федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

<u>ХИТЕКТУРНО-СТРОИТЕЛЬНЫ</u>	И
(институт)	
ение, вентиляция, водоснабжение	и водоотведение
(кафедра)	
наименование направления подготовки, специа	льности)
(наименование профиля, специализации)	
БАКАЛАВРСКАЯ РАБОТА	4
тти. Торговый центр. Отопление	и вентиляция
С.В. Сидоров	
(И.О. Фамилия)	(личная подпись)
*	
	(личная подпись)
	· ·
(И.О. Фамилия)	(личная подпись)
Амирджанова И.Ю.	
(И.О. Фамилия)	(личная подпись)
эеллой кти полент ВМ Фит	IEUKUD
	(личная подпись)
2018Γ.	, . ,
	(институт) ение, вентиляция, водоснабжение (кафедра) 2800.62 (08.03.01) "Строительство наименование направления подготовки, специа Сеплогазоснабжение, вентиляция (наименование профиля, специализации) БАКАЛАВРСКАЯ РАБОТ ТТИ. Торговый центр. Отопление С.В. Сидоров (И.О. Фамилия) Е.В. Чиркова (И.О. Фамилия) М.И. Галочкин (И.О. Фамилия) Амирджанова И.Ю. (И.О. Фамилия)

Аннотация

В данном проекте были запроектированы системы отопления и вентиляции торгового центра в г.о. Тольятти Самарской обл.

Бакалаврская работа, была выполнена на основании утвержденного задания на проектирование и представленных архитектурно-строительных чертежей заказчиком.

Выполнен теплотехнический расчет конструкций, были определены необходимые нагрузки на систему отопления.

В разделе теплоснабжение произведен расчет двухтрубной системы отопления с тупиковым движением теплоносителя с горизонтальной разводкой. Подобранны отопительные приборы по каталогу от производителя. Так же в данном разделе был выполнен расчет водяных воздушно-тепловых завес.

В данном торговом центре была запроектирована система механической приточной/вытяжной вентиляции торгового зала, офиса и склада.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 ИСХОДНЫЕ ДАННЫЕ	5
1.1 Параметры наружного воздуха	
1.2 Параметры внутреннего воздуха	5
1.3 Описание объекта строительства	6
2 ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ	7
2.1 Теплотехнический расчет ограждающих конструкций	7
2.2 Расчет теплопотерь	13
2.3 Теплопотери через ограждающие конструкции помещений	14
3 ОТОПЛЕНИЕ	15
3.1 Конструирование системы отопления	15
3.2 Гидравлический расчет системы отопления	15
4 ВЕНТИЛЯЦИЯ	25
4.1 Определение требуемых воздухообменов	25
4.2 Выбор принципиальных решений и конструирование	27
4.3 Аэродинамический расчет	28
4.4 Расчет и подбор оборудования	31
4.5 Расчет и подбор воздушно-тепловых завес	31
5 АВТОМАТИЗАЦИЯ	33
6 ОРГАНИЗАЦИЯ	35
6.1 Определение объемов работ	35
6.2 Определение трудоемкости работ	
7 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНОЛОГИЧЕСКОГО	
ОБЪЕКТА	38
7.1 Конструктивно-технологическая и организационно-техническая	
характеристика рассматриваемого технического объекта	38
7.2. Идентификация профессиональных рисков	39
7.3 Методы и средства снижения профессиональных рисков	39
7.4 Обеспечение пожарной безопасности технического объекта	41
7.5 Обеспечение экологической безопасности технического объекта	43
ЗАКЛЮЧЕНИЕ	
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	
припожения	48

ВВЕДЕНИЕ

В настоящее время строительство торговых центров обретает новые масштабы. Только за последний год в г. Тольятти построили и запустили в эксплуатацию несколько крупных торговых центров. Проектирование систем отопления и вентиляции является неотъемлемой частью здания, поэтому грамотное проектирование и расчет этих систем занимает одно из главных мест при строительстве ТЦ.

Цель данной работы: запроектировать системы, отвечающие действующим требованиям и нормам.

Для достижения поставленной цели, необходимо выполнить следующие задачи:

- -выполнение теплотехнического расчета, для определения тепловых потерь здания;
 - -конструирование и расчет системы отопления;
 - -конструирование и расчет системы вентиляции;
 - -рассмотреть систему контроля и автоматизации.

1 ИСХОДНЫЕ ДАННЫЕ

1.1 Параметры наружного воздуха

Торговый центр проектируется в Самарской области в г. Тольятти на 53°31′с. ш. 49°20′в. д. Зона влажности – сухая, условия эксплуатации – А. Параметры наружного воздуха приняты по СП [1] и представлены в таблице 1.

Таблица 1 – Параметры наружного воздуха

	Темпера-	Продолжительность	Среднемесячная	Средняя	Макси-	
	тура наружного воздуха, °С	отопительного периода, Z _{от} сут.	относительная влажность, %	температура отопительного периода °C	мальная из средних скоростей по румбам v, м/с	
	Параметр Б					
ХΠ	-30	203	78	-5,2	5,4	
Параметр А						
ТΠ	+24,6	-	63	-	3,2	

1.2 Параметры внутреннего воздуха

Микроклимат помещений принят согласно ГОСТ [2] и сведен в таблицу 2

Таблица 2 – Параметры воздуха внутри помещений

		Параметры внутреннего воздуха		его воздуха
№ пом.	Помещение	Темп-ра $t_{_{\mathcal{B}}}$, ${^{\circ}\mathrm{C}}$	Относительная влажность φ не более, %	Скорость движения воздуха, м/с
100	Торговый зал	16	60	0,2
	ЛК 1	18	60	0,2

Продолжение таблицы 2

101	Помещение работников склада	18	60	0,2
102	Коридор	18	60	0,2
103	Зарядная	16	60	0,2
104	Гардероб	16	60	0,2
105	Кладовая	16	60	0,2
201	Главный инженер	18	60	0,2
202	Кабинет программиста	18	60	0,2
203	Санузел	18	60	0,2
204	Тех. помещение	18	60	0,2
205	Кабинет директора	18	60	0,2
206	Кабинет экономиста	18	60	0,2
207	Бухгалтерия	18	60	0,2
208	Кабинет Гл. бухгалтера	18	60	0,2
209	Коридор	18	60	0,2
210	Тех. отдел	18	60	0,2

Для административно-бытовых помещений, а также же торгового зала, внутренняя температура воздуха принимается на 3°C выше наружного воздуха, но не более 28°C.

1.3 Описание объекта строительства

Торговый центр расположен в г.о. Тольятти. Главный фасад обращен к северной стороне света. Главный вход располагается со стороны главного фасада. Комплекс включает в себя: торговый зал, 2-ух этажный АБК высотой 7м., а также одноэтажный склад без подвала и тех. подполья. Площадь здания 705м^2 , склада — 75m^2 . Торговый центр занимается торговлей строительными, не горючими материалами.

2 ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ

2.1 Теплотехнический расчет ограждающих конструкций

Расчет выполнен согласно методике, приведенной в СП [3]

Состав перекрытий торгового зала, офиса и склада представлены в таблицах 4-8 включительно.

$$\Gamma$$
СОП= (18-(-5,2) 203=4710(°С · сут) /год

Таблица 3- Требуемые сопротивления теплопередачи

Стена наружная	Кровля	Окна
0,00035·4710+1,4=3,0486	0,0005-4710+2,2=4,555	0,000075.4710+0,15=0,503

Торговый зал, офис

Наружная стена

Таблица 4- Конструкция наружных стен

№ слоя	Материал	Толщина слоя δ, м	Коэффициент тепло- проводности λ, Вт/(м·°С)
1	Железобетонная панель	0,24	0,76
2	Пенополиуретан (ППУ)	X	0,029
3	Металлическая облицовка	0,002	50

$$R_0^{\text{TP}} = 3,048 \text{ (M}^2 \cdot {}^{\circ}\text{C)/BT}$$

$$\frac{R_0^{\text{TP}}}{r} = \frac{1}{8,7} + \frac{0,24}{0,76} + \frac{x}{0,029} + \frac{0,002}{50} + \frac{1}{23};$$

$$r = 0,91 \cdot 0,92 = 0,837$$

Примем толщину утеплителя $x=0,10\ \mathrm{M}$ и проверим выполнение условия:

$$R_0^{\text{np}} \ge R_0^{\text{rp}};$$

$$R_0^{\text{усл}} = \frac{1}{8.7} + \frac{0.24}{0.76} + \frac{0.10}{0.029} + \frac{0.002}{50} + \frac{1}{23} = 3,879 \text{ (M}^2 \cdot ^{\circ}\text{C})/\text{Вт}$$
 $R_0^{\text{пр}} = 3,879 \cdot 0,837 = 3,246 \text{ (M}^2 \cdot ^{\circ}\text{C})/\text{Вт}$
 $3,246 \text{ (M}^2 \cdot ^{\circ}\text{C})/\text{Вт} \ge 3,048 \text{ (M}^2 \cdot ^{\circ}\text{C})/\text{Вт}$ - условие соблюдается; $k = \frac{1}{3.246} = 0,308 \text{ (M}^2 \cdot ^{\circ}\text{C})/\text{Вт}$

Ворота (двери) утепленные

$$R_0^{\text{TP}} = 0.503 \cdot 0.6 = 0.301 (\text{M}^2 \cdot {}^{\circ}\text{C})/\text{BT}$$

Приведенное сопротивление наружной двери должно быть не менее чем в 0,6 раз выше требуемого

$$R_0^{\text{H}} = ((18 - (-30)/(4 \cdot 8,7) = 1,379) \text{ (M}^2 \cdot {}^{\circ}\text{C})/B_T$$

 $R_0 \ge 1,379 \cdot 0,6 \text{ (M}^2 \cdot {}^{\circ}\text{C})/B_T; R_0 \ge 0,82 \text{ (M}^2 \cdot {}^{\circ}\text{C})/B_T$
 $k = \frac{1}{0.82} = 1,219 \text{ (M}^2 \cdot {}^{\circ}\text{C})/B_T$

Окна

Остекление витражное двойное в металлических переплетах.

$$R_o^{\text{TP}} = 0.503 \text{ (M}^2 \cdot ^{\circ}\text{C)/BT}$$

 $R_o^{\text{TP}} = 0.51 \text{ (M}^2 \cdot ^{\circ}\text{C)/BT}$
 $k = \frac{1}{0.51} = 1.961 \text{ (M}^2 \cdot ^{\circ}\text{C)/BT}$

Кровля (торговый зал)

Таблица 5- Конструкция кровли

№ слоя	Наименование материала	Толщина слоя δ, м	Коэффициент тепло- проводности λ , Bт/(м·°C)
1	Проф. настил	0,002	50
2	Пенополиуретан (ППУ)	Х	0,029
3	2 слоя рубероида	0,004	0,17

$$R_0^{\text{TP}} = 4,555 \text{ (M}^2 \cdot {}^{\circ}\text{C)/BT}$$

$$\frac{R_0^{\text{TP}}}{r} = \frac{1}{8.7} + \frac{0.002}{0.50} + \frac{x}{0.029} + 2 \cdot \frac{0.004}{0.17} + \frac{1}{23}$$

$$r = 0.93 \cdot 1 = 0.93;$$

Примем толщину утеплителя x = 0,14 м и проверим выполнение условия:

$$R_0^{\text{пр}} \geq R_0^{\text{тр}};$$
 $R_0^{\text{усл}} = \frac{1}{8,7} + \frac{0,002}{0,50} + \frac{0,14}{0,029} + (2 \cdot \frac{0,004}{0,17}) + \frac{1}{23} = 5,03 (\text{M}^2 \cdot ^{\circ}\text{C})/\text{Вт}$
 $R_0^{\text{пр}} = 5,03 \cdot 0,93 = 4,684 (\text{M}^2 \cdot ^{\circ}\text{C})/\text{Вт}$
 $4,684 (\text{M}^2 \cdot ^{\circ}\text{C})/\text{Вт} \geq 4,555 (\text{M}^2 \cdot ^{\circ}\text{C})/\text{Вт} - \text{условие выполнено};$
 $k = \frac{1}{4,684} = 0,213 (\text{M}^2 \cdot ^{\circ}\text{C})/\text{Вт}$

Кровля(офис)

Таблица 6— Конструкция кровли

№ слоя	Наименование материала	Толщина слоя δ, м	Коэффициент тепло- проводности λ , $B_T/(M^{-\circ}C)$
1	Железобетонная панель	0,24	0,76
2	Пенополиуретан (ППУ)	X	0,029
3	2 слоя рубероида	0,004	0,17

$$R_0^{\text{TP}} = 4,555 \text{ (M}^2 \cdot {^{\circ}\text{C}})/\text{BT}$$

$$\frac{R_0^{\text{TP}}}{r} = \frac{1}{8,7} + \frac{0,24}{0,76} + \frac{x}{0,029} + 2 \cdot \frac{0,004}{0,17} + \frac{1}{23}$$
 $r = 0.93 \cdot 1 = 0.93$;

Примем толщину утеплителя x = 0.14 м и проверим выполнение условия:

$$R_0^{\text{TP}} \ge R_0^{\text{TP}};$$

 $R_0^{\text{ycn}} = \frac{1}{8.7} + \frac{0.24}{0.76} + \frac{0.13}{0.029} + (2 \cdot \frac{0.004}{0.17}) + \frac{1}{23} = 5.004 (\text{M}^2 \cdot ^{\circ}\text{C})/\text{BT}$

$$R_0^{\rm np} = 5,004 \cdot 0,93 = 4,653 \, ({\rm M}^2 \cdot {\rm ^{\circ}C})/{\rm BT}$$
 $4,653 \, ({\rm M}^2 \cdot {\rm ^{\circ}C})/{\rm BT} = 4,555 \, ({\rm M}^2 \cdot {\rm ^{\circ}C})/{\rm BT} = {\rm yc}$ ловие выполнено; ${\rm k} = \frac{1}{4.653} = 0,214 \, ({\rm M}^2 \cdot {\rm ^{\circ}C})/{\rm BT}$

Помещение склада

Наружная стена

Таблица 7 – Конструкция наружных стен

№ слоя	Наименование материала	Толщина слоя δ, м	Коэффициент теплопроводности λ , $B_T/(M^{\circ}C)$
1	Проф. настил стальной	0,001	58
2	Пенополиуретан (ППУ)	Х	0,028
3	Проф. настил стальной	0,001	58

$$R_0^{\text{TP}} = 3.048 (\text{M}^2 \cdot {}^{\circ}\text{C})/\text{Bt}$$

 $\frac{R_0^{\text{TP}}}{r} = \frac{1}{8.7} + \frac{0.001}{58} + \frac{x}{0.029} + \frac{0.001}{58} + \frac{1}{23};$
 $r = 0.91 \cdot 0.92 = 0.837$

Примем толщину утеплителя x = 0.10 м и проверим выполнение условия:

$$R_0^{\Pi p} \geq R_0^{\Pi p};$$
 $R_0^{\text{усл}} = \frac{1}{8,7} + \frac{0,001}{58} + \frac{0,10}{0,028} + \frac{0,001}{58} + \frac{1}{23} = 3,729 \text{ (м}^2 \cdot ^{\circ}\text{C)/BT}$
 $R_0^{\Pi p} = 3,729 \cdot 0,837 = 3,121 \text{ (м}^2 \cdot ^{\circ}\text{C)/BT}$
 $3,121 \text{ (м}^2 \cdot ^{\circ}\text{C)/BT} \geq 3,048 \text{ (м}^2 \cdot ^{\circ}\text{C)/BT} - \text{условие соблюдается};$
 $k = \frac{1}{3,121} = 0,32 \text{ (м}^2 \cdot ^{\circ}\text{C)/BT}$

Окна

Установлены окна с двойным остеклением в деревянных переплетах.

$$R_0^{\text{TP}} = 0.503 \, (\text{M}^2 \cdot {}^{\circ}\text{C})/\text{BT}$$

$$R_0^{\text{np}} = 0.51 \text{ (M}^2 \cdot {}^{\circ}\text{C)/BT}$$

 $k = \frac{1}{0.51} = 1.961 \text{ (M}^2 \cdot {}^{\circ}\text{C)/BT}$

Кровля

Таблица 8– Конструкция кровли

№ слоя	Наименование материала	Толщина слоя δ, м	Коэффициент теплопроводности λ , $B_T/(M\cdot {}^{\circ}C)$
1	Проф. настил стальной	0,001	58
2	2 слоя рубероида	0,004	0,17
3	Пенополиуретан (ППУ)	X	0,028
4	Проф. настил стальной	0,001	58

$$R_0^{\text{TP}} = 4,555 \text{ (M}^2 \cdot {^{\circ}\text{C}})/\text{BT}$$

$$\frac{R_0^{\text{TP}}}{r} = \frac{1}{8,7} + \frac{0,001}{58} + 2 \cdot \frac{0,004}{0,17} + \frac{x}{0,028} + \frac{0,001}{58} + \frac{1}{23}$$
 $r = 0,93 \cdot 1 = 0,93$;

Примем толщину утеплителя x = 0.14 м и проверим выполнение условия:

$$R_0^{\mathrm{пp}} \geq R_0^{\mathrm{тp}};$$
 $R_0^{\mathrm{ycn}} = \frac{1}{8.7} + \frac{0,001}{58} + \frac{0,14}{0,028} + 2 \cdot \frac{0,004}{0,17} + \frac{0,001}{58} + \frac{1}{23} = 5,205 \, (\mathrm{m}^2 \cdot ^{\circ}\mathrm{C})/\mathrm{BT}$
 $R_0^{\mathrm{np}} = 5,205 \cdot 0,93 = 4,841 \, (\mathrm{m}^2 \cdot ^{\circ}\mathrm{C})/\mathrm{BT}$
 $4,841 \, (\mathrm{m}^2 \cdot ^{\circ}\mathrm{C})/\mathrm{BT} \geq 4,555 \, (\mathrm{m}^2 \cdot ^{\circ}\mathrm{C})/\mathrm{BT} - \mathrm{yc}$ ловие выполнено;
 $k = \frac{1}{4.841} = 0,214 \, (\mathrm{m}^2 \cdot ^{\circ}\mathrm{C})/\mathrm{BT}$

Ворота(двери) утепленные

$$R_0^{\text{TP}} = 0.503 \cdot 0.6 = 0.301 (\text{M}^2 \cdot {}^{\circ}\text{C})/\text{Bt}$$

Приведенное сопротивление наружной двери должно быть не менее чем в 0,6 раз выше требуемого

$$R_0^H = ((18 - (-30)/(4 \cdot 8,7) = 1,379) (M^2 \cdot {}^{\circ}C)/B_T$$

$$R_0 \ge 1,379 \cdot 0,6 (M^2 \cdot {}^{\circ}C)/B_T; R_0 \ge 0,82 (M^2 \cdot {}^{\circ}C)/B_T$$

 $k = \frac{1}{0.82} = 1,219 (M^2 \cdot {}^{\circ}C)/B_T$

Теплотехнические характеристики ограждающих конструкций торгового зала, офиса и склада представлены в таблицах 9, 10 соответственно.

Таблица 9 — Теплотехнические характеристики ограждающих конструкций торгового зала/офиса

Ограждающая кон-	$R_0^{\mathrm{пр}}$, м $^2\cdot ^{\circ}$ С/Вт	Коэффициент теплопе-
струкция		редачи,
		K, $B_T/M^2 \cdot {}^{\circ}C$
Наружная стена	3,246	0,308
Кровля (торговый зал)	4,684	0,213
Кровля (офис)	4,653	0,214
Окно	0,51	1,961
Ворота	0,82	1,219

Таблица 10 — Теплотехнические характеристики ограждающих конструкций складского помещения

Ограждающая кон-	$R_0^{\pi p}$, м ² · °C/Вт	Коэффициент теплопе-
струкция		редачи,
		K , B т/м $^2 \cdot {}^{\circ}C$
Наружная стена	3,121	0,32
Кровля	4,481	0,214
Окно	0,51	1,961
Ворота	0,82	1,219

2.2 Расчет теплопотерь

Теплопотери через неутепленные полы, расположенные на грунте

Расчет выполнен согласно методике, приведенной в [4].

Торговый зал

Площадь пола разбивается на 4 зоны шириной по два метра от внутренней поверхности стен. Схема разбивки полов представлена в Приложении А

Потери теплоты каждой зоны ограждающей конструкции вычисляются по формуле:

$$Q_i = k_i \cdot F_i \cdot (t_{\scriptscriptstyle B} - t_{\scriptscriptstyle H}), B_T \tag{2.2.1}$$

Подставив в 2.2.1 соответствующие значения, найдем теплопотери I зоны:

$$Q_{\rm I} = \frac{1}{2,1} \cdot 176 \cdot 46 = 3855 B_{\rm T}$$

Аналогично по формуле 2.2.1 рассчитаем теплопотери II, III зоны:

$$Q_{II} = \frac{1}{4.3} \cdot 104 \cdot 46 = 1113B_{T}$$

$$Q_{III} = \frac{1}{8.6} \cdot 168 \cdot 46 = 899BT$$

Общие теплопотери через полы, лежащие на грунте определяются по формуле:

$$Q = Q_i, B_T (2.2.2)$$

$$Q = 3855 + 1113 + 899 = 5867B_T$$

Офис

Подставив в формулу 2.2.1 соответствующие значения, найдем теплопотери I зоны:

$$Q_{\rm I} = \frac{1}{2.1} \cdot 127 \cdot 46 = 2782 \text{BT}$$

Аналогично рассчитаем теплопотери II, III, IV зоны

$$Q_{II} = \frac{1}{4.3} \cdot 79 \cdot 46 = 845BT$$

$$Q_{III} = \frac{1}{8.6} \cdot 53.7 \cdot 46 = 273BT$$

Общие теплопотери через полы, лежащие на грунте определяются по формуле 2.2.2.

$$Q = 2782 + 845 + 273 = 3899BT$$

Склад

Подставив в формулу 2.2.1 соответствующие значения, найдем теплопотери I зоны:

$$Q_{\rm I} = \frac{1}{2.1} \cdot 72.8 \cdot 46 = 1766 \text{BT}$$

Аналогично рассчитаем теплопотери II зоны

$$Q_{II} = \frac{1}{4.3} \cdot 1.6 \cdot 46 = 17B_{T}$$

Общие теплопотери через полы, лежащие на грунте определяются по формуле 2.2.2.

$$Q = 1766 + 17 = 1783 B_T$$

Расход тепла на нагревание инфильтрационного воздуха через окна учитывается только в тех помещение где нет приточной механической вентиляции

2.3 Теплопотери через ограждающие конструкции помещений

Расчет тепловых потерь выполнен в соответствии с методикой, описанной в [4]

Результаты расчета приведены в таблице Б.1 Приложения Б

3 ОТОПЛЕНИЕ

3.1 Конструирование системы отопления

Система отопления— зависимая, горизонтальная, тупиковая, двухтрубная:

Трубы стальные водогазопроводные по ГОСТ [5]

Приборы принимаем к установке в помещении торгового зала и склада регистры из гладких алюминиевых труб $d_y=108$ мм, в офисе конвекторы КНС-20.

Источником теплоснабжения является ТЭЦ. Теплоноситель вода с параметрами 150-70С. Схема подключения, зависимая с насосом на перемычке. Параметры в системе отопления 95-70 С.

Гидравлический расчет систем отопления выполнен по удельным потерям давления на трение.

Регулировка температуры отопительных приборов производится при помощи термостатических головок STOUT M-30 установленных на подводках.

Балансировка систем производится балансировочными клапанами фирмы BROEN BALLOREX Venturi [6]

В наивысших точках системы, и на концевых приборах запроектированы автоматические воздухоотводчики Valtec 1 hp [7].

Результаты гидравлического расчета приведены в таблице 11, 12,13. Расчетные схемы представлены в Приложении В.

3.2 Гидравлический расчет системы отопления

Гидравлический расчет системы отопления выполнен по методу, указанному в [8]

Гидравлический расчет системы отопления торгового зала представлен в таблице 11.

Таблица 11- Гидравлический расчет с.о торгового зала

Участок	Qуч.,	Gуч.,	lуч.,	Rcp.	d,	v,	Rф.,	Rф∙л,	КСИ	Z,	Rф∙л+Z,
3 Tactor	кВт	кг/ч	M	Па/м	MM	м/с	Па/м	Па	KCH	Па	Па
					Ветка	А, ГЦК					
					ΔPp=	9850 Па	l .				
1-2	18,50	2309,7	21,1		50	0,300	26,0	548,6	8	352,0	900,6
2-3	16,65	2078,7	3,0		40	0,450	80,0	240,0	1	99,0	339,0
3-4	14,80	1847,8	3,0		32	0,510	120,0	360,0	1	127,0	487,0
4-5	12,95	1616,8	3,0		32	0,453	95,0	285,0	1	101,0	386,0
5-6	11,10	1385,8	3,0		32	0,386	70,0	210,0	1	77,5	287,5
6-7	9,25	1154,8	3,0		32	0,324	50,0	150,0	1	51,6	201,6
7-8	7,40	923,9	3,0		32	0,259	34,0	102,0	1	31,8	133,8
8-9	5,55	692,9	3,0		32	0,195	19,0	57,0	1	18,6	75,6
9-10	3,70	461,9	3,0		25	0,229	37,0	111,0	1	25,9	136,9
10-a	1,85	231,0	3,5		25	0,110	10,0	35,0	2	11,8	46,8
а-б	1,85	231,0	1,3	58,5	25	0,110	10,0	13,0	6	35,5	48,5
б-10'	1,85	231,0	3,5		25	0,110	10,0	35,0	2	11,8	46,8
10'-9'	3,70	461,9	3,0		25	0,229	37,0	111,0	1	25,9	136,9
9'-8'	5,55	692,9	3,0		32	0,195	19,0	57,0	1	18,6	75,6
8'-7'	7,40	923,9	3,0		32	0,259	34,0	102,0	1	31,8	133,8
7'-6'	9,25	1154,8	3,0		32	0,324	50,0	150,0	1	51,6	201,6
6'-5'	11,10	1385,8	3,0		32	0,386	70,0	210,0	1	77,5	287,5
5'-4'	12,95	1616,8	3,0		32	0,453	95,0	285,0	1	101,0	386,0
4'-3'	14,80	1847,8	3,0		32	0,510	120,0	360,0	1	127,0	487,0
3'-2'	16,65	2078,7	3,0		40	0,450	80,0	240,0	1	99,0	339,0
2'-1'	18,50	2309,7	21,1		50	0,300	26,0	548,6	8	352,0	900,6
		Итого	82,5							Итого	6038
					Ответ	гвления					
1-1'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
2-2'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
3-3'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
4-4'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
5-5'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
6-6'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
7-7'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
8-8'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
9-9'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80
10-10'	1,85	231,0	1,3		25	0,113	10,00	13,00	6,00	38,80	51,80

Продолжение таблицы 11

				Be	гка Б		<u>+</u>	7 1	11110 1410	,
				ΔPp=:	5830 Па					
1-11	18,50	2309,7	1,0	32	0,645	190,0	190,0	1	204,0	394,0
11-12	16,65	2078,7	3,0	32	0,573	150,0	450,0	1	159,0	609,0
12-13	14,80	1847,8	3,0	32	0,510	120,0	360,0	1	127,0	487,0
13-14	12,95	1616,8	3,0	32	0,453	95,0	285,0	1	99,0	384,0
14-15	11,10	1385,8	3,0	32	0,386	70,0	210,0	1	72,5	282,5
15-16	9,25	1154,8	3,0	32	0,324	50,0	150,0	1	51,6	201,6
16-17	7,40	923,9	3,0	32	0,259	32,0	96,0	1	33,0	129,0
17-18	5,55	692,9	3,0	32	0,195	19,0	57,0	1	18,6	75,6
18-19	3,70	461,9	3,0	32	0,110	9,0	27,0	1	5,9	32,9
19-в	1,85	231,0	3,5	25	0,113	10,0	35,0	2	12,9	47,9
В-Г	1,85	231,0	1,3	25	0,113	10,0	13,0	6	38,8	51,8
г-19'	1,85	231,0	3,5	25	0,113	10,0	35,0	2	12,9	47,9
19'-18'	3,70	461,9	3,0	32	0,110	9,0	27,0	1	5,9	32,9
18'-17'	5,55	692,9	3,0	32	0,195	19,0	57,0	1	18,6	75,6
17'-16'	7,40	923,9	3,0	32	0,259	32,0	96,0	1	33,0	129,0
16'-15'	9,25	1154,8	3,0	32	0,324	50,0	150,0	1	51,6	201,6
15'-14'	11,10	1385,8	3,0	32	0,386	70,0	210,0	1	72,5	282,5
14'-13'	12,95	1616,8	3,0	32	0,453	95,0	285,0	1	99,0	384,0
13'-12'	14,80	1847,8	3,0	32	0,510	120,0	360,0	1	127,0	487,0
12'-11'	16,65	2078,7	3,0	32	0,573	150,0	450,0	1	159,0	609,0
11'-1'	18,50	2309,7	1,0	32	0,645	190,0	190,0	1	204,0	394,0
		Итого	58,3						Итого	5339

Гидравлический расчет системы отопления офиса представлен в таблице 12.

Таблица 12- Гидравлический расчет с.о офиса

Участок	Q _{уч.,}	$G_{y_{^{\mathrm{U}}}}$	l_{yq}	R _{cp.}	d,	v,	R _φ ,	R _φ ·л,	КСИ	Z,	R_{ϕ} ·л+ Z ,	
y 4actor	кВт	кг/ч	M	Па/м	MM	M/C	Па/м	Па	KCII	Па	Па	
	Ветка А, ГЦК											
	ΔP_p =13368Πa											
0-1	22,6	2821,6	28,2		50	0,495	37,0	1043,4	2	134,0	1177,4	
1-2	14,20	1772,8	3,4		32	0,495	118,0	401,2	5	550,0	951,2	
2-3	8,10	1011,3	3,7		25	0,481	170,0	629,0	4	95,0	724,0	
3-4	7,50	936,4	3,7		25	0,459	140,0	518,0	1	103,0	621,0	
4-5	6,90	861,5	3,5		25	0,422	120,0	420,0	1	87,0	507,0	
5-6	6,30	786,5	3,5		25	0,386	100,0	350,0	1	72,5	422,5	
6-7	5,50	686,7	3,7		25	0,339	77,0	284,9	2	113,0	397,9	
7-8	4,70	586,8	3,9		25	0,287	62,0	241,8	1	80,1	321,9	
8-9	3,20	399,5	3,7		25	0,196	28,0	103,6	1	18,9	122,5	
9-10	2,40	299,6	4,9		20	0,236	55,0	269,5	2	55,3	324,8	
10-11	1,60	199,8	3,0		15	0,280	120,0	360,0	1	38,3	398,3	
11-a	0,80	99,9	1,2		15	0,145	33,0	39,6	0	0,0	39,6	
а-б	0,80	99,9	0,9		15	0,145	33,0	29,0	6	61,7	90,7	

								1100		нис таол	
б-11'	0,80	99,9	1,2		15	0,145	33,0	39,6	0	0,0	39,6
11'-10'	1,60	199,8	3,0		15	0,280	120,0	360,0	1	38,3	398,3
10'-9'	2,40	299,6	4,9		20	0,236	55,0	269,5	2	55,3	324,8
9'-8'	3,20	399,5	3,7		25	0,196	28,0	103,6	1	18,9	122,5
8'-7'	4,70	586,8	3,9		25	0,287	62,0	241,8	1	80,1	321,9
7'-6'	5,50	686,7	3,7		25	0,339	77,0	284,9	2	113,0	397,9
6'-5'	6,30	786,5	3,5		25	0,386	100,0	350,0	1	72,5	422,5
5'-4'	6,90	861,5	3,5		25	0,422	120,0	420,0	1	87,0	507,0
4'-3'	7,50	936,4	3,7		25	0,459	140,0	518,0	1	103,0	621,0
3'-2'	8,10	1011,3	3,7		25	0,481	170,0	629,0	4	95,0	724,0
2'-1'	14,20	1772,8	3,4		32	0,495	118,0	401,2	5	550,0	951,2
1'-0'	22,6	2821,6	28,2		50	0,495	37,0	1043,4	2	134,0	1177,4
		Всего:	133,6							Всего:	12107
					Ответ	вления					
3-3'	0,60	74,9	0,88		15	0,111	20,0	17,6	10	69,0	86,6
4-4'	0,60	74,9	0,88		15	0,111	20,0	17,6	10	69,0	86,6
5-5'	0,60	74,9	0,88		15	0,111	20,0	17,6	10	69,0	86,6
6-6'	0,80	99,9	0,88		15	0,145	33,0	29,0	10	167,0	196,0
7-7'	0,80	99,9	0,88		15	0,145	33,0	29,0	10	167,0	196,0
8-8'	1,50	187,3	0,88		20	0,151	24,0	21,1	10	176,0	197,1
9-9'	0,80	99,9	0,88		15	0,145	33,0	29,0	10	167,0	196,0
10-10'	0,80	99,9	0,88		15	0,145	33,0	29,0	10	167,0	196,0
11-11'	0,80	99,9	0,88		15	0,145	33,0	29,0	10	167,0	196,0
11 11	0,00	,,,,	0,00			ка Б	22,0	2>,0	10	107,0	170,0
						ка В -048Па					
2-12	6,30	786,5	1,0		25	0,385	100,0	100,0	4	82,2	182,2
12-13	5,50	686,7	3,0		25	0,339	77,0	231,0	1	127,0	358,0
13-14	4,70	586,8	6,2		25	0,287	62,0	384,4	9	47,0	431,4
14-15	3,20	399,5	1,5		25	0,196	28,0	42,0	1	21,6	63,6
15-16	2,40	299,6	2,7		20	0,236	55,0	148,5	1	61,1	209,6
16-17	1,60	199,8	2,4		15	0,280	120,0	288,0	2	50,0	338,0
17-в	0,80	99,9	3,0		15	0,145	33,0	99,0	2	0,0	99,0
В-Г	0,80	99,9	0,88	58,5	15	0,145	33,0	29,0	4	129,0	158,0
г-17'	0,80	99,9	3,0	,-	15	0,145	33,0	99,0	2	0,0	99,0
17'-16'	1,60	199,8	2,4		15	0,280	120,0	288,0	2	50,0	338,0
16'-15'	2,40	299,6	2,7		20	0,236	55,0	148,5	1	61,1	209,6
15'-14'	3,20	399,5	1,5		25	0,196	28,0	42,0	1	21,6	63,6
14'-13'	4,70	586,8	6,2		25	0,287	62,0	384,4	9	47,0	431,4
13'-12'	5,50	686,7	3,0		25	0,339	77,0	231,0	1	127,0	358,0
12'-2'	6,30	786,5	1,0		25	0,385	100,0	100,0	4	82,0	182,0
_	-,	Итого	40,48			-,555	,5	,-	•	Итого	3521
			,		Ответ	и вления	l	<u> </u>	<u>l</u>	1 01 0	
12-12'	0,80	99,9	0,88		15	0,145	33,0	29,04	10	167,0	196,0
13-13'	0,80	99,9	0,88		15	0,145	33,0	29,04	10	167,0	196,0
14-14'	1,50	187,3	0,88		20	0,151	24,0	21,12	10	176,0	197,1
15-15'	0,80	99,9	0,88		15	0,131	33,0	29,04	10	167,0	196,0
13-13	0,00	77,7	0,00		1.0	0,143	22,0	∠J,U 4	10	107,0	170,0

18-19 7,60 948,8 3,7 25 0,461 145,0 536,5 1 103,0 639,1 19-20 6,80 849,0 5,0 25 0,403 120,0 600,0 1 80,1 680, 20-21 5,80 724,1 4,6 25 0,359 87,0 400,2 2 127,0 527, 21-22 4,80 599,3 4,3 25 0,294 60,0 255,0 1 42,5 297, 22-23 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325, 23-24 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88, 24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50, 25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172, 26-д 0,80 99,9 4,3 15 0,142 <t< th=""><th></th><th></th><th></th><th></th><th>,</th><th></th><th>•</th><th></th><th></th><th>•</th><th>ние табл</th><th>ицы 12</th></t<>					,		•			•	ние табл	ицы 12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16-16'	0,80	99,9	0,88		15	0,145	33,0	29,04	10	167,0	196,0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17-17'	0,80	99,9	0,88		15	0,145	33,0	29,04	10	167,0	196,0
1-18 8,40 1048,7 8,7 58,50 32 0,289 42,0 365,4 9 338,0 703,1 18-19 7,60 948,8 3,7 25 0,461 145,0 536,5 1 103,0 639,1 19-20 6,80 849,0 5,0 25 0,403 120,0 600,0 1 80,1 680, 20-21 5,80 724,1 4,6 25 0,359 87,0 400,2 2 127,0 527,2 21-22 4,80 599,3 4,3 25 0,294 60,0 255,0 1 42,5 297, 22-23 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325, 23-24 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88, 24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>Вет</td> <td>ка В</td> <td></td> <td></td> <td></td> <td></td> <td></td>						Вет	ка В					
18-19 7,60 948,8 3,7 25 0,461 145,0 536,5 1 103,0 639,1 19-20 6,80 849,0 5,0 25 0,403 120,0 600,0 1 80,1 680, 20-21 5,80 724,1 4,6 25 0,359 87,0 400,2 2 127,0 527, 21-22 4,80 599,3 4,3 25 0,294 60,0 255,0 1 42,5 297, 22-23 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325, 23-24 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88, 24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50, 25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172, 26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157, 26'-25' 1,60 199,8 6,2 20 0,158 26,0 1						$\Delta P_p = 9$	258Пa					
19-20 6,80 849,0 5,0 25 0,403 120,0 600,0 1 80,1 680, 20-21 5,80 724,1 4,6 25 0,359 87,0 400,2 2 127,0 527,2 21-22 4,80 599,3 4,3 25 0,294 60,0 255,0 1 42,5 297,2 22-23 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,2 23-24 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88, 24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50, 25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172, 26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157, 26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172, 26'-25' 1,60 199,8 6,2 20 0,142 32,0 <td< td=""><td>1-18</td><td>8,40</td><td>1048,7</td><td>8,7</td><td>58,50</td><td>32</td><td>0,289</td><td>42,0</td><td>365,4</td><td>9</td><td>338,0</td><td>703,4</td></td<>	1-18	8,40	1048,7	8,7	58,50	32	0,289	42,0	365,4	9	338,0	703,4
20-21 5,80 724,1 4,6 25 0,359 87,0 400,2 2 127,0 527,0 21-22 4,80 599,3 4,3 25 0,294 60,0 255,0 1 42,5 297,0 22-23 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,0 23-24 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,0 25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157, д-е-26' 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157, 26'-25' 1,60 199,8 6,2 20 0,158	18-19	7,60	948,8	3,7		25	0,461	145,0	536,5	1	103,0	639,5
21-22 4,80 599,3 4,3 25 0,294 60,0 255,0 1 42,5 297,0 22-23 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,0 23-24 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,0 25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,0 26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 д-е 0,80 99,9 4,3 15 0,142 32,0 28,2 7 65,3 93,0 е-26' 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 26'-25' 1,60 199,8 6,2 20 0,158 <td< td=""><td>19-20</td><td>6,80</td><td>849,0</td><td>5,0</td><td></td><td>25</td><td>0,403</td><td>120,0</td><td>600,0</td><td>1</td><td>80,1</td><td>680,1</td></td<>	19-20	6,80	849,0	5,0		25	0,403	120,0	600,0	1	80,1	680,1
22-23 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,2 23-24 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88, 24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50, 25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157, д-е 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157, 26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50, 24'-23' 3,20 399,5 2,5 25 0,146 <td< td=""><td>20-21</td><td>5,80</td><td>724,1</td><td>4,6</td><td></td><td>25</td><td>0,359</td><td>87,0</td><td>400,2</td><td>2</td><td>127,0</td><td>527,2</td></td<>	20-21	5,80	724,1	4,6		25	0,359	87,0	400,2	2	127,0	527,2
23-24 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88, 24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50, 25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 д-е 0,80 99,9 4,3 15 0,142 32,0 28,2 7 65,3 93,0 e-26' 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,0 25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,0 24'-23' 3,20 399,5 2,5 25 0,146 16,0 40,0 1 10,3 50,0 23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,	21-22	4,80	599,3	4,3		25	0,294	60,0	255,0	1	42,5	297,5
24-25 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,2 25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,7 д-е 0,80 99,9 0,9 15 0,142 32,0 28,2 7 65,3 93, е-26' 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157, 26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,2 24'-23' 3,20 399,5 2,5 25 0,146 16,0 40,0 1 18,6 88,0 23'-22' 4,00 499,4 4,1 25 0,248 <t< td=""><td>22-23</td><td>4,00</td><td>499,4</td><td>4,1</td><td></td><td>25</td><td>0,248</td><td>43,0</td><td>176,3</td><td>5</td><td>149,0</td><td>325,3</td></t<>	22-23	4,00	499,4	4,1		25	0,248	43,0	176,3	5	149,0	325,3
25-26 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,9 д-е 0,80 99,9 0,9 15 0,142 32,0 28,2 7 65,3 93,9 e-26' 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,0 24'-23' 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,0	23-24	3,20	399,5	2,5		25	0,196	28,0	70,0	1	18,6	88,6
26-д 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 д-е 0,80 99,9 0,9 15 0,142 32,0 28,2 7 65,3 93,0 е-26' 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,0 25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,0 24'-23' 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,0	24-25	2,40	299,6	2,5		25	0,146	16,0	40,0	1	10,3	50,3
д-е 0,80 99,9 0,9 15 0,142 32,0 28,2 7 65,3 93,0 e-26' 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,0 25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,0 24'-23' 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,0	25-26	1,60	199,8	6,2		20	0,158	26,0	161,2	1	11,7	172,9
e-26' 0,80 99,9 4,3 15 0,142 32,0 137,6 2 20,1 157,0 26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,0 25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,0 24'-23' 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,0	26-д	0,80	99,9	4,3		15	0,142	32,0	137,6	2	20,1	157,7
26'-25' 1,60 199,8 6,2 20 0,158 26,0 161,2 1 11,7 172,9 25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,2 24'-23' 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,3	д-е	0,80	99,9	0,9		15	0,142	32,0	28,2	7	65,3	93,5
25'-24' 2,40 299,6 2,5 25 0,146 16,0 40,0 1 10,3 50,0 24'-23' 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,0	e-26'	0,80	99,9	4,3		15	0,142	32,0	137,6	2	20,1	157,7
24'-23' 3,20 399,5 2,5 25 0,196 28,0 70,0 1 18,6 88,0 23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,0	26'-25'	1,60	199,8	6,2		20	0,158	26,0	161,2	1	11,7	172,9
23'-22' 4,00 499,4 4,1 25 0,248 43,0 176,3 5 149,0 325,	25'-24'	2,40	299,6	2,5		25	0,146	16,0	40,0	1	10,3	50,3
	24'-23'	3,20	399,5	2,5		25	0,196	28,0	70,0	1	18,6	88,6
222 212 4 20 500 2 4 2 25 0 204 500 255 0 1 42 5 207	23'-22'	4,00	499,4	4,1		25	0,248	43,0	176,3	5	149,0	325,3
22 - 21 4,80 599,3 4,3 25 0,294 60,0 255,0 1 42,5 297,3	22'-21'	4,80	599,3	4,3		25	0,294	60,0	255,0	1	42,5	297,5
21'-20' 5,80 724,1 4,6 25 0,359 87,0 400,2 2 127,0 527,5	21'-20'	5,80	724,1	4,6		25	0,359	87,0	400,2	2	127,0	527,2
20'-19' 6,80 849,0 5,0 25 0,403 120,0 600,0 1 80,1 680,	20'-19'	6,80	849,0	5,0		25	0,403	120,0	600,0	1	80,1	680,1
19'-18' 7,60 948,8 3,7 25 0,461 145,0 536,5 1 103,0 639,	19'-18'	7,60	948,8	3,7		25	0,461	145,0	536,5	1	103,0	639,5
18'-1' 8,40 1048,7 8,7 32 0,289 42,0 365,4 9 338,0 703,4	18'-1'	8,40	1048,7	8,7		32	0,289	42,0	365,4	9	338,0	703,4
Итого 92,5 Итого 7278,			Итого	92,5							Итого	7278,5
Ответвления						Ответ	вления					
18-18' 0,80 99,9 0,88 15 0,142 32 28,2 10 100,0 128,	18-18'	0,80	99,9	0,88		15	0,142	32	28,2	10	100,0	128,2
19-19' 0,80 99,9 0,88 15 0,143 33 29,0 10 100,0 129,	19-19'	0,80	99,9	0,88		15	0,143	33	29,0	10	100,0	129,0
20-20' 1,00 124,8 0,88 15 0,181 50 44,0 10 167,0 211,	20-20'	1,00	124,8	0,88		15	0,181	50	44,0	10	167,0	211,0
21-21' 1,00 124,8 0,88 15 0,181 50 44,0 10 167,0 211,	21-21'	1,00	124,8	0,88		15	0,181	50	44,0	10	167,0	211,0
22-22' 0,80 99,9 0,88 15 0,143 33 29,0 10 100,0 129,	22-22'	0,80	99,9	0,88		15	0,143	33	29,0	10	100,0	129,0
23-23' 0,80 99,9 0,88 15 0,144 34 29,9 10 100,0 129,	23-23'	0,80	99,9	0,88		15	0,144	34	29,9	10	100,0	129,9
24-24' 0,80 99,9 0,88 15 0,145 35 30,8 10 100,0 130,	24-24'	0,80	99,9	0,88		15	0,145	35	30,8	10	100,0	130,8
25-25' 0,80 99,9 0,88 15 0,146 36 31,7 10 100,0 131,	25-25'	0,80	99,9	0,88		15	0,146	36	31,7	10	100,0	131,7
26-26' 0,80 99,9 0,88 15 0,147 37 32,6 10 100,0 132,	26-26'	0,80	99,9	0,88		15	0,147	37	32,6	10	100,0	132,6

Гидравлический расчет системы отопления склада представлен в таблице 13.

Таблица 13- Гидравлический расчет системы отопления склада

Таолиц	a 13-11	идравли	ческии	і расче	т сист	емы от	гоплен	ия скла	да		
	Ветка А,ГЦК										
	$\Delta P_p = 5330 \Pi a$										
1-2	11,1	1385,8	6,0		32	0,386	70,00	420,00	3,5	254	674,0
2-3	7,40	923,9	0,7		32	0,259	32,00	22,40	1	33,0	55,4
3-4	5,55	692,9	3,7		32	0,195	19,00	70,30	1	18,6	88,9
4-5	3,70	461,9	3,7		32	0,110	9,00	33,30	1	5,9	39,2
5-a	1,85	231,0	11,9		25	0,113	10,00	119,00	6	38,8	157,8
а-б	1,85	231,0	1,3		25	0,113	10,00	13,00	6	38,8	51,8
б-5'	1,85	231,0	11,9		25	0,113	10,00	119,00	6	38,8	157,8
5'-4'	3,70	461,9	3,7		32	0,110	9,00	33,30	1	5,9	39,2
4'-3'	5,55	692,9	3,7		32	0,195	19,00	70,30	1	18,6	88,9
3'-2'	7,40	923,9	0,7		32	0,259	32,00	22,40	1	33,0	55,4
2'-1'	11,10	1385,8	6,0		32	0,386	70,00	420,00	4	254	674,0
		Итого	53,3							Итого	2082
					Ответ	вления					
2-2'	1,85	231,0	1,3		25	0,113	10,0	13,0	6	38,8	51,8
3-3'	1,85	231,0	1,3		25	0,113	10,0	13,0	6	38,8	51,8
4-4'	1,85	231,0	1,3		25	0,113	10,0	13,0	6	38,8	51,8
5-5'	1,85	231,0	1,3		25	0,113	10,0	13,0	6	38,8	51,8
6-6'	1,85	231,0	1,3		25	0,113	10,0	13,0	6	38,8	51,8
					Вет	ка Б					
					$\Delta P_p = 1$	870 Па					
2-6	3,70	461,9	1,1		32	0,110	9,0	9,9	2	11,8	21,7
6-в	1,80	224,7	7,5		25	0,113	10,0	75,0	2	12,9	87,9
В-Г	1,80	224,7	1,3		25	0,113	10,0	13,0	6	38,8	51,8
г-6'	1,80	224,7	7,5		25	0,113	10,0	75,0	2	12,9	87,9
6'-2'	3,70	461,9	1,3		32	0,110	9,0	11,7	2	11,8	23,5
		Итого	18,7							Итого	272,8

Местные сопротивления всех систем отопления вынесены в таблицу 14.

Таблица 14- Местные сопротивления систем отопления

	vice in bic comportablication of chercia of		
Номер участ-	Примечание	Номер	Примечание
ка	приме шине	участка	приме шие
	Торговй зал		
	Ветка А		
1-2	тройн. на прох., ботвд.,арм.	б-10'	тройн. на прох., отвд
2-3	тройн. на прох.	10'-9'	тройн. на прох.
3-4	тройн. на прох.	9'-8'	тройн. на прох.
4-5	тройн. на прох.	8'-7'	тройн. на прох.
5-6	тройн. на прох.	7'-6'	тройн. на прох.
6-7	тройн. на прох.	6'-5'	тройн. на прох.
7-8	тройн. на прох.	5'-4'	тройн. на прох.

			должение таолицы 14
8-9	тройн. на прох.	4'-3'	тройн. на прох.
9-10	тройн. на прох.	3'-2'	тройн. на прох.
10-a	тройн. на прох, отвд.	2'-1'	тройн. на прох., ботвд.,арм.
а-б	регистр, арм., 2×отв		_
	Ветка Б		
1-11	тройн. на прох.	г-19'	2×отвд.
11-12	тройн. на прох.	19'-18'	тройн. на прох.
12-13	тройн. на прох.	18'-17'	тройн. на прох.
13-14	тройн. на прох.	17'-16'	тройн. на прох.
14-15	тройн. на прох.	16'-15'	тройн. на прох.
15-16	тройн. на прох.	15'-14'	тройн. на прох.
16-17	тройн. на прох.	14'-13'	тройн. на прох.
17-18	тройн. на прох.	13'-12'	тройн. на прох.
18-19	тройн. на прох.	12'-11'	тройн. на прох.
19-в	2×отвд	11'-1'	тройн. на прох.
В-Г	регистр, арм., 2×отв		
	Ответвления		
1-1'	регистр, арм., 2×отв	11-11'	регистр, арм., 2×отв
2-2'	регистр, арм., 2×отв	12-12'	регистр, арм., 2×отв
3-3'	регистр, арм., 2×отв	13-13'	регистр, арм., 2×отв
4-4'	регистр, арм., 2×отв	14-14'	регистр, арм., 2×отв
5-5'	регистр, арм., 2×отв	15-15'	регистр, арм., 2×отв
6-6'	регистр, арм., 2×отв	16-16'	регистр, арм., 2×отв
7-7'	регистр, арм., 2×отв	17-17'	регистр, арм., 2×отв
8-8'	регистр, арм., 2×отв	18-18'	регистр, арм., 2×отв
9-9'	регистр, арм., 2×отв	19-19'	регистр, арм., 2×отв
10-10'	регистр, арм., 2×отв		
	Офис		
	Ветка А	Ţ	
0-1	2×отвд.	б-11'	-
1-2	2×отв., тройн. на раздел., тройн. на прох.	11'-10'	тройн. на прох.
2-3	арм., тройн. на прох.	10'-9'	тройн. на прох, отвд
3-4	тройн. на прох.	9'-8'	тройн. на прох.
4-5	тройн. на прох.	8'-7'	тройн. на прох.
5-6	тройн. на прох.	7'-6'	тройн. на прох., отвд.
6-7	тройн. на прох., отвд.	6'-5'	тройн. на прох.
7-8	тройн. на прох.	5'-4'	тройн. на прох.
8-9	тройн. на прох.	4'-3'	тройн. на прох.
9-10	тройн. на прох., отвд.	3'-2'	арм., тройн. на прох.
10-11	тройн. на прох.	2'-1'	2×отвд., тройн. на раз- дел., тройн. на прох
11-a	-	1'-0'	2×отвд.
а-б	конвектор, 4×отвд.		

Г	Ъ. П	11pc	должение таблицы 14
2.12	Ветка Б	153	
2-12	арм., тройн. на прох.×2	г-17'	2×отвд
12-13	тройн. на прох	17'-16'	тройн. на прох, отвд.
13-14	тройн. на прох ,4×отв., арм.×2	16'-15'	тройн. на прох
14-15	тройн. на прох	15'-14'	тройн. на прох
15-16	тройн. на прох	14'-13'	тройн. на прох, 4×отвд., арм.×2
16-17	тройн. на прох, отвд.	13'-12'	тройн. на прох
17-в	2×отвд.	12'-2'	арм., тройн. на прох ×2
В-Г	конвектор, 4×отвд		
	Ветка В		
1-18	5×отвд., арм., тройн. на прох	e-26'	отвд., тройн. на прох
18-19	тройн. на прох	26'-25'	тройн. на прох
19-20	тройн. на прох	25'-24'	тройн. на прох
20-21	тройн. на прох, отвд.	24'-23'	тройн. на прох
21-22	тройн. на прох	23'-22'	4×отвд., тройн. на прох
22-23	4×отвд., тройн. на прох	22'-21'	тройн. на прох
23-24	тройн. на прох	21'-20'	тройн. на прох, отвд.
24-25	тройн. на прох	20'-19'	тройн. на прох
25-26	тройн. на прох	19'-18'	тройн. на прох
23-20	троин. на прох	17 -10	5×отвд., арм., тройн. на
26-д	отвд., тройн. на прох.	18'-1'	прох
д-е	конвектор, 4×отвд		
	Ответвления		,
3-3'	конвектор, тройн. на пов-т., терм. гол.	12-12'	конвектор, тройн. на пов-т.,терм. гол.
4-4'	конвектор, тройн. на пов-т., терм. гол.	13-13'	конвектор, тройн. на пов-т.,терм. гол.
5-5'	конвектор, тройн. на пов-т.,терм. гол.	14-14'	конвектор, тройн. на пов-т.,терм. гол.
6-6'	конвектор, тройн. на пов-т.,терм. гол.	15-15'	конвектор, тройн. на пов-т.,терм. гол.
7-7'	конвектор, тройн. на пов-т., терм. гол.	16-16'	конвектор, тройн. на пов-т.,терм. гол.
8-8'	конвектор, тройн. на пов-т.,терм. гол.	17-17'	конвектор, тройн. на пов-т.,терм. гол.
0-0	конвектор, тройн. на пов-т.,терм. гол.		конвектор, тройн. на
9-9'	конвектор, гроин. на пов-т.,терм. гол.	10,101	1 / 1
J-7	MONTH TO THOUSE WE WORK TO THOUSE TO THE	18-18'	пов-т.,терм. гол.
10.10'	конвектор, тройн. на пов-т., терм. гол.	10.10	конвектор, тройн. на
10-10'	V	19-19'	пов-т.,терм. гол.
11 111	конвектор, тройн. на пов-т.,терм. гол.	20.204	конвектор, тройн. на
11-11'		20-20′	пов-т.,терм. гол.
	конвектор, тройн. на пов-т.,терм. гол.		конвектор, тройн. на
24-24'		21-21'	пов-т.,терм. гол.
_	конвектор, тройн. на пов-т.,терм. гол.		конвектор, тройн. на
25-25'		22-22'	пов-т.,терм. гол.
26-26'	конвектор, тройн. на пов-т.,терм. гол.	23-23'	конвектор, тройн. на пов-т.,терм. гол.
26-26		23-23′	пов-т.,терм. гол.

	Склад		
	Ветка А		
1-2	2×отвд., арм.,тройн.на разд.	б-5'	6×отвд.
2-3	тройн. на прох	5'-4'	тройн. на прох
3-4	тройн. на прох	4'-3'	тройн. на прох
4-5	тройн. на прох	3'-2'	тройн. на прох
5.0	6×amp r	2'-1'	2×отв., арм.,тройн.на
5-a	6×отвд.	2 -1	разд.
а-б	регистр, арм., 2×отвд		
	Ветка Б	·	
2-6	отв., тройн. на прох	г-6'	отв., тройн. на прох
6-в	отв., тройн. на прох	6'-2'	отв., тройн. на прох
В-Г	регистр, арм., 2×отвд		
	Ответвления		
2-2'	регистр, арм., 2×отвд	5-5'	регистр, арм., 2×отвд
3-3'	регистр, арм., 2×отвд	6-6'	регистр, арм., 2×отвд
4-4'	регистр, арм., 2×отвд		

Подбор оборудования

Подбор насоса

Подключение к тепловым сетям по зависимой схеме с насосом на подающем трубопроводе.

Подбор насоса по расходу и давлению ведется в программе подбора grundfos [9].

$$G_{\rm H}=1,1\cdot2,2\cdot\frac{8,8}{1+2,2}=6,65\text{ T/y}$$

$$\Delta p_{H} = 1,15 \cdot 25526 = 29354 \Pi a$$

Результат подбора насоса по заданным параметрам представлен на рисунке 1.

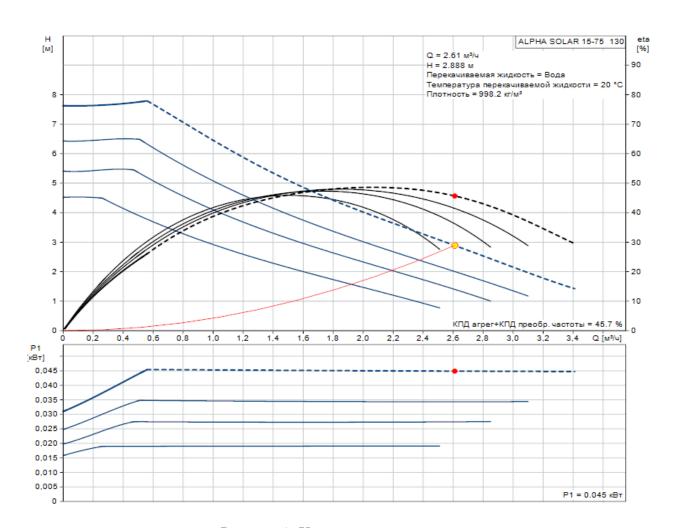


Рисунок 1- Характеристика насоса

4 ВЕНТИЛЯЦИЯ

4.1 Определение требуемых воздухообменов

Согласно СП [10] в помещении торгового зала определение воздухообмена ведется исходя из уравнения воздушного баланса по разбавлению избытков явной теплоты.

Все справочные данные для расчета теплопоступления взяты из учебника [11].

Для этого нужно составить тепловой баланс помещения.

Теплопоступления от людей

$$Q_{\pi} = \mathbf{q} \cdot \mathbf{n}, B_{T}, \tag{4.1.1}$$

холодный: $Q_{\text{\tiny J}} = 120.87 = 10440 \text{ Bt}$;

теплый: $Q_{\pi} = 52.87 = 4524 \text{ Bt.}$

Теплопоступления от искусственного освещения

$$Q_{\text{OCB}} = E \cdot F \cdot q_{\text{OCB}} \cdot \eta_{\text{OCB}}, B_{\text{T}}, \tag{4.1.2}$$

 $F = 432 \text{ M}^2$; $q = 0.082 \text{ BT/M}^2 \cdot \text{лк}$;

 $Q_{\text{ocb}} = 200.432.0,082 = 7085 \text{ Bt}$

Теплопоступления от оборудования

$$Q_{\text{общ}} = 1000N_{y} \cdot (1 - k_{n} \cdot \eta + k_{m} \cdot k_{n} \cdot \eta) \cdot k_{c,} B_{T}$$
 (4.1.3)

1. Электропогрузчик (1шт):

$$Q = 1000 \cdot 7 \cdot (1 - 0.9 \cdot 0.85 + 1 \cdot 0.9 \cdot 0.85) \cdot 0.5 = 3500 \text{ BT}$$

Теплопоступления от дежурной системы отопления

$$Q_{\rm co} = \frac{Q_{\rm orp}}{t_{\scriptscriptstyle \rm B} - t_{\scriptscriptstyle \rm H}} \cdot 12 - t_{\scriptscriptstyle \rm H} , {
m BT}$$
 (4.1.4)

$$Q_{co} = \frac{36345}{16 - (-30)} \cdot 10 - (-30) = 31604 \text{ BT}$$

Теплопоступления от солнечной радиации

$$Q_{cp} = q_{en} + q_{ep} \cdot F \cdot k_1 \cdot k_2 \cdot \beta_{c3}, \qquad (4.1.5)$$

Расчет теплопоступлений от с.р представлен в Приложении Г.

Для холодного периода года:

$$Q_{\text{Beht}} = Q_{\pi} + Q_{\text{OCB}} + Q_{\text{OCD}} + Q_{\text{C.O}} + Q_{\text{проч}} - Q_{\text{огр}} - Q_{\text{проч}} B_{\text{T}},$$
 (4.1.6)

 $Q_{\text{\tiny BEHT}} = \! 10440 \! + \! 7085 \! + \! 3500 \! + \! 31604 \! + \! 2631 \! - \! 36345 \! - \! 1817 \! = 17098 B_T$

Для теплого периода года:

$$Q_{\text{вент}} = Q_{\pi} + Q_{\text{с.p}} + Q_{\text{обр}} + Q_{\text{проч}},$$
 (4.1.7)

$$Q_{\text{Beht}} = 4524 + 21291 + 3500 + 1465 = 30781 \text{ Bt}$$

Расчет воздухообмена основного помещения производится с использованием I — d диаграммы в XП и ТП соответственно. I-d диаграмма приведена в Приложении Д.

ХП:

$$Q_n = 3.6 \cdot 17098 + 2500 + 1.8 \cdot 16 \cdot 4.78 = 73640$$
BT

$$\varepsilon = \frac{Q\pi}{W} = \frac{73640}{4,78} = 15405 \text{ кДж/кг}$$

$$t_{\pi} = 16-3=13^{\circ}C;$$

$$t_y = 16 + 0.5 \cdot 8 - 2 = 19^{\circ}C;$$

$$L_{\rm s} = \frac{3.6 \cdot 17098}{1.2(19-13)} = 8549 \text{ m}^3/\text{y}$$

ТП:

$$Q_n = 3.6 \cdot 30781 + 2500 + 1.8 \cdot 27.6 \cdot 13.3 = 113972$$
BT

$$\varepsilon = \frac{Q\pi}{W} = \frac{113972}{13.3} = 8569 \text{ кДж/кг}$$

$$t_{\pi} = 24,6+1=25,6^{\circ}C;$$

$$t_y = 27.6 + 0.5 \cdot 8 - 2 = 30.6$$
°C;

$$L_{\rm H} = \frac{3.6 \cdot 30781}{1.2(30.6 - 25.6)} = 18469 \text{ m}^3/\text{y}$$

Полученный расход следует сравнить с расходом, необходимым для подачи в помещение по санитарным нормам.

$$L_{ch} = 80.87 = 6960 \text{ m}^3/\text{y}$$

За расчетное значение принимается больший из расходов $L_p=18469 \text{ м}^3/\text{ч}$

И необходимо пересчитать t_n в XП:

$$t_{\pi} = \frac{18469 \cdot 1, 2 \cdot 16 - 3, 6 \cdot 17098}{18469 \cdot 1.2} = 13,2^{\circ}\text{C}$$

Расчет воздухообменов остальных помещений определим по нормируемой кратности воздухообмена согласно СП [12]

Расчет воздухообмена сведен в таблицу 15

Таблица 15- Расчет воздухообменов по кратности

Таолица 15- Расчет Помещение	$T_{\rm BH}$	Площадь		ть воздуха	Возлух	ообмен
Помещение	- вн,	Площидь	приток	вытяжка	приток	вытяжка
	°C	пом., м ²	k,ч ⁻¹	k,ч ⁻¹	L, м ³ /ч	L, м ³ /ч
1	2	3	4	5	6	7
			1 этаж			
101 Помещение ра-						
ботников склада	18	16,5	2	3	99	148,5
103 Помещение для						
демонстрации това-						
ров	18	108	2	2	648	648
104 Гардероб	18	27,5	-	1	0	82,5
			по рас-	по расче-		
Торговый зал	16	432	чету	ту	18469	18469
			Итого	по 1 этажу:	19215	19348
			2 этаж			
201 Кабинет гл. ин-						
женера	18	16,2	3,5	2,8	170,1	136,1
202 Кабинет про-						
граммиста	18	16,2	3,5	2,8	170,1	136,1
				50 м ³ /ч на		
203 Санузел	16	13,5	ı	1шт	-	150,0
204 Тех.помещение	18	13,5	3,5	2,8	141,8	113,4
205 Кабинет директо-						
pa	18	16,2	3,5	2,8	170,1	136,1
206 Кабинет эконо-						
миста	18	16,5	3,5 3,5	2,8	173,3	138,6
207 Бухгалтерия	18	14,9	3,5	2,8	155,9	125,1
208 Кабинет гл. бух-						
галтера	18	14,9	3,5	2,8	155,9	125,1
210 Техотдел	18	30,25	3,5	2,8	317,6	254,1
			Итого і	по 2 этажу:	1458,8	1325,8
			Итого	по зданию:	20674,8	20674,8
Склад	16	74,4	1	1	223,2	223,2

4.2 Выбор принципиальных решений и конструирование

На объекте для обеспечения допустимых параметров микроклимата запроектирована система вентиляции, представляющие собой 3 приточных и 7 вытяжных механических систем и 1 естественную вытяжную.

Приточная установка системы П1 установлена в помещении венткамеры на отм. 0,000.

Приточная установка системы $\Pi 2$ расположена в пространстве подшивного потолка на отм. +6,500 м.

Воздуховоды прямоугольного сечения из стали.

Вытяжные системы оборудованы канальными и крышными вентиляторами. Вытягиваемый воздух удаляется на 2м. выше кровли.

Всего запроектировано приточных систем 3шт.: П1-П3. Механических вытяжных систем 8шт: В1-В8, естественных вытяжных систем 1шт- ВЕ1.

4.3 Аэродинамический расчет

Аэродинамический расчет систем вентиляции выполнен согласно методике, указанной в [13]

Расчетные схемы представлены в Приложении Д.

Аэродинамический расчет приточных систем вентиляции представлен в Приложении E в таблице E.1.

Аэродинамический расчет вытяжных систем вентиляции представлен в Приложении E в таблице E.2.

Местные сопротивления вынесены в таблицу 16.

Увязка участков осуществляется дроссель-клапаном подобранному по заданному избыточному давлению.

Выбор и расчет воздухораспределительных устройств

Расчет выполнен согласно методике, указанной в справочнике [13] Для торгового зала:

$$L_0 = \frac{18469}{12} = 1539 \text{ m}^3/\text{q}$$

$$V_0 = \frac{1539}{3600 \cdot 0.294} = 1,45 \,\text{m/c};$$

$$V_x = \frac{2.5 \cdot 1.45 \cdot \overline{0.294}}{3.38} \cdot 1 \cdot 1 \cdot 0.7 = 0.48 \text{m/c};$$

 $0.48 \le 0.3 \cdot 1.6 = 0.48$, следовательно, условие выполняется;

$$\Delta t_x = \frac{2,4 \cdot 2 \cdot \overline{0,294}}{3,38} \cdot \frac{1}{1 \cdot 0,7} = 0,58$$
°C

 $0.58 \le 2$ -условие выполняется.

Таблица 16 – Местные сопротивления систем вентиляции

<u>Таблица 16 –</u>	Местные сопротивления	систем вент	иидии				
Номер участ- ка	Примечание	Номер участка	Примечание				
Ka	П1						
Возд. Рас-	KV-450	Возд.Расп	IGC315				
пред.		ред.					
$\frac{1}{2}$	отвд, переход	16	Отвд, тройн. повор.				
<u> </u>	переход, тройн на прох.	Door Door					
3	переход, тройник на проход	Возд.Расп ред.	IGC315				
3	переход, трошинк на проход	ред. 18	100313				
4	тройн. повор.	Возд. Рас-	KV-450				
	троин. повор.	пред.	II V 130				
5	переход, тройн. на прох.	19	отвод, переход				
6	отвод, тройн. на прох.	20	переход, тройн. на прох.				
7	переход, тройн. на прох.	21	переход, тройн. на прох.				
8	отвод, тройн. на прох.	22	тройник на проход				
9	переход, отвод, тройн на повор.	23	переход, тройн. на прох.				
Возд. Рас-	•						
пред.	тройн. повор., KV-450	24	отвод, тройн. на прох., тройник поворот				
10							
Возд. Рас-		Возд. Рас-					
пред.	тройн. повор., KV-450	пред.	тройн. повор., KV-450				
11		25					
Возд. Рас-		Возд. Рас-					
пред.	тройн. повор., KV-450	пред.	тройн. повор., KV-450				
12		26					
Возд. Рас-		Возд. Рас-					
пред.	тройн. повор., KV-450	пред.	тройн. повор., KV-450				
13		27					
Возд. Рас-		Возд. Рас-					
пред.	тройн. повор., KV-450	пред. 28	тройн. повор., KV-450				
14	14						
Возд. Рас-	IGC100,	Возд. Рас-					
пред.	Отвд $\times 2$, тройн. повор, пе-	пред.	тройн. повор., KV-450				
15	реход	29					
Π2							
Возд. Рас-		Возд. Рас-	IGC200,				
пред.	IGC160	пред.	тройн. повор				
прод.		9	троип. повор				
1	тройн на прох.	Возд. Рас-	IGC160				
1	point nu npox.	пред	100100				

			1 ' '					
2	Отвод ×2, тройн. прох.переход	10	тройн. на прох					
3	тройн. прох.	11	Тройн на повор, тройн. прох., отвод					
4	тройн. прох., переход	Возд. Рас- пред. 12	Тройн на повор., IGC160					
5	тройн. прох.	Возд. Распред.	IGC160					
6	тройн. прох.	13	тройн. прох.					
Возд. Рас- пред. 7	Тройн на повор., IGC160	14	Тройн на повор., тройн прох, отвод					
Возд. Рас- пред. 8	IGC200, Тройн. на повор.	Возд. Рас- пред. 15	IGC160 тройн. прох.					
	ПЗ							
Возд. Рас-пред.	IGC160	1	Отвод					
	B6							
Возд. Рас-пред.	SI-R 600x300	1	Отвод ×1					
	B7							
Возд. Рас-	IGC160	2	отвод					
1			IGC100 Тройн на повор.					
	B5							
Возд. Распред.	EFF-125		Тройн на повор., EFF-100					
1	отвод, тройн. прох., пере- ход		Тройн на повор., EFF-160					
2	2 тройн. прох., переход		Тройн на повор., EFF-160					
3	тройн. прох., переход	Возд. Распред.	EFF-125					
4	4 тройник на поворот		отвод, тройн. прох., пере- ход					

Продолжение таблицы 16

5	тройн. прох., зонт	10	тройн. прох., переход			
Возд. Рас- пред. 6	Тройн на повор., EFF-100	11	тройн. прох., переход			
Возд. Рас- пред. 7	Тройн на повор., EFF-100	12	Тройн на повор.			
Возд. Рас- пред. 8	Тройн на повор., EFF-160					
BE1						
1	SI-R 600х300, отвод, зонт					

4.4 Расчет и подбор оборудования

Результаты подбора вентиляторов представлены в виде характеристики их работы, с указанной рабочей точкой. Подбор вентиляторов в Приложении Ж.

Подбор приточной установки П1произведен в программе «Breezart» [14]

Подбор приточных установок П2, П3 произведен в программе «Декс-Вент» [15]

Подбор крышных вытяжных вентиляторов осуществлен программе фирмы «veza» [16]. Канальные- по каталогу фирмы «systemair» [17].

Каждая секция подбирается автоматически на основании указанных проектировщиком параметров. Результаты подбора представлены в Приложении 3.

4.5 Расчет и подбор воздушно-тепловых завес

На основании требований СП[19] в данном проекте предусматривается установка водяных воздушно-тепловых завес у главного входа в торговый центр и над воротами складского здания.

Подбор воздушно-тепловой завесы выполнен по каталогу фирмы «Тепломаш» [20] по известным температурам наружного и внутреннего воздуха.

В помещении торгового зала – КЭВ -42П3111W, склада – КЭВ- $140\Pi5110W$

Технические характеристики завесы приведены на рисунке 2, 3 соответственно.

Параметры питающей сети	220 В / 50 Гц
Расход воздуха	1500 / 1800 / 2100 м ³ /час
Скорость воздуха на выходе из сопла	8,3 m/c
Эффективная длина струи	3 м
Габаритные размеры	1560 × 325 × 265 мм
Присоединительные размеры патрубков для подвода/отвода теплоносителя	3/4"
Bec	26,5 кг
Максимальный ток	1,1 A
Потребляемая мощность двигателя	200 Вт
Звуковое давление	53 дБ(А)
Модель блока коммутации и управления БКУ	ПКУ-W1
Количество завес, подключаемых к одному пульту управления	2 шт.
Тепловая мощность при max/min расходе воздуха	19,8 / 15,8 кВт
Подогрев воздуха при max/min расходе воздуха	28/31°C
Расход воды при max/min расход е воздуха	0,21/0,17л/с

Рисунок 2- Технические характеристики воздушно-тепловой завесы торгового зала

Параметры питающей сети	220 В / 50 Гц
Расход воздуха	3200 / 4800 / 7500 m ³ /час
Скорость воздуха на выходе из сопла	14,3 m/c
Эффективная длина струи	6м
Габаритные размеры	1520 × 735 × 535 мм
Присоединительные размеры патрубков для подвода/отвода теплоносителя	3/4"
Bec	95 кг
Максимальный ток	10 A
Потребляемая мощность двигателя	1950 Вт
Звуковое давление	65 дБ(А)
Количество завес, подключаемых к одному пульту управления	10 шт.
Тепловая мощность при max/min расходе воздуха	71,5/44,6 кВт
Подогрев воздуха при max/min расходе воздуха	33/41°C
Расход воды при max/min расход е воздуха	0,77 / 0,48 л/с

Рисунок 3- Технические характеристики воздушно-тепловой завесы склада

5 АВТОМАТИЗАЦИЯ

Раздел составлен по [23]

Автоматизацию системы отопления предусматривают для обеспечения оптимального тепло-гидравлического режима, а также для уменьшения затрат за счет минимизации теплопотребления.

Принципиальная схема автоматизации представлена в Приложении И.

Шкаф теплосчетчика ВТД предназначен для измерения и учета параметров теплоносителя и учета параметров теплоносителя и тепловой энергии. В данный тепловой счетчик входит расходомер MP-400, тепловычислитель, комплекта первичных датчиков измерения температуры.

Тепловычислитель выполнен в виде микропроцессорного устройства, которое гарантирует вычисление и сбережение всех рассчитываемых параметров, работает совместно с расходомерами и термодатчиками, устанавливаемыми на подающем и/или обратном трубопроводах. Полученная от расходомеровсчетчиков и термопреобразователей информация обрабатывается в тепловычислителе процессором по заданному алгоритму.

Электромагнитный расходомер MP-400 реализует измерение среднего объемного расхода и объема различных электропроводящих жидкостей.

Регулятор VFG2 специализирован для поддержания заданного перепада давления меж подающим и обратным трубопроводом. Состоят регуляторы из мембранной коробки и пружины. Импульсы давления на входе в систему и выходе из системы (перед арматурой и после неё) передаются на мембранную коробку. С помощью регулировочного винта на пружинном блоке устанавливается требуемое значение перепада давления.

При изменении разницы давлений, колебания мембраны передается конусу клапана. При повышении разницы давлений происходит закрытие регулятора, при уменьшении разности давлений происходит открытие регулятора и так до тех пор, пока перепад давления не будет равным заданному пружиной значению.

Электрический регулятор ECL 300 поддерживает температуру теплоносителя в с.о. пропорционально температуре внешнего воздуха, показания которого считывает с датчиков внешней температуры ESMT. Регулятор управляет регулирующим клапаном VB2 с приводом AMV20, в зависимости от показаний температурных датчиков, поставленных на подающей и обратной магистрали.

6 ОРГАНИЗАЦИЯ

6.1 Определение объемов работ

Организация монтажных работ приведена для монтажа вентиляционных систем приточных и вытяжных. Состав работ определяется согласно [21], [22]

Данные расчета сведены в таблицу 17

Таблица 17 - Ведомость объёмов строительно-монтажных работ

	ица 17 - Ведомоств оовемов ст			
<u>№</u> поз.	Наименование работ	Ед. изм.	Кол-во	Примеч.
1	2	3	4	5
1	Монтаж блочных приточных установок	шт.	4	
2	Монтаж вытяжных вентиляторов	ШТ.	8	
3	Монтаж узлов прохода через кровлю	шт.	6	
	Монтаж воздуховодов ∅100		14,5	
	Ø125		1,5	
	Ø140		23	
	Ø160		19,6	
	Ø180		11,9	
	Ø200		4,9	
1	Ø225		27,1	$S = \pi \cdot d \cdot l, m^2$
4	Ø250	M	8,5	
	Ø315		5,4	
	Ø400		14,6	
	Ø560		9,6	
	Ø630		30,4	
	Ø710		21,5	
	Ø900		5,2	
5	Изоляция воздуховодов	M ²	2,5	$S = \pi \cdot d \cdot l, m^2$
	Монтаж дроссель-клапанов \varnothing 100	шт.	7	
	Ø125		1	
6	Ø140		1	
	Ø160		5	
	Ø400		6	
7	Монтаж воздухозаборных решё- ток	ЩТ	1	
8	Монтаж воздухораспределителей	ШТ	37	
9	Монтаж зонтов	ШТ.	9	

6.2 Определение трудоемкости работ

Трудовые затраты на выполнение отделочных работ определяются согласно сборникам ЕНиР и ГЭСН в соответствии с нормами времени.

Результаты расчёта трудоёмкости сводятся в таблицу 18

Трудоемкость работ определяется по формуле:

$$T = \frac{V \cdot H_{Bp}}{8}$$
, [чел-смена] (6.2.1)

Таблица 18- Ведомость трудоёмкости работ

	<u> </u>				Трудозатраты					
№ п/п	Наименование работ	Единица измерения	ЕНиР	Норма времени	Объём работ	Челдни	Профессиональный состав звена			
1	2	3	4	5	6	7	8			
1	Монтаж при- точной уста- новки L=18500 м ³ /ч	шт.	10-2	6,77	1	0,84	Монтажник систем вен-ции 6р-1ч, 4р-			
	L=1500 м ³ /ч						3,42	1	0,42	1ч, 3р-2ч
	L=747 м ³ /ч			2,81	1	0,35				
	L=223 м ³ /ч			1,54	1	0,19				
2	Монтаж вы- тяжных вен- тиляторов	IIIT.	34-27	4,3	8	4,19	Монтажник систем вен-ции 5p-1ч, 3p-2ч			
3	Монтаж УП	шт.	10-6	0,88	6	0,64	Монтажник систем вен-ции 5p-1ч, 3p-1ч, 2p-1ч			
4	Монтаж воз- духоводов	М.	10-5	0,65	202,5	16,05	Монтажник систем вен-ции 5p-1ч, 4p-1ч, 3p-1ч, 2p-1ч			

5	Изоляция воз-	М.		0,21	2,5	0,06	Монтажник систем		
	духоводов						вен-ции 4р-1ч, 3р-1ч		
6	Монтаж дрос-	шт.		0,92	5	0,56	Монтажник систем		
	сель-клапанов	шт.		0,52		0,50	вен-ции 4р-1ч, 3р-1ч		
	Монтаж воз-						Монтажник систем		
7	духозаборных	ШТ.	10-16	1,2	1	0,15			
	решёток						вен-ции 4р-1ч		
	Монтаж воз-						Монтажник систем		
8	духораспре-	шт.	10-11	0,75	35	3,2	вен-ции 5р-1ч, 3р-		
	делителей						1ч, 2р-1ч		
9	Монтаж зон-	ШТ.	10-13	0,28	9	0,3	Монтажник систем		
	тов	ш1.	10-13	0,20		0,3	вен-ции 4р-1ч, 3р-1ч		
					Всего:	25,7			
		По	дготовит	ельные раб	боты 8%:	2,05			
		Пус	к и регу.	пировка сис	стем 5%:	1,28			
			Накла	дные расхо	оды 10%:	2,57			
					Итого:	31,6			

7 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНОЛОГИЧЕСКОГО ОБЪЕКТА

7.1 Конструктивно-технологическая и организационно-техническая характеристика рассматриваемого технического объекта

Проектируемый объект является общественным зданием, где специфические технологические процессы отсутствуют. В данном разделе рассмотрен процесс сварки труб из полипропилена для системы отопления и монтаж алюминиевых воздуховодов для системы вентиляции. Процессы, выполняемые при монтаже систем, оборудование и необходимые материалы в таблице 19

Таблица 19- Технологический паспорт объекта

№	Технологи-	Технологиче-	Наименование	Оборудова-	Материалы,
п/п	ческий про-	ская операция,	должности ра-	ние, устрой-	вещества
	цесс	вид выполняе-	ботника, вы-	ство, приспо-	
		мых работ	полняющего	собление	
			технологиче-		
			ский процесс,		
			операцию		
1	Монтаж си-	Установка ото-	Монтажник си-	Перфоратор,	Алюминиевые
	стемы отопле-	пительных при-	стемы отопле-	отбойные мо-	радиаторы,
	кин	боров	кин	лотки, набор	кронштейны
				слесарных ин-	
				струментов	
2	Монтаж си-	Сварка поли-	Сварщик	Паяльник для	Полипропиле-
	стемы отопле-	пропиленовых	1	полипропиле-	новые трубы
	ния	трубопроводов		на, набор сле-	
				сарных ин-	
				струментов	
3	Монтаж вен-	Крепеж венти-	Монтажник си-	Подъемник,	Фланцы, метал-
	тиляционных	ляционных ко-	стем вентиля-	стремянка,	лические уголки
	систем	робов	ции	подмостки,	разных разме-
		_		гайковерт,	ров, болты виб-
				набор слесар-	роизоляционные
				ных инстру-	крепежи, про-
				ментов	кладки, крепежи

7.2. Идентификация профессиональных рисков

При анализе процессов монтажа, указанных в разделе 7.1 и определения видов работ при монтаже можно сделать вывод, что данные технологические процессы имеют ряд профессиональных рисков. Идентификация профессиональных рисков выполнена по ГОСТ 12.0.003-2015 в зависимости от вида работ. Данные сведены в таблицу 20

Таблица 20- Идентификация профессиональных рисков

№п/п	Технологическая операция, вид выполняемых работ	Опасный и вредный произ- водственный фактор	Источник опасного и вредно- го производственного фактора
	N	Лонтаж системы отопления	
	Подготовка отверстий под крепежи для приборов	Повышенная запыленность воздуха рабочей зоны	Перфоратор, электрическая дрель
1	Установка отопительных приборов	Повышенный уровень вибрации и шума	Электроинструмент, перфоратор, болгарка
	Спайка частей трубопровода из полипропилена	Пары полипропилена	Аппарат для сварки
		Монтаж воздуховодов	
	Подъем секций к месту монтирования	Движущиеся машины и механизмы	Подъемник
	Установка секций возду- ховодов	Разрушающиеся конструк- ции	Секции воздуховодов
2	Установка секций, их крепление	Расположение рабочего на высоте относительно пола	Подъемник, стремянка, подмостки.
	Сборка частей секций воздуховодов, стяжка их болтами	Повышенный уровень виб- рации	Электрический ручной гай- коверт

Так как приведенные технологические операции являются не безопасными, необходимо принять методы или средства снижения рисков.

7.3 Методы и средства снижения профессиональных рисков

В таблице 21 приведены методы и средства, которые позволят снизить профессиональные риски при данных производственных операций

Таблица 21– Методы и средства снижения воздействия опасных и вредных производственных факторов

	1		T
№п/п	Опасный и вредный производственный фактор	Методы и средства защиты, снижения, устранения опасного и вредного производственного фактора	СИЗ (средства индивидуальной защиты)
1	Повышенный уровень вибрации и шума на рабочем месте	Статическая и динамическая балансировка приборов, применение материалов с низким уровнем вибрации	Защищающие перчатки ГОСТ EN 388 — 2012 и противошумные вкладыши ГОСТ 12.4.275 — 2014
2	Повышенная запылен- ность и загазованность воздуха рабочей зоны	Отвод вредностей системой местной вытяжной вентиляции	Костюм для защиты от общих производственных загрязнений, перчатки трикотажные, очки защитные, полуботинки кожаные, респираторы в соответствии с ГОСТ 12.4.011–89 и ГОСТ 12.4.280 — 2014
3	Пары полипропилена	отвод изоытков тепла и вред- ностей системой вентиляции МУ 4425 — 2018	Костюм с огнезащитной пропиткой, ботинки кожаные, рукавицы брезентовые, очки защитные, каска защитная, подшлемник под каску, наушники противошумные, фильтрующие средства индивидуальной защиты органов дыхания
4	Разрушающиеся кон- струкции	Ограждать опасные зоны со- гласно ГОСТ 12.4.059 [©] — 78	ГОСТ 12.4.011-89 Спецодежда в соответствии с ГОСТ 12.4.280 — 2014 защитная каска ГОСТ EN 397 — 2012
5	Движущиеся машины и механизмы	Средства должны иметь сертификат на соответствие требованиям БТ, предупреждающие знаки ГОСТ 12.4.0592 — 89	Спецодежда в соответ- ствии с ГОСТ 12.4.280 — 2014

6	Расположение рабоче- го на высоте относи- тельно пола	из стоек, поручня бортовой доски не менее 150 мм, установка стремянок или подъемников строго на ровную по-	Предохранительный пояс ГОСТ 32489 — 2013, защитная каска ГОСТ EN 397 — 2012
---	---	--	---

Предложенные СИЗ являются необходимыми при выполнении указанных видов работ.

7.4 Обеспечение пожарной безопасности технического объекта

На месте проведения работ, в ходе которых возможно возникновения пожара, необходимо идентифицировать класс пожарной опасности в соответствии с ГОСТ 12.1.004-99 «Пожарная безопасность». Результаты сведены в таблицу 22

Таблица 22- Идентификация классов и опасных факторов пожара

№	Участок, подраз- деление	Оборудование	Класс опасности	Опасные факторы пожара	Сопутствующие проявления факторов пожара
1	Свалка, сгорае- мые от- ходы	Ящики с песком объемом от 0,5 до 3м ³ ; бочки с водой; огнетущитель ОП-10; ведра, багры, лопаты, топоры и ломы	A	- Пламя - Искры -Повышенная кон- центрация продуктов горения; - Пониженная кон- центрация кислоро- да; - Снижение видимо- сти в дыму.	Несанкционированное складирование мусора
2	Электро- установ- ки, нахо- дящиеся под напряже- нием	Вода; асбестовое полотно; огнетушители ОУ	E	- Пламя и искры; - Тепловой поток; - Повышенная температура окружающей среды; - Пониженная концентрация кислорода;	- Вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества;

На основании проведенного анализа в таблице 22 принято использовать технические средства, представленные в таблице 23

Таблица 23– Средства обеспечения пожарной безопасности

Первичные	Mo-	Установки	Сред-	Пожар-	Средства	Пожар-	Пожар-
средства	биль-	пожароту-	ства	ное обо-	индиви-	ный	ные
пожаро-	ные	шения	пожар	рудова-	дуальной	инстру-	сигна-
тушения	сред-		жар-	ние	защиты и	стру-	лиза-
	ства		ной		спасения	мент	ция,
	пожа-		авто-		людей		связь и
	роту-		мати-		при пожа-		опове-
	шения		ки		pe		щение
Огнетуши-		Пожарные	Си-	Огнету-	Респира-	Пожар-	Пожар-
тели, вода,		гидранты,	стемы	шители,	торы,	ный	ная
ящики с		щит с сред-	изве-	пожар-	противо-	топор,	сигна-
порошко-		ствами по-	щаю-	ный	газы, по-	пожар-	лиза-
вым соста-		жаротуше-	щие о	кран,	жарные	ный	ция, те-
вом (пе-		ния,	воз-	щит с	лестницы	лом,	лефон
сок, пер-		водяные	ник-	сред-		устр-во	«112» и
лит), обо-		автомати-	нове-	ствами		вскры-	«01»
рудование		ческие си-	кин	пожаро-		тия ме-	
пожарных		стемы, га-	возго-	тушения		талли-	
кранов		зовые и по-	рания			ческих	
		рошковые				дверей	

Во избежание возникновения пожара или опасных факторов вызывающие возгорание, необходимо предложить мероприятия, исключающие возгорание или его незамедлительному устранению на местах проведения работ. Данные мероприятия сведены в таблицу 24

Таблица 24 – Мероприятия по обеспечению пожарной безопасности

Наименование тех-	Наименование видов реализуемых	Требования по обеспече-
нологического про-	организационных мероприятий	нию пожарной безопасно-
цесса, вид объекта		сти
Монтаж системы	действие пожарной дружины, со-	Соблюдение противопо-
отопления	зданной из работников предприя-	жарных норм и правил
Монтаж воздухово-	тий и строек;	при устройстве, установке
ДОВ	курение на территории строитель-	и эксплуатации оборудо-
	ства и объекта разрешается только	вания в соответствии с
	в специально отведенных местах,	Ф3-123 (ред. от
	обеспеченных средствами пожаро-	29.07.2017)
	тушения; здания должны быть	
	обеспечены первичными средства-	
	ми пожаротушения; на новострой-	
	ках для целей пожаротушения про-	
	кладывают постоянный водопровод	
	и устанавливают пожарные гид-	
	ранты	

7.5 Обеспечение экологической безопасности технического объекта

Для предотвращения нанесения ущерба окружающей среде, при выполнении работ, необходимо внести ряд мероприятий об охране экологической обстановки г. Тольятти. Мероприятия указаны в таблице 25.

Таблица 25 — Организационно-технические мероприятия по снижению негативного антропогенного воздействия технического процесса на окружающую среду

Наименование технического объекта	Мероприятия			
	- Тщательно очищать сварочные насадки от			
Мероприятия по снижению антропоген-	остатков пластмассы, во избежание ее под-			
ного воздействия на атмосферу	горания;			
ного воздействия на атмосферу	- Организовать достаточный доступ кисло-			
	рода в помещение, где производится сварка;			
	-Вредные растворы должны быть герметич-			
Мараприятия на аниманию антранаган	но упакованы и подлежат утилизированию			
Мероприятия по снижению антропоген-	совместно с отходами ТБО			
ного воздействия на гидросферу	-Замещать использование твердо и жидко-			
	- Тщательно очищать сварочные насадки от остатков пластмассы, во избежание ее подгорания; - Организовать достаточный доступ кислорода в помещение, где производится сварка -Вредные растворы должны быть герметично упакованы и подлежат утилизированию совместно с отходами ТБО -Замещать использование твердо и жидкотопливного оборудования на электрическое - Предотвращение образования навалов строительного мусора			
	- Предотвращение образования навалов			
Маранриятия на аниманию антранаран	строительного мусора			
Мероприятия по снижению антропогенного воздействия на литосферу	-Поддерживать почву в надлежащем состоя-			
ного воздеиствия на литосферу	нии (посев травы, удобрение, рыхление и			
	полив почвы)			

Выполнение указанных мероприятий по охране окружающей среды, соблюдение того что концентрация вредных выбросов не превышает ПДК, можно сделать вывод, что указанные работы, не несут за собой негативного влияния на экологическую обстановку города и здоровье работающих.

ЗАКЛЮЧЕНИЕ

В заключении проделанной бакалаврской работы можно отметить что, все поставленные цели были достигнуты. Была принята двухтрубная, тупиковая система отопления с горизонтальной разводкой. В качестве отопительных приборов были приняты гладкотрубные регистры и настенные конвекторы КНС-20.

Была сконструирована и рассчитана механическая приточно-вытяжная система вентиляция, а также система естественной вытяжной вентиляции.

Все приточные установки блочные, подобранны по программам фирм производителей.

Также, были разработаны разделы организация производства работ по монтажу системы вентиляции, безопасность и экологичность проекта.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. СП 131.13330.2012. Строительная климатология. Актуализированная редакция СНиП 23-01-99 [Электронный ресурс]. Введ. 2013.- 01. 01. Режим доступа: http://docs.cntd.ru/document/1200095546
- 2. ГОСТ 3049-11. Здания жилые и общественные. Параметры микроклимата в помещениях. МНТКС – М.: Стандартинформ 2013. -15c.
- 3. СП 50.13330.2012. Тепловая защита зданий. Актуализированная редакция СНиП 23.02.2003 [Электронный ресурс]. Введ. 2013.- 01.- 07. Режим доступа: http://files.stroyinf.ru/data2/1/4293799/4293799306.pdf
- 4. Малявина, Е. Г. Теплопотери здания: справочное пособие / Е. Г. Малявина. М.: ABOK-ПРЕСС, 2007. 144 с.
- 5. ГОСТ 3262-75 Трубы стальные водогазопроводные. Технические условия [Электронный ресурс]. Введ. 1977.- 01.- 01. Режим доступа: http://docs.cntd.ru/document/1200001411
- 6. Каталог оборудования фирмы Ballorex [Электронный ресурс]. Режим доступа: http://www.ktto.com.ua/uploads/bkr-46-2013-07-29-22-29-38.pdf
- 7. Каталог продукции «Valtec» [Электронный ресурс]. режим доступа: https://valtec.ru/catalo
- 8. Внутренние санитарно-технические устройства. В 3ч. Ч.1. Отопление. / В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под ред. И.Г. Староверова и Ю.И. Шиллера. 4-е изд., перераб. и доп.-М.: Стройиздат, 1990. 344 с.
- 9. Каталог насосного оборудования фирмы Grundfos [Электронный ресурс]. Режим доступа: http://ecommerce.grundfos.ru/filter.html
- 10. СП 118.13330.2012. Общественные здания и сооружения. Актуализированная редакция СНиП 31-06-2009 [Электронный ресурс]. — Введ. 2013.-01. — 01. — Режим доступа: http://docs.cntd.ru/document/1200092705

- 11. Титов В. П. Курсовое и дипломное проектирование по вентиляции гражданских и промышленных зданий / В. П. Титов, Э. В. Сазонов, Ю. С. Краснов, В. И. Новожилов. М.: Стройиздат, 1985.
- 12. СП 44.13330.2011. Административные и бытовые здания. Актуализированная редакция СНиП 2.09.04-87 [Электронный ресурс]. Введ. 2011.- 05.– 20. Режим доступа: http://docs.cntd.ru/document/1200084087
- 13. Торговников Е.М., Табачник В.Е. Проектирование промышленной вентиляции / Е.М. Торговников, В.Е. Табачник. Киев: Будивельник, 1983. 256 с.
- 14. Каталог оборудования «breezart» [Электронный ресурс] режим доступа: http://breezart-tech.ru
- 15. Каталог оборудования «Dexvent» [Электронный ресурс] режим доступа: http://breezart-tech.ru
- 16. Каталог оборудования «VEZA» [Электронный ресурс] режим доступа: http://www.veza.ru/catalog/ventilyatory
- 17. Каталог оборудования «systemair» [Электронный ресурс] режим доступа: http://www.systemair.ru/catalog/ventilyatory
- 18. Внутренние санитарно-технические устройства. В 3ч. Ч. 1. Отопление. Книга 2/Б.В. Баркалов, Н.Н. Павлов, С.С. Амирджанов и др.; Под ред. Н.Н. Павлова и Ю.И. Шиллера.-4-е изд., перераб. и доп.-М.: Стройиздат, 1992.-416с.: ил.-(Справочник проектировщика)
- 19. СП 60.13330.2012. Отопление, вентиляция и кондиционирование воздуха. Актуализированная редакция СНиП 41-01-2003 [Электронный ресурс]. Введ. 2013.- 01. 01. Режим доступа:

http://docs.cntd.ru/document/1200084087

- 20. . Каталог оборудования «Тепломаш» [Электронный ресурс] режим доступа: http://www.systemair.ru/catalog/ventilyatory
- 21. ЕНиР. Единые нормы и расценки на строительные, монтажные и ремонтно-строительные работы. Сборник Е9 «Монтаж внутренних санитарнотехнических систем». Выпуск 1. Отопление, водопровод, канализация и газо-

- снабжение [Электронный ресурс]. Введ. 1985. 07. 17.- Режим доступа: http://snipov.net/c4643 snip96397.html
- 22. СП 48.13330.2011 Организация строительства. Актуализированная редакция СНиП 12-01-2004 [Электронный ресурс]. Введ. 2011.- 05.- 20. Режим доступа: http://docs.cntd.ru/document/120008409823.
- 23. Каталог оборудования «Ballu» [Электронный ресурс] режим доступа: http://www.vseinstrumenti.ru/klimat/teplovie_zavesi/elektricheskie/ballu/
- 24. Мухин А.О., Автоматизация систем теплогазоснабжения и вентиляции : Учеб. пособие для вузов/ Мухин А.О.-Мн.: Выш. шк., 1986-304 с.: ил.
- 25. ЕНиР Сборник Е9. Сооружение систем теплоснабжения, водоснабжения, газоснабжения и канализации., М.: СССР, 1986.
- 26. ЕНиР Сборник Е10. Сооружение систем вентиляции, кондиционирования воздуха, пневмотранспорта и аспирации, М.: СССР, 1986.

приложения

ПРИЛОЖЕНИЕ **А** Разбивка неутепленных полов на зоны

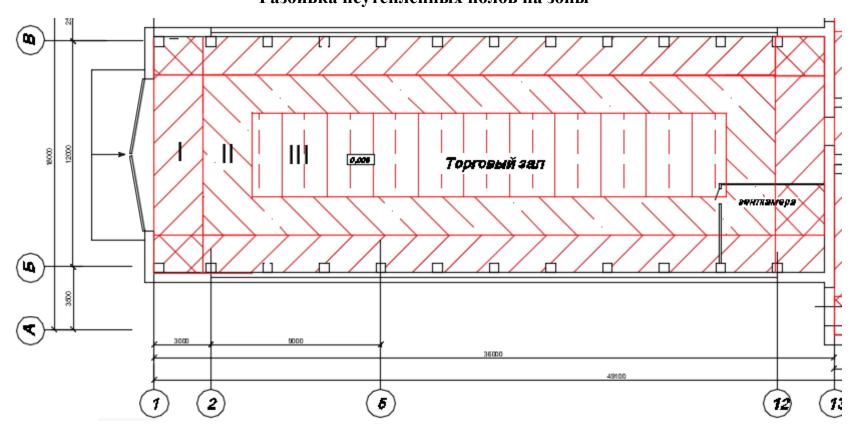


Рисунок А.1- Зоны неутеплённого пола торгового зала

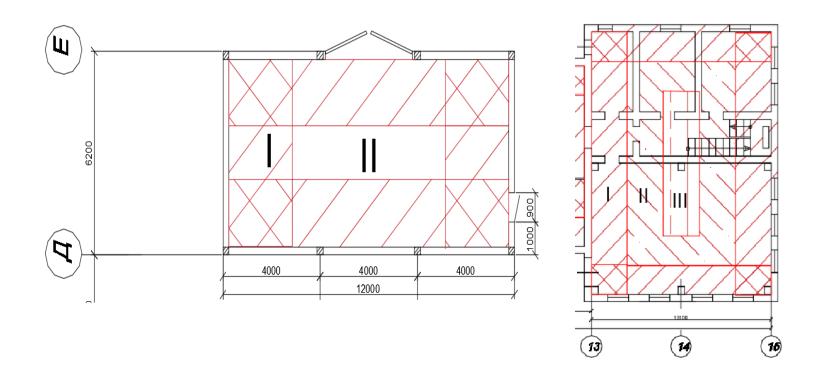


Рисунок А.2- Зоны неутеплённого пола склада и офиса

Приложение Б

Расчет теплопотерь через ограждающие конструкции

Таблица Б.1 – Результаты расчета тепловых потерь через ограждающие конструкции

Номер помещения	Наим. ограждений.	Ориентация		меры	F,м ²	Δt,°C	$k, \frac{Bm}{M^{2} {}^{\circ}C}$	Q, Bt	Добавоч	ный коэф ент, %	фици-	$(1+\sum \beta)$	$Q \cdot (1 + \sum \beta)$, BT
мещения	ограждении.		L	h					ориентация	прочее	сумма		
1	2	3	4	5	6	7	8	9	10	11	12	13	14
	НС	С	36	7	159	46	0,308	7526,5	10	5	10	1,15	2591
	Ок	С	30	3	90	46	1,961	9853,2	5	5	10	1,1	8930
	НС	3	12	7	36	46	0,308	1672,5	5	1,27	1,32	2,32	1183
Tamaaass	Bp	3	6	8	48	46	1,219	5321,2	0	5	5	1,05	2826
1 -	НС	Ю	36	7	162	46	0,308	7526,5	0	5	5	1,05	2410
3a,1	Ок	Ю	30	3	90	46	1,961	9853,2	10	5	15	1,15	9336
	Пт	-			432	46	0,213	4233				1	4233
	Дв	С	1,3	2,3	3	46	0,301	41	5	1,27	1,32	2,32	96
								•				ИТОГО	36345
	НС	С	1,5	3,5	2,1	46	0,308	97,57	10	5	15	1,15	34
101	Ок	С	2,1	1,5	3,15	46	1,961	344,86	10	5	15	1,15	327
101	НС	3	2,5	3,5	6,86	46	0,308	318,72	5	5	10	1,1	107
Торговый зал 101 103	Дв	3	0,9	2,1	1,89	46	1,219	209,53	5	1,27	1,32	2,32	246
								•	1			ИТОГО	714
103	НС	3	3,5	3,5	7,25	46	0,308	336,84	5	5	10	1,1	113
	HC	Ю	12	3,5	29,4	46	0,308	1365,9	0	5	5	1,05	437
	Ок	Ю	8,4	1,5	12,6	46	1,961	1379,4	0	5	5	1,05	1193
	НС	В	9,1	3,5	22,4	46	0,308	1040,7	10	5	15	1,15	365
	Ок	В	6,3	1,5	9,45	46	1,961	1034,5	10	5	15	1,15	980

										P	JIMOIIIIO 140JI	1
Вр	3	2	2,5	5	46	1,219	554,30	10	1,27	1,37	2,37	664
						•					ИТОГО	3754
НС	В	5,5	5	27,5	46	0,308	1277,6	10	5	15	1,15	448
Ок	В	6,3	1,5	9,45	46	1,961	1034,5	10	5	15	1,15	980
НС	С	5	3,5	14,35	46	0,308	666,70	10	5	15	1,15	234
Ок	С	2,1	1,5	3,15	46	1,961	344,86	10	5	15	1,15	327
											ИТОГО	1989
НС	С	3,8	5,5	17,75	46	0,308	824,67	10	5	15	1,15	289
Ок	С	2,1	1,5	3,15	46	1,961	344,86	10	5	10	1,15	327
						•					ИТОГО	616
HC	3	2,5	2,8	3,85	48	0,308	186,65	10	5	15	1,15	65
Ок	3	2,1	1,5	3,15	48	1,961	359,86	10	5	15	1,15	341
НС	С	4,5	2,8	9,506	48	0,308	460,85	10	5	15	1,15	162
Ок	С	2,1	1,5	3,15	48	1,961	359,86	10	5	15	1,15	341
Кр		3,5	4,5	15,75	48	0,214	748,44	-	-	-	1	162
											ИТОГО	1071
Кр	-	3,5	4,52	16,00	48	0,214	760,36	-	-	-	1	164
Кр	-	3	4,52	13,56	48	0,214	644,37	-	-	-	1	139
Кр	-	3	4,52	13,56	48	0,214	644,37	-	-	-	1	139
НС	3	3,5	2,8	6,706	48	0,308	325,11	10	5	15	1,15	114
Ок	3	2,1	1,5	3,15	48	1,961	359,86	10	5	15	1,15	341
	НС Ок НС Ок НС Ок НС Ок Кр Кр Кр Кр НС	НС В Ок В НС С Ок С НС С Ок С НС З Ок З НС С Ок С Кр - Кр - Кр - Кр - НС З	НС В 5,5 Ок В 6,3 НС С 5 Ок С 2,1 НС С 3,8 Ок С 2,1 НС З 2,5 Ок З 2,1 НС С 4,5 Ок С 2,1 Кр - 3,5 Кр - 3 Кр - 3 Кр - 3 Кр - 3 НС З 3,5	HC B 5,5 5 Oк B 6,3 1,5 HC C 5 3,5 Oк C 2,1 1,5 HC C 3,8 5,5 Oк C 2,1 1,5 HC C 2,1 1,5 HC C 4,5 2,8 Oк C 2,1 1,5 Kp 3,5 4,5 Kp - 3,5 4,52 Kp - 3 4,52 Kp - 3 4,52 HC 3 3,5 2,8	НС В 5,5 5 27,5 Ок В 6,3 1,5 9,45 НС С 5 3,5 14,35 Ок С 2,1 1,5 3,15 НС С 2,1 1,5 3,15 НС З 2,5 2,8 3,85 Ок З 2,1 1,5 3,15 НС С 4,5 2,8 9,506 Ок С 2,1 1,5 3,15 Кр - 3,5 4,5 15,75 Кр - 3,5 4,52 16,00 Кр - 3 4,52 13,56 Кр - 3 4,52 13,56 НС 3 3,5 2,8 6,706	HC B 5,5 5 27,5 46 Oκ B 6,3 1,5 9,45 46 HC C 5 3,5 14,35 46 Oκ C 2,1 1,5 3,15 46 HC C 3,8 5,5 17,75 46 Oκ C 2,1 1,5 3,15 46 HC 3 2,5 2,8 3,85 48 Oκ 3 2,1 1,5 3,15 48 HC C 4,5 2,8 9,506 48 Oκ C 2,1 1,5 3,15 48 Kp - 3,5 4,52 16,00 48 Kp - 3 4,52 13,56 48 Kp - 3 4,52 13,56 48 HC 3 3,5 2,8 6,706 48	HC B 5,5 5 27,5 46 0,308 Ок B 6,3 1,5 9,45 46 1,961 HC C 5 3,5 14,35 46 0,308 Ок C 2,1 1,5 3,15 46 1,961 HC C 3,8 5,5 17,75 46 0,308 Ок C 2,1 1,5 3,15 46 1,961 HC 3 2,5 2,8 3,85 48 0,308 Ок 3 2,1 1,5 3,15 48 1,961 HC С 4,5 2,8 9,506 48 0,308 Ок С 2,1 1,5 3,15 48 1,961 Кр 3,5 4,5 15,75 48 0,214 Кр - 3,5 4,52 16,00 48 0,214 Кр - 3	HC B 5,5 5 27,5 46 0,308 1277,6 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 HC C 5 3,5 14,35 46 0,308 666,70 Oκ C 2,1 1,5 3,15 46 1,961 344,86 HC C 3,8 5,5 17,75 46 0,308 824,67 Oκ C 2,1 1,5 3,15 46 1,961 344,86 HC 3 2,5 2,8 3,85 48 0,308 824,67 Oκ C 2,1 1,5 3,15 46 1,961 344,86 HC G 3,8 5,5 17,75 46 0,308 824,67 Oκ C 2,1 1,5 3,15 48 1,961 359,86 HC C 4,5 2,8 9,506 48 0,214 <td>HC B 5,5 5 27,5 46 0,308 1277,6 10 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 10 HC C 5 3,5 14,35 46 0,308 666,70 10 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 HC C 3,8 5,5 17,75 46 0,308 824,67 10 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 HC 3 2,5 2,8 3,85 48 0,308 186,65 10 Oκ C 2,1 1,5 3,15 48 1,961 359,86 10 HC C 4,5 2,8 9,506 48 0,308 460,85 10 Oκ C 2,1 1,5 3,15 48 1,961</td> <td>HC B 5,5 5 27,5 46 0,308 1277,6 10 5 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 10 5 HC C 5 3,5 14,35 46 0,308 666,70 10 5 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 HC C 3,8 5,5 17,75 46 0,308 824,67 10 5 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 HC 3 2,5 2,8 3,85 48 0,308 186,65 10 5 Oκ 3 2,1 1,5 3,15 48 1,961 359,86 10 5 HC C 4,5 2,8 9,506 48 0,308 460,85 10 5</td> <td>Bp 3 2 2,5 5 46 1,219 554,30 10 1,27 1,37 HC B 5,5 5 27,5 46 0,308 1277,6 10 5 15 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 10 5 15 HC C 5 3,5 14,35 46 0,308 666,70 10 5 15 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 15 HC C 3,8 5,5 17,75 46 0,308 824,67 10 5 15 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 15 Oκ C 2,1 1,5 3,15 48 1,961 359,86 10 5 15 Oκ C 2</td> <td>Bp 3 2 2,5 5 46 1,219 554,30 10 1,27 1,37 2,37 HC B 5,5 5 27,5 46 0,308 1277,6 10 5 15 1,15 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 10 5 15 1,15 HC C 5 3,5 14,35 46 0,308 666,70 10 5 15 1,15 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 15 1,15 HC C 3,8 5,5 17,75 46 0,308 824,67 10 5 15 1,15 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 15 1,15 Oκ C 2,1 1,5 3,15 48 0,308</td>	HC B 5,5 5 27,5 46 0,308 1277,6 10 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 10 HC C 5 3,5 14,35 46 0,308 666,70 10 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 HC C 3,8 5,5 17,75 46 0,308 824,67 10 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 HC 3 2,5 2,8 3,85 48 0,308 186,65 10 Oκ C 2,1 1,5 3,15 48 1,961 359,86 10 HC C 4,5 2,8 9,506 48 0,308 460,85 10 Oκ C 2,1 1,5 3,15 48 1,961	HC B 5,5 5 27,5 46 0,308 1277,6 10 5 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 10 5 HC C 5 3,5 14,35 46 0,308 666,70 10 5 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 HC C 3,8 5,5 17,75 46 0,308 824,67 10 5 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 HC 3 2,5 2,8 3,85 48 0,308 186,65 10 5 Oκ 3 2,1 1,5 3,15 48 1,961 359,86 10 5 HC C 4,5 2,8 9,506 48 0,308 460,85 10 5	Bp 3 2 2,5 5 46 1,219 554,30 10 1,27 1,37 HC B 5,5 5 27,5 46 0,308 1277,6 10 5 15 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 10 5 15 HC C 5 3,5 14,35 46 0,308 666,70 10 5 15 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 15 HC C 3,8 5,5 17,75 46 0,308 824,67 10 5 15 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 15 Oκ C 2,1 1,5 3,15 48 1,961 359,86 10 5 15 Oκ C 2	Bp 3 2 2,5 5 46 1,219 554,30 10 1,27 1,37 2,37 HC B 5,5 5 27,5 46 0,308 1277,6 10 5 15 1,15 Oκ B 6,3 1,5 9,45 46 1,961 1034,5 10 5 15 1,15 HC C 5 3,5 14,35 46 0,308 666,70 10 5 15 1,15 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 15 1,15 HC C 3,8 5,5 17,75 46 0,308 824,67 10 5 15 1,15 Oκ C 2,1 1,5 3,15 46 1,961 344,86 10 5 15 1,15 Oκ C 2,1 1,5 3,15 48 0,308

											1 '		
	НС	Ю	4,5	2,8	9,506	48	0,308	460,85	0	5	5	1,05	148
	Ок	Ю	2,1	1,5	3,15	48	1,961	359,86	0	5	0	1,05	311
	Кр	-	3,5	4,5	15,75	48	0,214	748,44	-	-	-	1	162
			•	•	•		•			•		ИТОГО	1076
	НС	Ю	5,6	2,8	15,68	48	0,308	760,17	0	5	5	1,05	243
	Ок	Ю	2,1	1,5	3,15	48	1,961	359,86	0	5	0	1,05	311
206	НС	В	3	2,8	5,25	48	0,308	254,52	10	5	15	1,15	89
	Ок	В	2,1	1,5	3,15	48	1,961	359,86	10	5	15	1,15	341
	Кр	-	3	5,6	16,8	48	0,214	798,34	-	-	-	1	173
			•	•								ИТОГО	1158
	НС	В	2,6	2,8	4,13	48	0,308	200,22	10	0	10	1,1	67
207	Ок	В	2,1	1,5	3,15	48	1,961	359,86	10	0	10	1,1	326
	Кр	-	2,6	5,6	14,56	48	0,214	691,89	-	-	-	1	150
			•									ИТОГО	543
	НС	В	3,2	2,8	5,81	48	0,308	281,67	10	0	10	1,1	94
208	Ок	В	2,1	1,5	3,15	48	1,961	359,86	10	0	10	1,1	326
	Кр		3,2	5,6	17,92	48	0,214	851,56				1	184
			•	•	•		•			•		ИТОГО	605
	НС	С	3	2,8	6,51	48	0,308	315,60	10	0	10	1,1	106
209	Дв	С	0,9	2,1	1,89	48	1,219	218,64	10	1,32	1,42	2,42	268
	НС	Ю	3	2,8	5,25	48	0,308	254,52	0	0	0	1	78

											1 ' '		
	Ок	Ю	2,1	1,5	3,15	48	1,961	359,86	0	0	0	1	297
	Кр	-	3	18,7	56,1	48	0,214	2665,8	-	-	-	1	576
												ИТОГО	1324
	НС	В	5,5	2,8	9,1	48	0,308	441,17	10	5	15	1,15	155
	Ок	В	4,2	1,5	6,3	48	1,961	719,71	10	5	15	1,15	682
210	НС	С	5,6	2,8	9,38	48	0,308	454,74	10	5	15	1,15	159
	Ок	С	4,2	1,5	6,3	48	1,961	719,71	10	5	15	1,15	682
	Кр	-	5,5	5,6	30,8	48	0,214	1463,6	-	-	-	1	316
					ТИ	ОГО							1994
	НС	В	2,2	7	12,25	48	0,308	593,88	10	0	10	1,1	199
ЛК	Ок	В	2,1	1,5	3,15	48	1,961	359,86	10	0	10	1,1	326
	Кр	-	2,2	5,6	12,32	48	0,214	585,45	-	-	-	1	127
												ИТОГО	652
<u>.</u>		Оби	цие тепл	опотері	и здания	: (36345	+5857) +	(4126 +38	(section 1999) =5022	7Вт			
	НС	3	6,2	5,5	34,1	46	0,46	721,56	5	2	7	1,07	194
	НС	В	6,2	5,5	32,21	46	0,46	681,56	10	2	12	1,12	204
	HC	Ю	12	5,5	52,5	46	0,46	1110,90	0	2	2	1,02	187
СКЛАД	Ок	Ю	9	1,5	13,5	46	3,23	2005,83	0	0	0	1	184
СКЛАД	НС	С	12	5,5	40,5	46	0,46	856,98	10	2	12	1,12	207
	Ок	С	9	1,5	13,5	46	3,23	2005,83	10	0	10	1,1	205
	Кр	-	6,2	12	74,4	46	0,36	1232,06	0	0	0	1	187
	Дв	В	0,9	2,1	1,89	46	0,86	74,77	10	1,48	1,58	2,585	486

Вр	С	4	3	12	46	0,86	474,72	10	1,48	1,58	2,585	489
									Теп	лопотер	и через полы	1783
											ИТОГО	4126

приложение в

Схемы по отоплению

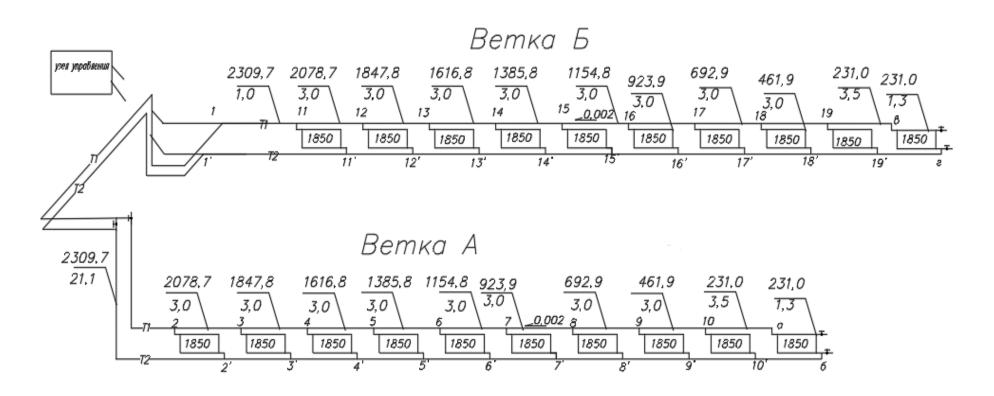


Рисунок В.1-Расчетная схема системы отопления торгового зала

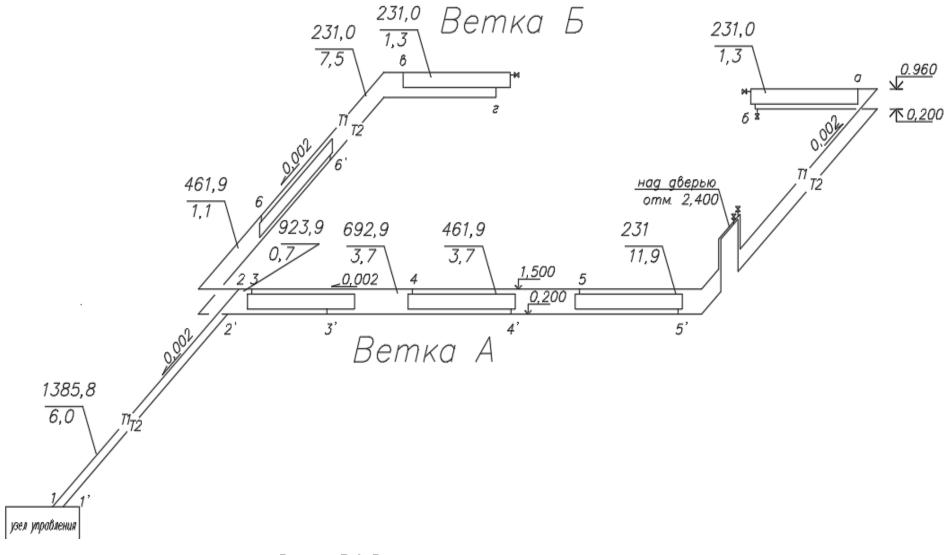


Рисунок В.2- Расчетная схема системы отопления склада

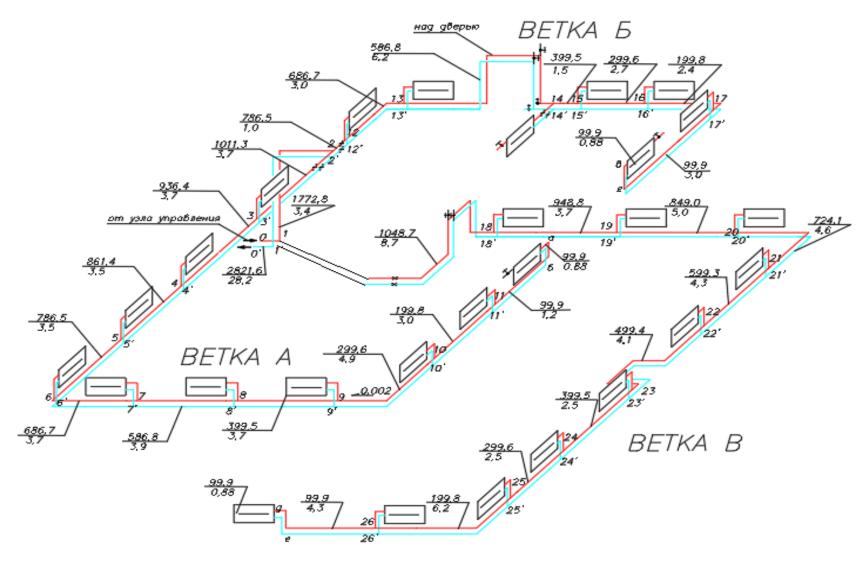


Рисунок В.3- Расчетная схема системы отопления 2го этажа

ПРИЛОЖЕНИЕ Г

Расчет теплопоступлений от солнечной радиации

Таблица В.1- Результат расчета теплопоступлений от солнечной радиации

таолица в	0.1-163	ультат	pacaci	a reninoi	10C1 y 1111C	лии от с	ОЛИСЧИО	и радиац	ИИ					
Параметр	5 - 6	6 - 7	7 - 8	8 - 9	9 - 10	10 - 11	11 - 12	12 - 13	13 - 14	14 - 15	15 - 16	16 - 17	17 - 18	18 - 19
						Ор	иентация	окна: С						
						Плоц	цадь окна:	$F_0 = 90 \text{ m}^2$						
к ₁	0,54	0,54	0,54	0,54	1,26	1,26	1,26	1,26	1,26	1,26	0,54	0,54	0,54	0,54
к2								0,9						
β_{c_3}								0,85						
$q_{\pi}.,B_T/M^2$	102	26	0	0	0	0	0	0	0	0	0	0	26	102
$q_{p}.,B_{T}/M^{2}$	55	69	71	67	63	60	59	59	60	63	67	71	69	55
Qo ,BT	5837	3532	2640	2491	5465	5205	5118	5118	5205	5465	2491	2640	3532	5837
						Opi	иентация (окна: Ю						
						Плош	цадь окна:	$F_0 = 90 \text{ m}^2$						
к1	1,26	1,26	1,26	1,26	0,54	0,54	0,54	0,54	0,54	0,54	1,26	1,26	1,26	1,26
К2								0,9						
β_{c_3}								0,85						
q_{π} ., B_T/M^2	0	0	13	94	206	299	344	344	299	206	94	13	0	0
$q_{p.}$,B T/M^2	31	59	76	85	87	90	91	91	90	87	85	76	59	31
Qo ,BT	2689	5118	7721	15528	10893	14463	16173	16173	14463	10893	15528	7721	5118	2689
Сумма Q ₀ , Вт	8526	8650	10361	18019	16359	19668	21291	21291	19668	16359	18019	10361	8650	8526

ПРИЛОЖЕНИЕ Д i-d диаграммы в XII и TII помещения торгового зала

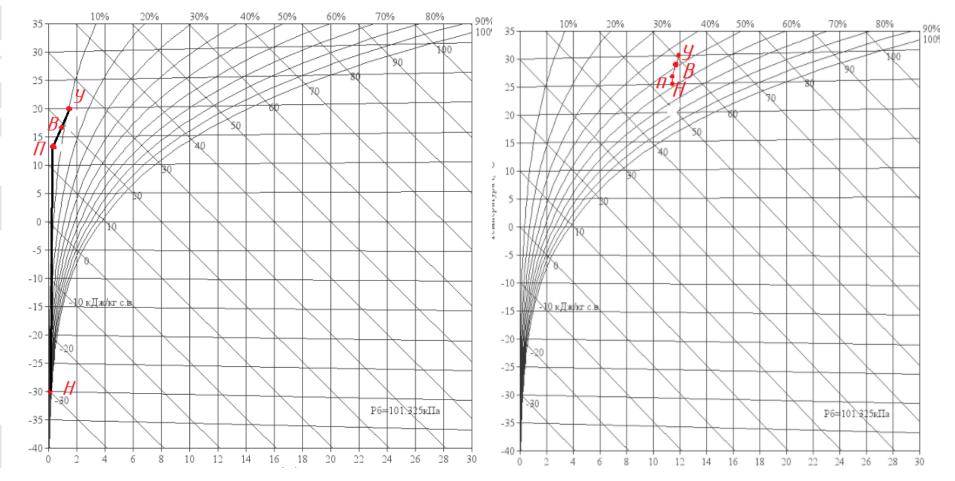


Рисунок Д.2- Id диаграммы в XП и ТП соответственно

приложение е

Расчетные схемы систем вентиляции

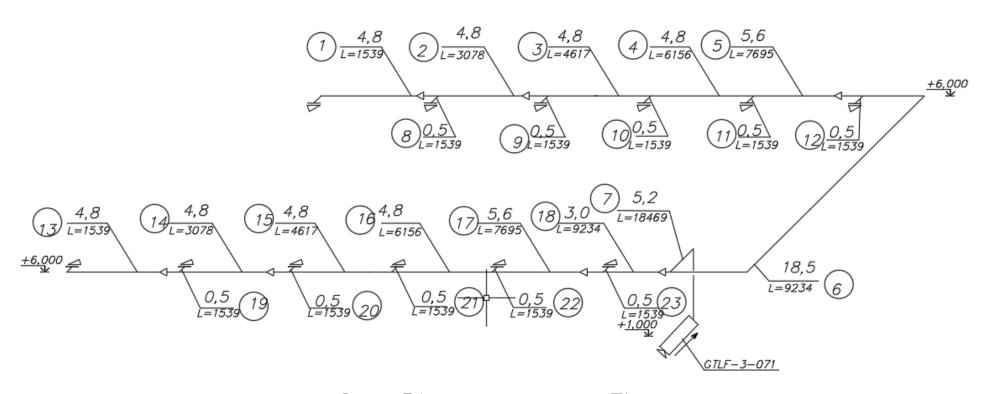


Рисунок Е.1- расчетная схема системы П1

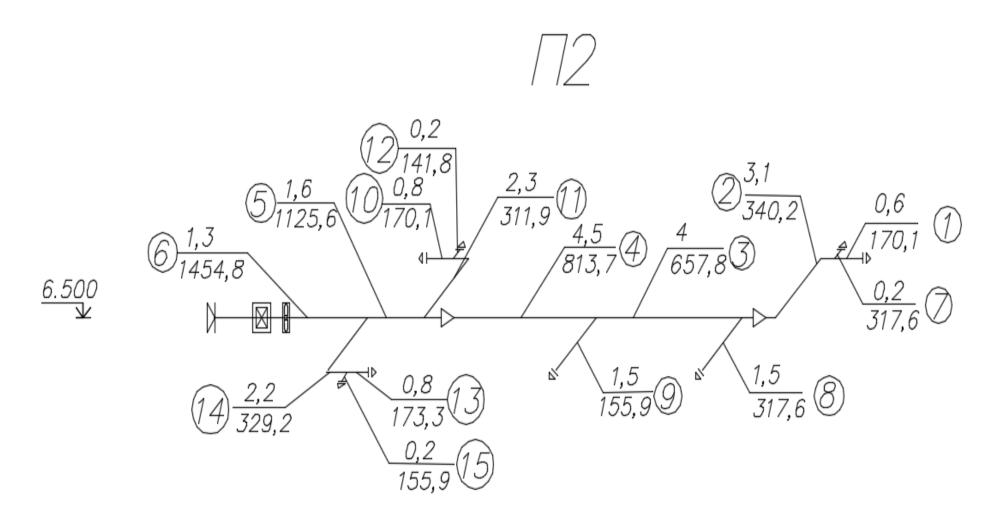


Рисунок Е.2- расчетная схема системы П2

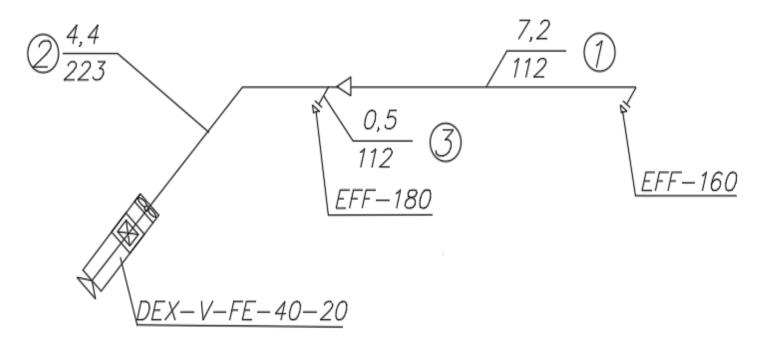


Рисунок Е.3- расчетная схема системы ПЗ

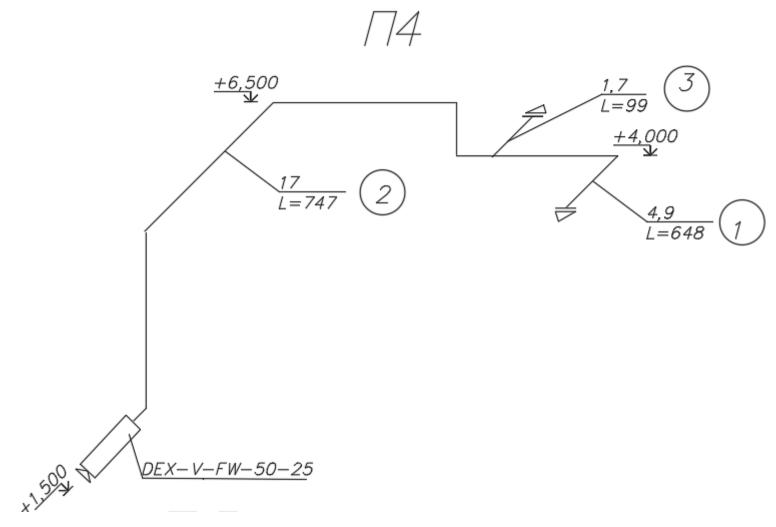


Рисунок Е.4- расчетная схема системы П4

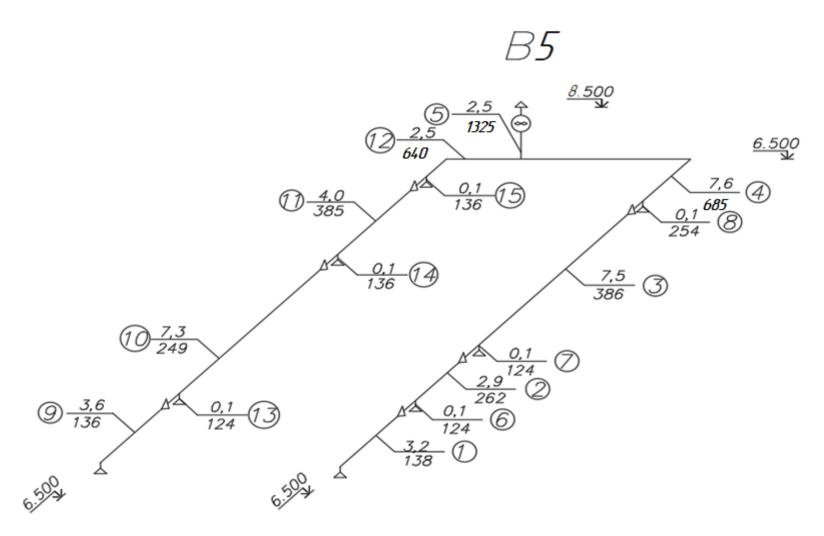


Рисунок Е.5- расчетная схема системы В5

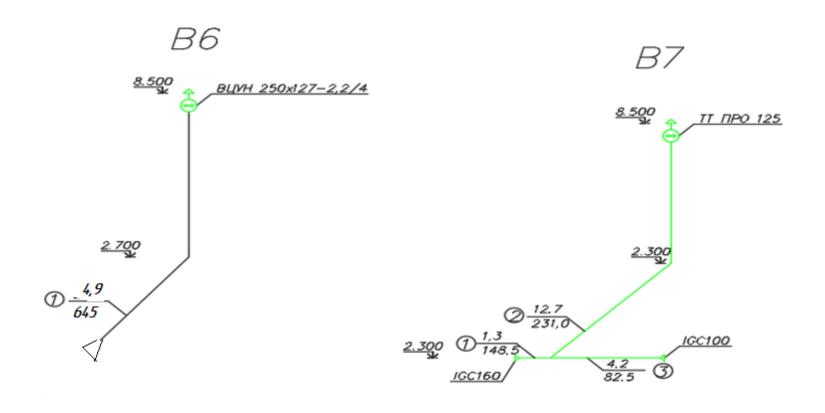


Рисунок Е.6- расчетные схемы систем В6-В7

приложение ж

Аэродинамический расчет систем вентиляции

Таблица Ж.1- Аэродинамический расчет приточных систем вентиляции

			-	Аэроди	намический	расчет меха	нического п	ритока П1				
№ уч-ка	L, м ³ /ч	1, м	а×b или d, мм	F m ²	V, м/c	R, Па	R·l, Па	Σξ	Рд, Па	z, Πa	Rl+z, Па	Σ(Rl+Z), Πa
1	2	3	4	5	6	7	8	9	10	11	12	13
					BET	КА А. Маги	страль					
BP	1539			0,85	0,50			0,6	5,4	3,24		3,2
1	1539	4,8	400	0,13	3,29	0,315	1,51	0,69	7,19	4,96	6,47	9,7
2	3078	4,8	560	0,25	3,42	0,228	1,09	0,59	7,2	4,25	5,34	15,1
3	4617	4,8	630	0,31	4,14	0,213	1,02	0,43	12,1	5,20	6,23	21,3
4	6156	4,8	630	0,31	5,52	0,462	2,22	0,43	18,1	7,78	10,00	31,3
5	7695	5,6	630	0,31	6,90	0,705	3,95	0,43	28,6	12,30	16,25	47,5
6	9234	18,5	710	0,42	6,30	0,53	9,81	0,74	23,2	17,17	26,97	74,5
7	18469	5,2	900	0,64	8,02	0,62	3,22	1,2	38,4	46,08	49,30	123,8
						Ответвлени	RI					
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
8	1539	0,5	400	0,13	3,29	0,315	0,1575	1,45	7,19	10,43	10,58	13,8
				Невяз	κa: (ΔP2-ΔP8)/ΔP2·100%=	= 15,1-13,8/1	5,1>15%				
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
9	1539	0,5	400	0,13	3,29	0,345	0,1725	2,13	7,19	15,31	15,49	18,7
	-		· · ·	Невяз	κa: (ΔP3-ΔP9)/ΔP3·100%	= 21,3-2,13/2	21,3>15%	•		•	•
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
10	1539	0,5	400	0,13	3,29	0,315	0,1575	2,88	7,19	20,71	20,86	24,1

	Невя	нзка: (ΔР4-	ΔP10)/ΔP	4·100%= 31,3	3-10,6/31,3>1	5%; Дросс	сель-клапан::	$\xi = (\Delta P4 - \Delta F$	Р10)/ΔРдин =	= 20,7/7,19 = 2	2,88	
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
11	1539	0,5	400	0,13	3,29	0,315	0,1575	5,13	7,19	36,88	37,04	40,2
	Невя	зка: (ΔР5-	ΔP11)/ΔP:	5·100%= 47,5	5-10,6/10,6>1	5% ; Дрос	сель-клапан::	$\xi = (\Delta P5 - \Delta I)$	Р11)/ΔРдин	= 36,9/7,19 =	5,13	
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
12	1539	0,5	400	0,13	3,29	0,315	0,1575	8,88	7,19	55,58	67,2	58,9
	Невязка:	(ΔΡ6-ΔΡ1	2)/ΔP6·1	00%= 74,5-	10,6/62,8>15	5% ; Дрос	сель-клапан	$:: \xi = (\Delta P6 -$	-ΔP12)/ΔPд	$_{\rm HH} = 63,9/7,1$	19 = 8,88	
					BET	ГКА Б. Маг	истраль					
BP	1539			0,85	0,50			0,6	5,4	3,24		3,2
13	1539	4,8	400	0,13	3,29	0,315	1,51	0,69	7,19	4,96	6,47	9,7
14	3078	4,8	560	0,25	3,42	0,228	1,09	0,59	7,2	4,25	5,34	15,1
15	4617	4,8	630	0,31	4,14	0,213	1,02	0,43	12,1	5,20	6,23	21,3
16	6156	4,8	630	0,31	5,52	0,462	2,22	0,43	18,1	7,78	10,00	31,3
17	7695	5,6	630	0,31	6,90	0,705	3,95	0,43	28,6	12,30	16,25	47,5
18	9234	3	710	0,42	6,30	0,53	1,59	0,59	23,2	13,69	15,28	62,9
				Невя	зка: (ДР6-ДР	P18)/ΔP6·10	0%= 74,59-62	.,9/>15%				
						Ответвлен						
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
19	1539	0,5	400	0,13	3,29	0,315	0,1575	1,01	7,19	7,26	7,42	10,6
			1	Невяз	κα: (ΔP13-ΔP	19)/ΔP13·10	00%= 9,7-10,6	5/9,7>15%	<u>I</u>	1		
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
20	1539	0,5	400	0,13	3,29	0,315	0,1575	1,36	7,19	9,78	9,94	13,

				Невязка	α: (ΔΡ14-ΔΡ20	O)/ΔP14·10	0%= 15,1-13,1	1/15,1>15%				
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
21	1539	0,5	400	0,13	3,29	0,315	0,1575	2,88	7,19	20,71	20,86	24,1
	Невя	зка: (ΔР15-	-ΔΡ21)/ΔΙ	P15·100%= 21	3-10,6/21,3>	15% Дрос	сель-клапан: ह	$\xi = (\Delta P15 - \Delta P)$	21)/ΔРдин =	=10,7/7,19 =1	,488	
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
22	1539	0,5	400	0,13	3,29	0,315	0,1575	5,13	7,19	36,88	37,04	40,2
	Нев	язка: (ΔР16	5-ΔP22)/Δ	P16·100%= 3	1,3-10,6/31,3		сель-клапан:	$\xi = (\Delta P 16 - \Delta)$	Р22)/ΔРдин	=20,7/7,19 =2	2,88	
BP	1539			0,85	0,5			0,6	5,4	3,24		3,2
23	1539	0,5	400	0,13	3,29	0,315	0,1575	1,01	7,19	7,26	7,42	10,6
	Невя	язка: (ΔР17	'-ΔP23)/Δ	P17·100%= 4	7,5-10,6/47,5	>15% Дрос	сель-клапан:	$\xi = (\Delta P17 - \Delta)$	Р23)/ΔРдин	=36,9/7,19 =:	5,13	
				Аэродин	амический ј	расчет мех	канического	притока П2	2			
						Магистра	аль					
1	2	3	4	5	6	7	8	9	10	11	12	13
BP	170,1			0,012	1,41			0,9	1,2	1,08		1,1
1	170,1	0,6	160	0,02	2,35	0,55	0,33	0,3	3,32	1,00	1,33	2,4
2	340,2	3,1	160	0,02	4,7	1,93	5,983	1,44	13,3	19,15	25,14	27,6
3	657,8	4	250	0,05	3,72	0,72	2,88	0,3	8,33	2,50	5,38	32,9
4	813,7	4,5	250	0,05	4,6	1,07	4,815	1,82	12,79	23,28	28,09	61,0
5	1125,6	1,6	315	0,08	4,01	0,62	0,992	0,13	9,68	1,26	2,25	63,3

6	1454,8	1,3	315	0,08	5,19	0,99	1,287	0,13	16,22	2,11	3,40	66,7
			<u> </u>			Ответвлен	НИЯ	1			1 1	
BP	170,1			0,012	0,5			0,9	1,2	1,08		1,1
7	170,1	0,2	160	0,02	2,35	0,55	0,11	0,25	3,32	0,83	0,94	2,0
				Нев	язка: (ДР1-Д	P7)/ΔP7·10	0%= 2,4-2,0/2	,4>15%		1		
BP	317,6			0,012	1,41			0,9	4,1	3,69		3,7
8	317,6	1,5	160	0,012	4,39	1,7	2,55	1,54	11,6	17,86	20,41	24,1
	1	Невязка: (Д	ΔP2-ΔP8)/	$\Delta P2 \cdot 100\% = 2$	27,6-9,7/27,6>	>15% Дрос	сель-клапан:	$\xi = (\Delta P2 - \Delta P8)$)/∆Рдин =1	7,9/4,1 =1,54	-	
BP	155,9			0,007	1,13			1,1	7,3	8,03		8
9	155,9	1,5	125	0,01	3,53	1,56	2,34	2,76	7,5	20,70	23,04	31,0
	I	Невязка: (Д	P3-ΔP9)/Δ	$\Delta P3 \cdot 100\% = 3$	2,9-12,2/32,9	>15% Дрос	сель-клапан:	$\xi = (\Delta P2 - \Delta P8)$	8)/ ∆ Рдин =2	20,7/4,1 =2,76		
BP	170,1			0,012	1,41			0,9	4,1	3,69		3,7
10	170,1	0,8	160	0,02	2,35	0,55	0,44	9,75	3,32	32,37	32,81	36,5
11	311,9	2,3	160	0,02	4,31	1,65	3,795	4,17	11,18	46,62	50,42	86,9
	Не	евязка: (ΔР	4-ΔP11)/Δ	$\Delta P4 \cdot 100\% = 61$	1,0-26,1/61,0>	>15% Дросо	сель-клапан:	$\xi = (\Delta P4 - \Delta P1)$	1)/∆Рдин =	49,3/11,8 =4,	19	
BP	141,8			0,012	1,41			1,1	7,3	8,03		8
12	141,8	0,2	160	0,02	1,96	0,39	19,9	0,25	2,4	0,60	20,50	28,5
	Нев	язка: (ДР1	2-ΔP10)/Δ	$\Delta P12 \cdot 100\% = 2$	28,5-5,1/28,5>	>15% Дрос	сель-клапан:	$\xi = (\Delta P 12 - \Delta P)$	10)/ΔРдин	=49,3/2,29 =9	,75	
DD	155,9			0,012	1,41			0,9	4,1	8,03		8
BP												

14	329,2	2,2	160	0,02	4,55	1,82	4,004	4,07	12,46	50,71	54,72	63,1
	Не	евязка: (ДР5	5-ΔP14)/Δ	P5·100%= 63	,3-12,5/63,3>	∙15% Дросо	сель-клапан: ह	$\xi = (\Delta P 5 - \Delta P)$	14)/∆Рдин =5	50,8/12,46=4,	07	
BP	155,9			0,012	1,41			1,1	7,3	8,03		8
15	155,9	0,2	160	0,02	2,15	0,47	0,094	0,25	2,81	0,70	0,80	8,8
	Н	евязка: (ΔР	15-ΔP13)	/ΔP15·100%=	= 8,8-5,3/8,8>	15% Дросс	ель-клапан: ငုံ	$\xi = (\Delta P15 - \Delta I)$	Р13)/ΔРдин =	3,5/2,81 =9,7	75	
				Аэродин	амический		ханического	притока П	[3			
					1	Магистра	аль	T		T		
BP	112			0,012	1,41			1,1	7,3	8,03		8
1	112	7,2	160	0,02	1,56	0,44	3,168	0,65	2,11	2,76	5,92	23,9
2	223	4,4	180	0,03	4,14	2,31	10,1	0,74		7,8	17,9	41,8
						Ответвлен	- Rин				•	
BP	112			0,012	1,41			1,1	7,3	8,03		8
3	112	0,5	160	0,02	1,56	0,44	0,22	0,89	2,51	2,30	2,60	10,6
				Невяз	ка: (ΔР1-ΔР3	3)/ΔP1·100%	%= 12,5-10,5/	12,5>15%	•			
				Аэродин	амический ј	расчет мех	ханического	притока П	[4			
						Магистра	аль					
BP	648			0,42	1,13			0,75	7,3	5,48		5,5
1	648	4,9	200	0,03	4,51	1,65	8,0	0,34	19,1	6,49	14,58	20,1
2	749	17	225	0,04	5,3	1,42	24,14	0,74	16,5	12,21	36,35	56,4

						Ответвлен	ния							
BP	3P 99 0,012 1,41 1,1 7,3 8,03 8													
3	99	1,7	100	0,02	3,5	1,38	2,346	0,89	7,3	6,50	8,84	16,8		
				Невяз	κα: (ΔΡ1-ΔΡ3)	/ΔP1·100%	√₀= 20,1-16,8/2	0,1>15%						

Таблица Ж.2- Аэродинамический расчет вытяжных систем вентиляции

				Аэродинам	ический р	асчет механ	ической вы	тяжки В5				
№ уч- ка	L, м ³ /ч	1, м	d, мм	F m ²	V, M/c	R, Па	R·l, Па	Σξ	Рд, Па	z, Па	Rl+z, Па	Σ(Rl+Z), Πα
1	2	3	4	5	6	7	8	9	10	11	12	13
						Магистраль						
BP	138			0,004	1,13			1,1	7,3	8,03		8
1	138	3,2	100	0,01	4,88	3,72	11,904	1,25	14,34	17,93	29,83	37,8
2	262	2,9	140	0,02	4,73	2,31	6,699	0,74	13,47	9,97	16,67	54,5
3	386	7,5	180	0,03	4,21	1,36	10,2	0,92	10,67	9,82	20,02	74,5
4	685	7,6	225	0,04	4,51	1,17	8,892	0,34	12,24	4,16	13,05	87,6
5	1325	2,5	315	0,08	4,14	0,66	1,65		10,32	0,00	1,65	89,2
						Ответвления						
BP	136			0,004	1,13			1,1	7,3	8,03		8
9	136	3,6	100	0,01	4,81	3,62	13,032	1,36	13,93	18,94	31,98	40,0
10	249	7,3	140	0,02	4,49	2,1	15,33	0,83	12,14	10,08	25,41	65,4
11	385	4	180	0,03	4,2	1,36	5,44	0,68	10,62	7,22	12,66	78,0

										тродолжег		
12	640	2,5	225	0,04	3,67	0,81	2,025	0,09	8,11	0,73	2,75	80,8
				Невязка: (ΔP4-ΔP12)	/ΔP14·100%=	87,6-80,8/87	7,6>15%				
BP	124			0,004	1,13			1,1	7,3	8,03		8
6	124	0,1	100	0,01	4,39	3,06	0,306	2,29	11,6	26,56	26,87	34,9
		Невязк	a: (ΔP1-ΔP6)/ΔP	1.100%= 37,8-	-11,2/37,8>	15% Дросселн	ь-клапан: ξ =	$= (\Delta P1 - \Delta P6)$	/ΔРдин =3,5	/11,6 =2,29		
BP	124			0,004	1,13			1,1	7,3	8		8
7	124	0,1	100	0,01	4,39	3,06	0,306	3,73	11,6	43,27	43,57	51,6
		Невязка	a: (ΔP2-ΔP7)/ΔP2	2·100%= 54,5-	11,2/54,5>	15% Дроссель	-клапан: ξ =	$(\Delta P2-\Delta P7)$	∕∆Рдин =43,3	3/11,6 = 3,73		
BP	254			0,005	1,19			1,2	0,9	1,08		1,1
8	254	0,1	140	0,02	4,58	2,17	0,217	4,42	12,63	55,82	56,04	57,1
		Невязка	: (ΔΡ3-ΔΡ8)/ΔΡ3	·100%= 74,5-1	8,6/74,5>1	5% Дроссель-	клапан: ξ =	$(\Delta P3-\Delta P8)/A$	ΔРдин =55,9	/12,63 =4,42	<u>.</u>	
BP	124			0,004	1,13			1,1	7,3	8,03		8
13	124	0,1	100	0,01	4,39	3,06	0,306	2,48	11,6	28,77	29,07	37,1
		Невязка:	$(\Delta P9-\Delta P13)/\Delta P9$	9·100%= 40,0-	11,2/40,0>	15% Дроссель	-клапан: ξ =	(ΔΡ9-ΔΡ13)/∆Рдин =28	,8/11,6 =2,48		
BP	136			0,004	1,2			1,12	2,4	2,688		2,7
14	136	0,1	100	0,01	4,81	3,62	0,362	4,22	13,93	58,78	59,15	61,8
	I	Невязка: (д	ΔΡ10-ΔΡ14)/ΔΡ1	0.100%= 65,4	-6,5/65,4>1	5% Дроссель-	клапан: ξ =	(ΔΡ10-ΔΡ1	4)/∆Рдин =55	5,9/13,93 =4,2	2	
BP	136			0,004	1,2			1,12	2,4	2,688		2,7
15	136	0,1	100	0,01	4,81	3,62	0,362	5,13	13,93	71,46	71,82	74,5
	I	Невязка: (д	ΔΡ11-ΔΡ15)/ΔΡ1	1.100%= 78,0	-6,5/78,0>1	5% Дроссель-	клапан: ξ =	(ΔΡ11-ΔΡ15	5)/ ДР дин =71	,5/13,93 =5,1	3	
				Аэродинам	ический р	асчет механи	ической вы	тяжки В6				
						Магистраль						
BP	648			0,42	3,31			0,48	18,2	8,74		8,74
1	648	2,9	200	0,08	5,73	1,92	5,56	0,70	19,77	13,84	19,4	28,1

					Аэродинамі	ический ј	расчет м	иехани	ческо	кктыа й	кки В7				
							Магист	граль							
BP	148,5				0,004	1,13					1,1	7,3	8,0)3	8
1	148,5	1,	3	100	0,01	5,25		4,28	5,56	4	0,48	6,8	84 3,2	8,85	16,8
2	231	12,	7	140	0,02	4,17		1,83	23,24	41	0,35	10,4	47 3,6	66 26,91	43,8
	Ответвления														
BP	0,004 0,98 1,1 6,9 7,59 7,5														
3	82,5	4,	2	100	0,01	2,92		1,48	6,21	6	0,4	5	5,2 2,0	8,30	15,8
					Невязка:	(ΔΡ1-ΔΡ3)/ΔP1·10	00%= 10	6,8-15,	8/16,8>1	5%				
					Аэродинами	ический р	асчет е	стеств	енной	вытяжн	ки ВЕ1				
№ уч-ка	L, M ³ /	ч]	l, м	d, мм	F m ²	V,	м/с	Я, Π	a	R·l, Па	Σ	ξ	Рд, Па	z, Пa	Rl+z, Па
1	1	150	2,5	20	0 0,03	14	0,88	0	,07	0,175	5	2,1	0,47	0,99	1,162
	<u> </u>	•				$P_{\text{pacn}}=9,8$	1.2,5.(1,	,26-1,2	1)=1,2	23				•	<u> </u>
						(1,23	-1,162)/	'1,23=5	5,5%						

приложение 3

Характеристики подобранных вентиляторов

 $L=18469 \text{ m}^3/\text{ч}$

Р=150 Па

BPAH 9-9

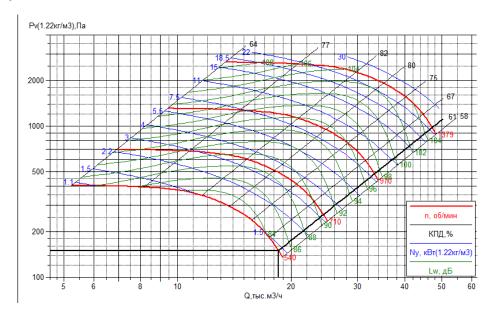


Рисунок 3.1-Подбор вентилятора для П1

Вытяжные крышные вентиляторы в торговом зале - КРОС61-050 в количестве 4шт.

На каждый приходится L=18469/4=4620 m^3/q

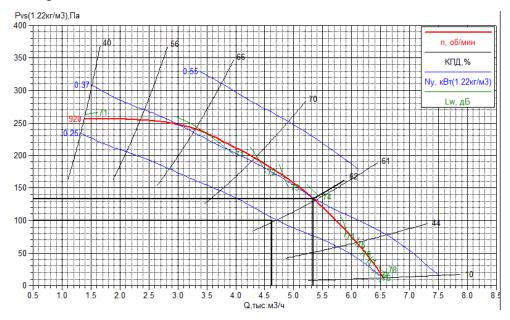


Рисунок 3.2 -Подбор вентилятора для В1-В4

 $L=1325 \text{ m}^3/\text{q}$

Р=100 Па

MUB 025 315EC

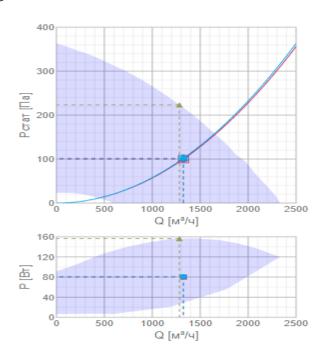


Рисунок 3.3-Подбор вентилятора для В5

 $L=648 \text{ m}^3/\text{q}$

Р=50 Па

RS 40-20 EC sileo

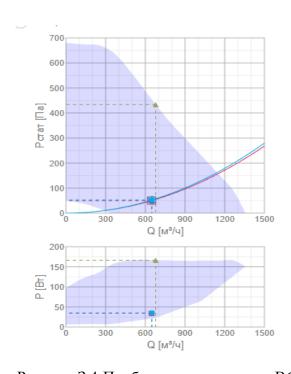


Рисунок 3.4-Подбор вентилятора для В6

 $L=240 M^3/ч$

Р=50 Па

RS 30-15 EC sileo

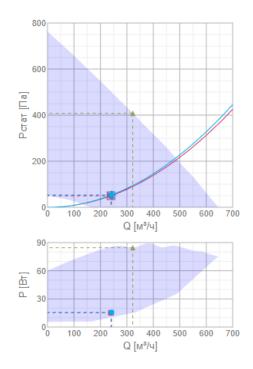


Рисунок 3.5-Подбор вентилятора для В7

Крышной вентилятор склада

 $L=223 \text{ m}^3/\text{ч}$

Р=50 Па

KPOM-3,1

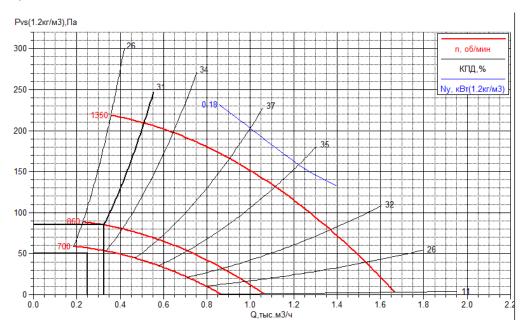


Рисунок 3.6-Подбор вентилятора для В8

приложение и

Подбор оборудования приточной установки П1

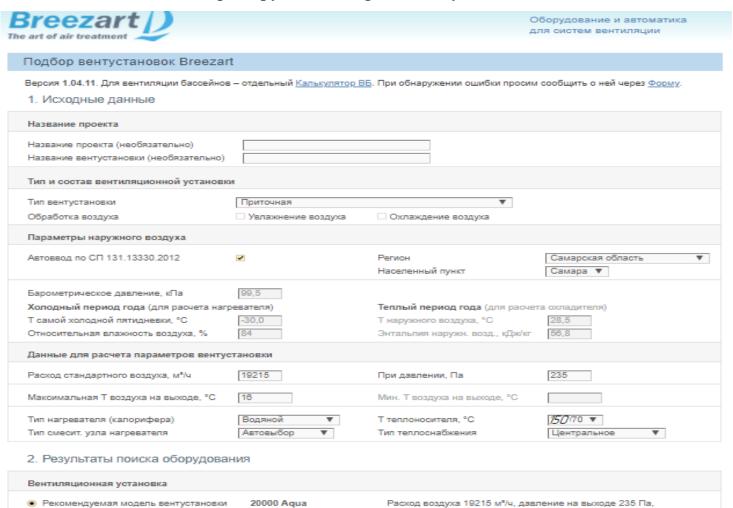


Рисунок И.1- Оборудование П1

Подбор оборудования приточной установки П2

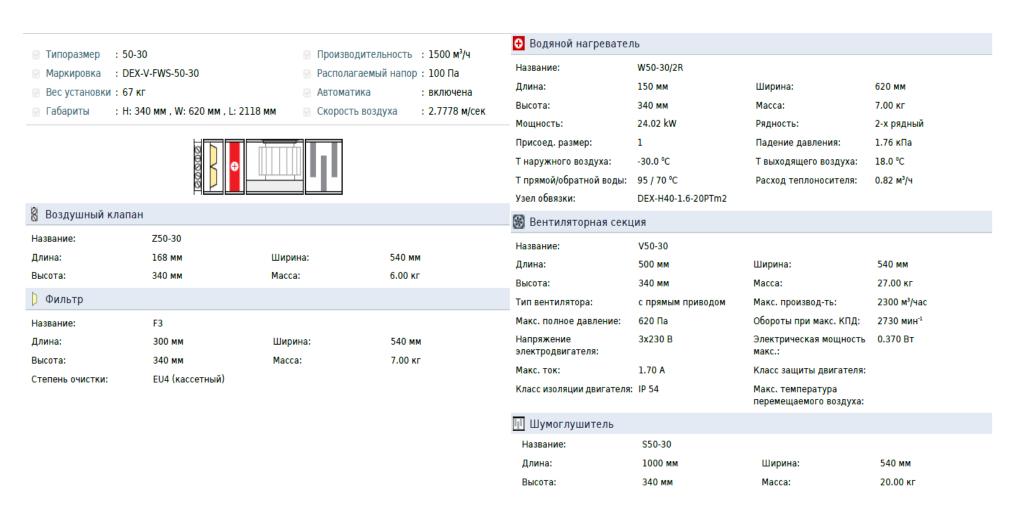


Рисунок И.2- Оборудование П2

Подбор оборудования приточной установки ПЗ

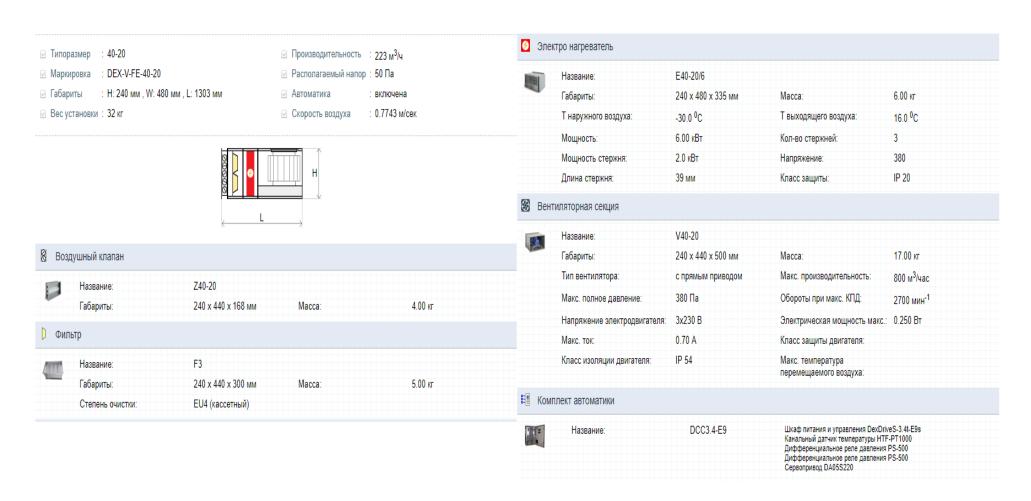


Рисунок И.3- Оборудование П3

Подбор оборудования приточной установки П4

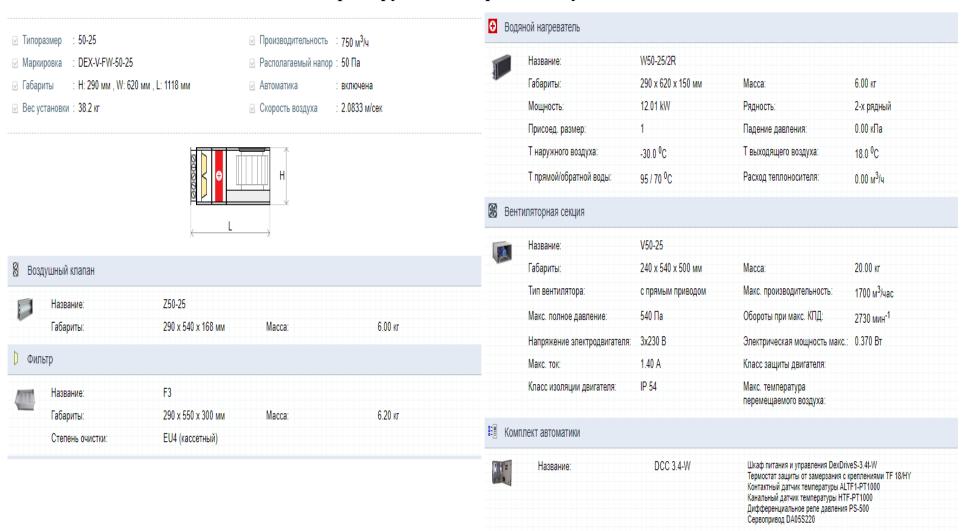


Рисунок И.4- Оборудование П4