МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ

		1110 11110 1
	(наименование института полностью)	
Кафедра «Теплогаз	оснабжение, вентиляция, водоснаб	бжение и водоотведение»
	(наименование кафедры)	
	08.03.01 Строительство	
(код	ц и наименование направления подготовки, спет	
	Теплогазоснабжение и вентиля	
	(направленность (профиль)/специализаци	(я)
	БАКАЛАВРСКАЯ РАБО	ΓΑ
на тему г. Волг	годонск. Индивидуальный жилой,	дом. Инженерные сети
Ступант	П.Г. Парионоро	
Студент	Д.Б. Ларионова (И.О. Фамилия)	
Р анково напрона	` ,	(личная подпись)
Руководитель	Е.В. Чиркова (и.о. Фамилия)	()
Консультанты	П.А. Корчагин	(личная подпись)
Консультанты	(И.О. Фамилия)	(gunnag na gguay)
	И.Ю. Амирджанова	(личная подпись)
	(И.О. Фамилия)	(личная подпись)
	(и.о. Фамилия)	(аэинды подпись)
Допустить к защит	re	
, ,		
И.о. заведующего	кафедрой к.т.н., доцент, И.А.	Пушкин
тт.о. заведующего	(ученая степень, звание, И.О.	
// //	20 г.	, , , , , , , , , , , , , , , , , , , ,
(())	$\angle W = 1$.	

АННОТАЦИЯ

В данной выпускной бакалаврской работе для одноквартирного жилого дома был произведен теплотехнический расчет ограждающих конструкций. Произведено конструирование, гидравлический расчеты и подбор оборудования систем отопления, горячего и холодного водоснабжения. Были определены требуемые воздухообмены для системы вентиляции, а так же было выполнено ее консруирование, расчет и подбор оборудования. Подобрана и расчитана система водоотведения, выполнены расчет и конструирование системы газоснабжения, проработка системы автоматизации, выведены объемы монтажных работ для системы отопления. Проработан раздел безопасности и экологичности технологического объекта.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 ИСХОДНЫЕ ДАННЫЕ	5
1.1 Архитектурно-планировочное решение объекта	5
1.2 Климатические данные района строительства	5
1.3 Параметры внутреннего микроклимата помещений	6
1.4 Описание технологического процесса	7
1.5 Источники тепло- и холодоснабжения	7
2 ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ	8
2.1 Теплотехнический расчет ограждающих конструкций	8
2.2 Определение теплопотерь здания	14
3 ТЕПЛОСНАБЖЕНИЕ	21
3.1 Система отопления	21
3.2 Горячее водоснабжение	28
3.3 Расчет и подбор оборудования теплогенераторной	35
4. ВЕНТИЛЯЦИЯ	37
4.1 Определение требуемых воздухообменов	38
4.2 Аэродинамический расчет	39
5 ВОДОСНАБЖЕНИЕ И ВОДООТВЕДЕНИЕ	44
5.1 Холодное водоснабжение	44
5.2 Водоотведение	47
6 ГАЗОСНАБЖЕНИЕ	49
6.1 Конструирование системы газоснабжения	49
6.2 Гидравлический расчет внутренней системы газоснабжения	49
7 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ	52
7.1 Система автоматического контроля загазованности	
7.2 Принцип действия контроля загазованности Seitron	54
7.3 Управление котлом Viessmann с помощью контроллера Vitotronic	55
7.4 Основные функции управления Vitotronic	56
В ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТТОЗАЧ ХІНЬТНОМ ВИЦАЕВНАТОВ	57
9 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА	59
ЗАКЛЮЧЕНИЕ	61
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	
Приложение 1 – Пьезометрический график системы отопления	

ВВЕДЕНИЕ

С каждым днем человечество все сильней сстремится к собственной независимости. Одним из аспектов независимости для человека является собственный дом. С каждым годом строительство частных домов растет. Но и с каждым годом меняются материалы и оборудование, блаодоря которым дом можно осовременить. Неизменными остаютя инженерные коммуникации, которые на протяжении многих лет позволяют человеку вести в доме комфортный образ жизни: отопление, горячее и холодное водоснабжение, вентиляция, водоотведение, газоснабжение. Но только при правильном исполнении данных сетей в доме, человек сможет находится в зоне комфорта, удобства и уюта.

Инженерные системы должны не только обеспечивать человеку комфорт, но и позволять соблюдать санитарно-технические нормы в помещениях для способствования эффективной жизнедеятельности, а также позволить вести экономию ресурсов и средств.

На основе этого задана цель для данной работы: спроектировать инженерные сети индивидуального жилого дома, которые будут соответствовать вещеперечисленным требованиям.

- рассмотреть мероприятия по обеспечению безопасности и экологичности рассматриваемого объекта.

1 ИСХОДНЫЕ ДАННЫЕ

1.1 Архитектурно-планировочное решение объекта

В проекте рассматривается объект — жилой дом для одной семьи. Дом запланированно в Ростовской области, городе Волгодонск. Ориентация главного фасада направлена на юг. Размеры здания в осях составляют 15 x 16,3 м.

Жилой дом имеет три этажа: цокольный (на отм. -2,700), первый (на отм. 0,000), второй (на отм. 3,000). Заглубление цокольного этажа в землю составляет 1 метр. Высота помещения цокольного этажа 2,4, а основного и второго этажей – 2,7 метра.

Наружные стены представленны из вентилируемого фасада (сайдинга), керамического кирпича, пенополистирола и штукатурки по металлической сетке. Кровля здания выполнена из железобетонного перекрытия и утеплена плитами из пенополистирола. Полы цокольного этажа уложены по грунту, в состав входят: стяжка из цементно-песчаный раствор, железобетонное перекрытие, керамзитобетон на керамзитовом песке. Отделка производится с учетом назначения помещения, используются линолеум или керамическая плитка.

1.2 Климатические данные района строительства

Климатологические данные приняты для города Ростов-на-Дону, ближайшему к г.Волгодонск согласно СП [1]. Климатичекие параметры сведены в таблицу 1.

Таблица 1 – Клиатические параметры наружного воздуха

		A		Б				
Период	Темпе-	Энта-	Скорость	Темпе-	Энта-	Скорость		
года	ратура	льпия	воздуха	ратура	льпия	воздуха		
	t,°C	\emph{I} , кДж/кг	ν, м/c	t,°C	<i>I</i> , кДж/кг	v, m/c		
1	2	3	4	5	6	7		
Теплый	27	57,4	1	30	60,7	1		
Холодный				- 19	- 20,9	4,8		

Отопительный период района проектирования и его средняя температура:

$$z_{\rm ot} = 166$$
 суток.

$$t_{\rm ot} = -1.0$$
 °C.

1.3 Параметры внутреннего микроклимата помещений

Выбор нормативных параметров микроклимата в помещении жилого дома необходимо осуществлять в соответствии с требованиями ГОСТ [2].

Таблица 2 – Параметры внутреннего микроклимата

No॒	Наименование	t, °C	arphi,%	υ, м/с								
помещения	помещения	l, C	ψ , %	ν, M/C								
1	2	3	4	5								
	Цокольный этаж (отм2,700)											
001 Бильярдная 18 45 0,15												
002	Кладовая	18	45	0,15								
003	Котельная	18	45	0,15								
004	Гараж	18	45	0,15								
1	1	1	1	1								
005	Холл	18	45	0,15								
006	Бельевая	18	45	0,15								
	1 эта	ж (отм. 0,000)										
101	Гостиная	21	45	0,15								
102	Тамбур	21	45	0,15								
103	Холл	21	45	0,15								
104	Кухня	21	45	0,15								

Продолжение таблицы 2

105	Столовая	21	45	0,15								
	2 этаж (отм. 3,000)											
201	Детская 1	21	45	0,15								
202	Детская 2	21	45	0,15								
203	Сан. узел	24	45	0,15								
204	Холл	21	45	0,15								
205	Гардеробная	21	45	0,15								
206	Спальня	21	45	0,15								

1.4 Описание технологического процесса

Проектируемый коттедж имеет две зоны, разделенные по назначению: жилая зона и вспомогательная зона. К жилой зоне относятся следующие помещения: гостиная комната, столовая, — на первом этаже, детские комнаты, спальня — на втором. К вспомогательной зоне здания относятся кладовая, теплогенераторная, — на цокольном этаже, кухня, гардеробная, расположенные на верхних этажах.

В жилой зоне проектируемого дома из вредностей будет выделятся только тепло исходящее от людей.

1.5 Источники тепло- и холодоснабжения

Источником теплоснабжения проектируемого дома будет являться теплогенераторная с навесным котлом. Теплоносителем в системе отопления является вода с параметрами 90°С в подающем трубопроводе и 70°С в обратном, для воды горячего водоснабжения – 60°С.

2 ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ

2.1 Теплотехнический расчет ограждающих конструкций

Выполняется согласно СП [4].

Для ограждающих конструкций дома расчет необходимо вести в соответствии с условием: фактическое сопротивление теплопередачи будет не меньше нормируемого.

$$R_{\Phi} \geq R_{\mathrm{H}}$$
 (2.1)

где R_{Φ} – приведенное сопротивление, м² · °C/Вт;

 $R_{\rm H}$ — нормируемое значение сопротивления, м² · °C/Вт, определяется в зависимости от градусо-суток выбранного района строительства ГСОП, °C·сут, по СП [4, табл. 3].

Необходимо вычислить значение градусо-суток для отопительного периода (ГСОП) выбранного района строительства, ГСОП рассчитываются по формуле:

$$\Gamma \text{CO}\Pi = t_{\text{B}} - t_{\text{OT}} \cdot z_{\text{OT}},$$
 (2.2)
 $\Gamma \text{CO}\Pi = 20 - (-1) \cdot 166 = 3154 \,^{\circ}\text{C} \cdot \text{cyT}$

По значению ГСОП высчитывается нормируемое значение сопротивления теплопередаче ограждающих конструкций, $R_0^{\text{норм}}$, определяется при помощи метода интерполяции по СП [4, табл. 4].

$$R_{HC}^{Hopm} = 2,504 \text{ m}^2 \cdot {}^{\circ}\text{C/BT};$$

 $R_{\Pi T}^{Hopm} = 3,777 \text{ m}^2 \cdot {}^{\circ}\text{C/BT};$
 $R_{OK}^{Hopm} = 0,387 \text{ m}^2 \cdot {}^{\circ}\text{C/BT};$

$$R_{\Pi \Pi}^{\text{норм}} = 3,319 \text{ м}^2 \cdot {}^{\circ}\text{C/BT}.$$

Значение сопротивление теплопередаче ограждающей конструкции R_k , , расчитываются согласно формуле:

$$R_k = R_1 + R_2 + \dots + R_n, \tag{2.4}$$

где R_1 – R_n — сопротивление теплопередаче каждого слоя, заложенного в ограждающую конструкцию здания, (м 2 · °C)/Вт.

Для каждого отдельного однородного слоя, заложенного в конструкции здания расчитывается сопротивление теплопередаче согласно формуле:

$$R_i = \frac{\delta_i}{\lambda_i},\tag{2.5}$$

где δ_i — толщина расчитываемого слоя, заложенного в ограждающую конструкцию здания, м;

 λ_i — расчетный коэффициент теплопроводности материала расчитываемого слоя, заложенного в ограждающую конструкцию здания, Вт/(м · °C), все значения выбранных материалов определяются согласно СП [4].

Теплотехнический расчет наружных стен

Конструктивный состав наружной стены представлен в таблице 3.

Таблица 3 – Состав наружной стены

		Толщина	Теплопроводность	
$\mathcal{N}_{\underline{o}}$	Слой	материала,	материала,	
		δ, м	λ , BT/($M^{\circ}C$)	
1	Вентилируемый фасад (сайдинг)	-	-	
2	Кирпич керамический	0,38	0,41	
	на цементно-песчаном растворе	0,50	0,11	
3	Пенополистироловые плиты	x	0,036	
4	Листовой гипсокартон (сухая	0,01	0,21	
_	штукатурка), плотностью 800 кг/м ³	0,01	0,21	

$$2,504 = \frac{1}{8,7} + \frac{0,38}{0,41} + \frac{x}{0,036} + \frac{0,01}{0,21} + \frac{1}{23}.$$

$$x = 0,036 \cdot 2,504 - \frac{1}{8,7} + \frac{0,38}{0,41} + \frac{0,01}{0,21} + \frac{1}{23} = 0,049 \text{ M}.$$

Получившуюся толщину утеплителя необходимо округлить – 0.05 м.

$$\begin{split} R_0 &= \frac{1}{8.7} + \frac{0.38}{0.41} + \frac{0.05}{0.036} + \frac{0.01}{0.21} + \frac{1}{23} = 2.52 \; (\text{m}^2 \cdot ^{\circ}\text{C})/\text{Bt} \\ R_0^{\text{HOPM}} &\leq R_0^{\text{ПP}}; \end{split}$$

$$2,504(M^2 \cdot {}^{\circ}C)/BT \le 2,52(M^2 \cdot {}^{\circ}C)/BT.$$

Далее высчитывается коэффициент теплопередачи:

$$k = \frac{1}{2.52} = 0.4 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}).$$

Теплотехнический расчет бесчердачного покрытия

Состав бесчердачного покрытия представлен в таблице 4.

Таблица 4 – Состав бесчердачного покрытия

		Толщина	Теплопроводность
$\mathcal{N}_{\underline{0}}$	Слой	материала,	материала,
		δ, м	λ , BT/($M^{\circ}C$)
1	Раствор цементно-песчаный	0,02	0,76
2	Перекрытие железобетонное	0,22	1,92
3	Пенополистироловые плиты	X	0,036
4	Гидробарьер ТехноНИКОЛЬ Д96	-	-
,	СИ		

$$3,777 = \frac{1}{8,7} + \frac{0,22}{1,92} + \frac{0,02}{0,76} + \frac{x}{0,036} + \frac{1}{23}.$$
 $x = 0,036 \cdot 3,777 - \frac{1}{8,7} + \frac{0,22}{1,92} + \frac{0,02}{0,76} + \frac{1}{23} = 0,125 \text{ м.}$

Получившуюся толщину утеплителя необходимо округлить – 0,13 м.

$$R_0 = \frac{1}{8.7} + \frac{0.012}{0.08} + \frac{0.13}{0.036} + \frac{1}{23} = 3.92 \text{ (M}^2 \cdot ^{\circ}\text{C)/BT.}$$

$$R_0^{\text{HOPM}} \le R_0^{\text{пp}};$$

$$3,777 \text{ (M}^2 \cdot ^{\circ}\text{C)/BT} \le 3.92 \text{ (M}^2 \cdot ^{\circ}\text{C)/BT.}$$

Далее высчитывается коэффициент теплопередачи:

$$k = \frac{1}{3.92} = 0.255 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}).$$

Теплотехнический расчет полов по грунту

Состав полов на грунте представлен в таблице 5.

Таблица 5 – Состав полов на грунте

		Толщина	Теплопроводность
$\mathcal{N}_{\underline{0}}$	Слой	материала,	материала,
		δ, м	λ , BT/($M^{\circ}C$)
1	Плитка из керамогранита	0,02	0,2
2	Раствор цементно-песчаный	0,02	0,76
3	Плита минераловатная	X	0,036
4	Перекрытие железобетонное	0,22	1,92
5	Керамзитобетон на керамзитовом песке	0,05	0,2

$$2,358 = \frac{1}{8,7} + \frac{x}{0,036} + \frac{0,22}{1,92} + \frac{0,05}{0,2} + \frac{0,02}{0,76} + \frac{0,02}{0,2} + \frac{1}{12}.$$

$$x = 0,036 \cdot 2,358 - \frac{1}{8,7} + \frac{0,22}{1,92} + \frac{0,05}{0,2} + \frac{0,02}{0,76} + \frac{0,02}{0,2} + \frac{1}{12} = 0,06 \text{ M}.$$

Получившуюся толщину утеплителя необходимо округлить – 0,1 м.

$$R_0 = \frac{1}{8,7} + \frac{0,1}{0,036} + \frac{0,22}{1,92} + \frac{0,05}{0,2} + \frac{0,02}{0,76} + \frac{0,02}{0,2} + \frac{1}{12} = 3,47 \text{ (M}^2 \cdot ^{\circ}\text{C)/Bt.}$$

$$R_0^{\text{HOPM}} \leq R_0^{\text{пр}};$$

$$2,358 (M^2 \cdot {}^{\circ}C)/BT \le 3,47 (M^2 \cdot {}^{\circ}C)/BT.$$

Далее высчитывается коэффициент теплопередачи:

$$k = \frac{1}{3.47} = 0.288 \,\mathrm{Br/(m^2 \cdot °C)}.$$

Теплотехнический расчет окон

Конструкция окна из профиля ПВХ с однокамерным стеклопакетом. Межстекольное расстояние в камере составляет 12 мм.

Для выбранных окон приведенное сопротивление теплопередаче составляет:

$$R_{\rm ДO}^{\rm np} = 0.34 \,\mathrm{m}^2 \cdot {\rm ^{\circ}C/BT}$$

Далее высчитывается коэффициент теплопередачи:

$$k = \frac{1}{0.34} = 2,941 \text{ BT/(M}^2 \cdot {}^{\circ}\text{C}).$$

Теплотехнический расчет наружных дверей

Для наружных дверей проектируемого здания приведенное сопротивление теплопередаче определяется согласно формуле:

$$R_0 = 0.6 \cdot R_{req}^{HC}, \tag{2.8}$$

где R_0 – сопротивление тепопередаче ограждающих конструкций, (м 20 С)/Вт; R_{req}^{HC} - сопротивление теплопередаче наружных стен, (м 20 С)/Вт;

$$R_{req}^{\text{HC}} = \frac{n \cdot (t_{\text{B}} - t_{\text{H}})}{\alpha_{\text{B}} \cdot \Delta t_{n}},\tag{2.9}$$

где n — коэффициент, выражающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху;

 $\Delta t_{\rm H}$ — нормируемый температурный перепад между температурой внутреннего воздуха $t_{\rm B}$ и температурой внутренней поверхности $\tau_{\rm B}$ ограждающей конструкции, °C, определяется по СП [4, таб.5], 4°C;

Подставив все данные в формулу (2.9) получим:

$$R_{req}^{HC} = \frac{1 \cdot (21 - (-19))}{8.7 \cdot 4} = 1,149 \,(\text{m}^2 \cdot ^{\circ}\text{C})/\text{Bt}.$$

Находим приведенное сопротивление теплопередаче для наружных дверей, подставив в формулу (2.8) соответствующие значения:

$$R_0 = 0.6 \cdot 1.149 = 0.689 \,(\text{m}^2 \cdot ^{\circ}\text{C})/\text{Bt}.$$

Далее высчитывается коэффициент теплопередачи:

$$k = \frac{1}{0.689} = 1,451 \,\mathrm{BT/(M^2 \cdot °C)}.$$

Все результаты теплотехнического расчета сведены в общую таблицу 6.

Таблица 6- Результаты теплотехнического расчета ограждающих конструкций

Наименование ограждающей конструкции здания	Толщина ограждающей конструкции здания, δ , м	Приведенное сопротивление теплопередаче ограждающей конструкции, R_0 , $(M^2 \cdot {}^{\circ}C)/BT$	Коэффициент теплопередачи ограждающей конструкции, k , $B\tau/(M^2 \cdot {}^{\circ}C)$
Наружная стена	0,44	2,52	0,4
Бесчердачное покрытие	0,420	3,92	0,255
Полы на грунте	0,41	3,47	0,288
Окно	Профиль ПВХ. Однокамерный стеклопакет	0,34	2,941
Наружная дверь	Двойные двери	0,689	1,451

2.2 Определение теплопотерь здания

При определении теплопотерь в доме цчитываются как основные теплопотери через ограждающие конструкции, так и дополнительные потери тепло за счет инфильтрации воздуха. Помимо общих теплопотерь следует учесть количество выделяемого бытового тепла. Для точного определения теплопотерь здания необходимо составить уравнение теплового баланса.

$$Q_0 = Q + Q_{\text{инф}} - Q_{\text{быт}} \tag{2.10}$$

где Q — потери тепла через наружные ограждающие конструкции, Вт; $Q_{\rm инф}$ — потери тепла за счет инфильтрирующего воздуха, Вт; $Q_{\rm быт}$ — выделения бытового тепла внутри здания, Вт, принимается из расчета 10 Вт $\,{\rm M}^2$

Для подсчета теплопотерь отдельными помещениями и зданием в целом необходимо иметь строительные чертежи с поэтажными планами и разрезами отапливаемого здания, на которых должны быть указаны размеры и назначения помещений. Для подсчета добавочных теплопотерь учитывается сторона света, на которую направленна ограждающая конструкция.

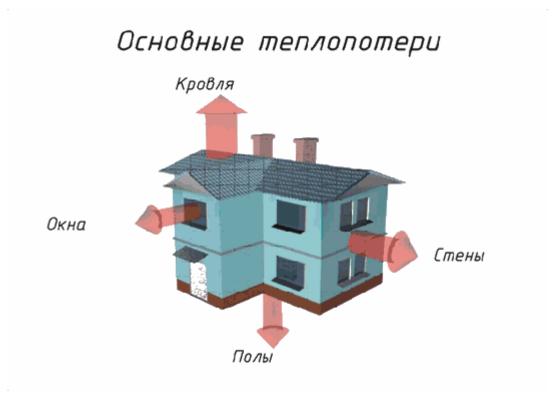


Рисунок 1 – Схема теплопотерь здания

Расчет теплопотерь оформлен в таблицу 7.

Таблица 7 – Теплопотери через ограждающие конструкции и на нагрев инфильтрирующегося воздуха

		Ограж			Добав	ки								
д№ помещения	Наименование помещения	Наименование конструкции	Ориентация конструкции	F, м ²	<i>k</i> ,Вт/ (м²· °С);	Δt,°C	Q, Вт	на ориентацию	прочее	Σβ	$Q \cdot (1 + \Sigma \beta)$	$Q_{ m ин \varphi}$	$Q_{ m 6bt}$	Q_0
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
			1	I		ольный			1	T				
		Нес. стена	Север	12,68	0,4	37	188	0,1	0,05	0,15	216			
		Нес. Стена Із.	Север	11,3	0,476	37	199	-	-	-	199		_	3694
		Окно	Север	3	2,941	37	326	0,1	0,05	0,15	375			
		Нес. стена	Вост.	5,92	0,4	37	88	0,1	0,05	0,15	101			
		Нес. Стена Із.	Вост.	5,3	0,476	37	93	-	-	-	93			
001	Енги аргиоа	Окно	Вост.	1,5	2,941	37	163	0,1	0,05	0,15	188	1726		
001	Бильярдная	Нес. стена	Запад	7,42	0,4	37	110	0,05	0,05	0,1	121	1720		
		Нес. Стена Із.	Запад	5,3	0,476	37	93	-	-	-	93			
		Пол Із.	-	19,75	0,476	37	348	-	-	-	348			
		Пол IIз.	-	23,5	0,233	37	202	-	-	-	202			
		Пол IIIз.	-	7,48	0,116	37	32	-	-	-	32			
										Сумма	1969			
		Нес. стена	Вост.	7,42	0,4	37	110	0,1	0,05	0,15	126			
		Нес. Стена Із.	Вост.	5,3	0,476	37	93	-	-	-	93			
002	Кладовая	Нес. стена	Юг	5,01	0,4	37	74	0	0,05	0,05	78	488	_	1039
	, ,	Нес. Стена Із.	Юг	3,58	0,476	37	63	-	-	-	63			
		Пол Із.	-	7,5	0,476	37	132	-	-	-	132			

		Пол II3.	_	6,84	0,233	37	59	_	_	-	59			
					· · · · · · · · · · · · · · · · · · ·					Сумма	552			
		Нес. стена	Юг	7,42	0,4	37	110	0	0,05	0,05	115			
		Окно	Юг	1,5	2,941	37	163	0	0,05	0,05	171			
		Нес. Стена Із.	Юг	5,3	0,476	37	93	-	-	-	93			007
002	TC	Нес. стена	Вост.	3,78	0,4	37	56	0,1	0,05	0,1	64	250	105	
003	Котельная	Нес. Стена Із.	Вост.	2,7	0,476	37	48	-	-	-	48	358	105	895
		Пол Із.	-	6,67	0,476	37	118	-	-	-	118			
		Пол ІІз.	-	3,84	0,233	37	33	-	-	-	33			
										Сумма	643			
	Галага	Ворота	Юг	14,4	1.451	37	773	0	0,05	0,05	812			3991
		Нес. стена	Запад	14,44	0,4	37	214	0,05	0,05	0,1	235		_	
		Окно	Запад	0,4	2.941	37	44	0,05	0,05	0,1	45			
		Нес. Стена Із.	Запад	10,6	0,476	37	187	-	-	-	187			
004		Нес. стена	Север	8,4	0,4	37	124	0,1	0,05	0,15	143	1847		
004	Гараж	Нес. Стена Із.	Север	6	0.476	37	106	-	-	-	106	1047		
		Пол Із.	-	20,5	0,476	37	361	-	-	-	361			
		Пол ІІз.	-	25	0,233	37	215	-	-	-	215			
		Пол IIIз.	-	8,8	0,116	37	38	-	-	-	38			
										Сумма	2144			
		Нес. стена	Вост.	3,56	0,4	37	53	0,1	0,05	0,15	61			
		Нес. Стена Із.	Вост.	2,54	0,476	37	45	-	-	-	45			
		Нес. стена	Юг	3,82	0,4	37	57	0	0,05	0,05	59			
005	Холл	Нес. Стена Із.	Юг	2,73	0,476	37	48	-	-	-	48	834		1020
005	AOJIJI	Пол Із.	-	2,09	0,476	37	37	-	-	-	37	834	_	1039
		Пол IIз.	-	16,67	0,233	37	143	-	-	-	143			
		Пол IIIз.	-	5,76	0,116	37	25	-	-		25			
										Сумма	205			

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Нес. стена	Юг	5,01	0,4	37	74	0	0,05	0,05	78			
		Нес. Стена Із.	Юг	3,58	0,476	37	63	-	-	-	63			
		Пол Із.	-	4,55	0,476	37	80	-	-	-	80			972
006	Бельевая	Пол IIз.	-	8,3	0,233	37	71	-	-	-	71	652	-	
		Пол IIIз.	-	6,32	0,116	37	27	-	-	-	27			
										Сумма	320			
			•	•			(0,000)		ı	T				
		Нес. стена	Север	33,9	0,4	40	542	0,1	0,05	0,15	624			
101 Гос		Окно	Север	6	2,941	40	706	0,1	0,05	0,15	812		479	3483
	Гостиная	Нес. стена	Вост.	15,9	0,4	40	254	0,1	0,05	0,15	293	1954		
		Нес. стена	Запад	15,9	0,4	40	254	0,05	0,05	0,1	280			
										Сумма	2008			
	Тамбур	Нес. стена	Вост.	15,9	0,4	40	254	0,1	0,05	0,15	293		-	1505
		Окно	Вост.	3	2,941	40	353	0,1	0,05	0,15	406			
102		Наруж. дверь	Вост.	1,62	1,451	40	94	0,1	0,05	0,15	108	522		
		Нес. стена	Юг	10,5	0,4	40	168	0	0,05	0,05	176			
										Сумма	983			
		Нес. стена	Юг	15,9	0,4	40	254	0	0,05	0,05	267			
		Нес. стена	Юг	7,35	0,4	40	118	0	0,05	0,05	123			
103	Холл	Наруж. дверь	Юг	1,62	1,451	40	94	0	0,05	0,05	99	2028		2810
		Нес. стена	Вост.	15,93	0,4	40	255	0,1	0,05	0,15	293			
										Сумма	782			
		Нес. стена	Юг	15,9	0,4	40	254	0	0,05	0,05	267			
104	Кухня	Окно	Запад	3	2,941	40	353	0,05	0,05	0,1	388	906	222	1619
	Кухня	Нес. стена	Запад	15,9	0,4	40	254	0,05	0,05	0,1	280	700		1019
										Сумма	935			
105	Столовая	Нес. стена	Запад	15,9	0,4	40	254	0,05	0,05	0,1	280	1028	252	1737
103	Столовал	Окно	Запад	3	2,941	40	353	0,05	0,05	0,1	388	1020	252	1/3/

	T. T.		1	1		1	1		1	1			писпис та	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Нес. стена	Север	15,9	0,4	40	254	0,1	0,05	0,15	293			
										Сумма	961			
		Нес. стена	Север	12,03	0,4	40	192	0,1	0,05	0,15	221			
201	Детская 1	Окно	Север	2,7	2,941	40	318	0,1	0,05	0,15	365	726	221	1317
201	детская т	Потолок	-	22,12	0,255	40	226	-	-	-	226	720	221	1317
										Сумма	812			
		Нес. стена	Север	15,15	0,4	40	242	0,1	0,05	0,15	279			
		Окно	Север	2,7	2,941	40	318	0,1	0,05	0,15	365			
202	Детская 2	Нес. стена	Вост.	15,9	0,4	40	254	0,1	0,05	0,15	293	808	274	1750
	_	Потолок	-	27,36	0,255	40	279	-	-	-	279			
										Сумма	1216			
	_	Нес. стена	Вост.	15,9	0,4	43	273	0,1	0,05	0,15	315		184	
203	Con vaca	Нес. стена	Юг	10,02	0,4	43	172	0	0,05	0,05	181	717		1230
203	Сан. узел	Потолок	-	18,42	0,255	43	202	-	-	-	202	/1/		1230
										Сумма	697			
		Нес. стена	Вост.	15,9	0,4	40	254	0,1	0,05	0,15	293			
		Нес. стена	Юг	15,9	0,4	40	254	0	0,05	0,05	267			
		Нес. стена	Юг	7,86	0,4	40	126	0	0,05	0,05	132			
204	Холл	Нес. стена	Запад	15,9	0,4	40	254	0,05	0,05	0,1	280	2561		4431
		Нес. стена	Север	6,39	0,4	40	102	0,1	0,05	0,15	118			
		Потолок	-	76,6	0,255	40	781	-	-	-	781			
										Сумма	1870			
		Нес. стена	Юг	15,9	0,4	40	254	0	0,05	0,05	267			
		Нес. стена	Запад	15,9	0,4	40	254	0,05	0,05	0,1	280			
205	Гардеробная	Окно	Запад	2,7	2,941	40	318	0,05	0,05	0,1	349	1142		2325
		Потолок	-	28,09	0,255	40	287	_	-	-	287			
										Сумма	1183			

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		Нес. стена	Север	15,9	0,4	40	254	0,1	0,05	0,15	293			
		Нес. стена	Запад	15,9	0,4	40	254	0,05	0,05	0,1	280			
206	Спальня	Окно	Запад	2,7	2,941	40	318	0,05	0,05	0,1	349	1142	280	2070
		Потолок	-	28,09	0,255	40	287	-	-	-	287			
										Сумма	1208			

3 ТЕПЛОСНАБЖЕНИЕ

3.1 Система отопления

В данном коттедже рассматривается проект тупиковой горизонтальной двухтрубной системы отопления.

Система отопления прокладывается в здании по периметру на всех трех этажах. Трубы подающей и обратной магистрали уложены в штрабе, которая расположена в полу.

Отопительные приборы устанавливаются под окнами, либо вдоль наружной стены. Температура воды, которая является теплоносителем 90-70°С. Материал используемых труб - сталь. На каждом радиаторе для удаления воздуха используются автоматический отвод воздуха, предустановленный на радиаторе.

Рисунок 2 – Схема работы воздухоотводчика автоматического

3.1.1 Гидравлический расчет горизонтальной двухтрубной системы

Целью гидравлического расчета, при условии использования располагаемого давления насоса В котле, являются: обеспечение бесшумности работы системы отопления, определение диаметров участков системы отопления; подбор регулирующих клапанов, устанавливаемых на ветках, стояках и подводках отопительных приборов;

Располагаемое давление для создания циркуляции воды P_p , Πa , задается давлением создаваемым циркуляционным насосом, расположенным в котле.

 P_{p} насоса составляет 13,55 кПа. Необходимо подобрать диаметры труб так, чтобы давление в системе отопления не превышало располагаемое.

Результаты расчетов сводятся в таблицу 8.

Таблица 8 – Гидравлический расчет системы отопления

№	G, кг/ч	1, м	d, мм	R _ф , Па/м	v, m/c	Rl, Па	v ² ·ρ/2	Σξ	Ζ, Па	Rl+Z, Па				
уч-ка														
1	2	3	4	5	6	7	8	9	10	11				
	$P_{p} = 13550 \; \Pi a$													
1	1546	2,1	32	56	0,39	118	76,05	3	228	346				
2	1107	3	32	52	0,34	156	57,8	1	58	214				
3	598	4	25	118	0,45	472	101,25	2,5	253	725				
4	396	11,1	20	109	0,36	1210	64,8	4	259	1469				
5	340	13,8	20	64	0,29	883	42,05	2,5	105	988				
6	280	5,4	20	38	0,21	205	22,05	1	22	227				
7	200	15	15	120	0,31	1800	48,05	5,5	264	2064				
8	106	5,5	15	78	0,25	423	31,25	14	438	867				
7'	200	15	15	120	0,31	1800	48,05	5,5	264	2064				
6'	280	5,4	20	38	0,21	205	22,05	1	22	227				
5'	340	13,8	20	64	0,29	883	42,05	2,5	105	988				
4'	396	11,1	20	109	0,36	1210	64,8	4	259	1469				
3'	598	4	25	118	0,45	472	101,25	2,5	253	725				
2'	1109	3	32	52	0,34	156	57,8	1	58	214				

Продолжение таблицы 8

1	2	3	4	5	6	7	8	9	10	11
1					6				10	
1'	1546	2,1	32	56	0,39	118	76,05	3	228	346
	l = 114,3	3 м						Rl	+Z=12	2934 Па
				2 эт	аж, Р _р =	11815 Г	Ia			
9	509	1	25	50	0,257	50	33,02	1	33	83
10	381	11,1	20	90	0,312	999	48,67	4	195	1194
11	312	13,8	20	60	0,25	828	31,25	2,5	78	906
12	232	5,4	15	160	0,338	864	57,12	1	57	921
13	153	15	15	70	0,223	1050	24,86	5,5	137	1187
14	74	5,5	15	20	0,114	110	6,4	14	91	201
13'	153	15	15	70	0,223	1050	24,86	5,5	137	1187
12'	232	5,4	15	160	0,338	864	57,12	1	57	921
11'	312	13,8	20	60	0,25	828	31,25	2,5	78	906
10'	381	11,1	20	90	0,312	999	48,67	4	195	1194
9'	509	1	25	50	0,257	50	33,02	1	33	83
		•								•
	l = 98,1	. M						F	Rl + Z = 8	3782 Па
	<i>l</i> = 98,1 Невяз	1	1815 - 118	- 8182 15	100% =	26%, ΔI	P = 3032			
1		1		. 1	100% =	26%, ΔF	P = 3032			
1 16	Невяз	зка = 1	118	15				 Па, Dar	nfoss Ду25	5
	Невяз	3	118 4	15 5	6	7	8	Па, Dar 9	nfoss Ду25	5 11
16	Невяз 2 398	3 $11,1$	118 4 20	5 90	6 0,312	7 999	8 48,67	Па, Dar 9 4	nfoss Ду2! 10 195	11 1194
16 17	Невяз 2 398 350	3 $11,1$ $13,8$	118 4 20 20	5 90 70	6 0,312 0,271	7 999 966	8 48,67 36,72	Па, Dar 9 4 2,5	nfoss Ду25 10 195 92	11 1194 1058
16 17 18	Невяз 2 398 350 266	3 $11,1$ $13,8$ $5,4$	118 4 20 20 20	5 90 70 40	6 0,312 0,271 0,206	7 999 966 216	8 48,67 36,72 21,22	Па, Dar 9 4 2,5	nfoss Ду25 10 195 92 21	11 1194 1058 237
16 17 18 19	Невяз 398 350 266 182	3 $11,1$ $13,8$ $5,4$ 15	118 4 20 20 20 20 20	5 90 70 40 20	6 0,312 0,271 0,206 0,142	7 999 966 216 600	8 48,67 36,72 21,22 10,08	Па, Dar 9 4 2,5 1 14	nfoss Ду25 10 195 92 21 141	11 1194 1058 237 441
16 17 18 19 18'	Невяз 398 350 266 182 266	3 $11,1$ $13,8$ $5,4$ 15 $5,4$	118 4 20 20 20 20 20 20	5 90 70 40 20 40	6 0,312 0,271 0,206 0,142 0,206	7 999 966 216 600 216	8 48,67 36,72 21,22 10,08 21,22	Πa, Dar 9 4 2,5 1 14 1	лfoss Ду25 10 195 92 21 141 21	11 1194 1058 237 441 237
16 17 18 19 18' 17'	Невяз 2 398 350 266 182 266 350	3 $11,1$ $13,8$ $5,4$ 15 $5,4$ $13,8$	118 4 20 20 20 20 20 20 20 20	5 90 70 40 20 40 70	6 0,312 0,271 0,206 0,142 0,206 0,271	7 999 966 216 600 216 966	8 48,67 36,72 21,22 10,08 21,22 36,72	Па, Dar 9 4 2,5 1 14 1 2,5	10 195 92 21 141 21	11 1194 1058 237 441 237 1058
16 17 18 19 18' 17' 16'	Невяз 2 398 350 266 182 266 350 398	3 $11,1$ $13,8$ $5,4$ 15 $5,4$ $13,8$ $11,1$ 1	118 4 20 20 20 20 20 20 20 20 20 20	15 · 1 5 90 70 40 20 40 70 90	6 0,312 0,271 0,206 0,142 0,206 0,271 0,312	7 999 966 216 600 216 966 999	8 48,67 36,72 21,22 10,08 21,22 36,72 48,67	Πa, Dar 9 4 2,5 1 14 1 2,5 4 1	л foss Ду25 10 195 92 21 141 21 92 195	11 1194 1058 237 441 237 1058 1194 155

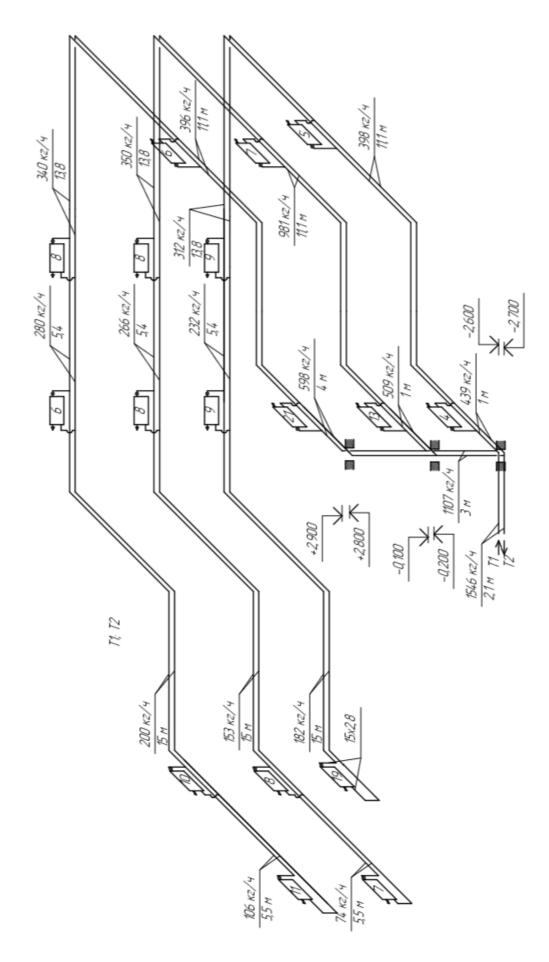


Рисунок 1 – Расчетная схема системы отопления

3.1.2 Подбор отопительных приборов

Для помещения определяется необходимая теплопередача отопительного прибора, Вт:

$$Q_{\rm np} = Q_{\rm nom} - \beta_{\rm Tp} \cdot Q_{\rm Tp} \tag{3.1}$$

где, $Q_{\rm Tp}$ — теплоотдача участков труб, с открытым расположением. в пределах помещения: подводки, к отопительным приборам, Вт; $\beta_{\rm Tp}$ — коэффициент, показывающий зависимость от месторасположения, а также изоляции труб, принятый 0,9.

Расчетная площадь поверхности радиаторов отопления определяется согласно формуле:

$$F_{\rm np} = \frac{Q_{\rm np}}{q_{\rm np}} \tag{3.2}$$

где $q_{\rm np}$ — расчетная плотность теплового потока с одного метра прибора, ${\rm BT/m^2},$ определяемая по формуле (3.3).

 $Q_{\rm np}$ – то же что и в (3.1);

$$q_{\rm np} = q_{\rm HOM} \cdot \frac{\Delta t_{\rm cp}}{70}^{1+n} \cdot \frac{G_{\rm np}}{360}^{p}$$
 (3.3)

где n, p, - коэффициенты, показывающие влияние гидравлических и конструктивных особенностей на коэффициент теплоотдачи прибора, которые равны n=0.3 p=0.02 — для секционного радиатора с подачей воды сверху вниз;

 $q_{\text{ном}}$ — номинальная плотность теплового потока, $\mathrm{Br/m}^2$, при

стандартных условиях работы для радиатора равна 588 $\mathrm{Bt/m}^3$; $G_{\mathrm{пр}}$ - расход воды в радиаторе, кг/час.

 $t_{\rm cp}$ — перепад температуры между показателями температур теплоносителя и окружащей среды, °С, который определяется согласно формуле (3.4).

$$\Delta t_{\rm cp} = \frac{t_{\rm BX} - t_{\rm BMX}}{2} - t_{\rm mom} \tag{3.4}$$

где $t_{\text{вх}}-t_{\text{вых}}$ – разница температур на входе и на выходе в радиаторе, °C; $t_{\text{пом}}$ – температура окружающего воздуха в помещении, °C.

После расчитывается количество секций для каждого отопительного прибора согласно формуле:

$$N = \frac{F_{\text{np}} \cdot \beta_4}{f_{\text{cek}} \cdot \beta_3} \tag{3.5}$$

где β_3 — коэффициент, учитывающий взаимное облучение секций в приборе, принимается 1;

 β_4 — коэффициент, учитывающий свободный способ установки прибора под окном, принимается 1,02.

 $f_{\rm cek}$ — площадь одной секции радиатора, м², принимаемая согласно паспорту прибора $f_{\rm cek}$ = 0,47 м².

 $F_{\text{пр}}$ – то же что в (3.2);

Результаты расчета сводятся в таблицу 9.

Таблица 9 - Подбор отопительных приборов

№ помещения	Q _{пом}	G_{np}	t_{BX}	$t_{\scriptscriptstyle m BMX}$	$\Delta t_{\rm cp}$	q_{np}	Qпp	F	β_3	β_4	N
1	2	3	4	5	6	7	9	10	11	12	13
001 (1)	1847	42,1	90	70	60	485	1847	4	0,986	1,02	9шт.
001 (2)	1847	42,1	90	70	60	485	1847	4	0,986	1,02	9шт.
002	895	40,8	90	70	60	485	895	2	1,003	1,02	4 шт.
004	3991	182	90	70	60	485	3991	8	0,977	1,02	19 шт.
005	1039	47,4	90	70	60	485	1039	2	0,998	1,02	5 шт.
006	972	44,3	90	70	60	485	972	2	1,000	1,02	4 шт.
101 (1)	1741,5	39,7	90	70	60	485	1741,5	4	0,987	1,02	8 шт.
101 (2)	1741,5	39,7	90	70	60	485	1741,5	4	0,987	1,02	8 шт.
102	1505	68,6	90	70	60	485	1505	3	0,989	1,02	7 шт.
104	2810	128,1	90	70	60	485	2810	6	0,980	1,02	13 шт.
105	1619	73,8	90	70	60	485	1619	3	0,988	1,02	7 шт.
106	1737	79,2	90	70	60	485	1737	4	0,987	1,02	8 шт.
201	1317	60,1	90	70	60	485	1317	3	0,992	1,02	6 шт.
202	1750	79,8	90	70	60	485	1750	4	0,987	1,02	8 шт.
203	1230	56,1	90	70	56	445	1230	3	0,992	1,02	6 шт.
204	4431	202,1	90	70	60	485	4431	9	0,977	1,02	21 шт.
205	2325	106	90	70	60	485	2325	5	0,983	1,02	11 шт.
206	2070	94,4	90	70	60	485	2070	4	0,984	1,02	10 шт.

3.2 Горячее водоснабжение

В проектируемом коттедже установлены 4 водоразборных прибора. В здании проживают 4 человека.

В доме запроектированны подающие и циркуляционные магистрали, температура теплоносителя составляет 60°С. На подающей магистрали подключены 4 водоразборных прибора. К циркуляционной подключены два полотенцесущителя.

Для прокладки системы используются металлопластиковые трубы. В верхней точки системы горячего водоснабженияпроизводится удаление

воздуха. В нижней точке системы у ее основания устанавливается кран, используемый при необходимостив сливе воды из системы водоснабжения.

3.2.1 Определение расходов воды и тепла

Необходимо определить максимальный секундный расход воды, q^h , π/c , (3.6)

$$q^h = 5 \cdot q_0^h \cdot \alpha, \tag{3.6}$$

где α – коэффициент, который завист от общего количества водоразборных приборов и вероятности их одновременного действия, определяется методом интерполяции по [8].

 q_0^h — секундный расход самого нагруженного прибора, принимается ванна с установленным смесителем - 0,18 л/с;

Шанс действия всех приборов в одно и то же время в секунду, определяется согласно формуле (3.7).

$$P = \frac{q_{u,hr}^h \cdot U}{3600 \cdot N \cdot q_0^{h'}}$$

$$P = \frac{8 \cdot 4}{3600 \cdot 4 \cdot 0{,}18} = 0{,}012$$
(3.7)

где q_0^h – то же что и в (3.6).

N – количество водоразборных приборов, шт.;

U – число жителей в доме, шт.;

 $q^h_{u,hr}$ — часовой расход воды, л/ч, согласно [8] равно 8 л/ч;

Максимальный секундный расход, согласно формулам равен:

$$\alpha = f \ 4 \cdot 0.012 = f \ 0.048 = 0.27;$$

 $q^h = 5 \cdot 0.18 \cdot 0.27 = 0.243 \, \pi/c;$

Определяется максимальный часовой расход воды, л/ч, согласно формуле (3.8).

$$q^h = 5 \cdot q_{o,hr}^h \cdot \alpha, \tag{3.8}$$

где α – то же что и в (3.6).

 $q_{o,hr}^{\rm h}$ — часовой расход для прибора с наибольшим среди всех приборов водоразбором, л/ч, для ванны со смесителем принимается 200 л/с согласно [8].

Определяется часовая вероятность одновременного действия всех установленных приборов согласно формуле (3.9):

$$P_{hr} = \frac{3600 \cdot P \cdot q_0^h}{q_{0,hr}^h},$$

$$P_{hr} = \frac{3600 \cdot 0.012 \cdot 0.18}{200} = 0,039$$
(3.9)

где $q_{0,hr}^h$ – то же что и в (3.6);

 $q_{o.hr}^{\rm h}$ – то же что в (3.7).

Р – шанс действия всех приборов одновременно в секунду, (3.7);

Определяется максимальный часовой расход по формулам:

$$\alpha = f \ 0.039 \cdot 4 = f \ 0.156 = 0.406;$$

$$q_{hr}^h = 0.005 \cdot 0.406 \cdot 200 = 0.406$$
 л/ч.

Среднесуточный расход горячей воды, ${\rm M}^3/{\rm cyr}$ определяется по формуле (3.10).

$$q_u = \frac{q_h^u \cdot U}{1000},$$

$$q_u = \frac{90 \cdot 4}{1000} = 0,36 \text{ m}^3/\text{cyt.}$$
(3.10)

где U – то же что и в (3.7);

 q_h^u — суточный расход горячей воды потребителем, принимается 90 л/сут [8].

Определяется средний расход теплоты Q_T^h , кВт, на нужды горячего водоснабжения согласно формуле (3.11).

$$Q_T^h = 1,16 \cdot \frac{q_u}{24} \cdot 65 - t^c + Q^{ht}, Q_T^h,$$

$$Q_T^h = 1,16 \cdot \frac{0,36}{24} \cdot 65 - 5 + 10\% = 1,15 \text{ kBT}$$
(3.11)

где t^c – температура холодной воды,°С;

 Q^{ht} — потери теплоты в системе ГВС, кВт, принимаются в размере 10%;

 q_u — среднесуточный расход горячей воды, м 3 /сут, согласно формуле (3.10);

Максимальный часовой расход теплоты, кВт, на нужды горячего водоснабжения определяется по формуле:

$$Q_{hr}^{h} = 1,16 \cdot q_{hr}^{h} \cdot 65 - t^{c} + Q^{ht}, Q_{hr}^{h},$$
(3.12)

$$Q_{hr}^h = 1.16 \cdot 0.406 \cdot 65 - 5 + 10\% = 31 \text{ kBT}$$

где q_{hr}^h — максимальный часовой расход воды, л/ч, определяется по формуле (3.8);

 t^c – то же что в (3.16);

 Q^{ht} – то же что в (3.16).

3.2.2 Гидравлический расчет подающих трубопроводов

Гидравлический рачет производится для того чтобы выявить необходимый диаметр трубопроводов для каждого из цчастков системы.

Диаметр труб для каждого участка определяется по таблицам гидравлического расчета в соответствии с секундными расходами воды, в соотношении с допусимымой скоростью движения воды.

Скорость не должна превышать рекомендованные 1,5 м/с, а на участках подвода воды к приборам - менее 3 м/с.

Необходимо определить потери давления на участках, м:

$$\Delta p = R \cdot l \cdot (1 + K_M) \tag{3.13}$$

где $K_{\rm M}$ – коэффициент, учитывающий потери давления в местных сопротивлениях.

1 – длина участка, м;

R – удельные потери на трение при расчетном расходе воды на участке, м/м, принимаются согласно [9];

Гидравлический расчет сведен в таблицу 10.

Таблица 10 – Гидравлический расчет системы горячего водоснабжения

№	Длина	Число	NP	α	qh	Dy	v	D	Км	Δp	ΣΔp
участка	участка	приборов	111	u	qn	Dу	v	IX.	IXM	Δр	ΔДр
1	1,2	1	0,012	0,2	0,18	15	1,063	0,305	0,2	0,439	
2	4,5	2	0,024	0,224	0,2016	15	1,18	0,36	0,2	1,944	2,383
3	18	3	0,036	0,249	0,2241	15	1,298	0,462	0,2	9,988	12,37
4	2,5	4	0,048	0,270	0,243	20	0,748	0,107	0,5	0,4	12,77

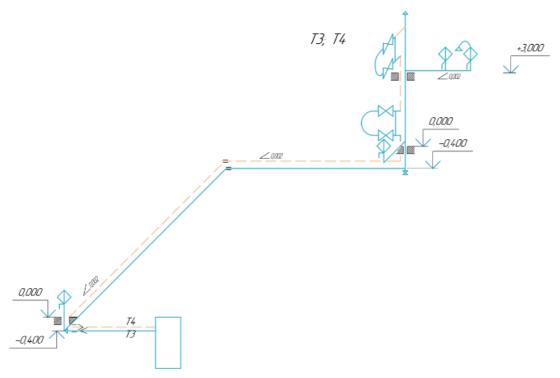


Рисунок 2 – Расчетная схема системы горячего водоснабжения

3.2.3 Определение потерь теплоты в трубопроводах

В подающих трубопроводах теряется определенное количество теплоты.

Потери теплоты на каждом расчетном участке, Вт определяются по формуле:

$$\Delta Q = \pi \cdot d_{\rm H} \cdot l \cdot k \cdot \frac{t_{\rm H} + t_{\rm K}}{2} - t_{\rm 0Kp} \cdot (1 - \eta)$$
 (3.14)

где $d_{\rm H}$ - наружный диаметр трубопровода, м;

1 – то же что в (3.9);

k - коэффициент теплопередачи, $Bт/м^2$ °C, для металлопластиковых труб принимается 0,45;

 $t_{\scriptscriptstyle \rm H}$ - температура горячей воды на выходе из котла, °C;

 $t_{\rm K}$ - температура у наиболее удаленного водоразборного прибора, °С.

 $t_{
m okp}$ - температура помещения, в котором расположен участок

трубопровода;

η - КПД теплоизоляции, принимается 80%.

Расчет потерь теплоты подающими теплопроводами приведен в таблице 11.

Таблица 11 – Расчет потерь теплоты подающими трубопроводами

№ участка	Длина участка	D н, м	К	tокр,	(tг- toкp),	потери тепла	сумма Q	Примечание для участка
1	1,2	0,020	0,45	24	38,5	1,3		
2	1,4	0,020	0,45	24	38,5	1,5	2,8	Учесть для полотенцесушителя=100
2'	3	0,020	0,45	24	38,5	3,3	106,4	
3	7,5	0,020	0,45	24	38,5	8,2	114,3	
3'	10,5	0,020	0,45	24	38,5	11,4	225,7	Учесть для полотенцесушителя=100
4	2,5	0,026	0,45	21	41,5	3,8	230	

3.2.4 Гидравлический расчет циркуляционных трубопроводов

Для циркуляционного трубопровода гидравлический расчёт выполняется аналогично расчёту подающего трубопровода. Диаметры участков циркуляционного трубопровода запроектированы на 1–2 размера меньше, чем диаметры участков подающего трубопровода.

Циркуляционные стояки рассчитаны на разность давлений в местах соединения их с подающими стояками и циркуляционной магистралью, разность потерь давления в различных циркуляционных кольцах не более 10%.

Необходимый циркуляционный расход воды в системе ГВС, q^{cir} , кг/ч рассчитывается по формуле:

$$q^{cir} = \beta \cdot \frac{\Sigma Q^{ht} \cdot 3600}{c \cdot \Delta t} \tag{3.15}$$

где Q^{ht} – суммарные потери тепла, Вт; c – то же, что в (3.2);

 Δt — разность температур горячей воды в подающих трубопроводах и у самой удалённой водоразборной точки, °C.

Гидравлический расчет циркуляционных трубопроводов сведен в таблицу 12.

Таблица 12 – Гидравлический расчет циркуляционных трубопроводов

№ участка	Длина участка	qcir, кг/час	л/с	Dy	v	R	K _M	Δp	ΣΔp
1	2	3	4	5	6	7	8	9	10
1	1,2					0,012		0,02	
2	4,5	20	0,01	15	0,05	0,045	0.5	0,07	0,09
3	18	39				0,18	0,5	0,27	0,36
4	2,5					0,025		0,04	0,39

3.3 Расчет и подбор оборудования теплогенераторной

По общему количеству тепла, кВт, подбираем газовый котел. Общее количества тепла определяется по формуле (3.21).

$$Q_{\text{общ}} = Q_{\text{т.п.}} + Q_{\text{г.в.}}, \tag{3.16}$$

$$Q_{\text{общ}} = 33.8 + 1.15 = 35 \text{ кВт,}$$

где $Q_{\text{т.п.}}$ – общие теплопотери дома, кВт, принятые в расчете теплопотерь; $Q_{\text{г.в.}}$ – среднее количество тепла требуемое для горячего водоснабжения, кВт.

По итогу суммы данных значений производится подбор газового котла. Выбран котел Viessmann Vitodens 200.

Требуемый напор $H_{\rm Tp}$ в системе горячего водоснабжения определяется по формуле (3.22).

$$H_{\rm Tp} = \Delta H_{\rm Tp} + \Delta H_{\rm ILUP} + \Delta H_{\Gamma} + H_{\rm CB},$$
 (3.17)
 $H_{\rm Tp} = 3.95 + 0.39 + 5.9 + 3 = 13.24 \,\mathrm{m},$

где $\Delta H_{\rm Tp}$ – потери напора в подающем трубопроводе системы ГВС;

 $\Delta H_{\text{цир}}$ – потери напора в циркуляционном трубопроводе системы ГВС;

 ΔH_{Γ} — геометрическая высота подъема воды: расстояние принятое от оси насоса котла до верхнего прибора;

 $H_{\rm cb}$ — свободный напор на излив для ванны, 3 м.

Для подбора насоса расходы воды на ГВС принимается с 10%-ным запасом.

Рабочая характеристика насоса Grundfos 1-5, приведена на рисунке 3.

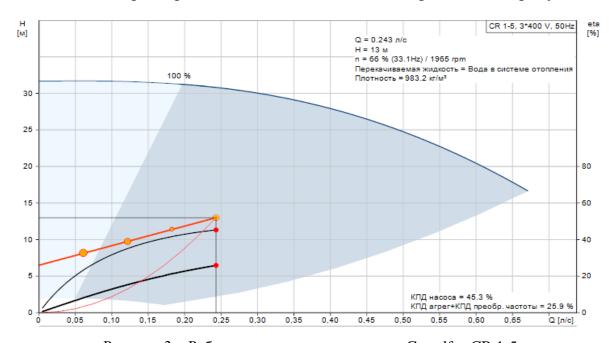


Рисунок 3 – Рабочая характеристика насоса Grundfos CR 1-5

4. ВЕНТИЛЯЦИЯ

В доме запроектированы приточная вентиляция в бильярдной и вытяжная вентиляция из следующих помещений: санузлы перого и второго этажей, кухня, теплогенераторная, гараж, бильярдная. Для того, чтобы воздух не застаивался в остальных помещениях, необходимо количество их воздухообмена прибавить к тем помещениям в которых имеется вытяжной канал.

Приток воздуха в помещения, где нет приточной системы, будет осуществляться за счет вентиляционных клапанов Norvind pro, встроенных в наружные стены дома.

Клапаны встроены в следующие помещения: детские комнаты, спальня, столовая, гостиная. Данные клапаны способны обеспечить регулируемый приток воздуха в помещения при закрытых окнах. Клапан оснащен встроенным фильтром с предварительной очисткой класса G3. Вентиляционное отверстие можно открыть, закрыть, а также регулировать объем поступающего воздуха при помощи передвижения заслонки.

На цокольном этаже в бильярдной предусмотрена современная механическая приточная система. Система состоит из трех приточных установок Ballu air Master 2 BMAC-300/BACE, расположенных по периметру северной наружной стены. Приточные системы монтирются под потолком. При совместной работе приточные системы подают до $600 \text{ м}^3/\text{ч}$ свежего устанавливается приточные воздуха. Снаружи стене предотвращающие попадание в приточную камеру насекомых, уличной пыли и мусора снаружи. В самой стене встраиваются теплоизоляционные трубы, через которые воздух проходит до приотчных систем, и проходит дополнительную шестиступенчатую очистку. Приточные установки имеют встроенный нагреватель наружного воздуха. С помощью пульта управления производится регулирование темературы подачи воздуха.

На противоположной стене в бильярдной комнате предусмотренна механическая система вентиляции В3, срабатывающая при включении приточной системы.

4.1 Определение требуемых воздухообменов

Количество вентилируемого воздуха в помещениях для притока и вытяжки определяется по СП [3].

Воздухообмен для спальни, детских комнат, гостиной принимаем из расчета 3 $\text{м}^3/\text{ч}$ на 1 м^2 жилой площади. Для бильярдной и библиотек кратность равна 0,5 ч^{-1} . Для кладовых, гардеробных, бельевой комнат воздухообмен принять с кратностью 0,2 ч^{-1} , но не менее 10 $\text{м}^3/\text{ч}$ на помещение.

Вытяжную вентиляцию для гаража принимается из расчета $180 \text{ м}^3/\text{ч}$ на 1 легковой автомобиль. Воздухообмен для санузлов принимается $25 \text{ м}^3/\text{ч}$, а для совмещенных $-50 \text{ м}^3/\text{ч}$.

На кухне используется газовое оборудование (газовая плита на 4 конфорки). Для каждой конфорки необходимо обеспечить вытяжку в размере $80 \text{ м}^3/\text{ч}$. В теплогенераторной с навесным котлом необходимо обеспечить воздухообмен кратностью 3 ч^{-1} .

Результаты расчета воздухообменов сводят в таблицу 13.

Таблица 13 – Воздушный баланс здания

No	Наименова	Площадь,	Объем,	При	ток	Вытяжка	
№	ние помещения	F, m ²	V, M^3	k, ч ⁻¹	L, м ³ /ч	k, ч ⁻¹	L, м ³ /ч
1	2	3	4	5	6	7	8
		Ц	окольный з	таж (на отм.	-2.700)		
001	Бильярдная	46	110,4	0,5	55,2	Через с	межные
001	Бильярдная	70	110,4	0,5	33,2	помет	цения
002	Кладовая	13	31,2	0,2	10	-	_

Продолжение таблицы 13

1	2	3	4	5	6	7	8
003	Котельная	9,5	22,8	3	68,4	3	68,4
004	Гараж	48	115,2	-	-	180 м ³ /ч на1 машину	180
006	Бельевая	18	43,2	0,2	10	-	-
			Первый эт	аж (на отм. 0	0.000)	•	
101	Гостиная	46	124,2	3 м ³ /ч на 1 м ²	138	Через ст помет	
104	Кухня (с газовой плитой)	22,9	61,8	Через с помег		80 м ³ /ч на 1 конфорку	320
105	Столовая	24,6	66,4	3 м ³ /ч на 1 м ²	73,8	Через ст помет	
106	Сан. узел	4	10,8	Через ст помет		25 м ³ /ч на 1 унитаз	25
			Второй эт	аж (на отм. 3	.000)		
201	Детская 1	17,2	46,4	3 м ³ /ч на 1 м ²	51,6	Через ст помет	
202	Детская 2	19,8	53,4	3 м ³ /ч на 1 м ²	59,4	Через ст помет	
203	Сан. узел	13	35,1	Через ст помет		50 м ³ /ч для совм-го	50
205	Гардеробна я	22,9	61,8	0,2	12,3	-	-
206	Спальня	24,6	66,4	3 м ³ /ч на 1 м ²	73,8	Через ст помет	

4.2 Аэродинамический расчет

Цель данного расчета — подбор верного диаметра для системы вентиляции и выявление потерь давления в системе.

Действительная скорость воздуха на участках, м/с, находится по формуле (4.1).

$$\vartheta = \frac{L}{3600 \cdot F} \tag{4.1}$$

где L – расход вентилируемого воздуха в системе.

F — площадь поперечного сечения воздуховода, м².

По значениям фактической скорости и диаметру необходимо определить следующие значения:

R – потери давления по длине, Па/м;

 $P_{\scriptscriptstyle \rm I\hspace{-1pt}I}$ – динамическое давление, Па

для каждого участка.

Потери давления на местные сопротивления определяются, по формуле (4.2).

$$Z = \Sigma \xi \cdot P_{\pi} \tag{4.2}$$

где $\Sigma \xi$ — сумма коэффициентов местных сопротивлений на рассматриваемом участке;

Для воздуховодов, выложенных из кирпича, вводится поправка на шероховатость – $\beta_{\rm m}$.

Определяются полные потери давления.

Аэродинамический расчет механической системы вентиляции сведен в таблицу 14

Таблица 14 – аэродинамический расчет механической вентиляции

L	1	4	$d_{_{\rm ЭKB}}$	f m ²	1/25/2	R	O	Rlβ _{III}	77	P_{μ}	Z	$Rl\beta_{III}+Z$
M^3/q	lм	d мм	MM	I M	V м/с	Па/м	β_{III}	Па	$\Sigma \xi$	Па	Па	Па
						B1						
68,4	7,3	140x140	140	0,02	0,95	0,136	1,46	1,449	3,7	0,6	2,22	3,67
						B2						
180	7,3	140x270	180	0,038	1,32	0,139	1,46	1,48	3,7	0,9	3,33	4,81
						В3						
320	7,3	270x270	280	0,073	1,22	0,08	1,46	0,85	3,7	0,9	3,33	4,18
	B4											
212	4,3	270x270	280	0,073	0,81	0,393	1,46	2,47	3,7	0,4	1,48	3,95

	B5											
185	1,3	140x270	180	0,038	1,35	0,161	1,46	0,306	3,7	1,05	3,89	4,19

Для системы В3 подобран вытяжной вентилятор «Vents turbo». Для систем В2, В4, В5 подобраны вентиляторы «Домовент 125 СВ». Для системы В1 подобран вентилятор «Вентс D100».

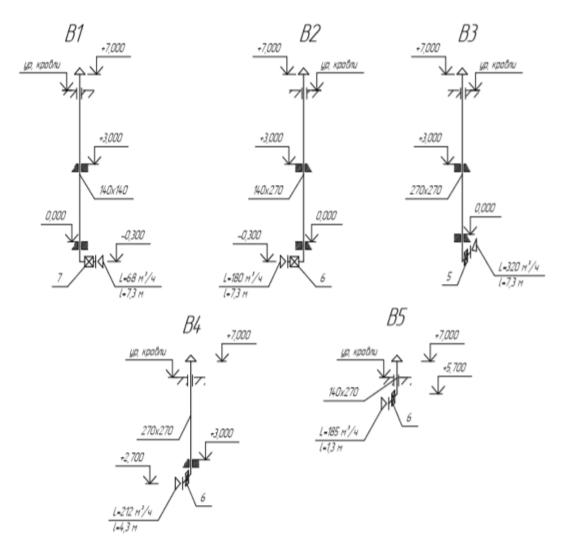


Рисунок 4 – Расчетные схемы механических системы вытяжной вентиляции дома

Аэродинамический расчет для систем вентиляции с естественным побуждением будет аналогичен расчету для систем вентиляции с механическим побуждением. Главное отличие состоит в том, что в естественной вентиляции задается значение располагаемого давления.

Аэродинамический расчет естественной системы вентиляции сведен в таблицу 15.

Таблица 15 – аэродинамический расчет естественной вентиляции

№ уч.	L м ³ /ч	1 м	d MM	$d_{\scriptscriptstyle m JKB}$	f m ²	V _M /c	R Па/м	eta_{m}	Rlβ _ш , Па	Σξ	Р _д , Па	Z, Па	Rlβ _ш +Z, Па
	BE1, P _{pacπ} =2,91Πa												
1	320	4,3	270x 270	280	0,073	1,22	0,08	1,46	0,5	2,5	0,9	2,25	2,75
	Запас=5%												

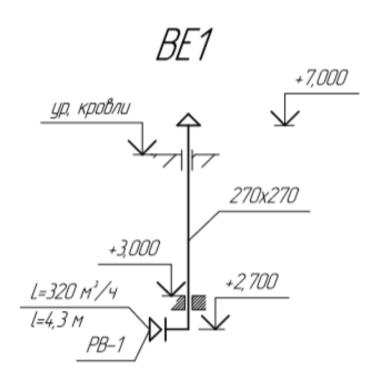


Рисунок 5 – Расчетная схема естественной системы вентиляции

5 ВОДОСНАБЖЕНИЕ И ВОДООТВЕДЕНИЕ

5.1 Холодное водоснабжение

В проектируемом котедже расчитывается система холодного водоснабжения на 4 человека и 6 водоразборных приборов. Трубы для системы используются полимерные.

Водоснабжение дома производится от центрального водопровода, разводка магистралей используется нижняя.

5.1.1 Определение расчетных расходов воды.

Расчетные расходы воды определяются аналогично расчету расходов горячего водоснабжения.

Максимальный секундный расход:

$$P^{c} = \frac{5.6 \cdot 4}{3600 \cdot 0.18 \cdot 6} = 0.01;$$

$$\alpha = f \ 6 \cdot 0.01 = f \ 0.06 = 0.289;$$

$$q^c = 5 \cdot 0.18 \cdot 0.289 = 0.26$$
 л/с.

Максимальный часовой расход:

$$P_{hr}^{c} = \frac{3600 \cdot 0,01 \cdot 0,18}{200} = 0,0324;$$

$$\alpha_{hr} = f \ 6 \cdot 0,0324 \ = f \ 0,19 \ = 0,439;$$

$$q_{hr}^c = 0.05 \cdot 0.439 \cdot 200 = 4.39 \text{ m}^3/\text{ч}.$$

Средний суточный расход:

$$Q_u^c = \frac{180 \cdot 4 \cdot 1,1}{1000} = 0,792 \text{ m}^3/\text{cyt.}$$

5.1.2 Гидравлический расчет водопровода

Гидравлический расчёт внутреннего водопровода производится для определения необходимого диаметра труб, а так же для определения потерь напора в системе водоснабжения проектируемого здания.

Результаты расчета представлены в таблице 16.

Таблица 16 – Гидравлический расчет системы холодного водоснабжения

)В,							Потери н	апора h,
		ifopo ike N	ЫХ						M	I
Расчетный участок	Длина участка I, м	Число водоразборных приборов, установленных на участке N	действия водоразборных устройств Р	m N*P	α	Расчетный расход q, л/с	Диаметр d, мм	Скорость V, м/с	на единицу длины і, м	на участке h = i*1, м
1	1,4	1		0,01	0,2	0,18	15	1,07	0,305	0,427
2	1	2		0,02	0,215	0,19	15	1,18	0,36	0,36
3	3,4	3	0,01	0,03	0,237	0,2133	15	1,258	0,411	1,3974
4	17,8	5		0,05	0,273	0,2457	20	0,766	0,106	1,8868
5	2,6	6		0,06	0,289	0,2601	20	0,812	0,122	0,3172

5.1.2 Подбор оборудования

Для подбора счетчиков воды необходимо учесть потери напора, происходящие в самих счетчиках, они определяются по формуле (5.1), для крыльчатого не должны превышить 5 м, а для турбинного – 2,5 м. Подбор счетчика производится по расходу воды - среднему часовому.

Формула для определения потерь напора в счетчике:

$$h = S \cdot q^2 \tag{5.1}$$

где S — сопротивление используемого счётчика;

q – расчётный расход воды на участке, где устанавливается счетчик, л/с.

Так как для горячего водоснабжения вода приготавливается в теплогенераторной, используя воду из водопровода холоного водоснабжения, то счетчик устанавливается на участке где будет проходить количество воды нужное на ГВС и ХВС.

Подобранный счетчик: ВСГд-20 Ø20.

Определение требуемого напора

Для хозяйственно-питьевых нужд в сети водопровода необходимо определить требуемый напор:

$$H_{mp} = H_{ceom} + \Delta H_{cu} + \Delta H_{cemu} + H_{ce}, \,\mathrm{M}, \tag{5.2}$$

где H_{zeom} — геометрическая высота расположения диктующей точки. Она расчитывается как разность между абсолютными отметками принятой расчётной точки и верха трубы централизованного водопровода;

 ΔH_{cy} – потери напора, присутствующие в счётчике воды, м;

 ΔH_{cemu} – сумма потерь напора в сети;

 H_{cs} – свободный напор у самой высокой точки водопотребления.

Требуемый напор равен:

$$H_{\rm Tp} = 7.1 + 0.35 + 5.7 + 3 = 16.15 \text{ M} < 20 \text{ M}$$

Так как $H_{mp} < H_{eap}$ то необходимости в установке повысительного насоса нет.

5.2 Водоотведение

5.2.1 Определение расчетных расходов

Расчетные расходы определяются аналогично ГВС и XBC.

Максимальный секундный расход:

$$P^{c} = \frac{15.6 \cdot 4}{3600 \cdot 0.25 \cdot 6} = 0.0115;$$

 $\alpha = f \ 6 \cdot 0.0115 = f \ 0.069 = 0.303;$
 $q^{c} = 5 \cdot 0.25 \cdot 0.303 = 0.379 \text{ m/c}.$

Максимальный часовой расход:

$$P^c_{hr}=rac{3600\cdot 0,0115\cdot 0,3}{300}=0,041$$
 $lpha_{hr}=f~6\cdot 0,041~=f~0,246~=0,493;$ $q^c_{hr}=0,05\cdot 0,493\cdot 300=7,395~{
m M}^3/{
m H}.$ Средний суточный расход: $Q^c_u=300\cdot rac{4}{1000}=1,2~{
m M}^3/{
m cyt}.$

5.2.2 Гидравлический расчёт

Гидравлический расчет внутридомовой канализации необходим для определения уклонов, а также диаметров на горизонтальных участках трубопроводов по общему секундному расходу накаждом расчетном участке при условии обеспечения скорости $v=0,7\,$ м/с, а также соблюсти условие наполнение системы $0,3 \le \frac{h}{d} \le 0,6$.

Значения гидравлического расчета представленны в таблице 17.

Таблица 17 – Гидравлический расчет канализации

№ участка	Число приборов N	действий устрйств,	N*P	Значение α	Секундный расход воды q _{tot}	Расчетный расход сточных вод q^s	Диаметр d, мм	Скорость V, м/с	Наполнение h/d	Уклоны і
1	1		0,0115	0,2	0,25	0,25	50	0,75	0,3	0,03
2	2		0,023	0,222	0,2775	0,2775	50	0,75	0,3	0,03
3	3	0,012	0,0345	0,247	0,3088	1,909	110	0,884	0,3	0,03
4	5		0,0575	0,286	0,3575	1,9575	110	0,889	0,303	0,03
5	6		0,069	0,303	0,3788	1,9788	110	0,891	0,304	0,03

6 ГАЗОСНАБЖЕНИЕ

6.1 Конструирование системы газоснабжения

Газопровод низкого давления спроектирован для дальгейшего подключения настенного котла Viessman и газовой плиты.

Максимальный расход газа котлом составляет 3,86 $\text{м}^3/\text{ч}$, плитой — 1,2 $\text{м}^3/\text{ч}$, их суммарный расход составляет 5,06 $\text{м}^3/\text{ч}$ — к установке принимается счетчик ВК-G4 с максимальным расходом 6 $\text{м}^3/\text{ч}$.

Подключение газопровода проиводится к существующему централизованному газобпроводу ø76, надземного исполнения.

6.2 Гидравлический расчет внутренней системы газоснабжения

Для безопасной работы газоснабжения необходимо правильно спроектировать и расчитать газопровод. С помощью гидравлического расчета важно правильно подобрать диаметры труб для магистралей всех типов давления, обеспечивающих поставку газа к приорам.

Расчётные длины участков, м, определяются по формуле:

$$l = l_1 + \sum \xi \cdot ld \tag{6.1}$$

где $\Sigma \xi$ – сумма КМС для каждого участка;

 l_1 – действительная длина участка, м;

ld — эквивалентная длина прямого участка газопровода, м, потери давления, на котором равны потерям давления в местном сопротивлении со значением коэффициента $\xi = 1$.

Коэффициенты местных сопротивлений участка суммируем.

Расчет сети газоснабжения приведен в таблице 18.

Таблица 18 – гидравлический расчет системы газоснабения

№	L	Q	d	Сопротивления	$\sum \xi$	Ld	L	R	RL, Па
1	22,5	5,06	25	КШ - 4 КЗГЭМ - 4 КТЗ - 4 Отводы - 2,1	14,1	0,8	34,02	3,5	119
2	4,5	3,86	20	Гибкая подводка - 2,2 КШ - 4 Отвод - 0,3 Тр-к - 1,5	8	0,6	9,3	20	186
				П	тита				
3	2,5	1,2	15	Гибкая подводка - 2,2 КШ - 4 Отводы - 0,9 Тр-к - 1	8,1	0,48	5,988	2,5	15

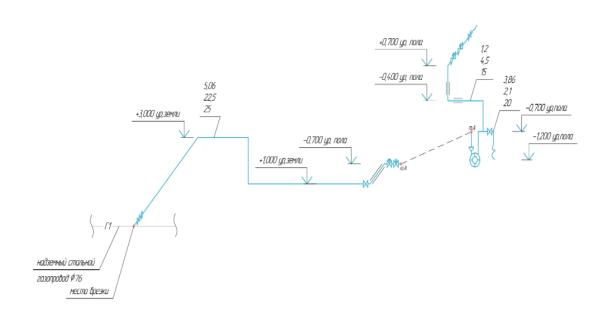


Рисунок 6 - Расчетная схема газопровода

Предусматривается система для удаления продуктов сгорания. Для котла Viessmann Vitodens 200 рекомендуемый диаметр шахты для дымоудаления ø80-

125 мм. Так как шахта будет проходить в кирпичной стене, то принимаем $d_{\mbox{\tiny 9KB}} = 140$ мм (140х140).

7 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ

7.1 Система автоматического контроля загазованности

В коттедже запроектированы системы автоматического контроля загазованности. Эти системы расположены возле газопотребляющего оборудования: в теплогенераторной у кола, на кухне у газовой плиты. Системы обособленны друг от друга и работают самостоятельно.

Для контроля сигнализации были подобраны и приняты сигнализаторы марки Seitron. Модель – RGDCM0MP1 Beagle Double. В данных сигнализаторах предусмотрены системы для природного (CH₄) и угарного (CO) газа в одном корпусе.

При первом включении сигнализатора требуется 1 мин. для его готовности к работе. На лицевой стороне панели сигнализатора имеются светодиодные индикаторы:

- зеленый (отвечает за готовность сигнализатора к работе)
- желтый (отвечает за поломку чувствительного элемента или его плохой контакт)
- красный (срабатывает при наличии концентрации СН₄, превышающей допустимую норму)
- голубой (срабатывает при наличии концентрации СО, превышающей допустимую норму)

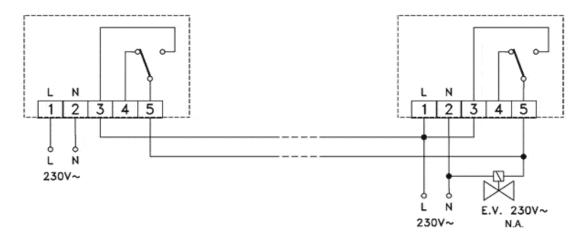


Рисунок 7 – электрическая схема соединения RGDCM0MP1

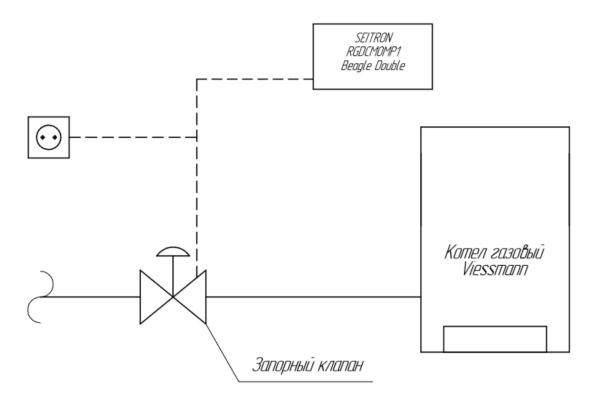


Рисунок 8 – схема подключения Seitron Beagle Double в теплогенераторной

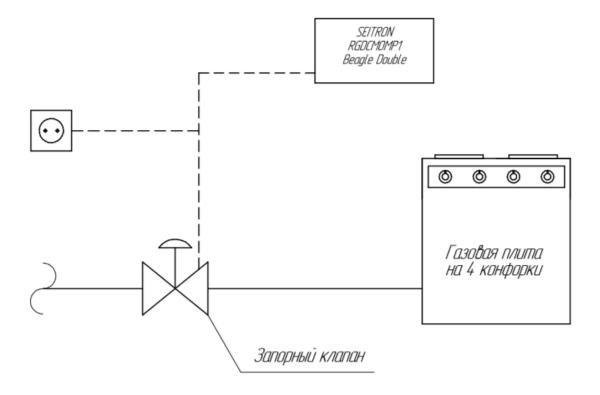


Рисунок 9 – схема подключения Seitron Beagle Double на кухне

7.2 Принцип действия контроля загазованности Seitron

Когда концентрация угарного газа (CO) в помещении повысится до 20 мг/м³, на блок управления САКЗ будет подан сигнал, что приведет к автоматическому срабатыванию предупредительной сигнализации.

Если концентрация угарного газа (CO) достигнет 100 мг/м³, то так же будет подан сигнал на блок управления, а дальше на запорный клапан, установленный на газовой трубе, который перекроет подачу газа.

Если концентрация природного газа (CH₄) превысит 10% от общего объема помещения, то произойдет аналогичная ситуация: подача сигнала на блок управления сигнализацией, и последующее перекрытие запорного клапана.

Таблица 19 – Технические характеристики

Технические характеристики	Значение
Напряжение питания	230V~ ±10% 50 Гц
Выход (реле)	5(2)A 250V~
Тип сенсора	электрохимический
Попол опобоживания	10% НКПР по метану и 100
Порог срабатывания	$M\Gamma/M^3$ по угарному газу
Индикация	раданцій/жаджый/жаанцій I ED
(активность/ошибка/тревога)	зеленый/желтый/красный LED
Зуммер	85dВ 1м
Кнопка	тест/сброс
Степень защиты	IP42
Габаритный размеры	107×85×38 мм

7.3 Управление котлом Viessmann с помощью контроллера Vitotronic

В коттедже запроектирован котел Viessmann Vitodens 222. Этот котел подходит для управления с контроллера Vitotronic, позволяющий производить работу удаленного управления всей отопительной системы дома.

Управление происходит двумя способами:

- 1. GSM сеть. На телефон приходит sms-оповещения о работе котла.
- 2. Сеть интернет. Управление котлом с помощь смартфона или планшета на базе операционных систем iOS или Android.

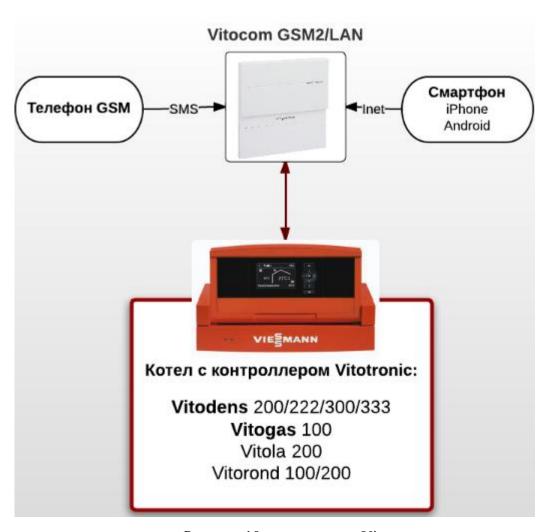


Рисунок 10 – схема связи Vitocom

7.4 Основные функции управления Vitotronic

С помощью модуля телекоммуникации Vitocom100 можно использовать основные возможности управления системой: переключение режима работы котла, запрос о его состоянии, получение сообщений с кодом ошибки на два номера (для владельца и сервисной службы).

Но данная система будет рассчитана на работу с интернетом. С помощью приложения Vitotrol App и контроллером Vitotronic 200 HO1B появляется большая вариативность возможностей и настройки котла: установка временной программы отопления, температуры приготовления горячей воды и циркуляции ГВС, установка температуры в комнате, просмотр показаний температурных датчиков, просмотр состояния отопительной установки, анализ эффективности отопительной установки, отображение в реальном времени данных об эффективности, включая энергоотдачу.

Функции данного модуля имеют значительные преимущества над обычными настенными котлами. У жильцов всегда есть возможность настроить климат под себя или своевременно принять меры в случае неисправности оборудования. Появляется возможность покинуть дом на длительное время и при этом полностью контролировать процесс работы отопительного оборудования дистанционно.

8 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ

Организация монтажных работ системы отопления запроектирована в соответствии с нормативной литературой [11], [12].

Работы по монтажу системы отопления следует производить в соответствии с СП 48.13330.2011, СП 43.13330.2013, инструкций и руководств по эксплуатации от изготовителей используемого оборудования [11].

Монтаж системы отопления следует проводить только после выполнения нижеуказанных работ:

- монтаж межэтажных перекрытий, стен, стеновых перегородок;
- предварительная заготовка отверстий в стенах, перегородках и перекрытиях, учавствующих в прокладке трубопроводов;
- облицовка поверхностей стен, а также ниш в местах прокладки трубопроводов;
- предварительное обеспечение электропитанием для подключения электроинструмента.

По итогу окончания строительно-монтажных работ необходимо произвести опрессовку системы, пуск и наладку, а после сдачу исправную систему в эксплуатацию.

Для определения трудоемкости работ необходимо определить их объем. Объем работ на монтаж системы отопления высчитывается в соответствии с перечнем строительно-монтажных процессов, соблюдая их последовательность. Результаты подсчета объемов работ сводятся в таблицу 20.

Таблица 20 – Ведомость объемов работ

No॒	Наименование работ	Объе	м работ
31≅	панменование работ	Ед. изм.	Кол-во.
1	Размечивание областей монтажа труб	M	297
2	Прокладка стальной водогазопроводной трубы 15x2,8 мм	М	221
3	Прокладка стальной водогазопроводной трубы 20x2, мм	М	65
4	Прокладка стальной водогазопроводной трубы 25х3,2 мм	М	8
5	Прокладка стальной водогазопроводной трубы 32x3,2 мм	М	5,0
6	Установка узла радиатора	ШТ	17
7	Испытание трубопроводов	М	1113
8	Пуско-наладочные работы	ШТ	1
9	Заливка стяжки	M ³	6,0

Необходимые затраты человеческого труда, а также машинного времени устанавливаются в соответствии с нормативами, изложенными в [12]. Затраты труда объемов выполненных работ определяют согласно формуле:

$$T_p = \frac{H_{gp} \cdot V}{8,2},\tag{7.1}$$

где H_{sp} — норма времени на единицу объема выполненных работ, чел.-час, принимается согласно [16];

V фактический объем работ, принимаемый по таблице 11, раздела 7; 8,2 — продолжительность смены, час.

Результаты расчета трудоемкости сводятся в таблицу 21 и включены в приложении 2.

9 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА

В разделе рассматривается общая характеристика технологических процессов по монтажу системы газоснабжения низкого давления. Указаны технологические операции, должность монтажников, выполняющие данные работы, а также оборудование, применяемое во время проведение работ (таблица 22).

Проработано распознавание профессиональных рисков для данных технологических процессов при работе монтажа системы газоснабжения низкого давления. Проработаны и выявлены методы и средства защиты для снижения рисков на рабочем месте (таблица 24).

Применить сварочное соединение труб: ручная-дуговая для диаметров свыше Ø15, для диаметров от Ø15 и ниже применяется газовая сварка. Для установки арматуры, а так же газопотребляющих приборов допустимо резьбовое соединение, если это предусмотренно руководством по монтажу. Проверить сварные стыки на прочность.

Монтаж системы газоснабжения низкого давления, а так же ее испытания: продувка газопровода и опрессовка, - необходимо производить в соответствии с правилами, изложенными в СП 62.13330.2011.

Установка и подключение газоиспользующего оборудования (котел Viessman, плита газовая 4х-конфорочная) производить согласно их паспортам и руководствам по монтажу.

Таблица 22 – Технологический паспорт объекта

Т	ехнологический процесс	Технологическая операция, вид выполняемых работ	Наименование должности работника, выполняющего технологический процесс, операцию	Оборудование, устройство, приспособление	Материалы, вещества
	Монтаж газопровода	Ручная-дуговая сварка труб, газовая сварка труб	Сварщик РД, Г III разряда	Пост газовой сварки, трансформатор	Металл, кислород, ацетилен

Таблица 23 – Идентификация рисков

		Источник опасного и
Технологическая операция,	Опасный и вредный	вредного
вид выполняемых работ	производственный фактор	производственного
		фактора
Ручная-дуговая сварка труб,	Искры, необработанные края	Пост газовой сварки,
газовая сварка труб	труб.	трансформатор

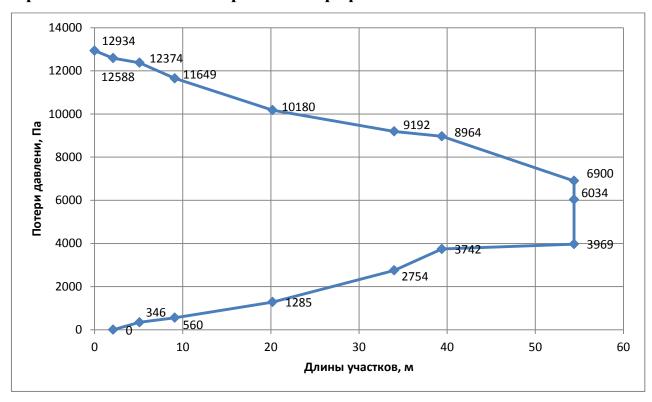
Таблица 24 — Методы снижения воздействия опасных производственных факторов

Опасный и вредный производственный фактор	Методы и средства защиты, снижения, устранения опасного и вредного производственного фактора	Средства индивидуальной защиты работника
Искры, необработанные края труб.	Огородить место сварки, произвести шлифовку места стыков струб.	Щиток сварщика, перчатки, брезентовый костюм

ЗАКЛЮЧЕНИЕ

По итогу выполнения данной работы, был спроектирован индивидуальный жилой дом, который отвечает современным требованиям для комфортного проживания. Были подобраны, рассчитаны и спроектированы системы отопления, горячего и холодного водоснабжения, вентиляции, водоотведения и газоснабжения, в соответствии с санитарными нормами и правилами. Приняты решения, позволяющие вести экономию средств, а также ресурсов во время проживания в данном одноквартирном доме.

Проработан раздел автоматизации, а именно: сигнализаторов СО и СН4, которые будут способствовать безопасному использованию газоиспользующего оборудования, а также выбор современного настенного котла, который позволит использовать актуальные режимы работы для хозяев. Рассмотрены мероприятия по обеспечению безопасности и экологичности данного объекта.


СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. СП 131.13330.2012. Строительная климатология: Актуализированная редакция СНиП 23-01-99*. Введ. 2013-01-01. М.: Минрегион России, 2012. 113с.
- 2. ГОСТ 30494-96. Здания жилые и общественные. Параметры микроклимата в помещениях. МНТКС М.: Госстрой России, ГУП ЦПП, 1999.- 10 с.
- 3. СП 31 106 2002 Дома жилые одноквартирные. Инженерные сети. Актуализированная редакция СНиП 31-02-1991. Введ. 2011-05-20. М.: Минрегион России, 2011. 22с.
- 4. СП 50.13330.2012. Тепловая защита зданий: Актуализированная редакция СНиП 23-02-2003. Введ. 2013-07-01. М.: Минрегион России, 2012. 100 с.
- 5. СП 23-101-2004. Проектирование тепловой защиты зданий. Введ. 2004-06-01. М.: Минрегион России, 2004. 186 с.
- 6. Внутренние санитарно-технические устройства. В 3 ч. Ч.1. Отопление / В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под ред. И.Г. Староверова и Ю.И. Шиллера.- М.: Стройиздат, 1990. 344 с.
- 7. СП 30.13330.2012. Внутренний водопровод и канализация зданий. Актуализированная редакция СНиП 2.04.01-85*. Введ. 2013-01-01. М.: Минрегион России, 2012. 65 с.
- 8. Внутренние санитарно-технические устройства. В 3 ч. Ч.2. Водопровод и канализация / В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под ред. И.Г. Староверова и Ю.И. Шиллера.- М.: Стройиздат, 1990. 344 с.
- 9. Внутренние санитарно-технические устройства. В 3 ч. Ч.3. Вентиляция и кондиционирование воздуха. Кн.2 / Б.В. Барклалов, Н.Н. Павлов, С.С. Амирджанов и др.; Под ред. Н.Н. Павлова и Ю.И. Шиллера.- М.: Стройиздат, 1992. 416 с.

- СП 73.13330.2012. Внутренние санитарно-технические системы здания: Актуализированная редакция СНиП 3.05.01-85. Введ. 2013-01-01. М.: Минрегион России, 2012. 46 с
- 11. Единые нормы и расценки на строительные, монтажные и ремонтно-строительные работы. Сборник К10 [Электронный ресурс] М.: режим доступа: http://dokipedia.ru/document/4276214.
- 12. СанПиН 2.2.1 / 2.1.1.1278 03 Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий М.: Минрегион России, 2003. 26 с.
- 13. ГОСТ 24700 81. Окна и балконные двери деревянные со стеклопакетами и стеклами для жилых и общественных зданий: Государственный стандарт союза СССР М.: Госстрой России, ГУП ЦПП, 1984. 48 с.
- 14. Малявина Е.Г. Строительная теплофизика: уч. пособ. / МГСУ М: Типография МГСУ, 2011. 152 с.
- 15. СНиП 12-04-2002 Безопасность труда в строительстве. Часть 2 Строительное производство. М.: Центр охраны труда в строительстве Госстроя России, 2003. 34 с.
- 16. Приказ Министерства здравоохранения и социального развития РФ от 16 июля 2007 г. N 477 "Об утверждении Типовых норм бесплатной выдачи специальной одежды, обуви и других средств индивидуальной защиты работникам, занятым на строительных, строительно-монтажных и ремонтностроительных работах с вредными и (или) опасными условиями труда" [Электронный ресурс]. Режим доступа: http://ohranatruda.ru/ot_biblio.pdf
- 17. ГОСТ 12.0.003-74. Опасные и вредные производственные факторы. Классификация (с Изменением N 1). [Текст]. М.: Госстрой России, ГУП ЦПП, 1976. 3 с.
- 18. ЕНиР. Сборник 9. Сооружения систем теплоснабжения, водоснабжения, газоснабжения и канализации. Выпуск 2 [Электронный ресурс]. Режим доступа: http://zwezda.lgg.ru/254/24.pdf

- 19. Паспорт газового котла [Электронный ресурс]. М.: Режим доступа: http://www.viessmann.ru/ru/zilye-zdania/gazovye-vodogrejnye-kotly/gazovyj-kondensacionnyj-kotel/vitodens-200w.html
- 20. Паспорт CAK3- [Электронный ресурс]. М.: Режим доступа: http://www.promecopribor.ru/sites/default/files/images/catalog/seitron/bit_prom/docs/50725-12_rgdco0mp1sgamet_opisanie_tipa_electron_2012.pdf
- 21. Паспорт газовой плиты [Электронный ресурс]. М.: Режим доступа: https://instruccija.ru/gazovaya-plita-gefest-3100-instrukciya/
- 22. СП 62.13330.2011* «Газораспределительные системы». Актуализированная редакция СНиП 42-01-2002 [Электронный ресурс]. М.: режим доступа: http://docs.cntd.ru/document/1200084535
- 23. Программа подбора насосов фирма «Grundfos» [Электронный ресурс]. М.: режим доступа: http://ru.grundfos.com/documentation/gpc.html
- 24. СП 40-107-2003 Проектирование, монтаж и эксплуатация систем внутренней канализации из полипропиленовых труб [Электронный ресурс]. Введ. 2003.-05. –01. Режим доступа: http://files.stroyinf.ru/Data1/10/10903/
- 25. Внутренние санитарно-технические устройства. Часть 1. Отопление /Богословский В.Н., Крупнов Б.А., Сканави А.Н. М.: Стройиздат, 1990 344 с.
- 26. ЕНиР сборник Е34 «Монтаж компрессоров, насосов и вентиляторов». М.: ЦНИБ, 1989*. 41 с.
- 27. Промышленная безопасность при эксплуатации грузоподъемных кранов, сборник документов. Выпуск 7. М.: НТЦ «Промышленная безопасность», 2009. 59 с.

Приложение 1 – Пьезометрический график системы отопления

Приложение 2 Таблица 21 — Ведомость трудоемкости работ

				Норма	Трудоем	мкость	Профессиональный,
$N_{\underline{0}}$	Наименование	Ед.	Обоснование	времени	Захва	тка I	квалифиционый и
Π/Π	работ	изм.	(ЕНиР)	челчас	объем	чел	численный состав звена,
				челчас	работ	дни.	рекомендуемый ЕНиР
1	2	3	4	5	6	7	8
	Размечивание						
1	областей монтажа	M	E9-1	0,12	2,97	0,04	4 разр. – 1 чел.
	труб						
	Прокладка						
	стальной						4 разр. – 1 чел.,
2	водогазопроводн	M	E9-1	0,26	2,21	0,7	3 разр. — 1 чел.
	ой трубы 15х2,8						<i>э</i> разр. 1 юл.
	MM						
	Прокладка						
	стальной						4 разр. – 1 чел.,
3	водогазопроводн	M	E9-1	0,26	0,65	0,2	3 разр. — 1 чел.
	ой трубы 20х2,						5 pasp. 1 lest.
	MM						
	Прокладка						
4	стальной	M	E9-1	0,26	0,08	0,02	4 разр. – 1 чел.,
	водогазопроводн						3 разр. – 1 чел.
	ой трубы 25х3,2						pusp. 1 1011
	MM						
5	Прокладка						
	стальной						4 разр. – 1 чел.,
	водогазопроводн	M	E9-1	0,26	0,05	0,01	3 разр. — 1 чел.
	ой трубы 32х3,2						paop. 1 1401.
	MM						

Продолжение таблицы 21

1	2	3	4	5	6	7	8
6	Установка узла радиатора	ШТ	E9-1	0,38	17	0,74	4 разр. – 1 чел., 5 разр. – 1 чел.
7	Испытание трубопроводов	M	E9-1	5,3	1,113	0,72	5 разр. – 1 чел.
8	Пуско- наладочные работы	ШТ		5,3	1	0,65	5 разр. – 1 чел.
9	Заливка стяжки	м ³	E9-1	0,54	5,0	0,26	4 разр. – 1 чел., 3 разр. – 1 чел.
Итого:					6,68		
Принять подготовительные работы в размере 5% от итоговой суммы:					0,33		
Принять неучтенные работы в размере 10% от итоговой суммы:					0,67		