Министерство науки и высшего образования Российской Федерации Тольяттинский государственный университет Институт энергетики и электротехники Кафедра «Промышленная электроника»

ЭЛЕКТРИЧЕСКИЕ И ЭЛЕКТРОННЫЕ АППАРАТЫ. ЭЛЕКТРОННЫЕ КОММУТИРУЮЩИЕ УСТРОЙСТВА

Рецензенты:

д-р техн. наук, главный специалист Управления проектирования электрооборудования Службы исполнительного вице-президента по инжинирингу ПАО «АВТОВАЗ» П.А. Николаев; д-р техн. наук, доцент кафедры «Промышленная электроника»

Тольяттинского государственного университета В.П. Певчев.

Авторы:

А.В. Прядилов, В.В. Ивашин, Е.С. Глибин, М.В. Позднов

Электрические и электронные аппараты. Электронные коммутирующие устройства : лабораторный практикум / А.В. Прядилов [и др.]. – Тольятти : Изд-во ТГУ, 2018. – 1 оптический диск.

Практикум содержит методические указания к девяти лабораторным работам по курсам «Электрические и электронные аппараты» и «Электронные коммутирующие устройства».

Включает программы испытаний, описание лабораторных установок, схем соединений, указания и пояснения к выполнению работ, содержанию отчётов, вопросы для самоконтроля и защиты отчётов.

Предназначен для студентов направлений подготовки бакалавров 11.03.04 «Электроника и наноэлектроника» и 13.03.02 «Электроэнергетика и электротехника» всех форм обучения, а также других направлений подготовки электротехнического профиля.

Текстовое электронное издание.

Рекомендовано к изданию научно-методическим советом Тольяттинского государственного университета.

Минимальные системные требования: IBM PC-совместимый компьютер: Windows XP/Vista/7/8/10; PIII 500 МГц или эквивалент; 128 Мб ОЗУ; SVGA; CD-ROM; Adobe Acrobat Reader.

© ФГБОУ ВО «Тольяттинский государственный университет», 2018

Редактор О.В. Горбань Технический редактор О.В. Горбань Компьютерная верстка: Л.В. Сызганцева Художественное оформление, компьютерное проектирование: И.И. Шишкина

Дата подписания к использованию 10.09.2018. Объем издания 5,83 Мб. Комплектация издания: компакт-диск, первичная упаковка. Заказ № 1-58-17.

Издательство Тольяттинского государственного университета 445020, г. Тольятти, ул. Белорусская, 14, тел. 8 (8482) 53-91-47, www.tltsu.ru

Содержание

введение5
ТЕХНИКА БЕЗОПАСНОСТИ8
ЦЕЛИ РАБОТ
Лабораторная работа 1. Электромагнитное реле переменного тока. Электромагнитное промежуточное реле10
Лабораторная работа 2. Электромеханическое реле времени16
Лабораторная работа 3. Электротепловое реле
Лабораторная работа 4. Электромагнитный контактор24
Лабораторная работа 5. Магнитный пускатель
Лабораторная работа 6. Автоматический воздушный выключатель36
Лабораторная работа 7. Предохранители40
Лабораторная работа 8. Ограничители перенапряжений44
Лабораторная работа 9. Микропроцессорный блок управления и защиты асинхронного двигателя
БИБЛИОГРАФИЧЕСКИЙ СПИСОК

ВВЕДЕНИЕ

Лабораторный практикум составлен на основе руководства по выполнению экспериментов с помощью комплекта типового лабораторного оборудования, установленного на стендах, изготовленных ООО «Учебная техника», г. Челябинск [1].

Особенностью стендов является возможность компоновки принципиальных схем из отдельных блоков при помощи соединительных шнуров.

Лабораторные работы могут быть выполнены фронтальным методом: одновременно на четырех стендах проводится одна работа по теме, изложенной во время предыдущей лекции.

Аппаратная часть комплекта, выполненная по блочному (модульному) принципу, содержит:

- спроектированные с учебными целями натурные аналоги электрических аппаратов;
- однофазный и трехфазный источники питания;
- однофазные трансформатор и автотрансформатор;
- асинхронную двигательную и статическую активную нагрузки;
- выпрямитель;
- реостат;
- кнопочный пост управления;
- блок световой сигнализации;
- измерительные приборы;
- лабораторные столы с рамами для установки необходимых в эксперименте функциональных блоков.

Питание комплекта осуществляется от однофазной напряжением 220 В и трехфазной напряжением 380 В электрических сетей с нейтральным и защитным проводниками.

Потребляемая мощность – не более 200 В·А.

Для измерения трех базовых величин (напряжения, тока и омического сопротивления) используется мультиметр. До его подключения к цепи необходимо выполнить следующие операции:

- установка рода тока (постоянный/переменный);
- выбор диапазона измерений соответственно ожидаемому результату измерений;

• правильное подсоединение зажимов мультиметра к измеряемой цепи.

При самостоятельной подготовке к выполнению лабораторной работы студент изучает электрический аппарат по научно-технической литературе, знакомится со схемой стенда, последовательностью выполнения программы, готовит ответы на контрольные вопросы. При этом он оформляет: титульный лист отчета, программу работы, описание и схему стенда, порядок выполнения работы.

Рис. В.1. Присоединение мультиметра как вольтметра

Рис. В.2. Присоединение мультиметра как амперметра

-6-

Рис. В.3. Присоединение мультиметра как омметра

В лаборатории допуск студента к выполнению лабораторных работ осуществляется преподавателем после проверки готовности студента проводить работу.

После сборки схемы и выполнения экспериментальной части студент показывает результаты преподавателю, после чего оформляет отчет.

Защита лабораторной работы предполагает правильность оформления отчета в соответствии с пунктом «Содержание отчета» и существующими стандартами по оформлению документации, знание ответов на вопросы для защиты отчета.

Студент, не выполнивший одну лабораторную работу или не защитивший ее, к выполнению следующей не допускается.

ТЕХНИКА БЕЗОПАСНОСТИ

В лаборатории «Электрические и электронные аппараты» все студенты должны пройти инструктаж по технике безопасности.

При выполнении каждой лабораторной работы следует быть внимательным и выполнять все требования преподавателя и технического персонала лаборатории, касающиеся выполнения лабораторных работ. Необходимо неукоснительно соблюдать правила поведения, предусмотренные для лабораторных помещений университета, а также общие нормы поведения.

Перед выполнением работы необходимо внимательно ознакомиться с описанием лабораторной работы и лабораторного стенда.

Не включать установку без разрешения преподавателя, ведущего занятия!

В случае обнаружения внештатной ситуации (появление напряжения на стенде, запах горения, появление дыма, искрение и т. п.) необходимо выключить автоматический выключатель на передней панели стенда и известить о случившемся дежурного лаборанта или преподавателя, ведущего занятия.

Не устранять самостоятельно неисправности, возникшие в процессе выполнения работы!

Не пытаться снимать лицевые панели стенда и не вынимать лабораторные блоки из гнезда!

Подсоединять измерительные концы только в предназначенные для этого разъемы строго в соответствии с методическими указаниями!

После окончания работы выключить лабораторную работу и только после этого стенд.

ЦЕЛИ РАБОТ

+ Углубление и расширение знаний по основным разделам курса «Электрические и электронные аппараты».

+ Изучение лабораторного стенда и проведение эксперимента.

+ Изучение принципа действия исследуемых устройств и знакомство с происходящими в схемах аппаратов процессами.

+ Приобретение навыков исследования электронных схем.

+ Совершенствование навыков обработки и оформления результатов эксперимента.

Лабораторная работа 1 Электромагнитное реле переменного тока. Электромагнитное промежуточное реле

Цель работы — изучение конструкции, принципа действия и снятие характеристик электромагнитного реле.

Программа работы

- 1. Изучить принцип работы, конструкции и характеристики электромагнитных реле.
- 2. Определить коэффициент возврата электромагнитного реле переменного тока.
- 3. Определить коэффициент возврата электромагнитного промежуточного реле изменяемого напряжения.

Указания и пояснения к проведению работы

1. Обратить внимание на параметры реле и тенденции в развитии конструкций электромагнитных реле.

2. Электрическая схема соединений показана на рис. 1.1. Перечень аппаратуры представлен в табл. 1.1.

Рис. 1.1. Электрическая схема соединений для определения коэффициента возврата электромагнитного реле переменного тока

Таблица 1.1

Перечень аппаратуры для определения коэффициента возврата электромагнитного реле

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источ- ник питания	218	~ 220 B / 16 A
A1	Регулируемый авто- трансформатор	318.1	~ 0240 B / 2 A
A4	Однофазный транс- форматор	372	120 B·A / 220 / 24 B
A6	Сдвоенный реактор	373	~ 220 В / 2 · 5 А / 0,005 Гн
A7	Реле максимального тока	366	Номинальный ток ~ 6,3 A / Уставка реле ~ 1,02,0 A / Коммутируемое напряжение 250 B / Контакты 13 ÷ 1р
P1	Блок мультиметров	508.2	3 мультиметра ~ 01000 В / ~ 010 А / 020 МОм

Последовательность действий при определении коэффициента возврата электромагнитного реле

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления «*W*» устройств, используемых в эксперименте, с гнездом «*PE*» автотрансформатора *A1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.
- Поверните регулировочную рукоятку автотрансформатора *A1* в крайнее против часовой стрелки положение.
- Установите желаемую уставку реле тока А7, например 1,5 А.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатели «СЕТЬ» блока мультиметров *P1* и автотрансформатора *A1*.
- Активизируйте используемые мультиметры Р1.2 и Р1.3.
- Медленно вращая регулировочную рукоятку автотрансформатора *A1* по часовой стрелке, увеличивайте ток, протекающий по обмотке реле *A7*.

- В момент срабатывания реле *А*7 (определяется по появлению звукового сигнала, издаваемого включенным в режиме «прозвонки» мультиметром *P1.3*) зафиксируйте с помощью амперметра *P1.2* ток *I*₁.
- Медленно вращая регулировочную рукоятку автотрансформатора *A1* против часовой стрелки, уменьшайте ток, протекающий по обмотке реле *A7*.
- В момент возврата реле *А7* (определяется по исчезновению звукового сигнала, издаваемого включенным в режиме «прозвонки» мультиметром *P1.3*) зафиксируйте с помощью амперметра *P1.2* ток *I*₂.
- Отключите автоматический выключатель в однофазном источнике питания *G1*.
- Отключите выключатели «СЕТЬ» блока мультиметров *P1* и автотрансформатора *A1*.
- Вычислите коэффициент возврата электромагнитного реле переменного тока по формуле $k = I_2 / I_1$.
- Запишите показания в отчет по лабораторной работе.

3. Электрическая схема соединений показана на рис. 1.2.

Примечание. Для контроля срабатывания и отпускания реле используется «прозвонка» *P1.3* блока мультиметров *P1* (прибор 508.2) путем подключения параллельно одному из контактов реле *A8* 370 (см. рис. 1.2).

Перечень аппаратуры указан в табл. 1.2.

Таблица 1.2

Обозна- чение	Наименова- ние	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
A1	Регулируемый автотранс- форматор	318.1	~ 0240 B / 2 A

Перечень аппаратуры для исследования коэффициента возврата промежуточного реле

Обозна- чение	Наименова- ние	Тип	Параметры
A8	Промежуточ- ное реле	370	Номинальное напряжение ~ 220 В / Ток контактов реле 5 А / Коммутируемое напряжение 250 В / Контакты 13 + 4р
P1	Блок мульти- метров	508.2	3 мультиметра ~ 01000 B / ~ 010 A / 020 МОм

Последовательность действий при определении коэффициента возврата электромагнитного промежуточного реле

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления «)» устройств, используемых в эксперименте, с гнездом «*PE*» автотрансформатора *A1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.

- Поверните регулировочную рукоятку автотрансформатора *A1* в крайнее против часовой стрелки положение.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатели «СЕТЬ» блока мультиметров *P1* и автотрансформатора *A1*.
- Активизируйте используемый мультиметр *P1.1*.
- Медленно вращая регулировочную рукоятку автотрансформатора *A1* по часовой стрелке, увеличивайте напряжение, прикладываемое к обмотке реле *A8*.
- В момент срабатывания реле *А8* зафиксируйте с помощью вольтметра *P1.1* напряжение *U*₁.
- Медленно вращая регулировочную рукоятку автотрансформатора *А1* против часовой стрелки, уменьшайте напряжение, прикладываемое к обмотке реле *А8*.
- В момент возврата реле A8 зафиксируйте с помощью вольтметра P1.1 напряжение U_2 .
- Отключите автоматический выключатель в однофазном источнике питания *G1*.
- Отключите выключатели «СЕТЬ» блока мультиметров *P1* и автотрансформатора *A1*.
- Вычислите коэффициент возврата электромагнитного промежуточного реле переменного напряжения по формуле $k = U_2/U_1$.
- Результаты исследования запишите в отчет по лабораторной работе.

Содержание отчета

- 1. Цель и программа работы.
- 2. Схемы электрических соединений.
- 3. Результаты опытов.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. Поясните принцип работы и конструкции электромагнитных реле, расположенных на стенде.
- 2. Что такое коэффициент возврата реле?
- 3. Каков порядок сборки схемы соединений и определения коэффициента возврата токового и промежуточного реле?

Вопросы для защиты отчета

- 1. Что такое электромеханическое реле, где оно применяется? Каковы его характеристики?
- 2. Какие виды электромеханических реле вы можете назвать?
- 3. Что такое электромагнитное реле? Из каких элементов оно состоит?
- 4. Что такое электромагнитное поляризованное реле? В чём его отличие от нейтрального?
- 5. Назовите основные типы электромагнитных реле и области их применения.
- 6. Каков принцип работы электромагнитного реле переменного тока PT-40? Где оно применяется?
- 7. Почему магнитопровод реле типа РТ-40 выполнен шихтованным, а якорь из тонкой пластины?
- 8. Каким образом устанавливается ток срабатывания реле типа PT-40?
- 9. Поясните результат исследования реле типа РТ-40.
- 10. Что такое электромагнитное промежуточное реле типа РП-23, каковы его принципы работы, конструкция и характеристики?
- 11. Поясните результаты исследования промежуточного реле.
- 12. Что такое герметизируемые магнитоуправляемые контакты (герконы) и реле на их основе? В чем их отличие от обычных электромагнитных реле?

Лабораторная работа 2 Электромеханическое реле времени

Цель работы — изучение конструкции, принципа действия и снятие характеристик электромеханического реле времени.

Программа работы

- 1. Изучить принцип работы, конструкции и область применения электромагнитного реле времени.
- 2. Определить зависимость выдержки времени от уставки электромеханического реле времени.

Указания и пояснения к проведению работы

1. Обратить внимание на вопросы точности работы, срок службы и область применения.

2. Электрическая схема соединений элементов стенда приведена на рис. 2.1.

Перечень аппаратуры указан в табл. 2.1.

Рис. 2.1. Электрическая схема соединений для исследования зависимости выдержки времени от уставки электромеханического реле времени

Таблица 2.1

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
A1	Регулируемый авто- трансформатор	318.1	~ 0240 B / 2 A
A4	Однофазный трансфор- матор	372	120 B·A / 220 / 24 B
A6	Сдвоенный реактор	373	~ 220 B / 2 · 5 A / 0,005 Гн
P1	Блок мультиметров	508.2	3 мультиметра ~ 01000 В / ~ 010 А / 020 МОм
P2	Измеритель тока и вре- мени	524	05 A / 0,01999 c
A8	Промежуточное реле	370	Номинальное напряжение 220 В / Ток контактов реле 5 А / Коммутируемое напряжение 250 В / Контакты 13 + 4р
A20	Реостат	323.3	20 Ом / 1 А
A9	Реле времени	369	Напряжение питания ~ 100380 В / Уставка реле 0,59,0 с / Коммутируемое напряжение 380 В / Контакты 13 + 1р
A10	Автоматический трех- полюсный выключатель	360	~ 440 B / 10 A

Перечень аппаратуры для определения выдержки времени

Последовательность действий при снятии зависимости выдержки времени от уставки электромеханического реле времени

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления «)» устройств, используемых в эксперименте, с гнездом «*PE*» автотрансформатора *A1*.

- Соедините аппаратуру в соответствии с электрической схемой соединений. Сопротивление реостата *А20* (блок 323.3) выставить в положение 20 Ом.
- Отключите выключатель А10.
- Поверните регулировочную рукоятку автотрансформатора *A1* в крайнее против часовой стрелки положение.
- Установите желаемую уставку *t*₁ реле времени *А9*, например 1 с, и занесите ее в табл. 2.2.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатели «СЕТЬ» автотрансформатора *A1*, блока мультиметров *P1*, измерителя тока и времени *P2*.
- Активизируйте используемый мультиметр *P1.1*.
- Вращая регулировочную рукоятку автотрансформатора *A1*, установите по вольтметру *P1.1* напряжение на выходе автотрансформатора *A1*, равное 180 В.
- Включите выключатель А10.
- После срабатывания реле времени A9 считайте время t_2 , высвечивающееся на индикаторе измерителя тока и времени P2, и занесите его в табл. 2.2.
- Отключите выключатель А11.
- Увеличьте уставку t_1 реле времени *А9*, например, на 1 с.
- Повторите операции, начиная с включения выключателя *A11* и заканчивая увеличением уставки *t*₁ реле времени *A9*.
- Операции повторяйте до достижения уставкой *t*₁ реле времени *А9* значения, равного 9 с.
- Для одного из значений уставки проведите эксперименты многократно (например, 5...10 раз). Рассчитайте точность повторяемости времени срабатывания.
- Отключите автоматический выключатель в однофазном источнике питания *G1*.
- Отключите выключатели «СЕТЬ» автотрансформатора *A1*, блока мультиметров *P1*, измерителя тока и времени *P2*.
- Используя данные табл. 2.2, постройте искомую зависимость выдержки времени от уставки электромеханического реле времени $t_2 = f(t_1)$.

• Рассчитайте отклонение реального времени срабатывания от уставки.

Таблица 2.2

Зависимость выдержки времени реле от уставки

<i>t</i> ₁ , c					
t_2, c					

Содержание отчета

- 1. Цель и программа работы.
- 2. Схемы электрических соединений.
- 3. Результаты опытов.
- 4. Выводы по работе.

Вопросы для защиты отчета

- 1. Каков принцип действия электромеханического реле времени?
- 2. Где применяется электромеханическое реле времени?
- 3. Назовите достоинства и недостатки электромеханических реле времени.
- 4. Какие разновидности электромеханических реле вы можете назвать?
- 5. Каков принцип работы анкерного механизма? Какие выдержки времени обеспечиваются с помощью анкерного механизма?
- Какие ещё замедлители в электромагнитных реле времени вы можете назвать?
- 7. Какая точность работы, в % от уставки, получена экспериментально?
- 8. Поясните результаты экспериментальной работы.
- 9. Каков принцип работы электромагнитных реле с пневматическим замедлением?
- 10. Поясните принцип работы моторных реле.
- 11. Как работают электромагнитные реле времени?
- 12. Как работают реле времени на основе кварцевых генераторов и интегральных микросхем?

Лабораторная работа 3 Электротепловое реле

Цель работы — изучение конструкции, принципа действия и снятие характеристик электротеплового реле.

Программа работы

- 1. Ознакомление с принципом работы, характеристиками тепловых реле.
- 2. Снятие времятоковой характеристики электротеплового реле.

Указания и пояснения к проведению работы

1. Дополнительно укажите достоинства и недостатки токовых электротепловых реле и способы устранения недостатков.

2. Электрическая схема соединений элементов стенда показана на рис. 3.1.

Перечень аппаратуры для снятия времятоковой характеристики приведен в табл. 3.1.

Рис. 3.1. Электрическая схема соединений для снятия времятоковой характеристики электротеплового реле

Таблица 3.1

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
A1	Регулируемый автотрансфор- матор	318.1	~ 0240 B / 2 A
A4	Однофазный трансформатор	372	120 B · A / 220 / 24 B
A5	Электротепловое реле	356	Главная цепь: ~ 3 · 220 В / 10 А Уставка реле: 0,420,58 А
A6	Сдвоенный реактор	373	~ 220 В / 2 · 5 А / 0,005 Гн
A11	Автоматический однополюсный выключатель	359	~ 230 B / 0,5 A
P1	Блок мультиметров	508.2	3 мультиметра ~ 01000 В / ~ 010 А / 020 МОм
P2	Измеритель тока и времени	524	05 A / 0,01999 c

Перечень аппаратуры для определения выдержки времени

Последовательность действий при проведении эксперимента

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления «)» устройств, используемых в эксперименте, с гнездом «*PE*» автотрансформатора *A1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.
- Отключите выключатель А11.
- Поверните регулировочную рукоятку автотрансформатора *A1* в крайнее против часовой стрелки положение.
- Вращая регулировочный винт, установите желаемую уставку электротеплового реле *А5*.
- Если выступает шток электротеплового реле А5, то нажмите его.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатели «СЕТЬ» автотрансформатора *A1*, блока мультиметров *P1*, измерителя тока и времени *P2*.

- Активизируйте используемый мультиметр *P1.1*.
- Вращая регулировочную рукоятку автотрансформатора *A1*, установите по вольтметру *P1.1* напряжение, на выходе автотрансформатора *A1* равное, например, 200 В.
- Включите выключатель А11.
- После срабатывания электротеплового реле *А5* считайте показания тока *I* и времени *t*, высвечивающиеся на индикаторах измерителя тока и времени *P2*, и занесите их в табл. 3.2.
- Отключите выключатель A11.
- Нажмите выступающий шток электротеплового реле А5.
- Уменьшите напряжение на выходе автотрансформатора *A1*, например на 20 В.
- Спустя, например, 5 минут повторите операции, начиная с включения выключателя *A*11 и заканчивая уменьшением напряжения на выходе автотрансформатора *A*1.
- Операции повторяйте до тех пор, пока после включения выключателя *A11* электротепловое реле *A5* не перестанет отключаться.
- Отключите автоматический выключатель в однофазном источнике питания *G1*.
- Отключите выключатели «СЕТЬ» автотрансформатора *A1*, блока мультиметров *P1*, измерителя тока и времени *P2*.
- Используя данные табл. 3.2, постройте искомую времятоковую характеристику t = f(I) электротеплового реле.
- Произведите аппроксимацию времятоковой характеристики функциональной зависимостью. Примечание: вид функциональной зависимости необходимо вводить самостоятельно, а коэффициенты должны рассчитываться автоматически. Стандартные линии тренда, имеющиеся в Excel, не дают возможности адекватно провести аппроксимацию.

Таблица 3.2

Времятоковая характеристика

<i>I</i> , A					
<i>t</i> , c					

Содержание отчета

- 1. Цель и программа работы.
- 2. Схемы электрических соединений.
- 3. Времятоковая характеристика.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. Назовите основные параметры электротеплового реле.
- Приведите схему электрических соединений для проведения исследований.
- 3. Дайте характеристику блоков стенда, входящих в состав принципиальной схемы соединений.

Вопросы для защиты отчета

- 1. Что такое электротепловое реле, где оно применяется?
- 2. Каковы принципы работы и конструкции тепловых реле?
- 3. Какие материалы используются для изготовления биметаллической пластины?
- 4. Назовите способы нагрева биметаллической пластины.
- 5. Перечислите основные недостатки тепловых реле и способы их устранения.
- 6. Какие конструктивные решения дают возможность мгновенного выключения реле и размыкания контактов?
- 7. Каким образом размеры биметаллической пластины влияют на силу нажатия контактов и перемещение?
- 8. Назовите известные вам марки тепловых реле.
- 9. Поясните времятоковую характеристику, полученную экспериментально.
- 10. Что такое позисторная защита?
- 11. Каковы принципы работы и характеристики позисторов?
- 12. Назовите марки аппаратов позисторной защиты электродвигателей.

Лабораторная работа 4 Электромагнитный контактор

Цель работы — изучение конструкции, принципа действия и снятие характеристик электромагнитного контактора.

Программа работы

- 1. Изучить принцип работы, конструкции, области применения электромагнитных контакторов.
- 2. Определить коэффициент возврата электромагнитного контактора.

Указания и пояснения к проведению работы

1. Обратить внимание на различия в конструкциях, обусловленные родом тока и типом электромагнита.

2. Электрические схемы соединений показаны на рис. 4.1 (переменный ток) и на рис. 4.2 (постоянный ток).

Перечень аппаратуры для исследования контактора приведен в табл. 4.1.

Примечание. Для контроля срабатывания и отпускания реле можно использовать «прозвонку» *P1.3* блока мультиметров *P1* (прибор 508.2). «Прозвонка» включается на любой из нормально разом-кнутых контактов блока 364.

Таблица 4.1

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
A1	Регулируемый авто- трансформатор	318.1	~ 0240 B / 2 A
A2	Контактор	364	~ 380 B /10 A
A3	Выпрямитель	322	400 B / 2 A
P1	Блок мультиметров	508.2	3 мультиметра ~ 01000 В / ~ 010 А / 020 МОм

Перечень аппаратуры для исследования контактора

Рис. 4.1. Электрическая схема соединений для исследования контактора переменного тока

Рис. 4.2. Электрическая схема соединений для исследования контактора постоянного тока

Последовательность действий при исследовании контактора

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления «)» устройств, используемых в эксперименте, с гнездом «*PE*» автотрансформатора *A1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений 1 (питание обмотки контактора синусоидальным током промышленной частоты) или 2 (питание обмотки контактора выпрямленным током).
- Поверните регулировочную рукоятку автотрансформатора *A1* в крайнее против часовой стрелки положение.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатели «СЕТЬ» блока мультиметров *P1* и автотрансформатора *A1*.
- Активизируйте используемый мультиметр *P1.1*.
- Медленно вращая регулировочную рукоятку автотрансформатора *А1* по часовой стрелке, увеличивайте напряжение, прикладываемое к обмотке контактора *А2*.
- В момент включения контактора зафиксируйте с помощью вольтметра *P1.1* напряжение *U*₁.
- Медленно вращая регулировочную рукоятку автотрансформатора *А1* против часовой стрелки, уменьшайте напряжение, прикладываемое к обмотке контактора *А2*.
- В момент отключения контактора зафиксируйте с помощью вольтметра *P1.1* напряжение *U*₂.
- Отключите автоматический выключатель в однофазном источнике питания *G1*.
- Отключите выключатели «СЕТЬ» блока мультиметров *P1* и автотрансформатора *A1*.
- Вычислите коэффициент возврата электромагнитного контактора по формуле $k = U_2 / U_1$.

Содержание отчета

- 1. Цель и программа работы.
- 2. Схемы электрических соединений.
- 3. Результаты исследования.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. Перечислите основные параметры контакторов постоянного и переменного тока.
- 2. Дайте понятия блоков, входящих в принципиальные схемы соединений.
- 3. Каков порядок проведения экспериментов?

Вопросы для защиты отчета

- 1. Назовите элементы конструкции электромагнитных контакторов постоянного тока и переменного тока.
- 2. Поясните работу электромагнита контактора. В чём отличие электромагнита контактора постоянного тока от электромагнита контактора переменного тока?
- 3. Почему контактор постоянного тока, в отличие от контактора переменного тока, не защищён от понижения напряжения в сети?
- 4. Почему ток катушки контактора переменного тока при притянутом положении якоря меньше, чем при отпущенном положении?
- 5. Поясните работу короткозамкнутого винта, установленного в электромагните контактора переменного тока.
- 6. Что такое провал контакторов? Каким образом он влияет на коммутационную износостойкость?
- 7. Поясните конструкцию дугогасительной камеры и принцип магнитного дутья в контакторах постоянного и переменного тока.
- 8. Перечислите основные характеристики контакторов.
- 9. Что такое категории применения контакторов постоянного и переменного тока?
- 10. Назовите марки контакторов, выпускаемых промышленностью.
- 11. Каким образом должны согласовываться тяговая и противодействующая характеристики электромагнитов контакторов?
- 12. Поясните результаты экспериментов.

Лабораторная работа 5 Магнитный пускатель

Цель работы — изучение использования магнитных пускателей для управления асинхронным двигателем.

Программа работы

- 1. Изучить принцип работы, конструкции и характеристики магнитных пускателей.
- 2. Исследовать работу магнитного пускателя в нереверсивной схеме управления асинхронным двигателем.
- 3. Исследовать работу магнитного пускателя в реверсивной схеме управления асинхронным двигателем.

Указания и пояснения к проведению работы.

1. Обратить внимание на контактно-дугогасительную систему, электромагнитные узлы конструкции и на работу тепловых реле.

2. Собрать схему по рис. 5.1 (принципиальная) и рис. 5.2 (монтажная).

Перечень необходимой аппаратуры для монтажа схемы представлен в табл. 5.1.

Таблица 5.1

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
G2	Трехфазный источник питания	201.2	~ 400 B / 16 A
M1	Асинхронный двигатель с короткозамкнутым ротором	106	120 Bt / ~ 380 B / 1500 мин ⁻¹
A2	Контактор	364	~ 380 B /10 A
A5	Электротепловое реле	356	~ 660 В /10 А / уставка 0,420,58 А
Д10	Автоматический трехполюс- ный выключатель	360	~ 440 B /10 A

Перечень аппаратуры для исследования нереверсивного магнитного пускателя

Обозна- чение	Наименование	Тип	Параметры
A11	Автоматический однополюс- ный выключатель	359	~ 230 B / 0,5 A
A12	Кнопочный пост управления	354.1	~ 500 В /10 А / 3 кнопки
A13	Блок световой сигнализации	355.1	~ 220 В / 3 лампы
P1	Блок мультиметров	508.2	3 мультиметра = 1000 В / 010 А /

~ 380 B

Рис. 5.1. Схема электрическая принципиальная магнитного пускателя с нереверсивной схемой управления

Рис. 5.2. Электрическая схема соединений элементов стенда для исследования нереверсивного магнитного пускателя

Последовательность действий при исследовании нереверсивной схемы управления асинхронным двигателем

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления « Э» устройств, используемых в эксперименте, с гнездом «*PE*» трехфазного источника питания *G1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.
- Соедините между собой выводы тепловой защиты ТК трехфазного источника питания *G2* (код 201.2).
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатель «СЕТЬ» блока мультиметров P1.
- Активизируйте используемые мультиметры Р1.1 и Р1.2.

- Включите источник *G2*. О наличии напряжений фаз на его выходе должны сигнализировать светящиеся лампочки.
- Включите выключатель А10.
- Включите выключатель *A11*. В результате загорится зеленая лампа блока *A13*, сигнализирующая о готовности двигателя *M1* к пуску.
- Нажмите верхнюю кнопку поста управления *A12*. В результате произойдет прямой пуск двигателя *M1*, о чем будет сигнализировать загоревшаяся красная лампа в блоке *A13*. Вольтметр *P1.1* и амперметр *P1.2* покажут напряжение и ток двигателя *M1*. Зеленая лампа в блоке *A13* погаснет.
- Нажмите нижнюю кнопку поста управления *A12*. В результате произойдет отключение двигателя *M1* от электрической сети и последующий его останов. Двигатель *M1* будет готов к очередному пуску, о чем будет сигнализировать загоревшаяся зеленая лампа в блоке *A13*. Красная лампа в блоке *A13* погаснет.
- По завершении эксперимента отключите нажатием на кнопку «Красный гриб» трехфазный источник питания *G2* и автоматический выключатель в однофазном источнике питания *G1*.

3. Собрать схему по рис. 5.3 (принципиальная) и рис. 5.4 (монтажная).

Перечень необходимой аппаратуры для монтажа схемы представлен в табл. 5.2.

Таблица 5.2

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
G2	Трехфазный источник питания	201.2	~ 400 B /16 A
M1	Асинхронный двигатель с короткозамкнутым ротором	106	120 Bt / ~ 380 B / 1500 мин ⁻¹
A2, A15	Контактор	364	~ 380 B / 10 A
A5	Электротепловое реле	356	~ 660 В / 10 А / уставка 0,420,58 А

Перечень аппаратуры для исследования реверсивного магнитного пускателя

Обозна- чение	Наименование	Тип	Параметры
A10	Автоматический трехпо- люсный выключатель	360	~ 440 B / 10 A
A11	Автоматический однопо- люсный выключатель	359	~ 230 B / 0,5 A
A12	Кнопочный пост управле- ния	354.1	~ 500 В / 10 А / 3 кнопки
A13	Блок световой сигнализа- ции	355.1	~ 220 В / 3 лампы

Рис. 5.3. Схема электрическая принципиальная реверсивного магнитного пускателя

Рис. 5.4. Электрическая схема соединений элементов стенда для исследования реверсивного магнитного пускателя

Последовательность действий при исследовании реверсивной схемы управления асинхронным двигателем

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления « Э» устройств, используемых в эксперименте, с гнездом «*PE*» трехфазного источника питания *G1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.
- Соедините между собой выводы тепловой защиты ТК трехфазного источника питания *G2* (код 201.2).
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатель «СЕТЬ» блока мультиметров P1.
- Активизируйте используемые мультиметры Р1.1 и Р1.2.
- Включите источник *G2*. О наличии напряжений фаз на его выходе должны сигнализировать светящиеся лампочки.

- Включите выключатель А10.
- Включите выключатель *А11*. В результате загорится зеленая лампа блока *А13*, сигнализирующая о готовности двигателя *M1* к пуску.
- Нажмите верхнюю кнопку поста управления *A12*. В результате произойдет прямой пуск двигателя *M1*, о чем будет сигнализировать загоревшаяся красная лампа в блоке *A13*.
- Вольтметр *P1.1* и амперметр *P1.2* покажут напряжение и ток двигателя *M1*. Зеленая лампа в блоке *A13* погаснет.
- Нажмите среднюю кнопку поста управления *A12*. В результате произойдет реверс двигателя *M1*, о чем будет сигнализировать загоревшаяся средняя красная лампа в блоке *A13*. Вольтметр *P1.1* и амперметр *P1.2* покажут напряжение и ток двигателя *M1*.
- Нажмите нижнюю кнопку поста управления *A12*. В результате произойдет отключение двигателя *M1* от электрической сети и последующий его останов. Двигатель *M1* будет готов к очередному пуску, о чем будет сигнализировать загоревшаяся зеленая лампа в блоке *A13*. Красная лампа в блоке *A13* погаснет.
- По завершении эксперимента отключите нажатием на кнопку «Красный гриб» трехфазный источник питания *G2* и автоматический выключатель в однофазном источнике питания *G1*.

Содержание отчета

- 1. Цель и программа работы.
- 2. Схемы принципиальные и схемы электрических соединений для нереверсивной и реверсивной схем управления.
- 3. Результаты опытов.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. Что представляет собой нереверсивная и реверсивная схемы управления?
- 2. Какая аппаратура стенда необходима для сборки схем?
- 3. В какой последовательности следует собирать схемы управления?

Вопросы для защиты отчета

- 1. Для чего предназначен магнитный пускатель?
- 2. Поясните конструкцию магнитного пускателя.
- 3. Поясните принцип работы и характеристики пускателя.
- 4. Какие марки магнитных пускателей выпускает промышленность?
- 5. Как устраняется вибрация якоря в магнитном пускателе?
- 6. Какие виды защит асинхронного двигателя осуществляет магнитный пускатель?
- 7. Пояснить значения токов в катушке управления пускателя при разомкнутом и притянутом положениях якоря.
- 8. Поясните, почему напряжение отпускания меньше напряжения притяжения.
- 9. Для чего предназначены тепловые реле в магнитном пускателе?
- 10. Как работает тепловое реле?
- 11. Поясните характер времятоковой характеристики.
- 12. Поясните принципиальные схемы управления асинхронного двигателя, нереверсивную и реверсивную.

Лабораторная работа 6 Автоматический воздушный выключатель

Цель работы — изучение конструкции, принципа действия и снятие характеристик автоматического воздушного выключателя.

Программа работы

- 1. Изучить принцип работы, конструкции и характеристики автоматических выключателей.
- 2. Снять времятоковую характеристику.

Указания и пояснения к проведению работы

1. Изучить установочные автоматические выключатели одно- и трехполюсные.

2. Собрать схему по рис. 6.1.

Перечень аппаратуры приведен в табл. 6.1.

Рис. 6.1. Электрическая схема соединений элементов стенда для снятия характеристик воздушного выключателя

Таблица 6.1

Перечень аппаратуры стенда для снятия времятоковой характеристики

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
A1	Регулируемый автотрансформатор	318.1	~ 0240 B / 2 A
A4	Однофазный трансформатор	372	220 / 24 B
A11	Автоматический однополюсный выключатель	359	~ 230 B / 0,5 A
P2	Измеритель тока и времени	524	05 A / 0,1999 c

Последовательность действий при снятии времятоковой характеристики

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления «)» устройств, используемых в эксперименте, с гнездом «*PE*» автотрансформатора *A1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатель «СЕТЬ» измерителя тока и времени Р2.
- Регулировочной рукояткой автотрансформатора *А1* выставьте напряжение на выходе трансформатора *А4* равным 15 В.
- Включите выключатель А11.
- Включите выключатель «СЕТЬ» автотрансформатора А1.
- После отключения выключателя *A11* считайте показания тока *I* и времени *t*, высвечивающиеся на индикаторах измерителя тока и времени *P2*, и занесите их в табл. 6.2.
- Отключите выключатель «СЕТЬ» автотрансформатора А1.
- Поверните регулировочную рукоятку автотрансформатора *A1* против часовой стрелки, выставив следующее (12 В) значение напряжения.

- Спустя, например, 5 минут повторите операции, начиная с включения выключателя *A11* и заканчивая поворотом регулировочной рукоятки автотрансформатора *A1*.
- Операции повторяйте до тех пор, пока после включения выключателя «СЕТЬ» автотрансформатора *A1* выключатель *A11* не перестанет отключаться.
- Отключите автоматический выключатель в однофазном источнике питания *G1*.
- Отключите выключатели «СЕТЬ» автотрансформатора *A1*, измерителя тока и времени *P2*.
- Используя данные табл. 6.2, постройте искомую времятоковую характеристику t = f(I) автоматического воздушного выключателя.
- Используя данные табл. 6.2, постройте искомую зависимость выдержки времени от уставки электромеханического реле времени $t_2 = f(t_1)$.
- Произведите аппроксимацию времятоковой характеристики функциональной зависимостью (аналогично ЛР 3).

Таблица 6.2

Зависимость выдержки времени реле от уставки

<i>U</i> , B	15	12	10	7	5
<i>I</i> , c					
<i>t</i> , c					

Содержание отчета

- 1. Цель и программа работы.
- 2. Схемы электрических соединений.
- 3. Результаты опытов.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. Перечислите основные параметры автоматических воздушных выключателей.
- 2. Какие элементы стенда необходимы для снятия времятоковой характеристики?
- 3. Каков порядок проведения эксперимента?

Вопросы для защиты отчета

- 1. Что такое автоматический воздушный выключатель?
- 2. Назовите основные виды автоматических выключателей.
- 3. Из каких основных узлов состоит автоматический выключатель? Каково их назначение?
- 4. Какие контактные группы применяются в конструкции автоматических выключателей?
- 5. Какие виды защиты электрических цепей осуществляют автоматические выключатели?
- 6. В чем отличие между токоограничивающими и селективными автоматическими выключателями?
- 7. С какой целью в контактной системе применяется компенсатор электродинамических усилий?
- Расскажите о конструкции дугогасительной камеры и назначении её элементов. Какие силы возникают в дугогасительной камере и действуют на электрическую дугу при её гашении?
- 9. Каково назначение механизма свободного расцепления? Из каких элементов он состоит?
- 10. Каким образом регулируются ток и время срабатывания автоматического выключателя?
- 11. Что собой представляют датчики тока?
- 12. Что такое быстродействующие автоматические выключатели и каким путем в них достигается быстродействие?
- 13. Объясните характеристики, полученные в результате эксперимента.

Лабораторная работа 7 Предохранители

Цель работы — изучение конструкции, принципа действия и снятие характеристик предохранителей.

Программа работы

- 1. Изучить принцип действия, конструкции и характеристики предохранителей.
- 2. Снять времятоковую характеристику предохранителя.

Указания и пояснения к проведению работы

1. Обратить внимание на выбор обычных предохранителей, предназначенных для защиты электродвигателей, и быстродействующих — для защиты полупроводниковых приборов.

2. Электрическая схема соединений представлена на рис. 7.1. Перечень аппаратуры приведен в табл. 7.1.

Рис. 7.1. Электрическая схема соединений элементов для снятия времятоковой характеристики предохранителей

Таблица 7.1

Перечень аппаратуры для снятия времятоковых характеристик предохранителей

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник пи- тания	218	~ 220 B / 16 A
A1	Регулируемый автотрансфор- матор	318.1	~ 0240 B / 2 A
A4	Однофазный трансформатор	372	120 B·A / 220 / 24 B
A6	Сдвоенный реактор	373	~ 220 B / 2 · 5
A11	Автоматический однополюс- ный выключатель	359	~ 230 B / 0,5 A
A18	Блок предохранителей и ограничителей	374	3 предохранителя 1 А (дли- на 15, 20, 30 мм) / 3 вари- стора (кл. напряжение 180, 220, 220 В; диаметр 7, 7, 14)
P1	Блок мультиметров	508.2	3 мультиметра ≈ 01000 В / ≈ 010 А / 020 МОм
P2	Измеритель тока и времени	524	05 A / 0,01999 c

Последовательность действий при проведении эксперимента

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления «)» устройств, используемых в эксперименте, с гнездом «*PE*» автотрансформатора *A1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.
- Отключите выключатель А11.
- Поверните регулировочную рукоятку автотрансформатора *A1* в крайнее против часовой стрелки положение.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатели «СЕТЬ» автотрансформатора *A1*, блока мультиметров *P1*, измерителя тока и времени *P2*.

- Активизируйте используемый мультиметр *P1.1*.
- Вращая регулировочную рукоятку автотрансформатора *A1*, установите по вольтметру *P1.1* напряжение, на выходе автотрансформатора *A1* равное, например, 200 В.
- Включите выключатель А11.
- После перегорания предохранителя в блоке *А18* считайте показания тока *I* и времени *t*, высвечивающиеся на индикаторах измерителя тока и времени *P2*, и занесите их в табл. 7.2.
- Отключите выключатель А11.
- Замените перегоревший предохранитель в блоке А18.
- Уменьшите напряжение на выходе автотрансформатора *A1*, например на 40 В.
- Повторите операции, начиная с включения выключателя *A11* и заканчивая заменой предохранителя.
- Операции повторяйте до тех пор, пока после включения выключателя *A11* испытуемый предохранитель не перестанет перегорать.
- Отключите автоматический выключатель в однофазном источнике питания *G1*.
- Отключите выключатели «СЕТЬ» автотрансформатора *A1*, блока мультиметров *P1*, измерителя тока и времени *P2*.
- Используя данные табл. 7.2, постройте искомую времятоковую характеристику t = f(I) предохранителя.
- Произведите аппроксимацию времятоковой характеристики функциональной зависимостью.

Таблица 7.2

Времятоковая характеристика

I, A					
<i>t</i> , c					

Содержание отчета

- 1. Цель и программа работы.
- 2. Схемы электрических соединений.
- 3. Результаты опытов.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. Перечислите основные параметры предохранителей.
- 2. Какие элементы стенда следует использовать для снятия вольт-амперной характеристики?
- 3. Каков порядок проведения эксперимента?

Вопросы для защиты отчета

- 1. С какой целью и где применяются предохранители? Какие типы предохранителей вам известны?
- 2. Какие требования предъявляются к предохранителям?
- 3. Что собой представляет времятоковая характеристика предохранителя и как согласовать её с нагрузочной характеристикой защищаемой цепи? Что такое «пограничный ток»?
- 4. Какие материалы используют для изготовления плавких вставок? С какой целью плавкую вставку делают фигурной?
- 5. Как определить номинальный ток плавкой вставки для защиты электродвигателя с короткозамкнутым ротором?
- 6. Что такое быстродействующий предохранитель и в каких случаях его применяют?
- 7. Каковы особенности конструкции быстродействующего предохранителя?
- 8. Что такое джоулев интеграл предохранителя?
- 9. Как выбрать предохранитель для защиты полупроводникового прибора?
- 10. При каких условиях работы предохранителей обеспечивается селективность защиты?
- 11. Поясните характер времятоковой характеристики, полученной экспериментально.
- 12. Перечислите факторы, влияющие на время работы предохранителей.

Лабораторная работа 8 Ограничители перенапряжений

Цель работы — изучение конструкции, принципа действия и снятие характеристик ограничителей перенапряжений.

Программа работы

- 1. Изучить принцип работы, характеристики, область применения ограничителей перенапряжений.
- 2. Снять вольт-амперную характеристику ограничителя перенапряжений.

Указания и пояснения к проведению работы

Собрать схему по рис. 8.1.

Перечень аппаратуры приведен в табл. 8.1.

Рис. 8.1. Электрическая схема соединений элементов стенда для снятия вольт-амперной характеристики ограничителя перенапряжений

Таблица 8.1

Перечень аппаратуры для снятия времятоковых характеристик предохранителей

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
A1	Регулируемый автотран- сформатор	318.1	~ 0240 B / 2 A
A18	Блок предохранителей и ограничителей	374	3 предохранителя 1 А (длина 15, 20, 30 мм) 3 варистора (кл. напряжения 180, 220, 220 В; диаметр 7, 7, 14 мм)
P1	Блок мультиметров	508.2	3 мультиметра ≈ 01000 В / ≈ 010 А / 020 МОм

Последовательность действий при проведении эксперимента

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления «)» устройств, используемых в эксперименте, с гнездом «*PE*» автотрансформатора *A1*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.
- Отключите выключатель A11.
- Поверните регулировочную рукоятку автотрансформатора *A1* в крайнее против часовой стрелки положение.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатели «СЕТЬ» автотрансформатора *А1* и блока мультиметров *P1*.
- Активизируйте используемые мультиметры Р1.1 и Р1.2.
- Вращая регулировочную рукоятку автотрансформатора *A1*, увеличивайте напряжение *U*, приложенное к ограничителю перенапряжений в блоке *A18*, и заносите показания вольтметра *P1.1* (напряжение *U* на ограничителе перенапряжений) и амперметра *P1.2* (ток *I* ограничителя перенапряжений) в табл. 8.2. *Ток I при этом*

не должен превышать 1 мА для ограничителей перенапряжений RU₁, RU₂ и 2 мА – для RU₂.

- Отключите автоматический выключатель в однофазном источнике питания *G1*.
- Отключите выключатели «СЕТЬ» автотрансформатора *A1* и блока мультиметров *P1*.
- Используя данные табл. 8.2, постройте искомую вольт-амперную характеристику U = f(I) ограничителя перенапряжений.

Таблица 8.2

Вольт-амперная характеристика

<i>U</i> , B					
<i>I</i> , A					

Содержание отчета

- 1. Цель и программа работы.
- 2. Схемы электрических соединений.
- 3. Вольт-амперная характеристика в табличной и графической формах.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. Каковы принцип работы, характеристики и материалы, используемые в варисторах как ограничителях перенапряжений?
- 2. Какие блоки необходимо использовать для снятия вольт-амперной характеристики?
- 3. Каков порядок проведения эксперимента?

Вопросы для защиты отчета

- 1. Каким образом возникают перенапряжения в электрической цепи и в чем их опасность?
- Какие электрические аппараты используются для устранения перенапряжений в электрических цепях высокого и низкого напряжения?
- 3. Каков принцип работы вентильного разрядника?

- 4. Поясните конструкцию и принцип работы магнитно-вентильного разрядника.
- 5. Какие материалы и их свойства используются для построения ограничителей перенапряжений?
- 6. Какие недостатки имеют вентильные разрядники?
- 7. Что такое варисторы и где их применяют? Приведите в качестве примера электрические схемы с варисторами.
- 8. Какова взаимосвязь между коэффициентом нелинейности сопротивления и коэффициентом ограничения перенапряжений?
- 9. Почему коэффициент ограничений перенапряжений в вентильных разрядниках выше, чем в нелинейных ограничителях перенапряжений?
- 10. Каким образом согласуются характеристики разрядника и защищаемого оборудования?
- 11. Что представляют собой исследуемые ограничители перенапряжений (область применения, принцип работы, конструкции, материал, характеристики)?
- 12. Поясните вольт-амперные характеристики, полученные в результате эксперимента.

Лабораторная работа 9 Микропроцессорный блок управления и защиты асинхронного двигателя

Цель работы — изучение настройки и работы микропроцессорного блока управления и защиты асинхронного двигателя.

Программа работы

- Изучить по имеющейся литературе программирование и работу микропроцессорного блока управления и защиты асинхронного двигателя.
- Исследовать работу микропроцессорного блока управления и защиты асинхронного двигателя в режимах программирования, пуска, отключения, перегрузки и обрыва фазы.

Указания и пояснения к проведению работы

1. Обратить внимание на принцип работы, вопросы программирования и наладки микропроцессорного блока управления и защиты электродвигателя.

2. Схема электрическая принципиальная показана на рис. 9.1, электрическая схема соединений – на рис. 9.2.

Перечень необходимой аппаратуры для монтажа схемы представлен в табл. 9.1.

Таблица 9.1

Перечень аппаратуры для исследования нереверсивного магнитного пускателя

Обозна- чение	Наименование	Тип	Параметры
G1	Однофазный источник питания	218	~ 220 B / 16 A
G2	Трехфазный источник питания	201.2	~ 400 B / 16 A
M1	Асинхронный двигатель с корот- козамкнутым ротором	106	120 Вт / ~ 380 В / 1500 мин ⁻¹
A2, A15	Контактор	364	~ 380 B / 10 A
A10	Автоматический трехполюсный выключатель	360	~ 440 B / 10 A

Обозна- чение	Наименование	Тип	Параметры
A11	Автоматический однополюсный выключатель	359	~ 230 B / 0,5 A
Al	Блок управления и защиты асинхронного двигателя	368	Коммутируемое напряжение / ток: ~ 220 В / 8 А
P1	Блок мультиметров	508.2	3 мультиметра = 01000 В / 010 А / 020 МОм

Рис. 9.1. Схема электрическая принципиальная микропроцессорного блока управления и защиты асинхронного двигателя

Рис. 9.2. Электрическая схема соединений элементов стенда

Последовательность действий при проведении эксперимента

- Убедитесь, что устройства, используемые в эксперименте, отключены от сети электропитания.
- Соедините гнезда защитного заземления « Э» устройств, используемых в эксперименте, с гнездом «*PE*» трехфазного источника питания *G2*.
- Соедините аппаратуру в соответствии с электрической схемой соединений.
- Включите автоматический выключатель и устройство защитного отключения в однофазном источнике питания *G1*.
- Включите выключатель «СЕТЬ» блока мультиметров P1.
- Активизируйте используемый мультиметр Р1.1.
- Включите источник *G2*. О наличии напряжений фаз на его выходе должны сигнализировать светящиеся лампочки.
- Включите выключатель А10.

- Включите выключатель *A11*. На мониторе блока *A1* высветится надпись «*A.000*», означающая увеличенное в 100 раз текущее (равное нулю) значение тока в фазе «А» двигателя *M1*, а также загорится светодиод около надписи «СТОП».
- Выполните программирование блока управления и токовой защиты асинхронного двигателя. Для этого выполните следующие действия.

1. Проверьте заданные (по умолчанию) номинальные фазные токи двигателя. Для этого нажмите и удерживайте более 2 секунд кнопку «(Δ)». На мониторе должна появиться надпись «А.042», означающая, что для фазы «А» двигателя задан номинальный ток $I_1 = 0,42$ А. Нажмите и отпустите кнопку «(P)». На мониторе должна появиться надпись «В.042», означающая, что для фазы «В» двигателя задан номинальный ток $I_1 = 0,42$ А. Еще раз нажмите и отпустите кнопку «(C)». На мониторе должна появиться надпись «С.042», означающая, что для фазы номинальный ток $I_1 = 0,42$ А. Еще раз нажмите и отпустите кнопку «(P)». На мониторе должна появиться надпись «С.042», означающая, что для фазы «С» двигателя задан номинальный ток $I_1 = 0,42$ А.

2. При необходимости изменения номинального тока конкретной фазы прежде всего кнопкой «)» выберите эту фазу. Затем кнопкой «)» вызовите мигание нужного разряда на мониторе и кнопкой «)» установите в этом разряде требуемую цифру (от 0 до 9). Устанавливаемое трехразрядное число (от 1 до 250) должно быть равно увеличенному в 100 раз значению номинального тока фазы. Например, для установки номинального тока $I_1 = 1,25$ A следует установить число 125. После установки числа запишите его в память монитора. Для этого нажмите и отпустите кнопку «)».

3. Вернитесь в основное меню. Для этого нажмите кнопку «(இ)». На мониторе должна отобразиться надпись «*А.000*».

4. Введите параметры защиты двигателя:

4.1. Нажмите и удерживайте более 2 секунд кнопку « \mathbb{P} ». На мониторе отобразится надпись «*I250*», означающая, что задан ток перегрузки $I_2 = 50$ %. При превышении на 50 % тока двигателя его заданного номинального тока I_1 должно происходить аварийное отключение двигателя с появлением на мониторе сообщения «*OL2*».

Например, при заданном номинальном токе $I_1 = 0,42$ А аварийное отключение двигателя должно происходить при превышении током двигателя уровня $IOL2 = 0,42 + (0,42 \cdot 50) / 100 = 0,63$ А. При необходимости изменения тока I_2 кнопкой «④» вызовите мигание нужного разряда на мониторе и кнопкой «④» установите требуемую цифру (от 0 до 9). Установленное число (от 0 до 99) запишите в память монитора и перейдите к заданию следующего параметра. Для этого нажмите кнопку «(•)».

4.2. На мониторе отобразится надпись «*I370*», означающая, что задан ток недогрузки $I_3 = 70$ %. При уменьшении тока, например в фазе «А» двигателя в результате ее обрыва, до уровня 70 % от заданного номинального тока I_1 должно происходить его аварийное отключение с появлением на мониторе сообщения «*A.OL3*». Например, при заданном номинальном токе $I_2 = 0,42$ А и обрыве фазы «А» двигателя его аварийное отключение должно происходить при уменьшении тока двигателя ниже уровня $IOL3 = (0,42 \cdot 70) / 100 = 0,29$ А. При необходимости изменения тока I_3 кнопкой «④» вызовите мигание нужного разряда на мониторе и кнопкой «④» установите требуемую цифру (от 0 до 9). Установленное число (от 0 до 99) запишите в память монитора и перейдите к заданию следующего параметра. Для этого нажмите кнопку «_●».

4.3. На мониторе отобразится надпись «t010», означающая, что задано время $t_0 = 10$ с, необходимое для останова (выбега) двигателя после подачи команды на его реверсирование. При подаче команды на реверс двигателя она должна начать выполняться спустя заданное время t_0 . При необходимости изменения времени t_0 кнопкой « \triangle » вызовите мигание нужного разряда на мониторе и кнопкой « \triangle » установите требуемую цифру (от 0 до 9). Установленное число (от 0 до 99) запишите в память монитора и перейдите к заданию следующего параметра. Для этого нажмите кнопку « \bigcirc ».

4.4. На мониторе отобразится надпись «t103», означающая, что задано время $t_1 = 3$ с. При превышении тока двигателя его четырехкратного заданного номинального тока I_1 продолжительностью более 3 секунд должно происходить аварийное отключение

двигателя с появлением на мониторе сообщения «*OL1*». Например, при заданном номинальном токе двигателя $I_1 = 0,42$ А и реальном токе двигателя, превышающем значение *IOL1* = $4 \cdot 0,42 = 1,64$ А, через 3 секунды должно происходить аварийное отключение двигателя. При необходимости изменения времени t_1 кнопкой « э» вызовите мигание нужного разряда на мониторе и кнопкой « э» установите требуемую цифру (от 0 до 9). Установленное число (от 0 до 99) запишите в память монитора и перейдите к заданию следующего параметра. Для этого нажмите кнопку « ».

4.5. На мониторе отобразится надпись «t205», означающая, что задано время $t_2 = 05$ с. При перегрузке двигателя типа «OL2» его аварийное отключение должно происходить спустя время $t_2 = 5$ с. При необходимости изменения времени t_2 кнопкой «O» вызовите мигание нужного разряда на мониторе и кнопкой «O» установите требуемую цифру (от 0 до 9). Установленное число (от 0 до 99) запишите в память монитора и перейдите к заданию следующего параметра. Для этого нажмите кнопку «P».

4.6. На мониторе отобразится надпись «t305», означающая, что задано время $t_3 = 5$ с. При недогрузке (обрыве фазы) двигателя типа «OL3» его аварийное отключение должно происходить спустя время $t_3 = 5$ с. При необходимости изменения времени t_3 кнопкой «O» вызовите мигание нужного разряда на мониторе и кнопкой «O» установите требуемую цифру (от 0 до 9). Установленное число (от 0 до 99) запишите в память монитора и перейдите к заданию следующего параметра. Для этого нажмите кнопку «O».

5. Вернитесь в основное меню. Для этого нажмите кнопку «(\$)». На мониторе блока должна отобразиться надпись «*А.000*».

- Нажмите и отпустите кнопку « Э» на мониторе блока *А1*. Загорится светодиод около надписи «ВПЕРЕД».
- Нажмите и отпустите кнопку «Р» на мониторе блока *A1*. Произойдет прямой пуск двигателя *M1*. Вольтметр *P1.1* покажет напряжение на двигателе *M1*. На мониторе блока *A1* высветится увеличенное в 100 раз текущее значение тока двигателя *M1* в выбранной

фазе. Для наблюдения значения тока в другой фазе нажмите и отпустите кнопку «🛆».

- Нажмите на кнопку «🔊» монитора блока *А1*.
- Вновь осуществите прямой пуск двигателя *M1*.
- Нажимая кнопку « Э» на мониторе блока *А1*, добейтесь загорания светодиода около надписи «НАЗАД».
- Нажмите и отпустите кнопку «Р» на мониторе блока A1. Двигатель M1 должен отключиться от сети и через время t₀ = 10 с должен произойти его прямой пуск в обратном направлении.
- Нажимая кнопку « Э», добейтесь загорания светодиода около надписи «СТОП».
- Осуществите останов двигателя *M1* нажатием на кнопку «)» монитора блока *A1*.
- По завершении эксперимента отключите нажатием на кнопку «Красный гриб» трехфазный источник питания *G2* и автоматический выключатель в однофазном источнике питания *G1*.
- Результаты работы отразите в отчете по лабораторной работе.

Содержание отчета

- 1. Цель и программа работы.
- 2. Схема принципиальная и схема соединений.
- 3. Результаты опытов.
- 4. Выводы по работе.

Вопросы для самоконтроля

- 1. С какой целью применяется микропроцессор в схеме управления асинхронным электродвигателем?
- 2. Каким образом осуществляется защита и реверс асинхронного электродвигателя?
- 3. Какие блоки необходимо выбрать для сборки схемы?
- 4. Какие действия необходимо выполнить при проведении эксперимента?
- 5. Какие результаты должны быть получены?

Вопросы для защиты отчета

- 1. Какие функции выполняет микропроцессорный блок управления и защиты?
- 2. Приведите структурную схему микропроцессорного устройства и поясните назначение его составляющих.
- 3. Каким образом параметры электродвигателя или другого устройства (ток, напряжение, частота и направление вращения, температура и т. п.) преобразуются в цифровой код? Приведите примеры.
- 4. Какие элементы осуществляют связь между микропроцессором и выходными устройствами? Приведите примеры.
- 5. Каковы особенности применения микропроцессорной техники в электрических и электронных аппаратах? Поясните возможность применения микропроцессорных устройств для защиты электродвигателя с помощью тепловых реле.
- 6. Каким образом по величине тока фазы определяется температура нагрева двигателя и информация о ней передается в микропроцессор?
- 7. Как работают периферийные устройства в случае перегрева двигателя?
- 8. Каким образом реализуются функции защиты двигателя от несимметрии фазных токов, в частности при обрыве одной из фаз?
- 9. Каким образом осуществляется возврат реле в рабочий режим после аварийного отключения?
- 10. Каким образом вызывается тест-программа, проверяющая работоспособность реле?
- 11. Каким образом производится настройка реле на заданный допустимый ток двигателя?
- 12. Поясните результаты экспериментальной работы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Сенигов, П.Н. Электрические аппараты : руководство по выполнению базовых экспериментов «ЭА. 001РБЭ/917/» / П.Н. Сенигов. – Челябинск : Учебная техника, 2006. – 70 с.
- 2. Таев, И.С. Электрические аппараты управления : учебник для вузов / И.С. Таев. 2-е изд., перераб. и доп. М. : Высшая школа, 1984. 247 с.
- 3. Чунихин, А.А. Электрические аппараты : общий курс / А.А. Чунихин. 3-е изд. М. : Энергоатомиздат, 1988. 720 с.
- 4. Электрические и электронные аппараты : учебник для вузов / ред.
 Ю.К. Розанов. 2-е изд., испр. и доп. М. : Информэлектро, 2001. 420 с.
- 5. Электромеханические аппараты автоматики : учебник для вузов по спец. «Электрические аппараты» / Б.К. Буль [и др.]. М. : Высшая школа, 1988. 328 с.