.488	-11.684	-11.684	-54.067	ARG841(водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN920	19	NH ₂ NH ₂ NH _N N N N N N N N N N N N N N N N N N N	-11.668	-85.993	-11.648	-11.668	-66.337	АSP800 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN921	20	HZ Z H	-11.632	-74.630	-11.631	-11.632	-54.086	ARG841(водородная) GLN791 (водородная) MET793 (водородная)
KN922	21	O N N NH NH	-11.643	-87.352	-11.613	-11.643	-51.940	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN923	22	HN O HO	-11.564	-78.681	-11.563	-11.564	-58.275	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная) РНЕ723 (π-π)
KN924	23	HO + N H ₂ N NH	-11.564	-76.334	-11.551	-11.564	-54.417	ASP855 (водородная, солевой мостик) ARG841(водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN925	24	H N S O NH	-11.543	-72.524	-11.540	-11.543	-51.943	ARG841(водородная) GLN791 (водородная) MET793 (водородная)
KN926	25	HN N N N N N N N N N N N N N N N N N N	-11.539	-69.213	-11.539	-11.539	-61.026	ARG841(водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN927	26	$ \begin{array}{c} H \\ N \\ N \\ N-O \end{array} $	-11.534	-69.554	-11.534	-11.534	-51.035	ARG841(водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN859	27	HN O THH3 H	-11.522	-80.148	-11.522	-11.522	-60.695	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN928	28	OH HN N	-11.528	-74.096	-11.500	-11.528	-45.434	GYS775(водородная) GLN791 (водородная) GLU762 (водородная)

1	2	3	4	5	6	7	8	9
KN929	29	H_3N N N N N N N N N N	-11.500	-78.345	-11.500	-11.500	-45.458	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN634	30	HO OH NH	-11.438	-81.684	-11.436	-11.438	-51.622	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) THR845 (водородная)
KN930	31		-11.423	-79.905	-11.423	-11.423	-59.671	GYS775(водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN931	32	H ₃ N NH S NH	-11.464	-89.126	-11.417	-11.464	-62.420	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN932	33	H N NH O O NH ₂	-11.410	-76.205	-11.401	-11.410	-57.377	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN933	34	O NH HN O	-11.400	-61.691	-11.400	-11.400	-56.279	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN934	35	$\begin{array}{c c} & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & &$	-11.402	-91.891	-11.400	-11.402	-60.736	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (<i>п</i> - <i>п</i>)
KN935	36	O NH + NH NH NH NH	-11.420	-84.013	-11.393	-11.420	-75.262	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная) PHE723 (п-п)

1	2	3	4	5	6	7	8	9
KN936	37	O O NH	-11.391	-67.240	-11.391	-11.391	-31.140	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN937	38	H_2N N N N N N N N N N	-11.447	-87.026	-11.380	-11.447	-71.002	ASP837 (водородная) ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)
KN938	39	H_2N N H O	-11.444	-84.030	-11.377	-11.444	-72.189	ASP837 (водородная) ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)
KN939	40	HO NH NH	-11.372	-86.614	-11.372	-11.372	-67.409	ASP800 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN940	41	NO NH2 NH2 NHO	-11.367	-89.316	-11.364	-11.367	-62.659	ASP837 (водородная) ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная) PHE723 (π-π)

1	2	3	4	5	6	7	8	9
KN941	42	HN O N NH	-11.334	-80.591	-11.334	-11.334	-60.105	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная)
KN791	43	H ₂ N N N N N N N	-11.334	-88.111	-11.334	-11.334	-64.538	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN943	44	HN N N N NH ₃	-11.328	-61.203	-11.328	-11.328	-48.095	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN944	45	H N N N N N N N N N N N N N N N N N N N	-11.314	-69.528	-11.312	-11.314	-46.764	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-π)

1	2	3	4	5	6	7	8	9
KN818	46	HO O Br	-11.306	-70.425	-11.306	-11.306	-46.694	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN805	47	TNH ₃ O N N N N N N N N N N N N N N N N N N	-11.301	-74.715	-11.275	-11.301	-49.869	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)
KN945	48	O NH HN O O NH N NH N N	-11.272	-82.329	-11.272	-11.272	-59.973	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN946	49	O O NH NH	-11.273	-77.375	-11.271	-11.273	-47.340	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN947	50	H N N H ₃ N	-11.261	-66.591	-11.261	-11.261	-52.505	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN948	51	H N O NH NH	-11.266	-80.950	-11.259	-11.266	-60.825	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN949	52	O N NH NH NH O	-11.277	-87.655	-11.252	-11.277	-48.643	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN950	53	O NH NH NH N	-11.249	-65.092	-11.249	-11.249	-52.018	ARG841 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN951	54	O; *, O OH OH ONH NH	-11.250	-81.932	-11.248	-11.250	-48.732	ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN952	55	F H N HN NH	-11.233	-90.804	-11.230	-11.233	-66.077	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN953	56	HN OON OON NOON NOON NOON NOON NOON NOO	-11.221	-83.559	-11.221	-11.221	-53.932	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)

1	2.	3	4	5	6	7	8	9
-	_	3		5	O .	,	O	7

KN954	57	TH3 H NH N	-11.207	-89.576	-11.207	-11.207	-68.901	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN955	58	HN NH NO NH NO NH NO NH NO NH	-11.614	-69.541	-11.203	-11.614	-50.073	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная, солевой мостик, -катионная) PHE723 (π-π)
KN956	59	NH ₂	-11.195	-79.931	-11.195	-11.195	-60.949	GLN791 (водородная) GLU762 (водородная) MET793 (водородная)
KN957	60	H N N N N N O T NH ₃	-11.178	-70.432	-11.178	-11.178	-49.975	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) РНЕ723 (π-π)

1	2	3	4	5	6	7	8	9
KN958	61	HO NH NH	-11.181	-74.729	-11.178	-11.181	-62.319	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN959	62	O NH NH ₂ N NH ₂ N	-11.180	-84.236	-11.165	-11.180	-66.342	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN960	63	$O = \bigvee_{\substack{N \\ H}} \bigcap_{\substack{N \\ H}}$	-11.164	-74.858	-11.164	-11.164	-58.581	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN961	64	HN N N O OH	-11.170	-87.047	-11.162	-11.170	-60.677	АSN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (<i>п</i> - <i>п</i>)
KN962	65	H ₃ N O NH	-11.159	-65.985	-11.159	-11.159	-56.722	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN963	66	O H O NH	-11.152	-80.717	-11.152	-11.152	-60.262	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN964	67	O NH NH NH NH	-11.143	-67.693	-11.141	-11.143	-51.874	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN965	68	H ₃ N ⁺ HN O N H H	-11.140	-65.830	-11.140	-11.140	-56.813	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN966	69	O NH HN O + NH ₂	-11.146	-70.334	-11.139	-11.146	-45.365	ASP800 (водородная) ASP855 (водородная, солевой мостик) CYS797 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN803	70	H N O H NH NH NH	-11.194	-93.937	-11.136	-11.194	-71.939	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN968	71	H_2N N N N N N N N N N	-11.141	-82.534	-11.135	-11.141	-61.912	АSN842 (водородная) АSP855 (водородная, солевой мостик) АRG841 (водородная) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) ТНR854 (водородная) РНЕ723 (π-катионная)

1	2	3	4	5	6	7	8	9
KN969	72	HN O H O H O H	-11.125	-63.568	-11.117	-11.125	-38.870	ASP855 (водородная) GLU762 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN970	73	H_2 H_2 H_2 H_3 H_4 H_4 H_5 H_5 H_6 H_7	-11.115	-82.521	-11.115	-11.115	-66.671	ASN842 (водородная) ASP855 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)
KN971	74	HO O NH NH NH H H	-11.111	-89.768	-11.111	-11.111	-66.992	ASN842 (водородная) ARG837 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN972	75	HN O F N OH	-11.113	-72.888	-11.110	-11.113	-70.492	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-π)

1	2	3	4	5	6	7	8	9
KN973	76	H ₂ N O	-11.132	-60.959	-11.105	-11.132	-58.711	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN974	77	H ₃ N NH	-11.164	-65.208	-11.104	-11.164	-40.107	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)
KN975	78	HN N N O E +NH ₂	-11.106	-61.829	-11.103	-11.106	-46.966	ASN842 (водородная) ASP855 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723 (π-катионная)
KN976	79	HN N O HN NH ₃	-11.101	-76.778	-11.101	-11.101	-60.386	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN977	80	$\begin{array}{c} O \\ N \\ N \\ N \\ N \end{array}$ $\begin{array}{c} N \\ N \\ N \\ N \\ N \end{array}$	-11.100	-73.540	-11.098	-11.100	-57.078	ASN842 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN978	81	$\begin{array}{c c} H_2N & N \\ N & N \\ N & N \\ N & H \end{array}$	-11.092	-92.587	-11.092	-11.092	-59.783	GLU762 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN979	82	O NH NH NH	-11.114	-84.668	-11.087	-11.114	-63.361	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN990	83	HN N N HN NH ₃	-11.087	-71.147	-11.087	-11.087	-57.372	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN991	84	O H O NH	-11.086	-83.877	-11.084	-11.086	-65.166	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN992	85	H_2N N N N N N	-11.088	-80.884	-11.083	-11.088	-48.986	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN994	86	$H_3N'_{N}$ $H_3N'_{N}$ N N N N N N	-11.068	-89.726	-11.067	-11.068	-59.138	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN995	87	$H_3N'_{N}$ N	-11.064	-82.498	-11.064	-11.064	-58.629	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN996	88	H + N O NH NH	-11.091	-64.696	-11.061	-11.091	-47.877	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE723 (π-катионная)
KN997	89	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.051	-79.108	-11.051	-11.051	-49.158	ASN842 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN998	90	HO + N H ₂ N	-11.059	-70.032	-11.046	-11.059	-53.749	ASN842 (водородная) ASP855 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) МЕТ793 (водородная)
KN999	91	O NH N N N O S' NH ₂	-11.046	-83.018	-11.046	-11.046	-55.637	ASP800 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN1000	92	HO S	-11.040	-87.620	-11.039	-11.040	-54.376	ASP800 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN1001	93	O H O OH S'N N H OH	-11.039	-76.114	-11.039	-11.039	-53.334	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1002	94	H_3N H H H H H H H	-11.032	-72.194	-11.032	-11.032	-45.939	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1003	95	HN N O HN NH ₃	-11.030	-69.993	-11.030	-11.030	-58.644	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1004	96	O NH HN O HN S N	-11.038	-87.351	-11.027	-11.038	-60.087	ASP800 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN1005	97	NH NH NH	-11.535	-79.782	-11.025	-11.535	-56.940	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)

1	2	3	4	5	6	7	8	9
KN1006	98	$0 \qquad 0 \qquad S \qquad N \qquad N$	-11.021	-84.493	-11.020	-11.021	-68.739	ASP837 (водородная) ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN1007	99	O S N NH	-11.017	-80.634	-11.016	-11.017	-61.674	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)
KN1008	100	N NH OSS O H ₂ N O	-11.014	-78.576	-11.014	-11.014	-60.226	ASN842 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1009	101	F-NH O NH	-11.619	-76.513	-11.012	-11.619	-57.078	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN1010	102	H ₃ N NH NH	-11.003	-64.604	-11.003	-11.003	-50.763	ASP800 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)

1	2	3	4	5	6	7	8	9
KN1011	103	O N NH	-11.004	-86.179	-10.995	-11.004	-71.575	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN813	104	HO NH	-10.989	-79.616	-10.989	-10.989	-51.282	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная)
KN1012	105	H_2N N N N N N N	-10.999	-71.385	-10.983	-10.999	-59.283	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) РНЕ723 (π-π, π-катионная)
KN1013	106	$\begin{array}{c c} H_2N & O & NH \\ \hline N & NH & H \\ \hline \end{array}$	-10.982	-97.776	-10.979	-10.982	-55.348	ASP837 (водородная) ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1014	107	H ₃ N O NH NH	-10.976	-72.953	-10.976	-10.976	-44.753	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1015	108	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-11.267	-76.962	-10.966	-11.267	-47.333	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1016	109	NH3 NH H	-10.986	-92.935	-10.959	-10.986	-54.763	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1017	110	TH3 O S N NH	-10.958	-80.620	-10.958	-10.958	-53.464	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)
KN1018	111	N= HN O HN TH3	-10.953	-74.582	-10.953	-10.953	-47.401	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1019	112	NH3 H NH	-10.950	-85.712	-10.950	-10.950	-51.329	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)

1	2	3	4	5	6	7	8	9
KN1020	113	HN N N O O NH ₂	-10.951	-91.922	-10.949	-10.951	-56.910	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1021	114	H_3N N N N N N N N N N	-10.949	-81.831	-10.948	-10.949	-57.810	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN1022	115	O O NH NH	-10.946	-75.044	-10.946	-10.946	-55.850	ASP855 (водородная) ASN842 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN1023	116	+ NH NH	-11.006	-71.558	-10.945	-11.006	-50.468	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN1024	117	HN NH2 S N N N H	-10.936	-84.486	-10.936	-10.936	-65.441	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN1025	118	HO + N H ₂ N NH	-10.940	-65.280	-10.927	-10.940	-37.883	ASP855 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)
KN1026	119	HO H ₂ HN N N N N	-10.988	-73.924	-10.920	-10.988	-58.573	ASP855 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1027	120	H_2 O N N N N N N N N	-10.947	-85.067	-10.919	-10.947	-64.989	ASN842 (водородная) ASP837 (водородная, солевой мостик) ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN1028	121	F HN O NH	-10.918	-72.710	-10.918	-10.918	-62.396	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) PHE723 (π-π)
KN1029	122	O N S NH NH NH	-10.916	-75.110	-10.912	-10.916	-46.416	ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN1030	123	HN O N O N O H	-10.913	-79.803	-10.912	-10.913	-53.293	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN1031	124	S NH	-10.993	-78.208	-10.909	-10.993	-59.421	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE723 (π-катионная)

1	2	3	4	5	6	7	8	9
KN1032	125	$\begin{array}{c} O \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	-10.907	-80.035	-10.903	-10.907	-51.485	ASN842 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN1033	126	H_2N N N N N N N N N N	-10.903	-80.256	-10.903	-10.903	-60.141	ASN842 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN1034	127	O NH NH NH	-10.904	-77.117	-10.900	-10.04	-41.179	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1035	128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.899	-74.866	-10.899	-10.899	-58.275	ASP855 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1036	129	O OH NH	-10.899	-72.651	-10.897	-10.899	-51.803	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1037	130	O + N H N N N N N N N N N N N N N N N N N	-10.931	-71.433	-10.895	-10.931	-47.173	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1038	131	O H ₃ N	-10.996	-65.295	-10.895	-10.996	-48.872	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)
KN1039	132	H ₃ N O O S NH	-10.897	-79.895	-10.892	-10.897	-58.970	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN1040	133	HN N O NH ₂	-10.893	-87.493	-10.891	-10.893	-58.865	GLU762 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1041	134	Br O N N N H N N N N	-11.481	-77.159	-10.891	-11.481	-59.134	GLN791 (водородная) МЕТ793 (водородная) THR854 (водородная)
KN1042	135	HN NH NH	-10.957	-84.906	-10.891	-10.957	-58.647	ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1043	136	NH NH2	-10.950	-87.951	-10.885	-10.950	-46.970	ASP855 (водородная) GLU762 (водородная) GLN791 (водородная) MET793 (водородная) PHE723 (π-катионная)

1	2	3	4	5	6	7	8	9
KN1044	137	H_2N N N N N N N N N N	-10.883	-85.645	-10.883	-10.883	-56.868	GLU762 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1045	138	O S N N N N N N N N N N N N N N N N N N	-10.879	-80.991	-10.879	-10.879	-61.070	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN1046	139	NH ₂ NH _N NH	-10.891	-88.764	-10.875	-10.891	-70.656	ASN842 (водородная) ASP855 (водородная, солевой мостик, -катионная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная)

Таблица A.9 –EGFRT790M/L858R (3) (PDB: 5C8N)

Код	No	Структура	Glide	Glide emodel	Docking	XP gscore	MMGBSA	Ключевые взаимодействия
соединения			gscore		score		dG Bind	
1	2	3	4	5	6	7	8	9
KN1047	1	O O NH NH H H H H	-12.277	-65.392	-11.42	-12.277	-47.838	АSP855 (водородная, солевой мостик) GLN791 (водородная) GLU762 (водородная) МЕТ793 (водородная) LYS745 (водородная, солевой мостик) THR854 (водородная) PHE723 (π-π,π-катионная)

1	2	3	4	5	6	7	8	9
KN1048	2	$\begin{array}{c} O \\ \\ H_2N \\ \\ H \end{array} \begin{array}{c} N \\ \\ O \end{array} $	-11.137	-76.752	-11.135	-11.137	-50.728	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная)
KN1049	3	O N N N N N N N N N N N N N N N N N N N	-11.066	-80.066	-11.034	-11.066	-55.475	АSP855 (водородная, солевой мостик) GLN791 (водородная) GLU762 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (водородная, солевой мостик) ТHR854 (водородная)
KN635	4	HO OH N N N H	-11.989	-75.258	-11.989	-11.989	-57.747	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LEU718 (водородная) LYS745 (водородная)
KN1050	5	$\begin{array}{c} HN \\ N \\ \end{array}$ $\begin{array}{c} O \\ N \\ \end{array}$ $\begin{array}{c} N \\ \end{array}$ $\begin{array}{c} H_2N \\ \end{array}$	-11.028	-71.189	-10.893	-11.028	-60.550	ASN842 (водородная) ASP855 (водородная, солевой мостик) ARG841 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN1051	6	$\begin{array}{c} N \\ O \\ H \\ \end{array}$	-11.998	-74.706	-10.888	-11.998	-46.089	ASP837 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1052	7	H ₃ N NH	-10.862	-72.871	-10.862	-10.862	-50.992	АSP837 (водородная, солевой мостик) АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN929	8	H_3N N N N N N	-10.815	-74.935	-10.815	-10.815	-52.643	АSP800 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная, солевой мостик)
KN1053	9	O NH ₂ HN,,, O O N N N N N N N N N N N N N N N N N N	-10.787	-78.146	-10.785	-10.787	-58.322	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1054	10	H_3N N N N N N N N N N	-10.757	-65.354	-10.757	-10.757	-51.394	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1055	11	H ₃ N N N N N N N N N N N N N N N N N N N	-10.695	-68.192	-10.695	-10.695	-48.432	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1056	12	$H_3^{\bullet}N$ N N N N N N N	-10.698	-64.432	-10.681	-10.698	-51.613	АSP855 (водородная, солевой мостик) GLU762 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN1057	13	H ₃ N NH	-10.647	-68.744	-10.647	-10.647	-46.673	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1058	14	HO OH NH	-10.635	-57.842	-10.635	-10.635	-45.459	GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN1003	15	HN NH3	-10.609	-72.772	10.609	10.609	-52.791	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1059	16	O NH NH NH	-10.701	-65.382	-10.603	-10.701	-55.359	ASP855 (водородная, солевой мостик) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная, - катионная)
KN1060	17	HN N F F NH ₃ NH	-10.594	-71.685	-10.594	-10.594	-50.505	АSP855 (водородная, солевой мостик) GLN791 (водородная) GLU762 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (водородная, - катионная)
KN1061	18	O N NH NH	-10.680	-74.150	-10.591	-10.680	-62.039	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1062	19	HN N O HN O THINGS	-10.572	-67.924	-10.572	-10.572	-42.311	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1063	20	$\begin{array}{c} O \\ H_2N-S \\ O \\ O \\ \end{array}$	-10.564	-78.972	-10.558	-10.564	-59.083	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN1064	21	TH NH O	-10.569	-5588.767	-10.538	-10.569	-55.990	АSP855 (водородная, солевой мостик) GLN791 (водородная) GLU762 (водородная, солевой мостик) МЕТ793 (водородная) LYS745 (водородная, катионная)
KN1065	22	$\begin{array}{c c} O & O \\ H_2N & N \\ H & N \\ \end{array}$	-10.537	-78.360	-10.535	-10.537	-55.407	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1066	23	HN N N O HN NH ₃	-10.529	-71.161	-10.529	-10.529	-51.397	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1067	24	N N H ₂ N N N N N N N	-10.530	-67.283	-10.528	-10.530	-50.208	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1068	25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-10.529	-80.659	-10.526	-10.529	-51.194	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1069	26	$\begin{array}{c} O & O \\ H_2N & N \\ H & N \\ \end{array}$	-10.506	-73.354	-10.504	-10.506	-47.597	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1070	27	$\begin{array}{c} O \\ O \\ H_2N - S \\ O \\ O \end{array} \begin{array}{c} O \\ N \\ H \end{array}$	-10.509	-74.574	-10.504	-10.509	-53.457	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1071	28	HN N O HN T NH3	-10.469	-65.592	-10.469	-10.469	-54.012	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1072	29	H ₃ N N N NH	-10.456	-67.918	-10.456	-10.456	-50.812	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1073	30	HN N O HN O HN O	-10.446	-65.678	-10.446	-10.446	-53.541	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1074	31	HN N O HN NH3	-10.423	-67.737	-10.423	-10.423	-51.234	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN977	32	$\begin{array}{c} O \\ N \\ N \\ N \end{array}$ $\begin{array}{c} N \\ N \\ N \\ N \end{array}$ $\begin{array}{c} N \\ N \\ N \\ N \end{array}$	-10.403	-70.373	-10.401	-10.403	-53.017	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN906	33	H ₃ N N N NH	-10.397	-68.952	-10.397	-10.397	-52.463	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1075	34	HN N HN H ₃ N N N	-10.394	-67.297	-10.394	-10.394	-51.615	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1076	35	O H N H ₃ N····O	-10.375	-69.724	-10.375	-10.375	-52.039	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN1077	36	H_2N N N N N N N N N N	-10.375	-78.002	-10.375	-10.375	-44.395	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN1078	37	H ₃ N O O NH	-10.373	-69.467	-10.373	-10.373	-43.254	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1079	38	F N NH NH H2N S	-10.367	-78.812	-10.367	-10.367	-55.247	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1080	39	NH NH NH NH	-10.375	-69.243	-10.344	-10.375	-55.689	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN962	40	H ₃ N O NH	-10.328	-66.059	-10.328	-10.328	-44.578	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1081	41	+H ₂ O N N H NH	-10.322	-65.943	-10.322	-10.322	-51.880	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1082	42	HN N O HN	-10.318	-67.196	-10.318	-10.318	-47.012	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN902	43	HN N O HN T NH3	-10.318	-74.882	-10.318	-10.318	-51.902	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN1083	44	H _N O H ₃ N	-10.314	-64.627	-10.314	-10.314	-52.511	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) ТHR854 (водородная)
KN1084	45	O NH NH	-10.304	-73.072	-10.302	-10.304	-52.562	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1085	46	O O NH NH	-10.295	-77.933	-10.294	-10.295	-54.022	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1086	47	NH ₃ H NH	-10.286	-68.828	-10.286	-10.286	-48.542	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN1087	48	H +N N H N N N N N N N N N	-10.347	-67.278	-10.278	-10.347	-52.318	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1088	49	O NH NH H ₂ N S	-10.265	-73.340	-10.265	-10.265	-57.621	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1089	50	O NH NH NH	-10.261	-73.390	-10.259	-10.261	-53.595	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1090	51	HN NH ₃	-10.257	-73.261	-10.257	-10.257	-49.091	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN1091	52	O + N H N N N N N N N N N N N N N N N N N N	-10.255	-63.626	-10.255	-10.255	-50.709	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1092	53	O N N N N N N N N N N	-10.240	-70.592	-10.240	-10.240	-44.557	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)
KN1093	54	HN HX-	-10.237	-65.169	-10.237	-10.237	-44.348	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1094	55	H O NH	-10.235	-65.660	-10.235	-10.235	-53.693	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1095	56	H_2N N N N N N N N N N	-10.235	-67.643	-10.233	-10.235	-52.792	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1096	57	O NH NH	-10.235	-81.805	-10.233	-10.235	-52.069	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN934	58	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-10.230	-76.920	-10.227	-10.230	-58.184	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

KN1097	59	HN N O HN NH ₃	-10.227	-68.242	-10.227	-10.227	-48.205	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
--------	----	---------------------------	---------	---------	---------	---------	---------	---

1	2	3	4	5	6	7	8	9
KN1098	60	Br N HN O O NH ₂ OH	-10.198	-66.996	-10.198	-10.198	-39.575	GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1099	61	H ₃ N NH NH	-10.191	-65.167	-10.190	-10.191	-51.593	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)

KN1100	62	+NH ₃ NH	-10.187	-71.058	-10.187	-10.187	-50.278	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная)
KN1101	63	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$	-10.182	-72.632	-10.179	-10.182	-44.158	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1102	64	H ₂ O †N N H N NH	-10.173	-68.214	-10.173	-10.173	-49.006	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1104	65	HN N O HN + HN	-10.164	-69.475	-10.164	-10.164	-53.736	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

KN1105	66	HN O O O NH ₂	-10.162	-5850.972	-10.160	-10.162	-49.967	ASP837 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1106	67	H_2N N N N N N N N N N	-10.188	-76.073	-10.158	-10.188	-62.876	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1107	68	+NH HN O N NH	-10.157	-68.846	-10.155	-10.157	-46.084	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

KN1108	69	H_2N N N N N N N N N	-10.153	-5404.903	-10.151	-10.153	-52.582	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1109	70	H_2N H_2N H O N H O N	-10.147	-74.428	-10.145	-10.147	-50.759	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
Продолжени								
1	2	3	4	5	6	7	8	9

1	2	3	4	5	6	7	8	9
KN1110	71	HN N HN HN	-10.145	-71.073	-10.145	-10.145	-51.964	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)

KN1111	72	N NH NH NH	-10.455	-69.196	-10.130	-10.455	-52.849	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная, -катионная) PHE723 (π-π,π-катионная)
KN1112	73	HN O H NH ₃	-10.124	-70.319	-10.124	-10.124	-48.548	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1113	74	HN N O HN +NH ₂	-10.124	-67.173	-10.122	-10.124	-56.283	АSP855 (водородная, солевой мостик) GLU762 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

KN1114	75	O N H ₂ ii H NH	-10.118	-70.171	-10.116	-10.118	-53.704	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1115	76	H ₃ N N N N N N N N N N N N N N N N N N N	-10.401	-73.685	-10.111	-10.401	-52.197	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1116	77	+ NH ₃ N NH NH	-10.109	-71.537	-10.109	-10.109	-45.620	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2.	3	4	5	6	7	8	9
-		ŭ	•	v	Ÿ	•)	``

KN846	78	O NH N NH ₂	-10.108	-62.951	-10.108	-10.108	-44.256	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1117	79	O N NH	-10.108	-81.763	-10.106	-10.108	-55.108	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1118	80	HN O H O NH ₂	-10.201	-85.976	-10.098	-10.201	-53.890	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1119	81	N N H ₂ N N N N N N	-10.098	-72.457	-10.095	-10.098	-53.213	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1120	82	H ₂ N S O HN O NH	-10.093	-77.420	-10.093	-10.093	-55.970	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN1121	83	T N N N N N N N N N N N N N N N N N N N	-10.087	-71.473	-10.087	-10.087	-49.698	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1122	84	HN N O HN +	-10.268	-66.840	-10.074	-10.268	-51.542	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1123 Продолжени	85	H_2N N H N	-10.078	-80.169	-10.074	-10.078	-48.616	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

KN1124	86	O H NH	-10.066	-72.112	-10.061	-10.066	-54.235	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE723 (π-катионная)
KN1125	87	HN N H N N H N N N N N N N N N N N N N	-10.284	-74.272	-10.060	-10.284	-56.607	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1126	88	O H N NH	-10.061	-69.670	-10.059	-10.061	-45.136	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1127	89	HN N N N NH ₂	-10.056	-72.822	-10.054	-10.056	-54.179	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

KN1128	90	HN O HN N N H	-10.054	-75.685	-10.052	-10.054	-54.237	ASN842 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1129	91	HN H ₃ N H	-10.049	-61.927	-10.049	-10.049	-52.608	АSP855 (водородная, солевой мостик) GLU762 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1130	92	HN O N H	-10.048	-71.694	-10.046	-10.048	-47.029	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1131	93	HN N N N N O	-10.045	-70.387	-10.045	-10.045	-48.249	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN1132	94	H ₃ N O	-10.044	-71.610	-10.044	-10.044	-45.666	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1133	95	H ₂ N-N O N N N N N N N N N N N N N N N N N	-10.049	-72.083	-10.044	-10.049	-50.763	ASN842 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1134	96	HN O O O O O O O O O O O O O O O O O O O	-10.274	-76.548	-10.044	-10.274	-57.174	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1135	97	HN N O F HN F + NH ₃	-10.041	-5005.956	-10.041	-10.041	-46.175	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1136	98	$\begin{array}{c c} O & O & O \\ H_2N & N & N \\ H & H & N \\ \end{array}$	-10.039	-78.836	-10.039	-10.039	-52.911	ASP837 (водородная) ASP855 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная)
KN1137	99	N—NH ₂ N—NH ₂ N—NH ₁ N—NH ₁	-10.154	-63.431	-10.035	-10.154	-51.934	ASN842 (водородная) ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная)
KN1138	100	HN H	-10.620	-71.020	-10.032	-10.620	-55.507	GLN791 (водородная) МЕТ793 (водородная) LYS745 (π-катионная)

1	2	3	4	5	6	7	8	9
KN1139	101	O NH ₂ S O HN N H	-10.038	-71.402	-10.031	-10.038	-57.190	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN1140	102	N O HN O H O NH ₂	-10.031	-76.702	-10.030	-10.031	-52.148	ASP837 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE723(π-π)
KN1141	103	O T O NH	-10.234	-85.147	-10.030	-10.234	-56.971	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE723 (π-катионная)
KN1142	104	H_2N N N N N N N N	-10.134	-64.445	-10.027	-10.134	-43.497	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная, солевой мостик)

1	2	3	4	5	6	7	8	9
KN1143	105	O NH NH	-10.018	-62.342	-10.014	-10.018	-43.159	ASN842 (водородная) ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN1144	106	HO HO N N N N N N N N N N N N N N N N N	-10.013	-73.060	-10.011	-10.013	-51.696	ASP837 (водородная) ARG841 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1145	107	$\begin{array}{c} H_2N \longrightarrow O \\ H \longrightarrow N \longrightarrow N \end{array}$	-10.011	-79.335	-10.008	-10.011	-59.595	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1146	108	H +N N NH NH	-10.204	-66.674	-10.006	-10.204	-60.115	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1014	109	H ₃ N N N NH	-10.002	-59.894	-10.002	-10.002	-48.136	АSP855 (водородная, солевой мостик) GLN791 (водородная) GLU762 (водородная, солевой мостик) МЕТ793 (водородная)

Таблица A.10 –EGFRT790M/L858R (4) (PDB: 3W2R)

Код	№	Структура	Glide	Glide	Docking	XP gscore	MMGBSA dG	Ключевые взаимодействия
соединения	2	3	gscore 4	emodel 5	score 6	7	Bind 8	9
KN1147	1	H_2N N N N N N N N N N	-14.224	-97.546	-14.220	-14.224	-65.060	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1148	2	OH H NH	-14.196	-100.779	-14.193	-14.196	-69.997	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1149	3	O H N O NH	-13.867	-108.586	-13.867	-13.867	-68.722	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)

1	2	3	4	5	6	7	8	9
KN1150	4	HN NOOHOH	-13.870	-71.240	-13.826	-13.870	-62.830	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π, водородная)
KN1151	5	H N N N N N N N N N N N N N N N N N N N	-13.817	-108.787	-13.762	-13.817	-77.305	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (водородная)
KN1152	6	O NH N S O NH	-13.723	-91.757	-13.723	-13.723	-50.665	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (π-π)
KN1153	7	O + NH NH	-13.733	-93.632	-13.706	-13.733	-60.830	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (водородная, -катионная)

1	2	3	4	5	6	7	8	9
KN1154	8	H O NH	-13.528	-98.921	-13.528	-13.528	-69.279	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1155	9	HN N O O O	-13.472	-82.152	-13.469	-13.472	-70.348	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN1156	10	$H_2N \longrightarrow O \longrightarrow N$ $O \longrightarrow N$ $O \longrightarrow N$ $O \longrightarrow N$ N	-13.454	-89.770	-13.452	-13.454	-60.772	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная, π-π)
KN1157	11	HN O H O N N N N N N N N N N N N N N N N	-13.429	-104.379	-13.429	-13.429	-61.274	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1158	12	O N N N N H	-13.420	-104.334	-13.419	-13.420	-70.177	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN1159	13	NH ₂ O NH O NH N NH	-13.406	-85.322	-13.403	-13.406	-71.704	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная, π-π)
KN1160	14	O O NH NH	-13.397	-96.208	-13.394	-13.397	-67.351	GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная) РНЕ856 (<i>π</i> - <i>π</i>)
KN1161	15	O O NH NH	-13.390	-103.465	-13.387	-13.390	-69.708	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1162	16	O N NH	-13.373	-105.793	-13.370	-13.373	-69.759	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN1163	17	HO CI	-13.386	-60.474	-13.352	-13.386	-40.284	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная, солевой мостик) ТHR854 (водородная)
KN1164	18	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	-13.326	-105.161	-13.326	-13.326	-66.258	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1165	19	$\begin{array}{c c} O & O & H \\ \hline \\ H_2N & N \\ H & \\ \end{array}$	-13.311	-104.474	-13.310	-13.311	-57.736	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1166	20	O NH N N O	-13.307	-105.580	-13.304	-13.307	-69.687	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1167	21	HN O NH	-13.296	-82.230	-13.292	-13.296	-57.231	GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (<i>π</i> - <i>π</i>)

1	2	3	4	5	6	7	8	9
KN1168	22	OH H H	-13.289	-87.143	-13.285	-13.289	-54.774	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная)
KN1169	23	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-13.275	-102.477	-13.275	-13.275	-60.009	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1170	24	O NH NH	-13.270	-94.557	-13.270	-13.270	-58.522	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1171	25	O O O O O O O O O O O O O O O O O O O	-13.261	-73.849	-13.261	-13.261	-47.801	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1172	26	OH ON N OH OH OH	-13.257	-95.644	-13.257	-13.257	-68.831	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)

1	2	3	4	5	6	7	8	9
KN1173	27	O NH NH	-13.170	-90.674	-13.166	-13.170	-64.121	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN808	28	ON H ON N OH	-13.166	-80.087	-13.166	-13.166	-56.359	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856(водородная)
KN1174	29	O O S N N N N N N N N N N N N N N N N N	-13.155	-103.767	-13.155	-13.155	-65.210	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1175	30	HN N O O O O O O O O O O O O O O O O O O	-13.189	-87.785	-13.149	-13.189	-70.130	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN1176	31	O O NH	-13.148	-97.343	-13.144	-13.148	-72.693	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN1177	32	O H ₂ N N N N N N N N N N N N N N N N N N N	-13.126	-91.834	-13.110	-13.126	-75.171	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)
KN1178	33	HN O N H	-13.070	-102.476	-13.070	-13.070	-52.702	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1179	34	HN O NH ₂	-13.070	-89.061	-13.064	-13.070	-55.765	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1180	35	HN O O O O O O O O O O O O O O O O O O O	-13.044	-109.485	-13.041	-13.044	-70.672	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1181	36	O N N NH	-13.042	-97.487	-13.040	-13.042	-74.347	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN1182	37	N O N N N N N N N N	-13.015	-93.064	-13.012	-13.015	-60.569	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1183	38	HN O H O N F	-13.011	-98.895	-13.011	-13.011	-64.403	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1184	39	O N HN O	-13.008	-78.932	-13.006	-13.008	-48.182	GLN791 (водородная) GLY857 (водородная) MET793 (водородная) LYS745 (водородная)
KN1185	40	HN O N + N + N + N + N + N + N + N + N +	-13.002	-86.698	-13.002	-13.002	-49.244	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856(водородная, -катионная)

1	2	3	4	5	6	7	8	9
KN1186	41		-12.973	-103.979	-12.969	-12.973	-68.057	GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN1187	42	O H O N N N N N N N N N N N N N N N N N	-12.981	-99.440	-12.965	-12.981	-65.610	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1188	43	H O NH NH NH NH	-12.960	-99.756	-12.957	-12.960	-74.072	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN635	44	HO OH OH	-12.948	-76.676	-12.948	-12.948	-68.353	ASP855 (водородная) CYS797 (водородная) GLN791 (водородная) MET793 (водородная)
KN1189	45	$O = NH_{2}$ $O = S = O$ NH_{3} $O = S = O$ NH_{4} $O = S = O$	-12.946	-87.457	-12.946	-12.946	-62.203	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная, π-π)

1	2	3	4	5	6	7	8	9
KN1190	46	H O NH	-12.948	-102.741	-12.945	-12.948	-70.703	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1191	47	H O NH	-12.969	-94.916	-12.933	-12.969	-68.776	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1192	48	ONH HN S	-12.933	-88.342	-12.933	-12.933	-50.063	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная, солевой мостик) РНЕ856 (π-π)
KN1193	49	OH ONH NH NH NH O	-12.912	-65.400	-12.912	-12.912	-55.744	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN1194	50	N N N N N N N N N N N N N N N N N N N	-12.895	-106.663	-12.893	-12.895	-75.039	GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная) РНЕ856 (<i>п</i> - <i>п</i> , водородная)

1	2	3	4	5	6	7	8	9
KN1195	51	HN O H OH	-12.887	-91.298	-12.887	-12.887	-63.664	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (водородная)
KN1196	52	HN O HN NH N	-12.162	-83.671	-12.880	-12.162	-57.073	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1197	53	H H N O NH	-12.875	-105.284	-12.872	-12.875	-67.286	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1198	54	O NH NH O	-12.869	-104.112	-12.869	-12.869	-63.901	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1199	55	HN S NH ₂	-12.866	-105.844	-12.866	-12.866	-77.423	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (<i>π</i> - <i>π</i> , водородная)

1	2	3	4	5	6	7	8	9
KN1200	56	O NH NH	-12.864	-94.939	-12.860	-12.864	-72.170	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1201	57	HN O H O F	-12.855	-99.750	-12.855	-12.855	-58.688	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN1202	58	H_2N O H_2N N N	-13.711	-88.979	-12.847	-13.711	-45.376	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (водородная)
KN1203	59	O O NH	-12.843	-113.330	-12.840	-12.843	-70.544	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN1204	60	O N N N N N N N N N N N N N N N N N N N	-12.849	-96.257	-12.834	-12.849	-72.273	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1205	61	O H O NH ₃	-12.831	-82.432	-12.831	-12.831	-43.497	ASP855 (водородная, солевой мостик) GLN791 (водородная) MET793 (водородная) PHE856 (водородная)
KN1206	62	HN O N O H	-12.825	-101.837	-12.825	-12.825	-67.679	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1207	63	HN N N H ₃ N	-12.830	-62.555	-12.806	-12.830	-22.253	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (водородная, -катионная)
KN1208	64	HN O N O F	-12.810	-96.490	-12.806	-12.810	-62.120	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1209	65	O O O NH NH	-12.806	-96.174	-12.802	-12.806	-62.003	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (водородная)

1	2	3	4	5	6	7	8	9
KN1210	66	HN H ₂ $\stackrel{\downarrow}{\stackrel{\cdot}{\stackrel{\cdot}{\stackrel{\cdot}{\stackrel{\cdot}{\stackrel{\cdot}{\stackrel{\cdot}{\stackrel{\cdot}{$	-12.807	-82.773	-12.798	-12.807	-59.071	ASP855 (водородная) GLN791 (водородная) GLU762 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1211	67	H_2N N N N	-12.796	-82.548	-12.793	-12.796	-49.579	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1212	68	O N NH	-12.793	-91.823	-12.790	-12.793	-60.206	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1213	69	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	-12.778	-106.489	-12.775	-12.778	-76.598	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (водородная)
KN1214	70	O N N NH NH H2	-12.777	-94.920	-12.769	-12.777	-76.877	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)

1	2	3	4	5	6	7	8	9
KN1215	71	O NH	-12.759	-104.140	-12.759	-12.759	-69.260	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1216	72	ON HO HNH3	-12.757	-87.553	-12.757	-12.757	-46.908	ASP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (водородная, -катионная)
KN1217	73	O O H NH	-12.756	-103.248	-12.754	-12.756	-69.213	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)
KN1218	74	N-NH N NH	-12.767	-94.646	-12.741	-12.767	-59.393	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (π-катионная)
KN1219	75	$\begin{array}{c} H \\ O \\ N \\ \end{array}$	-12.728	-97.278	-12.728	-12.728	-70.157	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (водородная)

1	2	3	4	5	6	7	8	9
KN1220	76	H_2N O N	-12.726	-81.881	-12.722	-12.726	-62.005	GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1221	77	H O NH NH	-12.718	-104.345	-12.715	-12.718	-63.342	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1222	78	HN N N H N O	-12.707	-66.243	-12.707	-12.707	-72.177	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN1223	79	O O NH	-12.705	-101.663	-12.702	-12.705	-67.618	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)
KN1224	80	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-12.697	-92.821	-12.697	-12.697	-53.553	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (водородная)
KN1225	81	O O NH NH	-12.700	-90.776	-12.697	-12.700	-50.967	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (водородная)

1	2	3	4	5	6	7	8	9
KN1226	82	+NH ₃ NH NH	-12.688	-75.993	-12.688	-12.688	-59.479	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (водородная, -катионная)
KN1227	83	O OH H ₂ NH	-12.695	-94.467	-12.687	-12.695	-81.087	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1228	84	O N N N NH	-12.678	-97.653	-12.678	-12.678	-69.781	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1229	85	O O NH NH	-12.675	-91.556	-12.673	-12.675	-64.413	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1230	86	O NH O NH O NH O NH O NH	-12.659	-92.645	-12.659	-12.659	-61.383	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)

1	2	3	4	5	6	7	8	9
KN1231	87	NH NH NH	-12.662	-62.867	-12.658	-12.662	-44.521	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1232	88	O H NH	-12.658	-92.196	-12.658	-12.658	-56.541	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1233	89	O N N N N N N N N N N N N N N N N N N N	-12.654	-86.304	-12.650	-12.654	-62.130	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1234	90	O O NH	-12.620	-106.269	-12.617	-12.620	-73.107	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)

1	2	3	4	5	6	7	8	9
KN1235	91	ONH ₂ ONH ₂ NH O=S NH	-12.612	-87.236	-12.612	-12.612	-51.815	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (водородная)
KN1236	92	O H N N N N N N N N N N N N N N N N N N	-12.606	-101.921	-12.604	-12.606	-71.862	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (водородная)
KN1237	93	O NH NH NH	-12.607	-85.221	-12.603	-12.607	-73.715	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (π-катионная)
KN1238	94	HN O TO OH	-12.601	-71.158	-12.598	-12.601	-24.105	GLN791 (водородная) МЕТ793 (водородная) THR854 (водородная)
KN1239	95	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	-12.594	-86.039	-12.590	-12.594	-60.367	GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная) РНЕ856 (<i>п</i> - <i>п</i> , водородная)

1	2	3	4	5	6	7	8	9
KN1240	96	O NH NH	-12.603	-80.409	-12.577	-12.603	-58.479	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (водородная)
KN1241	97	O N N NH NH H ₂	-12.568	-86.598	-12.559	-12.568	-71.827	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN1242	98	O O NH NH	-12.556	-89.119	-12.547	-12.556	-68.058	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная)
KN1243	99		-12.554	-61.319	-12.545	-12.554	-36.105	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная, солевой мостик)
KN1244	100	F N-N N-N F	-12.543	-80.646	-12.543	-12.543	-53.804	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)

1	2	3	4	5	6	7	8	9
KN1245	101	O NH NH	-12.530	-97.045	-12.527	-12.530	-70.385	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN1246	102	HO N N NH	-12.519	-55.913	-12.515	-12.519	-54.387	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN1247	103	H N N N N N N N N N N N	-12.517	-80.555	-12.513	-12.517	-55.433	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1248	104	H ₃ N O O O N O N O N O O O O O O O O O O O	-12.510	-73.614	-12.510	-12.510	-53.626	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (водородная, -катионная)

1	2	3	4	5	6	7	8	9
KN1249	105	O NH NH H	-12.513	-98.788	-12.510	-12.513	-72.146	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN1250	106	OS N H N N	-12.954	-108.499	-12.499	-12.954	-71.020	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (водородная)
KN1251	107	O S NH NH	-12.496	-90.458	-12.496	-12.496	-54.731	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (водородная)
KN1252	108	HO NH Cl OSO	-12.489	-64.529	-12.489	-12.489	-45.851	GLN791 (водородная) МЕТ793 (водородная) ТНR854 (водородная)
KN1253	109	O H NH NH	-12.483	-102.161	-12.483	-12.483	-75.832	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN1254	110	$\begin{array}{c} N \\ \\ O \end{array}$	-12.480	-102.057	-12.476	-12.480	-65.588	GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (<i>π</i> - <i>π</i>)
KN1255	111	HO O NH	-12.473	-84.818	-12.473	-12.473	-55.180	GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (π-π)
KN1256	112	O NH ₂ O NH ₂ O NH ₂ N N	-12.470	-86.369	-12.470	-12.470	-45.223	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1257	113	HO N N N N N N N N N N N N N N N N N N N	-12.499	-82.132	-12.468	-12.499	-50.042	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1258	114	CI NH ON NH OH HO	-12.463	-77.947	-12.463	-12.463	-61.027	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)

1	2	3	4	5	6	7	8	9
KN1259	115	O NH N NH N NH ₂	-12.461	-96.288	-12.461	-12.461	-68.329	GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(<i>п</i> - <i>п</i> ,водородная)
KN1260	116	HO NH	-12.457	-74.819	-12.457	-12.457	-50.632	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (π-π)
KN1261	117	O H N NH	-12.444	-79.414	-12.444	-12.444	-44.755	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная, солевой мостик) ТHR854 (водородная)
KN1262	118	ON N N N N N N N N N N N N N N N N N N	-12.457	-99.803	-12.443	-12.457	-63.932	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)

1	2	3	4	5	6	7	8	9
KN1263	119	H_2N O O N N N N N	-12.441	-64.099	-12.438	-12.441	-43.026	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1264	120	O H N NH	-12.435	-100.454	-12.432	-12.435	-66.301	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) THR854 (водородная) PHE856 (π-π)
KN1265	121	O H N NH	-12.503	-90.569	-12.428	-12.503	-71.214	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(π-π,водородная)
KN1266	122	$O \longrightarrow N \longrightarrow $	-12.427	-91.088	-12.424	-12.427	-65.590	GLN791 (водородная) GLU857 (водородная) MET793 (водородная) LYS745 (водородная) PHE856 (<i>п</i> - <i>п</i> ,водородная)

1	2	3	4	5	6	7	8	9
KN1267	123	HN O N O N	-12.420	-99.184	-12.420	-12.420	-67.117	ASP855 (водородная) GLN791 (водородная) MET793 (водородная)
KN1268	124	HN N N O HN ''	-12.417	-78.554	-12.417	-12.417	-56.806	АSP855 (водородная, солевой мостик) GLN791 (водородная) МЕТ793 (водородная) РНЕ856 (водородная, - катионная)
KN1269	125	O N H O NH	-12.416	-78.729	-12.416	-12.416	-54.663	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1270	126	O N NH	-12.417	-91.152	-12.413	-12.417	-62.563	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1271	127	NH NH ₂ NH NH	-12.409	-72.544	-12.405	-12.409	-52.384	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) THR854 (водородная) PHE856 (водородная, - катионная)

1	2	3	4	5	6	7	8	9
KN1272	128	$ \begin{array}{c} O \\ O \\ O \\ S \\ N \\ N \\ N \end{array} $	-12.405	-93.461	-12.405	-12.405	-60.606	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1273	129	TH3O NH3NN	-12.405	-61.596	-12.405	-12.405	-50.494	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856 (водородная, - катионная)
KN1274	130	HO N N N N N N N N N N N N N N N N N N N	-12.404	-94.030	-12.404	-12.404	-67.330	GLN791 (водородная) MET793 (водородная) LYS745 (водородная) THR854 (водородная)
KN1275	131	O S NH	-12.402	-77.352	-12.401	-12.402	-66.002	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) РНЕ856(<i>п</i> - <i>п</i> ,водородная)

1	2	3	4	5	6	7	8	9
KN1276	132	H_2N O O N N N N N	-12.399	-80.528	-12.396	-12.399	-59.379	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная)
KN1277	133	N-O H NH	-12.397	-90.160	-12.394	-12.397	-66.892	GLN791 (водородная) МЕТ793 (водородная)
KN1278	134	HN O NH	-12.388	-66.535	-12.388	-12.388	-41.062	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1279	135	$\bigcap_{O} \bigoplus_{N} \bigoplus_{H} \bigcap_{N \in \mathbb{N}} \bigcap_{N \in \mathbb{N}$	-12.387	-93.838	-12.385	-12.387	-65.515	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)

Продолжение таблицы А.10

1	2	3	4	5	6	7	8	9
KN1280	136	H_2N O Br O N	-12.377	-75.837	-12.377	-12.377	-45.896	GLN791 (водородная) МЕТ793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1281	137	HN H N NH	-12.787	-76.562	-12.376	-12.787	-55.144	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) PHE856(водородная)
KN1282	138	HN SON H O NH ₂	-12.370	-95.518	-12.370	-12.370	-58.680	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная) PHE856(водородная)
KN1283	139	HN O H O N O	-12.357	-98.690	-12.357	-12.357	-67.254	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)
KN1284	140	O H N NH	-12.355	-87.952	-12.351	-12.355	-59.986	ASP855 (водородная) GLN791 (водородная) MET793 (водородная) LYS745 (водородная)