МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ

(институт)

Кафедра «Теплогазоснабжение, вентиляция, водоснабжение и водоотведение» (кафедра)

08.03.01 «Строительство»

(код и наименование направления подготовки, специальности)

«Теплогазоснабжение и вентиляция»

(наименование профиля, специализации)

БАКАЛАВРСКАЯ РАБОТА

на тему г. о. Тольятти. Гостиница. Отопление и вентиляция

Студент(ка)	Т.Д. Шаронова	
	(И.О. Фамилия)	(личная подпись)
Руководитель	М.Н. Кучеренко	
	(И.О. Фамилия)	(личная подпись)
Консультанты	М.И. Галочкин	
	(И.О. Фамилия)	(личная подпись)
	И.Ю. Амирджанова	
	(И.О. Фамилия)	(личная подпись)
Допустить к заш	ите	
допустить к заш	nic	
TI	1 · DM &	
И.О. Заведующего (ученая степень, звание, И.О.	кафедрой <u>к.т.н., доцент, В.М. Филен</u>	<u> </u>
	20	
<u> </u>	20Γ.	

КИДАТОННА

В данной бакалаврской работе были законструированы системы отопления и вентиляции здания гостиницы городского округа Тольятти.

Проведён теплотехнический расчет ограждающих конструкций гостиницы, расчет теплопотерь и теплопоступлений в помещения и составлен тепловой баланс. Посчитан гидравлический расчет, подобраны отопительные приборы STI-300, STI-500 И смесительный насос. Проведен анализ воздухообмена в помещениях. Выполнен аэродинамический расчет приточновытяжной системы вентиляции. Подобрано необходимое оборудование двух приточных камер и систем вытяжной вентиляции. Рассмотрена автоматизация индивидуального теплового пункта здания гостиницы. Найден объем и сделан трудоемкости монтажных работ. Рассмотрена безопасность экологичность технологического объекта.

Проект содержит шесть листов формата A1 и включает в себя общие данные, план на отм. 0,000 и на отм. 3,290 (отопление), план на отметке -2,690, принципиальную схему индивидуального теплового пункта, схему системы отопления, план на отм. 0,000 и на отм. 3,290 (вентиляция), аксонометрические схемы систем П1, П2, В1-В11, ВЕ1.

	СОДЕРЖАНИЕ	Стр
BE	ВЕДЕНИЕ	4
1	ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ	5
	1.1 Параметры наружного воздуха	5
	1.2 Параметры внутреннего воздуха	5
	1.3 Архитектурное описание объекта	6
	1.4 Источник теплоснабжения	7
2	ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ	8
	2.1 Теплотехнический расчет ограждающих конструкций	8
	2.2 Определение теплопотерь здания	11
	2.3 Определение теплопоступлений в здание	11
3	ОТОПЛЕНИЕ	15
	3.1 Конструирование системы отопления	15
	3.2 Гидравлический расчет	15
	3.3 Тепловой расчет отопительных приборов	17
	3.4 Расчет и подбор оборудования	19
4	ВЕНТИЛЯЦИЯ	20
	4.1 Определение требуемых воздухообменов	20
	4.2 Выбор принципиальных решений и конструирование	26
	4.3 Аэродинамический расчет	26
5	КОНТРОЛЬ И АВТОМАТИЗАЦИЯ	35
6	ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ	36
7	БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГ ОБЪЕКТА	O 39
3 <i>A</i>	АКЛЮЧЕНИЕ	43
	ПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	44
	РИЛОЖЕНИЯ	47

ВВЕДЕНИЕ

В наше время невозможно представить ни одно здание без систем вентиляции и отопления.

Достаточный объем чистого воздуха обеспечивает здоровье и хорошее самочувствие каждому из нас, поддерживает необходимый микроклимат в помещении. К расчету и проектированию вентиляции предъявляются высокие требования, прописанные в нормативно – правовых документах.

Для поддержания в помещении необходимой температуры и возмещения теряемого тепла устраивают отопление. Для экономии топлива осуществляется централизованное теплоснабжение на базе совместной выработки тепловой и электроэнергии (ТЭЦ). Центральное отопление улучшает санитарные условия в зданиях, обеспечивает постоянную температуру в помещениях, освобождает от необходимости топить большое количество печей, дает значительную экономию топлива.

Целью данной работы является разработка систем отопления и вентиляции для обеспечения комфортного нахождения людей в гостинице.

Задачи:

- 1. Выполнить теплотехнический расчет;
- 2. Сконструировать систему отопления;
- 3. Сконструировать систему вентиляции;
- 4. Выполнить контроль и автоматизацию систем;
- 5. Организация монтажных работ;
- 6. Обеспечить безопасность объекта.

1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

1.1 Параметры наружного воздуха

Параметры наружного воздуха для г. Тольятти найдены по СП [1]. Для холодного периода года:

- а) Зимняя температура воздуха наиболее холодной пятидневки обеспеченностью 0,92: $t_{\scriptscriptstyle H} = -30~^{\circ}\mathrm{C};$
- б) Количество дней со среднесуточной температурой наружного воздуха менее 8° C: $Z_{\text{от.}} = 203$ сут.;
- в) Средняя месячная температура за отопительный период: $t_{or.} = -5.2$ °C;
- Γ) Максимальная из средних скоростей ветра по румбам за январь: V = 5.4 m/c;
- д) Удельная энтальпия наружного воздуха: $I_{\scriptscriptstyle H} = -29,8~$ кДж/кг.

Для теплого периода года:

- е) Температура наружного воздуха с обеспеченностью 0.95: $t_{\rm H} = 24.6$ °C;
- ж) Удельная энтальпия наружного воздуха: $I_H = 52.8 \text{ кДж/кг}$;
- 3) Минимальная из средних скоростей ветра по румбам за июль: V = 3.2 м/c.

1.2 Параметры внутреннего воздуха

Параметры воздуха находятся для гостиницы категории две звезды в пределах допустимых норм (на основании СП [2]).

Для холодного периода года по ГОСТ [3]:

- а) Подвижность воздуха: V = 0.3 м/с;
- б) Расчетная температура воздуха внутри помещения:

Спальни - t_B = 20 °C; общий с/у, уборная, умывальная, моечная, комната приема пищи, кабинеты, комната отдыха администрации, холл, коридор, кладовая, служебное помещение, комната охраны – t_B = 18 °C; душевая - t_B = 25 °C; гладильная, постирочная, ЛК, курительная - t_B = 16 °C, электрощитовая - t_B = 15 °C.

в) Расчетная относительная влажность воздуха внутри помещения: $\phi = 60 \%$;

Для теплого периода года по [4]:

- а) Температура внутреннего воздуха: $t_B = 27.6$ °C;
- б) Скорость движения воздуха: V = 0.5 м/c;
- в) Относительная влажность воздуха внутри помещения $\phi = 65 \%$.

Влажностный режим помещений по [5] - нормальный;

Условия эксплуатации по [5] – A.

1.3 Архитектурное описание объекта

Проектируемым объектом является двухэтажная гостиница: размеры здания в осях 38,63х18,73 м, высота этажа 3 м, толщина межэтажного перекрытия 0,29 м, имеется подвал без окон высотой 2,2 м, покрытие бесчердачное, высота здания 8,74 м, площадь здания 562,5 м², объем здания 4916 м³. Ориентация фасада на юг, основное помещение – комната приема пищи, так же в здании имеются кладовые, умывальные, уборные, гладильная, моечная, холл, душевые, комната охраны, санитарные узлы, электрощитовая, технический отдел, кабинеты персонала, кабинет отдыха администрации, курительная, служебное помещение.

Характеристики слоев ограждающих конструкций представлены в таблицах 1.1, 1.2 и 1.3. Коэффициенты теплопроводности взяты из [5, прил.Т]. Таблица 1.1 – Характеристика слоев наружных стен

№	Наименование слоя	Толщина δ, м	Теплопроводность λ, Вт/(м·°С)	Плотность γ_0 , кг/м ³
1	Монолитный тяжелый бетон	0,16	1,74	2400
2	Утеплитель – плиты минераловатные		0,042	200
3	Торкрет-бетон	0,1	0,44	1700

Таблица 1.2 – Характеристика слоев бесчердачного покрытия

No	Наумоноромую одод	Толщина	Теплопроводность	Плотность
7/10	Наименование слоя	δ, м	λ , BT/($M \cdot {}^{\circ}C$)	γ_0 , κγ/ M^3
1	Ж/б плита покрытия	0,24	1,92	2500
2	Пароизоляция (2 слоя толи)	0,012	0,17	600
3	Утеплитель – плиты		0,042	200
	минераловатные		0,042	200
4	Цементно-песчаная стяжка	0,03	0,76	1800
5	Четыре слоя рубероида	0,02	0,17	600

Таблица 1.3 – Характеристика слоев перекрытия над подвалом

№	Наименование слоя	Толщина	Теплопроводность	Плотность
		δ, м	λ , BT/(M·°C)	γ_0 , κ Γ/M^3
1	Покрытие пола (паркет)	0,04	0,15	600
2	Цементно-песчаная стяжка	0,02	0,76	1800
3	Утеплитель – плиты		0,042	200
	минераловатные		0,042	200
4	Пароизоляция (рубероид)	0,01	0,17	60
5	Бетон на гравии	0,22	1,74	2400

1.4 Источники тепло- и холодоснабжения

Источник теплоснабжения — ТЭЦ города с параметрами теплоносителя $150\text{-}70~^{\circ}\mathrm{C}.$

2 ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ

2.1 Теплотехнический расчет ограждающих конструкций

Расчет проводится в соответствии с СП [5].

Расчет теплозащитных свойств наружных стен

Требуемое сопротивление теплопередаче наружной стены:

$$R_0^{mp} = 3,191 \text{ m}^2 \cdot {}^{\circ}\text{C} / \text{Bt}.$$

Толщина теплоизоляционного слоя в конструкции ограждения находится:

$$\delta_{u3} = 0.042 \cdot \left(\frac{3.191}{0.81 \cdot 0.94} - \frac{1}{8.7} - \left(\frac{0.16}{1.74} + \frac{0.1}{0.44} \right) - \frac{1}{23} \right) = 0.134 \text{ m},$$

где $r = 0.81 \cdot 0.94$ – коэффициент однородности,

где $r_1 = 0.81$ – коэф. оценки креплений в ограждении для бетона;

 $r_2 = 0.94$ — коэф., учитывающий примыкания других ограждений к расчетному, в стенах учитывает наличие оконных откосов.

Стандартная толщина минерально-ватной плиты 0,14 м [6].

Фактическое сопротивление теплопередаче наружных стен:

$$R_0^{\phi} = \frac{1}{8.7} + \left(\frac{0.16}{1.74} + \frac{0.1}{0.44}\right) + \frac{0.14}{0.042} + \frac{1}{23} = 3.811 \,\text{m}^2 \cdot \text{°}C/Bm$$

Условие $R_0^{np} \ge R_0^{mp}$ (3,811 > 3,191) выполняется.

Для наружных стен коэффициент теплопередачи:

$$k = \frac{1}{3,811} = 0,262 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}).$$

Расчет теплозащитных свойств бесчердачного покрытия

Требуемое сопротивление теплопередаче бесчердачного покрытия:

$$R_0^{mp} = 4.758 \text{ m}^2 \cdot ^{\circ}\text{C /BT}.$$

Толщина теплоизоляционного слоя в конструкции ограждения находится:

$$\delta_{_{U3}} = 0.042 \cdot \left(\frac{4,758}{0,82 \cdot 0.95} - \frac{1}{8,7} - \left(\frac{0.24}{1,92} + \frac{0.012}{0.17} + \frac{0.03}{0.76} + \frac{0.02}{0.17}\right) - \frac{1}{23}\right) = 0.198M,$$

где $r = 0.82 \cdot 0.95$ — коэффициент однородности,

где $r_1 = 0.82 - коэф$. оценки креплений в ограждении для ж/б;

 $r_2 = 0.95 -$ коэф., учитывающий наличие шахт.

Стандартная толщина минерально-ватной плиты 0,2 м.

Фактическое сопротивление теплопередаче наружных стен:

$$R_0^{\phi} = \frac{1}{8.7} + \left(\frac{0.24}{1.92} + \frac{0.012}{0.17} + \frac{0.03}{0.76} + \frac{0.02}{0.17}\right) + \frac{0.2}{0.042} + \frac{1}{23} = 5.273 \,\text{m}^2 \cdot {}^{\circ}C/Bm$$

Условие $R_0^{np} \ge R_0^{mp}$ (5,273 > 4,758) выполняется.

Для бесчердачного покрытия коэффициент теплопередачи:

$$k = \frac{1}{5.273} = 0.190 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}).$$

Расчет теплозащитных свойств перекрытия над подвалом

Для перекрытия над подвалом требуемое сопротивление R_0^{mp} умножаем на поправку:

$$n_{t} = \frac{20-5}{20+5.2} = 0.6$$

где $t_B = 20$ – температура внутреннего воздуха, °C;

 $t_{\text{подв}} = 5$ – температура подвала, °C;

 $t_{or} = -5,2$ — средняя месячная температура за отопительный период, °C.

Тогда требуемое сопротивление теплопередаче перекрытия над подвалом:

$$R_0^{mp} = 4,202 \cdot 0,6 = 2,521 \text{ m}^2 \cdot ^{\circ}\text{C} / \text{Bt}.$$

Толщина теплоизоляционного слоя в конструкции ограждения находится по формуле:

$$\delta_{us} = 0.042 \cdot \left(\frac{2.521}{1} - \frac{1}{8.7} - \left(\frac{0.04}{0.15} + \frac{0.02}{0.76} + \frac{0.01}{0.17} + \frac{0.22}{1.74} \right) - \frac{1}{6} \right) = 0.085 M,$$

где r = 1 - коэф. однородности для перекрытий над подвалом.

Стандартная толщина минерально-ватной плиты 0,1 м.

Фактическое сопротивление теплопередаче наружных стен:

$$R_0^{\phi} = \frac{1}{8.7} + \left(\frac{0.04}{0.15} + \frac{0.02}{0.76} + \frac{0.01}{0.17} + \frac{0.22}{1.74}\right) + \frac{0.1}{0.042} + \frac{1}{23} = 3.017 \,\text{m}^2 \cdot \text{°}C/Bm$$

Условие $R_0^{np} \ge R_0^{mp}$ (3,017 > 2,521) выполняется.

Для перекрытия над подвалом коэффициент теплопередачи:

$$k = \frac{1}{3.017} = 0.231 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}).$$

Расчет теплозащитных свойств окна и наружной двери

Требуемое сопротивление теплопередаче бесчердачного покрытия:

$$R_0^{mp} = 0.534 \text{ m}^2 \cdot ^{\circ}\text{C /BT}.$$

По СП [7, прил.Л] подбирается конструкция остекления окна из условия $R_0^{np} \ge R_0^{mp} \ (0,54 > 0,534)$. Конструкция ПВХ остекления: двухкамерный стеклопакет в одинарном переплете из обычного стекла (с межстекольным расстоянием 12 мм).

Для окна коэффициент теплопередачи:

$$k = \frac{1}{0.54} = 1.852 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}).$$

Приведенное сопротивление теплопередачи наружных дверей находим по формуле:

$$R_{HJJ} = 0.6 \cdot \frac{16 - (-30)}{8.7 \cdot 4} = 0.793 \text{ M}^2 \cdot ^{\circ}\text{C /BT}.$$

где $\Delta t_{_{\rm H}} = 4$ - нормируемый температурный перепад, находится по [4, табл.5];

 $t_{\mbox{\tiny B}} = 16\ ^{\circ}\mbox{C} - \mbox{температура воздуха в лестничной клетке;}$

 $t_{\scriptscriptstyle H}$ = -30 °C – температура наружного воздуха;

 $\alpha_{\rm B}=8.7~{\rm Br/(m^2.^{\circ}C)}-{\rm коэффициент}$ теплопередачи внутренней поверхности ограждения.

Для наружных дверей коэффициент теплопередачи равен:

$$k = \frac{1}{0.793} = 1,261 \text{ BT/(M}^2 \cdot ^{\circ}\text{C}).$$

Результаты теплотехнического расчета сведены в таблицу 2.1.

Таблица 2.1 – Теплотехнические характеристики наружных ограждающих конструкций

Наименование ограждающей конструкции	Толщина утепляющего слоя, δ_{u_3} , м	Толщина ограждающей конструкции, δ , м	Приведенное сопротивление теплопередаче, R_0^{ϕ} , м ² .°С /Вт	Коэффициент теплопередачи, <i>k</i> , Bт/(м ² .°C)
Наружная стена	0,14	0,4	3,811	0,262
Бесчердачное покрытие	0,2	0,502	5,273	0,190
Перекрытие над подвалом	0,15	0,44	3,017	0,231
Окно	одинарном п стекла (рный стеклопакет в переплете из обычного с межстекольным гоянием 12 мм)	0,54	1,852
Наружная дверь	Двойные дво	ери с тамбуром между ними	0,793	1,261

2.2 Определение теплопотерь здания

Расчет ведется на основании справочника [8].

Расчет сводится в таблицу приложение А.

2.3 Определение теплопоступлений в здание

Теплопоступления от людей

Поступление тепла в помещение от людей для помещения №123 (комнаты приема пищи) в XП года:

$$Q_{n} = 87 \cdot 27 = 1889 \text{ BT},$$

где n=27 чел. – количество человек, одновременно находящихся в помещении; q=87 Вт/чел. – удельное явное выделение тепла одним человеком, по [9, табл.2.2].

Аналогично помещение № 123 (комната приема пищи):

- в ТП года: $Q_{\scriptscriptstyle A} = 49 \cdot 27 = 1323\,$ Вт.

Помещение № 215 (холл):

- в XП года: $Q_{\pi} = 77 \cdot 27 = 1534$ Вт;

- в ТП года: $Q_{\pi} = 50 \cdot 27 = 1344$ Вт.

Теплопоступления от источников искусственного освещения

Поступления тепла от источников искусственного освещения для помещения №123 (комнаты приема пищи) для XП находятся по формуле:

$$Q_{ocs} = 200 \cdot 50, 1 \cdot 0,087 \cdot 1 = 972 \,\mathrm{BT},$$

где $E = 200 \,\text{Лк}$ – освещенность, принимается по [9, табл. 2.3];

 $F = 50,1 \text{ м}^2$ – площадь пола помещения;

 q_{ocs} – удельные тепловыделения, Вт/ м²·Лк, принимается по [9, табл. 2.4];

 $\eta_{{}_{ocs}}$ — доля тепла, поступающего в помещение, равно 1.

Так же для помещения № 215 (холл): $Q_{ocs} = 200 \cdot 50,71 \cdot 0,087 \cdot 1 = 882 \,\mathrm{Bt}$.

Теплопоступления от солнечной радиации

Поступления тепла от солнечной радиации рассчитывается для ТП на примере 4-5 часов помещения №123 (комната приема пищи):

$$Q_{c.p.} = \sqrt{+10} \cdot 8,2 \cdot 1,58 \cdot 0,85 \cdot 0,6 = 66BT,$$

где $q_{{\scriptscriptstyle B\Pi}}=0$ — поступления тепла от прямой солнечной радиации в июле;

 $q_{{\scriptscriptstyle BP}} = 10$ — поступления тепла от рассеянной солнечной радиации в июле;

 $F_0 = 8,2 \text{ м}^2 -$ площадь поверхности остекления;

 $k_1 = 1,58$ — коэффициент, учитывающий затенение остекления и загрязнения атмосферы;

 $k_2 = 0.85$ — коэффициент, учитывающий загрязнение стекла;

 $\beta_{C3} = 0,6$ — коэффициент теплопропускания солнцезащитных устройств,

принимается равным 1, если есть шторы, жалюзи, решетки, то равен 0,4 - 0,6.

Весь расчет теплопоступлений от солнечной радиации сводится в приложение Б.

Теплопоступления от остывания горячей пищи

Полное количество теплоты, Вт, выделяемой пищей при остывании, по методике [10] находится по формуле:

$$Q_{ocm} = \frac{0.85 \cdot 3.3 \cdot 27 \cdot \sqrt{0 - 40}}{0.3 \cdot 3.6} = 2104 \text{ Bt},$$

где $q_n = 0.85$ кг - средний вес всех блюд, приходящихся на посетителя;

 $c_n = 3,3 \ \kappa \mbox{Дж/(кг}^{\mbox{o}} \mbox{C})$ - средняя теплоемкость блюд;

 $t_{\rm HII} = 70~^{\rm o}{\rm C}$ - температура блюд, поступающих в помещение;

 $t_{\rm kn}$ = 40 °C - температура блюд в момент потребления;

n = 27 штук - количество посадочных мест;

 $z_n = 0.3$ ч - продолжительность принятия пищи одним посетителем.

Теплопоступления от электрических приборов

Теплопоступления от электроприборов находятся в зависимости от их электрической мощности по методике [10] по формуле:

$$Q_{9} = N_{9} \cdot \eta_{9} \tag{2.1}$$

где $N_{\rm 9}$ - электрическая мощность приборов, Bт;

 η_{9} - коэффициент, учитывающий долю тепла, поступающего в помещение, если прибор без укрытия, то равен 1, если с укрытием, то 0,2 - 0,6.

В помещении находятся три четырехконфорочные плиты мощностью по 5600 Вт, холодильник - 200 Вт, микроволновая печь - 1500 Вт, электрический чайник – 2000 Вт, следовательно теплопоступление от приборов будет равно:

$$Q_9 = 5600 \cdot 0.6 \cdot 3 + 200 \cdot 1 + 1500 \cdot 1 + 2000 \cdot 1 = 13570 \text{ Bt.}$$

Тепловой баланс

Тепловой баланс составляется для нахождения избытков или недостатков тепла, которые должна компенсировать система вентиляции.

Для ХП года:

$$Q_{\text{Behm}} = Q_{\pi} + Q_{\text{OCB}} + Q_{\text{OCM}} + Q_{3} + Q_{\text{npou}} - Q_{\text{OCP}} - Q_{\text{npou}}$$
(2.2)

Для ТП года:

$$Q_{\text{genm}} = Q_{\text{A}} + Q_{\text{c.p.}} + Q_{\text{ocm}} + Q_{\text{3}} + Q_{\text{npoy}}$$
(2.3)

где Q_{npou} - прочие (неучтенные) теплопотери и теплопоступления, равны 5 % от суммы теплопотерь или теплопоступлений.

Расчет теплового баланса сводится в таблицу 2.2.

Таблица 2.2 – Тепловой баланс

Период		Теплопоступления, Вт								Теплопотери, Вт		
года	$Q_{\scriptscriptstyle J\!I}$	Q _{ocb}	Q _{c.p.}	Q _{oct.}	Q_{9}	Q _{проч}	ΣQ	Q _{огр.}	Q _{проч}	ΣQ	Вт	
	Комната приема пищи											
ΧП	1889	972		2104	13570	927	19459	1203	60	1263	18195	
ТΠ	1323		1555	2104	13570	927	19476				19476	
	Холл											
ΧП	1534	882				121	2537	1602	80	1682	855	
ТΠ	1344		725			103	2172				2172	

3 ОТОПЛЕНИЕ

3.1 Конструирование системы отопления

Характеристика системы отопления: вертикальная двухтрубная с нижней разводкой и тупиковым движением теплоносителя.

Подключение к теплосетям по зависимой схеме с насосом на перемычке.

Прокладка магистральных труб на отм. -0,990 вдоль стен подвала с 0,003. уклоном Bce трубы за исключением подводок покрыты ТИЛИТ теплоизоляционными вспененными трубками СУПЕР [11]. Температура теплоносителя равна 95-70 °C.

Установка запорно-регулирующей арматуры в системе отопления производится на подающих и обратных магистралях около теплового пункта для отключения и слива воды.

В качестве регулирующих устройств на подводках к отопительным приборам для двухтрубной системы монтируется кран двойной регулировки – КРД. Для удаления воздуха из системы отопления применяют кран для спуска воздуха, располагаемый на радиаторах в верхних точках стояков. В проектируемом здании гостиницы нагревательные приборы устанавливаются под световым проемом.

Система отопления выполнена из легких стальных водогазопроводных труб по ГОСТ [12]. Отопительные приборы – алюминиевые радиаторы STI-300 и STI-500 [13].

3.2 Гидравлический расчёт

Цель: нахождение диаметров трубопроводов, необходимых для перемещения определенного количества теплоносителя при располагаемой разности давления в системе.

Гидравлический расчет двухтрубной системы отопления ведется способом удельных потерь давления на трение, согласно [14]:

Расход воды на каждом участке находится по формуле:

$$G_{yy} = \frac{3.6 \cdot Q_{yy}}{c \cdot (t_z - t_o)} \cdot \beta_1 \cdot \beta_2 \tag{3.1}$$

где β_1 — коэффициент учета теплопередачи через дополнительную площадь приборов, находится по [14, табл. 9.4];

 β_2 — коэффициент учета дополнительных потерь теплоты отапливаемыми приборами у наружных ограждений, определяется по [14, табл. 9.5];

c – удельная массовая теплоемкость воды, равная 4,187 кДж/кг.°С;

Расчетное циркуляционное давление:

$$\Delta p_p = 13740 + 0.4 \cdot 393 = 13900 \text{ }\Pi \text{a},$$

где $\Delta p_{_{\scriptscriptstyle H}} = 13740$ — циркуляционное давление насоса, Па, находится по формуле:

$$\Delta p_{_{H}} = 100 \cdot 137, 4 = 13740 \, \text{\Pi a},$$

где $\sum l_{OUK}$ =137,4 — длина основного циркуляционного кольца, м;

 $\Delta p_{_{e.np.}} = 393$ — естественное циркуляционное давление, находится по формуле:

$$\Delta p_{e.np.} = 0.64 \cdot 9.81 \cdot 2.504 \cdot (95 - 70) = 393$$
 Па,

где $\beta = 0.64$ — среднее приращение плотности при понижении температуры воды на 1 °C, по [14, табл. 10.4];

h = 2,504 — вертикальное расстояние между условным центром охлаждения в отопительном приборе на нижнем этаже и центром в системе (ось насоса), м. Среднее удельное линейное потеря давления на трение:

$$R_{cp} = \frac{0.9 \cdot 0.65 \cdot 13900}{137.4} = 59.2 \text{ }\Pi\text{a/m}.$$

где 0,65 – коэффициент, учитывающий долю потерь давления на трение;

0,9 – коэффициент, резервирующий 10% расчетного циркуляционного давления на неучтенные потери.

По R_{cp} и G_{yq} по [14, прил. II1] подбираем возможные диаметры труб ОЦК. Для этого диаметра при данном расходе устанавливаем фактическое сопротивление R_{ϕ} и скорость движения воды в трубах V.

Для каждого участка находится сумма коэффициентов местных сопротивлений Σξ по [14, табл. II10, II20] и с учетом скорости находят потери давления в местных сопротивлениях трубопроводов Z по [14, табл. II3].

Общие потери давления в расчетном кольце:

$$\Delta p_{yy} = R \cdot l + Z \tag{3.2}$$

Потери давления в главном циркуляционном кольце сравниваем с располагаемым перепадом давления:

$$\frac{\Delta p_p - \sum \Delta p_{y^q}}{\Delta p_p} \cdot 100\% \le 15\% \tag{3.3}$$

Аксонометрическая схема системы отопления представлена в приложении В. Эпюры циркуляционных давлений представлены в приложении Г. Результаты гидравлического расчета сводятся в приложение Д.

3.3 Тепловой расчет отопительных приборов

Расчет проводится на основании [13], [14].

Пример расчета для помещения №218.

Расчетная теплоотдача прибора:

$$Q_{np} = 1001 - 0.9 \cdot 101 = 910 B_{T}$$

где $Q_{\text{пом}} = 1001 \; \text{Вт}$ - расчетная теплоотдача помещения;

 $\beta_{\text{тр}} = 0.9$ – коэффициент, учитывающий долю теплоотдачи труб, полезную для поддержания заданной температуры;

 $Q_{\text{тр}} = 101 \; \text{Вт} - \text{теплоотдача открыто расположенных в пределах помещения труб стояка и подводок:}$

$$Q_{mp} = 51 \cdot 0.7 + 67 \cdot 1 = 101 \text{ BT},$$

где $q_B = 51$, $q_\Gamma = 67$ — теплоотдача одного метра горизонтально или вертикально расположенных труб, находится по [14, табл. II.22];

 $l_{\scriptscriptstyle B} = 0,7, \, l_{\scriptscriptstyle \Gamma} = 1 -$ длина вертикальных и горизонтальных труб в помещении, м.

Расчетная площадь нагревательной поверхности прибора:

$$F_{np} = \frac{910}{651.3} = 1.4 \text{ m}^2,$$

где $q_{np}=651,3$ — расчетная плотность теплового потока с одного метра прибора, $B\tau/m^2$:

$$q_{np} = 790 \cdot \left(\frac{62,5}{70}\right)^{1+0,3} \cdot \left(\frac{37}{360}\right)^{0,02} = 651,3 \text{ BT/M}^2,$$

где $q_{\text{ном}} = 790$ — номинальная плотность теплового потока, B_T/M^2 , [13];

 $n=0,3,\ p=0,02,\ -$ коэффициенты, показывающие влияние гидравлических и конструктивных особенностей на коэффициент теплоотдачи прибора (при расходе воды 18-50 кг/ч p=0,02, при расходе воды 54-536 кг/ч p=0-c подачей воды сверху вниз);

 $G_{np} = 37 \ \kappa \Gamma / \Psi -$ расход воды в приборе;

 $\Delta t_{cp} = 62,5$ °C — средний температурный перепад между средней температурой теплоносителя в приборе и температурой окружающего воздуха:

$$\Delta t = \frac{95-70}{2} - 20 = 62,5$$
 °C,

где $t_{\text{вх}} = 95$, $t_{\text{вых}} = 70$ — температуры на входе и на выходе из отопительного прибора, °C;

 $t_{\text{пом}} = 20 -$ температура окружающего воздуха, °C;

Находим число секций радиатора:

$$N = \frac{1.4 \cdot 1.02}{0.198 \cdot 1.01} = 8 \text{ mit},$$

где $f = 0,198 \text{ м}^2 -$ площадь одной секции для STI-500, для STI-300 $f = 0,134 \text{ м}^2$ [13];

 $\beta_4 = 1,02$ — коэффициент, учитывающий способ установки прибора, по [14, табл. 9.12] (радиатор установлен открыто под подоконной доской);

 $\beta_3 = 1,06$ – коэффициент, учитывающий число секций в одном радиаторе:

$$\beta_3 = 0.97 + \frac{0.06}{1.4} = 1.01$$
.

Расчет приборов сводится в приложение Е.

3.4 Расчет и подбор оборудования

Насос на перемычке обеспечивает смешение теплоносителей и не влияет на величину циркуляционного давления в СО.

Производительность насоса находится по формуле:

$$G_{u} = 1,1 \cdot u \cdot \frac{G_{CO}}{u+1} \tag{3.4}$$

где u – коэффициент смешения, характеризующий соотношение масс двух смешиваемых потоков воды:

$$u = \frac{150 - 95}{95 - 70} = 2,2,$$

т.е. на единицу массы высокотемпературной воды должно подмешиваться 2,2 охлажденной.

$$G_{H} = 1.1 \cdot 2.2 \cdot \frac{1.728}{2.2 + 1} = 1.3 \text{ T/Y}.$$

Давление, развиваемое насосом равно:

$$\Delta p_{H} = 1,15 \cdot 12477 = 14350 \ \Pi a = 1,43 \ M = 0,143 \ \text{fap},$$

где $\Delta p_{CO} = 12477~\Pi a$ — потери давления в системе отопления.

По заданным характеристикам был подобран насос фирмы Grundfos [15] ALPHA2 25-40 180, характеристика которого представлена на рис. 3.1.

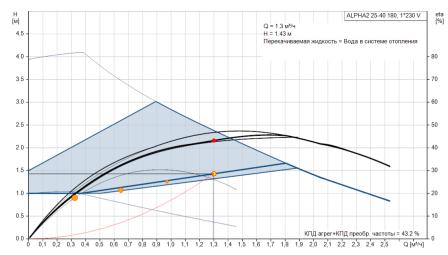


Рисунок 3.1 – Характеристика насоса ALPHA2 25-40 180

4 ВЕНТИЛЯЦИЯ

4.1 Определение требуемых воздухообменов

При одновременном выделении влаги и тепла определение воздухообмена ведется с помощью I-d диаграммы. Расчет проводится на основании методики, описанной в справочнике [16].

Расчет для комнаты приема пищи в ХП года

Количество влаги, поступающее в помещение от людей:

$$W = 67 \cdot 27 = 1.809$$
 кг/ч.

где w = 67 кг/ч - количество влаги, которую выделяет один человек, по [9, табл. 2.2];

n = 27 чел. - количество человек в помещении.

Величина полного избыточного тепла равна:

$$Q_n = 3.6 \cdot 19398 + (2500 + 1.8 \cdot 18) \cdot 1.809 = 74414 \text{ BT},$$

где $Q_{\rm s} = 19398$ – избытки явного тепла, Вт;

 $t_{\text{в}} = 18$ — температура внутреннего воздуха, °C.

Для нахождения процесса на I - d диаграмме (прил. Ж) необходимо выяснить значение коэффициента луча процесса:

$$\varepsilon = \frac{74414}{1.809} = 41135 \text{ кДж/кг,}$$

Также необходимо найти параметры приточного и удаляемого воздуха в помещении.

Температура приточного воздуха:

$$t_n = 18 - 4 = 14$$
 °C.

где $\Delta t_p = 4$ °C — рабочая разность температур между приточным и внутренним воздухом.

Температура удаляемого воздуха:

$$t_y = 18 + 1.3 \cdot (3 - 1.5) = 20$$
 °C,

где grad t = 1,3 – градиент температуры в помещении, находится по справочнику [17] с учетом теплонапряженности помещения:

$$q = \frac{19398}{1504} = 121 \text{ BT/M}^3,$$

где $V_{\text{пом}} = 150.4 \text{ м}^3$ – объем помещения.

Далее наносим значения на I-d диаграмму для нахождения необходимых параметров воздуха. Эти параметры нужны для расчета расхода воздуха в помещении:

$$L_{t} = \frac{3.6 \cdot 19398}{1.2 \cdot 1,005 \cdot (20 - 14)} = 9050 \text{ m}^{3}/\text{ч},$$

$$L_{t} = \frac{74414}{1.2 \cdot (20.7 - 14.1)} = 8950 \text{ m}^{3}/\text{ч},$$

$$L_{d} = \frac{1000 \cdot 1,809}{1.2 \cdot (0.34 - 0.17)} = 8870 \text{ m}^{3}/\text{ч},$$

Для ТП года аналогично:

$$W = 133,2 \cdot 27 = 3,596 \text{ кг/ч},$$

$$Q_n = 3,6 \cdot 19476 + (2500 + 1,8 \cdot 27,6) \cdot 3,596 = 79282 \text{ Bt},$$

$$\varepsilon = \frac{79282}{3,596} = 22047 \text{ кДж/кг},$$

$$q = \frac{19476}{150,4} = 129 \text{ Bt/m}^3,$$

$$t_v = 27,6 + 1,5 \cdot (3 - 1,5) = 29,9 ^{\circ}\text{C}.$$

Температура приточного воздуха будет выше температуры наружного воздуха на 1 градус, и равен $t_n = 25,6$ °C.

$$L_{t} = \frac{3.6 \cdot 19476}{1.2 \cdot 1,005 \cdot (29.9 - 25.6)} = 13520 \text{ m}^{3}/\text{y},$$

$$L_{t} = \frac{79282}{1.2 \cdot (58.9 - 53.9)} = 13210 \text{ m}^{3}/\text{y}$$

$$L_{d} = \frac{1000 \cdot 3.596}{1.2 \cdot (11.33 - 11.1)} = 13030 \text{ m}^{3}/\text{y}.$$

Выбираем максимальные значения расходов воздуха из XП и ТП, для нахождения расхода воздуха, по которому будет производиться дальнейший

расчет. Данный расход должен быть не менее, чем расход по санитарным нормам (если больше, то берется по санитарным нормам):

$$L_{CH} = 20 \cdot 27 = 540 \text{ m}^3/\text{y},$$

где $l_{\it CH}$ = 20 — норма воздухообмена на человека, по [4, прил.К].

Расходы $L^x = 9050 \text{ м}^3/\text{ч и } L^\text{T} = 13520 \text{ м}^3/\text{ч больше 540 м}^3/\text{ч, условие соблюдается.}$ И так как $L^\text{T} > L^x$ и в помещении есть окна, то за расчетный берется расход за холодный период $L^x = 9050 \text{ м}^3/\text{ч, в теплый период вентиляция происходит за счет аэрации.$

Расчет для холла ведется аналогично. I-d диаграмма представлена в прил. 3. Для $X\Pi$ года:

$$W = 67 \cdot 27 = 1,809 \text{ кг/ч},$$

$$Q_n = 3,6 \cdot 2457 + (2500 + 1,8 \cdot 18) \cdot 1,809 = 13430 \text{ Bt},$$

$$\varepsilon = \frac{13430}{1,809} = 7424 \text{кДж/кг},$$

$$q = \frac{2457}{152,1} = 16,1 \text{ Bt/m}^3,$$

$$t_y = 18 + 0,3 \cdot (3 - 1,5) = 18,5 \text{ °C},$$

$$t_n = 18 - 4 = 14 \text{ °C},$$

$$L_t = \frac{3,6 \cdot 2457}{1,2 \cdot 1,005 \cdot (18,5 - 14)} = 919 \text{ m}^3/\text{ч},$$

$$L_t = \frac{13430}{1,2 \cdot (22,1 - 14,5)} = 907 \text{ m}^3/\text{ч}$$

$$L_d = \frac{1000 \cdot 1,809}{1,2 \cdot (1,5 - 0,1)} = 897 \text{ m}^3/\text{ч}.$$

Для ТП года: $W = 133,2 \cdot 27 = 3,596$ кг/ч,

$$Q_n = 3,6 \cdot 2172 + (2500 + 1,8 \cdot 27,6) \cdot 3,596 = 16990 \text{ Bt},$$

$$\varepsilon = \frac{16990}{3,596} = 4724 \text{ кДж/кг},$$

$$q = \frac{2172}{1521} = 14,3 \text{ Bt/m}^3,$$

$$t_{y} = 27.6 + 0.8 \cdot (3 - 1.5) = 28.8 \,^{\circ}\text{C}, t_{n} = 25.6 \,^{\circ}\text{C},$$

$$L_{t} = \frac{3.6 \cdot 2172}{1.2 \cdot 1.005 \cdot (28.8 - 25.6)} = 2026 \,^{\text{M}^{3}}/^{\text{H}},$$

$$L_{t} = \frac{16990}{1.2 \cdot (60.9 - 53.6)} = 1940 \,^{\text{M}^{3}}/^{\text{H}}$$

$$L_{d} = \frac{1000 \cdot 3.596}{1.2 \cdot (12.6 - 11)} = 1873 \,^{\text{M}^{3}}/^{\text{H}}.$$

$$L_{CH} = 20 \cdot 27 = 540 \,^{\text{M}^{3}}/^{\text{H}}.$$

Расходы $L^x = 919 \text{ м}^3/\text{ч и } L^\text{T} = 2026 \text{ м}^3/\text{ч больше 540 м}^3/\text{ч, условие соблюдается. И так как <math>L^\text{T} > L^x$ и в помещении есть окна, то расчетный расход $L^x = 919 \text{ м}^3/\text{ч, в теплый период вентиляция происходит за счет аэрации.$

Определение воздухообмена по кратности. Воздушный баланс

Расход вентилируемого воздуха находится по формуле:

$$L = k \cdot V, \, \mathbf{M}^3 / \mathbf{Y} \tag{4.1}$$

где k – кратность воздухообмена, из [16], [18], q^{-1} ;

V – внутренний объем помещения, M^3 .

Результаты расчета сводится в таблицу 4.1. Для уравнивания воздухообменов недостающий приток был направлен в коридоры № 115 и № 213.

Таблица 4.1 – Воздушный баланс здания

№ помещения	Наименование	+		Приток		Вытяжка	
	помещения гостиницы	t _B , °C	V, M ³	k, ч ⁻¹	L, м ³ /ч	k, ч ⁻¹	L, м ³ /ч
1	2	3	4	5	6	7	8
102	Кладовая	18	35,3	-		1	35,3
104	Комната отдыха	18	35,2	2	70,3	3	105,5
105	Кабинет персонала	18	37,1	1,5	55,7	-	
106	Кабинет заведующей	18	34,7	1,5	52,0	-	
107	Кладовая	18	35,2	-		1	35,2
109	Кладовая	18	37,9	-		1	37,9
110	Кладовая	18	22,1	-		1	22,0

продолжение таблицы 4.1

1	2	3	4	5	6	7	8
111	Спальня	20	31,1	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
112	Спальня	20	35,8	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
113	Спальня	20	35,0	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
114	Спальня	20	36,2	30 м ³ /ч на чел.	60	30 м ³ /ч на чел.	60
116	Умывальная	18	13,5	-		из уборной	
117	Уборная	18	33,4	-		50 м ³ /ч на унитаз	150
118	Гладильная	16	13,5	2	26,9	3	40,4
119	Постирочная	16	14,8	4	59,3	7	103,7
121	Моечная	18	15,7	4	62,6	6	94,0
123	Комната приема пищи	18	150,4	по расчету	9050	по расчету	9050
125	Служ. помещение	18	12,4	-		1	12,4
126	Душевая	25	26,3	-		75 м ³ /ч на 1 душ	225
127	Служ. помещение	18	46,1	-		1	46,1
131	Кладовая	18	26,9	-		1	26,9
134	Комната охраны	18	17,1	-		1	17,1
135	C/y	18	8,8	-		100 м ³ /ч на унитаз	100
136	Уборная	18	5,0	-		50 м ³ /ч на унитаз	50
138	Спальня	20	94,8	30 м ³ /ч на чел.	120	30 м ³ /ч на чел.	120
140	Спальня	20	35,1	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
147	Электрощитовая	15	7,6	-		2	15,1
				Σ	9677	Σ	10467
				П	риток в ко	ридор № 115:	790
202	Технический отдел	18	36,4	1,5	54,6	-	
203	Кладовая	18	94,8	-		1	94,8
204	Приемная	18	36,8	1,5	55,2	-	
205	Кабинет зам. директора	18	37,1	1,5	55,7	-	

продолжение таблицы 4.1

1	2	3	4	5	6	7	8
206	Кабинет гл. бухгалтера	18	34,7	1,5	52,0	-	
207	Кабинет отдыха администр.	18	35,2	2	70,3	3	105,5
209	C/y	18	47,2	-		100 м ³ /ч на унитаз	300
210	Умывальная	18	10,7	-		из с/у	
211	Уборная	18	38,3	-		50 м ³ /ч на унитаз	150
212	Душевая	25	23,8	-		75 м ³ /ч на 1 душ	225
214	Курительная	16	37,3	-		10	373,2
215	Холл	18	152,1	по расчету	919	по расчету	919
217	Спальня	20	54,6	30 м ³ /ч на чел.	60	30 м ³ /ч на чел.	60
218	Спальня	20	31,2	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
219	Спальня	20	31,2	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
220	Спальня	20	31,2	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
221	Спальня	20	29,3	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
222	Служ. помещение	18	18,1	-		1	18,1
223	C/y	18	21,6	-		100 м ³ /ч на унитаз	300
225	Спальня	20	52,4	30 м ³ /ч на чел.	90	30 м ³ /ч на чел.	90
226	Спальня	20	52,2	30 м ³ /ч на чел.	90	30 м ³ /ч на чел.	90
227	Спальня	20	35,5	30 м ³ /ч на чел.	30	30 м ³ /ч на чел.	30
228	Спальня	20	94,9	30 м ³ /ч на чел.	120	30 м ³ /ч на чел.	120
230	Служ. помещение	18	35,1	-		1	35,1
231	Кабинет дежурного	18	31,9	1,5	47,9	-	
				Σ	1765	Σ	3031
				Пр	оиток в кори	дор № 213:	1266

4.2 Выбор принципиальных решений и конструирование

В данном здании гостиницы предусмотрена раздельная приточновытяжная система вентиляции с подачей воздуха в рабочую зону. В венткамере расположены две приточные установки – одна подает чистый воздух в комнату приема пищи, другая – в остальные помещения.

Воздухораспределители расположены в подшивном потолке. Приточная система П1 расхоложена на высоте 2,7 м от пола, система П2 на высоте 2,5 м на первом этаже и на высоте 2,7 м на втором. Механические и естественная вытяжки расположены на высоте 0,6 м от потолка (система В1), 0,2 м (В4, В5, В6, ВЕ1), 0,3 м (В2, В3, В7, В8, В9, В10, В11).

Помещения, похожие по назначению объединены в единую систему. В качестве воздухораспределителей используются решетки типа АЛН, 4АПН и диффузоры ДПУ-М.

Во всех спальнях установлены клапаны инфильтрации воздуха (с расходом до 60 м3/ч КИВ-125, с расходом до 120 м3/ч Systemair VTK 160 Airvent, либо их аналоги).

4.3 Аэродинамический расчет

Выбор и расчет воздухораспределительных устройств

Расчет осуществляется в соответствии [18].

Порядок расчета для ХП:

Для холла подобрано три воздухораспределителя типа 4AПН 600x600 [19], установленные в подшивном потолке.

Расход одного воздухораспределителя находится по формуле:

$$L_0 = \frac{919}{3} = 306 \text{ m}^3/\text{y},$$

где $L = 919 \text{ м}^3/\text{ч} - \text{общий расход};$

N = 3 шт – количество воздухораспределителей.

Скорость воздуха на выходе из ВР:

$$v_0 = \frac{306}{3600 \cdot 0,086} = 0,99 \text{ M/c}.$$

где $L_0 = 306 \text{ м}^3/\text{ч}$ — расход одного воздухораспределителя 4АПН 600х600; $F_0 = 0,086$ — площаль живого сечения воздухораспределителя 4АПН 600х600. Максимальная скорость воздуха на основном участке струи на входе в рабочую зону:

$$v_x = \frac{2,2 \cdot 0,99 \cdot \sqrt{0,086}}{1.5} \cdot 1 \cdot 1 \cdot 0,9 = 0,38 \text{ m/c},$$

где x = 1,5 – дальнобойность струи, расстояние от BP до рабочей зоны:

$$x = 3 - 1.5 = 1.5 M$$

где 3 – высота помещения, м;

1,5 – высота рабочей зоны, м;

m = 2,2 – скоростной коэффициент, по [20, табл. 4.1];

 $k_c = 1$ — коэффициент стеснения, находится по справочнику [18, табл. 3.6], зависит от величин:

- площадь поверхности ограждения, перпендикулярного направлению движения струи в расчете на одну струю:

$$F_{II} = \frac{50,71}{3} = 16,9 \,\mathrm{m}^2,$$

где $F_{\text{пола}} = 50,14 -$ площадь пола, м²;

N= 3 шт – количество BP.

$$F = \frac{0.086}{16.9} = 0.005$$
,

$$\bar{x} = \frac{1.5}{2.2 \cdot \sqrt{16.9}} = 0.17, k_c = 1,$$

 $k_{\rm B}=1$ — коэффициент взаимодействия, зависит от количества струй и расстояния между ними, находится по справочнику [18, табл. 3.7] в зависимости от: $\frac{x}{1}=\frac{1,5}{1,05}=1,4$, где 1 — половина расстояния между BP.

 ${
m k_{_{
m H}}} = 0.9$ — коэффициент неизотермичности, зависит от $\frac{H}{\sqrt{F_{_0}}}$, где H —

геометрическая характеристика струи:

$$H = 5,45 \cdot \frac{2,2 \cdot 0,99 \cdot \sqrt[4]{0,086}}{\sqrt{1,6 \cdot 4}} = 2,54,$$

где Δt_0 – расчетная разница температур, равна:

$$\Delta t_0 = 18 - 14 = 4$$
 °C,

где 18 – температура внутреннего воздуха, °С;

14 – температура приточного воздуха, °С.

n = 1,6 – температурный коэффициент, по [20, табл. 4.1].

$$\frac{H}{\sqrt{F_0}} = \frac{2,54}{\sqrt{0,086}} = 8,7,$$

Так как $\frac{H}{\sqrt{F_{_0}}}$ < 14,7 , то по номограмме [18, рис. 3.3] $k_{_{\rm H}}$ = 0,9.

Сравним полученное значение с нормативным:

$$0,38 \le 1,4 \cdot 0,3 = 0,42$$
 – условие выполняется,

где k = 1,4 — коэффициент перехода от нормированной скорости движения воздуха в помещении к максимальной скорости в струе, по [4, прил. Б];

 $v_{\rm g} = 0.3 \; {\rm M/c-}$ нормируемая подвижность в помещении.

Максимальный температурный перепад на входе в рабочую зону:

$$\Delta t_x = \frac{1.6 \cdot 4 \cdot \sqrt{0.086}}{1.5} \cdot \frac{1}{1 \cdot 0.9} = 1.39 \text{ °C}.$$

Сравниваем полученное значение с допустимым:

где $\Delta t_{\partial on} = 1,5$ °C — допустимая разница температур в струе приточного воздуха, находится по СП [4, прил. В].

Для комнаты приема пищи (система П1) подобрано шесть воздухораспределителей типа 4АПН 1050х1050, установленные в подшивном потолке:

$$L_0 = \frac{9050}{6} = 1508 \text{ m}^3/\text{ч},$$

$$\upsilon_0 = \frac{1508}{3600 \cdot 0.304} = 1.38 \text{ m/c}.$$

$$x = 3 \cdot 1.5 = 1.5 \text{ m},$$

$$F_{II} = \frac{50.14}{6} = 8.36 \text{ m}^2, \ F = \frac{0.304}{8.36} = 0.036,$$

$$\overline{x} = \frac{1.5}{2.2 \cdot \sqrt{8.36}} = 0.10, \ k_c = 1,$$

$$\frac{x}{1} = \frac{1.5}{1} = 1.5, \ k_b = 1,$$

$$\Delta t_0 = 18 - 14 = 4 \text{ °C},$$

$$H = 5.45 \cdot \frac{2.2 \cdot 1.38 \cdot \sqrt[4]{0.304}}{\sqrt{1.6 \cdot 4}} = 4.85, \ \frac{H}{\sqrt{F_0}} = \frac{4.85}{\sqrt{0.304}} = 8.8, \ k_{II} = 0.8.$$

$$\upsilon_x = \frac{2.2 \cdot 1.38 \cdot \sqrt{0.304}}{1.5} \cdot 1 \cdot 1 \cdot 0.8 = 0.41 \text{ m/c},$$

$$0.41 \le 1.4 \cdot 0.3 = 0.42 - \text{условие выполняется},$$

$$\Delta t_x = \frac{1.6 \cdot 4 \cdot \sqrt{0.304}}{1.5} \cdot \frac{1}{1 \cdot 0.8} = 1.47 \text{ °C}.$$

1,47 < 1,5 – условие выполняется.

В систему П2 входят такие помещения, как: комната отдыха №104, кабинет персонала №105, кабинет заведующей №106, гладильная №118, постирочная №119, моечная № 121, технический отдел №202, приемная № 204, кабинет зам. директора №205, кабинет гл. бухгалтера № 206, кабинет отдыха администрации № 207, холл, кабинет дежурного № 231. Подобраны воздухораспределители типа ДПУ-М [21].

Расчет сведен в таблицу 4.2.

Таблица 4.2 – Воздухораспределители системы П2

№ пом.	Название помещения	Расход на приток, м ³ /ч	Кол-во, тип ВР	Скорость U_0 , м/с
104	комната отдыха	70,3	Диффузор ДПУ-М 125	1,78
105	кабинет персонала	55,7	Диффузор ДПУ-М 100	0,22
106	кабинет заведующей	52	Диффузор ДПУ-М 100	0,21
115	коридор	790 (расход на 1 BP = 395)	2 шт., диффузор 4 АПН 825x825	0,63
118	гладильная	26,9	Диффузор ДПУ-М 100	0,11
119	постирочная	59,3	Диффузор ДПУ-М 125	1,5
121	моечная	62,6	Диффузор ДПУ-М 125	1,58
202	технический отдел	54,6	Диффузор ДПУ-М 100	0,22
204	приемная	55,2	Диффузор ДПУ-М 100	0,22
205	кабинет заместителя директора	55,7	Диффузор ДПУ-М 100	0,22
206	кабинет главного бухгалтера	52	Диффузор ДПУ-М 100	0,21
207	кабинет отдыха администрации	70,3	Диффузор ДПУ-М 125	1,78
213	коридор	1266 (расход на 1 BP = 633)	2 шт., диффузор 4 АПН 825x825	1,02
231	кабинет дежурного	47,9	Диффузор ДПУ-М 100	0,19

Подбор воздухораспределителей для вытяжных систем аналогичен. Решетки АЛН подобраны по каталогу [22]. Расчет сведен в таблицу 4.3.

Таблица 4.3 – Расчет вытяжных ВР

№ пом.	Название помещения	Расход на вытяжку, м ³ /ч	Кол-во, тип ВР	Скорость $\upsilon_{\scriptscriptstyle 0}$, м/с
1	2	3	4	5
102	кладовая	35,3	Решетка АЛН 300х100	0,36
104	комната отдыха	105,5	Решетка АЛН 600х100	0,54
107	кладовая	35,2	Решетка АЛН 300х100	0,36
109	кладовая	37,9	Решетка АЛН 300х100	0,39
110	кладовая	22,1	Решетка АЛН 200х100	0,34
111	спальня	30	Решетка АЛН 300х100	0,31
112	спальня	30	Решетка АЛН 300х100	0,31
113	спальня	30	Решетка АЛН 300х100	0,31
114	спальня	60	Решетка АЛН 300х150	0,41
117	уборная	150	Решетка АЛН 600х150	0,50
118	гладильная	40,4	Решетка АЛН 300х100	0,42

продолжение таблицы 4.3

1	2	3	4	5
119	постирочная	103,7	Решетка АЛН 600х100	0,53
121	моечная	94	Решетка АЛН 600х100	0,48
125	служебное	12,4	Решетка АЛН 200х100	0,19
	помещение			
126	душевая	225	Решетка АЛН 700х200	0,48
127	служебное	46,1	Решетка АЛН 300х100	0,47
	помещение			
131	кладовая	26,9	Решетка АЛН 200х100	0,42
134	комната охраны	17,1	Решетка АЛН 200х100	0,26
135	c/y	100	Решетка АЛН 600х100	0,51
136	уборная	50	Решетка АЛН 300х100	0,51
138	спальня	120	Решетка АЛН 500х200	0,36
140	спальня	30	Решетка АЛН 300х100	0,31
147	электрощитовая	15,1	Решетка АЛН 200х100	0,23
203	кладовая	94,8	Решетка АЛН 600х100	0,49
207	кабинет отдыха	105,5	Решетка АЛН 600х100	0,54
	администрации			
209	c/y	300	Решетка АЛН 500х300	0,59
211	уборная	150	Решетка АЛН 600х150	0,5
212	душевая	225	Решетка АЛН 500х300	0.44
214	курительная	373	Решетка АЛН 500х300	0,73
217	спальня	60	Решетка АЛН 300х150	0,41
218	спальня	30	Решетка АЛН 300х100	0,31
219	спальня	30	Решетка АЛН 300х100	0,31
220	спальня	30	Решетка АЛН 300х100	0,31
221	спальня	30	Решетка АЛН 300х100	0,1
222	служебное	18,1	Решетка АЛН 200х100	0,28
	помещение			
223	c/y	300	Решетка АЛН 500х300	0,59
225	спальня	90	Решетка АЛН 600х150	0,3
226	спальня	90	Решетка АЛН 600х150	0,3
227	спальня	30	Решетка АЛН 300х100	0,31
228	спальня	120	Решетка АЛН 500х200	0,36
230	служебное	35,1	Решетка АЛН 300х100	0,36
	помещение			
215	Холл	919 (расход на	3 шт. диффузор ДПУ-	1,85
		один ВР = 306)	M 250	
123	Комната приема	9050 (расход на	5 шт. диффузор 4АПН	1,65
1	пищи	один ВР =1810)	1050x1050	

Аэродинамический расчет систем вентиляции

Задача расчета: нахождение размеров поперечного сечения воздуховодов и потерь давления в них при известных расходах. В данной работе производился расчет по удельным потерям на трение и потерям на местное сопротивление, методика которого описана в [23].

Схемы систем представлены в приложении И. Расчеты приточных и вытяжных систем сводятся в приложения К.

Подбор приточных установок

В приточные установки входит такое оборудование, как: решетка для забора воздуха с улицы, клапан, фильтр, воздухонагреватель жидкостный, вентилятор и шумоглушитель.

С помощью программы «BE3A» по расходы были подобраны две установки:

- КЦКП-6,3-УЗ для системы П1 на расход воздуха $9050 \text{ м}^3/\text{ч}$;
- КЦКП-3,15-УЗ для системы $\Pi 2$ на расход воздуха 4111 м 3 /ч.

Размеры приточных установок указаны на рисунке 4.1, 4.2.

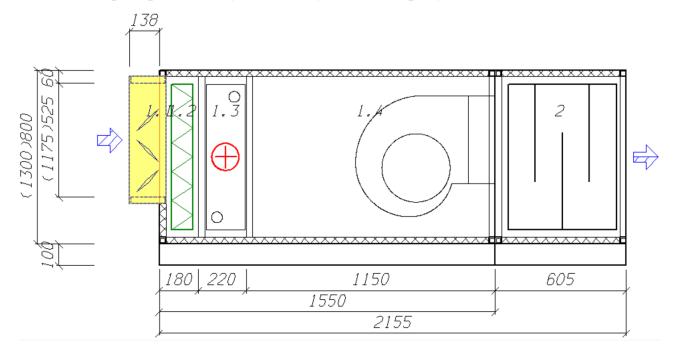


Рисунок 4.1 – Приточная установка для П1

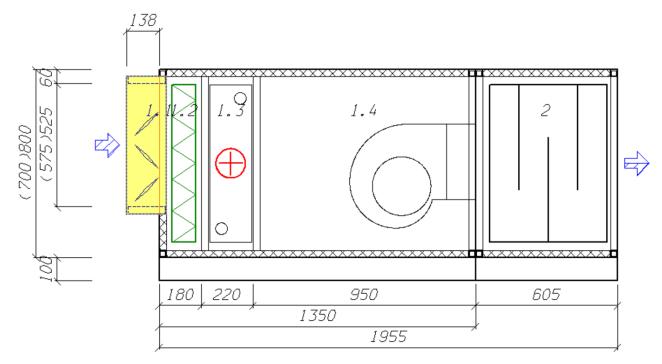


Рисунок 4.2 – Приточная установка для П2

Подбор воздухозаборной решетки

Расчет решетки производится для всего объема приточного воздуха, который направляется в камеры П1 и П2.

Площадь живого сечения решетки (скорость не более 4 м/с):

$$F_{peu} = \frac{13161}{3600 \cdot 4} = 0.91 \text{ m}^2,$$

где $L = 13161 \text{ м}^3/\text{ч} - \text{расход на обе приточные установки.}$

По полученной площади была подобрана воздухозаборная щелевая решетка марки ЖМ–6 фирмы ООО «Промвентиляция — Сервис» с шириной 1590 мм и высотой 1180 мм. Конструкция решетки представляет собой сварную раму из равнополочного уголка 50x50x5 мм, внутрь которой, с шагом 35 мм под углом 45^{0} , вставлены перья из листовой полосы 6 = 1,5 мм.

Количество решеток: $n = \frac{0.91}{1.13} = 0.81$, т.е. будет одна решетка прямоугольной формы.

Действительная скорость воздуха в живом сечении решетки:

$$v_{\phi a \kappa m} = \frac{13161}{3600 \cdot 1.13 \cdot 1} = 3,24 \text{ M/c}.$$

Подбор вентиляторов

Подбор вытяжных вентиляторов по каталогу [24]:

- В1: $\Delta p_{\text{вент}} = 1,1 \cdot 120 = 131$ Па, расход L = 331 м³/ч. Вентилятор AVF-190;
- В2: $\Delta p_{\text{вент}} = 1, 1 \cdot 70 = 77$ Па, расход L = 150 м³/ч. Вентилятор AVF-190;
- В3: $\Delta p_{\text{вент}} = 1,1 \cdot 116 = 127$ Па, расход L = 825 м³/ч. Вентилятор AVF-225;
- В4: $\Delta p_{\text{вент}} = 1, 1 \cdot 82 = 90$ Па, расход L = 180 м³/ч. Вентилятор AVF-190;
- В5: $\Delta p_{\text{вент}} = 1,1 \cdot 25 = 28$ Па, расход L = 373 м³/ч. Вентилятор AVF-190;
- В6: $\Delta p_{\text{вент}} = 1, 1 \cdot 93 = 102 \; \Pi \text{а}$, расход L = 919 м³/ч. Вентилятор AVF-225;
- В7: $\Delta p_{\text{вент}} = 1, 1 \cdot 58 = 64$ Па, расход L = 150 м³/ч. Вентилятор AVF-190;
- В8: $\Delta p_{\text{вент}} = 1,1 \cdot 164 = 180$ Па, расход L = 524 м³/ч. Вентилятор AVF-225;
- В9: $\Delta p_{\text{вент}} = 1,1 \cdot 29 = 32$ Па, расход L = 77 м³/ч. Вентилятор AVF-190;
- В10: $\Delta p_{\text{вент}} = 1,1 \cdot 130 = 143$ Па, расход L = 9050 м³/ч. Вентилятор AVF-630;
- В11: $\Delta p_{\text{вент}} = 1,1 \cdot 66 = 72$ Па, расход L = 525 м³/ч. Вентилятор AVF-190.

5 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ

Схема присоединения к тепловой сети – зависимая с насосом на перемычке. (см. рис 5.1).

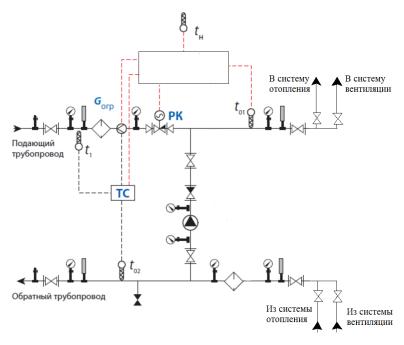


Рисунок 5.1 – Схема ИТП

В данном здании гостиницы ИТП находится в подвале и включает в себя смесительный насос, контроллер, теплосчетчик (TC), регулирующий клапан (РК), сигнал ограничения расхода теплоносителя из тепловой сети $G_{\text{огр}}$, вентили, манометры, термометры.

Индивидуальный тепловой пункт необходим для экономии тепла и регулировки параметров снабжения. ИТП сокращает и контролирует расходы на эксплуатацию, обеспечивает комфорт. Для снижения потерь в зависимости температуры наружного воздуха, времени суток дней OT недели оптимизируются режимы. Автоматизация систем управления – это применение комплекса автоматических устройств с целью управления технологическими процессами системах теплоснабжения. Одной ИЗ ключевых задач автоматизации является создание комфортного теплового режима здания гостиницы без участия человека.

6 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ

Подсчет объемов строительно-монтажных работ производится по чертежам систем, единицы измерения берутся из единых норм и расценок [25], [26], [27], [28], [29].

Результаты расчетов сведены в таблицу 6.1.

Таблица 6.1 – Объем монтажных работ

№ п/п	Наименование работ	Ед. изм.	Коли- чество	Приме- чание
1	2	3	4	5
	Монтаж отопления:			
1	Разметка мест прокладки трубопроводов	100 м	10,9	
2	Сверление и пробивка отверстий в стенах и перекрытиях диаметром до 80 мм	100 отв.	2,08	
3	Комплектование и подноска материалов и изделий	Т	2,4	
	Прокладка труб магистрали			
4	Ø15	М	87,4	
	Ø20	M	102,4	
	Ø25	M	46,4	
	Ø32	M	2,2	
	Прокладка труб стояков			
	Ø15	M	192	
5	Ручная дуговая сварка трубопроводов:			
	вертикальная неповоротная	стык	52	
	горизонтальная неповоротная	стык	122	
6	Установка радиаторов	ШТ.	59	
7	Установка вентилей диаметром до:			
	Ø25	ШТ.	113	
	Ø50	ШТ.	2	
8	Монтаж тепловой изоляции:			
	Ø15	M	87,4	
	Ø20	M	102,4	_
	Ø25	M	46,4	
	Ø32	M	2,2	
9	Монтаж насоса	ШТ.	1	

1	2	3	4	5
	Первое рабочее испытание отдельных частей системы	100 м	10,9	
10	Рабочая проверка системы в целом	100 м	10,9	
	Окончательная проверка системы при сдаче	100 м	10,9	

Трудоемкость T_p , чел.-дни, находится по формуле:

$$T_{p} = \frac{H_{sp} \cdot V}{8,2},\tag{6.1}$$

где $H_{\mbox{\scriptsize BP}}$ – норма времени на единицу объема работ, чел.-час, по ЕНиР;

V – физический объем работ;

8,2 – продолжительность смены, ч.

Таблица 6.2 – Ведомость трудоемкости работ

№ п/п	Наименование пабот		Обоснование (ЕНиР, ГЭСН)	Норма време- ни, чел час.	Трудо-емкость		Всего, чел дни	Состав бригады
					работ	работ дни		
1	2	3	4	5	6	7	8	9
	Монтаж отопления:							
1	Разметка мест прокладки трубопроводов	100 м	E 9-1-1	1,2	10,9	1,60	1,60	6 разр1
2	Сверление и пробивка отверстий в стенах и перекрытиях электрической сверлильной машиной	100 отв.	E 9-1-46	4,9	2,08	1,24	1,24	3 разр1
3	Комплектование и подноска материалов и изделий	Т	E 9-1-41	3	2,4	0,88	0,88	4 разр1, 2 разр1
4	Прокладка стальных труб магистрали Ø15, Ø20, Ø25 Ø32	М	E 9-1-2	0,2 0,22	236,2 2,2	5,76 0,06	5,82	5 разр1 4 разр1 3 разр1
4	Прокладка стальных труб стояков и подводок Ø15	M	E 9-1-2	0,25	192	5,85	5,85	5 pasp1 4 pasp1 3 pasp1

1	2	3	4	5	6	тродол 7	8	таолицы (9
1	<u> </u>	3	4	3	U	/	0	9
	Ручная электродуговая сварка трубопроводов:							
5	вертикальная неповоротная;	стык	E 22-2-1	0,06	52	0,38	1,42	эл.свар.6 разр1
	горизонтальная неповоротная			0,07	122	1,04		
6	Установка радиаторов	ШТ.	E 9-1-12	0,31	61	2,31	2,31	4 pa3p1 3 pa3p1
7	Установка кранов Ø15	ШТ.	ГЭСН 16-05-001	0,1	113	1,38	1,38	4 разр1
,	Установка кранов до Ø40	шт.	ГЭСН 16-05-001	0,15	2	0,04	0,04	4 разр1
8	Монтаж тепловой изоляции	М	E 11-1	0,59	238,4	17,15	17,15	4 pa3p1 3 pa3p1
9	Монтаж насоса	ШТ.	E 34	9,7	1	1,18	1,18	5 разр1 3 разр1
10	Испытание системы:							
	Первое рабочее испытание отдельных частей системы	100 M	E 9-1-8	5,3	10,9	7,05	7,05	5 pa3p1 4 pa3p1 3 pa3p1
	Рабочая проверка системы в целом	100 M	E 9-1-8	2,8	10,9	3,72	3,72	6 pa3p1 5 pa3p1 4 pa3p1
	Проверка работы насоса	ШТ.	E 34	1,5	1	0,18	0,18	5 разр1 3 разр1
	Окончательная проверка системы при сдаче		E 9-1-8	2,3	10,9	3,06	3,06	6 pa3p1 5 pa3p1
	Итого:						52,9	
	Подготовительные работы:						2,1	
	Работы за счет накладных расходов:						5,3	
	Всего:						60,3	

7 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА

Тема бакалаврской работы: г.о. Тольятти. Гостиница. Отопление и вентиляция.

Таблица 7.1 - Технологический паспорт технического объекта

$N_{\underline{0}}$	Технологи	Технологическая	Наименование	Оборудование,	Материалы,
	ческий	операция, вид	должности	техническое	вещества
	процесс	выполняемых работ	работника,	устройство,	
			выполняющего	приспособление	
			технологический		
			процесс,		
			операцию		
1	2	3	4	5	6
1	Монтаж	Комплектование,	Монтажники	Молоток,	Трубы,
	системы	доставка трубных и	системы	линейка,	радиаторы,
	отопления	отопительных узлов	отопления	рулетка,	крепления,
		к месту монтажа;		карандаш,	фум лента,
		монтаж		уровень,	проволока
		магистральных		шуруповерт,	
		трубопроводов;		перфоратор,	
		установка		труборез,	
		отопительных		эл.инструмент	
		приборов; монтаж			
		стояков и подводок;			
		испытание системы			

Таблица 7.2 – Идентификация профессиональных рисков

$N_{\underline{0}}$	Производственно-	Опасный и /или вредный производственный	Источник
	технологическая	фактор	опасного и /
	и/или		или вредного
	эксплуатационно-		производственн
	технологическая		ого фактора
	операция, вид		
	выполняемых		
	работ		
1	2	3	4
		Повышенный уровень шума и вибрации на	Электро-
		рабочем месте; повышенная загазованность и	инструменты;
		запыленность воздуха рабочей зоны;	сварочный
	Maymayy ayyamayyy	повышенная напряженность электрополя;	аппарата
1	Монтаж системы	недостаточная освещенность рабочего места;	
	отопления	острые кромки, шероховатости на	
		поверхностях заготовки; умственное	
		перенапряжение; эмоциональные нагрузки;	
		монотонность труда	

Таблица 7.3 – Методы и средства снижения профессиональных рисков

No	Опасный и / или	Организационно-технические	Средства
	вредный	методы и технические средства	индивидуальной
	производственный	защиты, частичного снижения,	защиты работника
	фактор	полного устранения опасного и /	, 1
	1 1	или вредного производственного	
		фактора	
1	2	3	4
1	Повышенный уровень	Регулирование и автоматизация	Костюм х/б с
	шума и вибрации на	систем, статическая и динамическая	пропиткой
	рабочем месте	балансировка системы	строительный для
2	Повышенная	Гигиеническое нормирование	защиты от
	загазованность и	содержания пыли и газа в воздухе	производственных
	запыленность воздуха	рабочей зоны по [30]	и механических
	рабочей зоны		воздействий;
3	Недостаточная	Использование источников	перчатки с
	освещенность рабочего	искусственного освещения	полимерным
	места		покрытием;
4	Повышенная	Применение устройства защитного	ботинки кожаные
	напряженность	заземления, изоляция и контроль	с жестким
	электрополя	токоотводящих частей	подноском, каска
5	Острые кромки,	Работа в перчатках из плотного	строительная;
	шероховатости на	материала	очки защитные
	поверхностях заготовки		
6	Умственное	Исключение ручных операций,	
	перенапряжение	уменьшение темпа работы, лечебно-	
7	Эмоциональные	профилактические мероприятия	
	нагрузки		
8	Монотонность труда		

Обеспечение пожарной безопасности технического объекта

Таблица 7.4 – Идентификация классов и опасных факторов пожара

№	Участок,	Оборудование	Класс	Опасные	Сопутствующие проявления
	подразделение		пожара	факторы	факторов пожара
				пожара	
1	2	3	4	5	6
1	г.о. Тольятти.	Перфоратор,	Класс	Пламя и	Осколки, разрушенные части
	Гостиница.	сварочный	A, B	искры	здания, агрегатов, изделий и
	Отопление и	аппарат, эл.			прочего имущества
	вентиляция	инструмент			

Таблица 7.5 - Технические средства обеспечения пожарной безопасности

Первичные	Мобильные	Стационарные	Средства	Пожарное	Средства	Пожарный	Пожарные
средства	средства	установки	пожарной	оборудование	индивидуальной	инструмент	сигнализация,
пожаротушения	пожаротушения	системы	автоматики		защиты и		связь и
		пожаротушения			спасения людей		оповещение.
					при пожаре		
1	2	2 3 4		5	6	7	8
Вода, песок,	Пожарная	Пожарные	Не	Огнетушители,	Противогазы,	Лопата,	Пожарная
огнетушители	машина	гидранты, щит с	предусматри	щит с	респираторы,	ведро, лом,	сигнализация,
		средствами	ваются	средствами	автолестницы и	багор	телефоны
		пожаротушения		пожаротушения	автоподъемники		«112» и «01»
					пожарные		

Таблица 7.6 – Организационные мероприятия по обеспечению пожарной безопасности

Наименование	Наименование видов реализуемых организационных	Предъявляемые нормативные требования по
технологического	мероприятий	обеспечению пожарной безопасности, реализуемые
процесса, используемого		эффекты
оборудования в составе		
технического объекта		
1	2	3
г.о. Тольятти. Гостиница.	Монтажные работы по отоплению, сварочные работы,	Соблюдение противопожарных норм и правил при
Отопление и вентиляция	работы эл. инструментами	устройстве, установке и эксплуатации оборудования

Обеспечение экологической безопасности технического объекта Таблица 7.7 – Идентификация негативных экологических факторов технического объекта

Наименование	Структурные	Негативное	Негативное	Негативное
технического	составляющие	экологическое	экологическое	экологическое
объекта,	технического	воздействие	воздействие	воздействие
производствен	объекта,	технического	технического	технического
но-	производственно-	объекта на	объекта на	объекта на
технологическ	технологического	атмосферу	гидросферу	литосферу
ого процесса	процесса			
	энергетической			
	установки,			
	транспортного			
	средства и т.п.			
1	2	3	4	5
г.о. Тольятти.	Монтаж системы	При сварке	Объект	Твердые
Гостиница.	отопления; работа	выделяются	подключен к	отходы,
Отопление и	автотранспорта;	опасные вещества;	городской сети	строительный
вентиляция	сварочные	от машин	водоснабжения	мусор
	работы; работа эл.	выхлопные газы	и канализации	
	инструмента			

Таблица 7.8 – Разработанные организационно-технические мероприятия по снижению негативного антропогенного воздействия заданного технического объекта на окружающую среду

Наименование	технического	г.о. Тольятти. Гостиница. Отопление и вентиляция						
объекта								
Мероприятия	по снижению	Применение фильтров с высокой эффективностью,						
негативного	антропогенного	современная их замена и очистка						
воздействия на	атмосферу							
Мероприятия	по снижению	снижению Сточные воды отходят в сети городской канализации и						
негативного	антропогенного	затем на сооружения очистки сточных вод						
воздействия на	гидросферу							
Мероприятия	по снижению	Отходы помещаются в мусорные контейнеры и						
негативного	антропогенного	вывозятся на городскую свалку						
воздействия на	литосферу							

ЗАКЛЮЧЕНИЕ

В данной бакалаврской работе разработана система отопления и вентиляции для обеспечения комфортного нахождения людей в гостинице городского округа Тольятти.

В ходе работы произведен расчет теплопотерь и теплопоступлений в здание, расчет воздухообмена двух помещений (комната приема пищи и холл) и составлен тепловой и воздушный балансы, проведены аэродинамические расчеты приточной и вытяжной систем вентиляции. Подобраны приточные установки и вентиляторы для вытяжной вентиляции.

Характеристика системы отопления: вертикальная двухтрубная с нижней разводкой и тупиковым движением теплоносителя. Система отопления выполнена из легких стальных водогазопроводных труб. Отопительные приборы — алюминиевые радиаторы STI-300 и STI-500, установленные под световыми проемами.

В данном здании гостиницы предусмотрена раздельная приточновытяжная система вентиляции с подачей воздуха в рабочую зону. В венткамере расположены две приточные установки — одна подает чистый воздух в комнату приема пищи, другая — в остальные помещения на первом и втором этаже. Воздухораспределители расположены в подшивном потолке. Во всех спальнях установлены клапаны инфильтрации воздуха.

С целью регулирования температуры теплоносителя запроектирован автоматизированный индивидуальный тепловой пункт.

Рассчитан объем монтажных работ и ведомость трудоемкости работ системы отопления.

Приведены меры обеспечения пожарной и экологической безопасности при монтаже системы отопления в гостинце.

В заключение можно сказать, что цель и задачи диплома выполнены.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. СП 131.13330.2012. Строительная климатология / Минстрой России. М. : ФГУП ЦПП, 2012. 113 с.
- 2. СП 257.1325800.2016. Здания гостиниц. Правила проектирования / Минстрой России. М. : ФГУП ЦПП, 2017. 69 с.
- 3. ГОСТ 30494-2011. Здания жилые и общественные. Параметры микроклимата в помещениях / Минстрой России. М.: ФГУП ЦПП, 2013. 16 с.
- 4. СП 60.13330.2012. Отопление, вентиляция и кондиционирование воздуха. М.: Минрегион России, ФГУП ЦПП, 2013. 81 с.
- 5. СП 50.13330.2012. Тепловая защита зданий / Минрегион России. М. : ГУП ЦПП, 2012. 84 с.
- 6. Минерально-ватные плиты [Электронный ресурс]. Режим доступа: https://www.slav-dom.ru/teploizolyatsiya/teploizolyatsiya-tekhnonikol-tekhnofas-1200-600-140-mm/, свободный.
- 7. СП 23-101-2004. Проектирование тепловой защиты зданий. М. : Госстрой России, ГУП ЦПП, 2004. 134 с.
- 8. Малявина, Е.Г. Теплопотери здания [Электронный ресурс]. Режим доступа: http://journal.esco.co.ua/cities/2013_8/art257.pdf, свободный.
- 9. Титов, В.П. Курсовое и дипломное проектирование по вентиляции гражданских и промышленных зданий: учебное пособие для вузов/ В.П. Титов [и д.р.] М.: Стройиздат, 1985. 208 с.
- Краснов, Ю.С. Системы вентиляции и кондиционирования. Рекомендации по проектированию, испытаниям и наладке / Ю.С. Краснов, А.П. Борисоглебская. М.: Термокул, 2004. 373 с.
- 11. Изоляция труб отопления [Электронный ресурс]. Режим доступа: http://pk-tlt.ru/catalog/teploizolyaciya-truboprovodov/teploizoliruyushchie-trubki-i-maty-tilit/izolyacionnye-trubki, свободный.

- 12. ГОСТ 3262-75* Трубы стальные водогазопроводные [Электронный ресурс]. Введ. 1977.- 01. 01. Режим доступа: http://docs.cntd.ru/document/1200084848, свободный.
- 13. Радиатор алюминиевый STI [Электронный ресурс]. Режим доступа: http://radiator-tlt.ru/alyuminievye-radiatory-sti/, свободный.
- 14. Внутренние санитарно-технические устройства. В 3 ч. Ч. 1. Отопление / В.Н. Богословский, А.Н. Сканави, Б.А. Крупной и др.; под ред. И.Г. Староверова и Ю.И. Шиллера. М.: Стройиздат, 1990. 344 с.
- 15. Hacoc CO [Электронный ресурс]. Режим доступа: https://product-selection.grundfos.com/sizing-result.html?qcid=387140438&sizetype=quick, свободный.
- 16. Внутренние санитарно-технические устройства. В 3 ч. Ч. 3. вентиляция и кондиционирование воздуха. Кн.1 / В.Н. Богословский, А.И. Пирумов, В.Н. Посохин и др.; под ред. Н.Н. Павлова и Ю.И. Шиллера. М.: Стройиздат, 1992. 319 с.
- 17. Каменев, П.Н. Вентиляция [Электронный ресурс]. Режим доступа: http://bookree.org/reader?file=561748, свободный.
- 18. Торговников, Б.М. Проектирование промышленной вентиляции / Б.М. Торговников, В.Е. Табачник, Е.М. Ефанов. Киев: Будівельник, 1983. 256 с.
- 19. Диффузор 4АПН [Электронный ресурс]. Режим доступа: http://www.arktika.ru/html/apn-apr.htm#Данныедляподбора, свободный.
- 20. Гримитлин, М.И. Распределение воздуха в помещении / М. И. Гримитрин. СПб: ABOK СЕВЕРО-ЗАПАД, 2004. – 318 с.
- 21. Диффузор ДПУ-М [Электронный ресурс]. Режим доступа: http://arktoscomfort.ru/wp-content/Kat/air/katalog/APN-1-2016.pdf, свободный.
- 22. Решетки АЛН [Электронный ресурс]. Режим доступа: http://www.arktika.ru/html/aln-alrm.htm, свободный.
- 23. Внутренние санитарно-технические устройства. В 3 ч. Ч. 3. вентиляция и кондиционирование воздуха. Кн.2 / Б. В. Баркалов, Н.Н.Павлов,

- С.С.Амирджанов и др.; под ред. Н. Н. Павлова и Ю. И. Шиллера. М.: Стройиздат, 1992. Ч. 3. 416 с.
- 24. Каталог вытяжных вентиляторов [Электронный ресурс]. Режим доступа: http://cloud.lufter.ru/catalog/content-lufter/abf/abfcatalog.pdf, свободный.
- 25. ЕНиР Е9. Сооружение систем теплоснабжения, водоснабжения, газоснабжения и канализации. Выпуск 1. Санитарно-техническое оборудование зданий и сооружений [Электронный ресурс]. Введ. 1986.- 12.- 05. Режим доступа: http://files.stroyinf.ru/Data1/2/2569/
- 26. ЕНиР Е22. Сварочные работы. Выпуск 1. Конструкций зданий и промышленных сооружений [Электронный ресурс]. Введ. 1986.- 12.- 05. Режим доступа: http://files.stroyinf.ru/data1/2/2586/
- 27. ГЭСН 16-05-001. Установка вентилей, задвижек, затворов. Клапанов обратных, кранов проходных на трубопроводах из стальных труб [Электронный ресурс]. Введ. 1970.- 01 01. Режим доступа: https://zakonbase.ru/content/part/470550
- 28. ЕНиР Е11. Изоляционные работы [Электронный ресурс]. Введ. 1986.- 12. 05. Режим доступа: http://files.stroyinf.ru/data2/1/4294854/4294854127.htm
- 29. ЕНиР Е34. Монтаж компрессоров, насосов и вентиляторов [Электронный ресурс]. Введ. 1986.- 12. 05. Режим доступа: http://files.stroyinf.ru/Data1/2/2613/
- 30. ГОСТ 12.1.005-88. Система стандартов безопасности труда (ССБТ). Общие санитарно-гигиенические требования к воздуху рабочей зоны (с Изменением N 1) [Электронный ресурс]. Введ. 1989. 01. 01. Режим доступа: http://docs.cntd.ru/document/1200003608

Приложение А

Теплопотери помещений

Таблица А.1 - Теплопотери помещений здания гостиницы

				Ограждаюі	цие ко	нструг	кции				Добавочные	теплопот	гери				
№	Наим.	ия t,°C	t °C				іеры, м		,	t _B -t _H , °C	Q,	**			$Q(1+\Sigma\beta),$	Q _{инф} ,	20
145	помещения		Наим. Ограждения	Ориентация	a	h	F, M ²	k, Bt/m²·°C	$\Delta t = t_{\rm B} - t$	Вт	На оринтацию	Прочее	Σβ	Вт	Вт	ΣQ	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	
102	Кладовая	18	НС	север	3,1	3,78	9,9	0,262	48	124	0,1	0	0,1	137			
			ДО	север	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179			
			ПЛ	-	3,3	6,2	20,5	0,231	13	61	0	0	0	61			
													Σ	377	111	488	
104	Комната отдыха	18	НС	восток	3,4	3,78	11,0	0,262	48	139	0,1	0	0,1	153			
			ДО	восток	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179			
			ПЛ	-	3,1	4,1	12,7	0,231	13	38	0	0	0	38			
													Σ	369	0	369	
105	Кабинет персонала	18	НС	восток	3,2	3,78	10,3	0,262	48	129	0,1	0	0,1	142			
			ДО	восток	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179			
			ПЛ	-	3,2	4,1	13,1	0,231	13	39	0	0	0	39			
													Σ	360	0	360	
106	Кабинет заведующей	18	НС	восток	3	3,78	9,5	0,262	48	120	0,1	0	0,1	132			
			ДО	восток	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179			
			ПЛ	-	3	4,1	12,3	0,231	13	37	0	0	0	37			
													Σ	347	0	347	

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
107	Кладовая	18	НС	ЮГ	4,6	3,78	15,6	0,262	48	196	0	0,1	0,1	215		
			НС	восток	3,5	3,78	13,2	0,262	48	166	0,1	0,05	0,15	191		
			ДО	ЮГ	1,51	1,21	1,8	1,852	48	162	0	0,1	0,1	179		
			ПЛ	-	4,1	3	12,3	0,231	13	37	0	0	0	37		
													Σ	407	111	518
108	Коридор	18	НС	ЮГ	1,77	3,78	4,0	0,262	48	50	0	0	0	50		
			ДО	ЮГ	1,51	1,81	2,7	1,852	48	243	0	0	0	243		
			ПЛ	-	1,77	12,5	22,1	0,231	13	66	0	0	0	66		
													Σ	359	166	525
109	Кладовая	18	НС	ЮГ	3,6	3,78	11,8	0,262	48	148	0	0	0	148		
			ДО	ЮГ	1,51	1,21	1,8	1,852	48	162	0	0	0	162		
			ПЛ	-	3,6	6	21,6	0,231	13	65	0	0	0	65		
													Σ	375	111	486
111	Спальня	20	НС	север	2,7	3,78	8,4	0,262	50	110	0,1	0	0,1	121		
			ДО	север	1,51	1,21	1,8	1,852	50	169	0,1	0	0,1	186		
			ПЛ	-	2,7	6,2	16,7	0,231	15	58	0	0	0	58		
													Σ	365	545	909
112	Спальня	20	НС	север	3	3,78	9,5	0,262	50	125	0,1	0	0,1	137		
			ДО	север	1,51	1,21	1,8	1,852	50	169	0,1	0	0,1	186		
			ПЛ	-	3	6,2	18,6	0,231	15	64	0	0	0	64		
													Σ	388	545	932
113	Спальня	20	НС	север	2,9	3,78	9,1	0,262	50	120	0,1	0	0,1	132		
İ			ДО	север	1,51	1,21	1,8	1,852	50	169	0,1	0	0,1	186		
			ПЛ	-	2,9	6,2	18,0	0,231	15	62	0	0	0	62		
													Σ	380	545	925

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
114	Спальня	20	НС	север	3,1	3,78	9,9	0,262	50	130	0,1	0	0,1	143		
			ДО	север	1,51	1,21	1,8	1,852	50	169	0,1	0	0,1	186		
			ПЛ	-	3,1	6,2	19,2	0,231	15	67	0	0	0	67		
													Σ	395	1089	1484
117	Уборная	18	НС	ЮГ	2,9	3,78	9,1	0,262	48	115	0	0	0	115		
			ДО	ЮГ	1,51	1,21	1,8	1,852	48	162	0	0	0	162		
			ПЛ	-	2,9	6	17,4	0,231	13	52	0	0	0	52		
													Σ	330	111	441
118	Гладильная	16	НС	ЮГ	2,5	3,78	8,5	0,262	46	103	0	0	0	103		
			ДО	ЮГ	1,51	0,61	0,9	1,852	46	78	0	0	0	78		
			ПЛ	-	2,5	6	15,0	0,231	11	38	0	0	0	38		
													Σ	219	0	219
122	Комната приема пищи	18	НС	ЮГ	3	3,78	9,5	0,262	48	120	0	0	0	120		
	1		ДО	ЮГ	1,51	1,21	1,8	1,852	48	162	0	0	0	162		
			ПЛ	-	3	6	18,0	0,231	13	54	0	0	0	54		
													Σ	336	0	336
123	Комната приема пищи	18	НС	ЮГ	8,8	3,78	25,1	0,262	48	315	0	0	0	315		
			ДО	ЮГ	1,51	1,81	8,2	1,852	48	729	0	0	0	729		
			ПЛ	-	8,8	6	52,8	0,231	13	159	0	0	0	159		
													Σ	1203	0	1203
124	Коридор	18	НС	ЮГ	2,6	3,78	8,0	0,262	48	101	0	0	0	101		
			ДО	ЮГ	1,51	1,21	1,8	1,852	48	162	0	0	0	162		
			ПЛ	-	2,6	6	15,6	0,231	13	47	0	0	0	47		
											0		Σ	310	111	421

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
125	Служ. помещение	18	НС	ЮГ	3,34	3,78	11,7	0,262	48	147	0	0	0	147		
			ДО	ЮГ	1,51	0,61	0,9	1,852	48	82	0	0	0	82		
			ПЛ	-	3,34	6	20,0	0,231	13	60	0	0	0	60		
													Σ	289	56	345
127	Служ. помещение	18	НС	ЮГ	6,4	3,78	21,5	0,262	48	270	0	0,1	0,1	297		
			НС	запад	3,3	3,78	12,5	0,262	48	157	0,05	0	0,05	165		
			ДО	ЮГ	1,51	1,81	2,7	1,852	48	243	0	0,1	0,1	267		
			ПЛ	-	5,88	2,8	16,5	0,231	13	49	0	0	0	49		
													Σ	778	166	944
132	Коридор	18	НС	запад	5,2	3,78	17,8	0,262	48	224	0,05	0	0,05	235		
			ДО	запад	1,51	1,21	1,8	1,852	48	162	0,05	0	0,05	171		
			ПЛ	-	5,9	5,2	30,7	0,231	13	92	0	0	0	92		
			НД	запад	0,9	2,02	1,8	1,261	48	110	0,05	0,27*8,74	2,41	375		
													Σ	873	0	873
134	Комната охраны	18	НС	запад	2,9	3,78	10,0	0,262	48	126	0,05	0	0,05	133		
	•		ДО	запад	1,51	0,61	0,9	1,852	48	82	0,05	0	0,05	86		
			ПЛ	-	4,3	2,9	12,5	0,231	13	37	0	0	0	37		
													Σ	256	56	312
138	Спальня	20	НС	запад	6,3	3,78	22,0	0,262	50	288	0,05	0	0,05	302		
			НС	север	6,8	3,78	23,9	0,262	50	313	0,1	0,05	0,15	360		
			НС	восток	6,3	3,78	22,0	0,262	50	288	0,1	0,05	0,15	331		
			ДО	запад	1,51	1,21	1,8	1,852	50	169	0,05	0	0,05	178		
			ДО	север	1,51	1,21	1,8	1,852	50	169	0,1	0,05	0,15	195		
			ДО	восток	1,51	1,21	1,8	1,852	50	169	0,1	0,05	0,15	195		

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			ПЛ	-	5,8	5,7	33,1	0,231	15	115	0	0	0	115		
								<u> </u>					Σ	1675	2178	3853
139	Коридор	18	НС	север	2,8	3,78	8,8	0,262	48	110	0,1	0	0,1	121		
			ДО	север	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179		
			ПЛ	-	2,8	6,2	17,4	0,231	13	52	0	0	0	52		
													Σ	352	111	463
140	Спальня	20	НС	север	3	3,78	9,5	0,262	50	125	0,1	0	0,1	137		
			ДО	север	1,51	1,21	1,8	1,852	50	169	0,1	0	0,1	186		
			ПЛ	-	3	6,2	18,6	0,231	15	64	0	0	0	64		
													Σ	388	545	932
202	Технич. отдел	18	НС	север	3,1	3,502	9,0	0,262	48	114	0,1	0	0,1	125		
			ДО	север	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179		
			ПТ	-	3,3	6,2	20,5	0,190	13	51	0	0	0	51		
													Σ	354	0	354
203	Кладовая	18	НС	запад	6,3	3,502	20,2	0,262	48	254	0,05	0	0,05	267		
			НС	север	6,8	3,502	22,0	0,262	48	277	0,1	0,05	0,15	318		
			НС	восток	6,3	3,502	20,2	0,262	48	254	0,1	0,05	0,15	293		
			ДО	запад	1,51	1,21	1,8	1,852	48	162	0,05	0	0,05	171		
			ДО	север	1,51	1,21	1,8	1,852	48	162	0,1	0,05	0,15	187		
			ДО	восток	1,51	1,21	1,8	1,852	48	162	0,1	0,05	0,15	187		
			ПТ	-	5,8	5,7	33,1	0,190	48	302	0	0	0	302		
													Σ	1723	333	2057
204	Приемная	18	НС	восток	3,4	3,502	10,1	0,262	48	127	0,1	0	0,1	139		
			ДО	восток	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179		
			ПТ	-	3,1	4,1	12,7	0,190	48	116	0	0	0	116		
													Σ	434	0	434

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
205	Кабинет зам. директора	18	НС	восток	3,2	3,502	9,4	0,262	48	118	0,1	0	0,1	130		
			ДО	восток	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179		
			ПТ	-	3,2	4,1	13,1	0,190	48	120	0	0	0	120		
													Σ	428	0	428
206	Кабинет гл. бухгалтера	18	НС	восток	3	3,502	8,7	0,262	48	109	0,1	0	0,1	120		
			ДО	восток	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179		
			ПТ	-	3	4,1	12,3	0,190	48	112	0	0	0	112		
													Σ	411	0	411
207	Кабинет отдыха администр.	18	НС	ЮГ	4,6	3,502	14,3	0,262	48	180	0	0,1	0,1	198		
			НС	восток	3,5	3,502	4,2	0,262	48	53	0,1	0,05	0,15	61		
			ДО	ЮГ	1,51	1,21	1,8	1,852	48	162	0	0,1	0,1	179		
			ПТ	-	4,1	3	14,4	0,190	48	131	0	0	0	131		
													Σ	568	0	568
208	Коридор	18	НС	ЮГ	1,77	3,502	3,5	0,262	48	44	0	0	0	44		
			ДО	ЮГ	1,51	1,81	2,7	1,852	48	243	0	0	0	243		
			ПТ	-	1,77	12,5	22,1	0,190	48	202	0	0	0	202		
													Σ	488	166	654
209	C/y	18	НС	ЮГ	3,6	3,502	9,9	0,262	48	124	0	0	0	124		
			ДО	ЮГ	1,51	1,81	2,7	1,852	48	243	0	0	0	243		
			ПТ	-	3,6	6	21,6	0,190	48	197	0	0	0	197		
													Σ	564	166	730
211	Уборная	18	НС	ЮГ	5,8	3,502	18,5	0,262	48	232	0	0	0	232		
			ДО	ЮГ	1,51	1,21	1,8	1,852	48	162	0	0	0	162		

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			ПТ	-	5,8	6	34,8	0,190	48	317	0	0	0	317		
													Σ	712	111	823
214	Курительная	16	НС	север	3,1	3,502	9,0	0,262	46	109	0,1	0	0,1	120		
			ДО	север	1,51	1,21	1,8	1,852	46	156	0,1	0	0,1	171		
			ПТ	-	3,1	6,2	19,2	0,190	46	168	0	0	0	168		
													Σ	459	106	565
215	Холл	18	НС	север	8,7	3,502	22,3	0,262	48	280	0,1	0	0,1	308		
			ДО	север	1,51	1,81	8,2	1,852	48	729	0,1	0	0,1	802		
			ПТ	-	8,7	6,2	53,9	0,190	48	492	0	0	0	492		
													Σ	1602	0	1602
217	Спальня	20	НС	ЮГ	3,3	3,502	8,8	0,262	50	116	0	0	0	116		
			ДО	ЮГ	1,51	1,81	2,7	1,852	50	253	0	0	0	253		
			ПЛ	-	3,3	6	19,8	0,231	50	229	0	0	0	229		
													Σ	597	1089	1686
218	Спальня	20	НС	ЮГ	2,7	3,502	7,6	0,262	50	100	0	0	0	100		
			ДО	ЮГ	1,51	1,21	1,8	1,852	50	169	0	0	0	169		
			ПЛ	-	2,7	6	16,2	0,231	50	187	0	0	0	187		
													Σ	456	545	1001
219	Спальня	20	НС	ЮГ	2,7	3,502	7,6	0,262	50	100	0	0	0	100		
			ДО	ЮГ	1,51	1,21	1,8	1,852	50	169	0	0	0	169		
			ПЛ	-	2,7	6	16,2	0,231	50	187	0	0	0	187		
													Σ	456	545	1001
220	Спальня	20	НС	ЮГ	2,7	3,502	7,6	0,262	50	100	0	0	0	100		
			ДО	ЮГ	1,51	1,21	1,8	1,852	50	169	0	0	0	169		
			ПЛ	-	2,7	6	16,2	0,231	50	187	0	0	0	187		
													Σ	456	545	1001

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
221	Спальня	20	НС	ЮГ	2,6	3,502	7,3	0,262	50	95	0	0	0	95		
			ДО	ЮГ	1,51	1,21	1,8	1,852	50	169	0	0	0	169		
			ПЛ	-	2,6	6	15,6	0,231	50	180	0	0	0	180		
													Σ	445	545	989
222	Служ. помещение	18	НС	ЮГ	3,3	3,502	9,7	0,262	48	122	0	0	0	122		
			ДО	ЮГ	1,51	1,21	1,8	1,852	48	162	0	0	0	162		
			ПЛ	-	3,3	6	19,8	0,231	48	220	0	0	0	220		
													Σ	504	111	615
224	Коридор	18	НС	ЮГ	1,9	3,502	3,9	0,262	48	49	0	0	0	49		
			ДО	ЮГ	1,51	1,81	2,7	1,852	48	243	0	0	0	243		
			ПТ	-	1,9	12,5	23,8	0,190	48	217	0	0	0	217		
													Σ	509	166	675
225	Спальня	20	НС	ЮГ	6,4	3,502	19,7	0,262	50	258	0	0,1	0,1	284		
			НС	запад	5	3,502	17,5	0,262	50	229	0,05	0	0,05	241		
			ДО	ЮГ	1,51	1,81	2,7	1,852	50	253	0	0,1	0,1	278		
			ПЛ	-	4,46	5,88	26,2	0,231	50	303	0	0	0	303		
													Σ	1106	1634	2739
226	Спальня	20	НС	запад	4,6	3,502	13,4	0,262	50	175	0,05	0	0,05	184		
			ДО	запад	1,51	1,81	2,7	1,852	50	253	0,05	0	0,05	266		
			ПЛ	-	5,88	4,6	27,0	0,231	50	312	0	0	0	312		
													Σ	762	1634	2396
227	Спальня	20	НС	запад	3,3	3,502	9,7	0,262	50	127	0,05	0	0,05	134		
			ДО	запад	1,51	1,21	1,8	1,852	50	169	0,05	0	0,05	178		
			ПЛ	-	5,9	3,3	19,5	0,231	50	225	0	0	0	225		
													Σ	536	545	1081

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
228	Спальня	20	НС	запад	6,3	3,502	20,2	0,262	50	265	0,05	0	0,05	278		
			НС	север	6,8	3,502	22,0	0,262	50	288	0,1	0,05	0,15	331		
			НС	восток	6,3	3,502	20,2	0,262	50	265	0,1	0,05	0,15	305		
			ДО	запад	1,51	1,21	1,8	1,852	50	169	0,05	0	0,05	178		
			ДО	север	1,51	1,21	1,8	1,852	50	169	0,1	0,05	0,15	195		
			ДО	восток	1,51	1,21	1,8	1,852	50	169	0,1	0,05	0,15	195		
			ПТ	-	5,8	5,7	33,1	0,190	50	314	0	0	0	314		
													Σ	1795	2178	3973
230	Служ. помещение	18	НС	север	3,1	3,502	9,0	0,262	48	114	0,1	0	0,1	125		
			ДО	север	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179		
			ПЛ	-	3,1	6,2	19,2	0,231	48	213	0	0	0	213		
													Σ	517	111	628
231	Кабинет дежурного	18	НС	север	2,7	3,502	7,6	0,262	48	96	0,1	0	0,1	106		
			ДО	север	1,51	1,21	1,8	1,852	48	162	0,1	0	0,1	179		
			ПЛ	-	2,7	6,2	16,7	0,231	48	186	0	0	0	186		
													Σ	470	0	470
145	ЛК	16	НС	север	2,9	7,28	19,7	0,262	46	238	0,1	0	0,1	262		
234			ДО	север	1,51	0,91	1,4	1,852	46	117	0,1	0	0,1	129		
			НД	север	1,51	2,37	3,6	1,261	46	208	0,1	0,27*8,74	2,46	718		
			ПЛ	-	2,9	6,22	18,0	0,231	11	46	0	0	0	46		
			ПТ	-	2,9	6,22	18,0	0,190	46	158	0	0	0	158		
													Σ	1312	80	1392
144	ЛК	16	НС	север	2,9	7,28	19,7	0,262	46	238	0,1	0	0,1	262		
233			ДО	север	1,51	0,91	1,4	1,852	46	117	0,1	0	0,1	129		

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
			НД	север	1,51	2,37	3,6	1,261	46	208	0,1	0,27*8,74	2,46	718		
			ПЛ	-	2,9	6,22	18,0	0,231	11	46	0	0	0	46		
			ПТ	-	2,9	6,22	18,0	0,190	46	158	0	0	0	158		
													Σ	1312	80	1392
															Σ	47354

Приложение Б

Теплопоступления от солнечной радиации

									Часы сут	гок						
	4-5	5-6	6-7	7-8	8-9	9-10	10-11	11-12	12-13	13-14	14-15	15-16	16-17	17-18	18-19	19-20
						Γ	Іомещені	ие №123	(Комната	приема	пищи)					
									Ю							
$q_{B\Pi}$				58	171	283	378	424	424	378	283	171	58	64	159	136
q_{BP}	10	43	80	102	114	119	121	123	123	121	119	114	102	80	43	10
F, _M ²	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2
\mathbf{k}_1	1,58	1,58	1,58	0,68	0,68	0,68	0,68	0,68	0,68	0,68	0,68	0,68	0,68	0,68	0,68	0,68
\mathbf{k}_2	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
β_{C3}	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Q _{cp.}	66	284	529	455	810	1143	1419	1555	1555	1419	1143	810	455	409	574	415
							I.	Іомещени	ие №215	(Холл)						
									C							
$q_{B\Pi}$	100	155	77											77	155	100
q_{BP}	17	73	93	96	91	85	81	80	80	81	85	91	96	93	73	17
F, _M ²	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2	8,2
\mathbf{k}_1	0,68	0,68	0,68	1,58	1,58	1,58	1,58	1,58	1,58	1,58	1,58	1,58	1,58	0,68	0,68	0,68
\mathbf{k}_2	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95
β_{C3}	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6	0,6
Q _{cp.}	372	725	540	709	672	628	598	591	591	598	628	672	709	540	725	372

Приложение В

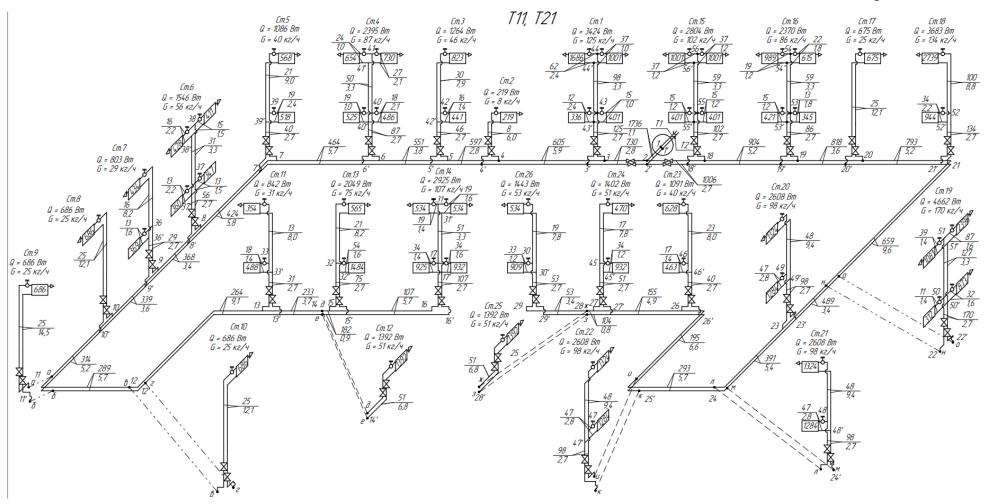


Рисунок В.1 – Расчетная схема системы отопления гостиницы

Приложение Г

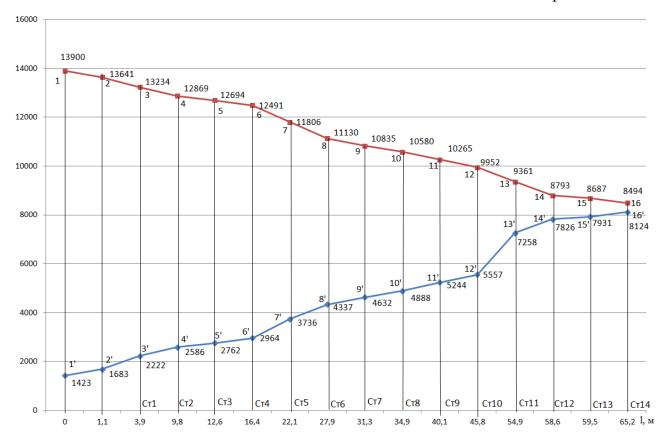


Рисунок Г.1 – Эпюра ОЦК

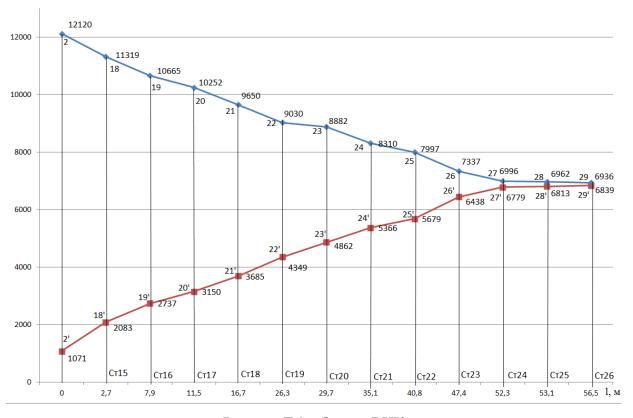


Рисунок Г.2 – Эпюра ВЦК

Гидравлический расчет СО

Таблица Д.1 - Гидравлический расчет двухтрубной тупиковой системы отопления

№ уч.	G _{уч} , кг/ч	l _{уч} , м	R _{ср} , Па/ м	d, _{MM}	R _ф , Па/м	R _ф ·l, Па	v, m/c	Σξ	Z, Па	R _ф l+Z , Па
1	2	3	4	5	6	7	8	9	10	11
	ОЦК	(через ні	ижний	прибо	ор прав.	, стояк 14	4), $\Delta P_p =$	13900	Па	
1-2	1736	1,1	59,2	32	95	104,5	0,459	1,5	155,0	259,5
2-3	730	2,8		25	75	210,0	0,337	3,5	197	407,0
3-4	605	5,9		25	55	324,5	0,286	1	39,7	364,2
4-5	597	2,8		25	50	140,0	0,272	1	35,6	175,6
5-6	551	3,8		25	45	171,0	0,257	1	31,8	202,8
6-7	464	5,7		20	110	627,0	0,346	1	58,2	685,2
7-8	424	5,8		20	95	551,0	0,321	2,5	125	676,0
8-9	368	3,4		20	75	255,0	0,284	1	39,7	294,7
9-10	339	3,6		20	60	216,0	0,252	1	39,5	255,5
10-11	314	5,2		20	55	286,0	0,241	1	28,1	314,1
11-12	289	5,7		20	45	256,5	0,216	2,5	56,5	313,0
12-13	264	9,1		20	38	345,8	0,198	4	246	591,8
13-14	233	3,7		15	140	518,0	0,321	1	50	568,0
14-15	182	0,9		15	85	76,5	0,247	1	29,3	105,8
15-16	107	5,7		15	32	182,4	0,146	1	10,3	192,7
16-17	107	2,7		15	32	86,4	0,146	10,5	102	188,4
17-17'	34	1,6		15	3	4,8	0,047	8,2	8,3	13,1
17'-16'	107	2,7		15	32	86,4	0,146	7,5	82,2	168,6
16'-15'	107	5,7		15	32	182,4	0,146	1	10,3	192,7
15'-14'	182	0,9		15	85	76,5	0,247	1	29,3	105,8
14'-13'	233	3,7		15	140	518,0	0,321	1	50	568,0
13'-12'	264	9,1		15	170	1547,0	0,355	2,5	153,5	1700, 5
12'-11'	289	5,7		20	45	256,5	0,216	2,5	56,5	313,0
11'-10'	314	5,2		20	55	286,0	0,241	2,5	70,4	356,4
10'-9'	339	3,6		20	60	216,0	0,252	1	39,5	255,5
9'-8'	368	3,4		20	75	255,0	0,284	1	39,7	294,7
8'-7'	424	5,8		20	95	551,0	0,321	1	50	601,0
7'-6'	464	5,7		20	110	627,0	0,346	2,5	145	772,0
6'-5'	551	3,8		25	45	171,0	0,257	1	31,8	202,8
5'-4'	597	2,8		25	50	140,0	0,272	1	35,6	175,6
4'-3'	605	5,9		25	55	324,5	0,286	1	39,7	364,2
3'-2'	730	2,8		25	75	210,0	0,337	6	329	539,0
2'-1'	1736	1,1		32	95	104,5	0,459	1,5	155	259,5
	Σ	137,4								12477
									Запас:	0,10
Стояк 1	4 через	нижний	прибо	р лев	$\Delta P_p =$	13,1	Па			

				•	,	•		одолжени	е таоли	<u>цы д.т</u>
1	2	3	4	5	6	7	8	9	10	11
17-17'	34	1,4	5,5	15	3	4,2	0,047	8,2	8,3	12,5
							Невязка:	(13,1-12,5	5)/13,1=	0,05
C	тояк 13 ч	ерез н	—— пижний г	грибор,	$\Delta P_p =$	756	Па			
15-32	75	2,7	63,1	15	16	43,2	0,1	7,5	36,7	79,9
32-32'	54	1,6		15	7,5	12,0	0,073	8,2	22	34,0
32'-15	75	2,7		15	16	43,2	0,1	10,5	48,9	92,1
		7							Σ	206,0
			$d_{\mu} =$	3,56	·((75^2	/(756-2	06))^(1/4))=	6,4	MM	
			Ст	ояк 12,	$\Delta P_p =$	967	Па			
14-14'	51	6,8	83,2	15	6,5	44,2	0,069	20,2	24	68,2
	$\Delta P_{\text{изб}}$ =	967	-68,2=	899	Па -	регулі верх.	ируется КРД н отажа	а радиатор	e STI	
C	тояк 11 ч	ерез н	ижний г	рибор,	$\Delta P_p =$	2103	Па			
13-33	31	2,7	180,9	15	2,6	7,0	0,041	10,5	7,82	14,8
33-33'	18	1,4		15	1,5	2,1	0,024	8,2	2,44	4,5
33'- 13'	31	2,7		15	2,6	7,0	0,041	10,5	7,82	14,8
		6,8							Σ	34,2
					$d_{\pi} =$	2,9	MM			
	Стояк 7 ч	ерез н	ижний г	прибор.		6203	Па			
9-36	29	2,7	518,4	15	2,6	7,0	0,041	7,5	5,87	12,9
36-36'	13	1,6	,	15	1,1	1,8	0,017	8,2	0,88	2,6
36'-9'	29	2,7		15	2,6	7,0	0,041	10,5	7,82	14,8
		7							Σ	30,4
					$d_{\pi} =$	2,2	MM			•
Стоя	к 6 через	нижн	ий прибо	ор лев.,		6792	Па			
8-37	56	2,7	522,8	15	8,5	23,0	0,076	10,5	27,5	50,5
37-37'	13	2,2		15	1,1	2,4	0,017	8,2	0,88	3,3
37'-8'	56	2,7		15	8,5	23,0	0,076	9	24,7	47,7
		7,6							Σ	101,4
					$d_{\mu} =$	2,9	MM			
Сто	як 6 через	в нижі	ний приб	бор пр		3	Па			
37-37'	13	1,5	1,3	15	1,1	1,7	0,017	8,2	0,88	2,5
			· · · · · · · · · · · · · · · · · · ·	1	$d_{\mu} =$	13,7	MM			
	Стояк 5 ч	ерез н	ижний г	ірибор,		8069	Па			
7-39	40	2,7	605,2	15	3,4	9,2	0,054	10,5	14,8	24,0
39-39'	19	2,4		15	1,5	3,6	0,024	8,2	2,44	6,0
39'-7'	40	2,7		15	3,4	9,2	0,054	10,5	14,8	24,0

							11pc	одолжени	е таоли	<u>цы д. г</u>
1	2	3	4	5	6	7	8	9	10	11
		7,8							Σ	54,0
					$d_{\mu}=$	2,4	MM			
Сто	як 4 через	з нижі	ний приб	<u>бор пр.,</u>		9527	Па			
6-40	87	2,7	743,1	15	22	59,4	0,119	10,5	70,4	129,8
40-40'	18	2,1		15	1,5	3,2	0,024	8,2	2,47	5,6
40'-6'	87	2,7		15	22	59,4	0,119	9	63,4	122,8
		7,5							Σ	258,2
					$d_{\mu}=$	3,4	MM			
Стоя	к 4 через	нжин	ий прибо	ор лев.,	$\Delta P_p =$	6	Па			
40-40'	19	1	3,3	15	1,6	1,6	0,025	8,2	2,47	4,1
					$d_{\pi}=$	13,9	MM			
	Стояк 3 ч	ерез н	ижний п	грибор,	$\Delta P_p =$	9932	Па			
5-42	46	2,7	854,5	15	5	13,5	0,063	10,5	19,3	32,8
42-42'	16	1,4		15	1,4	2,0	0,022	8,2	1,59	3,6
42'-5'	46	2,7		15	5	13,5	0,063	10,5	19,1	32,6
		6,8							Σ	69,0
					$d_{\mu}=$	2,4	MM			
		•	C	тояк 2,		1028	Па			
4-4'	8	6	1002,	15	0,7	4,2	0,011	29,2	0,49	4,7
	ΔРизб	;=		283-4,7	<u> </u>	1027 9	Па - регулиру STI	уется КРД і	на радиат	rope
						1101	311			
Стоя	к 1 через	нжин	ий прибо	ор лев.,	$\Delta P_p =$		Па			
3-43	125	2,7	825,9	15	40	108, 0	0,165	10,5	133	241,0
43-43'	12	2,4	26,3	15	1	2,4	0,016	8,2	0,88	3,3
43'-3'	125	2,7		15	40	108, 0	0,165	9	113	221,0
		7,8							Σ	465,3
					$d_{\rm A}=$	3,9	MM			
Сто	як 1 через	з нижі	ний приб	ор пр.,		3,3	Па			
43-43'	15	1	1,9	15	1,3	1,3	0,02	8,2	1,56	2,9
	1.4					2==		Н	Гевязка:	0,128
	к 14 через					377	Па		5.00	17 1
17-31	39	3,3	26,9	15	3,4	11,2	0,054	4	5,92	17,1
31-31'	19	1,6		15	1,6	2,6	0,025	8,2	2,44	5,0
17'	39	3,3		15	3,4	11,2	0,054	4	5,92	17,1
		8,2							Σ	39,28
	$\Delta P_{_{ m M36}}$ =	377	-39,3=	337		Па	- регулируетс ве	я КРД на ра рх.этажа	адиатор <mark>е</mark>	STI
								•		

1 2 3 4 5 6 7 8 9 10 Стояк 14 через верхний прибор лев., ДР _р = 5 Па 1 1 1 15 1,6 2,2 0,025 8,2 2,44 1 2 2	10,8 STI 32,6										
31-31' 19	19,2 STI 10,8 STI 32,6										
Стояк 13 через верхний прибор, $\Delta P_p = 398$ Па 32-32' 21 8,2 28,4 15 1,8 14,8 0,028 14,2 4,45 $\Delta P_{H36} = 378$ Па - регулируется КРД на радиаторе 8 верх.этажа Стояк 11 через верхний прибор, $\Delta P_p = 368$ Па 33-33' 13 8 26,9 15 1,1 8,8 0,017 14,2 1,96 $\Delta P_{H36} = 357$ Па - регулируется КРД на радиаторе 8 верх.этажа Стояк 10, $\Delta P_p = 4759$ Па 34-34' 25 12, 230,1 15 2,2 26,6 0,035 20,2 5,99 $\Delta P_{H36} = 4726$ Па - регулируется КРД на радиаторе 8 верх.этажа Стояк 9, $\Delta P_p = 5385$ Па 11-11' 25 14, 5 217,3 15 2,2 31,9 0,035 26,2 7,82 $\Delta P_{H36} = 5345$ Па - регулируется КРД на радиаторе 8 верх.этажа Стояк 8, $\Delta P_p = 6056$ Па 35-35' 25 12, 292,8 15 2,2 26,6 0,035 20,2 5,99 $\Delta P_{H36} = 6023$ Па - регулируется КРД на радиаторе 8 верх.этажа Стояк 7 через верхний прибор, $\Delta P_p = 366$ Па - регулируется КРД на радиаторе 8 верх.этажа	19,2 STI 10,8 STI 32,6										
Стояк 13 через верхний прибор, ΔP_p = 398 Па 32-32' 21 8,2 28,4 15 1,8 14,8 0,028 14,2 4,45 АР _{из6} = 378 Па - регулируется КРД на радиаторе 8 верх.этажа Стояк 11 через верхний прибор, ΔP_p = 368 Па 33-33' 13 8 26,9 15 1,1 8,8 0,017 14,2 1,96 Стояк 10, ΔP_p = 4759 Па 34-34' 25 12, 1, 230,1 15 2,2 26,6 0,035 20,2 5,99 Стояк 9, ΔP_p = 4726 Па - регулируется КРД на радиаторе 8 верх.этажа Стояк 9, ΔP_p = 5385 Па 11-11' 25 14, 5 217,3 15 2,2 31,9 0,035 26,2 7,82 Оризона при образона при обра	19,2 STI 10,8 STI 32,6										
32-32' 21 8,2 28,4 15 1,8 14,8 0,028 14,2 4,45 ΔР _{изб} = 378 Па - регулируется КРД на радиаторе S верх.этажа Стояк 11 через верхний прибор, ΔР _p = 368 Па 33-33' 13 8 26,9 15 1,1 8,8 0,017 14,2 1,96 ΔР изб = 357 Па - регулируется КРД на радиаторе S верх.этажа Стояк 10, ΔР _p = 4759 Па 34-34' 25 12, 1, 230,1 15 2,2 26,6 0,035 20,2 5,99 ΔР _{изб} = 4726 Па - регулируется КРД на радиаторе S верх.этажа Стояк 9, ΔР _p = 5385 Па 11-11' 25 14, 5 217, 3 15 2,2 31,9 0,035 26,2 7,82 Стояк 8, ΔР _p = 6056 Па Стояк 8, ΔР _p = 6056 Па Па - регулируется КРД на радиаторе S верх.этажа Па - регулируется КРД на радиаторе S верх.этажа Па - регулируется КРД на ра	10,8 STI 32,6										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10,8 STI 32,6										
$AP_{\text{из6}} = 378$ Верх.этажа C Тояк 11 через верхний прибор, $\Delta P_p = 368$ Па $AP_{\text{из6}} = 357$	10,8 STI 32,6										
33-33' 13 8 26,9 15 1,1 8,8 0,017 14,2 1,96 ΔP _{изб} = 357 Па - регулируется КРД на радиаторе S верх.этажа Стояк 10, ΔP _p = 4759 Па 34-34' 25 12, 230,1 15 2,2 26,6 0,035 20,2 5,99 ΔP _{изб} = 4726 Па - регулируется КРД на радиаторе S верх.этажа Стояк 9, ΔP _p = 5385 Па 11-11' 25 14, 217,3 15 2,2 31,9 0,035 26,2 7,82 ΔP _{изб} = 5345 Па - регулируется КРД на радиаторе S верх.этажа Стояк 8, ΔP _p = 6056 Па 35-35' 25 12, 292,8 15 2,2 26,6 0,035 20,2 5,99 ΔP _{изб} = 6023 Па - регулируется КРД на радиаторе S верх.этажа Стояк 7 через верхний прибор, ΔP _p = 366 Па	STI 32,6										
$\Delta P_{\text{изб}} = 357$ Πa - регулируется КРД на радиаторе S верх.этажа C Тояк $10, \Delta P_p = 4759$ Πa $34-34'$ 25 $12, 1$ $230,1$ 15 $2,2$ $26,6$ $0,035$ $20,2$ $5,99$ $\Delta P_{\text{изб}} = 4726$ Πa - регулируется КРД на радиаторе S верх.этажа C Тояк $9, \Delta P_p = 5385$ Πa $11-11'$ 25 $14, 5$ $217,3$ 15 $2,2$ $31,9$ $0,035$ $26,2$ $7,82$ $\Delta P_{\text{изб}} = 5345$ Πa - регулируется КРД на радиаторе S верх.этажа C Тояк $8, \Delta P_p = 6056$ Πa C Тояк $8, \Delta P_p = 6056$ Πa C Тояк $8, \Delta P_p = 6056$ Ω C Ω	STI 32,6										
$\Delta P_{u36} = 35$ / $C TOЯК 10, \Delta P_p = 4759$ Πa $34-34$ ' 25 $12, 1230,1 15 2,2 26,6 0,035 20,2 5,99$ $\Delta P_{u36} = 4726$ $\Pi a - $ регулируется $KPД$ на радиаторе $S = 10$ $MP_{u36} =$	32,6										
34-34' 25 12, 1 230,1 15 2,2 26,6 0,035 20,2 5,99 АР _{изб} = 4726 Па - регулируется КРД на радиаторе S верх.этажа Стояк 9, $\Delta P_p =$ 5385 Па 11-11' 25 14, 5 217,3 15 2,2 31,9 0,035 26,2 7,82 $\Delta P_{изб} =$ 5345 Па - регулируется КРД на радиаторе S верх.этажа Стояк 8, $\Delta P_p =$ 6056 Па 35-35' 25 12, 1 292,8 15 2,2 26,6 0,035 20,2 5,99 $\Delta P_{изб} =$ 6023 Па - регулируется КРД на радиаторе S верх.этажа Стояк 7 через верхний прибор, $\Delta P_p =$ 366 Па											
$\Delta P_{\text{из6}} = 4726$ \Box Па - регулируется КРД на радиаторе S верх.этажа \Box Стояк 9 , $\Delta P_p = 5385$ Па \Box Па - регулируется КРД на радиаторе S верх.этажа \Box Стояк 8 , $\Delta P_p = 5345$ \Box Па - регулируется КРД на радиаторе S верх.этажа \Box Стояк 8 , $\Delta P_p = 6056$ Па \Box Стояк 8 , $\Delta P_p = 6056$ Па \Box Стояк 8 , $\Delta P_p = 6056$ Па \Box Стояк 8 , $\Delta P_p = 6056$ Па \Box Па - регулируется КРД на радиаторе S верх.этажа \Box Стояк 7 через верхний прибор, $\Delta P_p = 366$ Па \Box Па - регулируется КРД на радиаторе S верх.этажа \Box Стояк 7 через верхний прибор, $\Delta P_p = 366$ Па											
$\Delta P_{\text{из6}} = 4726$ Верх.этажа C Тояк 9 , $\Delta P_p = 5385$ Па 11 - 11 ' 25 14 , $217,3$ 15 $2,2$ $31,9$ $0,035$ $26,2$ $7,82$ $\Delta P_{\text{из6}} = 5345$ Па - регулируется КРД на радиаторе S Верх.этажа C Тояк S , $\Delta P_p = 6056$ Па S	O.T.										
11- 11 ' 25 14 , 5 $217,3$ 15 $2,2$ $31,9$ $0,035$ $26,2$ $7,82$ $26,2$ 26	STI										
11-11' 25 $\frac{14}{5}$ 217,3 15 2,2 31,9 0,035 26,2 7,82 $\Delta P_{\mu 36} =$ 5345 Па - регулируется КРД на радиаторе S верх.этажа Стояк 8, $\Delta P_p =$ 6056 Па 35-35' 25 12, 1292,8 15 2,2 26,6 0,035 20,2 5,99 $\Delta P_{\mu 36} =$ 6023 Па - регулируется КРД на радиаторе S верх.этажа Стояк 7 через верхний прибор, $\Delta P_p =$ 366 Па											
$\Delta P_{и36} = 3543$ верх.этажа C тояк 8, $\Delta P_p = 6056$ Па 35 -35' 25 12 , 292 ,8 15 2 ,2 26 ,6 0 ,035 20 ,2 5 ,99 $\Delta P_{u36} = 6023$ Па - регулируется КРД на радиаторе $\Delta P_{u36} = 6023$ Верх.этажа $\Delta P_{u36} = 6023$ Па - регулируется $\Delta P_{u36} = 6023$ Верх.этажа $\Delta P_{u36} = 6023$ $\Delta P_p = 366$ Па	39,7										
C тояк 8, $\Delta P_p = 6056$ Па $35-35'$ 25 $12, $	STI										
$35-35'$ 25 $12,$ $292,8$ 15 $2,2$ $26,6$ $0,035$ $20,2$ $5,99$ $\Delta P_{изб} = 6023$ Πa - регулируется КРД на радиаторе S верх.этажа C тояк 7 через верхний прибор, $\Delta P_p = 366$ Πa											
$\Delta P_{\text{изб}} = 6023$ верх.этажа Стояк 7 через верхний прибор, $\Delta P_{\text{p}} = 366$ Па	32,6										
Стояк 7 через верхний прибор, $\Delta P_p = 366$ Па	STI										
	14,5										
$\Delta P_{\text{изб}} = 352$ Па - регулируется КРД на радиаторе S верх.этажа	STI										
Стояк 6 через верхний прибор лев., $\Delta P_p = 367$ Па											
37-38 31 3,3 24,4 15 2,6 8,6 0,041 4 3,13	11,7										
38-38' 16 2,2 15 1,4 3,1 0,022 8,2 2,44	5,5										
38'- 37' 31 3,3 15 2,6 8,6 0,041 4 3,13	11,7										
	28,94										
$\Delta P_{\text{изб}} = 338$ Па - регулируется КРД на радиаторе S верх.этажа	STI										
Стояк 6 через верхний прибор пр., $\Delta P_p = 6$ Па											
38-38' 15 1,5 2,2 15 1,3 2,0 0,02 8,2 1,56	3,5										
$\Delta P_{\text{изб}} = 2$ Па - регулируется КРД на радиаторе S верх.этажа	STI										
Стояк 5 через верхний прибор, $\Delta P_p = 370$ Па	верх.этажа										

							Hp	одолжени	е табли	щы Д.1	
1	2	3	4	5	6	7	8	9	10	11	
39-39'	21	9	24,0	15	1,8	16,2	0,028	14,2	4,4	20,6	
$\Delta P_{\text{M36}} = 349$						Па - регулируется КРД на радиаторе STI					
		Δ.	изо —	J T J			ве	рх.этажа	I	I	
Стоян	к 4 через	верхі	ний приб	бор пр.,	$\Delta P_p =$	368	Па				
40-41	50	3,3	24,7	15	6	19,8	0,067	4	8,3	28,1	
41-41'	27	2,1		15	2,4	5,0	0,038	8,2	6,26	11,3	
41'-40'	50	3,3		15	6	19,8	0,067	4	8,3	28,1	
		8,7							Σ	67,5	
		Δ	Р _{изб} =	300		Па -	регулируетс ве	я КРД на ра рх.этажа	адиаторе	STI	
Стояк	4 через	верхн	ий прибо	ор лев.,	$\Delta P_n =$	11,3	Па				
41-41'	24	1	6,6	15	2	2,0	0,032	8,2	4,79	6,8	
		Δ	Р _{изб} =	5		Па -	регулируетс ве	я КРД на ра рх.этажа	адиаторе	STI	
C	тояк 3 ч	enes B	ерхний г	ірибор.	$\Lambda P_n =$	367	Па	1			
42-42'	30	7,9	27,2	15	2,6	20,5	0,041	14,2	7,92	28,5	
72-72	30	1,5	21,2	13	2,0		,	· ·			
		Δ	Р _{изб} =	339		Па - регулируется КРД на радиаторе S7 верх.этажа					
Стояк	1 через	верхн	ий прибо	ор лев.,	$\Delta P_p =$	367	Па				
43-44	98	3,3	23,8	15	26	85,8	0,131	4	33	118,8	
44-44'	62	2,4		15	12	28,8	0,086	8,2	31,7	60,5	
44'-43'	98	3,3		15	26	85,8	0,131	4	33	118,8	
		9							Σ	298,1	
	٨	Р _{изб} =	69		Па - регулируется КРД на радиаторе STI						
	Δ.	изо —	0)			ве	рх.этажа	T			
Стояк 1 через верхний прибор г				бор пр.,	$\Delta P_p =$	61	Па				
44-44'	37	1	35,4	15	3,2	3,2	0,05	8,2	9,78	13,0	
		Δ	Р _{изб} =	48		Па -	регулируетс		адиаторе	STI	
					() AD	верх.этажа					
ВЦК (через нижний прибор, стояк 2), ΔP _p	12120	Па				
2-18	1006	2,7	59,3	25	140	378,0	0,466	4	423	801,0	
18-19	904	5,2	22,0	25	110	572,0	0,411	1	82,2	654,2	
19-20	818	3,6		25	95	342,0	0,381	1	70,6	412,6	
20-21	793	5,2		25	90	468,0	0,371	2	134	602,0	
21-22	659	9,6		25	60	576,0	0,3	1	44	620,0	
22-23	489	3,4		25	36	122,4	0,229	1	25,9	148,3	
23-24	391	5,4		20	85	459,0	0,303	2,5	113	572,0	
24-25	293	5,7		20	45	256,5	0,216	2,5	56,5	313,0	
25-26	195	6,6		15	95	627,0	0,262	1	33	660,0	
26-27	155	4,9		15	65	318,5	0,214	1	22,6	341,1	
27-28	104	0,8		15	30	24,0	0,141	1	9,58	33,6	
28-29	53	3,4		15	7	23,8	0,071	1	2,39	26,2	
29-30	53	2,7		15	7	18,9	0,071	10,5	24	42,9	
30-30'	33	1,2		15	2,8	3,4	0,044	8,2	7,92	11,3	

Продолжение таблицы Д. 1 2 3 4 5 6 7 8 9 10 11											
1	2	3	4	5	6	7	8	9	10	11	
30'-29'	53	2,7		15	7	18,9	0,071	10,5	24	42,9	
29'-28'	53	3,4		15	7	23,8	0,071	1	2,39	26,2	
28'-27'	104	0,8		15	30	24,0	0,141	1	9,58	33,6	
27'-26'	155	4,9		15	65	318,5	0,214	1	22,6	341,1	
26'-25'	195	6,6		15	95	627,0	0,262	4	132	759,0	
25'-24'	293	5,7		20	45	256,5	0,216	2,5	56,5	313,0	
24'-23'	391	5,4		20	85	459,0	0,303	1	45,5	504,5	
23'-22'	489	3,4		20	130	442,0	0,378	1	70,6	512,6	
22'-21'	659	9,6		25	60	576,0	0,3	2	88	664,0	
21'-20'	793	5,2		25	90	468,0	0,371	1	66,9	534,9	
20'-19'	818	3,6		25	95	342,0	0,381	1	70,6	412,6	
19'-18'	904	5,2		25	110	572,0	0,411	1	82,2	654,2	
18'-2'	1006	2,7		25	140	378,0	0,466	6	634	1012,0	
		120								11049	
									Запас:	0,088	
			Ст	ояк 25,	$\Delta P_p =$	149	Па				
28-28'	51	6,8	12,9	15	6,5	44,2	0,069	20,2	38	82,2	
		I.			$d_{\mu}=$	8,9	MM				
Ст	ояк 24 ч	ерез ни	жний п	пибор.		217	Па	•	•		
27-45	51	2,7	19,2	15	6,5	17,6	0,069	7,5	17,95	35,5	
45-45'	34	1,2	,	15	3	3,6	0,047	8,2	9,78	13,4	
45'-27'	51	2,7		15	6,5	17,6	0,069	10,5	24	41,6	
		6,6							Σ	90,4	
		- , -			$d_{A}=$	7,6	MM			,	
Стояк 23 через нижний прибор, ДІ					$\Delta P_p =$	899	Па				
26-46	40	2,7	77,3	15	3,4	9,2	0,054	10,5	14,8	24,0	
46-46'	17	1,4		15	1,5	2,1	0,024	8,2	2,46	4,6	
46'-26'	40	2,7		15	3,4	9,2	0,054	10,5	14,8	24,0	
		6,8							Σ	52,5	
					$d_{\pi} =$	4,2	MM				
Ст	ояк 22 ч	ерез ни	жний п	рибор,	•	2318	Па				
25-47	98	2,7	165, 4	15	26	70,2	0,131	10,5	82,6	152,8	
47-47'	47	2,8		15	5	14,0	0,063	8,2	16,5	30,5	
47'-25'	98	2,7		15	26	70,2	0,131	10,5	82,6	152,8	
		8,2							Σ	336,1	
					$d_{\mu}=$	5,3	MM			,	
Ст	ояк 21 ч	ерез ни	жний п	рибор,		2944	Па				
24-48	98	2,7	210,	15	26	70,2	0,131	10,5	82,6	152,8	

48-48' 47 2,8 15 5 14,0 0,063 8,2 16,5 30,5									одолжени	те табли	іцы д.т
48-24' 98 2,7 15 26 70,2 0,131 10,5 82,6 152,8	1	2	3	4	5	6	7	8	9	10	11
48-24' 98 2,7 15 26 70,2 0,131 10,5 82,6 152,8	48-48'	47	2,8		15	5	14,0	0,063	8,2	16,5	30,5
8.2	48'-24'	98	2,7		15	26	70,2	0,131	10,5	82,6	152,8
CTORK 20 через нижний прибор, ΔP _p = 4020 Па 10,5 82,6 152,8								,	,		
Стояк 20 через нижний прибор, АР _p = 4020 Па 10,5 82,6 152,8 49-49' 47 2,8 15 5 14,0 0,063 8,2 16,5 30,5 49-23' 98 2,7 15 26 70,2 0,131 10,5 82,6 152,8 8,2 1 5 6,7 0,131 10,5 82,6 152,8 8,2 1 5 6,7 0,131 10,5 82,6 152,8 8,2 1 5 6,7 0,21 11,05 82,6 152,8 8,2 1 5 6,7 0,21 11,05 82,6 152,8 8,2 1 5 6,7 4,5 MM 4 2 2,9 461,5 22-50 170 2,7 391,2 15 75 202,5 0,231 10,5 259 461,5 50-50' 32 1,6 15 2,8 4,5			- 7			d –	4.9	MM			,
23-49 98 2,7 286,8 15 26 70,2 0,131 10,5 82,6 152,8	Ст	20 n	enes II	шултай г	เทนด์ดูก						
49-49' 47 2,8 15 5 14,0 0,063 8,2 16,5 30,5 49-23' 98 2,7 15 26 70,2 0,131 10,5 82,6 152,8					гриоор,						
49°-23° 98 2,7	23-49	98	2,7	286,8	15	26	70,2	0,131	10,5	82,6	152,8
R,2	49-49'	47	2,8		15	5	14,0	0,063	8,2	16,5	30,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	49'-23'	98	2,7		15	26	70,2	0,131	10,5	82,6	152,8
Стояк 19 через нижний прибор лев., $\Delta P_p = 4681$ Па 22-50 170 2,7 391,2 15 75 202,5 0,231 10,5 259 461,5 50-50' 32 1,6 15 2,8 4,5 0,044 8,2 7,92 12,4 50'-22' 170 2,7 15 75 202,5 0,231 9 259 461,5			8,2							Σ	336,1
22-50 170 2,7 391,2 15 75 202,5 0,231 10,5 259 461,5						$d_{\scriptscriptstyle A}=$	4,5	MM			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Стояк	19 через	нжин	ий прибо	р лев.,		4681	Па		-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							202,5	0,231	10,5	259	461,5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	50-50'	32	1.6		15	2.8	4 5	0.044	8.2	7 92	12.4
Стояк 19 через нижний прибор пр., $\Delta P_p =$ 12 Па Стояк 18 через нижний прибор, $\Delta P_p =$ 12 Па Стояк 18 через нижний прибор, $\Delta P_p =$ 5965 Па 21-52 134 2,7 459,2 15 50 135,0 0,186 7,5 119 254,0 52-52' 34 2,2 15 3 6,6 0,047 8,2 9,75 16,4 52'-21' 134 2,7 15 50 135,0 0,186 7,5 119 254,0 52'-21' 134 2,7 15 50 135,0 0,186 10,5 119 254,0 52'-21' 134 2,7 15 50 135,0 0,186 10,5 119 254,0 52'-21' 134 2,7 15 50 135,0 0,186 10,5 119 254,0 Стояк 16 через нижний прибор лев., $\Delta P_p =$ 7927 Па 7927 Па 19-53 86 2,7											
Стояк 19 через нижний прибор пр., $\Delta P_p = 12$ Па	30 22	170			10	7.5	202,5	0,231			
Стояк 19 через нижний прибор пр., $\Delta P_p =$ 12 Па 12 Па 12 Па 13 0,015 8,2 0,91 2,2 Стояк 18 через нижний прибор, $\Delta P_p =$ 5965 Па 21-52 134 2,7 459,2 15 50 135,0 0,186 7,5 119 254,0 52-52' 34 2,2 15 3 6,6 0,047 8,2 9,75 16,4 52'-21' 134 2,7 15 50 135,0 0,186 10,5 119 254,0 52-52' 34 2,2 15 50 135,0 0,186 10,5 119 254,0 52-52' 134 2,7 15 50 135,0 0,186 10,5 119 254,0 52-52' 16,4 4,8 MM MM 10,5 70,4 129,8 12,4 13 13 18 19,3 15 1,1 2,0 0,017 8,2 1,27 3,3 3,3 53'-19' 86 <td></td> <td></td> <td>,</td> <td></td> <td></td> <td>d_z=</td> <td>5.9</td> <td>ММ</td> <td></td> <td></td> <td>755,1</td>			,			d _z =	5.9	ММ			755,1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Стояк	10 uene	2 HIAVI	ший приб	ion πn						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									8.2	0.91	2.2
Стояк 18 через нижний прибор, $\Delta P_p = 5965$ Па 21-52 134 2,7 459,2 15 50 135,0 0,186 7,5 119 254,0 52-52' 34 2,2 15 3 6,6 0,047 8,2 9,75 16,4 52'-21' 134 2,7 15 50 135,0 0,186 10,5 119 254,0	30 30	11	1,1	3,2	13			†	0,2	0,71	2,2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ст	20gr 18 u	enes II	шулий г	เทนด์ดก			ı			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									7.5	119	254.0
52'-21' 134 2,7 15 50 135,0 0,186 10,5 119 254,0 7,6 I <t< td=""><td></td><td></td><td></td><td>737,2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>				737,2							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
Стояк 16 через нижний прибор лев., $\Delta P_p =$ 7927 Па 19-53 86 2,7 644,1 15 22 59,4 0,119 10,5 70,4 129,8 53-53' 13 1,8 19,3 15 1,1 2,0 0,017 8,2 1,27 3,3 53'-19' 86 2,7 15 22 59,4 0,119 9 63,4 122,8 7,2 0 0 0,119 9 63,4 122,8 0 0 0 0,119 9 63,4 122,8 0 0 0 0 0 0 0 0 0	32 21	131			13	30	133,0	0,100	10,5		
Стояк 16 через нижний прибор лев., $\Delta P_p = 7927$ Па 19-53 86 2,7 644,1 15 22 59,4 0,119 10,5 70,4 129,8 53-53' 13 1,8 19,3 15 1,1 2,0 0,017 8,2 1,27 3,3 53'-19' 86 2,7 15 22 59,4 0,119 9 63,4 122,8 7,2 Σ 255,9 Σ 255,9 Σ 255,9 Σ 255,9 Σ 255,9 Σ 15 1,2 1,6 15 1,3 1,6 0,02 8,2 1,63 3,2 Невязка: 0,02			7,0			4 _	4 8	MM			321,1
19-53 86 2,7 644,1 15 22 59,4 0,119 10,5 70,4 129,8 53-53' 13 1,8 19,3 15 1,1 2,0 0,017 8,2 1,27 3,3 53'-19' 86 2,7 15 22 59,4 0,119 9 63,4 122,8 7,2 15 22 59,4 0,119 9 63,4 122,8 Σ 255,9 0 0,1 0,1 0,1 0,0	C	16									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Стояк	го через Г	нижн	ии приос	ор лев.,	$\Delta P_p =$	1921	11a			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			2,7		15	22	59,4	,	10,5	70,4	·
7,2 Д _д = 3,5 MM Стояк 16 через нижний прибор пр., ΔР _p = 3,3 Па 53-53' 15 1,2 1,6 15 1,3 1,6 0,02 8,2 1,63 3,2 Невязка: 0,02	53-53'	13	1,8	19,3	15	1,1	2,0	0,017	8,2	1,27	3,3
	53'-19'	86			15	22	59,4	0,119	9		
Стояк 16 через нижний прибор пр., $\Delta P_p = 3,3$ Па 53-53' 15 1,2 1,6 15 1,3 1,6 0,02 8,2 1,63 3,2 Невязка: 0,02			7,2							Σ	255,9
53-53' 15 1,2 1,6 15 1,3 1,6 0,02 8,2 1,63 3,2 Невязка: 0,02						$d_{\mu}=$	3,5	MM			
Невязка: 0,02		16 чере		ний приб	бор пр.,	$\Delta P_p =$	3,3				
	53-53'	15	1,2	1,6	15	1,3	1,6	0,02	8,2	1,63	
C									ŀ	Невязка:	0,02
Стояк 15 через нижний прибор лев., $\Delta P_p = 9236$ Па	Стояк	15 через	нжин	ий прибо	ор лев.,	$\Delta P_p =$	9236	Па	T	_	
18-55 102 2,7 818,6 15 30 81,0 0,141 10,5 95,8 176,8	18-55	102	2,7	818,6	15	30	81,0	0,141	10,5	95,8	176,8
55-55' 15 1,2 15 1,3 1,6 0,02 8,2 1,63 3,2	55-55'	15	1,2		15	1,3	1,6	0,02	8,2	1,63	3,2
55'-18' 102 2,7	55'-18'	102	2,7		15	30	81,0	0,141		86,2	
			6,6							Σ	347,2
			6,6							Σ	347,2

	_					_		одолжени			
1	2	3	4	5	6	7	8	9	10	11	
					$d_{\mathrm{A}}=$	3,7	MM				
			кний приб 1 6			3,2	Па	0 2	1.62	2.2	
55-55'	15	1,2	1,6	15	1,3	1,6	0,02	8,2	1,63 Іевязка:	3,2	
C	тояк 26	чеnез	верхний г	เทษดีดท	ΛP., =	375	Па	1.	Гевизка.	<u> </u>	
			•					142	2.06	155	
30-30'	19	7,8	28,1	15	1,6	12,5	0,025	14,2	3,06	15,5	
			$\Delta P_{\mu_{3}\bar{0}} =$	359	Па -	регул	ируется КРД этажа	на радиато	pe STI		
C	тояк 24	через	верхний г	ірибор,	$\Delta P_{\rm p} =$	377	Па				
45-45'	17	7,8	28,3	15	1,5	11,7	0,024	14,2	3,05	14,8	
			$\Delta P_{\mu_3\delta} =$	362	Па -	регул.	ируется КРД этажа	на радиато	ppe STI		
C	тояк 23	через	верхний г	ірибор,	$\Delta P_p =$	368	Па				
46-46'	23	8	26,9	15	2	16,0	0,032	14,2	5,99	22,0	
			$\Delta P_{\text{изб}} =$	346	Па -	регулируется КРД на радиаторе STI верх.этажа					
C	тояк 22	через	верхний г	ірибор,	$\Delta P_p =$	394	Па				
47-47'	48	9,4	24,5	15	5,5	51,7	0,064	14,2	20,7	72,4	
$\Delta P_{\text{изб}} = 322$ Па						регулируется КРД на радиаторе STI верх.этажа					
C	тояк 21	через	верхний г	ірибор,	$\Delta P_p =$	394	Па		1		
48-48'	48	9,4	24,5	15	5,5	51,7	0,064	14,2	20,7	72,4	
$\Delta P_{\mu_{36}} = 322 \Pi a -$						регулируется КРД на радиаторе STI верх.этажа					
Стояк 20 через верхний прибор,				$\Delta P_p =$	394	Па					
49-49'	48	9,4	24,5	15	5,5	51,7	0,064	14,2	20,7	72,4	
ΔP _{изб} = 322 Πa -						регулируется КРД на радиаторе STI верх.этажа					
Стояк	19 чере	з верх	ний прибо	ор лев.,	$\Delta P_p =$	376	Па				
50-51	127	3,3	26,8	15	45	148, 5	0,176	4	60	208,5	
51-51'	87	1,6		15	22	35,2	0,119	8,2	57,5	92,7	
51'-50'	127	3,3		15	45	148, 5	0,176	4	60	208,5	
		8,2							Σ	509,7	
			$\Delta P_{\text{изб}} =$	134	Па -	регулируется КРД на радиаторе STI верх.этажа					
Стоя	к 19 чер	ез вер	хний приб	бор пр.,	$\Delta P_p =$	92,7	Па				
51-51'	39	1,4	38,7	15	3,4	4,8	0,054	8,2	11,8	16,6	

	Продолжение таолицы д. г												
1	2	3	4	5	6	7	8	9	10	11			
			$\Delta P_{\text{изб}} =$	76	регулируется КРД на радиаторе STI верх.этажа								
			Сто	ояк 17 ,	$\Delta P_p =$	7466	Па						
20-20'	25	12, 1	360,9	15	2,2	26,6	0,035	29,2	11,9	38,5			
			$\Delta P_{\text{изб}}$ =	7427	Па -	регулі верх.	ируется КРД этажа	(на радиато	ppe STI				
Стояк	16 чере:	з верх	ний прибо	ор лев.,	$\Delta P_p =$	367	Па						
53-54	59	3,3	25,5	15	9,5	31,4	0,08	4	12,5	43,9			
54-54'	36	1,8		15	3	5,4	0,047	8,2	9,78	15,2			
54'-53'	59	3,3		15	9,5	31,4	0,08	4	12,5	43,9			
		8,4							Σ	102,8 8			
			$\Delta P_{_{ m M36}}$ =	264	Па -	регулі верх.	ируется КРД этажа	(на радиато	pe STI				
Стояк 16 через верхний прибор пр., ΔP_p =							15,2 Па						
54-54' 22 1,2 7,4 15 1,9 2,3 0,03 8,2 3,76								6,0					
			$\Delta P_{_{ m M36}}$ =	9	регулируется КРД на радиаторе STI верх.этажа								
Стояк	15 чере:	з верх	ний прибо	ор лев.,	$\Delta P_p =$	367	Па						
55-56	59	3,3	27,5	15	9,5	31,4	0,08	4	12,5	43,9			
55-55'	37	1,2		15	3,2	3,8	0,05	8,2	9,82	13,7			
55'-56'	59	3,3		15	9,5	31,4	0,08	4	12,5	43,9			
		7,8							Σ	101,3 6			
$\Delta P_{\text{\tiny M36}} = 265 \Pi$						регулируется КРД на радиаторе STI верх.этажа							
	к 15 чере	ез вер	хний приб	ор пр.,	$\Delta P_p =$	= 13,7 ∏а							
55-55'	37	1,2	6,7	15	3,2	3,8	0,05	8,2	9,82	13,7			
								H	Іевязка:	0			

Коэффициенты местных сопротивлений на участках СО

ОЦК (через нижний прибор правый, стояк 14): Участок 1-2 – тройник поворотный; Участок 2-3 – тройник проходной, вентиль; Участок 3-4 - тройник проходной; Участок 4-5 - тройник проходной; Участок 5-6 - тройник проходной; Участок 6-7 – тройник проходной; Участок 7-8 – тройник проходной, отвод; Участок 8-9 – тройник проходной; Участок 9-10 – тройник проходной; Участок 10-11 – тройник проходной; Участок 11-12 – тройник проходной, отвод; Участок 12-13 – тройник проходной, два отвода; Участок 13-14 – тройник проходной; Участок 14-15 – тройник проходной; Участок 15-16 – тройник проходной; Участок 16-17 – три отвода, вентиль, скоба; Участок 17-17' – крестовина поворотная, крд, радиатор STI; Участок 17'-16 '- три отвода, вентиль; Участок 16'-15' – тройник проходной; Участок 15'-14' – тройник проходной; Участок 14'-13'- тройник проходной; Участок 13'-12' – тройник проходной, отвод; Участок 12'-11' – тройник проходной, отвод; Участок 11'-10' – тройник проходной, отвод; Участок 10'-9' – тройник проходной; Участок 9'-8' – тройник проходной; Участок 8'-7' – тройник проходной;

Участок 7'-6' – тройник проходной, отвод;

Участок 6'-5' – тройник проходной;

Участок 5'-4' – тройник проходной;

Участок 4'-3' – тройник проходной;

Участок 3'-2' – тройник проходной, вентиль;

Участок 2'-1' – тройник поворотный;

Стояк 14 через нижний прибор левый:

Участок 17-17' – крестовина поворотная, крд, радиатор STI;

Стояк 13 через нижний прибор:

Участок 15-32 – тройник поворотный, два отвода, вентиль;

Участок 32-32' – два тройника поворотных, крд, радиатор STI;

Участок 32'-15 – тройник поворотный, два отвода, вентиль;

Стояк 12:

Участок 14-14' — два тройника поворотных, крд, радиатор STI, два вентиля, четыре отвода;

Стояк 11 через нижний прибор:

Участок 13-33 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 33-33' – два тройника поворотных, крд, радиатор STI;

Участок 33'-13' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 7 через нижний прибор:

Участок 9-36 — тройник поворотный, два отвода, вентиль;

Участок 36-36' – два тройника поворотных, крд, радиатор STI;

Участок 36'-9' — тройник поворотный, два отвода, вентиль ,скоба;

Стояк 6 через нижний прибор левый:

Участок 8-37 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 37-37' – крестовина поворотная, крд, радиатор STI;

Участок 37'-8' – два отвода, вентиль, скоба;

Стояк 6 через нижний прибор правый:

Участок 37-37' – крестовина поворотная, крд, радиатор STI;

Стояк 5 через нижний прибор:

Участок 7-39 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 39-39' – два тройника поворотных, крд, радиатор STI;

Участок 39'-7' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 4 через нижний прибор правый:

Участок 6-40 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 40-40' – крестовина поворотная, крд, радиатор STI;

Участок 40'-6' – два отвода, вентиль ,скоба;

Стояк 4 через нижний прибор левый:

Участок 40-40' – крестовина поворотная, крд, радиатор STI;

Стояк 3 через нижний прибор:

Участок 5-42 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 42-42' – два тройника поворотных, крд, радиатор STI;

Участок 42'-5' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 2:

Участок 4-4' — два тройника поворотных, крд, радиатор, два вентиля, шесть отводов, две скобы;

Стояк 1 через нижний прибор левый:

Участок 3-43 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 43-43' – крестовина поворотная, крд, радиатор STI;

Участок 43'-3' – два отвода, вентиль ,скоба;

Стояк 1 через нижний прибор правый:

Участок 43-43' – крестовина поворотная, крд, радиатор STI;

Стояк 14 через верхний прибор правый:

Участок 17-31 – тройник проходной ,скоба;

Участок 31-31' – два тройника поворотных, крд, радиатор STI;

Участок 31'-17' – тройник проходной ,скоба;

Стояк 14 через верхний прибор левый:

Участок 31-31' – два тройника поворотных, крд, радиатор STI;

Стояк 13 через верхний прибор:

Участок 32-32' — два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 11 через верхний прибор:

Участок 33-33' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 10:

Участок 34-34' — два тройника проходных, два отвода, крд, радиатор STI, скоба, два вентиля;

Стояк 9:

Участок 11-11' – два тройника проходных, шесть отводов, крд, радиатор STI, скоба, два вентиля;

Стояк 8

Участок 35-35' – два тройника проходных, два отвода, крд, радиатор STI, скоба, два вентиля;

Стояк 7 через верхний прибор:

Участок 36-36' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 6 через верхний прибор левый:

Участок 37-38 – тройник проходной ,скоба;

Участок 38-38' – два тройника поворотных, крд, радиатор STI;

Участок 38'-37' – тройник проходной ,скоба;

Стояк 6 через верхний прибор правый:

Участок 38-38' – два тройника поворотных, крд, радиатор STI

Стояк 5 через верхний прибор:

Участок 39-39' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 4 через верхний прибор правый:

Участок 40-41 – тройник проходной ,скоба;

Участок 41-41' – два тройника поворотных, крд, радиатор STI;

Участок 41'-40' – тройник проходной ,скоба;

Стояк 4 через верхний прибор левый:

Участок 41-41' – два тройника поворотных, крд, радиатор STI;

Стояк 3 через верхний прибор:

Участок 42-42' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 1 через верхний прибор левый:

Участок 43-44 – тройник проходной ,скоба;

```
Участок 44-44' – два тройника поворотных, крд, радиатор STI;
Участок 44'-43' – тройник проходной ,скоба;
Стояк 1 через верхний прибор правый:
Участок 44-44' – два тройника поворотных, крд, радиатор STI;
Второстепенное циркуляционное кольцо (через нижний прибор, стояк 26):
Участок 2-18 – тройник проходной, вентиль;
Участок 18-19 – тройник проходной;
Участок 19-20 – тройник проходной;
Участок 20-21— тройник проходной, отвод;
Участок 21-22 – тройник проходной;
Участок 22-23 – тройник проходной;
Участок 23-24 – тройник проходной, отвод;
Участок 24-25 – тройник проходной, отвод;
Участок 25-26 – тройник проходной;
Участок 26-27 – тройник проходной;
Участок 27-28 – тройник проходной;
Участок 28-29 – тройник проходной;
Участок 29-30 – три отвода, вентиль, скоба;
Участок 30-30'— два тройника поворотных, крд, радиатор STI;
Участок 30'-29'- три отвода, вентиль, скоба;
Участок 29'-28' – тройник проходной;
Участок 28'-27' – тройник проходной;
Участок 27'-26' – тройник проходной;
Участок 26'-25' – тройник проходной, два отвода;
Участок 25'-24' – тройник проходной, отвод;
Участок 24'-23' – тройник проходной;
Участок 23'-22' – тройник проходной;
```

Участок 22'-21' – тройник проходной, отвод;

Участок 21'-20' – тройник проходной;

Участок 20'-19' – тройник проходной;

Участок 19'-18' – тройник проходной;

Участок 18'-2' – тройник проходной, вентиль;

Стояк 25:

Участок 28-28' — два тройника поворотных, крд, радиатор STI, два вентиля, четыре отвода;

Стояк 24 через нижний прибор:

Участок 27-45 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 45-45' – два тройника поворотных, крд, радиатор STI;

Участок 45'-27' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 23 через нижний прибор:

Участок 26-46 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 46-46' – два тройника поворотных, крд, радиатор STI;

Участок 46'-26' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 22 через нижний прибор:

Участок 25-47 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 47-47' – два тройника поворотных, крд, радиатор STI;

Участок 47'-25' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 21 через нижний прибор:

Участок 24-48 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 48-48' – два тройника поворотных, крд, радиатор STI;

Участок 48'-24' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 20 через нижний прибор:

Участок 23-49 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 49-49' – два тройника поворотных, крд, радиатор STI;

Участок 49'-23' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 19 через нижний прибор левый:

Участок 22-50 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 50-50' – крестовина поворотная, крд, радиатор STI;

Участок 50'-22' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 19 через нижний прибор правый:

Участок 50-50' – крестовина поворотная, крд, радиатор STI;

Стояк 18 через нижний прибор:

Участок 21-52 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 52-52' – два тройника поворотных, крд, радиатор STI;

Участок 52'-21' – тройник поворотный, два отвода, вентиль ,скоба;

Стояк 16 через нижний прибор левый:

Участок 19-53 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 53-53' – крестовина поворотная, крд, радиатор STI;

Участок 53'-19' -два отвода, вентиль, скоба;

Стояк 16 через нижний прибор правый:

Участок 53-53' – крестовина поворотная, крд, радиатор STI;

Стояк 15 через нижний прибор левый:

Участок 18-55 – тройник поворотный, два отвода, вентиль ,скоба;

Участок 55-55' – крестовина поворотная, крд, радиатор STI;

Участок 55'-18' – два отвода, вентиль ,скоба;

Стояк 15 через нижний прибор правый:

Участок 55-55' – крестовина поворотная, крд, радиатор STI;

Стояк 26 через верхний прибор:

Участок 30-30' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 24 через верхний прибор:

Участок 45-45' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 23 через верхний прибор:

Участок 46-46' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 22 через верхний прибор:

Участок 47-47' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 21 через верхний прибор:

Участок 48-48' — два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 20 через верхний прибор:

Участок 49-49' – два тройника проходных, два отвода, крд, радиатор STI, скоба;

Стояк 19 через верхний прибор левый:

Участок 50-51 – тройник проходной, скоба;

Участок 51-51' – два тройника поворотных, крд, радиатор STI;

Участок 51'-50' – тройник проходной, скоба;

Стояк 19 через верхний прибор правый:

Участок 51-51' — два тройника поворотных, крд, радиатор STI;

Стояк 17:

Участок 20-20' — два тройника поворотных, шесть отводов, крд, радиатор STI, две скобы, два вентиля;

Стояк 16 через верхний прибор левый:

Участок 53-54 – тройник проходной, скоба;

Участок 54-54' – два тройника поворотных, крд, радиатор STI;

Участок 54'-53' – тройник проходной, скоба;

Стояк 16 через верхний прибор правый:

Участок 54-54' – два тройника поворотных, крд, радиатор STI;

Стояк 15 через верхний прибор левый:

Участок 55-56 – тройник проходной, скоба;

Участок 55-55' – два тройника поворотных, крд, радиатор STI;

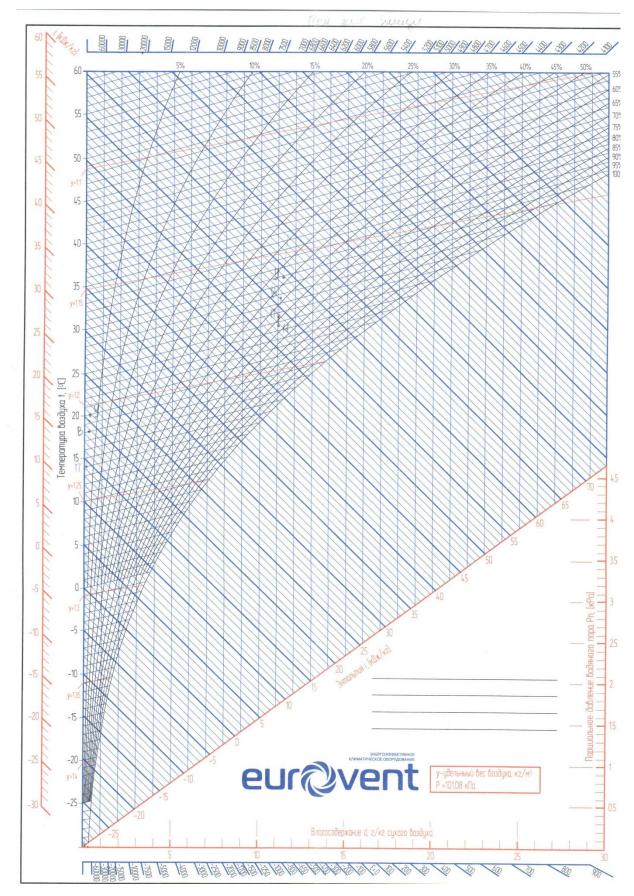
Участок 55'-56' – тройник проходной, скоба;

Стояк 15 через верхний прибор правый:

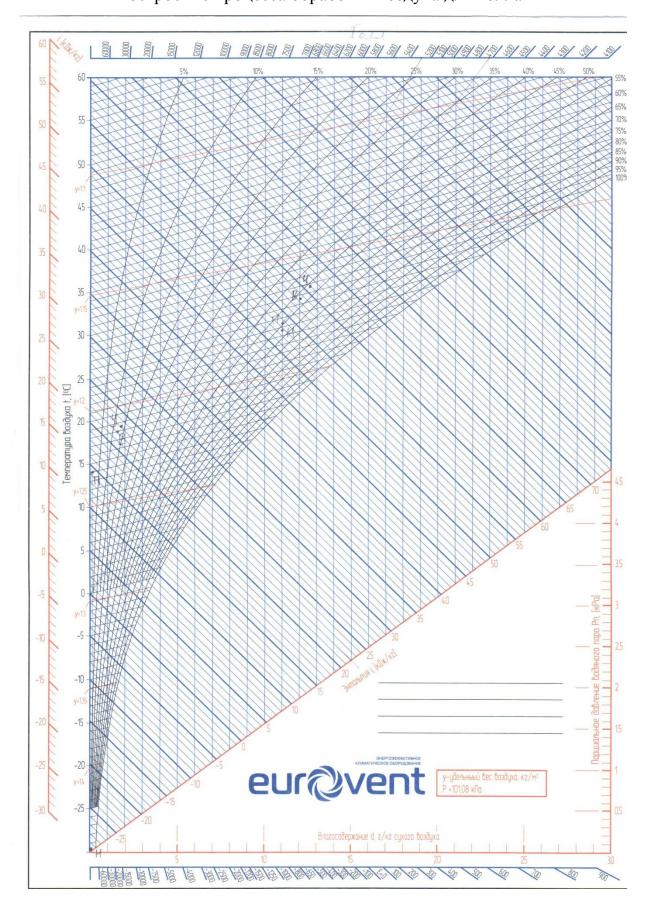
Участок 55-55' – два тройника поворотных, крд, радиатор STI.

Приложение Е

Расчет приборов отопления


Таблица Е.1 – Расчет приборов отопления гостиницы

№ помещ.	Q _{пом} , Вт	G _{ст} , кг/ч	G _{пр} , кг/ч	t _{BX} ,°C	t _{вых} ,°С	$\Delta t_{\rm cp}, ^{\circ} { m C}$	q _в , Вт/м	l _в , м	q _г , Вт/м	1 _г ,м	$q_{\pi p}$, BT/M^2	Q _{тр} , Вт	Q _{пр} , Вт	F_{np} ,	β_3	β4	N, шт	Радиатор
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
218	1001	125	37	95	70	62,5	51	0,7	67	1,0	651,3	101	910	1,40	1,01	1,02	8	STI-500
217	1686	125	62	95	70	62,5	51	0,2	67	2,4	681,8	169	1534	2,25	1,00	1,02	12	STI-500
123	401	125	15	95	70	64,5	53	3,0	70	1,0	666,2	229	195	0,29	1,18	1,02	3	STI-500
122	336	125	12	95	70	64,5	53	3,0	70	2,4	663,9	327	42	0,06	1,93	1,02	3	STI-300
118	219	8	8	95	70	64,5	53	0,8	70	1,0	658,2	114	117	0,18	1,31	1,02	3	STI-300
211	823	46	30	95	70	64,5	53	0,8	70	1,4	675,9	142	695	1,03	1,03	1,02	6	STI-500
117	441	46	16	95	70	64,5	53	6,0	70	1,4	667,5	416	67	0,10	1,57	1,02	3	STI-300
209	730	87	27	95	70	64,5	53	0,7	70	2,1	674,2	182	566	0,84	1,04	1,02	5	STI-500
208	654	87	24	95	70	64,5	53	0,2	70	1,0	672,8	79	583	0,87	1,04	1,02	5	STI-500
109	486	87	18	95	70	64,5	53	3,0	70	2,1	668,8	306	211	0,31	1,16	1,02	3	STI-300
108	525	87	19	95	70	64,5	53	3,0	70	1,0	669,8	229	319	0,48	1,10	1,02	3	STI-500
207	568	40	21	95	70	64,5	53	0,8	70	2,4	670,9	212	377	0,56	1,08	1,02	3	STI-500
107	518	0	19	95	70	64,5	53	6,0	70	2,4	669,6	486	81	0,12	1,47	1,02	3	STI-300
206	411	56	15	95	70	64,5	53	0,7	70	1,5	666,5	140	285	0,43	1,11	1,02	3	STI-300
205	428	56	16	95	70	64,5	53	0,2	70	2,2	667,1	163	282	0,42	1,11	1,02	3	STI-300
106	347	56	13	95	70	64,5	53	3,0	70	1,5	664,3	264	109	0,16	1,33	1,02	3	STI-300
105	360	56	13	95	70	64,5	53	3,0	70	2,2	664,8	313	78	0,12	1,48	1,02	3	STI-300
204	434	29	16	95	70	64,5	53	0,8	70	1,6	667,3	156	294	0,44	1,11	1,02	3	STI-500
104	369	29	13	95	70	64,5	53	6,0	70	1,6	665,1	430	-18	-0,03	-1,25	1,02	3	STI-300
203 (Ст8)	686	25	25	95	70	64,5	53	0,8	70	2,8	673,4	240	470	0,70	1,06	1,02	4	STI-500


1																T-POA.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		толицы п
203 (CT10) 686 25 25 95 70 64,5 53 0,8 70 2,8 673,4 240 470 0,70 1,06 1,02 4 STI-500 202 354 31 13 95 70 64,5 53 0,8 70 1,4 664,5 142 226 0,34 1,15 1,02 3 STI-300 102 488 31 18 95 70 64,5 53 6,0 70 1,4 668,8 416 114 0,17 1,32 1,02 3 STI-300 45 (JIK) 1392 51 51 95 70 66,5 55 0,8 72 1,0 710,7 118 1286 1,81 1,00 1,02 4 STI-500 214 565 75 21 95 70 62,5 53 6,0 70 1,6 643,9 149 431 0,67 1,06	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
CCT10 686 25 25 95 70 64,5 53 0,8 70 2,8 67,4 240 470 0,70 1,06 1,02 4 811-500 202 354 31 13 95 70 64,5 53 6,0 70 1,4 664,5 142 226 0,34 1,15 1,02 3 STII-300 488 31 18 95 70 64,5 53 6,0 70 1,4 668,8 416 114 0,17 1,32 1,02 3 STII-300 45 (JIK) 1392 51 51 95 70 66,5 55 0,8 72 1,0 710,7 118 1286 1,81 1,00 1,02 10 STI-500 44 (JIK) 1392 51 51 95 70 66,5 55 0,8 72 1,0 710,7 118 1286 1,81 1,00 1,02 10 STI-500 214 565 75 21 95 70 64,5 53 6,0 70 1,6 643,9 149 431 0,67 1,06 1,02 4 STI-500 114 1484 75 54 95 70 64,5 53 6,0 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 215 (CT.14,	203 (Ст9)	686	25	25	95	70	64,5	53	0,8	70	2,8	673,4	240	470	0,70	1,06	1,02	4	STI-500
102 488 31 18 95 70 64,5 53 6,0 70 1,4 668,8 416 114 0,17 1,32 1,02 3 STI-300 45 (JIK) 1392 51 51 95 70 66,5 55 0,8 72 1,0 710,7 118 1286 1,81 1,00 1,02 10 STI-500 44 (JIK) 1392 51 51 95 70 66,5 55 0,8 72 1,0 710,7 118 1286 1,81 1,00 1,02 10 STI-500 214 565 75 21 95 70 62,5 51 0,8 67 1,6 643,9 149 431 0,67 1,06 1,02 4 STI-500 114 1484 75 54 95 70 64,5 53 0,2 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 125 (Cr. 14, 1984) 198		686	25	25	95	70	64,5	53	0,8	70	2,8	673,4	240	470	0,70	1,06	1,02	4	STI-500
45 (ЛК) 1392 51 51 95 70 66,5 55 0,8 72 1,0 710,7 118 1286 1,81 1,00 1,02 10 STI-500 44 (ЛК) 1392 51 51 95 70 66,5 55 0,8 72 1,0 710,7 118 1286 1,81 1,00 1,02 10 STI-500 214 565 75 21 95 70 62,5 51 0,8 67 1,6 643,9 149 431 0,67 1,06 1,02 4 STI-500 215 (Cr.14, 534 107 19 95 70 64,5 53 0,2 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 215 (Cr.14, 534 107 19 95 70 64,5 53 0,7 70 1,4 670,0 133 414 <td>202</td> <td>354</td> <td>31</td> <td>13</td> <td>95</td> <td>70</td> <td>64,5</td> <td>53</td> <td>0,8</td> <td>70</td> <td>1,4</td> <td>664,5</td> <td>142</td> <td>226</td> <td>0,34</td> <td>1,15</td> <td>1,02</td> <td>3</td> <td>STI-300</td>	202	354	31	13	95	70	64,5	53	0,8	70	1,4	664,5	142	226	0,34	1,15	1,02	3	STI-300
44 (JIK) 1392 51 51 95 70 66,5 55 0,8 72 1,0 710,7 118 1286 1,81 1,00 1,02 10 STI-500 214 565 75 21 95 70 62,5 51 0,8 67 1,6 643,9 149 431 0,67 1,06 1,02 4 STI-500 114 1484 75 54 95 70 64,5 53 6,0 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 215 (Cr.14, 1884 107 19 95 70 64,5 53 0,2 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 215 (Cr.14, 1884 107 19 95 70 64,5 53 0,7 70 1,4 670,0 133 414 0,62 1,07 1,02 3 STI-500 215 (Cr.14, 1884 107 19 95 70 64,5 53 0,7 70 1,4 670,0 133 414 0,62 1,07 1,02 3 STI-500 113 925 107 34 95 70 62,5 51 3,0 67 1,4 650,3 247 703 1,08 1,03 1,02 6 STI-500 113 925 107 34 95 70 62,5 51 0,2 67 1,2 651,3 89 921 1,41 1,01 1,02 8 STI-500 123 (Cr.15, 1884 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Cr.15, 1884 107 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Cr.15, 1884 107 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Cr.15, 1884 107 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-500 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-500 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-300 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-300 124 421 86 15 95 70 64,5 53 3,0 70 1,	102	488	31	18	95	70	64,5	53	6,0	70	1,4	668,8	416	114	0,17	1,32	1,02	3	STI-300
214 565 75 21 95 70 62,5 51 0,8 67 1,6 643,9 149 431 0,67 1,06 1,02 4 STI-500 114 1484 75 54 95 70 64,5 53 6,0 70 1,6 710,3 430 1097 1,54 1,01 1,02 8 STI-500 215 (CT.14, ngashii) 534 107 19 95 70 64,5 53 0,2 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 1,02 4 STI-500 1,02 4 STI-500 1,02 4 STI-500 1,02 4 571-500 1,02 4 571-500 1,02 4 571-500 1,02 4 571-500 1,02 4 571-500 1,02 4 571-500 1,02 4 571-500 1,02 4 1,02 4 571-500	45 (ЛК)	1392	51	51	95	70	66,5	55	0,8	72	1,0	710,7	118	1286	1,81	1,00	1,02	10	STI-500
114 1484 75 54 95 70 64,5 53 6,0 70 1,6 710,3 430 1097 1,54 1,01 1,02 8 STI-500 215 (CT.14, 1,000) 534 107 19 95 70 64,5 53 0,2 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 215 (CT.14, 1,000) 534 107 19 95 70 64,5 53 0,7 70 1,4 670,0 133 414 0,62 1,07 1,02 3 STI-500 112 932 107 34 95 70 62,5 51 3,0 67 1,4 650,4 260 698 1,07 1,03 1,02 6 STI-500 113 925 107 34 95 70 62,5 51 3,0 67 1,4 650,3 247 703 1,08	44 (ЛК)	1392	51	51	95	70	66,5	55	0,8	72	1,0	710,7	118	1286	1,81	1,00	1,02	10	STI-500
215 (Ст.14, вовый) 534 107 19 95 70 64,5 53 0,2 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 215 (Ст.14, правый) 534 107 19 95 70 64,5 53 0,7 70 1,4 670,0 133 414 0,62 1,07 1,02 3 STI-500 112 932 107 34 95 70 62,5 51 3,0 67 1,6 650,4 260 698 1,07 1,03 1,02 6 STI-500 113 925 107 34 95 70 62,5 51 3,0 67 1,4 650,3 247 703 1,08 1,03 1,02 6 STI-500 219 1001 102 37 95 70 62,5 51 0,2 67 1,2 651,3 89 921 1,41	214	565	75	21	95	70	62,5	51	0,8	67	1,6	643,9	149	431	0,67	1,06	1,02	4	STI-500
(Ст.14, левый) 534 107 19 95 70 64,5 53 0,2 70 1,6 670,0 121 425 0,63 1,06 1,02 4 STI-500 215 (Ст.15, левый) 534 107 19 95 70 64,5 53 0,7 70 1,4 670,0 133 414 0,62 1,07 1,02 3 STI-500 112 932 107 34 95 70 62,5 51 3,0 67 1,6 650,4 260 698 1,07 1,03 1,02 6 STI-500 113 925 107 34 95 70 62,5 51 3,0 67 1,4 650,3 247 703 1,08 1,03 1,02 6 STI-500 219 1001 102 37 95 70 62,5 51 0,2 67 1,2 651,3 89 921 1,41 <t< td=""><td>114</td><td>1484</td><td>75</td><td>54</td><td>95</td><td>70</td><td>64,5</td><td>53</td><td>6,0</td><td>70</td><td>1,6</td><td>710,3</td><td>430</td><td>1097</td><td>1,54</td><td>1,01</td><td>1,02</td><td>8</td><td>STI-500</td></t<>	114	1484	75	54	95	70	64,5	53	6,0	70	1,6	710,3	430	1097	1,54	1,01	1,02	8	STI-500
(Ст.14, правый) 534 107 19 95 70 64,5 53 0,7 70 1,4 670,0 133 414 0,62 1,07 1,02 3 STI-500 112 932 107 34 95 70 62,5 51 3,0 67 1,6 650,4 260 698 1,07 1,03 1,02 6 STI-500 113 925 107 34 95 70 62,5 51 3,0 67 1,4 650,3 247 703 1,08 1,03 1,02 6 STI-500 219 1001 102 37 95 70 62,5 51 0,2 67 1,2 651,3 89 921 1,41 1,01 1,02 8 STI-500 123 (CT.15, девый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,	(Ст.14,	534	107	19	95	70	64,5	53	0,2	70	1,6	670,0	121	425	0,63	1,06	1,02	4	STI-500
113 925 107 34 95 70 62,5 51 3,0 67 1,4 650,3 247 703 1,08 1,03 1,02 6 STI-500 219 1001 102 37 95 70 62,5 51 0,2 67 1,2 651,3 89 921 1,41 1,01 1,02 8 STI-500 220 1001 102 37 95 70 62,5 51 0,7 67 1,2 651,3 89 921 1,41 1,01 1,02 8 STI-500 123 (Cr.15, 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Cr.15, 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182	(Ст.14,	534	107	19	95	70	64,5	53	0,7	70	1,4	670,0	133	414	0,62	1,07	1,02	3	STI-500
219 1001 102 37 95 70 62,5 51 0,2 67 1,2 651,3 89 921 1,41 1,01 1,02 8 STI-500 220 1001 102 37 95 70 62,5 51 0,7 67 1,2 651,3 114 898 1,38 1,01 1,02 8 STI-500 123 (Ст.15, девый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Ст.15, девый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Ст.15, девый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 221 989 86 36 95 70 62,5 51 0,2 67 1,2 651,1 89 909 1,40	112	932	107	34	95	70	62,5	51	3,0	67	1,6	650,4	260	698	1,07	1,03	1,02	6	STI-500
220 1001 102 37 95 70 62,5 51 0,7 67 1,2 651,3 114 898 1,38 1,01 1,02 8 STI-500 123 (Ст.15, девый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Ст.15, правый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 221 989 86 36 95 70 62,5 51 0,2 67 1,2 651,1 89 909 1,40 1,01 1,02 8 STI-500 222 615 86 22 95 70 64,5 53 0,7 70 1,8 671,9 161 470 0,70 1,06 1,02 4 STI-500 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 <td>113</td> <td>925</td> <td>107</td> <td>34</td> <td>95</td> <td>70</td> <td>62,5</td> <td>51</td> <td>3,0</td> <td>67</td> <td>1,4</td> <td>650,3</td> <td>247</td> <td>703</td> <td>1,08</td> <td>1,03</td> <td>1,02</td> <td>6</td> <td>STI-500</td>	113	925	107	34	95	70	62,5	51	3,0	67	1,4	650,3	247	703	1,08	1,03	1,02	6	STI-500
123 (Ст.15, девый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Ст.15, правый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 221 989 86 36 95 70 62,5 51 0,2 67 1,2 651,1 89 909 1,40 1,01 1,02 8 STI-500 222 615 86 22 95 70 64,5 53 0,7 70 1,8 671,9 161 470 0,70 1,06 1,02 4 STI-500 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-300	219	1001	102	37	95	70	62,5	51	0,2	67	1,2	651,3	89	921	1,41	1,01	1,02	8	STI-500
(Ст.15, певый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Ст.15, правый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 123 (Ст.15, правый) 989 86 36 95 70 62,5 51 0,2 67 1,2 651,1 89 909 1,40 1,01 1,02 8 STI-500 222 615 86 22 95 70 64,5 53 0,7 70 1,8 671,9 161 470 0,70 1,06 1,02 4 STI-500 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-300	220	1001	102	37	95	70	62,5	51	0,7	67	1,2	651,3	114	898	1,38	1,01	1,02	8	STI-500
(Ст.15, правый) 401 102 15 95 70 64,5 53 3,0 70 1,2 666,2 243 182 0,27 1,19 1,02 3 STI-300 221 989 86 36 95 70 62,5 51 0,2 67 1,2 651,1 89 909 1,40 1,01 1,02 8 STI-500 222 615 86 22 95 70 64,5 53 0,7 70 1,8 671,9 161 470 0,70 1,06 1,02 4 STI-500 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-300	(Ст.15,	401	102	15	95	70	64,5	53	3,0	70	1,2	666,2	243	182	0,27	1,19	1,02	3	STI-300
222 615 86 22 95 70 64,5 53 0,7 70 1,8 671,9 161 470 0,70 1,06 1,02 4 STI-500 124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-300	(Ст.15,	401	102	15	95	70	64,5	53	3,0	70	1,2	666,2	243	182	0,27	1,19	1,02	3	STI-300
124 421 86 15 95 70 64,5 53 3,0 70 1,2 666,9 243 202 0,30 1,17 1,02 3 STI-300	221	989	86	36	95	70	62,5	51	0,2	67	1,2	651,1	89	909	1,40	1,01	1,02	8	STI-500
	222	615	86	22	95	70	64,5	53	0,7	70	1,8	671,9	161	470	0,70	1,06	1,02	4	STI-500
125 345 86 13 95 70 64.5 53 3.0 70 1.8 664.2 285 89 0.13 1.42 1.02 3 STI-300	124	421	86	15	95	70	64,5	53	3,0	70	1,2	666,9	243	202	0,30	1,17	1,02	3	STI-300
	125	345	86	13	95	70	64,5	53	3,0	70	1,8	664,2	285	89	0,13	1,42	1,02	3	STI-300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 224 675 25 25 95 70 64,5 53 0,8 70 0,4 673,2 72 610 0,91 1,04 1,02 5 STI-500 225 2739 134 100 95 70 62,5 51 0,8 67 2,2 681,8 190 2568 3,77 0,99 1,02 16 STI-500 127 944 134 34 95 70 62,5 51 0,2 67 1,6 681,8 116 292 3,36 0,99 1,02 4 STI-500 226 2396 170 87 95 70 62,5 51 0,7 67 1,4 652,3 128 966 1,48 1,01 1,02 9																трод		IIIC I	лолицы г
225 2739 134 100 95 70 62,5 51 0,8 67 2,2 681,8 190 2568 3,77 0,99 1,02 16 STI-500 127 944 134 34 95 70 64,5 53 6,0 70 2,2 677,7 472 519 0,77 1,05 1,02 4 STI-500 226 2396 170 87 95 70 62,5 51 0,2 67 1,6 681,8 116 2292 3,36 0,99 1,02 14 STI-500 227 1081 170 39 95 70 62,5 51 0,7 67 1,4 652,3 128 966 1,48 1,01 1,02 8 STI-500 132 873 170 31 3 0 70 1,4 652,3 18 96,11 1,10 1,02 9 STI-500	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
127 944 134 34 95 70 64,5 53 6,0 70 2,2 677,7 472 519 0,77 1,05 1,02 4 STI-500 226 2396 170 87 95 70 62,5 51 0,2 67 1,6 681,8 116 2292 3,36 0,99 1,02 14 STI-500 227 1081 170 39 95 70 62,5 51 0,7 67 1,4 652,3 128 966 1,48 1,01 1,02 8 STI-500 132 873 170 32 95 70 64,5 53 3,0 70 1,6 676,7 271 629 0,93 1,03 1,02 5 STI-500 134 312 170 11 95 70 64,5 53 3,0 70 1,4 662,9 257 81 0,12 1,46 1,02 3 STI-300 228 (C _T .20) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 138 (C _T .21) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 138 (C _T .21) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 138 (C _T .21) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 138 (C _T .21) 1284 98 47 95 70 62,5 51 0,8 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 138 (C _T .22) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 138 (C _T .22) 1324 98 48 95 70 62,5 51 0,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 138 (C _T .22) 1324 98 48 95 70 62,5 51 0,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 138 (C _T .22) 1324 98 47 95 70 62,5 51 0,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 139 463 40 17 95 70 64,5 53 0,8 70 1,4 672,2 142 500 0,74 1,05 1,02 4 STI-500 139 463 40 17 95 70 64,5 53 0,8 70 1,2 668,3 128 355 0,53 1,08 1,02 3 STI-500 140 932 51 34 95 70	224	675	25	25	95	70	64,5	53	0,8	70	0,4	673,2	72	610	0,91	1,04	1,02	5	STI-500
226 2396 170 87 95 70 62,5 51 0,2 67 1,6 681,8 116 2292 3,36 0,99 1,02 14 STI-500 227 1081 170 39 95 70 62,5 51 0,7 67 1,4 652,3 128 966 1,48 1,01 1,02 8 STI-500 132 873 170 32 95 70 64,5 53 3,0 70 1,6 676,7 271 629 0,93 1,03 1,02 5 STI-500 134 312 170 11 95 70 64,5 53 3,0 70 1,4 662,9 257 81 0,12 1,46 1,02 3 STI-500 228 (CT.20) 1324 98 48 95 70 62,5 51 0,0 67 2,8 654,5 494 840 1,28 1,02	225	2739	134	100	95	70	62,5	51	0,8	67	2,2	681,8	190	2568	3,77	0,99	1,02	16	STI-500
227 1081 170 39 95 70 62,5 51 0,7 67 1,4 652,3 128 966 1,48 1,01 1,02 8 STI-500 132 873 170 32 95 70 64,5 53 3,0 70 1,6 676,7 271 629 0,93 1,03 1,02 5 STI-500 134 312 170 11 95 70 64,5 53 3,0 70 1,4 662,9 257 81 0,12 1,46 1,02 3 STI-500 228 (CT.20) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,9 230 1117 1,71 1,01 1,02 9 STI-500 228 (CT.21) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,9 230 1117 1,71 1,01 <td>127</td> <td>944</td> <td>134</td> <td>34</td> <td>95</td> <td>70</td> <td>64,5</td> <td>53</td> <td>6,0</td> <td>70</td> <td>2,2</td> <td>677,7</td> <td>472</td> <td>519</td> <td>0,77</td> <td>1,05</td> <td>1,02</td> <td>4</td> <td>STI-500</td>	127	944	134	34	95	70	64,5	53	6,0	70	2,2	677,7	472	519	0,77	1,05	1,02	4	STI-500
132 873 170 32 95 70 64,5 53 3,0 70 1,6 676,7 271 629 0,93 1,03 1,02 5 STI-500 134 312 170 11 95 70 64,5 53 3,0 70 1,4 662,9 257 81 0,12 1,46 1,02 3 STI-300 228	226	2396	170	87	95	70	62,5	51	0,2	67	1,6	681,8	116	2292	3,36	0,99	1,02	14	STI-500
134	227	1081	170	39	95	70	62,5	51	0,7	67	1,4	652,3	128	966	1,48	1,01	1,02	8	STI-500
228 (CT.20) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,9 230 1117 1,71 1,01 1,02 9 STI-500 138 (CT.20) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 228 (CT.21) 1324 98 48 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 228 (CT.21) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 228 (CT.21) 1324 98 48 95 70 62,5 51 0,0 67 2,8 654,5 494 840 1,28 </td <td>132</td> <td>873</td> <td>170</td> <td>32</td> <td>95</td> <td>70</td> <td>64,5</td> <td>53</td> <td>3,0</td> <td>70</td> <td>1,6</td> <td>676,7</td> <td>271</td> <td>629</td> <td>0,93</td> <td>1,03</td> <td>1,02</td> <td>5</td> <td>STI-500</td>	132	873	170	32	95	70	64,5	53	3,0	70	1,6	676,7	271	629	0,93	1,03	1,02	5	STI-500
CT.20 1324 98 48 95 70 62.5 51 0.8 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.20 138 1284 98 47 95 70 62.5 51 0.8 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.21 1324 98 48 95 70 62.5 51 0.8 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.21 1284 98 47 95 70 62.5 51 0.8 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.21 1284 98 47 95 70 62.5 51 0.8 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.22 1324 98 48 95 70 62.5 51 0.8 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.22 1324 98 48 95 70 62.5 51 0.8 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.22 1284 98 47 95 70 62.5 51 6.0 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.22 1284 98 47 95 70 62.5 51 6.0 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.22 138 1284 98 47 95 70 62.5 51 6.0 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.23 1284 98 47 95 70 62.5 51 6.0 67 2.8 654.5 494 840 1.28 1.02 1.02 7 STI-500 CT.23 1284 98 47 95 70 62.5 51 6.0 67 1.4 672.2 142 500 0.74 1.05 1.02 4 STI-500 CT.24 138 1	134	312	170	11	95	70	64,5	53	3,0	70	1,4	662,9	257	81	0,12	1,46	1,02	3	STI-300
(Cr.20) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 \$11-500 228 (Cr.21) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,9 230 1117 1,71 1,01 1,02 9 \$T1-500 138 (Cr.21) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 \$T1-500 228 (Cr.21) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,5 494 840 1,28 1,02 1,02 7 \$T1-500 138 (Cr.22) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28		1324	98	48	95	70	62,5	51	0,8	67	2,8	654,9	230	1117	1,71	1,01	1,02	9	STI-500
(CT.21) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,9 230 1117 1,71 1,01 1,02 9 \$11-500 138 (CT.21) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 \$T1-500 228 (CT.22) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,9 230 1117 1,71 1,01 1,02 9 \$T1-500 138 (CT.22) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 \$T1-500 230 628 40 23 95 70 64,5 53 0,8 70 1,4 672,2 142 500 0,74		1284	98	47	95	70	62,5	51	6,0	67	2,8	654,5	494	840	1,28	1,02	1,02	7	STI-500
CCT.21) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 7,02 7 S11-500 228 (CT.22) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,9 230 1117 1,71 1,01 1,02 9 STI-500 138 (CT.22) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 STI-500 230 628 40 23 95 70 64,5 53 0,8 70 1,4 672,2 142 500 0,74 1,05 1,02 4 STI-500 139 463 40 17 95 70 62,5 51 6,0 67 1,4 641,3 400 103 0,16 1,34 </td <td></td> <td>1324</td> <td>98</td> <td>48</td> <td>95</td> <td>70</td> <td>62,5</td> <td>51</td> <td>0,8</td> <td>67</td> <td>2,8</td> <td>654,9</td> <td>230</td> <td>1117</td> <td>1,71</td> <td>1,01</td> <td>1,02</td> <td>9</td> <td>STI-500</td>		1324	98	48	95	70	62,5	51	0,8	67	2,8	654,9	230	1117	1,71	1,01	1,02	9	STI-500
(CT.22) 1324 98 48 95 70 62,5 51 0,8 67 2,8 654,9 230 1117 1,71 1,01 1,02 9 \$11-500 138 (CT.22) 1284 98 47 95 70 62,5 51 6,0 67 2,8 654,5 494 840 1,28 1,02 1,02 7 \$T1-500 230 628 40 23 95 70 64,5 53 0,8 70 1,4 672,2 142 500 0,74 1,05 1,02 4 \$T1-500 139 463 40 17 95 70 62,5 51 6,0 67 1,4 641,3 400 103 0,16 1,34 1,02 3 \$T1-500 231 470 51 17 95 70 64,5 53 0,8 70 1,2 668,3 128 355 0,53 1,08 1,02 3 \$T1-500 140 932 51 34 95 70 62,5 51 6,0 67 1,2 650,4 386 584 0,90 1,04 1,02 5 \$T1-500 <td></td> <td>1284</td> <td>98</td> <td>47</td> <td>95</td> <td>70</td> <td>62,5</td> <td>51</td> <td>6,0</td> <td>67</td> <td>2,8</td> <td>654,5</td> <td>494</td> <td>840</td> <td>1,28</td> <td>1,02</td> <td>1,02</td> <td>7</td> <td>STI-500</td>		1284	98	47	95	70	62,5	51	6,0	67	2,8	654,5	494	840	1,28	1,02	1,02	7	STI-500
(CT.22) 1284 98 47 95 70 62,5 51 6,0 67 2,8 634,3 494 840 1,28 1,02 1,02 7 \$11-500 230 628 40 23 95 70 64,5 53 0,8 70 1,4 672,2 142 500 0,74 1,05 1,02 4 STI-500 139 463 40 17 95 70 62,5 51 6,0 67 1,4 641,3 400 103 0,16 1,34 1,02 3 STI-500 231 470 51 17 95 70 64,5 53 0,8 70 1,2 668,3 128 355 0,53 1,08 1,02 3 STI-500 140 932 51 34 95 70 62,5 51 6,0 67 1,2 650,4 386 584 0,90 1,04 1,0		1324	98	48	95	70	62,5	51	0,8	67	2,8	654,9	230	1117	1,71	1,01	1,02	9	STI-500
139 463 40 17 95 70 62,5 51 6,0 67 1,4 641,3 400 103 0,16 1,34 1,02 3 STI-300 231 470 51 17 95 70 64,5 53 0,8 70 1,2 668,3 128 355 0,53 1,08 1,02 3 STI-500 140 932 51 34 95 70 62,5 51 6,0 67 1,2 650,4 386 584 0,90 1,04 1,02 5 STI-500 215 534 53 19 95 70 64,5 53 0,8 70 1,2 670,0 128 419 0,63 1,07 1,02 4 STI-500		1284	98	47	95	70	62,5	51	6,0	67	2,8	654,5	494	840	1,28	1,02	1,02	7	STI-500
231 470 51 17 95 70 64,5 53 0,8 70 1,2 668,3 128 355 0,53 1,08 1,02 3 STI-500 140 932 51 34 95 70 62,5 51 6,0 67 1,2 650,4 386 584 0,90 1,04 1,02 5 STI-500 215 534 53 19 95 70 64,5 53 0,8 70 1,2 670,0 128 419 0,63 1,07 1,02 4 STI-500	230	628	40	23	95	70	64,5	53	0,8	70	1,4	672,2	142	500	0,74	1,05	1,02	4	STI-500
140 932 51 34 95 70 62,5 51 6,0 67 1,2 650,4 386 584 0,90 1,04 1,02 5 STI-500 215 534 53 19 95 70 64,5 53 0,8 70 1,2 670,0 128 419 0,63 1,07 1,02 4 STI-500	139	463	40	17	95	70	62,5	51	6,0	67	1,4	641,3	400	103	0,16	1,34	1,02	3	STI-300
215 534 53 19 95 70 64,5 53 0,8 70 1,2 670,0 128 419 0,63 1,07 1,02 4 STI-500	231	470	51	17	95	70	64,5	53	0,8	70	1,2	668,3	128	355	0,53	1,08	1,02	3	STI-500
	140	932	51	34	95	70	62,5	51	6,0	67	1,2	650,4	386	584	0,90	1,04	1,02	5	STI-500
111 909 53 33 95 70 62,5 51 6,0 67 1,2 650,0 386 561 0,86 1,04 1,02 5 STI-500	215	534	53	19	95	70	64,5	53	0,8	70	1,2	670,0	128	419	0,63	1,07	1,02	4	STI-500
	111	909	53	33	95	70	62,5	51	6,0	67	1,2	650,0	386	561	0,86	1,04	1,02	5	STI-500

Приложение Ж

Построение процесса обработки воздуха для комнаты приема пищи

Приложение 3 Построение процесса обработки воздуха для холла

Расчетные схемы систем вентиляции

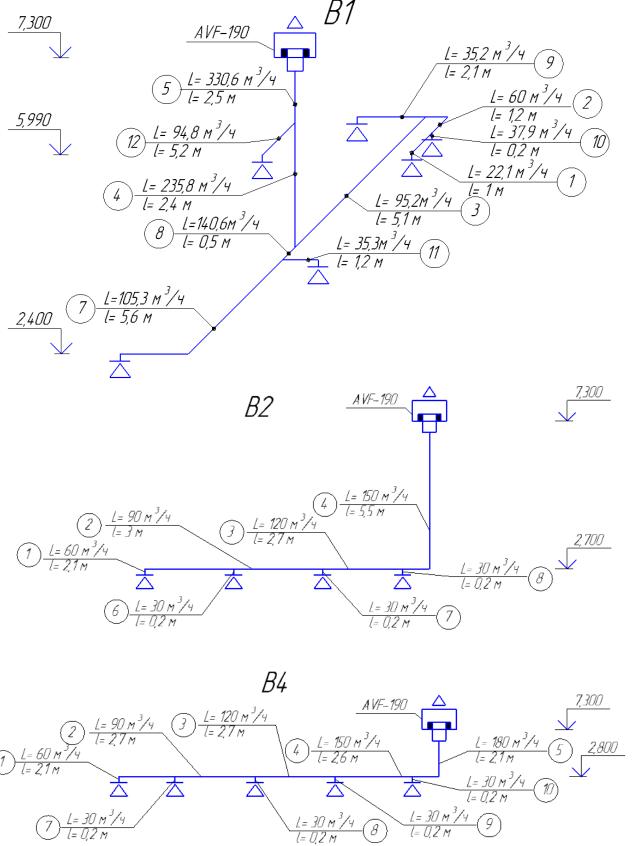


Рисунок И.1 – Расчетная схема В1, В2, В4



Рисунок И.2 – Расчетная схема ВЗ, В5, В6, В7

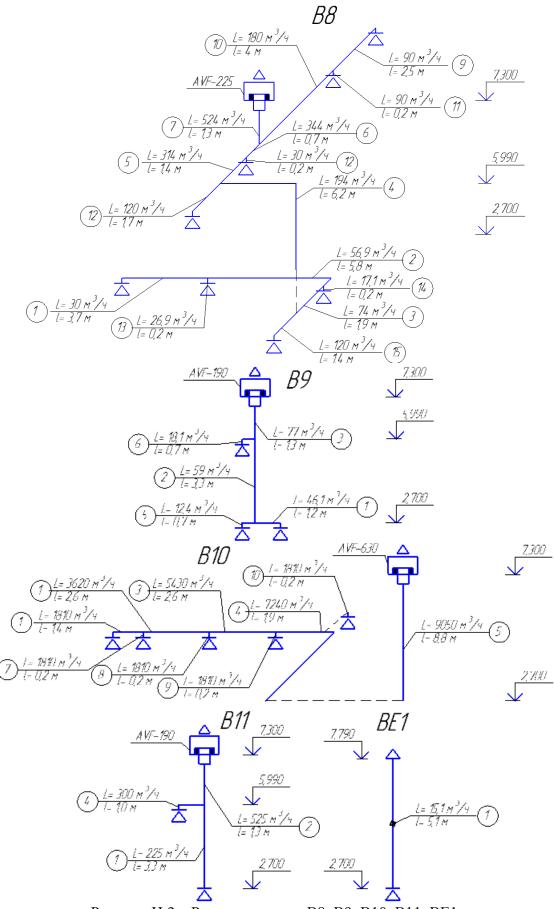


Рисунок И.3 – Расчетная схема B8, B9, B10, B11, BE1

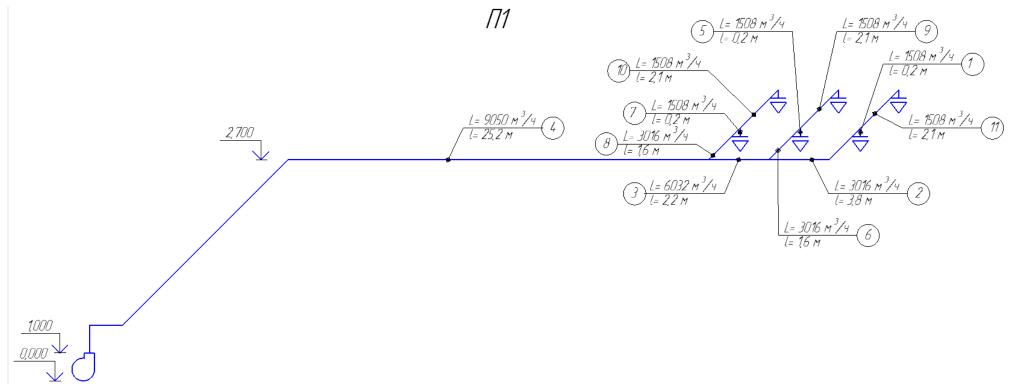


Рисунок И.4 – Расчетная схема П1

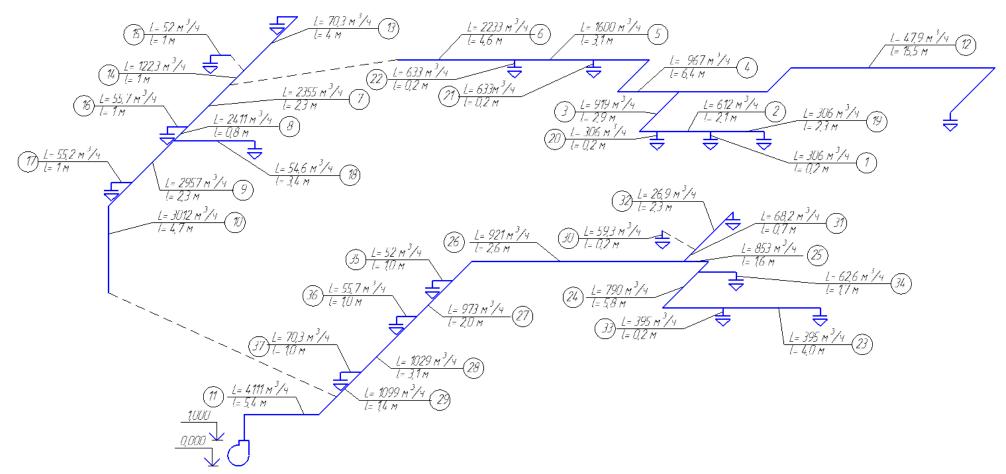


Рисунок И.5 – Расчетная схема П2

Приложение К

Аэродинамический расчет систем

Таблица К.1 - Аэродинамический расчет П1

№ уч-	T 3/	1	Во	оздуховод	ЦЫ	R,	D1 II	7.8	ъ п	7 11	R·l+Z,	Σ (Rl+Z),
ка	L, м ³ /ч	1, м	d, мм	f, м ²	V, м/c	Па/м	Rl, Па	Σξ	Рд, Па	Z, Πa	Па	Па
1	2	3	4	5	6	7	8	9	10	11	12	13
						П1						
						магистра	ЛЬ					
BP	1508	-		0,304	1,38			1,4	1,1	1,6	1,6	
1	1508	0,2	355	0,099	4,24	0,565	0,1	0,9	10,8	9,7	9,8	11,4
2	3016	3,8	450	0,159	5,27	0,639	2,4	0,7	16,7	11,7	14,1	25,5
3	6032	2,2	560	0,246	6,81	0,791	1,7	0,4	27,8	11,1	12,9	38,4
4	9050	25,2	630	0,312	8,07	0,939	23,7	1,05	39,1	41,0	64,7	103,0
					(ответвлен	ия					
BP	1508	-		0,304	1,38			1,4	1,1	1,6	1,6	
5	1508	0,2	355	0,099	4,24	0,565	0,1	0,9	10,8	9,7	9,8	11,4
6	3016	1,6	450	0,159	5,27	0,639	1,0	0,35	16,7	5,8	6,9	18,3
				Невязка:	(25,5-18,	3)/25,5*1	00=28 %,	диафрагм	иа			
BP	1508	-		0,304	1,38			1,4	1,1	1,6	1,6	
7	1508	2,1	355	0,099	4,24	0,565	1,2	0,9	10,8	9,7	10,9	12,5
8	3016	1,6	450	0,159	5,27	0,639	1,0	0,35	16,7	5,8	6,9	19,3
				Невязка:	(38,4-19,3	3)/38,4*10	00= 50 %,	диафрагі	ма			
BP	1508	-		0,304	1,38			1,4	1,1	1,6	1,6	
9	1508	2,1	355	0,099	4,24	0,565	1,2	0,75	10,8	8,1	9,3	10,9
						1,4-10,9)/	11,4*100=	5 %				
BP	1508	-		0,304	1,38			1,4	1,1	1,6	1,6	
10	1508	2,1	355	0,099	4,24	0,565	1,2	0,75	10,8	8,1	9,3	10,9

1	2	3	4	5	6	7	8	9	10	11	12	13
				Нев	вязка: (12	,5-10,9)/12	2,5*100=	13 %				
BP	1508	-		0,304	1,38			1,4	1,1	1,6	1,6	
11	1508	2,1	355	0,099	4,24	0,565	1,2	0,75	10,8	8,1	9,3	10,9
				Не	вязка: (11	,4-10,9)/1	1,4*100=	5 %				

КМС на участках системы П1

Участок 1: тройник на ответвление - 0,9;

Участок 2: отвод 90° - 0,35, тройник на проходе - 0,35;

Участок 3: тройник на проходе - 0,4;

Участок 4: три отвода 90° - 0,35;

Участок 5: тройник на ответвление - 0,9;

Участок 6: тройник на ответвление - 0,35;

Участок 7: тройник на ответвление - 0,9;

Участок 8: тройник на ответвление - 0,35;

Участок 9: отвод 90° - 0,35, тройник на проходе - 0,4;

Участок 10: отвод 90° - 0,35, тройник на проходе - 0,4;

Участок 11: отвод 90° - 0,35, тройник на проходе - 0,4.

Таблица К.2 - Аэродинамический расчет П2

№	T - 3/	1	В	оздуховод	ЦЫ	R,	р1 п.	7.8	р п-	7 П-	R·l+Z,	Σ (Rl+Z),
уч-ка	L, м ³ /ч	1, м	d, мм	f, м ²	V, м/c	Па/м	Rl, Па	Σξ	Рд, Па	Z, Πa	Па	Па
1	2	3	4	5	6	7	8	9	10	11	12	13
						П2						
						магистра	аль					
BP	306	-		0,086	0,99			1,4	0,6	0,8	0,8	
1	306	0,2	140	0,015	5,52	2,737	0,5	1,05	18,3	19,2	19,7	20,6
2	612	2,1	200	0,031	5,43	1,721	3,6	1,4	17,7	24,7	28,4	48,9
3	919	2,9	225	0,040	6,42	2,056	6,0	0,77	24,7	19,0	25,0	73,9
4	967	6,4	225	0,040	6,76	2,264	14,5	1,05	27,4	28,8	43,3	117,2
5	1600	3,1	280	0,062	7,22	1,982	6,1	0,67	31,3	21,0	27,1	144,3
6	2233	4,6	315	0,078	7,96	2,061	9,5	0,75	38,0	28,5	38,0	182,3
7	2355	2,3	315	0,078	8,39	2,269	5,2	0,63	42,2	26,6	31,8	214,1
8	2411	0,8	315	0,078	8,59	2,368	1,9	0,45	44,3	19,9	21,8	235,9
9	2957	2,3	315	0,078	10,54	3,45	7,9	0,35	66,7	23,3	31,3	267,2
10	3012	4,7	315	0,078	10,74	3,566	16,8	0,7	69,2	48,4	65,2	332,4
11	4111	5,4	355	0,099	11,54	3,541	19,1	0,7	79,9	55,9	75,1	407,5
						ответвле	ния					
BP	47,9	-		0,007	0,19			1,4	0,02	0,03	0,03	
12	47,9	15,5	80	0,005	2,65	1,531	23,7	1,8	4,2	7,6	31,3	31,3
				Невязка	: (73,9-31	,3)/73,9*1	00=58 %,	диафрагі	ма			
BP	70,3	-		0,011	1,78			1,4	1,901	2,7	2,7	
13	70,3	4	80	0,005	3,88	2,96	11,8	0,77	9,0	7,0	18,8	21,5
14	122,3	0,8	100	0,008	4,41	2,823	2,3	0,35	11,7	4,1	6,3	27,8

1	2	3	4	5	6	7	8	9	10	11	12	13
				Невязка:	(182,3-27	,8)/182,3*	100=85 %	б, диафра	гма			
BP	52	-		0,007	0,21			1,4	0,03	0,04	0,04	
15	52	1	80	0,005	2,85	1,744	1,7	0,9	4,9	4,4	6,1	6,2
				Невязк	a: (21,5-6,	2)/21,5*1	00=71 %,	диафрагм	ıa			
BP	55,7	-		0,007	0,22			1,4	0,03	0,04	0,04	
16	55,7	1	80	0,005	3,04	1,935	1,9	0,9	5,5	5,0	6,9	6,9
				Невязка:	(214,1-6,	9)/214,1*	100=97 %	, диафраг	ма			
BP	55,2	-		0,007	0,22			1,4	0,03	0,04	0,04	
17	55,2	1	80	0,005	3,01	1,91	1,9	0,9	5,4	4,9	6,8	6,8
				Невязка:	(267,2-6,	8)/267,2*	100=97 %	, диафраг	ма			
BP	54,6	-		0,007	0,22			1,4	0,03	0,04	0,04	
18	54,6	3,4	80	0,005	2,98	1,879	6,4	0,9	5,3	4,8	11,2	11,2
				Невязка:	(235,9-11	,2)/235,9*	100=95 %	б, диафра	гма			
BP	306	-		0,086	0,99			1,4	0,59	0,82	0,82	
19	306	2,3	160	0,020	4,24	1,457	3,4	0,75	10,8	8,1	11,4	12,3
		•		Невязка	: (20,6-12	,3)/20,6*1	00=40 %,	диафрагі	ма			
BP	306	-		0,086	0,99			1,4	0,59	0,82	0,82	
20	306	0,2	140	0,015	5,52	2,737	0,5	1,05	18,3	19,2	19,7	20,6
				Невязка	: (48,9-20	,6)/48,9*1	00=58 %,	диафраги	ма			
BP	633	-		0,173	1,02			1,4	0,62	0,87	0,87	
21	633	0,2	200	0,031	5,61	1,829	0,4	0,87	18,9	16,4	16,8	17,7
				Невязка:	(117,2-17)	,7)/117,2*	100=85 %	б, диафра	гма			
BP	633	-		0,173	1,02			1,4	0,62	0,87	0,87	
22	633	0,2	200	0,031	5,61	1,829	0,4	0,87	18,9	16,4	16,8	17,7
				Невязка:	(144,3-17	,7)/144,3*	100=88 %	б, диаф <mark>р</mark> а	гма			
BP	395	-		0,173	0,63			1,4	0,238	0,3	0,3	
23	395	4	180	0,025	4,33	1,313	5,3	0,85	11,2	9,6	14,8	15,1

												продолж
1	2	3	4	5	6	7	8	9	10	11	12	13
24	790	5,8	250	0,049	4,47	0,93	5,4	0,83	12,0	10,0	15,3	30,5
25	853	1,6	250	0,049	4,82	0,979	1,6	0,75	13,9	10,5	12,0	42,5
26	921	2,6	250	0,049	5,21	1,249	3,2	0,75	16,3	12,2	15,5	58,0
27	973	2	250	0,049	5,52	1,378	2,8	0,4	18,3	7,3	10,1	68,0
28	1029	3,1	250	0,049	5,83	1,527	4,7	0,38	20,4	7,7	12,5	80,5
29	1099	1,4	250	0,049	6,2	1,718	2,4	1,05	23,1	24,2	26,6	107,1
				Невязка:	(332,4-10)	7,1)/332,4	*100=68 9	%, диафра	агма			
BP	59,3	-		0,007	0,11			1,4	0,007	0,01	0,01	
30	59,3	0,2	80	0,005	3,20	2,115	0,4	1,05	6,1	6,5	6,9	6,9
31	68,2	0,7	80	0,005	3,73	2,738	1,9	1,05	8,3	8,8	10,7	17,6
				Невязка	: (42,5-17	7,6)/42,5*1	.00=59 %,	диафраг	ма			
BP	26,9	-		0,011	1,5			1,4	1,350	1,9	1,9	
32	26,9	2,3	80	0,005	1,48	0,55	1,3	0,75	1,3	1,0	2,3	4,1
	•	•		Невяз	ка: (6,9-4,	1)/6,9*10	0=40 %, д	иафрагма	ì			
BP	395	_		0,173	0,63			1,4	0,238	0,3	0,3	
33	395	0,2	180	0,025	4,33	1,313	0,3	1,05	11,2	11,8	12,1	12,4
				Невязка	: (15,1-12	,4)/15,1*1	00=18 %,	диафраг	ма			
BP	62,6	-		0,011	1,58			1,4	1,498	2,1	2,1	
34	62,6	0,2	80	0,005	3,38	2,28	0,5	0,89	6,9	6,1	6,6	8,7
				Невязк	a: (30,5-8,	7)/30,5*1	00=72 %,	диафрагм	иа			
BP	52	-		0,007	0,21			1,4	0,026	0,04	0,04	
35	52	0,2	80	0,005	2,85	1,744	0,3	0,78	4,9	3,8	4,2	4,2
				Невяз	вка: (58-4,	2)/58*100)=93 %, ді	иафрагма				
BP	55,7	-		0,007	0,22			1,4	0,029	0,04	0,04	
36	55,7	0,2	80	0,005	3,04	1,935	0,4	0,9	5,5	5,0	5,4	5,4
				Невяз	вка: (68-5,	4)/68*100)=9 2 %, ді	иафрагма				
BP	70,3	-		0,011	1,78			1,4	1,901	2,7	2,7	

1	2	3	4	5	6	7	8	9	10	11	12	13
37	70,3	0,2	80	0,005	3,88	2,96	0,6	1,05	9,0	9,5	10,1	12,7
				Невязка	a: (80,5-12	,7)/80,5*1	00=84 %.	, диафраг	ма			

КМС на участках системы П2

Участок 1: тройник на ответвление;

Участок 2: тройник на проходе;

Участок 3: отвод 90°, тройник на проходе;

Участок 4: два отвода 90°, тройник на проходе;

Участок 5: тройник на проходе;

Участок 6: тройник на проходе;

Участок 7: тройник на проходе;

Участок 8: тройник на проходе;

Участок 9: тройник на проходе;

Участок 10: отвод 90°, тройник на проходе;

Участок 11: два отвода 90°;

Участок 12: четыре отвода 90°, тройник на ответвление;

Участок 13: отвод 90°, тройник на проходе;

Участок 14: тройник на ответвление;

- Участок 15: тройник на ответвление;
- Участок 16: тройник на ответвление;
- Участок 17: тройник на ответвление;
- Участок 18: тройник на ответвление;
- Участок 19: отвод 90°, тройник на проходе;
- Участок 20: тройник на ответвление;
- Участок 21: тройник на ответвление;
- Участок 22: тройник на ответвление;
- Участок 23: отвод 90°, тройник на проходе;
- Участок 24: отвод 90°, тройник на проходе;
- Участок 25: отвод 90°, тройник на проходе;
- Участок 26: отвод 90°, тройник на проходе;
- Участок 27: тройник на проходе;
- Участок 28: тройник на проходе;
- Участок 29: тройник на ответвление;
- Участок 30: тройник на ответвление;
- Участок 31: тройник на ответвление;
- Участок 32: отвод 90°, тройник на проходе;
- Участок 33: тройник на ответвление;

Участок 34: тройник на ответвление;

Участок 35: тройник на ответвление;

Участок 36: тройник на ответвление;

Участок 37: тройник на ответвлении.

Таблица К.3 - Аэродинамический расчет вытяжных систем

№ уч-	L,	1 w	В	оздухово	ды	R,	Rl, Па	Σξ	Рд, Па	Z, Па	R·l+Z,	Σ (Rl+Z),
ка	M^3/q	l, м	d, мм	f, m ²	V, м/c	Па/м	K1, 11a	ئ ک	гд, на	Z, 11a	Па	Па
1	2	3	4	5	6	7	8	9	10	11	12	13
						В	1					
						магис	траль					
1	22,1	1	80	0,005	1,21	0,386	0,4	2,95	0,9	2,6	3,0	
2	60	1,2	80	0,005	3,25	2,150	2,6	1,65	6,3	10,5	13,0	16,0
3	95,2	5,1	80	0,005	5,26	5,082	25,9	1,2	16,6	19,9	45,8	61,9
4	235,8	2,4	125	0,012	5,32	2,963	7,1	1,1	17,0	18,7	25,8	87,6
5	330,6	2,5	125	0,012	7,50	5,430	13,6	1,3	33,8	43,9	57,5	119,3
						ответь	ления					
7	105,3	5,6	100	0,008	3,76	1,910	10,7	2,85	8,5	24,2	34,9	
8	140,6	0,5	100	0,008	5,02	3,536	1,8	0,25	15,1	3,8	5,5	40,4
			(6)	1,9 - 40,4)	/61,9=3	35 %, диа	фрагма: (С	61,9-40,4)	/15,1=1,	42		
9	35,2	2,1	80	0,005	1,95	0,892	1,9	1,93	2,3	4,4	6,3	6,3
					(16 - 6,3)	$/ 16 = 61^{\circ}$	%, диафра	агма: 4,27	1			
10	37,9	0,2	80	0,005	2,11	1,028	0,2	0,25	2,7	0,7	0,9	0,9
					(3 - 0.9)	/ 3 = 71 %	, диафраг	гма: 0,79				
11	35,3	1,2	80	0,005	1,95	0,897	1,1	2,05	2,3	4,7	5,8	5,8
		1		(34	1,9 - 5,8) /	34,9 = 84	%, диафј	рагма: 12,	,76		T	
12	94,8	5,2	80	0,005	5,24	5,048	26,2	2,05	16,5	33,8	60,0	60,0

												тродоли
1	2	3	4	5	6	7	8	9	10	11	12	13
				(87,	6 - 60) / 87	7,6 = 32 %	, диафраг	тма: 1,68				
						B2						
						магистра	аль					
1	60	3,2	100	0,008	2,08	0,818	2,6	2,85	2,6	7,4	10,0	
2	90	3	100	0,008	3,17	1,420	4,3	1,3	6,0	7,8	12,1	22,1
3	120	2,7	100	0,008	4,33	2,740	7,4	1,2	11,2	13,5	20,9	43,0
4	150	5,5	100	0,008	5,25	3,830	21,1	0,35	16,5	5,8	26,9	69,9
						ответвле	ния					
6	30	0,2	80	0,005	1,60	0,632	0,1	1,7	1,5	2,6	2,7	2,7
				(10	0 - 2,7) / 10	0 = 73 %	диафрагм	ıa: 4,74				
7	30	0,2	80	0,005	1,60	0,632	0,1	1,65	1,5	2,5	2,7	2,7
				(22,1	- 2,7) / 22	,1 = 88 %	, диафраг	ма: 12,66				
8	30	0,2	80	0,005	1,60	0,632	0,1	1,5	1,5	2,3	2,4	2,4
					(43 - 2,4)	$/43 = 94^{\circ}$	%, диафра	агма				
						В3						
						магистра	аль					
1	300	1,2	160	0,020	4,14	1,229	1,5	2,95	10,3	30,3	31,8	
2	450	2	180	0,025	4,90	1,632	3,3	1,1	14,4	15,8	19,1	50,9
3	675	1,6	200	0,031	5,96	2,053	3,3	1,2	21,3	25,6	28,9	79,8
4	825	1,3	200	0,031	7,29	2,982	3,9		31,9	31,9	35,8	115,5
						ответвле	ния					
6	150	0,2	100	0,008	5,33	3,937	0,8	1,65	17,0	28,1	28,9	28,9
					(31,8	- 28,9) / 3	1,8 = 9 %					
7	225	1,2	125	0,012	5,1	2,956	3,5	2	15,6	31,2	34,8	34,8
				(50,9	- 34,8) / 5	0,9 = 32	⁄ ₆ , <mark>диафра</mark>	гма: 1,04				
8	150	5,8	100	0,008	5,33	3,937	22,8	2,35	17,0	40,1	62,9	62,9
				(79,8	3 - 62,9) / 7	$9.8 = 21^{-9}$	⁄ ₆ , диафра	гма: 0,99				

												продолж
1	2	3	4	5	6	7	8	9	10	11	12	13
						B4						
						магистра	аль					
1	60	3,2	100	0,008	2,08	0,818	2,6	2,95	2,6	7,7	10,3	
2	90	3	100	0,008	3,17	1,420	4,3	1,3	6,0	7,8	12,1	22,4
3	120	2,1	100	0,008	4,33	2,740	5,8	1,2	11,2	13,5	19,3	41,6
4	150	0,5	100	0,008	5,25	3,830	1,9	1,1	16,5	18,2	20,1	61,7
5	180	2,1	100	0,008	6,33	5,383	11,3	0,35	24,0	8,4	19,7	81,5
						ответвле	ния					
7	30	0,2	80	0,005	1,60	0,632	0,1	1,7	1,5	2,6	2,7	2,7
				(10,	3 - 2,7) / 10	0.3 = 73 %	, диафра	гма: 4,91				
8	30	0,2	80	0,005	1,60	0,632	0,1	1,65	1,5	2,5	2,7	2,7
				(22,4	- 2,7) / 22	4 = 88 %	, диафраг	ма: 12,83				
9	30	0,2	80	0,005	1,60	0,632	0,1	1,45	1,5	2,2	2,4	2,4
					1,6 - 2,4)	41,6 = 94	%, диаф	рагма:				
10	30	0,2	80	0,005	1,60	0,632	0,1	1,45	1,5	2,2	2,4	2,4
				(6	51,7 -2,4) /		%, диафр	рагма:				
						B5						
		T				магистра				T	T	
1	373	1,3	160	0,020	5,16	2,067	2,7	1,4	16,0	22,4	25,1	25,1
						В6						
		T				магистра				T	T	
1	306	1,7	160	0,020	4,23	1,457	2,5	2,95	10,7	31,7	34,1	
2	612	1,5	180	0,025	6,69	2,877	4,3	1,3	26,9	34,9	39,2	73,4
3	919	1,7	200	0,031	8,13	3	5,1	0,35	39,7	13,9	19,0	92,4
		T				ответвле		1		T	T	
5	306	0,2	160	0,020	4,23	1,457	0,3	1,65	10,7	17,7	18,0	18,0
				(34	,1 - 18) / 3	4,1 = 47 %	6, диафра	гма: 1,5				

продолже													
1	2	3	4	5	6	7	8	9	10	11	12	13	
6	306	0,2	160	0,020	4,23	1,457	0,3	1,5	10,7	16,1	16,4	16,4	
(73,4 - 16,4) / 73,4 = 78 %, диафрагма: 5,31													
B7													
магистраль													
1	100	0,7	100	0,008	3,50	1,380	1,0	2,55	7,4	18,7	19,7		
2	150	6,6	100	0,008	5,33	3,937	26,0	0,7	17,0	11,9	37,9	57,6	
ответвления													
4	50	0,2	80	0,005	2,75	1,64	0,3	1,65	4,5	7,5	7,8	7,8	
	(19,7 - 7,8) / 19,7 = 60 %, диафрагма: 2,62												
B8													
магистраль													
1	30	3,7	80	0,005	1,60	0,632	2,3	2,5	1,5	3,8	6,2		
2	56,9	5,8	80	0,005	3,10	1,995	11,6	0,35	5,7	2,0	13,6	19,8	
3	74	1,9	80	0,005	4,13	3,32	6,3	0,9	10,2	9,2	15,5	35,3	
4	194	6,2	100	0,008	6,8	6,022	37,3	0,75	27,7	20,8	58,1	93,4	
5	314	1,4	125	0,012	7,10	4,918	6,9	0,55	30,2	16,6	23,5	116,9	
6	344	0,7	125	0,012	7,78	5,811	4,1	0,4	36,3	14,5	18,6	135,5	
7	524	1,3	140	0,015	9,44	7,260	9,4	0,35	53,5	18,7	28,2	163,7	
						ответвле	ния	•					
9	90	2,5	100	0,008	3,17	1,420	3,6	2,5	6,0	15,1	18,6	18,6	
10	180	4	100	0,008	6,33	5,383	21,5	0	24,0	0,0	21,5	40,2	
(135,5-40,2) / 135,5 = 70 %, диафрагма: $3,97$													
11	90	0,2	100	0,008	3,17	1,420	0,3	1,45	6,0	8,7	9,0	9,0	
(18,6 - 9) / 18,6 = 52 %, диафрагма: 1,59													
12	120	1,7	100	0,008	4,33	2,740	4,7	1,55	11,2	17,4	22,1	22,1	
	(93,4 - 22,1) / 93,4 = 76 %, диафрагма: 6,34												
13	26,9	0,2	80	0,005	1,48	0,550	0,1	1,45	1,3	1,9	2,0	2,0	

												продолж
1	2	3	4	5	6	7	8	9	10	11	12	13
(6,2 - 2) / 6,2 = 67 %, диафрагма: 3,17												
14	17,1	0,2	80	0,005	0,95	0,249	0,05	1,4	0,5	0,8	0,8	0,8
(19,8 - 0,8) / 19,8 = 96 %, диафрагма: 3,5												
15	120	1,4	100	0,008	4,33	2,740	3,8	2,15	11,2	24,2	28,0	28,0
(35,3 - 28) / 35,3 = 21 %, диафрагма: 0,65												
B9												
магистраль												
1	16,1	1,2	80	0,005	0,91	0,233	0,3	2,5	0,5	1,2	1,5	
2	59	3,3	80	0,005	3,20	2,100	6,9	0,75	6,1	4,6	11,5	13,1
3	77	1,3	80	0,005	4,31	3,59	4,7		11,1	11,1	15,8	28,9
ответвления												
5	12,4	0,7	80	0,005	0,68	0,112	0,1	2	0,3	0,6	0,6	0,6
(1,5-0,6) / 1,5 = 58 %, диафрагма: 3,20												
6	18,1	0,7	80	0,005	1,01	0,281	0,2	1,85	0,6	1,1	1,3	1,3
				(13,1	- 1,3) / 13	5,1 = 90 %	, диафраг	ма: 14,17	1			
						B10						
	_	1	T	_		магистра	аль			1		
1	1810	1,4	400	0,126	4,00	0,441	0,6	2,95	9,6	28,3	28,9	
2	3620	2,6	500	0,196	5,12	0,536	1,4	1,3	15,7	20,4	21,8	50,8
3	5430	2,6	560	0,246	6,13	0,652	1,7	1,2	22,5	27,1	28,8	79,5
4	7240	1,9	630	0,312	6,46	0,624	1,2	1,1	25,0	27,5	28,7	108,3
5	9050	8,8	630	0,312	8,07	0,939	8,3	0,35	39,1	13,7	21,9	130,2
ответвления												
7	1810	0,2	400	0,126	4,00	0,441	0,1	1,7	9,6	16,3	16,4	16,4
(28,9 - 16,4) / 28,9 = 43 %, диафрагма: 1,31												
8	1810	0,2	400	0,126	4,00	0,441	0,1	1,65	9,6	15,8	15,9	15,9
	(50,8 - 15,9) / 50,8 = 69 %, диафрагма: 3,63											

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	проделже												
(79,5 - 15,9) / 79,5 = 15,9 %, диафрагма: 6,63 10 1810 0,2 400 0,126 4,00 0,441 0,1 1,8 9,6 17,3 17,4 17,4 В1 вагистраль магистраль 1 225 3,3 125 0,012 5,1 2,956 9,8 2,55 15,6 39,8 49,6 2 525 1,3 160 0,020 7,25 3,825 5,0 0,35 31,5 11,0 16,0 65,6 ответвления 4 300 1 160 0,020 4,14 1,406 1,4 1,65 10,3 17,0 18,4 18,4 ВЕТ магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1 1	1	2	3	4	5	6	7	8	9	10	11	12	13
10 1810 0,2 400 0,126 4,00 0,441 0,1 1,8 9,6 17,3 17,4 17,4 В1 магистраль 1 225 3,3 125 0,012 5,1 2,956 9,8 2,55 15,6 39,8 49,6 2 525 1,3 160 0,020 7,25 3,825 5,0 0,35 31,5 11,0 16,0 65,6 ответвления 4 300 1 160 0,020 4,14 1,406 1,4 1,65 10,3 17,0 18,4 18,4 ВЕ1 магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	9	1810	0,2	400	0,126	4,00	0,441	0,1	1,65	9,6	15,8	15,9	15,9
$ \frac{(108,3-17,4) / 108,3=84 \%, диафрагма: 9,4}{B11} $	(79,5 - 15,9) / 79,5 = 15,9 %, диафрагма: 6,63												
	10	1810	0,2	400	0,126	4,00	0,441	0,1	1,8	9,6	17,3	17,4	17,4
Магистраль 1 225 3,3 125 0,012 5,1 2,956 9,8 2,55 15,6 39,8 49,6 2 525 1,3 160 0,020 7,25 3,825 5,0 0,35 31,5 11,0 16,0 65,6 ОТВЕТВЛЕНИЯ 4 300 1 160 0,020 4,14 1,406 1,4 1,65 10,3 17,0 18,4 18,4 ВЕ1 Магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	(108,3 - 17,4) / 108,3 = 84 %, диафрагма: 9,4												
1 225 3,3 125 0,012 5,1 2,956 9,8 2,55 15,6 39,8 49,6 2 525 1,3 160 0,020 7,25 3,825 5,0 0,35 31,5 11,0 16,0 65,6 ОТВЕТВЛЕНИЯ 4 300 1 160 0,020 4,14 1,406 1,4 1,65 10,3 17,0 18,4 18,4 ВЕ1 Магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	B11												
2 525 1,3 160 0,020 7,25 3,825 5,0 0,35 31,5 11,0 16,0 65,6 ОТВЕТВЛЕНИЯ 4 300 1 160 0,020 4,14 1,406 1,4 1,65 10,3 17,0 18,4 18,4 ВЕ1 Магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	магистраль												
ОТВЕТВЛЕНИЯ 4 300 1 160 0,020 4,14 1,406 1,4 1,65 10,3 17,0 18,4 18,4 ВЕ1 магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	1	225	3,3	125	0,012	5,1	2,956	9,8	2,55	15,6	39,8	49,6	
4 300 1 160 0,020 4,14 1,406 1,4 1,65 10,3 17,0 18,4 18,4 (49,6 - 18,4) / 49,6 = 63 %, диафрагма: 3,03 BE1 магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	2	525	1,3	160	0,020	7,25	3,825	5,0	0,35	31,5	11,0	16,0	65,6
(49,6 - 18,4) / 49,6 = 63 %, диафрагма: 3,03 BE1 магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	ответвления												
BE1 магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	4	300	1	160	0,020	4,14	1,406	1,4	1,65	10,3	17,0	18,4	18,4
магистраль 1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	(49,6 - 18,4) / 49,6 = 63 %, диафрагма: 3,03												
1 15,1 5,1 80 0,005 0,81 0,191 1,0 2,86 0,4 1,1 2,1	BE1												
	магистраль												
Невязка: $(\Delta p_{\text{расп}} - \Delta p_{\text{сист}})/\Delta p_{\text{расп}} = ((9,81\cdot5,1\cdot(1,27-1,23))-2,1)/2,21 = 5 \%$	1	15,1	5,1	80	0,005	0,81	0,191	1,0	2,86	0,4	1,1	2,1	
*													

КМС на участках вытяжных систем

Система В1

Участок 1: воздухораспределитель АЛН 200х100, отвод 90°, тройник на проходе;

Участок 2: отвод 90°, тройник на проходе;

Участок 3: тройник на проходе;

Участок 4: тройник на проходе;

Участок 5: нет;

Участок 7: воздухораспределитель АЛН 600x100, два отвода 90°, тройник на проходе;

Участок 8: тройник на ответвление;

Участок 9: воздухораспределитель АЛН 300x100, отвод 90°, тройник на ответвление;

Участок 10: тройник на ответвление;

Участок 11: воздухораспределитель АЛН 300x100, отвод 90°, тройник на ответвление;

Участок 12: воздухораспределитель АЛН 600x100, отвод 90°, тройник на ответвление.

Система В2

Участок 1: воздухораспределитель АЛН 300x150, отвод 90°, тройник на проходе;

Участок 2: тройник на проходе;

Участок 3: тройник на проходе;

Участок 4: отвод 90°;

Участок 6: воздухораспределитель АЛН 300х100, тройник на ответвление;

Участок 7: воздухораспределитель АЛН 300х100, тройник на ответвление;

Участок 8: воздухораспределитель АЛН 300х100, тройник на ответвление.

Система В3

Участок 1: воздухораспределитель АЛН 500х300, отвод 90°, тройник на проходе;

Участок 2: тройник на проходе;

Участок 3: тройник на проходе;

Участок 4: нет;

Участок 6: воздухораспределитель АЛН 600х150, тройник на ответвление;

Участок 7: воздухораспределитель АЛН 500х300, отвод 90°, тройник на ответвление;

Участок 8: воздухораспределитель АЛН 600x150, два отвода 90°, тройник на ответвление.

Система В4

Участок 1: воздухораспределитель АЛН 300x150, отвод 90°, тройник на проходе;

Участок 2: тройник на проходе;

Участок 3: тройник на проходе;

Участок 4: тройник на проходе;

Участок 5: отвод 90°;

Участок 7: воздухораспределитель АЛН 300х100, тройник на ответвление;

Участок 8: воздухораспределитель АЛН 300х100, тройник на ответвление;

Участок 9: воздухораспределитель АЛН 300х100, тройник на ответвление;

Участок 10: воздухораспределитель АЛН 300х100, тройник на ответвление.

Система В5

Участок 1: воздухораспределитель АЛН 500х300.

Система В6

Участок 1: воздухораспределитель ДПУ-М 250, отвод 90°, тройник на проходе;

Участок 2: тройник на проходе;

Участок 3: отвод 90°;

Участок 5: воздухораспределитель ДПУ-М 250, тройник на ответвление;

Участок 6: воздухораспределитель ДПУ-М 250, тройник на ответвление.

Система В7

Участок 1: воздухораспределитель АЛН 600x100, отвод 90°, тройник на проходе;

Участок 2: два отвода 90°;

Участок 4: воздухораспределитель АЛН 300х100, тройник на ответвление.

Система В8

Участок 1: воздухораспределитель АЛН 300x100, отвод 90°, тройник на проходе;

Участок 2: отвод 90°, тройник на проходе;

Участок 3: тройник на проходе;

Участок 4: отвод 90°, тройник на проходе;

Участок 5: тройник на проходе;

Участок 6: тройник на проходе;

Участок 7: отвод 90°;

Участок 9: воздухораспределитель АЛН 600x150, отвод 90°, тройник на проходе;

Участок 10: тройник на ответвление;

Участок 11: воздухораспределитель АЛН 600х150, тройник на ответвление;

Участок 12: воздухораспределитель АЛН 500х200, отвод 90°, тройник на ответвление;

Участок 13: воздухораспределитель АЛН 200х100, тройник на ответвление;

Участок 14: воздухораспределитель АЛН 200х100, тройник на ответвление;

Участок 15: воздухораспределитель АЛН 500х200, отвод 90°, тройник на ответвление.

Система В9

Участок 1: воздухораспределитель АЛН 300x100, отвод 90°, тройник на проходе;

Участок 2: тройник на проходе;

Участок 3: нет;

Участок 5: воздухораспределитель АЛН 200x100, отвод 90°, тройник на ответвление;

Участок 6: воздухораспределитель АЛН 200x100, отвод 90°, тройник на ответвление.

Система В10

Участок 1: воздухораспределитель 4АПН 1050х1050, отвод 90°, тройник на проходе;

Участок 2: тройник на проходе;

Участок 3: тройник на проходе;

Участок 4: тройник на проходе;

Участок 5: отвод 90°;

Участок 7: воздухораспределитель 4АПН 1050х1050, тройник на ответвление;

Участок 8: воздухораспределитель 4АПН 1050х1050, тройник на ответвление;

Участок 9: воздухораспределитель 4АПН 1050х1050, тройник на ответвление;

Участок 10: воздухораспределитель 4АПН 1050х1050, тройник на ответвление.

Система В11

Участок 1: воздухораспределитель АЛН 700х200, тройник на проходе;

Участок 2: отвод 90° ;

Участок 4: воздухораспределитель АЛН 500х300, тройник на ответвление.

Система ВЕ1

Участок 1: решетка АЛН 200х100, шахта с зонтом.