МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

	Институт машиностроения		
	(наименование института полностью)		
Кафедра	«Проектирование и эксплуатация а	автомобилей»	
Кафедра _	(наименование кафедры)	IBTOMOONICH//	
	· · · · · · · · · · · · · · · · · · ·		
	Газемные транспортно-технологичес		
(код	и наименование направления подготовки, специал	пьности)	
	«Автомобили и тракторы»		
	(направленность (профиль)/специализация)		
	ДИПЛОМНЫЙ ПРОЕКТ		
на тему _Модернизация рулевого управления переднеприводного лекового			
автомобиля 2 класс	a		
abiomoonjin 2 kjiacc	<u>a</u>	·	
Студент	Н.Г. Нарматов		
Студонт	(И.О. Фамилия)	(личная подпись)	
Руководитель	В.Н. Лата	, , ,	
3	(И.О. Фамилия)	(личная подпись)	
Консультанты	И.В. Краснопевцева		
•	(И.О. Фамилия)	(личная подпись)	
	А.Г. Егоров		
	(И.О. Фамилия)	(личная подпись)	
	О.А. Головач		
	(И.О. Фамилия)	(личная подпись)	
Допустить к защит	re		
Aoni omini manin	.•		
Заместитель ректора	- липектоп		
		оорский	
института машиност	(ученая степень, звание, И.О. Фам		
« »	20 г.		

КИЦАТОННА

Название дипломной проекта: «Модернизация системы рулевого управления легкового автомобиля второго класса».

Эта дипломный проект посвящен улучшению управляемости автомобиля. Дипломный проект состоит из пояснительной записки на 74 страницы, введение, включая рисунки, таблицы, 2 приложения и графической части на 10 листах формата A1.

Ключевой вопрос дипломного проекта-Рулевой механизм.

В настоящей квалификационной работе выполнен тяговодинамический расчет легкового автомобиля 2ого класса, произведен расчет параметров зацепления механизма «шестерня-рейка», рассчитаны параметры шестерни механизма, выполнен анализ конструктивных решений способных повлиять на технологический процесс сборки рулевого механизма, подтверждено соответствие проекта законодательным требованиям касающихся безопасности и экологичности, разработано описание рабочего места и применяемого инструмента, идентифицированы опасные и вредные производственные факторы, рассчитаны экономические показатели проекта и его экономическая эффективность.

.

ANNOTATION

The title of the diploma paper is Modernization of Steering System of second class passenger car.

This graduation work is about improvement of car drivability.

The diploma paper consists of an explanatory note on 72 pages, introduction, including figures, tables, 2 appendices, and the graphic part on 10 A1 sheets.

The key issue of the graduation project is steering gear.

The diploma paper is divided into five main parts. The first part describes the general concepts and definitions relating to steering, its detailed classification is given. It is also reviewed the development trends of the steering gears and power steering. The second part is focused on engineering calculations, especially a trailer dynamic calculation of a car, calculation of the parameters of the pinion of the steering mechanism and the force on the steering wheel. In the third part the author consider the technological process of the steering gear assembly. The fourth part is represented the ecological of production and its general safety. In fifth part we report the economical calculation for the cost of price of designed unit and for the breakeven point of the project and also a proof of opportunity to realize proposed modernization in mass production.

СОДЕРЖАНИЕ

введение	6
1 Состояние вопроса	7
1.1 Назначение рулевого управления	7
1.2 Требования, предъявляемые к рулевому управлению	7
1.3 Классификация конструкций рулевого управления	8
1.4 Обзор направлений развития конструкций рулевого управления	9
1.5 Обоснование проектируемой конструкции	14
2 Защита интеллектуальной собственности	15
3 Конструкторская часть	16
3.1 Расчет тягово-динамических характеристик автомобиля	16
3.2 Обоснование компоновочной схемы	17
3.3 Расчет параметров зацепления механизма «шестерня-рейка»	17
3.4 Расчёт параметров шестерни рулевого механизма	23
3.5 Расчёт усилия на рулевом колесе	26
4 Технологическая часть	28
4.1. Анализ технологического процесса сборки рулевого механизма	28
4.2 Технологичность разрабатываемой конструкции рулевого механизма	28
4.3 Технологическая схема сборки рулевого механизма	30
4.4 Перечень сборочных работ	31
4.5 Трудоемкость сборки рулевого механизма	34
4.6. Организационная форма сборки	35

5 Технико-экономическая оценка модернизируемого объекта	37
5.1 Расчёт себестоимости проектируемого узла	37
5.2 Расчет точки безубыточности проекта	41
5.3 Расчет коммерческой эффективности проекта	43
5.4. Расчет экономии от повышения надежности и долговечности:	проектиру-
емого узла	47
5.5 Вывод	50
6 Безопасность и экологичность проекта	51
6.1 Конструктивно-технологическая и организационно-техническа	ая характе-
ристика рассматриваемого технического объекта	51
6.2 Идентификация профессиональных рисков	54
6.3 Методы и средства снижения профессиональных рисков	57
6.4 Обеспечение пожарной безопасности участка сборки	58
6.5 Обеспечение экологической безопасности участка сборки руле	вого меха-
низма	60
6.6 Вывод	61
ЗАКЛЮЧЕНИЕ	63
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	64
ПРИЛОЖЕНИЕ А ГРАФИКИ ТЯГОВОГО РАСЧЕТА	67
ПРИЛОЖЕНИЕ Б СПЕЦИФИКАЦИЯ	71

ВВЕДЕНИЕ

Рулевое управление — это система автомобиля, с которой водитель находится в постоянном взаимодействии. С помощью рулевого колеса водитель управляет траекторией движения автомобиля, а также получает обратную связь от дорожного полотна. Надежность рулевого управления и тормозной системы определяют базовую активную безопасность современного автомобиля. Утомляемость водителя во время движения, а также удовольствие от вождения во многом зависит от качества исполнения рулевого управления. Поэтому в отрасли в настоящее время уделяется большое внимание совершенствованию рулевого управления, производится разработка решений способных качественно улучшить уровень потребительских свойств данной системы.

В настоящей курсовой работе предлагается улучшить манёвренность легкового автомобиля 2 класса путем модернизации рулевого механизма типа шестерня-рейка.

1 Состояние вопроса

1.1 Назначение рулевого управления

«Рулевым управлением называют систему автомобиля обеспечивающую изменение направления его движения.»[2]

«Изменение направления движения автомобиля происходит за счет поворота рулевого колеса, которое преобразуются в поворот управляемых колес.»[2]

1.2 Требования, предъявляемые к рулевому управлению

Рулевое управления должно иметь высокую надежность и исключать неисправности способные повлечь за собой аварийные ситуации на дороге. Дорожно-транспортные происшествия способны нанести не только экономический вред, но также вред здоровью и жизни человека. Поэтому необходимо обеспечить надежность всех резьбовых соединений, исключив их саморазбор. Для этого могут быть использованы различные герметики, шайбы, шплинты или самоконтрящиеся гайки. Детали и узлы рулевого управления в случае возникновения предельных нагрузок должны пластически деформироваться без разрушения.

Т. к. рулевое управление наряду с тормозной системой напрямую влияет на активную безопасность автомобиля, законодательно устанавливается ряд требований, касающихся непосредственно конструкции. Элементы рулевой колонки в случае удара должны изгибаться и отсоединяться друг от друга. Рулевое колесо должно быть травмобезопасным, т. е. должно разрушаться без образования острых кромок и поглощать энергию удара в случае возникновения аварийной ситуации.

Также существуют функциональные законодательные требования. Первое из них касается величины усилия на рулевом колесе в различных режимах использования автомобиля. Подробное описание данного требования указано в техническом регламенте таможенного союза «О безопасности транспортных средств». Согласно данному документу должны обеспечиваться следующие усилие на рулевом колесе: 60 Н при вращении руля на месте в конструкции оснащённой усилителем, в диапазоне от 10 до 20 Н во время движения, а также до 300 Н в случае поломки усилителя.

Требования касающиеся стабилизации управляемых колес описаны в ГОСТ 37.001.4 87-88. Согласно стандарту, возвращение управляемых колес в прямое положение при отпускании рулевого колеса должно происходить при не более чем одном переходе руля через нулевой угол. Также в данном документе данное нормативное значение максимального угла поворота рулевого колеса в зависимости от типа транспортного средства.

Также к узлам и деталям рулевого управления применимы типовые требования для деталей автомобиля. Первое из которых гласит о том, что детали входящие в состав системы автомобиля должны иметь небольшую массу. В связи с ужесточением требований касающихся выбросов вредных веществ в атмосферу стало актуально общее снижение массы автомобиля. Вовторых, рулевое управление должно обладать невысокой стоимостью изготовление и технического обслуживания.

1.3 Классификация конструкций рулевого управления

Выделяют четыре основные способа осуществления изменение направления движения: поворот управляемых колес, поворот целиком оси, складывание рамы, а также силовой метод. Для автомобилестроения наибольшее распространение получил первый из вышеуказанных способов, поэтому приведенная далее информация будет актуальна только для него.

«В конструкциях рулевых механизмов могут использоваться кинематические пары типов: шестерня—рейка, глобоидальный червяк — ролик, винт — шариковая гайка.»[7]

Усилитель руля т. е. устройство, которое позволяет снизить величину прикладываемого водителем усилия на рулевое колесо, конструктивно классифицируются следующим образом: с электрическим приводом, с гидравлическим приводом, и комбинированным приводом. Смысл последней схемы заключается в последовательном использовании электромотора и гидравлического усилителя руля.

Функционально рулевое управление может быть адаптивным или неадаптивным. Адаптивная система существенно увеличивает активную безопасность автомобиля. Среди основных преимуществ можно выделить возможность организации систем контроля полосы движения и автоматической парковки, а также значительное снижение ударов и вибраций передаваемых на руль.

1.4 Обзор направлений развития конструкций рулевого управления

Самым популярным типом рулевого механизма в современных легковых автомобилях является реечный. В такой конструкции шестерня, соединенная с рулевым валом, входит в зацепление с рейкой, перемещение которой в свою очередь обеспечивает поворот управляемых колес. Имеется много причин популярности данной схемы, однако, основное из них это невысокая стоимость узла. В целом реечный рулевой механизм конструктивно несложен, в нём нет большого количества шарниров, тем самым обеспечивается высокая надежность узла. Монтаж его в условиях конвейерной сборки, а также демонтаж с целью обслуживание также не составляет особого труда. Данный механизм имеет высокий КПД и небольшое значение свободного хода обеспечивающее высокую точность. Использование такого механизма даёт компоновочное преимущество, так как перемещение относительно компактных тяг не требуют значительного пространства. Среди недостатков данной конструкции следует выделить её склонность к передаче ударов и вибраций на

рулевое колесо. Также данный тип рулевого механизма не способен передавать значительные усилия, а, следовательно, неприменим на тяжёлом коммерческом транспорте.

Несмотря на большую популярность реечного рулевого механизма в современном автомобилестроении, достаточно редко, но всё же применяются и другие типы рулевых механизмов. Среди них схема глобоидальный червяк—ролик. В данной схемы червяк соединён с рулевым валом и входит в зацепление с роликом, на котором в свою очередь установлена сошка. Ближнее к рулевому механизму колесо оси соединено с ним тягой, а дальнее соединено тягой с маятниковым рычагом, который в свою очередь соединён с рулевым механизмом средней тягой. Данная конструкция практически лишена недостатков присущих реечным рулевым механизмам. Передача ударов и вибрации от дороги на руль практически не происходит, что повышает общий комфорт водителя. Такой механизм способен передавать значительные усилия, что обуславливает его популярность на среднеразмерном коммерческом транспорте и тяжелых внедорожников. В противовес реечному рулевому механизму основным недостатком конструкции червяк—ролик следует считать высокую стоимость. Это вызвано большим количеством входящих в состав узла деталей и шарнирных соединений. Использование большого количества шарниров вызывает появление значительного свободного хода в рулевом управлении. Поэтому в точности управления механизм червяк ролик значительно уступает схеме шестерня—рейка. Также надежность такой системы существенно ниже, а обслуживание гораздо сложнее и дороже.

Развитием схемы червяк—ролик является схема винт—шариковая гайка. На валу имеющем винтовую канавку устанавливается гайка, а передача усилий происходит за счёт перемещения в канавке шариков. Такое конструктивное решение позволяет еще больше увеличить КПД механизма. Естественно, что такой вариант исполнения сохраняет все достоинства конструкции с глобоидальным червяком. Однако, стоимость такого решения еще выше. В настоящее время такую конструкцию можно встретить в тяжёлом грузовом транспорте и автобусах.

Усилитель используется для снижения затрат сил водителя при повороте рулевого колеса и делает управление автомобиля более приятным и комфортным. Усилитель рулевого управления делает автомобиль более маневренным. Также некоторые виды конструкций усилителей добавляют управлению автомобилем точности на высоких скоростях.

Глобально все конструкции усилителей рулевого управления можно классифицировать на адаптивные и неадаптивные. Неадаптивные конструкции создают дополнительное усилие постоянной величины. В то время как адаптивный может генерировать дополнительные усилия различной величины в зависимости от дорожной ситуации. Так, например, при парковке влияние усилителя значительно, чтобы облегчить водителю многократные повороты рулевого колеса, а при движении с высокими скоростями наоборот, практически не оказывает влияние, чтобы сделать управление автомобилем более точным. Однако, такая система требует установки дополнительных датчиков и специального электронного блока управления, что делает его конечную стоимость значительно выше чем у неадаптивных систем.

В современных автомобилях наибольшее распространение получили три типа усилителей: электрический, гидравлический и электрогидравлический (комбинированный).

Усилитель руля гидравлического типа конструктивно состоит из следующих частей: приводной насос гидроцилиндра, распределительный механизм, соединительные трубки и шланги. В качестве рабочего тела в данной системе используется специальное масло. Насос в такой схеме работает постоянно. В качестве распределителя используется золотниковый механизм, который направляет рабочую жидкость в гидроцилиндр в случае поворота рулевого колеса. Гидравлический усилитель обеспечивает хорошую информативность управления в сравнении с некоторыми конструкциями электроусилителей, также он снижает количество передаваемых ударов и вибрации

на рулевое колесо. Даже при поломке усилители сохраняется возможность управления автомобилем, и водитель без особых проблем может добраться до ближайшего сервиса. Стоимость данного типа усилителя значительно ниже в сравнении с остальными конструкциями. Основным недостатком данной схемы является постоянной отбор мощности двигателя, который приводит к повышенному расходу топлива. Это в свою очередь может стать препятствием к выполнению норм токсичности, которые становятся всё строже год от года. Помимо этого, при использовании данной конструкции невозможно организовать работу различных электронных помощников, таких как, например, системы слежения за полосой движения. Учитывая, что список обязательных к применению в автомобиле подобных систем только расширяется год от года, перспектива использования гидроусилителя в обозримом будущем достаточно мало.

Вопросы повышенного расхода топлива, а также соответствие автомобиля нормам токсичности призвана решить комбинированная конструкция усилителя рулевого управления, также известная как электрогидравлическая. Единственное отличие данной схемы от классической гидравлической заключается в том, что насос приводится в действие от электромотора, а не напрямую от двигателя. В данном случае усилитель работает только при повороте рулевого колеса, что обеспечивает значительную экономию топлива в сравнении с гидравлической системой. Данная конструкция имеет всё те же преимущества и недостатки, что и гидравлический усилитель, за исключением того, что стоимость такого решения значительно выше.

Самым популярным типом усилителя рулевого управления, встречающимся в современных автомобилях, является электрический. Конструктивно такое решение состоит из электродвигателя, оказывающего силовое воздействие на рулевой механизм, и электронного блока, который осуществляет управление работой электродвигателя. Существует два варианта установки электродвигателя. В первом случае он устанавливается на рулевую колонку, во втором же случае его монтируют непосредственно на рулевом механизме,

а точнее на рейке. Выбор местоположения электродвигателя происходит с учетом компоновочных требований, необходимых экономических затрат, а также других факторов. Как и в предыдущих конструкциях работа системы происходит только при изменении положения руля. Таким образом можно несколько снизить расход топлива и повысить эффективность автомобили с точки зрения охраны окружающей среды. Среди других преимуществ данной схемы следует выделить её высокий КПД в сравнении с приведенными выше конструкторскими решениями. Также при использовании электроусилителя рулевого управления возможна организация дополнительных электронных помощников способных увеличить привлекательность автомобиля в глазах потребителей, и помощников, требуемых законодательством. Самым серьезным недостатком данной схемы принято считать отсутствие возможности передвижение при выходе усилителя из строя. Поворот рулевого колеса в данном случае будет невозможен.

Одно из направлений развития рулевого управления — это применение активных систем, повышающих безопасность и существенно облегчающих управление автомобилем. Данные системы позволяют реализовать такие функции, как удержание автомобиля в полосе движения с помощью автоматического подруливания.

Один из примеров таких систем – это система AFS, устанавливаемая на автомобили BMW. В данной системе применен разрезной вал рулевого управления, обе части которого соединены с помощью планетарного редуктора. У корпуса редуктора имеется возможность поворота посредствам электродвигателя, который активируется сигналом поступающем от ЭБУ соединенного с датчиком.

Система AFS проводя непрерывный анализ траектории движения транспортного средства, способна увеличить или уменьшить угол поворота управляющих колес, а также изменить их угловую скорость. Таким образом система осуществляет помощь водителю лучше управлять транспортным средством.

Непрерывное развитие электроники, делает возможным уже в ближайшем будущем реализовать электроуправление поворотом управляемых колес транспортного средства. Это позволяет исключить механическую связь между рулем и колесам. Применение данной системы позволит исключить транслирование в салон стуков и вибраций передаваемых в салон через рулевую колонку, что повысит комфорт транспортного средства. Такая система станет одним из шагов к полностью автономному управлению транспортным средством, где роль водителя будет сводиться к минимуму. При использовании такой системы в классическом рулевом колесе нет необходимости, оно может уступить место джойстику.

1.5 Обоснование проектируемой конструкции

На текущий момент времени ситуация на автомобильном рынке России постепенно стабилизируется. Серьезный рост показывает сегмент кроссоверов. Однако, наибольшее количество продаж всё же приходится на легковые автомобили Б класса. Самым продаваемым автомобилем в 2017 году стала Киа Рио. Автомобили ПАО АВТОВАЗ также показывают высокий уровень продаж. Модели Веста и X-гау становятся всё популярнее. Однако, некогда самая продаваемая модель АВТОВАЗА Лада Гранта показывает снижение потребительского спроса. Такая тенденция является сигналом к тому, что автомобилю нужна скорейшая модернизация, которая даст новый импульс продаж.

В данной работе предлагается улучшить точность и остроту рулевого управления автомобиля Лада Гранта путем модернизации рулевого механизма типа шестерня—рейка. Данное улучшение совместно с улучшениями в части подвески, а также интерьера и экстерьера позволило бы значительно увеличить привлекательность вышеуказанного автомобиля у потребителя.

2 Защита интеллектуальной собственности

Не предусмотрено.

3 Конструкторская часть

3.1 Тягово-динамический расчет автомобиля

Привод колес: Переднеприводный

Количество мест: 5

Количество передач трансмиссии: 5

КПД трансмиссии: $\eta_{TP} = 0.9$

Шина: 185/65*R*14

Максимальная скорость: $\upsilon_{\text{max}} = 180 \kappa \text{м/y}$

Масса тр. средства: $m_a = 1088 \, \mathrm{kr}$

Коэф. аэродин. сопр-ния: $C_x = 0.32$

Коэф. сопротивл. качению: $f_0 = 0.012$

Преодолеваемый уклон: i = 0.3

 $\omega_{\scriptscriptstyle o}^{\rm min}=1000\, o {\it 6}$ / мин

Обороты ДВС $\omega_e^{\text{max}} = 6000\,\text{o}\,\text{б}\,\text{/}\,\text{мин}$

 $\omega_{\scriptscriptstyle N}=5600\,o \sigma$ / мин

Тягово-динамический расчет автомобиля можно считать базой при его проектировании. Тягово-динамическим расчетом является совокупность расчетов силового агрегата и трансмиссии транспортного средства. Подбор размерности колес также осуществляется в рамках данного расчета. В данной работе в части тягово-динамического расчета были определены следующие характеристики:

- «внешнескоростная характеристика двигателя (BCX);»[10]

- передаточные числа коробки переключения передач;
- тяговый баланс;
- -динамическая характеристика;
- ускорения на различных передачах;
- время и путь разгона;
- мощностной баланс;
- характеристика топливной экономичности.

Результаты вышеуказанных расчетов показаны в виде графиков в приложении А настоящей дипломной работы.

3.2 Обоснование компоновочной схемы

В настоящей работе была поставлена задача улучшить показатели маневренности и управляемости транспортного средства за счет модернизации конструкции рулевого механизма. Предлагаемый объем изменений повысит удобство управления автомобилем при маневрировании и парковке.

В качестве объекта для модернизации был выбран автомобиль LADA Granta. Рулевой механизм типа шестерня-зубчатая рейка закреплен на щитке передка моторного отсека ввиду отсутствия в составе передней подвески подрамника, усилитель располагается на рулевой колонке. Такое расположение с точки зрения потребительских свойств можно назвать не совсем удачным. Недостаточная жесткость щитка, на котором крепится механизм способствует передаче вибраций и ударов на рулевое колесо, а также снижает точность управления автомобилем. С другой стороны, организация подрамника потребует изменения конструкции рычагов передней подвески, а также кузова. Поэтому изменение компоновочной схемы в данном случае экономически нецелесообразно.

3.3 Расчет параметров зацепления механизма «шестерня-рейка»

Назначением реечной передачи является преобразования вращательного движения шестерни в поступательное движение зубчатой рейки. Расчет такого типа передачи по своему принципу аналогичен расчету зубчатой ци-

линдрической передачи, так как математически рейку можно представить в виде зубчатого колеса с бесконечным радиусом.

3.3.1 Предварительный расчет вариантов рулевого механизма

Исходные данные:

«Угол картера рулевого механизма δ »[4]	0°
Межосевое расстояние а	14,5 мм
Диаметр рейки d_z	30 мм
X од рейки l_p	151 мм
«Коэффициент высоты головки зуба инструмента для изготовле	ния шестер-
ни»[5] h_{aP01}^*	1,25
«Коэффициент высоты головки зуба инструмента для изгот	овления рей-
ки»[5] h_{aP02}^*	0,575
«Коэффициент радиального зазора зуба шестерни C_l^* »[2]	0,125
«Коэффициент радиального зазора зуба рейки C_2^* »[2]	0,25

«Угол наклона зуба шестерни $\beta_{I\text{-}20^\circ}$ при угле исходного контура 15°.»

Наибольший коэффициент полезного действия для данного типа передачи возможно достигнуть при $\beta_I=0$, при этом скольжение в зацеплении минимально и осевые нагрузки в подшипниках вала-шестерни равны нулю. Стоит также учесть, что в механизме с переменным передаточным числом выбор значение $\beta_I=0$ может стать причиной стуков и закусываний. Происходит это из-за того, что при больших значениях угла профильное перекрытие зубьев будет менее единицы. Применение косозубого зацепления обеспечивает значительное перекрытие зубьев, и, как следствие, достаточную плавность работы и надежность зацепления. В настоящем работе для проектируемого механизма сохраним значение угла как у серийной шестерни $\beta_I=15^\circ$.

Модуль зубьев шестерни, при значении угла профиля 20°, следует выбирать учитывая необходимую прочность шестерни и зуба. С одной стороны, большее значение модуля позволяет получить высокую прочность зуба, од-

нако с другой стороны диаметр впадин зубьев в таком случае необходимо уменьшить. Для легковых транспортных средств в зависимости от класса приняты определенные интервалы значений модуля зубьев. Таким образом класс A соответствует интервалу от 1,75 до 2,0 мм, B — от 1,8 до 2,1 и С — от 1,85 до 2,2 мм. Для настоящего расчета примем значение модуля зубьев шестерни $m_{n-20^{\circ}}$ равным 1,9 мм.

В настоящей работе возьмем угол профиля зубьев рейки α_{MIN} равным 25°.

Значение максимального угла профиля зубьев рейки следует выбирать менее 40° , так как при этом не выполняется условие прочности. Примем $\alpha_{\text{max}} = 39^{\circ}$.

«Передаточного число рулевого механизма определяет количество оборотов рулевого и величину усилия, которое прикладывает водитель для его поворота.[6] Данная величина рассчитывается как частное хода рейки и количества оборотов шестерни. Для выполнения поставленных в данной работе задач примем количество оборотов рулевого колеса равным Это же значение будет справедливо и для шестерни.

Тогда H_{\min} =151/3=50,33 [мм/об].

- 3.3.2 «Проверка существования зубчатого зацепления»[6]
- «3.3.2.1 Угол наклона зуба шестерни для минимального угла профиля зуба рейки и число зубьев шестерни»[6]

«Угол наклона зуба шестерни для минимального угла профиля зуба рейки:»[6]

$$\beta_{I\min} = \arcsin\left(\frac{\sin\beta_{I-20^{\circ}} \cdot \cos 20^{\circ}}{\cos\alpha_{\min}}\right)$$

$$5^{\circ} \cdot \cos 20^{\circ}) \quad 15.533$$

 $\beta_{1 \min} = \arcsin\left(\frac{\sin 15^{\circ} \cdot \cos 20^{\circ}}{\cos 25^{\circ}}\right) = 15,58^{\circ}$

Число зубьев шестерни:

$$z_{I} = \frac{H_{\min} \cdot \cos \alpha_{\min} \cdot \cos \left(-\beta_{I \min} \right)}{\pi \cdot m_{n-20} \cdot \cos 20^{\circ}}$$
(3.2)

$$z_1 = \frac{50,33 \cdot \cos 25^{\circ} \cdot \cos 4^{\circ} - 15,58^{\circ}}{\pi \cdot 19 \cdot \cos 20^{\circ}} = 7,83$$

Полученную в результате расчетов величину округлим до целого и получим $z_1=8$

«3.3.2.2 Угол наклона зуба шестерни для максимального угла профиля зуба рейки и максимальное передаточное число рулевого механизма»[6]

Величину угла наклона зуба шестерни для максимального угла профиля вычисляем находим следующим образом:

$$\beta_{1\max} = \arcsin\left(\frac{\sin\beta_{1-20^{\circ}} \cdot \cos 20^{\circ}}{\cos\alpha_{\max}}\right)$$
 (3.3)

$$\beta_{1 \text{max}} = \arcsin\left(\frac{\sin 28^\circ \cdot \cos 20^\circ}{\cos 39^\circ}\right) = 18,22^\circ$$

«Максимальное передаточное число рулевого механизма:»[6]

$$H_{\text{max}} = \frac{\pi \cdot m_{n-20} \cdot z_I \cdot \cos 20^{\circ}}{\cos \beta_{I \text{max}} \cdot \cos \alpha_{\text{max}}}$$
(3.4)

$$H_{\text{max}} = \frac{\pi \cdot 1.9 \cdot 8 \cdot \cos 20^{\circ}}{\cos 18.22^{\circ} \cdot \cos 39^{\circ}} = 60,794$$

«3.3.2.3 Минимальный коэффициент смещения исходного контура шестерни»[6]

Максимальное профильное перекрытие в зубчатом зацеплении достигается, если минимальный коэффициент смещения исходного контура шестерни принять равным наибольшему результату, получаемому при расчете следующих формул:

$$\begin{cases} x_{n1-\min}^{(1)} = h_{aP01}^* - \frac{\left[1 - \frac{1}{1 + (tg \, 20^\circ / \cos \beta_{1-20^0})^2}\right] \cdot z_1}{2 \cdot \cos \beta_{1-20^0}} - C_2^* \\ x_{n1-\min}^{(2)} = h_{aP01}^* - 0.2 \cdot (1 - \sin 20^\circ) - \frac{\sin^2 \alpha_{wt} \cdot z_1}{2 \cdot \cos \beta_{1-20^0}} \end{cases}$$
(3.5)

 α_{wt} - угол зацепления в торцовом сечении на начальной окружности»[6] находим с помощью выражения:

$$\alpha_{wt} = arctg \frac{tg20^{\circ}}{\cos \beta_{1-20^{\circ}}}$$
 (3.6)

$$\alpha_{wt} = arctg \frac{tg \, 20^{\circ}}{\cos 15^{\circ}} = 20,63^{\circ}$$

$$\mathcal{X}_{n1-\min}^1 = 0,485 \text{ M } \mathcal{X}_{n1-\min}^2 = 0,604$$

«3.3.2.4 Максимальный коэффициент смещения исходного контура шестерни»[6]

Данный коэффициента должен быть таковым, чтобы исключить возможность заострения зубьев шестерни. Помимо этого, чтобы достигнуть необходимую величину прочности толщина головки зуба шестерни должна быть равной или превышать $0,4\cdot m_{n-20}$. Для исключения заострения зубцов штампа при использовании технологии холодной штамповки, значение радиуса выкружки ножки зуба рейки ρ_{min} следует выбирать не менее чем 0,65 мм. Выберем для настоящей работы $\rho_{min} = 0,65$ мм.

Также определяем необходимые характеристики шестерни:

«Диаметр основной окружности шестерни» [6]

$$d_{b1} = \frac{m_{n-20^{\circ}} \cdot z_1}{\sqrt{tg^2 20^{\circ} + \cos^2 \beta_{1-20^{\circ}}}}$$
(3.7)

$$d_{b1} = \frac{1.9 \cdot 8}{\sqrt{tg^2 20^\circ + \cos^2 15^\circ}} = 14,73$$

«Угол наклона зуба шестерни на основной окружности»[6]

$$\beta_{b1} = \arcsin\left(\cos\alpha_0 \cdot \sin\beta_{1-20^0}\right) \tag{3.8}$$

$$\beta_{b1} = \arcsin \cos 25^{\circ} \cdot \sin 15^{\circ} = 13,58^{\circ}$$

«Диаметр начальной окружности шестерни»[6]

$$d_{01} = \frac{z_1 \cdot m_{n-20^{\circ}}}{\cos \beta_{1-20^{\circ}}} \tag{3.9}$$

$$d_{01} = \frac{8 \cdot 1.9}{\cos 15^{\circ}} = 15,74$$

Значение коэффициента смещения исходного контура x_{n1} должно быть таковым, чтобы выполнялось следующее условие:

$$d_{a1} > d_{a1 \,\text{max}} \tag{3.10}$$

$$\frac{d_{b1}}{\cos \alpha_{MI}} + 2 \cdot \rho_{min} > 2 \cdot m_{n-20^{\circ}} \cdot \left(*_{aP02}^{*} + x_{n1} \right) + d_{01}$$
 (3.11)

где « α_{MI} - текущее значение угла зацепления на головке зуба шестерни»[5]

$$inv\alpha_{MI} = \frac{S_{bt1}}{d_{b1}} - \frac{2 \cdot \rho_{min}}{z_1 \cdot m_{n-20^{\circ}} \cdot \cos 20^{\circ}} = \tan \alpha_{MI} - \alpha_{MI}$$
(3.12)

Принимаем $x_{n1} = 0.9$ и находим следующие величины:

«Толщина зуба на основной окружности в торцовом сечении:»[6]

$$S_{bt1} = \frac{m_{n-20^{\circ}} \cdot \cos \alpha_{wt} \cdot \mathbf{Q} \cdot x_{n1-\max} \cdot tg \, 20^{\circ} + 0.5 \cdot \pi}{\cos \beta_{1-20^{\circ}}} + d_{b1} \cdot inv\alpha_{wt}$$

$$(3.13)$$

$$S_{bt1} = \frac{1.9 \cdot \cos 20.63^{\circ} \cdot \cancel{\textbf{Q}} \cdot 0.9 \cdot tg \, 20^{\circ} + 0.5 \cdot \cancel{\pi}}{\cos 15^{\circ}} + 14.73 \cdot inv \, 20.63^{\circ} = 4.34$$

«Диаметр вершин зубьев шестерни:» [6]

$$d_{a1} = 2 \cdot m_{n-20^{\circ}} \cdot \mathbf{q}_{aP02}^* - C_1^* + x_{nI-\text{max}} + d_{01}$$
(3.14)

$$d_{a1} = 2 \cdot 1.9 \cdot \text{(0.575} - 0.125 + 0.9) + 15.74 = 20.87$$

«Угол наклона зуба на диаметре головки зуба шестерни:»[6]

$$\beta_{al} = \arctan \frac{tg\beta_b \cdot d_{al}}{d_{bl}} \tag{3.15}$$

$$\beta_{a1} = \arctan \frac{tg13,58^{\circ} \cdot 20,87}{14,73} = 18,85^{\circ}$$

«угол зацепления в торцовом сечении на окружности головки зуба шестерни:»[6]

$$\alpha_{ta} = \arccos \frac{d_{b1}}{d_{a1}} \tag{3.16}$$

$$\alpha_{ta} = \arccos \frac{14,73}{20,87} = 45,09^{\circ}$$

«Толщина головки зуба шестерни в нормальном сечении:»[6]

$$S_{an1} = \left(\frac{S_{bt1}}{d_{b1}} - inv\alpha_{ta}\right) \cdot d_{a1} \cdot \cos\beta_{a}$$
 (3.17)

$$S_{an1} = \left(\frac{4,4}{14,73} - inv \, 45,09\right) \cdot 20,87 \cdot \cos 18,85 = 0,74$$

Определяем верность выбора x_{n1} :

$$inv\alpha_{MI} = \frac{4,4}{14,73} - \frac{2 \cdot 0,65}{8 \cdot 1,9 \cdot \cos 20^{\circ}}$$

$$\alpha_{MI} = 45,95$$

В результате получаем:

$$d_{a1} = 22,48 > d_{a1 \text{max}} = 21,34$$

«3.3.2.5 Диаметр впадин зубьев шестерни»[6]

Произведем вычисление диаметра впадин используя следующее выражение:

$$d_{f1} = \langle x_{n1} \cdot \cos \beta_{1-20^{\circ}} + z_{1} \rangle \frac{m_{n-20^{\circ}}}{\cos \beta_{1-20^{\circ}}} - 2 \cdot h_{aP01}^{*} \cdot m_{n-20^{\circ}}$$
(3.18)

$$d_{f1} = (0.9 \cdot \cos 28^{\circ} + 8) \frac{1.9}{\cos 15^{\circ}} - 2 \cdot 1.25 \cdot 1.9 = 14.41 \text{ MM}$$

«3.4 Расчёт параметров шестерни рулевого механизма»[6]

Производство шестерни будет выполняться с помощью стандартного оборудования. Определим параметры шестерни, которые в последствии будут отражены в конструкторской документации.

3.4.1 «Высоты головки зуба шестерни» [6]

$$h_{a1}^* = h_{ap02}^* - C_1^* (3.19)$$

$$h_{a1}^* = 0,575 - 0,125 = 0,45$$

3.4.2 «Торцовый угол (угол зацепления в торцовом сечении)» [6]

$$\alpha_{wt} = arctg(tg20^{\circ}/\cos\beta_1) \tag{3.20}$$

$$\alpha_{wt} = arctg(tg 20^{\circ}/\cos 15^{\circ}) = 20,63^{\circ}$$

3.4.3 «Диаметр окружности головки зуба шестерни» [6]

$$d_{a1} = d_{01} + 2 \cdot m_n \cdot \mathbf{q}_{a1}^* + x_{n1}$$
 (3.21)

 $d_{a1} = 15,74 + 2 \cdot 1,9 \cdot (45 + 0,9) = 20,87 \text{ MM}$

«3.4.4 Диаметр активной окружности ножки зуба шестерни»[6]

Величина диаметра определяется с помощью коэффициента В:

$$B = 0.5 \cdot d_{01} \cdot \sin \alpha_{wt} - \frac{m_n}{\sin \alpha_{wt}} \cdot \left(\frac{1}{\alpha_{aP01}} - x_{n1} - C_2^* \right)$$
 (3.22)

$$B = 0.5 \cdot 15.32 \cdot \sin 20.63^{\circ} - \frac{1.9}{\sin 20.63^{\circ}} \cdot 4.25 - 0.9 - 0.25 = 2.24$$

При значении $B \ge 0$, используем выражение:

$$d_{Nf1} = 2 \cdot \sqrt{B^2 + \mathbf{Q}, 5 \cdot d_{b1}}^2$$
 (3.23)

При B < 0, $d_{Nf1} = d_{b1}$

Для настоящего расчёта B>0, таким образом

$$d_{Nf_1} = 2 \cdot \sqrt{2,24^2 + 4,5 \cdot 14,73} = 15,39 \text{ MM}$$

«3.4.5 Высота зуба шестерни»[6]

$$h_{1} = \frac{d_{a1} - d_{f1}}{2} \tag{3.24}$$

$$h_1 = \frac{20,87 - 14,41}{2} = 3,23 \text{ MM}$$

«3.4.6 Угол зацепления в торцовом сечении на окружности головки зуба шестерни при принятом коэффициенте смещения исходного контура» [6]

$$\alpha_{ta} = \arccos \frac{d_{b1}}{d_{a1}} \tag{3.25}$$

$$\alpha_{ta} = \arccos \frac{14,73}{20.87} = 45,09^{\circ}$$

«3.4.7 Торцовый модуль» [6]

$$m_t = \frac{m_n}{\cos \beta_1} \tag{3.26}$$

$$m_t = \frac{2}{\cos 15^\circ} = 1,97$$

«3.4.8 Радиальный зазор шестерни» [6]

$$C_1 = m_n \cdot C_1^* \tag{3.27}$$

 $C_1 = 1.9 \cdot 0.125 = 0.24$

«3.4.9 Шаг на основной окружности» [6]

$$P_b = \pi \cdot m_n \cdot \cos 20^o \tag{3.28}$$

 $P_b = \pi \cdot 1.9 \cdot \cos 20^\circ = 5.61$

«3.4.10 Коэффициент смещения исходного контура в торцовом сечении» [6]

$$x_{t1} = x_{n1} \cdot \cos \beta_1 \tag{3.29}$$

 $x_{t1} = 0.9 \cdot \cos 15^{\circ} = 0.795$

«3.4.11 Толщина зуба на основной окружности в торцовом сечении» [6]

$$\mathbf{S}_{bt1} = \mathbf{Q} \cdot x_{n1} \cdot tg \, 20^{\circ} + 0.5 \cdot \pi \, \mathbf{m}_{t1} \cdot \cos \alpha_{wt} + d_{b1} \cdot inv \alpha_{wt}$$
 (3.30)

$$S_{bt1} = (0.09 \cdot tg \cdot 20^{\circ} + 0.5 \cdot \pi) \cdot 1.97 \cdot \cos 20.63^{\circ} + 14.73 \cdot inv \cdot 20.63^{\circ} = 4.34 \text{ mm}$$

«3.4.12 Угол наклона зуба шестерни на окружности головки зуба» [6]

$$\beta_{a1} = arctg \frac{tg\beta_b \cdot d_{a1}}{d_{b1}} \tag{3.31}$$

$$\beta_{a1} = arctg \frac{tg \, 13,58^{\circ} \cdot 20,87}{14,73} = 18,85^{\circ}$$

«3.4.13 Толщина головки зуба шестерни в нормальном сечении»[6]

$$S_{an1} = (\frac{S_{b11}}{d_{b1}} - inv\alpha_{ta})d_{a1}\cos\beta_{a1}$$
 (3.32)

$$S_{an1} = (\frac{4,34}{14,73} - inv 45,09^{\circ})20,87 \cdot \cos 18,85^{\circ} = 1,55 \text{ MM}$$

«3.4.14 Толщина зуба шестерни на начальной окружности в нормальном сечении»[6]

$$S_{n01} = (0.5 \cdot \pi + 2 \cdot x_{n1} \cdot tg \, 20^{\circ}) \cdot m_n \tag{3.33}$$

$$S_{n01} = (0.5 \cdot \pi + 2 \cdot 0.9 \cdot tg \, 20^{\circ}) \cdot 1.9 = 4.23 \text{ mm}$$

«3.4.15 Толщина зуба шестерни на начальной окружности в торцовом сечении»[5]

$$S_{t01} = \frac{S_{n01}}{\cos \beta_1} \tag{3.34}$$

$$S_{t01} = \frac{4,23}{\cos 15^{\circ}} = 4,79 \text{ MM}$$

«3.4.16 Измеряемое число зубьев шестерни при измерении общей нормали»[6]

$$z' = \frac{\sqrt{0.25 \cdot \sqrt[4]{N_{f1} + d_{a1}} - d_{b1}^2 - d_{b1}^2} - S_{bt1} \cos^2 \beta_{b1}}{P_b \cos \beta_{b1}} + 1$$
 (3.35)

$$z' = \frac{\sqrt{0,25 \cdot (5,39 + 20,87)^2 - 14,73^2} - 4,34 \cdot \cos^2 13,58^\circ}{5,61 \cdot \cos 13,58^\circ} + 1 = 2,187$$

Данное значение необходимо округлить в меньшую сторону и в итоге получаем z=2.

«3.4.17 Длина общей нормали» [6]

$$W = (z'-1) \cdot P_b + S_{bt1} \cdot \cos \beta_{b1}$$
 (3.36)

$$W = (2-1) \cdot 5.61 + 4.34 \cdot \cos 13.58^{\circ} = 9.83$$

«3.4.18 Минимальная активная ширина шестерни» [6]

$$b_{N1} = \frac{2 \cdot \sqrt{\mathbf{Q}, 5 \cdot d_z} - \mathbf{I} - 0, 5 \cdot d_{a1} \cos \mathbf{Q}_{ta} - \alpha_{wt}}{\cos \delta} + d_{a1} \cdot \sin \mathbf{Q}_{ta} - \alpha_{wt} \left| tg \delta \right|$$
(3.37)

$$b_{N1} = \frac{2 \cdot \sqrt{4.5 \cdot 30^{2} - 4.5 - 0.5 \cdot 20.87 \cdot \cos 45.09^{\circ} - 20.63^{\circ}}}{\cos 0} + 20.87 \cdot \sin 45.09^{\circ} - 20.63^{\circ} |tg0|$$

$$b_{N1} = 28.3 \text{ MM}$$

3.5 Расчёт усилия на рулевом колесе

Величину усилия, прикладываемую водителем к рулю можно вычислить, используя выражение:

$$P_{PK} = \frac{M_C}{U_W \times \eta_{PM} \times \eta_{PH} \times R_{PK}}$$
 (3.38)

где « M_{C} - момент сопротивления повороту управляемых колес;»[2]

 $U_{\scriptscriptstyle W}$ - кинематическое передаточное число рулевого управления;

 $\eta_{\scriptscriptstyle PM}$ - коэффициент полезного действия механизма;

 $\eta_{\scriptscriptstyle PH}$ - коэффициент полезного действия привода;

 R_{PK} - радиус руля

Для LADA GRANTA $R_{PK} = 0,175 \text{ M}$;

$$\eta_{PM} = 0.85; \ \eta_{P\Pi} = 0.8.$$

Кинематическое передаточное число механизма находится следующим образом:

$$U_W = \frac{\alpha_{PK}}{\alpha_K} \tag{3.39}$$

« α_{PK} - угол поворота рулевого колеса;»[6]

 α_{K} - угол поворота управляемых колес.»[6]

Тогда
$$U_W = \frac{1080}{69.63} = 16.22$$

«Момент сопротивления повороту управляемых колес:»[6]

$$M_C = \frac{S_I}{3} \sqrt{\frac{M_{A1}}{P_W}} = \frac{0.8}{3} \sqrt{\frac{7000}{200000}} = 349$$
 (3.40)

Тогда
$$P_{PK} = \frac{349}{16.22 \times 0.85 \times 0.8 \times 0.175} = 162,6$$

В техническом регламенте таможенного союза «О безопасности транспортных средств» для данного класса автомобилей указано следующее условие: усилие, прикладываемое водителем к рулю при повороте управляемых колес стоящего на месте автомобиля должно быть не более 60Н. Принимая во внимание полученный результат можно сделать вывод о невыполнении данного условия. Однако применение усилителя в конструкции рулевого управления, позволит снизить данную величину до требуемого значения и транспортное средство будет соответствовать указанному выше стандарту.

4 Технологическая часть

4.1 Анализ технологического процесса сборки рулевого механизма

ГОСТ 3.1109-82 содержит в себе термины и определения технологических процессов и операций, используемых в определенных отраслях промышленности. Как гласит данный стандарт технологическим процессом называют последовательность действий, результатом которых является изменение или определение состояния объекта. Объектами, над которыми данные действия выполняются могут быть изделия или заготовки.

Другими словами, технологическим процессом является последовательность взаимосвязанных действий, производимых с момента получения исходных данных и до достижения требуемого результата.

Детально-узловой состав предлагаемой конструкции рулевого механизма полностью идентичен составу серийного механизма транспортного средства. Из этого можно сделать вывод, что технологический процесс сборки модернизированной конструкции будет аналогичным процессу для серийного механизма. Поэтому в проведении дополнительной технологической проработки нет необходимости.

Исключение изменений в технологическом процессе сборки рулевого механизма позволяет избежать расходов на покупку и усовершенствование производственного оборудования и оснастки, а также расходов, связанных с обучением персонала, что также позволит сохранить конечную себестоимость модернизированного рулевого механизма на приемлемом уровне.

4.2 Технологичность разрабатываемой конструкции рулевого механизма Под технологичностью обычно понимают комплекс характеристик, определяющих удобство изготовления, монтажа и обслуживания технически сложного устройства. Технологичность невозможно четко определить в каких-нибудь единицах измерения. Однако при изготовлении технических устройств технологичность в большей степени определяет себестоимость, расходы на производство и последующее содержание. В большинстве случаев, современные конструкции обладают большей технологичностью относительно предыдущих образцов, то есть, изготавливаются и используются с меньшими затратами и с применением более совершенных производственных процессов.

В современной промышленности технические устройства обладают высоким уровнем технологичности, а в производстве автомобилей этот показатель еще выше. Чтобы исключить возникновение различного рода несоответствий изделия во время процесса сборки необходимо широко внедрять автоматизированные процессы, а когда это затруднительно или экономически нецелесообразно, следует увеличивать механизацию труда рабочего персонала. Таким образом можно существенно снизить расходы на контроль качества изготавливаемой продукции. Использование заранее подсобранных крупных узлов позволяет сократить время сборки автомобиля на конвейере, а также уменьшить потребность в производственных площадях для выполнения дополнительных операций. Операции связанные с подтверждением качества покупных изделий должны производиться заводами их изготавливающими. Таким образом можно существенно снизить количества персонала, задействованного в контроле качества. Крепежные изделия следует применять только стандартизированные, т.к. их стоимость существенно ниже и не требуется разработка специального инструмента и приспособлений. Процессы контроля и измерения по возможности должны проходить без участия человека, т.е. в автоматическом режиме. В наилучшем случае контроль и измерение параметров должен производиться инструментом тем же инструментом, что используется для основной операции.

Технологический процесс сборки рулевого механизма LADA GRANTA в большей части хорошо оптимизирован и отвечает большинству указанных выше требований. Номенклатура крепежных изделий определена таким образом, чтобы исключить использование специального инструмента. Расположение инструмента в свою очередь, а именно пневмогайковертов, подобрано так, чтобы обеспечить его наименьшее перемещение при выполнении производственных операций.

4.3 Технологическая схема сборки рулевого механизма

Технологическую схему сборки можно назвать базой технологического процесса. Технологическая схема сборки подготавливается в соответствии с данными предоставленными в конструкторской документации. В ней определяется последовательность операций, количество и наименование необходимых деталей, узлов и крепежа, а также значения крутящих моментов инструмента и усилий запрессовки.

Технологический процесс является основным, в случае изменение значений массы, габаритных размеров или физико-химических свойств устройства.

В случае, когда изменение значений массы, габаритных размеров или физико-химических свойств устройства не происходит технологический процесс называют вспомогательным. К вспомогательным технологическим процессам можно отнести обслуживание и ремонт станков и приспособлений, хранение, перемещение деталей и заготовок между рабочими постами, контроль качества и т.д.

Технологическая операция является базовым элементом технологического процесса.

«Технологическая операция производится рабочим или группой работников непрерывно на одном рабочем месте.»[2] Проведя анализ всего количества операций сборки можно рассчитать требуемое количество рабочих, а также их рабочих мест, определить потребность в инструменте, рассчитать нормативы времени и трудоемкость производственного процесса.

Маршрутной картой называют документ, содержащий описание всех технологических операций в их хронологическом порядке.

Детально-узловой состав автомобиль описывается следующим образом: все узлы и детали разбиваются укрупненно на группы, которые обычно по составу аналогичны системам автомобиля, группы в свою очередь разбиваются на подгруппы, которые обычно соответствуют узлам, а подгруппы уже разбиваются на детали.

Существует ряд требований, применяемых к технологической схеме производственного процесса. Деление на узлы необходимо выполнить так чтобы наибольшее количество узлов устанавливалось независимо друг от друга. Также нужно учитывать, что большое количество узлов требует дополнительные складские площади и приводит к росту трудоемкости сборки. При малом количестве узлов, масса их может превысить максимально допустимую для рабочих, вследствие чего возникнет необходимость в организации специальных приспособлений для установки и перемещения деталей по цеху. Следует избегать частичной разборки или снятия уже смонтированных на автомобиль узлов и деталей. Детали или узлы, которым необходима подгонка или иные дополнительные действия над ними необходимо группировать в отдельные сборочные единицы.

4.4 Перечень сборочных работ

Принимая во внимание обозначенные выше условия составляем перечень работ по сборке модернизированной конструкции рулевого механизма. В данном перечне необходимо соблюдать хронологическую последовательность операций, обозначить их длительность, также указать входящие детали, узлы, специальные приспособления и инструмент, крепежные элементы и их количество.

Таблица 4.1. - Перечень сборочных работ

№	Содержание основных и вспомогательных переходов	Время, топ,
		мин
1	2	3
1. Сборка рулевого механизма		

1	Осмотреть картер рулевого механизма в сборе	0.3
2	Установить картер рулевого механизма в специальном	0.5
	приспособлении и зафиксировать его положении	
3	Установить в картер направляющую втулку.	0.3
4	Осмотреть рейку рулевого механизма	0.3
5	На зубчатую и цилиндрическую части рейки нанести	0.5
	пластичную смазку ТТМ 1.97.0800-2005.	
6	Установить рейку в картер.	0.3
7	Взять шестерню рулевого механизма в сборе и провести	0.3
	ее визуальный осмотр.	
8	На зубчатую часть шестерни нанести пластичную смаз-	0.3
	ку ТТМ 1.97.0800-2005.	
9	Установить шестерню в картер.	0.3
10	Взять и установить кольцо уплотнительное.	0.3
11	Взять и установить сепаратор с роликами в сборе.	0.3
12	Применив оправку надеть крышку картера рулевого ме-	0.5
	ханизма в сборе на шестерню.	
13	Взять две шайбы и два болта крепления крышки карте-	0.2
	ра. Наживить шайбы на болты.	
14	Наживить болты и затянуть гайковертом.	0.5
15	Взять и установить вкладыш упора рейки в картер.	0.3

Продолжение таблицы 4.1

16	Взять упор рейки и уплотнительное кольцо. Установить	0.3
	кольцо на упор.	
17	Установить упор рейки в картер.	0.3
18	Взять и установить пружину в упор рейки.	0.2
19	Взять гайку упора рейки, наживить и затянуть.	0.5
20	Взять и установить заглушку в гайку упора рейки.	0.2
21	Взять и установить колпак защитный левый на картере.	0.3
22	Взять хомут и зафиксировать им левый защитный кол-	0.3
	пак.	
23	Взять и установить опору тяг рулевой трапеции на рей-	0.2
	ке.	
24	Взять скобу и зафиксировать ей опору тяг.	0.3
25	Взять и установить чехол рейки рулевого механизма.	0.5
26	Взять два хомута и зафиксировать ими чехол рейки ру-	0.6
	левого механизма.	
27	Взять и установить колпак защитный правый на картере.	0.3
28	Взять хомут и зафиксировать им правый защитный кол-	0.3
	пак.	
29	Взять и установить пластину на чехол рейки, обеспечив	0.3
	соосность отверстий пластины и чехла.	
30	Взять и установить тягу рулевой трапеции левую на	0.3
	пластину, обеспечив соосность отверстия пластины и	
	шарнира тяги.	
31	Взять и установить тягу рулевой трапеции правую на	0.3
	пластину, обеспечив соосность отверстия пластины и	
	шарнира тяги.	
32	Взять и установить пластину на рулевые тяги, обеспечив	0.3
	соосность отверстий пластины и шарниров рулевых тяг.	

33	Взять и установить стопорную пластину, обеспечив со-	0.3
	осность отверстий стопорной пластины и пластины ру-	
	левых тяг.	
34	Взять болты крепления рулевых тяг, пропустить через	0.7
	отверстия рулевых тяг и пластин, наживить и затянуть	
	гайковертом.	
35	Деформировать стопорную пластину, застопорив болты	0.5
	крепления рулевых тяг.	
Суммарное время на выполнение сборочного процесса: 11.7 мин		

4.5 Трудоемкость сборки рулевого механизма

Суммарная трудоемкость сборки модернизированной конструкции рулевого механизма является суммой времени, затраченного непосредственно на сборку, времени, требуемого для обслуживания рабочих постов, а также времени отдыха и перерывов.

«Время, необходимое для сборки узла равно сумме времени переходов:»[2]

$$t^{OBIII}$$
оп = Σt оп = 11.7 мин

Суммарная трудоемкость:

$$t^{OBIU}$$
 $\mu_{IT} = t^{OBIU}$ $o_{II} + t^{OBIU}$ $o_{II} \cdot (x + \beta) 100 = 11.7 + 11.7 \cdot (x + 4) 100 = 12.4$ $\mu_{II} = t^{OBIU}$ (4.1)

«где α — часть времени, которая тратится на организационно-техническое обслуживание рабочего места.

 β — часть времени, которая тратится на перерывы для отдыха рабочих.»[16]

Примем $\alpha = 2\%$ и $\beta = 4\%$.

4.6 Выбор организационной формы сборки

«Различают две основные организационные формы сборки: стационарную и поточную.»[12]

Характерной чертой стационарного типа сборки является отсутствие низкоквалифицированных работников, высококвалифицированный персонал досконально разбирается в конструкции изделия и технологии его сборки. Расходы на обучение и заработную плату персонала здесь значительно выше чем у поточной сборки. Вся работа производится на одном рабочем месте, который называется постом.

В производствах с поточной формой организации рабочие имеющие невысокую квалификацию закрепленные за одним рабочим местом выполняют обычно одну операцию. Изделие двигается от одного поста к другому. Себестоимость изделия при поточной сборке получается ниже, а производительность труда работников выше. Непрерывность процесса сборки в данной форме производства обеспечивается кратностью времени операции к такту сборки.

Рулевой механизм сложный узел и от него непосредственно зависит безопасность движения транспортного средства, поэтому для организации производства рациональнее выбрать стационарную форму.

Годовой объем производства рулевого механизма примем равным $N_{\varGamma} = 135000 \ \textit{um/год}$

Годовой фонд рабочего времени:

$$\Phi = \mathcal{I}_P \cdot c \cdot T_{CM} \cdot \eta_P \tag{4.2}$$

где $\mathcal{I}_{P} = 259$ — количество рабочих дней в году;

c = 2 — количество смен в день;

 T_{CM} = 8 — рабочее время смены;

 $\eta_{P} = 0.96$ — коэффициент потерь времени обусловленных ремонтом оборудования.

$$\Phi = 259 \cdot 2 \cdot 8 \cdot 0.96 = 3978$$
 часов

В год должно быть произведено 3978 \cdot 60 / 12,4 = 19249 $\,$ шт рулевых механизмов.

Чтобы выполнить годовую программу необходимо организовать 135000 / 19249 ≈ 7 постов сборки.

Такт выпуска рулевого механизма:

$$T = \frac{\Phi_{\delta} \cdot 60}{N_{\Gamma}} = \frac{3978 \cdot 60}{135000} = 1,77 \,\text{мин.}$$
 (4.3)

5 Технико-экономическая оценка модернизируемого объекта

Объектом модернизации в данной работе является легковой автомобиля Lada Granta - яркий представитель бюджетных транспортных средств класса В. Финальная стоимость автомобиля в этом классе во многом определяет успех транспортного средства у потребителя. По соотношению ценакачество-оснащение Lada Granta превосходит большинство своих конкурентов, однако, по управляемости уступает некоторым из них. В рулевом механизме в настоящей работе число оборотов рулевого колеса меньше за счет применения зубчатого зацепления иной геометрии.

Практически любая модернизация подразумевает под собой необходимость в дополнительных инвестициях. Поэтому любая модернизация требует тщательную проработку ее экономической целесообразности. В текущем разделе работы будут определены расходы на внедрение предлагаемых решений в серийное производство, а также проанализирована коммерческая эффективность предлагаемого проекта.

5.1 Расчёт себестоимости проектируемого узла

«Стоимость покупных изделий:»[15]

$$\Pi u = \mathcal{U}_i \cdot n_i \cdot \left(1 + \frac{K_{73}}{100}\right),\tag{5.1}$$

где Ці – «оптовая цена покупных комплектующих изделий і-го вида, руб.» [15]

ni – «количество покупных комплектующих изделий i-го вида, шт.» [15]

Оформим расчет стоимости покупных комплектующих изделий в виде таблицы:

Таблица 5.1 – Расчет затрат на покупные комплектующие изделия (проект)

Наименование покупных	Количество	Средняя цена	Сумма,
деталей и узлов		за 1шт, руб.	руб.
Картер механизма	1	300	300
Рейка	1	400	400
Шестерня в сборе	1	500	500
Остальные комплектующие	40	30	1200
ИТОГО:			2400
«Транспортно-		3%	72
заготовительные			
расходы»[2]			
Всего:			2472

«Основная заработная плата рабочих:»[15]

$$3o = 3m \cdot \left(1 + \frac{K_{\Pi PEM}}{100}\right), \tag{5.2}$$

где «3m — тарифная заработная плата.»[15]

$$3m = Cp_i \cdot T_i \tag{5.3}$$

где « Cp_i – часовая тарифная ставка, руб.» [15]

 $\ll T_i$ — коэффициент премий и доплат, связанных с работой на производстве»[2]

 $\ll K_{\it ПРЕМ}$ — коэффициент премий и доплат, связанных с работой на производстве, %»[15]

Таблица 5.2 – Основная заработная плата производственных рабочих

Виды опера-	Разряд	Трудоем-	Часовая та-	Тарифная
ций	персо-	кость	рифная став-	зарплата,
	нала		ка, руб.	руб.
Сборочные	4	0,17	85,49	14,53
Контрольные	5	0,03	93,58	2,81
ИТОГО:				17,34
Премиаль-	30%			5,2
ные доплаты				
Основная з/п				22,54

«Дополнительная заработная плата рабочих:»[15]

$$3_{\text{ДОП.}} = 3o \cdot K_{\text{ВЫП}}; \tag{5.4}$$

где « $K_{\text{вып}}$ — коэффициент доплат и выплат не связанных с работой на производстве, %»[15]

Принимаем $K_{\text{вып}} = 10\%$

$$3_{\text{ДОП.}} = 22.54 \cdot 0.1 = 2.25$$

«Отчисления в единый социальный налог:»[15]

$$C_{\text{соц.H}} = \{o + 3_{\text{доп.}}\} E_{\text{соц.H}}; \tag{5.5}$$

где « $E_{\text{соц.н}}$ — коэффициент отчислений в единый социальный фонд, %»[15] Принимаем $E_{\text{соц.н}} = 30$ %

$$C_{\text{COII,H}} = (2.54 + 2.25) \cdot 0.3 = 7.44 \, \text{py6}$$

«Расходы на содержание и эксплуатацию оборудования:»[15]

$$C_{\text{COДOБOP}} = 3o \cdot E_{\text{OBOP}} \tag{5.6}$$

где « $E_{\text{ОБОР}}$ – коэффициент отчислений в единый социальный фонд, %»[15] Принимаем $E_{\text{ОБОР}} = 200$ %

$$C_{\text{COJLOBOP}} = 22.54 \cdot 2 = 45.08 \, py 6$$

«Цеховые расходы:»[15]

$$C_{\text{HEX}} = 3o \cdot E_{\text{HEX}}, \tag{5.7}$$

где « E_{IIEX} – коэффициент цеховых расходов, %»[15]

Принимаем $E_{\text{HEX}} = 175\%$

$$C_{\text{IIEX}} = 22.54 \cdot 1.75 = 39.45 \, py 6$$

«Расходы на инструмент и оснастку:»

$$C_{\text{инстр}} = 3o \cdot E_{\text{инстр}}, \tag{5.8}$$

где « $E_{\text{инстр}}$ – коэффициент расходов на инструмент и оснастку, %»[15]

Принимаем $E_{\text{цех}} = 3\%$

$$C_{\text{UHCTP}} = 22.54 \cdot 0.03 = 0.68 \, py \delta$$

Цеховая себестоимость изделия:

$$C_{\text{IIEXC/C}} = \Pi_{\text{II}} + 3o + 3_{\text{JOII}} + C_{\text{COII},H} + C_{\text{COII},OBOP} + C_{\text{IIEX}} + C_{\text{UHCTP}}$$
 (5.9)

$$C_{\text{HEXC/C}} = 2472 + 22.54 + 2.25 + 7.44 + 45.08 + 39.45 + 0.68 = 2589.44$$
 py 6

«Общезаводские расходы:»[15]

$$C_{\text{об.ЗАВОД}} = 3o \cdot E_{\text{об.ЗАВОД}};$$
 (5.10)

где $E_{{\rm Ob.3ABOJ}}$ — коэффициент общезаводских расходов, %

Принимаем $E_{\text{ОБ-ЗАВОЛ}} = 125 \%$

$$C_{OB3ABOJ} = 22.54 \cdot 1.25 = 28.18 \, py 6$$

Общезаводская себестоимость механизма:

$$C_{\text{Ob3ABO},CC} = C_{\text{Ob3ABO},T} + C_{\text{IJEXC/C}}$$
 (5.11)

 $C_{\text{ОБ.3ABOД.CC}} = 28.18 + 2589.44 = 2617.62 \, py 6$

«Коммерческие расходы:»

$$C_{\text{ком}} = C_{\text{об.3ABOД.CC}} \cdot E_{\text{ком}};$$
 (5.12)

где « $E_{\text{ком}}$ — коэффициент коммерческих расходов, %»[15]

Принимаем $E_{\text{ком}} = 5\%$

$$C_{\text{KOM}} = 2617.62 \cdot 0.05 = 130.88 \, py 6$$

«Полная себестоимость изделия:»[15]

$$C_{\text{пол}} = C_{\text{об.3ABOД.CC}} + C_{\text{ком}}$$
 (5.13)

$$C_{\text{пол}} = 2617.62 + 130.88 = 2748.5 \ py6$$

Отпускная цена изделия:

$$\coprod_{\text{OTIL}} = C_{\text{ПОЛ}} \cdot \P + K_{\text{PEHT}}$$
 (5.14)

где « $K_{\text{рент}}$ — коэффициент рентабельности и плановых накоплений, %»[15]

Принимаем $K_{\text{рент}} = 40\%$

$$\coprod_{\text{OTILB}} = 2748.5 \cdot \P + 0.4 = 3742.06 \, py6$$

 $\coprod_{OTII.II} = \coprod_{OTII.II}$

5.2 Расчет точки безубыточности проекта

Под точкой безубыточности понимают объём продаж, для которого все затраты будут покрываться доходами. Искомую величину продаж гарантирующую безубыточность модернизации находим с помощью выражения:

$$V_{\rm KP} = \frac{3_{\Pi O CT, YJ} \cdot V_{MAX}}{\coprod_{O TII} - 3_{\Pi E P, YJ}}, \tag{5.15}$$

где « V_{MAX} — максимальный объем выпуска данной продукции, шт»[15]

«Ц_{отп} – отпускная цена изделия, руб»[15]

« $3_{постуд}$ – удельные постоянные издержки на производство, руб»[15]

« $3_{\text{перуд}}$ – удельные переменные издержки на производство, руб»[15]

Переменные затраты на единицу:

$$3_{\mathit{\Pi EPEM VJI.6.}} = \varPi u + 3_{o} + 3_{\mathit{JOII.}} + C_{\mathit{COII.H}} = 2400 + 22.54 + 2.25 + 7.44 = 2432.24 \; py 6$$

$$3_{\mathit{\Pi EPEM. VJZ.n.}} = \varPi u + 3_{o} + 3_{\mathit{JOH.}} + C_{\mathit{COIJ.H}} = 2472 + 22.54 + 2.25 + 7.44 = 2504.24\,\mathit{py6}$$

Переменные издержки:

$$3_{\Pi E P E M.N.} = 3_{\Pi E P E M.V J} \cdot V_{\Gamma O J} \tag{5.16}$$

$$3_{\Pi EPEM_{H,G}} = 2432.24 \cdot 135000 = 328551733.1$$
py6

$$3_{\Pi EPEMn.n} = 2504.24 \cdot 135000 = 338071733.1 \, py 6$$

Амортизационные отчисления:

$$A_{M.VJJ} = (C_{COJ,OBOP} + C_{UHCTP}) \cdot H_A / 100,$$
 (5.17)

где « $H_{\scriptscriptstyle A}$ - доля амортизационных отчислений, 15%»[15]

$$A_{M.YJ} = (45.04 + 0.68) \cdot 15/100 = 6.86 \, py6$$

«Постоянные издержки на производство:»[15]

$$3_{\Pi OCT. VJI.6.H.} = (C_{COJI. OBOP} + C_{UHCTP}) \cdot (100 - H_A) / 100 + C_{UEX} + C_{OB. 3ABOJI} + C_{KOM} + A_{M. VJI}$$
 (5.18)

$$3_{HOCT.VJI.6.} = (45.04 + 0.68) \cdot (100 - 15) / 100 + 39.45 + 28.18 + 127.28 + 6.86 = 240.67 py6$$

$$3_{\text{HOCT.VJJ.H.}} = (45.04 + 0.68) \cdot (100 - 15) / 100 + 39.45 + 28.18 + 130.88 + 6.86 = 244.27 \ py 6 + 100.000 + 100.000 = 100.0000 = 100.0000 = 100.000 = 100.000 = 100.000 = 100.0000 = 100.00$$

Постоянные издержки для годовой программы:

$$3_{\Pi OCT.} = 3_{\Pi OCT. Y II.} \cdot V_{\Gamma O II} \tag{5.19}$$

 $3_{HOCT.6.} = 240.67 \cdot 135000 = 32490089 .01 py 6$

 $3_{HOCT.H.} = 244.27 \cdot 135000 = 32976089 .01$ py 6

«Полная себестоимость годовой программы выпуска:»[15]

$$C_{\Pi O J. \Gamma} \cdot = C_{\Pi O J. H.} \cdot V_{\Gamma O J} \tag{5.20}$$

 $C_{\Pi O \Pi, \Gamma \delta} = 2672.9 \cdot 135000 = 360841822.11$ py δ

 $C_{\Pi O \Pi I \Pi I} = 2748.5 \cdot 135000 = 371047822.11$ py δ

«Выручка от реализации изделия:»[15]

Выручка.н. =
$$\mathcal{L}_{OTII.\,\text{н.}} \cdot V_{IOД}$$
 (5.21)

Выручка.н. = $3742.06 \cdot 135000 = 505178550.95$ руб

«Маржинальный доход:»[15]

$$\mathcal{A}_{MAPЖ} = Выручка - 3_{ПЕРЕМ} H$$
(5.22)

 $\mathcal{A}_{MAPH6} = 505178550.95 - 328551733.1 = 176826817.85$ py6

 $A_{MAPWII} = 50517855095 - 3380717331 = 167106817.85 py 6$

«Критический объем продаж:»[15]

$$A_{KPHT} = \frac{3_{\Pi OCT.H.}}{II_{OT\Pi}} - 3_{\Pi EPEM.H} = \frac{32976089 \cdot 01}{3742 \cdot 06 - 2504 \cdot 24} = 26640 \cdot 28\mu m$$
(5.23)

Значение объема продаж округлим до 26640 штук. Реализация данного объема модернизированных изделий покроет все затраты на производство при годовой программе 135000 единиц.

Также точку безубыточности можно найти графически:

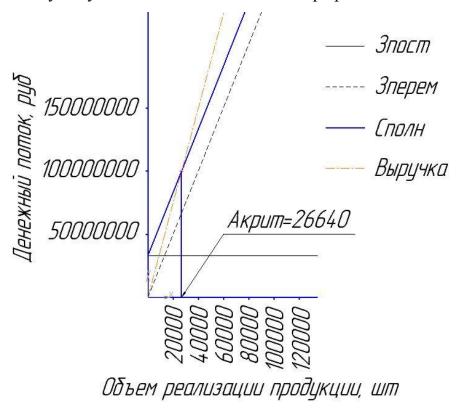


Рисунок 1 - Графический метод нахождения точки безубыточности

5.3 «Расчет коммерческой эффективности проекта»[15]

Прирост объемов производимой продукции происходит поэтапно год от года. В настоящей работе прирост объема производства принимаем равномерным. Для определения этой величины будем использовать выражение:

$$\Delta = \frac{V_{MAX} - A_{KPHT}}{n - 1} \,, \tag{5.24}$$

где « V_{MAX} - максимальный объем продукции, шт»[15]

« A_{KPUT} - критический объем продаж проектируемого изделия, шт»[15]

«n-количество лет, с учетом подготовки производства»[15]

$$\Delta = \frac{135000 - 26640}{6 - 1} = 21672 \, um$$

«Выручка от продаж:»[15]

$$\mathbf{B}_{i} = \mathbf{\coprod}_{\text{ОТП}} \cdot V_{\text{ПРОЛ}i}; \tag{5.25}$$

где « $V_{\text{проді}}$ - объем продаж в і-году.»[15]

«Объем продаж в первый год производства:»[15]

$$V_{\text{ПРОЛі}} = V_{\text{KP}} + \Delta \tag{5.26}$$

Чтобы вычислить объем реализации продукции для последующих лет производства в формуле следует заменить $V_{\rm KP}$ на объем реализации предыдущего года.

 $V_{\Pi P \Omega \Pi 1} = 48312$

 $V_{\Pi P O II2} = 69984$

 $V_{\text{прод3}} = 91656$

 $V_{\Pi P O \Pi 4} = 113328$

 $V_{\text{ПРОЛ5}} = 135000$

 $B_1 = 3742.06 \cdot 48312 = 180786564.1$ py6

 $B_2 = 3742.06 \cdot 69984 = 261884560.81 py 6$

 $B_3 = 3742.06 \cdot 91656 = 342982557.53 py6$

 $B_4 = 3742.06 \cdot 113328 = 424080554.24 \, py 6$

 $B_5 = 3742.06 \cdot 135000 = 505178550.95 \, py 6$

«Переменные затраты по годам:»[2]

$$3_{\Pi E P E M i} = 3_{\Pi E P E M J \mathcal{I}} \cdot V_{\Pi P O \mathcal{I} i} \tag{5.27}$$

$$3_{TEPEME1} = 2432.24 \cdot 48312 = 117506140.22 py 6$$

$$3_{HEPEM.62} = 2432.24 \cdot 69984 = 170217538.44 py 6$$

$$3_{HEPEM.E3} = 2432.24 \cdot 91656 = 222928936.66 py 6$$

$$3_{{\it HEPEM.B4}} = 2432.24 \cdot 113328 = 275640334.88 \, py 6$$

$$3_{\Pi EPEM E5} = 2432.24 \cdot 135000 = 328351733.1 py 6$$

$$\begin{split} &3_{\mathit{\PiEPEM.\Pi1}} = 2504.24 \cdot 48312 = 120984604.22\,\mathit{py6} \\ &3_{\mathit{\PiEPEM.\Pi2}} = 2504.24 \cdot 69984 = 175256386.44\,\mathit{py6} \\ &3_{\mathit{\PiEPEM.\Pi3}} = 2504.24 \cdot 91656 = 229528168.66\,\mathit{py6} \\ &3_{\mathit{\PiEPEM.\Pi4}} = 2504.24 \cdot 133328 = 283799950.88\,\mathit{py6} \\ &3_{\mathit{\PiEPEM.\Pi5}} = 2504.24 \cdot 135000 = 338071733.1\,\mathit{py6} \end{split}$$

«Постоянные затраты по годам:»[15]

$$3_{\Pi OCT} = 3_{\Pi OCT, YJ} \cdot V_{MAX} \tag{5.28}$$

 $3_{HOCT.6} = 240.67 \cdot 135000 = 32490089 .01 py 6$

$$3_{HOCT.H.} = 244.27 \cdot 135000 = 32976089.01 \, py \sigma$$

Амортизация:

$$A_M = A_{M,VJJ} \cdot V_{MAX} \tag{5.29}$$

 $A_{M} = 92664627 py \delta$

«Полная себестоимость по годам (определяется для базового и проектного варианта)»[15]

$$C_{\Pi O J.} i = 3_{\Pi E P E M.i} + 3_{\Pi O C T}$$

$$C_{\text{ПОЛ.1}} = 117506140 .22 + 32490089 .01 = 149996229 .23 py 6$$

$$C_{\text{ПОЛ.2}} = 170217538$$
 .44 + 32490089 .01 = 202707627 .45 руб

$$C_{\Pi O \Pi .3} = 222918936 .66 + 32490089 .01 = 255419025 .67 py 6$$

$$C_{\Pi O \Pi A} = 275640334 .88 + 32490089 .01 = 308130423 .89$$
py 6

$$C_{\text{ПОЛ.5}} = 328351733 .1 + 32490089 .01 = 360841822 .11 py 6$$

$$C_{\Pi O,\Pi,1} = 120984604 .22 + 32976089 .01 = 153960693 .23 py 6$$

$$C_{\Pi O \Pi .2} = 175256386 .44 + 32976089 .01 = 208232475 .45 py 6$$

$$C_{\text{ПОЛ.3}} = 229528168 .66 + 32976089 .01 = 262504257 .67$$
 руб

$$C_{\pi 0 \pi 4} = 283799950 .88 + 32976089 .01 = 316776039 .89 py 6$$

$$C_{\Pi O \Pi .5} = 338071733 .1 + 32976089 .01 = 371047822 .11 py 6$$

«Налогооблагаемая прибыль по годам:»[15]

$$\Pi p_{OEI.i} = B_i - C_{IIO.I.i}$$
(5.30)

$$\begin{split} \Pi p_{OEII.1E} &= 180786564 \ .1 - 360841822 \ .11 = 30790334 \ .87 \ py6 \\ \Pi p_{OEII.2E} &= 261884560 \ .81 - 360841822 \ .11 = 59176933 \ .37 \ py6 \\ \Pi p_{OEII.3E} &= 342982557 \ .53 - 360841822 \ .11 = 87563531 \ .86 \ py6 \\ \Pi p_{OEII.4E} &= 424080554 \ .24 - 360841822 \ .11 = 115950130 \ .35 \ py6 \\ \Pi p_{OEII.5E} &= 505178550 \ .95 - 360841822 \ .11 = 144336728 \ .84 \ py6 \\ \Pi p_{OEII.1II} &= 180786564 \ .1 - 371047822 \ .11 = 26825870 \ .87 \ py6 \\ \Pi p_{OEII.2} &= 261884560 \ .81 - 371047822 \ .11 = 53652085 \ .37 \ py6 \\ \Pi p_{OEII.3} &= 342982557 \ .53 - 371047822 \ .11 = 80478299 \ .86 \ py6 \\ \Pi p_{OEII.4} &= 424080554 \ .24 - 371047822 \ .11 = 107304514 \ .35 \ py6 \\ \Pi p_{OEII.5} &= 505178550 \ .95 - 371047822 \ .11 = 134130728 \ .84 \ py6 \end{split}$$

«Налог на прибыль – 20% от налогооблагаемой прибыли по годам определяется и для базового и для проектного вариантов отдельно:»[15]

$$H_{\Pi Pi} = \Pi p_{OE\Pi i} \cdot 0.20$$
 (5.31)

 $H_{\Pi P.1B} = 30790334 .87 \cdot 0.2 = 6158066 .97 py6$ $H_{\Pi P.2B} = 59176933 .37 \cdot 0.2 = 11835386 .67 py6$ $H_{\Pi P.3B} = 87563531 .86 \cdot 0.2 = 17512706 .37 py6$ $H_{\Pi P.4B} = 115950130 .35 \cdot 0.2 = 23190026 .07 py6$ $H_{\Pi P.5B} = 144336728 .84 \cdot 0.2 = 28867345 .77 py6$ $H_{\Pi P.1B} = 26825870 .87 \cdot 0.2 = 5365174 .17 py6$ $H_{\Pi P.2B} = 53652085 .37 \cdot 0.2 = 10730417 .07 py6$ $H_{\Pi P.3B} = 80478299 .86 \cdot 0.2 = 16095659 .97 py6$ $H_{\Pi P.4B} = 107304514 .35 \cdot 0.2 = 21460902 .87 py6$ $H_{\Pi P.5B} = 134130728 .84 \cdot 0.2 = 26826145 .77 py6$

«Прибыль чистая по годам:»[15]

$$\Pi p.ч.i. = \Pi p.oбл.i. - Hnp.i.$$
(5.32)

 $\Pi p_{_{^{\prime\prime},1E}} = 30790334$.87 -6158066 .97 = 24632267 .9 руб $\Pi p_{_{^{\prime\prime},2E}} = 59176933$.37 -11835386 .67 = 47341546 .69 руб $\Pi p_{_{^{\prime\prime},3E}} = 87563531$.86 -17512706 .37 = 70050825 .49 руб $\Pi p_{_{^{\prime\prime},4E}} = 115950130$.35 -23190026 .07 = 92760104 .28 руб $\Pi p_{_{^{\prime\prime},5E}} = 144336728$.84 -28867345 .77 = 115469383 .08 руб

$$\Pi p_{_{^{\prime\prime},1\Pi}}=26825870$$
 .87 -5365174 .17 $=21460696$.7 руб $\Pi p_{_{^{\prime\prime},2\Pi}}=53652085$.37 -10730417 .07 $=42921668$.29 руб $\Pi p_{_{^{\prime\prime},3\Pi}}=80478299$.86 -16095659 .97 $=64382639$.89 руб $\Pi p_{_{^{\prime\prime},4\Pi}}=107304514$.35 -21460902 .87 $=85843611$.48 руб $\Pi p_{_{^{\prime\prime},5\Pi}}=134130728$.84 -26826145 .77 $=107304583$.08 руб

5.4 «Расчет экономии от повышения надежности и долговечности проектируемого узла»[15]

Предлагаемые в данной квалификационной работе решение обеспечивают увеличение долговечности шестерни и рейки. Таким образом достигается снижение количества простоев в эксплуатации.

Найдем прибыль, обеспечивающуюся улучшением долговечности зубчатого зацепления, используя выражение:

$$\Pi p_{OK,\mathcal{H}i} = \left(\mathcal{U}_{OTII} \cdot \frac{\mathcal{I}_2}{\mathcal{I}_1} - \mathcal{U}_{OTII} \right) \cdot V_{\Gamma}$$
(5.33)

«где Д1 и Д2 - долговечность изделия соответственно по базовому и проектируемому варианту.»[15]

$$\mathcal{I}_1 = 100000; \ \mathcal{I}_2 = 120000.$$

Для расчетов будем использовать сумму цен зубчатой рейки и шестерни: $U_{OTII} = 750 \, py 6$

$$\Pi p_{O\mathcal{K},\mathcal{A}1}=(3742.06\cdot(120000\ /100000\)-3742.06)\cdot48312=7246800\ pyб$$
 $\Pi p_{O\mathcal{K},\mathcal{A}2}=(3742.06\cdot(120000\ /100000\)-3742.061)\cdot69984=10497600\ pyб$ $\Pi p_{O\mathcal{K},\mathcal{A}3}=(3742.06\cdot(120000\ /100000\)-3742.061)\cdot91656=13748400\ pyб$ $\Pi p_{O\mathcal{K},\mathcal{A}4}=(3742.06\cdot(120000\ /100000\)-3742.061)\cdot113328=16999200\ pyб$ $\Pi p_{O\mathcal{K},\mathcal{A}5}=(3742.06\cdot(120000\ /100000\)-3742.061)\cdot135000=20250000\ pyб$ Ожидаемая прибыль от повышения надежности:

где $H_{\text{рем.баз}}$ и $H_{\text{рем.пр}}$ - «число отказов изделия в год по базовому и проектируемому вариантам;»[15]

 $3_{\text{рем.баз}}$ и $3_{\text{рем.пр.}}$ - «затраты на ремонт по базовой и проектируемой конструкции;»[15]

 $T_{\text{прост.баз}}$ и $T_{\text{прост.пр}}$ - «количество часов простоя в ремонте в год при базовой и проектируемой конструкции.»[15]

$$\Pi p_{OKH} = (0.750 - 10.750) + (40 - 20).750 = 135000 py 6$$

«Общественнозначимая экономия:»[15]

$$\mathcal{G}_{OSULi} = \Pi p_{OW,Li} + \Pi p_{OW,Li} \tag{5.35}$$

$$\Theta_{OBIII.1} = 7246800 + 135000 = 7381800 \ py\delta$$

$$\Theta_{OSIII.2} = 10497600 + 135000 = 10632600 \ py6$$

$$\Theta_{OSIII3} = 13748400 + 135000 = 13883400$$
 py6

$$\Theta_{OSIII.4} = 16999200 + 135000 = 17134200 \ py6$$

$$\Theta_{OBUU.5} = 20250000 + 135000 = 20385000$$
 руб

«Тогда текущий чистый доход (накопленное сальдо):»[15]

$$4/\Pi i = \Pi p.ч.i.n. - \Pi p.ч.i.б. + A_M + Эобич.$$
 (5.36)

$$4\mathcal{I}_{1} = 21460696.7 - 24632267.9 + 926646.27 + 7381800 = 5136874.07$$

$$4 \text{ M}_2 = 42921668.29 - 47341546.69 + 926646.27 + 10632600 = 7139366.87$$

$$4\mathcal{I}_{3} = 64382639.89 - 70050825.49 + 926646.27 + 13883400 = 9141859.67$$

$$4\mathcal{I}_{4} = 85843611.48 - 92760104.28 + 926646.27 + 17134200 = 11144352.47$$

$$4\mathcal{I}_{5} = 107304583 .08 - 115469383 .08 + 926646 .27 + 20385000 = 13146845 .27$$

«Дисконтирование денежного потока:»[15]

$$E_{\rm CT} = 10\%$$

$$\alpha_{i} = 1 \setminus (1 + E)^{t}, \qquad (5.37)$$

$$\alpha_1 = 0.909$$

$$\alpha_2 = 0.826$$

$$\alpha_3 = 0,753$$

$$\alpha_4 = 0,683$$

$$\alpha_5 = 0,621$$

$$\Psi / \mathcal{I} / \mathcal{I}(i) = \Psi / \mathcal{I}(i) \cdot \alpha_i \tag{5.38}$$

4ДД = 5136874 .07 \cdot 0.909 = 5136874 .07 py6

 $4ДД (\mathbf{Q}) = 7139366.87 \cdot 0.826 = 7139366.87$ руб

 $4ДД (= 9141859.67 \cdot 0.753 = 9141859.67$ руб

4//// = 11144352 .47 \cdot 0.683 = 11144352 .47 руб

ЧДД **६** = 13146845 .27 · 0.621 = 13146845 .27 руб

Суммарный ЧДД:

$$\sum$$
 ЧДД (i) = 33226139 .55 pyb

Капиталообразующие инвестиции:

$$J_O = K_{uhg} \cdot \sum C_{\Pi O \Pi .i} \tag{5.39}$$

где « $K_{\it ung}$ - коэффициент капиталообразующих инвестиций.»[15]

Принимаем $K_{uhg} = 1\%$.

$$J_{o} = 0.01 \cdot 1312521288$$
 .35 = 13125212 .88 py6

«Чистый дисконтированный доход:»[15]

$$\mathcal{Y} \mathcal{I} \mathcal{I} = \sum_{i=0}^{T} \mathcal{Y} \mathcal{I} \mathcal{I} \mathbf{Q} - J_o$$
(5.40)

 $4 \cancel{Д} \cancel{Д} = 33226139.55 - 13125212.88 = 20100926.66 руб$

«Индекс доходности инвестиций:»[15]

$$JD = \frac{4/1/1}{J_o}; (5.41)$$

JD = 1.53

«Срок окупаемости проекта»[15]

$$T_{o \kappa y n.} = \frac{J_o}{4 / I / I} \tag{5.42}$$

 $T_{oкyn.} = 0,65$ года

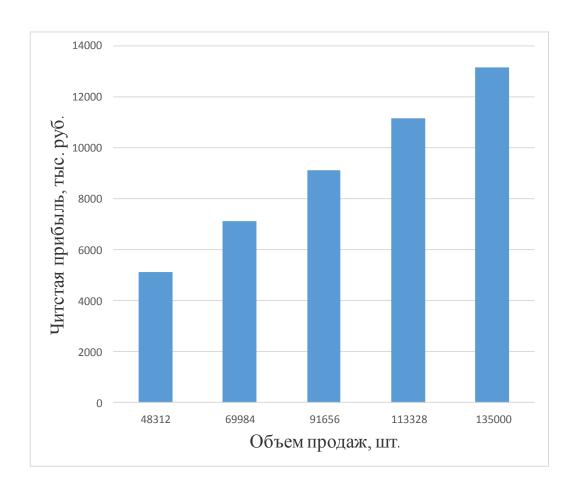


Рисунок 2 – График зависимости прибыли от объема продаж

5.5 Вывод

Основываясь на полученных результатах можно сделать вывод о коммерческой эффективности настоящего проекта. Индекс доходности равен 1.53, т.е. более единицы, а срок окупаемости равный 0.65 года - сравнительно короткий для автомобиля массового производства.

- 6 Безопасность и экологичность проекта
- 6.1 Конструктивно-технологическая и организационно-техническая характеристика рассматриваемого технического объекта
- 6.1.1 Анализ влияния модернизации рулевого управления на параметры устойчивости, управляемости и плавности хода автомобиля

Управляемость, устойчивость и плавность хода транспортного средства оказывают значительное влияние на общий уровень его активной безопасности. Величины этих характеристик в свою очередь определяются в основном конструкцией шасси автомобиля. По мере развития автомобильной индустрии транспортные средства становятся все безопаснее, а их ездовые характеристики постоянно улучшаются. Однако, добиться идеального соотношения данных характеристик не представляется возможным, т.к., например, улучшив плавность хода транспортного средства можно потерять в его управляемости и наоборот. Поэтому настройка шасси современных автомобилей происходит с учетом предполагаемых условий их эксплуатации. Для легковых автомобилей в настоящее время прослеживается тенденция постепенного увеличения управляемости и курсовой устойчивости, обусловленная улучшением качества дорожного полотна и применением при его строительстве новых прогрессивных технологий.

В рамках настоящей работы предлагается способ улучшения управляемости автомобиля 2ого класса путем изменения геометрии зацепления шестерни и зубчатой рейки.

6.1.2 Управляемость и устойчивость транспортного средства

Свойство транспортного средства изменять и сохранять направление движения при изменении положения рулевого колеса принято называть управляемостью. А свойство транспортного средства совершать движение с постоянным сцеплением колес с дорожным полотном называют устойчивостью. Государственные требования, устанавливаемые для этих ездовых свойств автомобиля изложены в ГОСТ Р 52302-2004 «Автотранспортные

средства. Управляемость и устойчивость. Технические требования. Методы испытаний».

«При прохождении сертификационных испытаний для транспортного средства регламентируется усилие на рулевом колесе, стабилизация движения, устойчивость во время проверки на рывок, управляемость и устойчивость в режимах поворот и переставка. На автомобиле находящемся без движения значение усилия на рулевом колесе должно быть не более 60 H, в то время как при движении для транспортного средства, оборудованного усилителем руля усилия должно быть не более 150 H, а в случае выхода усилителя из строя не более 300 H.»[8]

Проверку поворота и переставки следует проводить при скоростях 72 и 83 км/ч соответственно.

Технические решения, рассмотренные в рамках предлагаемой модернизации рулевого управления призваны улучшить управляемость транспортного средства. Поэтому соответствие автомобиля ГОСТ Р 52302-2004 «Автотранспортные средства. Управляемость и устойчивость. Технические требования. Методы испытаний» обеспечивается.

6.1.3 Шум внутренний

Под шумом обычно понимают случайные колебания различной физической природы отличительной чертой которых является сложная временная и спектральная структура. Производители постоянно совершенствуют свои автомобили в части шумов, т.к. это является одним из важных потребительских свойств. Негативными проявлениями влияния шума на водителя и пассажиров являются повышенная утомляемость, снижение работоспособности и концентрации. Таким образом шум может привезти к возникновению аварийной ситуации.

Государственные требования, устанавливаемые для величин шума в автомобиле изложены в ГОСТ Р 51616-2000 «Автомобильные транспортные средства. Шум внутренний. Допустимые уровни и методы испытаний».

«Нормированию подлежат следующие величины: уровень шума во время разгона; уровень шума во время движения с постоянной скоростью; уровень шума климатических и вентиляционных систем автомобиля.»[13]

«В рамках данного документа устанавливается уровень шума для грузовых автомобилей междугороднего и международного направлений в размере не превышающем 80 дБА, для остальных грузовых, а также легковых транспортных средств не превышающем 78 дБА.»[2] При этом допустимая погрешность значение внутреннего шума может составлять до 2 дБА.

Технические решения, рассмотренные в рамках предлагаемой модернизации рулевого управления, не могут изменить уровень внутреннего шума автомобиля и т.к. серийный автомобиль полностью сертифицирован, то и автомобиль с модернизированным рулевым механизмом будет соответствовать ГОСТ Р 51616-2000 «Автомобильные транспортные средства. Шум внутренний. Допустимые уровни и методы испытаний».

6.1.4 Плавность хода

Плавностью хода называют возможность движения транспортного средства по дорожному полотну различной степени качества с приемлемыми значениями колебаний кузова. Так же, как и шум, толчки и вибрации, вызванные неровностями дороги способны существенно увеличить физическую утомляемость водителя и пассажиров, влияют на целостность перевозимого багажа, и также на долговечность узлов и деталей автомобиля. Величина плавности хода может существенно различаться в зависимости от следующих конструктивных особенностей автомобиля таких как массогабаритные параметры, размерность шин, развесовка, упругость сидений и т.д.

Отраслевые требования, устанавливаемые для величины плавности хода автомобиля изложены в ОСТ 37.001.275 «Автотранспортные средства. Методы испытаний на плавность хода» и ОСТ 37.001.291 «Автотранспортные средства. Технические нормы плавности хода».

Технические решения, рассмотренные в рамках предлагаемой модернизации рулевого управления, не могут оказать влияния на плавность хода и поэтому автомобиль будет соответствовать вышеуказанным ОСТ.

6.1.5 Технологический паспорт рулевого управления

Технологический паспорт модернизированного рулевого управления, разработанный на основании технологического процесса, описанного в 3ем разделе данной работы, будет иметь следующий вид:

Таблица 6.1 - Технологический паспорт рулевого управления

Технологиче-	Квалификация и	Технологиче-	Материалы, веще-
ский процесс	должность ра-	ское оборудо-	ства
	ботника	вание	
2	4	5	6
Сборка руле-	Слесарь механо-	Пневмогай-	Пластичная смазка
вого меха-	сборочных работ	коверт, моло-	TTM 1.97.0800-
низма	4 разряда, 1 чело-	ток, специ-	2005
	век	альные оправ-	
		ки и инстру-	
		менты	

6.2 Идентификация профессиональных рисков

6.2.1 Описание рабочего места

Рабочим местом называют определенный участок пространства производственных площадей, закреплённый за работником или группой работников для выполнения служебных обязанностей. На рабочем месте могут располагаться инструмент, специальные приспособления, документация, а также контейнеры для временного хранения узлов и деталей. Рабочие места могут существенно отличаться друг от друга в зависимости от характера выполняемой операции и количества персонала, задействованного в данной работе.

Современные автомобили в подавляющем большинстве собираются на конвейере. В общем смысле под конвейером понимают транспортировочную машину, предназначенную для перемещения различных грузов. Для автосборочного предприятия таким грузом является кузов, который во время движения по конвейеру от одного рабочего места к другому постепенно доукомплектовывается входящими в его состав узлами и деталями.

Для сборки рулевого механизма выделяется отдельный производственный участок. Все сборочные работы осуществляются одним слесарем. Во время сборки используется специальное приспособление для закрепления корпуса рулевого механизма, документация и негабаритные комплектующие изделия хранятся в специальном столе.

Слесарь механосборочных работ при сборке механизма использует приспособления, оправку, молоток и гайковерт. Зафиксировав картер в приспособление, работник устанавливает один за одним комплектующие детали и узлы, применяя смазку. Собранный механизм складывается в специальную тару, которая располагается в зоне доступной для подъезда погрузчиков.

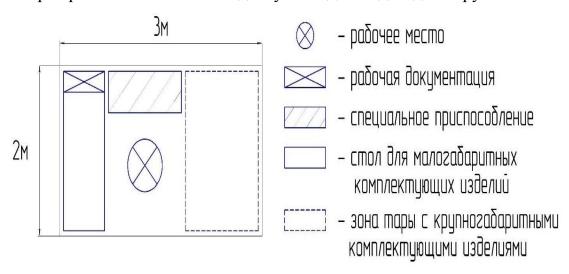


Рисунок 3 - Схема участка сборки рулевого механизма

6.2.2 Идентификация профессиональных рисков на сборочном участке

Под производственными факторами понимают частные случаи факторов окружающей среды и деятельности, вызванные или связанные с трудовой деятельностью человека. Опасные производственные факторы являются причиной возникновения травм у персонала, а вредные могут быть причиной развитию у них профессиональных заболеваний.

Вредные и опасные производственные факторы классифицируются следующим образом:

- 1) Химические;
- 2) Физические;
- 3) Психофизиологические;
- 4) Биологические.

«Химические факторы также можно подразделять по следующим отличительным признакам: по характеру воздействия (токсические, раздражающие, мутагенные, канцерогенные и др.), способу проникновения в организм человека (через органы дыхания, через желудочно-кишечный тракт, через кожные покровы и слизистые оболочки).»[14]

Среди основных физических опасных и вредных производственных факторов выделяют электрический ток, шум и вибрации, опасные значения температуры веществ и окружающей среды.

«К психофизиологическим факторам относят физические и эмоциональные перегрузки, умственное перенапряжение, монотонность труда и др.»[2]

В качестве биологических опасных и вредных производственных факторов могут выступать различные микроорганизмы и продукты их жизнедеятельности.

На участке сборки рулевого механизма работники с наибольшей вероятностью способны оказаться под воздействием физических опасных производственных факторов. Конкретно для данного участка такими факторами будут являться внутрицеховой транспорт и движущиеся элементы инструмента, использующегося при сборке. Наиболее выраженным для данного участка вредным фактором будет являться шум, который возникает вследствие работы гайковертов и движения цехового транспорта. Также в подобных помещениях возможны отклонения от температурного режима.

6.3 Методы и средства снижения профессиональных рисков

Существует множество решений, призванных снизить уровень травматизма в производстве, однако, самым эффективных из всех является своевременный инструктаж персонала по охране труда. Также для данного участка в части снижения травматизма будут эффективны следующие мероприятия:

- 1) Использование препятствий, определяющих зоны движения погрузчиков и персонала;
- 2) Обозначение зон движения персонала и транспорта специальной дорожной разметкой.

Изучение влияния шумов на человеческий организм потребовалось в связи с увеличением механизации во всех сферах жизнедеятельности человека. Область науки, которая занимается данной проблематикой называется аудиологией. По результатам актуальных на сегодняшний день отчетов кратковременное воздействие шумов способно привезти к увеличению утомляемости человека, а постоянное их воздействие приводит к снижению слуховой чувствительности. В случае значительного превышения величины шума слуховая чувствительность человека падает через 1-2 года, для шумов средней величины это время составляет от 5 до 10 лет. Среди других побочных эффектов, вызванных влиянием шума можно также выделить головокружение и головную боль.

Мероприятия, призванные уменьшить влияние шума на производственный персонал можно разделить на звукопоглощение, звукоизоляцию и организационно-технические меры. Звукопоглощение может происходить за счет отдельных стационарных устройств, так и за счет нанесения специальных покрытий на поверхности деталей машин и механизмов. Для улучшения звукоизоляции возможно использовать различные конструкции барьеров, экранов или кожухов. К организационно-техническим мерам можно отнести использование различных глушителей и резонаторов. Однако эффективнее всего бороться с шума можно на стадии проектирования оборудования и оснастки используя оптимальные технические схемы при проектировании оборудования. Применение оптимальных с точки зрения данной проблемы технических решений, например, замена прямозубых шестерней на косозубые, способно привезти к значительному снижению общего уровня шума.

Для уменьшения влияния шума на персонал также необходимо использовать индивидуальные средства защиты, например, наушники или беруши.

- 6.4 Обеспечение пожарной безопасности участка сборки
- 6.4.1 Идентификация опасных факторов пожара

Пожаром называют бесконтрольный процесс горения различных веществ, способный причинить физический, материальный или другой ущерб человеку. Существует множество критериев, по которым классифицируются пожары.

Согласно первой классификации пожары можно определить по внешним признакам горения. Таким образом, все пожары можно разделить на наружные, внутренние, одновременно внутренние и наружные, открытые и скрытые.

В основе следующей классификации лежит виду горючего материала.

«Согласно данной классификации пожарам, вызванным горением твердых горючих веществ и конструкционных материалов присваивается класс А, вызванных воспламенением и горением жидкостей или плавящихся материалов – класс В, вызванных горением газа – класс С, горением металлов – D, вызванных горением электроустановок и объектов, находящихся под

напряжением — E, и, наконец, вызванных горением радиоактивных веществ и отходов — F.»[20]

«К опасным факторам пожара относят открытое пламя и искры, чрезмерная величина теплового потока, значительное превышение нормальной температуры окружающей среды, увеличение концентрации токсичных продуктов горения и термического разложения в кислороде, а также его пониженная концентрация, задымление помещений и как следствие снижение видимости.»[20]

Среди сопутствующих опасных факторов пожара часто выделяют, такие как: обвал зданий, повреждение коммуникаций и производственного оборудования, формирование радиоактивных соединений и токсичных веществ; возникновение коротких замыкания электросети; негативное влияние средств пожаротушения на здоровье персонала и работоспособность производственного оборудования.

6.4.2 Разработка технических средств и организационных мероприятий по обеспечению пожарной безопасности

Самым популярным средством тушения возгораний принято считать огнетушитель. Однако работа его будет эффективной, только в том случае если использовать его в начале развития пожара. Местоположение огнетушителя в помещении должно быть строго определено. Он может располагаться либо на полу, либо на стене с помощью специального кронштейна.

Среди других способов пожаротушения можно также отметить оснащение производственного участка противопожарными устройствами, подключенными к водопроводной сети. Такие устройства могут работать в автоматическом режиме и не требует дополнительных действий от персонала или пожарных для их активации.

Среди организационных средств по обеспечению пожарной безопасности в производстве наиболее эффективными принято считать проведение обучения рабочих охране труда и внедрение тщательно подготовленного плана эвакуации персонала. Разделение потоков людей при выходе из горящего здания может существенно уменьшить количество жертв и снижает общее время эвакуации, тем самым позволяя пожарным раньше начать ликвидировать возгорание.

6.5 Обеспечение экологической безопасности участка сборки рулевого механизма

«Экологией называют науку о взаимодействиях живых организмов и их сообществ между собой и с окружающей средой.» [20]

На производственном участке сборки рулевого механизма транспортного средства отсутствует механическая обработка деталей, а производиться только их установка, тем самым исключается использование таких вредных веществ как СОЖ и опасность поражения рабочих движущимися частями режущего инструмента. Для транспортировки деталей по участку применяют только электропогрузчики, за счет чего обеспечивается отсутствие вредных веществ в воздухе.

Учитывая эти обстоятельства, можно с уверенностью утверждать, что участок сборки рулевого механизма не оказывает негативного влияние на окружающую среду и здоровье рабочих. Таким образом в применение дополнительных мероприятий по уменьшению негативного влияния на окружающую среду нет необходимости.

6.6 Вывод

В данной части квалификационной работы приведена характеристика производственно-технологического процесса сборки рулевого механизма транспортного средства 20го класса, приведен перечень технологических операций, а также должности и количество требуемого персонала Доказано соответствие предлагаемой конструкции рулевого механизма государственным требованиям. В пункте 2 данной части дана классификация профессиональных рисков характерных для производственно-технологического процесса, к опасным и вредным производственно-технологическим факторам

отнесены вероятность травмирования, высокий уровень шума и колебания температуры на производственном участке В 3ем пункте разработаны организационно-технические мероприятия, уменьшающие профессиональные риски. В пункте 4 дана классификация классов и опасных факторов пожаров, технические средства обеспечивающие пожарную безопасность на производственном участке. В пункте 5 была проведена экологическая экспертиза подтвердившая соответствие производственного участка экологическим нормам.

ЗАКЛЮЧЕНИЕ

Результатом данной квалификационной работы является готовый проект модернизации рулевого управления легкового автомобиля 2ого класса. Предложенные технические решения позволяют улучшить управляемость без изменения компоновочной схемы и значительных инвестиций.

Данная работа содержит в себе:

- определение, назначение, классификация рулевого управления автомобилей и требования, предъявляемые к его конструкции;
- произведен анализ направлений развития конструкций рулевых механизмов и усилителей;
 - выбран и обоснован вариант исполнения рулевого механизма;
- выполнен «тягово-динамический расчет легкового автомобиля 2ого класса;»[10]
- произведен «расчет параметров зацепления механизма «шестернярейка»;»[16]
 - рассчитаны параметры шестерни рулевого механизма
 - проработана технология сборки рулевого механизма;
 - доказана экономическая эффективность проекта;
- разработаны меры противопожарной безопасности и мероприятия по охране труда.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев, Б.С. «Автомобильный справочник» [Текст] / Б.С. Васильев, М.С. Высоцкий, К.Л. Гаврилов– М.: Машиностроение, 2004.-704 с.
- 2. Родионов, В.Ф. «Легковые автомобили» [Текст] / В.Ф. Родионов, Б.А. Фиттерман. М.: Машиностроение, 1973.-490 с.
- 3. Раймпель, Й. «Шасси автомобиля» [Текст] / Й. Раймпель. М.: Машиностроение, 1983.-356 с.
- 4. Раймпель, Й. «Шасси автомобиля: Рулевое управление» [Текст] / Й. Раймпель. М.: Машиностроение, 1987.-232 с.
- 5. Лата, В.Н. «Расчет геометрии зацепления "шестерня-рейка" рулевого механизма автомобиля: учебное пособие» [Текст] / В.Н. Лата, И.В. Еремина. Тольятти: Изд-во ТГУ, 2006.-105 с.
- 6. Лата, В.Н. «Конструирование и расчет автомобиля. Ходовая часть и системы управления. Курс лекций» [Текст] -125 с.
- 7. Лысов, М.И. «Рулевое управление автомобилей» [Текст] / М.И. Лысов. М.: Машиностроение, 1973.-344 с.
- 8. Малкин, В.С. «Особенности проектирования рулевого управления автомобиля с учетом свойств эластичности шин: учебное пособие» [Текст] / В.С. Малкин. Куйбышев: Изд-во КуАИ, 1983.-296 с.
- 9. Кисуленко, Б.В. «Краткий автомобильный справочник. Т3» [Текст] / Б.В. Кисуленко, Ю.В. Дементьев, И.А. Венгеров— М.: Автополис-плюс, 2005.-560 с.
- 10. Черепанов, Л.А. «Расчет тяговой динамики и топливной экономичности автомобиля: учеб. пособие» [Текст] / Л.А. Черепанов. Тольятти: ТГУ, 2001.-41 с.
- 11. Лукин, П.П. Гаспарянц, Г.А. Родионов, В.Ф. «Конструкция и расчет автомобиля: Учебник для студентов втузов, обучающихся по специальности «Автомобили и тракторы» [Текст] П.П. Лукин, Г.А. Гаспарянц, В.Ф. Родионов, М: Машиностроение, 1984. 376 с.

- 12. Анурьев, В.И. «Справочник конструктора-машиностроителя» [Текст] / В.И. Анурьев, Справочник конструктора-машиностроителя в 3-х т.: Т. 2. 8-е изд., перераб. И доп. Под ред. И.Н. Жестковой. М.: Машиностроение, 2001. -912 с.
- 13. Илларионов, В.А. «Теория и конструирование автомобилей» [Текст] / В.А. Илларионов и др. Теория и конструирование автомобилей -М.: Машиностроение, 1992.-416 с.
- 14. Юдин, Е.Я. «Охрана труда в машиностроении» [Текст] / Е.Я. Юдин, С.В. Белов, Охрана труда в машиностроении М.: Машиностроение, 1983.-482 с.
- 15. Капрова, В.Г. «Методические указания по технико-экономическому обоснованию дипломного проекта конструкторского и исследовательского направлений для студентов специальности 150100 «Автомобиле- и тракторостроение» [Текст] / В.Г. Капрова Тольятти: ТГУ, 2012.-52 с.
- 16. Горбацевич, А.Ф., Шкред, В.А. «Курсовое проектирование по технологии машиностроения» [Текст] /А.Ф. Горбацевич, В.А. Шкред, Высшая школа, 1983.-236с.
- 17. Гришкевич, А.И. «Автомобили. Конструкция, конструирование и расчет. Системы управления и ходовая часть» [Текст] /А.И. Гришкевич, Мн. Выш. шк., 1987.-200с.
- 18. Соломатин, Н.С. «Итоговая государственная аттестация (государственный экзамен, дипломное проектирование)» [Текст] /Н.С. Соломатин Тольятти: ТГУ, 2006.-161с.
- 19. Валхламов, В.К. «Автомобили основы конструкции» [Текст] /В.К. Валхламов, Академия, 2008.-529с.
- 20. Горина, Л.Н. «Безопасность и экологичность технического объекта» [Текст]/Л.Н. Горина, М.И. Фесина Тольятти :ТГУ, 2016.-53с.
- 21. Dearholt, J.D. Career Paths Mechanics [Text] / J. D. Dearholt, Express Publishing, 2012. 261 c.

- 22. Duffy, J.E. Modern Automotive Technology [Text] / J. E. Duffy, Liberty Publishing House, 2014. 307 c.
- 23. Schnubel, M. Automotive Suspension and Steering Systems [Text] / M. Schnubel, Express Publishing, 2013. 365 c.
- 24. Knowles, D. Automotive Technician Test Preparation [Text] / D. Knowles, Liberty Publishing House, 2011. 228 c.
- 25. Erjavec, J. Automotive Technology [Text] / J. Erjavec, Harper Collins, 2010. 388 c.

приложение А

Графики тягового расчета

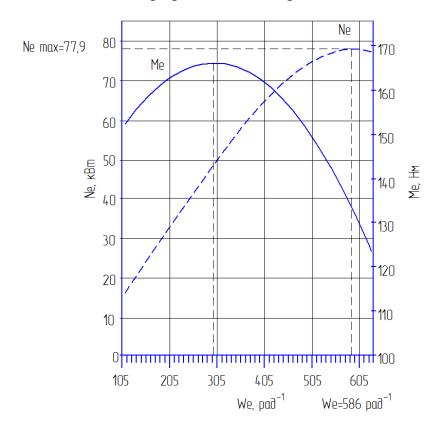


Рисунок А.1 - Внешнескоростная характеристика двигателя

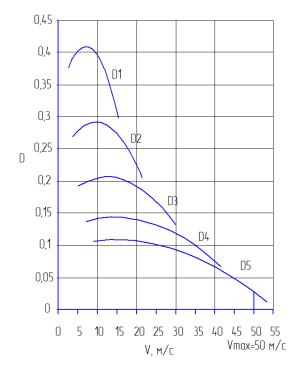


Рисунок А.2 – Динамический фактор автомобиля

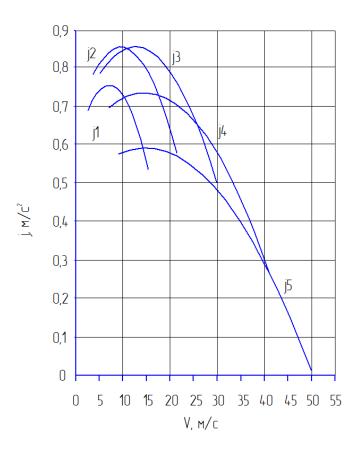


Рисунок А.3 – Ускорения автомобиля

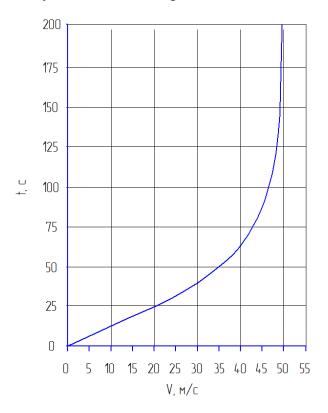


Рисунок А.4 – Время разгона

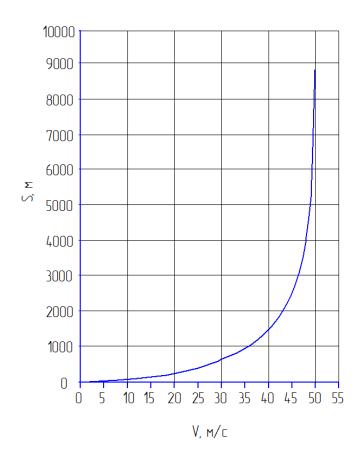


Рисунок А.5 – Путь разгона

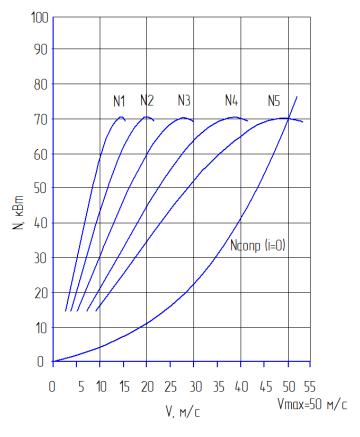
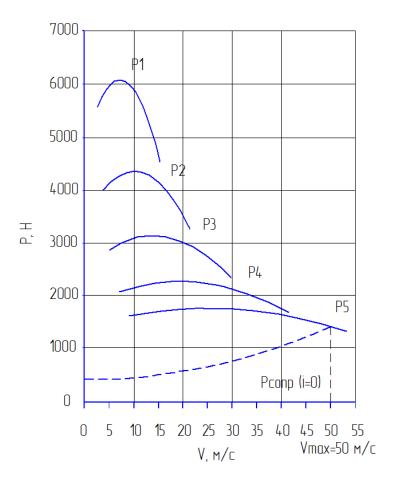
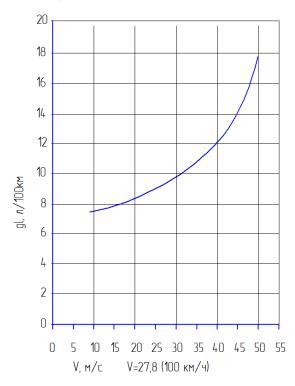




Рисунок А.6 – Мощностной баланс

Рисунок А.7 – Тяговый баланс

приложение Б

Спецификации

	Формат	ЗОНО	7103.	Обозначение	Наименование	Кол.	Приме- чание
, примен	3		2 S		<u>Документация</u>		
Лерв.	A1			18.ДП.01.328.03.000.СБ	Механизм рулевой с тягами в сборе		
					Сборочные единицы		
Справ. №	<i>Б</i> 4		1	18.ДП.01.328-3401010	Картер рулевого механизма в сборе	1	
	<u>A</u> 4	- 5	2	18.ДП.01.328.04.000.СБ	Шестерня рулевого механизма в сборе	1	
	<i>Б</i> Ч		3	18.ДП.01.328-3401044	Крышка картера рулевого механизма в сборе	1	
משנ	<u>5</u> 4		4	18.ДП.01.328-3401116	Сепаратор с роликами в сборе	1	
Подп. и дата	<i>5</i> 4		5	18.ДП.01.328-3414052	Тяга рулевой трапеции правая в сборе	1	
Инб. № дибл.	<i>Б</i> 4		6	18.ДП.01.328-3414053	Тяга рулевой трапеции левая в сборе	1	
B30M, UHB, Nº							
					Детали		
Подп. и дата	<i>5</i> 4		7	18.ДП.01.328-3401018	Болт крепления крышки 18.ДП.01.328.03.000.	2 (5	
инб. № подл.	<i>Ра.</i> При Рук	ков. ОНП)	5. H 1. 1. 0. E	N° dokum. 110an. Uama apmamob H.F. lama B.H. Mexc lama B.H.	лнизм рулевой — — — — — — — — — — — — — — — — — — —	Лист 1	/lucmob 3 "173A"

форма	ЭИНИ Прз.	Обозначение	Наименование	Kon	Приг чань
<u> </u>			рулевого механизма		
<i>5</i> 4	8	18.ДП.01.328-3401026	Кольцо уплотнительное	1	
<u>54</u>	9	18.ДП.01.328-3401053	Пружина упора рейки рулевого механизма	1	
Б4	10	18.ДП.01.328-3401057	Гайка упора рейки	1	
7			рулевого механизма		
<i>Б</i> Ч	11	18.ДП.О1.328-3401066	Болт крепления тяги рулевой трапеции	2	
<u>A1</u>	12	18.ДП.01.328-3401068	Рейка рулевого механизма	1	
<u>5</u> 4	13	18.ДП.01.328-3401070	Вкладыш упора рейки рулевого механизма	1	
БЧ	14	18.ДП.01.328-3401071	Упор рейки рулевого механизма	1	
<i>Б</i> Ч	15	18.ДП.01.328-3401075	Кольцо стопорное гайки Упора рейки	1	
<u>54</u>	16	18.ДП.01.328-3401089	Пластина стопорная болтов крепления тяг рулевой трапеции	1	
<u>Б</u> Ч	17	18.ДП.01.328-3401223	Колпак защитный рейки рулевого механизма левый	1	
Б4	18	18.ДП.01.328-3401224	Чехол рейки рулевого механизма	1	
_	19	<i>18.ДП.01.328-3401225</i>	Колпак защитный рейки	1	

формат	Зана	/I03.	Обозначение	Наименование	Кол	Прим чани
		2 2		рулевого механизма правый		
<u>5</u> 4		20	18.ДП.01.328-3401228	Хомут чехла рулевого механизма	4	
<i>5</i> 4		21	18.ДП.01.328-3401269	Пластина чехла рейки рулевого механизма	2	
<i>5</i> 4		22	18.ДП.01.328-3401276	Заглушка гайки упора рейки рулевого механизма	1	
<i>5</i> 4		23	18.ДП.01.328-3401284	Опора тяг рулевой трапеции	1	
<u>54</u>		24	18.ДП.01.328-3401286	Скоба опоры тяг рулевой трапеции	1	
<u>64</u>		<i>25</i>	18.ДП.01.328-3401302	Кольцо уплотнительное	1	
<u>5</u> 4		26	18.ДП.01.328-3401304	Шайба	2	
<i>N.31</i>	y /II	יכוח	N° āokum. Noān. ∏ama	18.ДП.01.328.03.000.С	5	,

	фармат	Зана	Tlo3.	Обозначенив	<u>-</u>	Наименовани	ie	Кол.	Приме- чание
в. примен	<u>ex</u>					Документаци	<u> 19</u>		
Перв.	<i>5</i> 4			<i>18.ДП.01.328.04.000.</i>	СБ	Шестерня рулево		1	
						механизма в сбор	2		
npaß. Nº	77		XY			<u>Детали</u>			
(UII	A1		1	18.ДП.01.328.05.000		Шестерня рулевого ме	гханизма	1	
	<i>5</i> 4		2	18.ДП.01.328-340110	75	Кольцо подшипниі внутреннее	Ka	1	
	<i>5</i> 4		3	18.ДП.01.328-340112	71	Кольцо стопорног	٥	1	
ושם						,			
ідп, и дата	<i>5</i> 4		4	<i>18.ДП.01.328–340112</i>	?3	Подшипник шесте	рни	1	
7//	54		5	18.ДП.01.328-340126	66	Кольцо опорное		1	
VIHB. Nº đườ	7								
инв. Мо			<i>3</i> 5						
Вэам. Г									
и дата									
Mođn.,	Изі	y. /lu		№ докцм. Подп. Дата	í	18.ДП.О1.328.04	4.000.	СБ	
в. № подл.	Разраб. Нарматов Н.Г. Пров. Лата В.Н. Руков. Лата В.Н.			Нарматов Н.Г. Пата В.Н.	Шестерня рулевого ТГУ, каф."ПЭА" механизма в сборе				
<u>F</u>	Утв. Бобровский А.В.			обровский А.В.	Konupot	. AT-IJUT			