МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

	YI	нститут машиностроения				
		(наименование института полностью)				
Кафедра «Проектирование и эксплуатация автомобилей						
		(наименование кафедры)				
23.05.01	23.05.01 «Наземные транспортно-технологические средства»					
	(код и наиг	менование направления подготовки, специаль	ности)			
		Автомобили и тракторы				
	(1	направленность (профиль)/специализация)				
	, ,	ЛОМНЫЙ ПРОВ				
на тему	Пер	еднеприводный автомоби.	ль 2 класса.			
	Моде	рнизация передней подвес	СКИ			
Студент		А. Ю. Озерной				
		(И.О. Фамилия)	(личная подпись)			
Руководитель		Н. С. Соломатин				
		(И.О. Фамилия)	(личная подпись)			
Консультанты	И	.В. Краснопевцева				
		(И.О. Фамилия)	(личная подпись)			
		А.М. Москалюк				
		(И.О. Фамилия)	(личная подпись)			
		А.Г. Егоров				
		(И.О. Фамилия)	(личная подпись)			
		О.В. Головач				
		(И.О. Фамилия)	(личная подпись)			
Допустить к защите						
И.о заведущего ка	федры	к.т.н., доцент А.В. Бобр				
		(ученая степень, звание, И.О. Фам	илия) (личная подпись)			
« »		20 18 г				

КИЦАТОННА

В данном дипломном проекте, представлена модернизация передней подвески автомобиля с целью увеличения свойств устойчивости и управляемости автомобиля. Выполнен анализ развития конструкций подвесок в автомобильной промышленности, расчет тягово-динамических характеристик транспортного средства, a так же характеристики передней подвески. Вычеслены параметры стабилизатора поперечной устойичовсти. В технологической части выполнен анализ решений влияющих на сборку подвески, составлен перечень работ входящих установку подвески, а также определена трудоемкость сборочных операций. Разработан компекс мер, касающийся мер безопасности на соотвествующие расчеты производстве, произведены ПО заземлению оборудования и освещению рабочего участка. В экономической части эффект расчитан экономический отвнедрения проекта данного производство.

ANNOTATION

The topic of the diploma paper is "Modernization of Front Vehicle Suspension". The project is touching a point of improving vehicle ride and handling properties. The aim of the work is to make a proper modernization, which could be implemented into vehicle mass production.

The diploma paper consists of 77 pages, including introduction, design, process, economical and safety chapters. It also have a graphic part of 10 A1 sheets.

In the first part, author dwells on vehicle suspension design, it's current development tendencies, and gives also a proper classification of current suspension types.

The second part of the work is dedicated to vehicle design calculations. In this part vehicle dynamic calculation, suspension characteristic calculation and calculation of front suspension stabilizer were made.

In the third part we develop a process of front vehicle suspension assembly and make an overview of the assembly line.

The forth part contains the economical calculations for piece-price of the developed product. We calculate breakeven point for this project and make evidence calculation for economic efficiency.

In the fifth part of the diploma paper we perform an analysis of improved on confirmation for vehicle safety legal requirements. Also we make overview of the production line, and develop a list of containment action to make the assembly line safe according to legal requirements in terms of safety and environment protection.

The author comes to the conclusion, that modernization which is described in the diploma paper could be implemented into current mass production.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	6
1 Состояние вопроса	7
1.1 Назначение подвески автомобиля	7
1.2 Требования, предъявляемые к подвеске	8
1.3 Классификация подвесок	10
1.4 Основные тенденции развития конструкций подвесок	12
1.5 Обоснование выбора объекта модернизации	14
2 Защита интеллектуальной собственности	15
3 Конструкторская часть	16
3.1 Тягово-динамический расчет автомобиля	16
3.2 Расчет упругой характеристики подвески	17
3.3 Анализ расчетов и выводы	24
4 Технологическая часть	26
4.1 Анализ изменения конструкции подвески, приводящий к изменению	
технологического процесса	26
4.2 Общие требования к технологичености конструкции подвески	26
4.3 Разработка технологической схемы сборки передней подвески	27
4.4 Составления перечня сборочных работ, определение трудоемкости	29
4.5 Выбор организационной формы сборки Ошибка! Закладка не определ	тена.3
5 Экономическая эффективность проекта	35
5.1 Расчет себестоимости проектируемой подвески	35
5.2 Расчет точки безубыточности	43
5.3 Расчет коммерческой эффективности проекта	41
5.4 Вывод	52
6 Безопасность и экологичность проетка	53
6.1 Проверка конструкции на удовлетворение соответствующих	
регламентирующих документов	54
6.2 Описание рабочего места, оборудования, выполняемых операций	56

6.3 Идентификация опасных и вредных производственных факторов	
разрабатываемого производственного объекта	57
6.4 Мероприятия по созданию безопасных условий труда	57
6.5 Инженерные расчеты	60
6.6 Экологическая экспертиза разрабатываемого объекта	63
6.7 Вывод	63
ЗАКЛЮЧЕНИЕ	65
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	66
ПРИЛОЖЕНИЯ	69

ВВЕДЕНИЕ

Автомобиль Лада Гранта является не дорогим автомобилем В-класса. Выпущенный в конце 2011 года, автомобиль пришел на смену классическому семейству автомобилей Лада как самый дешевый автомобиль доступный к покупке. В действительности, автомобиль базируется на платформе другого автомобиля Лада Калина, имея с ним общую конструкцию передней и задней подвесок, а также одинаковую гамму силовых агрегатов. Некоторые детали кузова также идентичны.

Автомобиль получился достаточно сбалансированным. Тем не менее, с момента постановки автомобиля в производство прошло уже 6 лет. За это время требования к конструкции подвески, к показателям плавности хода и управляемости, несколько изменились. В данный момент времени, компания ПАО «АВТОВАЗ» занимается разработкой и выпуском новых автомобилей семейства Лада Веста и Лада X-Ray, сконцентрировав на этом основные усилия, в то время как автомобиль Лада Гранта продолжает выпускаться практически без изменений.

Данный курсовой проект предусматривает улучшение характеристик подвески автомобиля, которое не потребует больших капиталовложений. В тоже время данное изменение поможет довести характеристики автомобиля до современного уровня. Данное изменение заключается в увеличении угловой жесткости передней подвески, что позволит снизить крены автомобиля в поворотах. Одновременно с этим предлагается снизить жесткость пружин, что позволит несколько улучшить показатели плавности хода при езде по прямой ухабистой дороге.

1 Состояние вопроса

1.1 Назначение подвески автомобиля

Подвеской автомобиля называют систему механизмов предназначенных для передачи сил и моментов со стороны дороги на кузов автомобиля. Характеристики подвески, конструкция направляющего элемента напрямую влияют на параметры плавности хода и управляемости автомобиля. Подвеска автомобиля также напрямую оказывает влияние на активную безопасность автомобиля.

В конструкции подвески обычно выделяют три элемента: упругий элемент подвески, направляющий элемент подвески, демпфирующий элемент подвески.

Упругий элемент подвески помогает снизить динамическую составляющую сил со стороны дороги на кузов автомобиля. В качестве упругих элементов могут служить листовые рессоры, винтовые пружины различных 1.1), конструкций (рисунок торсионы, работающие Упругая скручивание, либо пневматические подушки. характеристика основных факторов, подвески является ОДНИМ ИЗ влияющих управляемость автомобиля, величину кренов кузова, наличие «клевков» при торможении и старте, а также на плавность хода.

При проезде через дорожную неровность, наличие упругой связи между колесом и кузовом неизбежно формирует колебания подрессоренной массы автомобиля. Демпфирующий элемент подвески необходим для снижения амплитуды и последующего прекращения данных колебаний. В настоящее время в качестве демпфирующего элемента на подавляющем большинстве автомобилей используются газонаполненные гидравлические амортизаторы различных конструкций (рисунок 1.1).

Направляющий элемент подвески (рисунок 1.1) обеспечивает необходимую кинематику колес автомобиля при вертикальных ходах подвески, а также правильное распределение сил по точкам крепления на

кузов. Конструкция направляющего элемента также оказывает влияние на величину неподрессоренных масс автомобиля, что напрямую влияет на плавность хода и управляемость автомобиля. В случае управляемых колес, кинематика подвески автомобиля должна быть согласована с кинематикой рулевого управления автомобиля. В противном случае при вертикальных ходах колес относительно кузова автомобиля их положение вокруг оси поворота будет непредсказуемым, что может привести к дорожнотранспортному происшествию.

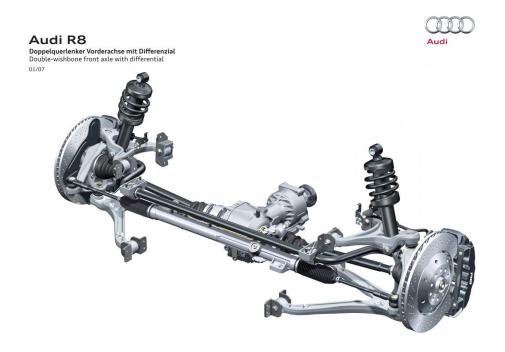


Рисунок 1.1 –Передняя подвеска автомобиля Audi R8. В качестве упругого элемента использованы винтовые пружины, установленные на газонаполненных гидравлических амортизаторах. Направляющее устройство выполнено по независимой схеме на двух поперечных рычагах.

1.2 Требования, предъявляемые к подвеске

К подвеске автомобиля применяются следующие требования:

1) Подвеска должна обеспечивать своими упругими характеристиками должную плавность хода автомобиля.

- 2) Направляющий элемент подвески должен максимально точно передавать продольные и боковые силы при движении автомобиля в любых режимах.
- 3) Поперечная жесткость подвески должна противодействовать кренам кузова автомобиля при поворотах автомобиля.
- 4) Направляющий элемент подвески управляющих колес должен иметь кинематику точно согласованную с кинематикой рулевого управления.
- 5) Сопротивление «клевковому» эффекту при торможениях и «приседаниям» автомобиля на заднюю ось при разгонах
- 6) Конструкция направляющего элемента подвески должна обеспечивать недостаточную поворачиваемость автомобиля.
- 7) Подвеска автомобиля должна обладать необходимым запасом прочности, в то же время быть, по возможности, максимально легкой и компактной.
- 8) Подвеска автомобиля должна обладать простотой, для обеспечения должного уровня ремонтопригодности автомобиля, а также простоты сборки узла.
- 9) Конструкция подвески должна допускать возможножсть некоторой настройки и изменения углов установки колес.
 - 10) Подвеска должна обладать малой стоимостью.

Конечно, в каждом отдельном случае важность тех или иных требований варьируется. К примеру, на автомобиле класса D или E на первую роль выходят плавность хода автомобиля, его управляемость и надежность. К более дешевым автомобилям A и B классов, данные требования не такие жесткие, но в тоже время простота и стоимость конструкции начинают играть немаловажную роль. Таким образом, выбор той или иной схемы подвески, ее конструкция в каждом конкретном случае будет являться неким компромиссом из всех вышеперечисленных требований.

1.3 Классификация подвесок

Классификация подвесок проводится по трем признакам. По связи колес между собой, по возможности управления подвеской, а так же по упругому элементу подвески.

По связи колес между собой подвески бывают зависимые и независимые (рисунок 1.2). В случае с зависимой подвеской колеса одной оси жестко связаны поперечной балкой. Данный тип подвески появился одним из первых и до сих пор используется в автомобилях большой грузоподъемности, а также на многих внедорожниках. К недостаткам такого типа подвески можно отнести излишне высокие неподрессоренные массы. Этот факт достаточно негативно влияет на плавность хода автомобиля. Склонность к уводу при езде по дорогам с поперечными неровностями значительно ухудшает управляемость автомобиля. Однако у данной конструкции есть и преимущества, к которым можно отнести пониженные прочность крены кузова, простоту И конструкции, хорошую ремонтопригодность.

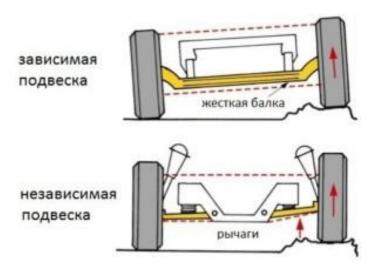


Рисунок 1.2. – Работа зависимой и независимой подвесок автомобиля.

Независимые подвески автомобиля в настоящее время получают все большее распространение на легковых автомобилях. Независимые подвески бывают различных конструкций: на поперечных рычагах, на косых рычагах,

качающаяся свеча и так далее. К преимуществам данного типа подвесок можно отнести хорошую кинематику колес, возможность добиться высоких показателей плавности хода и управляемости. При помощи подрамника и дополнительных сайлентблоков крепления подрамника к кузову можно значительно снизить количество вибраций и шумов в автомобиле. К недостаткам можно отнести более сложную конструкцию подвесок и ее дороговизну по сравнению с зависимыми подвесками.

На заднюю ось многих переднеприводных автомобилей также может устанавливаться подвеска на связанных рычагах, так называемая полунезависимая подвеска. В силу конструкции ее применение ограничено только задней осью. При одноименном ходе колес задней оси он ведет себя как зависимая подвеска, а при разноименном — как независимая. Данный тип подвески достаточно дешев и прост, и потому нашел свое применение на большинстве автомобилей A, B и C классов.

«По типу упругого элемента подвески можно разделить на несколько категорий: пружинные, рессорные, пневматические и торсионные.»[2] В настоящее время достаточно большое распространение получили пружинные подвески. Это объясняется их простотой, дешевизной, а также возможностью добиться практически любых упругих характеристик подвески внося незначительные изменения в конструкцию пружин. Рессорные подвески полностью перестали использовать на легковых автомобилях, но они до сих пор используются на грузовых автомобилях, а также на задней оси пикапов. Это обусловлено тем, что они обладают достаточной прочностью и надежностью, а также достаточно дешевы. В то же время они обладают очень существенным недостатком: силы трения, возникающие между рессор, исключают снижение динамической составляющей всех сил меньших по значению. Иными словами, подвеска может вести себя как абсолютно жесткий элемент, что крайне негативно отражается на плавности хода.

Пневматические подвески находят свое применение, в основном, на очень дорогих автомобилях. Они позволяют изменять дорожный просвет

автомобиля, добиться наилучших показателей по плавности хода и управляемости автомобиля. Системы управления пневматических подвесок позволяют сделать такие подвески активными и изменять большее число параметров, чем у стандартных пружинных подвесок. Однако, стоимость и сложность конструкции таких подвесок не позволяет их внедрять на более дешевые автомобили.

По управления возможности подвески делятся на активные, полуактивные и пассивные. Пассивные подвески обладают заданными характеристиками, которые невозможно изменять в зависимости от режимов автомобилей. движения Большинство автомобилей современных комплектуются пассивными подвесками. Полуактивные подвески позволяют изменять дорожный просвет автомобиля. Примером такой подвески может служить пневматическая подвеска автомобиля VW Tuareg, которой клиренс данного автомобиля может изменяться от 150мм до 300мм. Активные подвески отличаются от остальных тем, ЧТО позволяют существенно характеристики процессе изменять СВОИ В движения автомобиля. Данные изменения могут происходить как в полностью автоматическом режиме так и при непосредственном управлении водителем.

1.4 Основные тенденции развития конструкций подвесок

Современное автомобилестроение имеет тенденцию в электрификации автомобилей. Все больше новых концептов отказываются от использования двигателей внутреннего сгорания в пользу электродвигателей. Гибридные автомобили в настоящее время выпускает практически каждый производитель. Те же тенденции происходят и в развитии конструкции подвесок автомобиля. Все большее количество автомобилей комплектуется активными подвесками.

В основном упор делается на электронноуправляемых амортизаторах различных конструкций. В тоже время при использовании пневматических элементов подвески упругая характеристика также становится изменяемой. В

конструкцию также добавляются электронноуправляемые стабилизаторы поперечной устойчивости, которые могут изменять свои характеристики в зависимости от условий дороги.

Одним из удачных примеров подобных разработок может служить система Кіпетіс разработанная фирмой Мопгое. Данная система связывает все четыре амортизатора автомобиля, которые имеют общую гидравлическую систему. Считывая показания с датчиков, установленных на автомобиле, система автоматически перераспределяет жидкость между всеми четырьмя амортизаторами обеспечивая оптимальную управляемость и устойчивость автомобиля. Эта система также соединена с электронноуправляемыми стабилизаторами поперечной устойчивости замыкая и размыкая их по мере необходимости. Установлена на автомобили McLaren 570S/570GT (рисунок 1.3)

Рисунок 1.3 – Амортизаторы системы Kinetic, устанавливающиеся на автомобили McLaren.

1.5 Обоснование выбора объекта модернизации

Передняя подвеска автомобиля Лада Гранта (ВАЗ-2190) выполнена по незавимисой схеме МакФерсон. Подобное техническое решение оправдано как на автомобилях класса В, к которым относится Гранта, так на автомобилях более высоких классов. Зарубежные аналоги фирм VW, Skoda, Renault и других также используют данную компоновочную схему.

Недостатком данного решения является худшая кинематика колес в сравнении с двухрычажной подвеской, а также возросшие нагрузки на пружину передней подвески и на амортизаторную стойку. К плюсам данного решения можно отнести значительный выйгрыш в массе, необходимом пространстве (компоновке), цене и технологичности сборки автомобиля.

Для курсового проекта предлагается оставить компоновочную схему подвески неизменной. Это обосновывается меньшими капиталовложениями, а также значительными преимуществами, которые дает данная схема. Тем не менее, подвеска данного автомобиля нуждается в некоторой модернизации в плане управляемости и устойчивости автомобиля. Это вызвано тем, что автомобиль имеет достаточно большой для своего класса дорожный просвет и имеет склонность к излишним кренам при езде на поворотах.

Для улучшения управляемости и снижения кренов кузова автомобиля предлагается модернизировать стабилизатор поперечной устойчивости автомобиля, а также способ его крепления: перенести точки крепления стабилизатора с рычагов передней подвески на корпус амортизаторной стойки.

2 Защита интеллектуальной собственности

Не предусмотрена дипломным проектом.

3 Конструкторская часть

3.1 Тягово-динамическрй расчет автомобиля

Исходные данные для тягового расчета:

Привод колес: Переднеприводный

Количество мест: 5

Количество передач трансмиссии: 5

КПД трансмиссии: $\eta_{TP} = 0.9$

Шина: 185 / 65 R14

Максимальная скорость: $\upsilon_{\text{max}} = 180 \kappa \text{м/y}$

Масса тр. средства: $m_a = 1088 \, \text{кг}$

Коэф. аэродин. сопр-ния: $C_x = 0.32$

Коэф. сопротивл. качению: $f_0 = 0.012$

Преодолеваемый уклон: i = 0.3

 $ω_a^{min} = 1000 o \delta / MuH$

Обороты ДВС $\omega_e^{\text{max}} = 6000\,\text{o}\,\text{б}\,\text{/}\,\text{мин}$

 $\omega_{\scriptscriptstyle N}=5600\,o \delta$ / мин

Тягово-динамический расчет автомобиля можно считать базой при его проектировании. Тягово-динамическим расчетом является совокупность расчетов силового агрегата и трансмиссии транспортного средства. Подбор размерности колес также осуществляется в рамках данного расчета. В данной работе в части тягово-динамического расчета были определены следующие характеристики:

- «внешнескоростная характеристика двигателя (BCX);»[1]
- передаточные числа коробки переключения передач;
- тяговый баланс;
- -динамическая характеристика;
- ускорения на различных передачах;
- время и путь разгона;
- мощностной баланс;

- характеристика топливной экономичности.

Результаты вышеуказанных расчетов показаны в виде графиков в приложении A настоящей дипломной работы

3.2 Расчет упругой характеристики подвески

Исходные данные проекта:

$$m_a = 1115 \kappa c$$

$$m_{\Pi EP.CHAP} = 658 \, \kappa z$$

$$m_{\Pi EP.KOHCT.} = 770$$
кг

$$m_{\Pi EP.\Pi O \Pi H.}=790$$
кг

$$m_{_{Heno\partial p}} = 37 \, \kappa \varepsilon$$

$$\varphi(j_y = 4 \frac{M}{c^2}) = 1.8^0..2,2^0$$

$$C_K = 190 \, \kappa H / M$$

$$i_C = 1.054$$

$$h_{U\!M\!K} = 0.58~M$$

$$h_{IIMII} = 0.56 \, M$$

$$h_{U\!K\!\Pi}=0,07$$
 м

$$h_{IIK3} = 0,1 M$$

Расчет вертикальной жесткости подвески

Расчет упругой характеристики подвески требуется начать с определения вертикальной жесткости подвески автомобиля для обеспечения оптимальных показателей плавности хода.

Вертикальная жесткость подвески:

$$C_C = \frac{\mathbf{Q} \cdot \pi \cdot f^{2} \cdot m_{II}}{1000} \qquad , \tag{3.1}$$

где «f - собственная частота колебаний подвески.»[7]

 $\ll m_{\pi}$ - подрессоренная масса автомобиля, приходящаяся на ось.»[4]

Оптимальной считается собственная частота колебаний передней подвески в пределах 1,25..1,4 для загрузки в снаряженном положении и 1,2..1,3 для конструктивной загрузки автомобиля.

Рассчитываем подрессоренную массу автомобиля на передней оси при данных условиях:

$$m_{\Pi} = \frac{m_{\Pi EP.x}}{2} - m_{\text{henoop}} \tag{3.2}$$

Подставляем значения

$$m_{IIC} = \frac{658}{2} - 37 = 292 \, \kappa \epsilon$$

$$m_{IIK} = \frac{770}{2} - 37 = 348 \, \kappa \epsilon$$

Подставим значения f и m_{II} в формулу (3.39). Рассчитываем:

$$C_{C} = \frac{(2 \cdot \pi \cdot f)^{2} \cdot m_{HC}}{1000} = \frac{(2 \cdot \pi \cdot 1,25..1,4)^{2} \cdot 292}{1000} = 18..22,6 \text{ } \kappa H/M$$

$$C_{K} = \frac{(2 \cdot \pi \cdot f)^{2} \cdot m_{HK}}{1000} = \frac{(2 \cdot \pi \cdot 1,2..1,3)^{2} \cdot 328}{1000} = 18,93..23,13 \text{ } \kappa H/M$$

Рассчитываем жесткость пружины, требуемую для обеспечения ранее рассчитаной жесткости подвески:

$$C_{IIP} = \mathbf{C} - \Delta C_{III} \cdot i^2 \tag{3.3}$$

где « ΔC_{III} - жесткость шарниров подвески, приведенная к колесу.»[6] В случае подвески МакФерсон $\Delta C_{III} = 2 \frac{\kappa H}{M}$

 i^2 - квадрат передаточного отношения пружины.

Подставляем значения в формулу (41):

$$C_{IIP.C} = \{8..22.6 - 2\} \cdot 1.054^2 = 17.77..22.88 \, \kappa H /_{M}$$

$$C_{IIP.K} = \{8.93..23.13 - 2\} \cdot 1.054^2 = 18.8..23.47 \, \kappa H /_{M}$$

Модернизация предусмотренная в данном курсовом проекте не затрагивает пружину, поэтому для дальнейших расчетов принимаем серийную пружину. В настоящее время на атвомобили Lada Granta устанавливаются пружины с жесткостью $C_{\mathit{ПP}} = 20..21 \, ^{\kappa H} /_{\mathit{M}}$. Возьмем среднее значение $C_{\mathit{ПP}} = 20.5 \, ^{\kappa H} /_{\mathit{M}}$

Расчет угловой жесткости подвески

Расчет требуемой угловой жесткости подвески выполняется по формуле:

$$\sum C_{\varphi} = m_{\Pi} \cdot h_{\varphi} \cdot \left(\frac{j_{\gamma}}{\varphi} + g \right) \tag{3.4}$$

где « m_{II} - подрессоренная масса автомобиля»[11]

 h_{φ} - плечо крена автомобиля

 j_{y} - боковое ускорение автомобиля

« φ - угол крена кузова автомобиля»[10]

g - ускорение свободного падения

Расчет плеча крена автомобиля выполним графическим методом, см. рисунок 3.1.

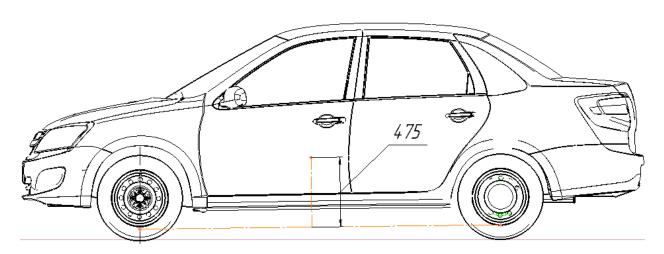


Рисунок 3.1 – Высота плеча крена автомобиля Lada Granta в полной загрузке

Подставляем значения в формулу (42) и расчитываем:

$$\sum C_{\varphi} = 1392 \cdot 0,475 \cdot \left(\frac{4 \cdot 180}{(1,8...2.2) \cdot \pi} + 9,81 \right) \cdot 10^{-3} \approx 75,36...90,67$$
 кНм/рад

Полученное значение требуется поделить на угловую жесткость передней оси и угловую жесткость задней оси. Примерное соотношение жесткостей подвесок находится в промежутке между 1,3..1,8. Возьмем для расчетов 1,5.

В таком случае, получаем

45,21..54,4
$$\kappa H_{pad}$$
 – передняя ось

$$30,14..36,26 \ \kappa H_{pad} -$$
3адняя ось

Рассчитываем угловую жесткость оси от шин

$$C_{\varphi u} = \frac{C_{III} \cdot B^2}{2} \, \kappa \text{HM/рад} \tag{3.5}$$

где $\langle\!\langle B - колея автомобиля.\rangle\!\rangle[8]$

« C_{III} - жесткость шин»[9]

Подставляем значения в формулу:

$$C_{\text{quu}} = \frac{19 \cdot 9.81 \cdot 10^3 \cdot 1.41^2}{2000} = 185 \, \frac{\kappa H_{\text{M}}}{pad}$$

Расчитываем угловую жесткость полученную от подвесок автомобиля. Воспользуемся формулой:

$$\frac{1}{C_{\varphi}} = \frac{1}{C_{\varphi II}} + \frac{1}{C_{\varphi II}} \tag{3.6}$$

Подставим значения для передней и задней оси и получим:

подвески

подвески

Расчитаем жесткость передней подвески получаемую от серийных пружин:

$$C_{\varphi\Pi P} = \frac{C_{\Pi P} \cdot B^2}{2} = \frac{21.6 \cdot 1.41^2}{2} \approx 20.37 \text{ kHm/pad}$$
 (3.7)

Расчитываем угловую жесткость передней оси, которую необходимо получить от стабилизатора поперечной устойчивости:

$$C_{CT} = C_{\varphi\Pi} - C_{\varphi\Pi P} = 55,32...85,13 - 20,37 = 34,9...64,76 \text{ KHM/pao}$$
 (3.8)

Расчет стабилизатора поперечной устойчивости

Жесткость штанги стабилизатора:

$$C_{CT0} = \frac{d^4 \cdot 6.18 \cdot 10^4}{2l_0^3 + l_5^2 L_s + 7.78l_2 l_7^2 - 2l_4^3}$$
(3.9)

Для нахождения l_i обратимся к рисунку (3.2).

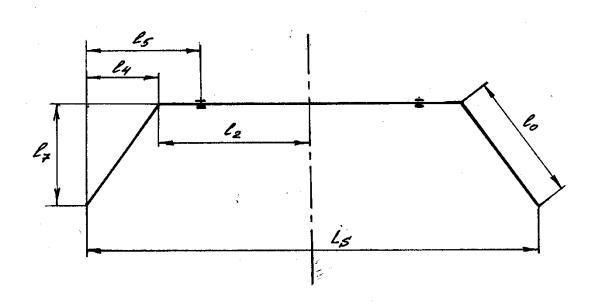


Рисунок 3.2 – Схематическое изображение штанги стабилизатора передней подвески

Жесткость штанги стабилиатора — это отношение усилий на разных концах стабилизатора при условии разноименного хода подвески автомобиля. Конечными точками считаем точки крепленя штанги к шарнирам стоек. В случае стабилизатора автомобиля Lada Granta мы получаем следующие значения:

 $l_0 = 230,7 MM$

 $l_2 = 393 \, \text{мм}$

 $l_4 = 115 \,\mathrm{MM}$

 $l_5 = 163 \, \text{мм}$

 $l_7 = 200 \, \text{мм}$

 $L_{S} = 1026 \, \text{мм}$

d = 22 MM

Подставляем значения в формулу (3.9):

$$C_{CT0} = \frac{22^4 \cdot 6.18 \cdot 10^4}{2 \cdot 230,7^3 + 163^2 \cdot 1026 + 7.78 \cdot 393 \cdot 200^2 - 2 \cdot 115^3} = 84,62 \, \text{KH/M}$$

Далее расчитаем жесткость штанги стабилизатора, приведенную к колесу. Рассчитываем ее по формуле:

$$C_{CTZ} = \frac{C_{CTO} \cdot b_G}{i_{CT}^2} \,, \tag{3.10}$$

где « b_G - коэффициент, учитывающий подушки крепления штанги.»[5] Принимаем $b_G = 0.9$

 i_{CT} - передаточное отношение перемещения колеса к конца к перемещению штанги стабилизатора. В серийном исполнении автомобиля Lada Granta штанга стабилизатора крепится на нижний рычаг передней подвески. При действущем месте крепления, передаточное число равно $i_{CT}=1.87$. Для модернизированного узла предлагается данную штангу крепить на амортизаторную стойку. При таком способе закрепления передаточное число будет равно $i_{CT}=1$. Выполним расчет для обоих способов крепления.

Подставляем числа в формулу (48):

 $C_{{\scriptscriptstyle CTZ-M}} = \frac{84,62\cdot 0.9}{1^2} = 76,16$ $^{\kappa H}\!/_{\!\scriptscriptstyle M}$ - для модернизированного крепления штанги

$$C_{\text{\tiny CTZ-C}} = \frac{84,62\cdot 0.9}{1.87^2} = 21,77~\kappa H/_{M}$$
 - для серийного крепления штанги

«Угловая жесткость подвески, полученная от стабилизатора поперечной устйочивости находится по формуле:»[3]

$$C_{\varphi CT} = C_{CTZ} \cdot \frac{B^2}{2} \tag{3.11}$$

Подставляем значения в формулу (3.49) для обоих вариантов крепления.

$$C_{\varphi CT-M} = 76,16 \cdot \frac{1.41^2}{2} = 75,7 \text{ kHM/pad}$$

$$C_{\varphi CT-C} = 14.9 \cdot \frac{1.41^2}{2} = 21.64 \ \kappa \frac{HM}{pad}$$

Преобразуем формулу (46) и расчитаем общую угловую жесткость передней подвески автомобиля для серийного и модернизированного крепления стабилизатора передней подвески:

$$C_{\varphi\Pi-M} = C_{\varphi CT-M} + C_{\varphi\Pi P} = 75,7 + 20,37 = 96,07$$
 κH_{pad}

$$C_{\varphi\Pi-C} = C_{\varphi CT-C} + C_{\varphi\Pi P} = 21,64 + 20,37 = 42,01$$
 κH_{pad}

Как видно из расчета, при модернизации крепления штанги стабилизатора, при использовании серийной детали, угловая жесткость передней подвески становится выше необходимой величны. Избыточная угловая жесткость подвески положительно сказывается на управляемости автомобиля, однако может негативно сказаться на плавности хода автомобиля. Однако конструктивный вариант данного узла используемый в серийном производстве не может обеспечивать требуемые показатели угловой жесткости подвески, что оказывает отрицательное влияние на управляемость и на величины угла крена кузова.

Выполним расчет для модернизированного крепления штанги со штангой стабилизатора меньшего диаметра. Возьмем диаметр штанги d = 20 мм. Подставляем новое число в формулу (47) и выполняем дальнейший расчет по формулам:

$$C_{CT0} = \frac{20^4 \cdot 6.18 \cdot 10^4}{2 \cdot 230,7^3 + 163^2 \cdot 1026 + 7.78 \cdot 393 \cdot 200^2 - 2 \cdot 115^3} = 57,79 \, \text{KH/M}$$

$$C_{CTZ-M} = \frac{57,79 \cdot 0.9}{1^2} = 52,01 \, \text{KH/M}$$

$$C_{\varphi CT-M} = 52,01 \cdot \frac{1.41^2}{2} = 51,7 \, \text{KHM/pad}$$

$$C_{\varphi \Pi-M} = C_{\varphi CT-M} + C_{\varphi \Pi P} = 51,7 + 20,37 = 71,47 \, \text{KHM/pad}$$

Как видно из расчетов данное значение полностью удовлетворяет поставленному условию. Используя формулы (3.42) и (3.44) расчитаем угол крена кузова автомобиля при использовании серийной штанги стабилизатора

и серийного крепления, а также при использовании модернизированного крепления штанги с уменьшенным диаметром прутка штанги.

$$\frac{1}{C_{\varphi}} = \frac{1}{185} + \frac{1}{71,47} \Longrightarrow C_{\varphi} = 51,55 \frac{\kappa H_{\text{M}}}{pa\partial} - для модернизированного узла$$

$$\frac{1}{C_{\varphi}} = \frac{1}{185} + \frac{1}{42,01} \Longrightarrow C_{\varphi} = 34,23 \frac{\kappa H_{\text{M}}}{pa\partial} - для серийного узла$$

При соотношение жесткостей между передней и задней осями 1,5 получаем общую жесткость

$$\Sigma C_{\varphi} = 85,92 \frac{\kappa H_{M}}{pa\partial}$$
 - для модернизированного узла

$$\Sigma C_{\varphi} = 57,07 \frac{\kappa H_{M}}{pao}$$
- для серийного узла

Преобразуем формулу (42) и найдем величину угла крена:

$$\varphi_{M} = \frac{j_{Y} \cdot 180}{\pi \cdot \left(\frac{\sum C_{\varphi}}{m_{\Pi} \cdot h_{\varphi}} - g\right)}$$
(3.12)

Тогда угол крена кузова при ускорении $4\frac{M}{c^2}$ будет равен:

$$\varphi_{\scriptscriptstyle M} = \frac{4\cdot 180}{\pi \cdot \left(\frac{85920}{1392\cdot 0,475} - 9,81\right)} = 1,9^{\scriptscriptstyle 0} \,$$
 - для модернизированного узла

$$\varphi_C = \frac{4 \cdot 180}{\pi \cdot \left(\frac{57070}{1392 \cdot 0,475} - 9,81\right)} = 2,99^{\circ}$$
 - для серийного узла

3.3 Анализ расчетов и выводы

Выполнив расчеты упругой характеристики подвески и проанализировав результаты можно сделать несколько выводов. Во-первых, серийно устанавливаемый стабилизатор поперечной устойчивости на автомобиль Lada Granta при существующем методе крепления не способен обеспечить достаточную угловую жесткость передней подвески. Это вызвано неверным способом крепления стабилизатора к движущимся элементам подвески автомобиля. При изменении способа крепления существующей

штанги стабилизатора угловая жесткость подвески становится избыточной, что может негативно сказаться на плавности хода автомобиля.

Таким образом, оптимальной модернизацией передней подвески можно считать изменение способа крепления штанги стабилизатора, при одновременном уменьшении диаметра прутка с 22 до 20мм. Такой подход позволит получить требуемое значение угловой жесткости подвески, снизить угол крена кузова автомобиля с 2,99° до 1,9° при боковом ускорении $4\frac{M}{c^2}$, а также снизит затраты на материал и производство штанги стабилизатора.

4 Технологическая часть

4.1 Анализ изменения конструкции подвески, приводящий к изменению технологического процесса

Узел передний подвески предусмотренный данным дипломным проектом незначительно отличается от базовой конструкции, поэтому линия сборки не требует значительной модернизации. Однако, новая конфигурация подвески и новый набор компонентов требует некоторых значительных изменений в технологическом процессе сборки передней подвески.

Проектируемый вариант передней подвески отличается от базового креплением штанги стабилизатора на амортизаотрные стойки вместо рычагов передней подвески. Дипломный проект затрагивает изменение таких компонентов как штанга стабилизатора поперечной устойчивости, стойка крепления стабилизатора поперечной устойчивости, амортизаторные стойки (левая и правая) с дополнительными кронштейнами под крепления стоек штанги стабилизатора.

Тем не менее, в конструкции передней подвески также остаются детали, которые данная модернизация не затрагивает: рычаги и растяжки передней подвески, шаровые опоры, поперечина передней подвески.

Данные изменения влияют на порядок сборки передней подвески. Таким образом, в технолоический процесс нужно внести изменения, принимая во внимание текущую конфигурацию сборочной линии, а так же эргономику при сборке узла.

Требуется разработать технологический процесс с сохранением текущего такта выпуска автомобилей.

4.2 Общие требования к технологичности конструкции подвески

Условия современного машиностроения, особенно при крупносерийном выпуске изделий, требуют уделить особое внимание конструкции отдельных деталей и узла в целом с точки зрения

технологичности сборочного процесса. Существует ряд требований к конструкции любого изделия, при соблюдении которых, разработка технологического процесса сборки узла не вызовет особых осложнений. К таким требованиям относятся:

- возможность разбивки узла на несколько менее сложных под-сборок для осуществления узловой сборки;
- обеспечение открытости конструкции для легкости доступа инструмента на разных этапах сборки;
- возможность независимого присоединения деталей и узлов к базовой детали или узлу;
- возможность одновременного присоединения нескольких деталей и узлов к базовой детали или узлу;
- обеспечение возможности механизации и автоматизации сборочных работ;
 - по возможности, высокая унификация крепежных элементов;
- возможность обеспечения необходимого контроля изделия как на различных этапах сборки, так и всего узла в целом.

Новая конструкция подвески, спроектированная в ходе дипломного проекта отвечает всем вышеперечисленным требованиям к технологичности узла.

Технологический процесс выполнен по пути поузловой сборки с подсбором нескольких деталей в более крупные узлы, конструкция обладает достаточной унификацией крепежных элементов, а также обеспечивает возможность независимого присоединения деталей на кузов автомобиля. В целом, конструкция позволяет собрать подвеску автомобиля обеспечив легкий доступ инструмента к деталям подвески, а также осуществление контроля выполненной операции.

4.3 Разработка технологической схемы сборки передней подвески

Технологическая схема сборки показывает в графическом виде последовательность сборочных операций, движение материалов и компонентов сборки на отдельные сборочные посты, а также наглядно показывает параллельные процессы, необходимые для финальной сборки готового продукта.

Для того, чтобы разработать технологическую схему сборки, следует сначала определить производственный процесс. Производственный процесс включает в себя весь перечень работ, необходимых для сборки готового изделия, включая операции сборки, внутреннюю логистику предприятия, контрольные операции, а также работы, связанные с ремонтом и обслуживанием оборудования. Производственный процесс сборки узла включает в себя работы непосредственно по сборке узла, исключая остальные работы.

Финальное изделие, собираемое на конвейере, является автомобилем Лада Гранта. Весь сборочный процесс достаточно сложен и состоит из множества групп и подгрупп. Группами называются узлы, входящие в финальное изделие, а подгруппами — узлы, входящие в группы. Группы и подгруппы являются самостоятельными изделиями, неподвержены саморазбору, а также имеют собственные спецификации и названия.

Как уже было сказано, группы делятся на подгруппы, которые в свою очередь могут быть первого, второго и далее порядков. Каждый следующий уровень, или порядок, представляет собой более глубокую разбивку узла на отдельные компоненты. Техологический процесс должен быть разбит таким образом, чтобы сборки различных подгрупп можно было производить независимо друг от друга.

Технологический процесс разбит на операции. Операцией называется определенная последовательность действий, выполняемая одним или несколькими рабочими, имеющая завершение. Операции могут быть сборочными, контрольными, позиционирующими, и так далее. Каждая операция описывается в операционной карте. В данном документе,

последовательно, указываются все действия, необходимые к выполнению рабочим на линии. Помимо операционных карт существуют также маршрутные карты, карты замеров, карты контроля. Все они, в совокупности, составляют единый технологический процесс сборки.

4.4 Составления перечня сборочных работ, определение трудоемкости

«Перечень сборочных работ — это перечисление в правильной последовательности всех необходимых работ, необходимых для сборки узла.»[14] Данный перечень также содержит нормирование времени на выполнение той или иной работы, а так же правильную нумерацию операций.

При составлении перечня сборочных работ и нормировании времени требуется учитывать внешние факторы сборки, такие как: масса отдельных деталей и узлов, точность позиционирования и точность выполнения операции, доступность инструмента, общую эргономику сборочного поста и так далее.

Составим перечень сборочных работ по сборке передней подвески автомобиля Лада Гранта и сведем в таблицу 4.1

Таблица 4.1 – Перечень сборочных работ

No	Содержание основных и вспомогательных переходов	Время, топ,
		МИН
1	2	3
	1. Монтаж амортизаторной стойки	
1	Взять с подвесной транспортной линии	0,1
	амортизаторную стойку передней подвески в сборе и	
	осмотреть.	
2	Установить стойку на подъемное приспособление под	0,1
	автомобилем и зафиксировать	
3	Поднять стойку на приспособлении и вставить	0,2
	приводной вал в ступицу колеса	

Продолжение таблицы 4.1

4	Поднять стойку в сборе на подъемном приспособлении	0,1
	позиционируя шпильки верхней опоры в отверстия на	
	кузове автомобиля	
5	Взять три шайбы и три гайки М8 и наживить на	0,15
	шпильки верхней опоры стойки	
6	Взять пневмогайковерт и затянуть гайки верхней опоры	0,15
7	Взять шайбу и ступичную гайку крепления приводного	0,15
	вала и наживить на приводной вал	
8	Взять пневмогайковерт и затянуть ступичную гайку	0,1
	приводного вала моментом 235 Нм	
9	Застопорить ступичную гайку крепления привода	0,15
	автомобиля, отогнув стопорный поясок в паз на конце	
	вала.	
_	Итого:	1, 2
	2. Монтаж кронштейнов растяжек передней подвески	Ī
1	Взять из контейнера кронштейн крепления растяжки	0,1
	передней подвески и три болта крепления	
2	Установить кронштейн крепления растяжек передней	0,2
	подвески на автомобиль и удерживая его на весу,	
	наживить болты	
3	Взять из контейнера кронштейн крепления растяжки	0,1
	передней подвески и три болта крепления	
4	Установить кронштейн крепления растяжек передней	0,2
	подвески на автомобиль и удерживая его на весу,	

	наживить болты	
5	Взять пневмогайковерт и затянуть все шесть болтов	0,4
	крепления двух кронштейнов растяжек передней подвески	
	Итого:	1.0

Продолжение таблицы 4.1

3. Монтаж рычагов и растяжек передней подвески		
1	Взять из контейнера рычаг передней подвески с	0,1
	растяжкой и шаровым пальцем в сборе	
2	Взять 2 регулировочные шайбы и большую шайбу	0,1
	растяжки и надеть на шпильку растяжки	
3	Вставить растяжку передней подвески в сайлентблок на	0,05
	кронштейне растяжки передней подвески	
4	Взять шайбу и гайку и наживить на растяжку передней	0,1
	подвески с обратной стороны сайлент блока	
5	Совместить отверстие крепления рычага передней	0,04
	подвески с отверстием на кронштейне крепления рычага	
6	Удерживая рычаг передней подвески на весу, взять болт и	0,06
	установить в отверстие оси качания рычага передней	
	подвески	
7	Взять пружинную шайбу и гайку и наживить на болт	0,05
	крепления рычага передней подвески	
8	Поднять внешний конец рычага передней подвески и	0,08
	совместить отверстия на шаровом пальце с отверстиями	
	на амортизаторной стойке	
9	Взять болт, пружинную шайбу и шайбу, и наживить при	0,1
	помощи них шаровый палец на амортизаторную стойку	
10	Взять болт, пружинную шайбу и шайбу, и наживить их во	0,1

	второй отверстие препления шарового пальца	
10	Взять пневмогайковерт и затянуть болты крепления	0,1
	шарового пальца к амортизаторной стойке	
11	Взять пневмогайковерт и затянуть гайку крепления	0,08
	растяжки передней подвески	

Продолжение таблицы 4.1

		_
12	Подъемным приспособлением привести рычаги подвески	0,13
	в сотояние конструктивной загрузки	
13	Используя пневмогайковерт и стопорящий ключ затянуть	0,1
	гайку крепления рычага передней подвески	
	Итого:	1,19
	4. Монтаж стабилизатора поперечной устойчивости	
1	Взять стабилизатор поперечной устойчивости в сборе и	0,1
	осмотреть	
2	Взять две скобы стабилизатора и установить их на	0,15
	подушки стабилизатора поперечной устойчивости	
3	Поднести стабилизатор поперечной усточивости к	0,25
	автомобилю и удерживая его на весу взять четыре болта и	
	наживить их на автомобиль через скобы подушек	
	стабилазтора	
4	Взять гайковерт и затянуть болты	0,2
5	Вставить пальцы шаровых шарниров стоек крепления	0,2
	стабилизатора в кронштейны на амортизаторных стойках	
6	Взять две гайки и наживить на пальцы шаровых	0,15
	шарниров.	
7	Взять пневмогайковерт и затянуть гайки крепления стоек	0,15
	стабилизатора на амортизаторных стойках автомобиля.	
	Итого:	1.2

Для определения общего времени сборки передней подвески в минутах, требуется суммировать вышеперечисленные значения. При этом, следует учитывать, что выполнение первой и третьей операции должно быть продублировано для правой и левой стороны автомобиля соответственно.

Таким образом, выводим формулу для нахождения общего времени сборки передней подвески:

$$t_{\text{O\Pi}}^{\text{ОБЩ}} = t_{\text{O\Pi}} = 2 \cdot 1.2 + 1.19 + 1 + 1.2 = 6.98$$
 мин (4.1)

При полных производственных расчетах, необходимо также учитывать потери на усталость оператора, организацонно-технические работы, а также часть оперативного времени отведенного на отдых производственных рабочих. Для этого ввежем коэффциенты α и β , α = 2% потерь на организационно-техническое обслуживание рабочего места, а β = 6% потерь на отдых и усталость оператора. Расчитываем:

$$t_{
m IIIT}^{
m OBIII} = t_{
m O\Pi}^{
m OBIII} + t_{
m O\Pi}^{
m OBIII} \cdot \ lpha + eta \ = 6.98 + 6.98 \cdot rac{2+6}{100} = 7,53$$
 мин

4.5 Выбор организационной формы сборки

Исходя из объемов выпуска автомобилей, а также учитывая конструкцию подвески, для сборки передней подвески следует выбрать поточную форму сборки с разбивкой технологического процесса на отдельные операции. Кроме того, так как сборка различных узлов подвески автомобиля должна происходить как сверху (монтаж верхних опор амортизаторных стоек), так и снизу автомобиля (монтаж стабилизатора, рычагов и растяжек передней подвески), целесообразно обеспечить различное по высоте положение автомобиля на сборочной линии. Это должно быть обеспечено конструкцией сборочного конвейера.

Чтобы обеспечить беспрерывное производство автомобилей, технологический процесс следует разбить на участки выполняющие ту или иную операцию. Операция выполняемая на одном участке должна быть

приблизительно равной такту выпуска автомобилей. Для нахождения такта выпуска зададимся следующей формулой:

$$T = (\Phi_{\Lambda} \cdot 60)/N \qquad , \tag{4.2}$$

где $\Phi_{\text{Д}}$ – годовой фонд рабочего времени рабочего места или участка в часах.

N – годовая программа выпуска продукции в штуках;

Расчитываем:

$$T = \frac{4015 \cdot 60}{120000} = 2$$
 мин

Спроектированный технологический процесс не превышает такт выпуска автомобилей, а несколько ниже данного значения. Таким образом сборочный конвейер можно загрузить не полностью.

5 Экономическая эффективность проекта

В предложенном дипломном проекте предусмотрена модернизация передней подвески автомобиля Lada Granta, нацеленная на улучшение его эксплуатационных характеристик, таких как управляемость и устойчивость автомобиля.

Предлагаемая модернизация подразумевает перенос точек крепления штанги стабилизатора с нижних рычагов подвески на корпуса амортизаторных стоек. Это позволит существенно повысить эффективность штанги стабилизатора, снизить крены автомобиля, а также нагрузку на пружины подвески. Данное конструкторское решение достаточно хорошо себя зарекомендовало на рынке автомобилей и широко применяется такими производителями как Renault, VW, Ford и другими.

Конечно, внедрение данной модернизации повлечет собой увеличение конечной стоимости передней подвески, так как ee конструкции появляются две новые штанги крепления стабилизатора с шаровыми шарнирами. Стоимость этих деталей выше используемых в настоящее время штанг \mathbf{c} сайлент-блоками. Однако завышенная себестоимость продукта может быть нивелирована как за счет общественно значимой экономии, так и за счет увеличения продажной цены узла.

Целью экономической части дипломного проекта является определение затрат на производство модернизируемого узла, а также расчет коммерческой эффективности данного проекта.

Итогом данной части дипломного проекта будет вывод о целесообразности внедрения предлагаемой модернизации с коммерческой точки зрения.

5.1 Расчёт себестоимости проектируемой подвески

Исходные данные для расчёта себестоимости проектируемого узла были предоставлены ответственными подразделениями ОАО «АВТОВАЗ» в марте 2018 года.

5.1.1 Расчёт затрат на покупные изделия и полуфабрикаты

Затраты связанные с покупными изделиями находятся по формуле:

$$\Pi_u = L_i * n_i * (1 + K_{msp}/100)$$
 (5.1)

где U_i – оптовая цена того или иного изделия, руб;

 n_i — количество данных изделий, шт.

Расчет по данной статье расходов удобнее всего выполняить в виде таблицы 5.1.

Таблица 5.1 – Расчет затрат на покупные изделия

Наименование изделия	Количество	Ср. Цена за 1шт., руб.	Сумма, Руб.
Стойка стабилизатора передней			
подвески	2	270,20	540,40
Штанга стабилизатора передней			
подвески	1	770,45	770,45
Кронштейн стойки стабилизатора	2	41,50	83,00
Стандартные изделия	2	1,15	2,30
ИТОГО:	3075,35		
Транспортно-заготовительные расходы			92,26
ВСЕГО:			3167,61

5.1.2 Расчёт затрат на основную заработную плату производственных рабочих

Затраты на основную заработную плату рабочих рассчитываются по следующей формуле:

$$3_o = 3_m * (1 + K_{npem} / 100),$$
 (5.2)

где « K_{npem} — коэффициент премий и доплат, связанных с работой на производстве, %»[12]

 $(3_m$ — тарифная заработная плата»[13], руб.Она находится по формуле:

$$3_m = Cp_i * T_i, (5.3)$$

где Cp_i – часовая тарифная ставка, руб.

 T_i – трудоёмкость выполнения операций, час.

Также как и расчет статьи на покупные изделия, расчет основной заработной платы удобнее выполнять в виде таблицы 5.2.

Таблица 5.2 – Расчет основной заработной платы

Виды операций	Разряд работы	Трудоемкость	Часовая тарифная ставка, руб	Тарифная зарплата, руб
контрольная	5	0,08	111,57	8,93
слесарная	4	0,16	92,97	14,88
ИТОГО:			23,80	
Премиальные доплаты (30% от ставки)				7,14
ВСЕГО:			30,94	

5.1.4 Расчёт затрат на дополнительную заработную плату производственных рабочих

Дополнительная заработная плата рассчитывается исходя из основной заработной платы и находится по следующей формуле:

$$3_{don} = 3_0 * K_{6bin} = 30.94 * 0.15 = 4.64 py6$$
 (5.4)

где $K_{вып}$ – коэффициент доплат или выплат, не связанных с работой на производстве, %.

5.1.5 Расчёт затрат на отчисления в страховые взносы

Находим отчисления в страховые взносы по формуле:

$$C_{cs} = (3_o + 3_{oon}) * E_{cs}/100,$$
 (5.5)

где E_{cs} – это коэффициент отчислений в страховые взносы, %.

Подставляем известные значения в формулу и рассчитываем:

$$C_{ce} = (30,94 + 4,64) * 0.30 = 10,67$$
py 6

5.1.6 Расчёт затрат на расходы на содержание и эксплуатацию оборудования

Формула, используемая для расчета статьи расходов на эксплуатацию оборудования:

$$C_{coo.ofoop} = 3_o * E_{ofoop}/100 \tag{5.6}$$

где « E_{ofop} — коэффициент расходов на содержание и эксплуатацию оборудования, %»[15]

Подставляем значения в формулу и выполняем расчет:

$$C_{cod.ofop} = 30.94 * 200 / 100 = 61.88$$
 py 6

5.1.7 Расчёт расходов на инструмент и оснастку

Данный расчет производится по формуле:

$$C_{uhcmp} = 3_o * E_{uhcmp} / 100 \tag{5.7}$$

где E_{uncmp} – коэффициент расходов на инструмент и оснастку, %

Подставляем значения:

$$C_{uncmp} = 30,94 * 3 / 100 = 0,93 py 6$$

5.1.8 Расчёт статьи затрат "Цеховые расходы"

Для расчета цеховых расходов используем следующую формулу:

$$C_{uex} = 3_o * E_{uex} / 100 ag{5.8}$$

где E_{yex} – коэффициент цеховых расходов, %.

Выполняем расчет:

$$C_{uex} = 30,94 * 175 / 100 = 54,15$$
 руб

5.1.9 Расчёт цеховой себестоимости

Цеховая себестоимость изделия представляет собой сумму затрат на все покупные изделия, заработную плату рабочих, стоимость эксплуатации оборудования и цеха, а также затраты на инструмент и оснастку.

Таким образом, формула для расчета цеховой себестоимости выглядит так:

$$C_{\text{uex.c/c}} = \Pi u + 3_o + 3_{\partial on} + C_{cs} + C_{cod.o6op} + C_{\text{uex}} + C_{\text{uhcmp}}$$
 (5.9)

Подставляем ранее посчитанные составляющие и находим:

$$C_{uex.c/c} = 3167,61+30,94+4,64+10,67+61,88+0,93+54,15=3330,82$$
 py6

5.1.10 Расчёт статьи затрат "Общезаводские расходы"

Расчитываем общезаводские расходы по формуле:

$$C_{o\bar{0},3a\bar{8}} = 3_o * E_{o\bar{0},3a\bar{8}} / 100,$$
 (5.10)

где $E_{oб.3as}$ – это коэффициент общезаводских расходов, %.

$$C_{o6.3a6} = 30,94 * 250 / 100 = 77,35$$
 руб

5.1.11 Расчёт общезаводской себестоимости

Общезаводская себестоимость изделия рассчитывается путем сложения цеховой себестоимости и статьи затрат на общезаводские расходы:

$$C_{o6.3a8.c/c} = C_{uex.c/c} + C_{o6.3a8}$$
 (5.11)
 $C_{o6.3a8.c/c} = 3330,82 + 77,35 = 3408,17 \text{ py6}$

5.1.12 Расчёт статьи затрат "Коммерческие расходы"

Коммерческие расходы на выпуск изделия находятся по формуле:

$$C_{\kappa o M} = C_{o \delta, 3 a \theta, c / c} * E_{\kappa o M} / 100$$
 (5.12)

где $E_{\kappa o M}$ – это коэффициент коммерческих расходов, %.

Подставляем значения:

$$C_{\kappa o M} = 3408,17 * 5 / 100 = 170,41 \text{ py}$$

5.1.13 Расчёт полной себестоимости изделия

Полная себестоимость изделия является суммой общезаводской себестоимости и коммерческих расходов, связанных с реализацией данного продукта. Формула для расчета:

$$C_{non} = C_{o\delta.3ae.c/c} + C_{\kappa o M}$$
 (5.13)
 $C_{non} = 3408,17 + 170,41 = 3578,58 \text{ py}6$

5.1.14 Расчёт отпускной цены для базового и проектируемого изделия

Расчет отпускной цены для базового и проектируемого изделия производится по следующей формуле:

$$L_{lomn} = C_{non.6} * (1 + K_{pehm})$$

$$(5.14)$$

Подставляем числа в формулу и получаем:

Произведем калькуляцию себестоимости проектируемого узла и сравним с базовым изделием. Сведем все данные в одну таблицу (5.3) для последующего анализа.

Как видно из данной таблицы, основную стоимость влияющую на себестоимость всего изделия занимают покупные материалы. В базовом варианте данная статья расходов ниже, так как использованы более дешевые стойки крепления стабилизатора. Из этого следует, что рентабельность проектного варианта несколько ниже базового. Однако, применение нового решения позволит повысить долговечность пружин передней подвески, что даст положительный эффект при эксплуатации автомобиля.

Таблица 5.3 – Калькуляция себестоимости изделия

		Затраты	Затраты
Наименование показателей	Обозначение	на ед.	на ед.
танменование показателей		изд.	изд.
		(база)	(проект)
1	2	3	4
Стоимость комплектующих изделий	Пи	2987,61	3167,61
Основная заработная плата	30	30,94	30,94
производственных рабочих	30	30,74	30,74
Дополнительная заработная плата	3 _{доп}	4,64	4,64
производственных рабочих	Эдоп	1,01	1,01
Отчисления на страховые взносы	Ссв	10,67	10,67
Расходы на содержание и	Ссод.обор	61,88	61,88
эксплуатацию оборудования	Ссод.ооор	01,00	01,00
Цеховые расходы	Сцех	54,15	54,15
Расходы на инструмент и оснастку	Синстр.	0,93	0,93
Цеховая себестоимость	C _{uex.c/c}	3150,82	3330,82

Продолжение таблицы 5.3

Общезаводские расходы	Соб.зав	77,35	77,35
Общезаводская себестоимость	Соб.зав.с/с	3228,17	3408,17
Коммерческие расходы	Ском	161,41	170,41
Полная себестоимость	Спол	3389,58	3578,58
Отпускная цена	Ц _{отп}	4406,45	4406,45

5.2 Расчёт точки безубыточности производства

Точкой безубыточности производства - это объем производства изделия или продукта, при продаже которого все расходы предприятия на производство полностью покрываются доходами от сбыта продукции, не принося прибыли. Таким образом, предприятие не несет никаких убытков, но и фактическая прибыль равна нулю. Данную точку можно найти как графическим так и аналитическим путем.

Для начала рассчитаем положение точки безубыточности аналитическим методом, после чего выполним графический расчет как проверку полученного результата.

Для точки безубыточности справедливо следующее равенство:

$$\mathcal{L}_{onm} * V_{cod} = 3_{nocm} + 3_{nep,yo} * V_{cod}$$
 (5.15)

где U_{onm} - цена продукции, руб.;

 V_{200} – объём производства, шт.;

 3_{nocm} – постоянные издержки, руб.;

 $3_{nep.yd}$ – переменные удельные издержки, руб.

Как видно из формулы (5.15), для расчета точки безубыточности необходимо определить постоянные и переменные издержки производства. Для этого воспользуемся следующими формулами:

$$3_{nepem.y\partial.n} = \Pi u + 3_o + 3_{\partial on} + C_{ce} \tag{5.16}$$

Подставляем данные:

$$3_{nenem.vd.n} = 3167,61 + 30,94 + 4,64 + 10,67 = 3213,86 \text{ py6}$$

Для расчета постоянных затрат требуется рассчитать долю амортизационных отчислений по формуле:

$$A_{M,y\partial} = (C_{co\partial.ofop} + C_{uhcmp}) * H_A / 100,$$
 (5.17)

где H_A — доля амортизационных отчислений, %. В случае расчета сборки подвески, доля амортизационных отчислений равна 15%.

Подставляем значения:

$$A_{M.vo} = (61.88 + 0.93) * 15 / 100 = 9.42 \text{ py6}$$

Расчет постоянных затрат на производство производится по формуле:

$$3_{nocm.yo.n} = ((C_{coo.obop} + C_{uhcmp})*(100 - H_A)/100) + C_{uex} + C_{oo.3ab} + C_{кom} + A_{M.yo}$$
 (5.18) Подставим значения:

$$3_{nocm.yd.n} = (61,88+0,93)*(100-15)/100)+54,15+77,35+170,41+9,42=364,72$$
 py6

Далее рассчитаем постоянные и переменные издежки производства исходя из полного объема производства изделия:

$$3_{nepem.n} = 3_{nepem.yo.n} * V_{coo} = 3213,86 * 120000 = 385663200 py 6$$
 (5.19)

$$3_{nocm.n} = 3_{nocm.yo.n} * V_{200} = 364,72 * 120000 = 43766400 py6$$
 (5.20)

Далее рассчитаем полную себестоимость годовой программы выпуска:

$$C_{non.e.n} = C_{non.n} * V_{eod}$$
 (5.21)

$$C_{noл.г.n} = 3578,58 * 120000 = 429429600$$
 руб

Произведем расчет выручки при полном объеме выпуска изделия:

$$Bn = \mathcal{L}_{omn} * V_{coo} \tag{5.22}$$

$$Bn = 4406,45 * 120000 = 528774000$$
 py δ

Также рассчитаем маржинальный доход предприятия:

$$\mathcal{L}_{Mapxe} = Bn - 3_{nepem.n} \tag{5.23}$$

$$\mathcal{A}_{\text{марж}} = 528774000$$
 - $385663200 = 143110800$ руб

Имея эти данные рассчитываем критический объем производства по формуле:

$$A_{\kappa pum} = 3_{nocm,n} / (\mathcal{U}_{omn} - 3_{nepem, v\partial,n}) \tag{5.24}$$

Подставляем значения:

$$A_{\kappa pum} = 43766400 / (4406,45 - 3213,86) = 36698,61 \approx 36700 \text{ um}$$

Чтобы иметь гарантию покрытия убытков в ходе реализации проекта, округляем критический объем продаж в большую сторону до ближайшего числа кратного пяти. Проверяем данный расчет графичиеским методом – рисунок 5.1

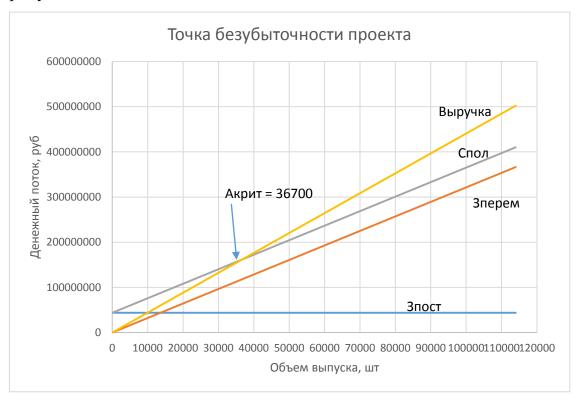


Рисунок 5.1 – Графический метод определения точки безубыточности

5.3 Расчёт коммерческой эффективности проекта

Коммерческая эффективность проекта расценивается в течение всего расчетного периода производства и продажи проектеых изделий. В случае с новой подвеской — с начала ее ввода в производство до момента снятия с производства и заменой на другую конструкцию. Учитывая, что проект планируется производить в течение пяти лет, плюс требуется производить подготовку производства будем рассчитывать коммерческую эффективность за шесть лет.

Для расчета необходимо разбить годовую программу пяти лет на одинаковые интервалы с выходом на максимальный объем к пятому году производства. Для извлечения прибыли уже на первом году исходим из того, что годовая программа производства первого года больше критического объема производства.

Для расчета равномерного увеличения объема производства найдем количество изделий, на которое требуется увеличивать производство каждый год. Воспользуемся формулой:

$$\Delta = (V_{max} - A_{\kappa pum}) / (n-1) \tag{5.25}$$

где $V_{max} = V_{200}$ – максимальный объём продукции, шт.;

 $A_{\kappa pum.}$ — критический объём продаж проектируемого сцепления, шт.;

n - количество лет, с учётом предпроизводственной подготовки.

Подставляем числа:

$$\Delta = (120000 - 36700) / 5 = 16660 \text{ um}$$

Для корректного сопоставления данных проектного и базового изделий, объем продаж принимается одинаковым для обоих версий. Таким образом, достаточно рассчитат объем продаж только для проектного варианта.

Используем формулу:

$$V_{npool.i} = V_{\kappa pum} + \Delta \tag{5.26}$$

Рассчитываем:

$$V_{npod.1} = 36700 + 16660 = 53360 \text{ um}$$
 $V_{npod.2} = 53360 + 16660 = 70020 \text{ um}$
 $V_{npod.3} = 70020 + 16660 = 86680 \text{ um}$
 $V_{npod.4} = 86680 + 16660 = 103340 \text{ um}$
 $V_{npod.5} = 103340 + 16660 = 120000 \text{ um}$

Далее рассчитаем выручку по годам. Так как цена изделия одинакова для проектного варианта и для базового варианта, расчет также производится один раз:

$$B_i = \mathcal{U}_{omn} * V_{npod,i} \tag{5.27}$$

Подставляем значения:

$$B_1 = 4406,45 * 53360 = 235128172 py6$$

 $B_2 = 4406,45 * 70020 = 308539629 py6$
 $B_3 = 4406,45 * 86680 = 381951086 py6$
 $B_4 = 4406,45 * 103340 = 455362543 py6$
 $B_5 = 4406,45 * 120000 = 528774000 py6$

Далее выполним расчет переменных затрат. Данный расчет необходимо повторить дважды: для базового и проектного варианта. Используем формулу:

$$3_{nepem.i} = 3_{nepem.yo} * V_{npool.i}$$
 (5.28)

Подставляем значения и рассчитываем для базового варианта:

$$3_{nерем.б.1} = 3033,86 * 53360 = 161886769,6$$
 руб $3_{nерем.б.2} = 3033,86 * 70020 = 212430877,2$ руб $3_{nерем.б.3} = 3033,86 * 86680 = 262974984,8$ руб $3_{nерем.б.4} = 3033,86 * 103340 = 313519092,4$ руб $3_{nерем.б.5} = 3033,86 * 120000 = 364063200$ руб

Для проектного варианта:

$$3_{nерем.n.1} = 3213,86 * 53360 = 171491569,6$$
 руб $3_{nерем.n.2} = 3213,86 * 70020 = 225034477,2$ руб $3_{nерем.n.3} = 3213,86 * 86680 = 278577384,8$ руб $3_{nерем.n.4} = 3213,86 * 103340 = 332120292,4$ руб $3_{nерем.n.5} = 3213,86 * 120000 = 385663200$ руб

Далее расчитаем постоянные затраты на производство полного объема продукции. Выполним расчет также для базового и проектного вариантов:

$$3_{nocm.\delta} = 3_{nocm.y\partial.\delta} * V_{zo\partial} = 355,71 * 120000 = 42685200 py\delta$$
 (5.29)
 $3_{nocm.n} = 3_{nocm.y\partial.n} * V_{zo\partial} = 364,72 * 120000 = 43766400 py\delta$

Рассчитаем полную себестоимость по годам для базового и проектного варианта. Определим ее по формуле:

$$C_{non.i} = 3_{nepem.i} + 3_{nocm} \tag{5.30}$$

Базовый вариант:

$$C_{non.6.1} = 161886769,6 + 42685200 = 204571969,6$$
 py6
 $C_{non.6.2} = 212430877,2 + 42685200 = 255116077,2$ py6
 $C_{non.6.3} = 262974984,8 + 42685200 = 305660184,8$ py6
 $C_{non.6.4} = 313519092,4 + 42685200 = 356204292,4$ py6
 $C_{non.6.5} = 364063200 + 42685200 = 406748400$ py6
 $\Sigma C_{non.6.} = 1528300924$ py6

Проектный вариант:

$$C_{non.n.1} = 171491569,6 + 43766400 = 215257969,6$$
 py6
 $C_{non.n.2} = 225034477,2 + 43766400 = 268800877,2$ py6
 $C_{non.n.3} = 278577384,8 + 43766400 = 322343784,8$ py6
 $C_{non.n.4} = 332120292,4 + 43766400 = 375886692,4$ py6
 $C_{non.n.5} = 385663200 + 43766400 = 429429600$ py6
 $\Sigma C_{non.n.} = 1611718924$ py6

Далее следует рассчитать налогооблагаемую прибыль по годам. как для базового так и для проектного вариантов. Вопсользуемся формулой:

$$\Pi_{p.o\delta n.i} = B_i - C_{non.i}$$
(5.31)

Базовый вариант:

$$\Pi p._{oбл.б.1} = 235128172 - 204571969,6 = 30556202,4$$
 руб
 $\Pi p._{oбл.б.2} = 308539629 - 255116077,2 = 53423551,8$ руб

$$\Pi p_{.oбл.б.3} = 381951086$$
 - $305660184,8 = 76290901,2$ руб $\Pi p_{.oбл.б.4} = 455362543$ - $356204292,4 = 99158250,6$ руб $\Pi p_{.oбл.б.5} = 528774000$ - $406748400 = 122025600$ руб

Проектный вариант:

$$\Pi p._{oбл.n.1} = 235128172 - 215257969,6 = 19870202,4 руб$$
 $\Pi p._{oбл.n.2} = 308539629 - 268800877,2 = 39738751,8 руб$
 $\Pi p._{oбл.n.3} = 381951086 - 322343784,8 = 59607301,2 руб$
 $\Pi p._{oбл.n.4} = 455362543 - 375886692,4 = 79475850,6 руб$
 $\Pi p._{oбл.n.5} = 528774000 - 429429600 = 99344400 руб$

Рассчитываем налог на прибыль. В Российской Федерации налоговая ставка составляет 20%. Расчет выполняем также для базового и проектного вариантов по формуле:

$$H_{np,i} = \Pi p_{.o6n,i} * 0.2$$
 (5.32)

Базовый вариант:

$$H_{np.6.1} = 30556202,4 * 0,2 = 6111240,48 \text{ py6}$$
 $H_{np.6.2} = 53423551,8 * 0,2 = 10684710,36 \text{ py6}$
 $H_{np.6.3} = 76290901,2 * 0,2 = 15258180,24 \text{ py6}$
 $H_{np.6.4} = 99158250,6 * 0,2 = 19831650,12 \text{ py6}$
 $H_{np.6.5} = 122025600 * 0,2 = 24405120 \text{ py6}$

Проектный вариант:

$$H_{np.n.1} = 19870202,4 * 0,2 = 3974040,48 \ py6$$
 $H_{np.n.2} = 39738751,8 * 0,2 = 7947750,36 \ py6$
 $H_{np.n.3} = 59607301,2 * 0,2 = 11921460,24 \ py6$
 $H_{np.n.4} = 79475850,6 * 0,2 = 15895170,12 \ py6$
 $H_{np.n.5} = 99344400 * 0,2 = 19868880 \ py6$

Далее рассчитываем чистую прибыль по формуле:

$$\Pi p_{.4.i} = \Pi p_{.oбn.i} - H_{np.i}$$
(5.33)

Базовый вариант:

$$\Pi p._{q.6.1} = 30556202,4 - 6111240,48 = 24444961,92 руб$$
 $\Pi p._{q.6.2} = 53423551,8 - 10684710,36 = 42738841,44 руб$
 $\Pi p._{q.6.3} = 76290901,2 - 15258180,24 = 61032720,96 руб$
 $\Pi p._{q.6.4} = 99158250,6 - 19831650,12 = 79326600,48 руб$
 $\Pi p._{q.6.5} = 122025600 - 24405120 = 97620480 руб$

Проектный вариант:

$$\Pi p._{q.n.1} = 19870202,4 - 3974040,48 = 15896161,92 руб$$
 $\Pi p._{q.n.2} = 39738751,8 - 7947750,36 = 31791001,44 руб$
 $\Pi p._{q.n.3} = 59607301,2 - 11921460,24 = 47685840,96 руб$
 $\Pi p._{q.n.4} = 79475850,6 - 15895170,12 = 63580680,48 руб$
 $\Pi p._{q.n.5} = 99344400 - 19868880 = 79475520 руб$

Как видно из приведенных выше расчетов чистая прибыль в базовом варианте выше чем прибыль при проектном варианте. Это объясняется тем, что стоимость покупных изделий для базового варианта ниже, чем для проектного, а трудоемкость сборки и прочие расходы остаются одинаковыми. Однако, новый вариант позволяет увеличить долговечность пружины, так как из-за возросшей угловой жесткости стабилизатора, пружины подвески будут испытывать меньшие нагрузки. Найдем ожидаемую прибыль от повышения долговечности пружин автомобиля по формуле:

$$\Pi p_{\cdot o \rightarrow c \cdot \partial \cdot i} = (\underline{U}_{o m n} * \underline{\mathcal{I}}_2 / \underline{\mathcal{I}}_1 - \underline{U}_{o m n}) * V_i,$$
(5.34)

где \mathcal{I}_2 – долговечность проектного варианта

 \mathcal{I}_{l} – долговечность базового варианта

 L_{omn} – цена изделия, долговечность которого повышена, руб

В нашем случае, нагрузка на пружину при кренах кузова снизилась примерно на 50%, за счет увеличения жесткости подвески от штанги стабилизатора. Однако, так как при одноименном ходе подвески стабилизатор никак не влияет на усилия приходящиеся на пружину, реальная

долговечность пружин увеличилась примерно на 30%. Оптовая цена одной пружины приблизительно 540 рублей. Так как в передней подвеске две пружины, для формулы (5.34) берем цену 1080 рублей.

Подставляем значения:

$$\Pi p._{osc.\partial.1} = (1080 * 1,3 - 1080) * 53360 = 17288640$$
 руб
$$\Pi p._{osc.\partial.2} = (1080 * 1,3 - 1080) * 70020 = 22686480$$
 руб
$$\Pi p._{osc.\partial.3} = (1080 * 1,3 - 1080) * 86680 = 28084320$$
 руб
$$\Pi p._{osc.\partial.4} = (1080 * 1,3 - 1080) * 103340 = 33482160$$
 руб
$$\Pi p._{osc.\partial.5} = (1080 * 1,3 - 1080) * 120000 = 38880000$$
 руб

Для расчета чистого дохода (накопленного сальдо) необходимо также расчитать амортизацию оборудования на весь объем продукции по формуле:

$$A_{\mathcal{M}} = A_{\mathcal{M}.y\partial} * V_{max}$$

 $A_{\mathcal{M}} = 9{,}42 * 120000 = 1130400 \text{ py6}$

Далее рассчитываем чистый доход по фомуле:

$$4\mathcal{I}_{i} = \Pi p_{\cdot u.n.i} - \Pi p_{\cdot u.\delta.i} + A_{\mathcal{M}} + \mathcal{G}_{o\delta u.}, \tag{5.35}$$

где $Э_{oбщ}$ – общественная экономия, в нашем случае она равняется ожидаемой прибылью от повышения долговечности пружин передней подвески.

Подставляем значения:

$$\mathcal{H}\mathcal{J}_{1} = 15896161,92 - 244444961,92 + 1130400 + 17288640 = 9870240$$
руб
$$\mathcal{H}\mathcal{J}_{2} = 31791001,44 - 42738841,44 + 1130400 + 22686480 = 12869040$$
руб
$$\mathcal{H}\mathcal{J}_{3} = 47685840,96 - 61032720,96 + 1130400 + 28084320 = 15867840$$
руб
$$\mathcal{H}\mathcal{J}_{4} = 63580680,48 - 79326600,48 + 1130400 + 33482160 = 18866640$$
руб
$$\mathcal{H}\mathcal{J}_{5} = 79475520 - 97620480 + 1130400 + 38880000 = 21865440$$
руб

Далее необходимо рассчитать чистый дисконтированный доход (ЧДД). Для этого, необходимо расчитать коэффициент α , который зависит от коэффициента дисконтирование E. В нашем случае E=10%. Рассчитываем коэффициент α :

$$\alpha_{i} = 1/(1+E)^{i} \tag{5.36}$$

Подставим числа и рассчитаем:

$$\alpha_1 = 0,909$$
 $\alpha_2 = 0,826$
 $\alpha_3 = 0,751$
 $\alpha_4 = 0,683$
 $\alpha_5 = 0,621$

Рассчитаем ЧДД по формуле:

Подставляем значения в формулу (5.37) и рассчитываем:

Далее следует рассчитать индекс доходность и срок окупаемости проекта. Для ЭТОГО следует также учитывать капиталообразующие инвестиции. Данный расчет является достаточно сложным, поэтому в рамках дипломного проекта следует ограничиться общими расчетами. Для этого зададимся кожффициентом капиталообразующих инвестиций K_{uns} . Учитывая, что существующий процесс сборки практически не изменится, и большая часть оборудования останется прежней, необходимость в инвестициях крайне мала. В действительности, линия сборки требует только дооснащения двумя гайковертами для сборки новых штанг на корпуса амортизаторных стоек. Таким образом, коэффициент капиталообразующих инвестиций будет достаточно мал и не превысит 1,7%.

В этом случае расчет капиталообразующих инвестиций будет рассчитываться по формуле:

$$J_o = K_{uhs} * \Sigma C_{nos}. \tag{5.38}$$

Подставим значения и рассчитаем:

$$J_o = 0.017 * 1611718924 = 27399221,71$$
 py δ

Тогда расчет чистого дисконтированного дохода будет выглядеть следующим образом:

$$4\mathcal{I}\mathcal{I}\mathcal{I} = \Sigma 4\mathcal{I}\mathcal{I}\mathcal{I} - J_o = 57982976,4 - 27399221,71 = 30583754,69 \text{ py6}$$
 (5.39)

Расчет индекса доходности прокта:

$$JD = ЧДД / Jo$$
 (5.40)

JD = 30583754,69 / 27399221,71 = 1,12

Срок окупаемости проекта составит:

$$Tокуп = Jo / ЧДД (5.41)$$

 $Toky\pi = 27399221,71 / 30583754,69 = 0,9$

Сведем весь расчет коммерческой эффективности проекта в таблицу (см. чертеж 18.ДП.01.330.82), кроме того построим график получения чистого дисконтированного потока по годам рисунок 5.2



Рисунок 5.2 – График зависимости прибыли от объема продаж

5.4 Вывод

В ходе выполнения расчета экономической части проекто было выявлено, что для обеспечения безубыточного производства критический объем продаж модернизированного изделия не должен быть ниже 36700 штук. Таким образом, чтобы уже в первый год внедрения проекта получить прибыль, следует расчитывать на производство в объеме 53360 модернизированных подвесок.

Расчеты показывают, что проект безопасен для инвестиций, так как чистый дискотированный доход положителен на протежении всего проекта и равен

Чистый дисконтированный поток положителен на протяжении всего проекта, а чистый дисконтированный доход составит 57982,98 тыс. Рублей. Данная информация должна положительно сказаться на решении о внедрении проекта. Индекс доходности проекта JD > 1 (JD = 1,12), что является подтверждением эффективности проекта. Срок окупаемости составляет 0,9 лет.

6 Безопасность и экологичность проекта

В современном мире, автомобиль является самым опасным транспортным средством. Это связано с увеличивающимся год от года количеством частных автомобилей, увеличением скоростей передвижения. На дороге, автомобиль представляет опасность как для водителя и пассажиров, сидящих внутри автомобиля, так и для пешеходов. Все это в совокупности заставляет автопроизводителей все больше и больше беспокоиться о безопасности автомобилей.

Безопасность автомобилей делят пассивную на активную. Пассивная безопасность автомобиля показывает насколько автомобиль будет безопасен, в момент когда столкновение уже произошло. Ее характеристики обуславливаются силовой структурой кузова, наличием подушек безопасности, преднатяжителей ремней безопасности и так далее. Активная безопасность автомобиля – это, по большому счету, показатели его управляемости и устойчивости, способность вовремя затормозить или резко сменить вектор движения. Иными словами – все, что позволяет автомобилю избежать столкновения.

Как видно из объяснения выше, подвеска автомобиля напрямую влияет на его управляемость и устойчивость, а стало быть и на активную безопасность автомобиля. Кроме того, подвеска также влияет и на плавность хода автомобиля, которая в свою очередь может сказаться на утомляемости водителя и косвенно повлиять на безопасность движения. Так как зачастую чтобы добиться хороших характеристик управляемости и устойчивости, нужно несколько снизить характеристики плавности хода и наоборот, одной из приоритетных задач является подбор характеристик подвески, которые бы отвечали в достаточной степени обоим требованиям.

В действительности, конструкция всех элементов подвески влияет на данные характеристики: конструкция направляющего аппарата, конструкция и характеристики упругого элемента, а также конструкция демпфирующего

элемента подвески. Не маловажную роль оказывает конструкция колес и шины автомобиля.

Целью дипломного проекта является повышение данного автомобиля улучшения характеристик передней подвески плане управляемости и устойчивости. Данного эффекта удалось достичь за счет переноса крепления штанги стабилизатора с нижнего рычага передней подвески на амортизаторную стойку. Это позволило увеличить угловую жесткость подвески, увеличить оттдачу от стабилизатора поперечной устойчивости.

Так как предложенная модернизация затрагивает элемент конструкции автомобиля, непосредственно оказывающий влияние на безопасность, необходимо проверить данную модернизацию на соответствие правилам ЕЭК ООН и ГОСТ. Также следует разработать систему мер безопасности на сборочном производственном участке на предприятии

6.1 Проверка конструкции на удовлетворение соответствующих регламентирующих документов

В Российской Федерации действует государственный стандарт от 2004-го года ГОСТ Р 52302-2004 «Автотранспортные средства. Управляемость и устойчивость. Технические требования. Методы испытаний». Данный стандарт регулирует требования к характеристикам подвески транспортного средства, и включает регулятивные нормы по усилиям на рулевом колесе, устойчивости автомобиля на испытательных стендах, а также при испытаниях на рывок руля, регулирует условия по стабилизации рулевого управления. Кроме того, в данный стандарт включены стандарты испытаний «поворот», «переставка», «прямая», которые транспортное средство должно пройти в обязательном порядке для того, чтобы быть допущенным до эксплуатации на дорогах общего пользования.

Предлагаемая модернизация подвески затрагивает характеристики по управляемости и устойчивости автомобиля в сторону их увеличения. Это означает, что автомобиль с данной модернизацией однозначно удовлетворит

требования данного стандарта ГОСТ по управвляемости транспортного средства.

Существует также отраслевые стандарты ОСТ 37.001.275 и ОСТ 37.001.291, регулирующие плавность хода автотранспортного средства. В данных стандартах прописаны проверяемые параметры и порядок испытаний автомобиля на виброускорения в точках посадки водителя и пассажиров автомобиля.

Чтобы полностью удовлетворять данным стандартам, вибро ускорения по различным векторам для водителя и пассажиров не должны превышать определенные значения. Стандартные значения приведены в таблице (6.1) Таблица 6.1 – Значение виброускорений водителя и пассажиров

Тип дороги	Корректировочное значе	ние виброускорений водителя и	
	пассажиров		
	$a_{\omega z}, \frac{M}{c^2}$	$a_{\omega x}, a_{\omega y}, M_{c^2}$	
I	0,8	0,6	
II	1,10	0,8	
III	2,0	1,3	

Дорога автополигона типа I — цементобетонная, динамометрическая, дорога типа II — булыжная мощеная без выбоин, дорога типа III — булыжная с выбоинами.

Предложенная модернизация затрагивает увеличение угловой жесткости подвески и практически никаким образом не сказывается на вертикальной жесткости подвески. Кроме того, конструкция направляющего аппарата подвески, а также автомобиля в целом мало изменятся в отличие от оригинала, и так как базовая конструкция прошла данные испытания со значительным смысла беспокоиться запасом, нет 0 TOM, что модернизированная подвеска не будет отвечать указанным требованиям данного стандарта.

6.2 Описание рабочего места, оборудования, выполняемых операций

Передняя подвеска автомобиля Lada Granta собирается с автомобилем на отдельном сборочном участке конвейерной сборочной линии (рисунок 5.1). Данный участок находится в закрытом помещении. Расчитаем рабочую площадь участка по формуле:

$$F = A \cdot B = 11.2 \cdot 28.9 = 323.68 \,\text{m}^2 \tag{6.1}$$

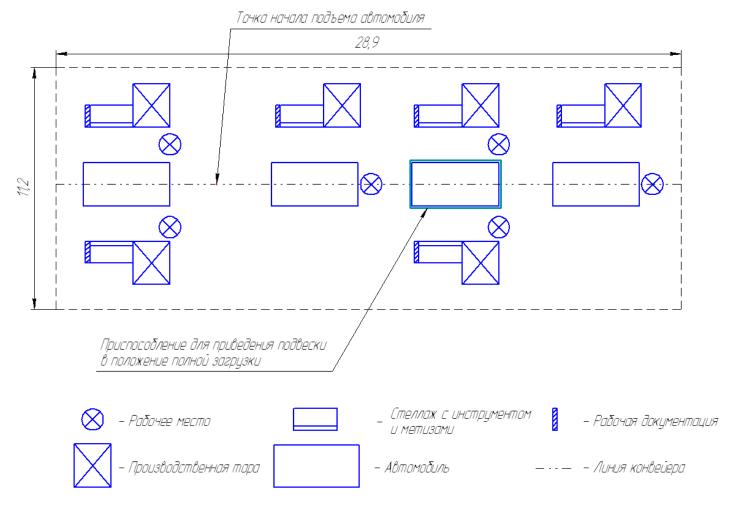


Рисунок 6.1 – Схема участка сборки

На данном участке сборочного конвейера используется оборудование по приведению подвески в различные конструктивные положения, пневматические гайковерты, различный инструмент и контейнеры для входящих компонентов. Сборка осуществляется в двух положениях автомобиля: автомобиль над головой оператора и автомобиль на уровне груди оператора.

6.3 Идентификация опасных и вредных производственных факторов разрабатываемого производственного объекта

Сведем в таблицу 6.2 все опасные факторы, которые могут повлиять на рабочего.

Таблица 6.2 – Опасные и вредные производственные факторы

Наименование опасного	Условия и оборудования, являющиеся		
фактора	причинами данного опасного фактора		
Движущиеся механизмы и	Электропогрузчики; конвейер;		
транспорт	подъемное оборудование		
Опасность возгорания	Короткие замыкания; условия, не		
	связанные с технологическим		
	процессом.		
Повышенный шум	Пневматические гайковерты;		
(более 90 Дб)	подъемное приспособление, шум от		
	конвейера		
Повышенное напряжение	Электропроводка.		
электрической цепи			

6.4 Мероприятия по созданию безопасных условий трудаМетоды защиты от шума

Производственный шум выше определенного порога громкости оказывает негативное влияние на человека. Длительное шумовое воздействие на центральную нервную систему приводит к излишней утомляемости, раздражительности, ослаблению внимания. Кроме того, из-за повышенного шума, рабочий может не заметить приближающиеся элементы оборудования, что может стать причиной несчастного случая. С шумом на производственном предприятии можно бороться как при помощи средств индивидуальной защиты (СИЗ), так и при помощи коллективных методов.

Сборочный участок является открытым участком в большом цеху, и на него проникают шумы с других участков, а также шумы от проезжающих

мимо погрузчиков. Кроме того, на самом сборочном участке источниками шума являются пневматический инструмент, подъемное приспособление, а также сама конвейерная лента с автомобилями.

В качестве коллективных методов защиты предлагается использовать демпфирование поверхностей излучающих и отражающих шумы. В качестве демпфирующего элемента предлагается использовать линолеум, войлок либо различные мастики. При помощи подобного метода можно снизить уровень шумов примерно на 20-35 дБ.

Однако, данных мер может оказаться недостаточно, особенно если принимать во внимание шум от пневматического гайковерта, в непосредственной близости от рабочего. Для дополнительной защиты предлагается использовать беруши, которые позволят снизить уровень шумового воздействия на рабочего еще на на 10-30 дБ.

Обеспечение пожарной безопасности

На данном производственном участке отсутствуют источники открытого огня, либо пожароопасное оборудование. Однако, опасность возгорания все равно сохраняется, так как его причиной может быть короткое замыкание в электропроводке либо нарушение техники пожарной безопасности рабочими.

В борьбы качестве основного метода возгораниями на производственном участке предлагается использовать огнетушители. Огнетушитили являются достаточно эффективным способом борьбы с возгораниями и позволяют затушить пожар еще на ранней стадии. Для того, чтобы огнетушитили не потеряли своей эффективности их необходимо распологать в удобных местах, на высоте не более 1,5 метра и на достаточном расстоянии от дверей. Весь персонал производственного участка должен быть в надлежащей мере проинструктирован о технике пожарной безопасности.

Дополнительная защита от возгораний может быть обеспечена за счет централизированной системы пожаротушения. Это система из труб,

подвешенных под потолком помещения, с дренчерными головками. Система оборудована датчиками улавливания дыма, которые подают сигнал на замки в дречерных головках. После чего, замки дренчерных головок открываются и по помещению начинает распыляться вода из трубоповрода.

Обеспечение электробезопасности на производственном участке

Электробезопасностью называется система мероприятий, ПО обеспечению людей воздействия защиты OT электрического тока, электродуги и электромагнитного поля. В качестве основных защитных мер онжом выделить обеспчение изоляции токопроводящих частей оборудования, разделение электросетей на не связанные друг с другом участки, обеспечение должного заземления электрооборудования.

В качестве главное опасности поражения электрическим током является тот факт, что человек никак не может определить наличие электрического тока на той или иной поверхности. Таким образом, оператор может случайно каснуться поверхностью тела токопроводящей поверхности, а учитывая высокий уровень напряжения необходимый для работы производственного оборудования, последствия такого касания могут быть весьма серьезны.

Персонал, который производит работы на оборудовании должен быть проинструктирован на предмет электробезопасности, а кроме того, должен иметь определенный допуск. Строго запрещается производить любые работы по монтажу или демонтажу оборудования при наличии напряжения в сети.

Существует опасность статического также OT электричества, накопленного тем или иным оборудованием. Для снижения данной опасности, все оборудование необходимо заземлить. Заземлений должно устройство быть произведено специальное c собственным через сопротивлением не выше 4 Ом.

Занесем указанные выше изменения в таблицу 6.3

Таблица 6.3 – Организационно-технические методы и технические средства устранения и снижения негативного воздействия опасных и вредных производственных факторов

Мерприятия,	Средства
направленные на	индивидуальной
снижение или	защиты работника
исключение опасных и	
вредных	
производственных	
факторов	
Заграждения, дорожная	
разметка	
Огнетушители,	
централизированная	
система	
пожаротушения	
Звукоизоляционное	Беруши
покрытие, акустические	
барьеры	
	направленные на снижение или исключение опасных и вредных производственных факторов Заграждения, дорожная разметка Огнетушители, централизированная система пожаротушения Звукоизоляционное покрытие, акустические

6.4 Инженерные расчеты

6.4.1 Расчет заземления электрооборудования

Так как на производственном участке напряжение всего электрооборудования не превышает 1000В, допустимое сопротивления

устройства заземления равно 4 Ом. Грунт, в котором планируется организовывать заземление обладает сопротивлением 60 Ом*м.

Рассчитаем сначала параметры для трубчатого заземлителя с рядным расположением труб.

Геометрические размеры заземлителя:

L = 3.5 м - длина заземлителя

t = 1 м – расстояние от поверхности до серидины заземления

d = 50 мм - диаметр заземлителя

Расчитаем сопротевление тока одного заземлителя. Используем формулу:

$$R_{1} = \frac{p}{2\pi \cdot l} \cdot \left(\ln \frac{2l}{d} + \frac{1}{2} \ln \frac{4t + l}{4t - l} \right)$$
 (6.2)

Подставляем числа:

$$R_1 = \frac{60}{2 \cdot 3,14 \cdot 3,6} \cdot (\ln \frac{2 \cdot 3,6}{0.05} + \frac{1}{2} \ln \frac{4 \cdot 1 + 3,6}{4 \cdot 1 - 3,6}) = 20,8 \text{ Om}$$

Определяем необходимое количество проводников заземлителя при подключении их параллельно:

$$n = \frac{R_1}{R_n} = \frac{20.8}{4} \approx 4um \tag{6.3}$$

Определим длину соединительного электрода:

$$l = 1.05 \cdot m \cdot (4 - 1) = 1.05 \cdot 1 \cdot (4 - 1) = 3.15 \,\mathrm{M}$$
 (6.4)

где 1 – длина соединительного электрода;

m = 1 -расстояние между заземлителями, м;

n = 3 - количество заземлителей, шт.

Расчитаем параметры горизонтального заземлителя кольцевого типа. Найдем сопротивление тока в нем при следующих известных:

$$D = 6.4 \text{M};$$

t = 1 M;

d = 50 MM.

$$R2 = \frac{p}{\pi^2 \cdot D} \cdot \ln \frac{8 \cdot D}{d} = \frac{60}{3.14^2 \cdot 6.4} \cdot \ln \frac{8 \cdot 6.4}{0.05} = 6,58 \,\text{Om}$$
(6.5)

Определим общее сопротивление заземлителей:

$$R_{u} = \frac{R1 \cdot R_{z}}{R1 \cdot \eta_{z} + R_{z} \cdot n \cdot \eta_{e}} = \frac{20,8 \cdot 6,58}{20,8 \cdot 0,72 + 6,58 \cdot 4 \cdot 0,77} = 3,88 \,\text{Om}$$
(6.6)

Общее сопротивление заземлителей меньше требуемых 4 Ом, значит заземление электрообрудования расчитано верно.

6.4.2 Производственное искусственное освещение

Освещение рабочего места является необходимым условием комфортной работы рабочих на a также регулируется линии, соответствующими нормами. Рассчитаем необходимое количество ламп, для того обеспечения достаточного освещения производственного участка, показанного на рисунке 5.1 по следующей формуле:

$$N = \frac{E \cdot S \cdot k \cdot z}{\Phi \cdot \eta},\tag{6.7}$$

где E = 300 – минимальная нормируемая освещенность, лм;

S = 323,68 - площадь помещения, м²;

«k = 1.5 – коэффициент запаса учитывающий, старение ламп и загрязнение светильников;»[16]

z = 1.3 – коэффициент, учитывающий отношение средней освещенности к минимальной;

 $\Phi = 4250$ – световой поток одной лампы.

 η — коэффициент использования светового потока.

Найдем коэффициент использования светового потока. Для этого сначала расчитываем индекс помещения по следующей формуле:

$$i = b \cdot l \atop h \cdot (b+l), \tag{6.8}$$

где b = 11,2м - ширина производственного участка

1 = 28,9м – длина производственного участка

h = 5.5м - высота подвеса светильника.

Рассчитываем:

$$i = {11,2 \cdot 28,9 \atop 5,5 \cdot (11,2 + 28,9)} = 1,46$$

При таком значении индекса помещения, коэффициент использования светового потока будет приблизительно равен $\eta = 0,54\%$.

Подставляем значения в формулу 5.7 и находим количество ламп, необходимое для освещения производственного участка:

$$N = {}^{300 \cdot 323,68 \cdot 1,5 \cdot 1,3} _{4250 \cdot 0,54} = 82.5 \, \text{шт}$$

Принимаем количество ламп в одном светильнике равное четырем, и рассчитываем количество светильников:

$$n = N_4 = 20,65 \,\text{mT}$$
 (6.9)

Округляем количество светильников в большую сторону и получаем 21 светильник, по 4 лампы необходимо равномерно распределить по площади производственного участка, для того, чтобы добиться нормальной освещенности.

6.6 Экологическая экспертиза разрабатываемого объекта

Экологическая экспертиза объекта — это комплексная оценка всех возможных экологических и социально-экономических последствий от внедрения данного проекта. Основной целью данной экспертизы является снижение потенциально вредного воздействия на окружающую средую. В данную экспертизу входит контроль предприятия по выполнунию всех нормативных норм и требований по защите окружающей среды.

В нашем случае разработанный процесс сборки передней подвески практически ничем не отличается от уже существующего процесса, и никакого дополнительного вреда окружающей среде он не наносит.

6.7 Вывод

В ходе выполнения части дипломного проекта по безопасности был разработан жизнедеятельности комплекс защитных мер на производственном участке по сборке передней подвески автомобиля Lada Granta, для предотавращения травм и увечий производственного персонала. Также были произведены расчеты освесвещенности рабочего места и электрооборудования. Также заземления был проведен анализ модернизированной конструкции подвески автомобиля на удовлетворение государственным стандартам ГОСТ и ОСТ, который показал допустимость внедрен

ЗАКЛЮЧЕНИЕ

В данном дипломном проекте была модернизирована передняя подвеска автомобиля Lada Granta. Итогом модернизации стало улучшение показателей управляемости автомобиля, снижения углов крена кузова при движении в поворотах. Этого удалось добиться за счет переноса крепления стабилизатора поперечного усточивости на амортизаторную стойку автомобиля вкупе с уменьшением диаметра прутка стабилизатора.

Была произведен расчет упругой характеристики подвески и стабилизатора поперечной устойчивости, расчитаны углы крена, угловая и вертикальная жесткости подвески.

Кроме того, в ходе работы над проектом был выполнены тяговодинамический расчет автомобиля, получены значения максимальной скорости, времени и пути разгона. Были выполнены расчеты тягового, мощностного баланса автомобиля, получен результат топливной экономичности.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Анурьев, В.И. Справочник конструктора-машиностроителя. В 3-х т. Т.2. [Текст] / В.И. Анурьев. М.: Машиностроение, 1978.-912 с.
- 2. Раймпель, Й. Шасси автомобиля [Текст] / Й. Раймпель. М.: Машиностроение, 1983.-356 с.
- 3. Успенский, И.Н. Проектирование подвески автомобиля [Текст] / И.Н. Успенский. М.: Машиностроение 1976-168с.
- 4. Родионов, В.Ф. Легковые автомобили [Текст] / В.Ф. Родионов, Б.А. Фиттерман. М.: Машиностроение, 1973.-490 с.
- 5. Валхламов, В.К. «Автомобили. Основы конструкции» [Текст] / В.К. Валхламов, Академия, 2008.-529с.
- 6. Васильев, Б.С. Автомобильный справочник [Текст] / Б.С. Васильев, М.С. Высоцкий, К.Л. Гаврилов. М.: Машиностроение, 2004.-704 с.
- 7. Лата, В.Н. Конструирование и расчет автомобиля. Ходовая часть и системы управления. [Текст] / В.Н. Лата. Курс лекций.-125 с.
- 8. Лукин, П.П. Конструирование и расчёт автомобиля [Текст] / П.П. Лукин. М.: Машиностроение 1984-373с.
- 9. Лукин, П.П. Гаспарянц, Г.А. Родионов, В.Ф. Конструкция и расчет автомобиля: Учебник для студентов втузов, обучающихся по специальности «Автомобили и тракторы» [Текст] / П.П. Лукин, Г.А. Гаспарянц, В.Ф. Родионов. М: Машиностроение, 1984. 376 с.
- 10. Кисуленко, Б.В. Краткий автомобильный справочник. Т3. [Текст] / Б.В. Кисуленко, Ю.В. Дементьев, И.А. Венгеров. М.: Автополисплюс, 2005.-560 с.
- 11. Черепанов, Л.А. Расчет тяговой динамики и топливной экономичности автомобиля: учеб. пособие [Текст] / Л.А. Черепанов. Тольятти: ТГУ, 2001.-41 с.
 - 12. Грузинов, В.П., Грибов, В.Д. Экономика предприятия: Учеб.

- пос. для вузов. 2-е изд., доп. [Текст] / В.П. Грузинов, В.Д. Грибов. М.: Финансы и статистика, 2002. 207 с.
- 13. Хрипач, В.Я. Экономика предприятия [Текст] / В.Я.Хрипач, А.С.Головачев, И.В.Головачева и др.; Под ред. В.Я.Хрипача; Академия управления при Президенте Республики Беларусь. Кафедра экономики и организации производства. Минск, 1997.- 448 с.
- 14. Сачко, Н.С. Организация, планирование и управление машиностроительным предприятием: Учеб. пособие для вузов [Текст] / Н.С. Сачко, И.М Бабук, В.И. Демидов и др.; Под ред. Н.С. Сачко, И.М. Бабука. Минск: Выш.шк., 1988.- 272 с.
- 15. Глущенко, В.Ф. Экономика предприятия. Часть 4. Организация производства. Учеб. пособие [Текст] / В.Ф. Глущенко, Г.А. Краюхин, А.И. Михайлушкин и др.: СПбГИЭУ. СПб: СПбГИЭУ, 2001. 101 с.
- 16. Горина, Л.Н., Фесина, М.И. Раздел выпускной квалификационной работы «Безопасность и экологичность технического объекта». Учебно-методическое пособие [Текст] / Л.Н. Горина, М.И. Фесина. Тольятти: ТГУ, 2016.-51с.
- 17. Ипатов, М.И. Организация и планирование машиностроительного производства: Учеб. для машиностр. спец. вузов [Текст] / М.И. Ипатов, М.К. Захарова, К.А. Грачев и др.; Под ред. М.И. Ипатова, В.И. Постникова и М.К. Захаровой. М.: Высш.шк., 1988.-367 с.
- 18. Михнюк, Т.Ф. Охрана труда: учебное пособие [Текст] / Т. Ф. Михнюк. Минск: ИВЦ Минфина, 2007. 297 с.
- 19. Челноков, А. А. Охрана труда: учебник [Текст] / А. А. Челноков, И. Н. Жмыхов, В. Н. Цап; под общ. ред. А. А. Челнокова. 2-е изд., испр. и доп. –Минск: Вышэйшая школа, 2013. 655 с
- 20. Челноков, А.А. Основы экологии: учебное пособие [Текст] / А. А. Челноков, Л. Ф. Ющенко, И. Н. Жмыхов; под ред. А. А. Челнокова. Минск: Вышэйшая школа, 2012. 543 с.

- 21. Dearholt Jim Career Paths Mechanics [Text] / под ред. Jim Dearholt. Express Publishing, 2012. 261 с.
- 22. Duffy James Modern Automotive Technology [Text] / под ред. James Duffy. Liberty Publishing House, 2014. 307 с.
- 23. Schnubel Mark Automotive Suspension and Steering Systems [Text] / под ред. Mark Schnubel. Express Publishing, 2013. 365 с.
- 24. Knowles Don Automotive Technician Test Preparation [Text] / под ред. Don Knowles. Liberty Publishing House, 2011. 228 с.
- 25. Erjavec Jack Automotive Technology [Text] / под ред. Jack Erjavec, Harper Collins, 2010. 388 с.

ПРИЛОЖЕНИЕ А

Графики тягового расчета

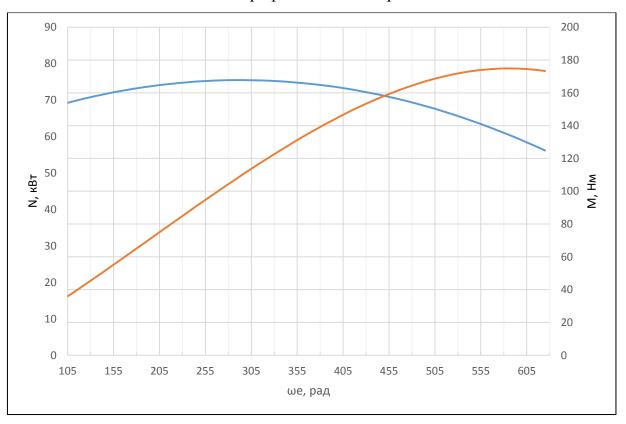


Рисунок А-1 – Внешнескоростная характеристика двигателя

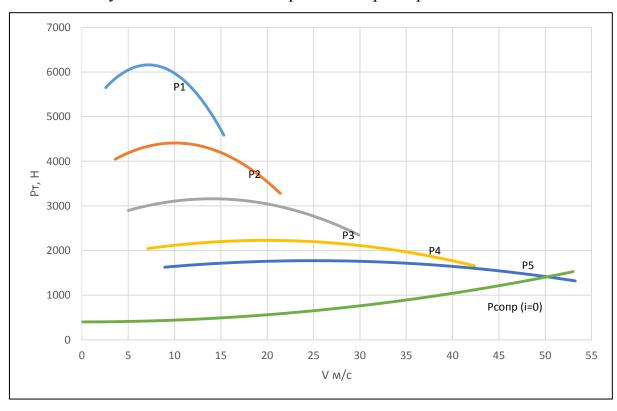


Рисунок А-2 – Тяговый баланс автомобиля

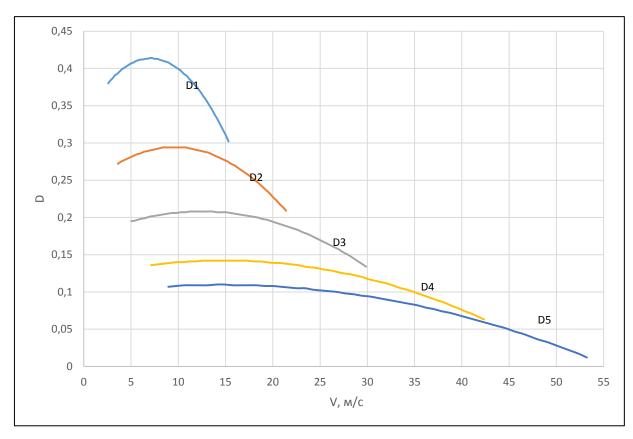


Рисунок А-3 – Динамический фактор автомобиля

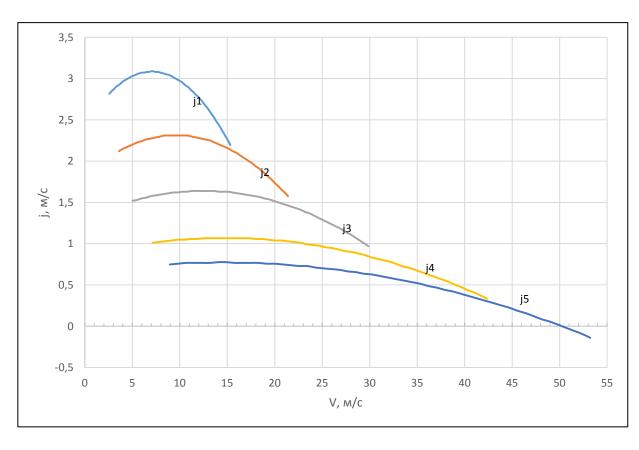


Рисунок А-4 – Ускорения автомобиля

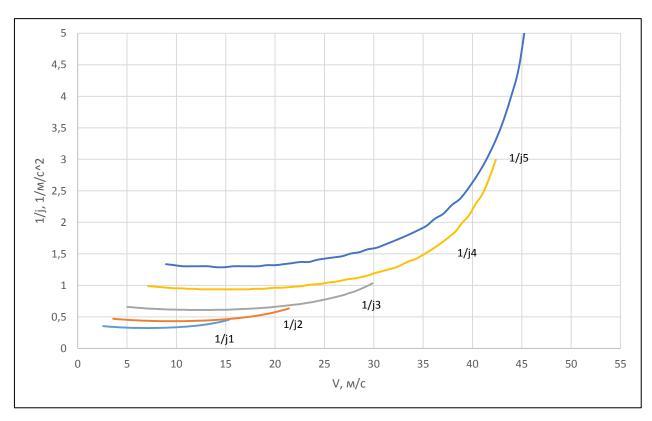


Рисунок А-4 График обратных ускорений

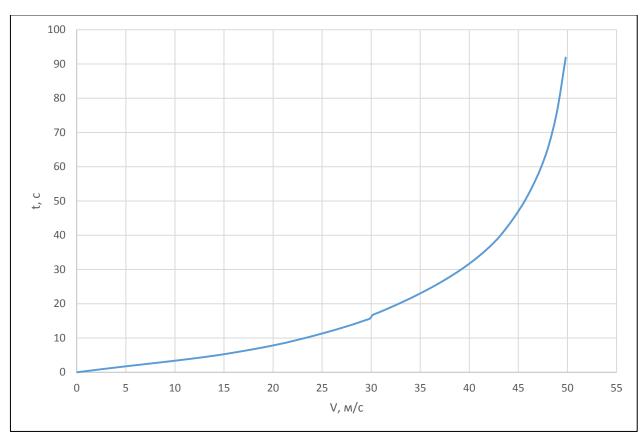


Рисунок А-5 – Время разгона автомобиля

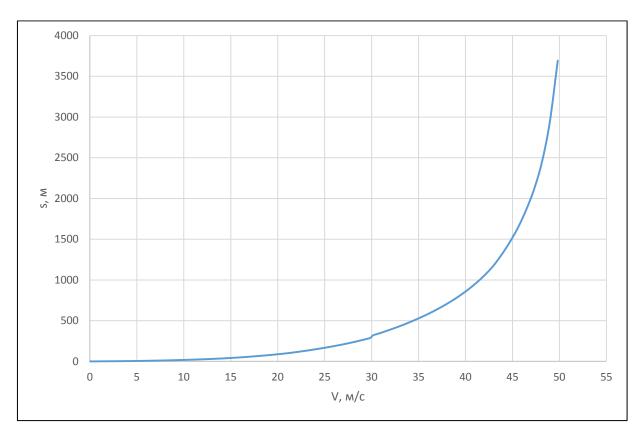


Рисунок А-6 – Путь разгона автомобиля

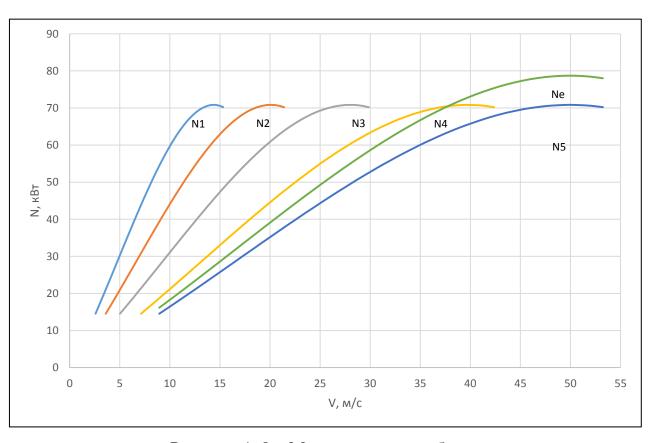


Рисунок А-8 – Мощности автомобиля

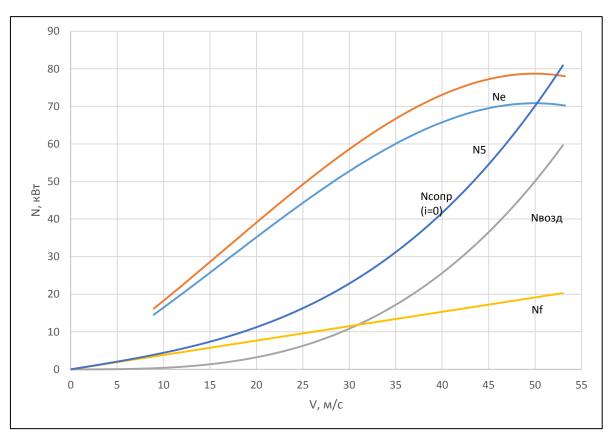


Рисунок А-7 – Мощностной баланс

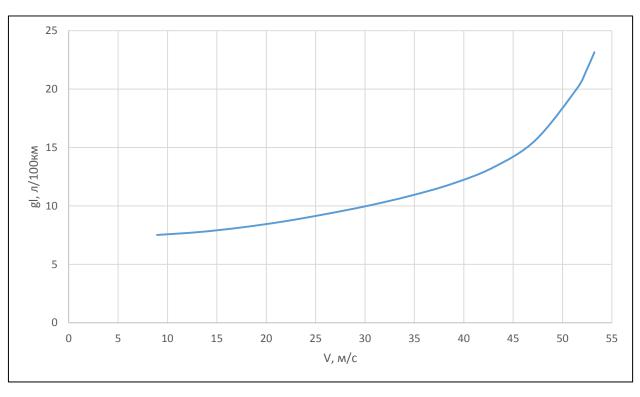


Рисунок А-8 – Топливная экономичность автомобиля