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Аннотация 

Тема выпускной квалификационной работы (ВКР): «Программная 

реализация построения фрактального ряда и определения его показателя 

Херста». 

В данной выпускной квалификационной работе исследуются 

фрактальные ряды, алгоритмы их построения и нахождения их показателей 

Херста. В исследовании рассматриваются реализации алгоритма смещения 

средней точки и алгоритма R/S-анализа. 

Структура работы представлена ведением, тремя главами, заключением и 

списком литературы. 

Во введении определены актуальность темы, цели и задачи, поставленные 

в работе, а также объект и предмет исследования. 

В первой главе описываются основные понятия, связанные с 

моделированием и анализом временных рядов, вводятся понятия фрактальной 

размерности и показателя Херста. 

Вторая глава посвящена способам построения фрактальных рядов. В 

первой части описываются алгоритмы построения фрактальных множеств. Во 

второй части выполняется реализация алгоритма смещения средней точки. 

В третьей главе рассказывается о способах анализа фрактальных рядов, 

описываются некоторые методы нахождения показателя Херста, реализуется 

алгоритм R/S анализа. 

Выпускная квалификационная работа представлена на 40 страницах, 

включает 9 иллюстраций, 19 формул, 2 приложения, список используемой 

литературы содержит 21 источник.  



 

 

Abstract 

The title of the graduation work is Software implementation of the construction 

of a fractal series and determination of its Hurst index. 

The object of the graduation work is fractal time series. 

The subject of the graduation work is computer simulation of fractal time 

series. 

The aim of the work is the development of software implementation of the 

construction of a fractal series and software implementation of the definition of the 

Hurst index. 

This graduation work is about fractal series, algorithms for their construction 

and finding their Hurst indicators. The key issue of the graduation work is the 

implementation of the midpoint shift algorithm and the R/S analysis algorithm. 

We first discuss the relevance of the topic, the goals and objectives set in the 

work, as well as the object and subject of research. 

We outline the basic concepts associated with the modeling and analysis of 

time series, introduces the concepts of fractal dimension and the Hurst exponent. 

Next we examine how to constructing fractal series. We analyze algorithms for 

constructing fractal sets. We then implement of the mid-point offset algorithm. 

We also examine methods for analyzing fractal series, describes some methods 

for finding the Hurst index. 

Finally, we implement the R/S analysis algorithm and check its operability. 

The technique applied has confirmed that the value of the Hurst index for the 

persistent series tends to 1, whereas for the antipersistent series this value will be 

closer to 0. 

In conclusion we’d like to stress the R/S analysis algorithm shows the most 

accurate results when the real value of Hurst's index approaches 6.8. 

The graduation work consists of an explanatory note on 40 pages, including 9 

figures, 19 formulas, the list of 21 references including 5 foreign sources, and two 

appendices.  
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ВВЕДЕНИЕ 

Когда-то большинство людей считало, что геометрия в природе 

ограничивается простыми фигурами, такими как линия, круг, многоугольник, 

сфера, коническое сечение, квадратичная поверхность, или их комбинациями. 

Однако, многие природные системы более сложны и нерегулярны и 

использования только обычных объектов классической геометрии 

недостаточно для их описания. Приведем примеры: моделирование горного 

хребта, кроны дерева, каскадных водопадов и турбулентных процессов, 

определяющих погоду, ритма мозга и сердца, которые наблюдаются на 

энцефалограмме и электрокардиограмме, внезапные волны паники на рынках 

финансов и т.д. 

Для их исследования используется теория фракталов и хаоса. Термин 

«фрактал» является статичной геометрической конфигурацией, как, например, 

снимок водопада. Хаос – это термин динамики, который используется для 

описания различных явлений, как, например, турбулентное поведение погоды. 

Фракталы находят сейчас все больше и больше различных применений в 

науке и жизни человека, так как по сути все наше мироздание один большой 

фрактал. Фрактальная размерность, как индикатор нерегулярности графика 

фрактала, за последнее десятилетие вышла из области теоретической 

математики и стала важным количественным показателем в области обработки 

сигналов и изображений. Мера изрезанности контура объекта или 

нестационарности сигнала часто используется для получения важных 

характеристик данных, их классификации и прогнозирования. Фракталы 

используются для прогнозирования экономических индексов, разведочного 

анализа сигнала, медицинской диагностики, распознавания границ объектов и 

т.д. Этим и определяется актуальность темы исследования.  

Объект исследования: фрактальные временные ряды. 

Предмет исследования: компьютерное моделирование фрактальных 

временных рядов. 
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Цель данной работы – разработать программную реализацию построения 

фрактального ряда и программную реализацию определения показателя Херста. 

Для реализации цели сформулированы следующие задачи: 

1. Выявить и описать основные понятия, связанные с моделированием 

фрактальных рядов; 

2. Осуществить анализ методов генерации фрактальных рядов и 

программную реализацию метода смещения средней точки; 

3. Осуществить анализ методов определения размерности фракталов и 

программную реализацию определения показателя Херста. 

В первой главе описываются основные понятия, связанные с 

моделированием и анализом временных рядов, вводятся понятия фрактальной 

размерности и показателя Херста. 

Вторая глава посвящена способам построения фрактальных рядов. В 

первой части описываются алгоритмы построения фрактальных множеств. Во 

второй части выполняется реализация алгоритма смещения средней точки. 

В третьей главе рассказывается о способах анализа фрактальных рядов, 

описываются некоторые методы нахождения показателя Херста, реализуется 

алгоритм R/S анализа.  
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Глава 1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФРАКТАЛЬНЫХ 

МНОЖЕСТВ 

1.1 Основные понятия теории фракталов 

Фрактал — множество, которое имеет свойство самоподобия, то есть 

объект приближенно или точно совпадает с частью самого себя. Это значит, что 

целое имеет такую же форму, как и одна или более его частей. В математике 

фракталами называют множества точек в евклидовом пространстве, которые 

обладают дробной метрической размерностью (Хаусдорфа или Минковского), 

или топологической размерностью, отличной от метрической размерности, 

поэтому их следует отличать от других геометрических фигур, которые 

ограничены конечным числом звеньев.  

Мандельброт предложил следующее определение фрактала: 

Фракталом является структура, состоящая из частей, которые в каком-то 

смысле подобны целому. 

Впервые в математической литературе фракталы появились более ста лет 

назад. Тогда общество отнеслось к ним негативно. Их называли патологией, 

интересующей только исследователей, которые злоупотребляют 

математическими причудами, а не настоящих ученых. Лишь благодаря усилиям 

Б. Мандельброта такое отношение к ним изменилось и фрактальная геометрия 

стала прикладной наукой. 

Фракталы известны уже около века, они хорошо изучены и имеют много 

приложений в жизни. Это явление основано на довольно простой идее: 

бесконечное по разнообразию и красоте множество фигур можно получить из 

довольно простых конструкций, используя всего две операции — 

масштабирование и копирование. 

У понятия «фрактал» нет строгого определения. Поэтому это слово не 

является математическим термином. Зачастую так называют геометрическую 

фигуру, удовлетворяющую одному или нескольким из следующих свойств: 

 При любом увеличении обладает сложной структурой; 



8 

 

 Является самоподобной; 

 Обладает дробной фрактальной размерностью, большей чем 

топологическая; 

 Может быть построена при помощи рекурсивных процедур. 

Многие природные объекты обладают свойствами фрактала, к примеру: 

облака, кроны деревьев, побережья, снежинки, система альвеол человека или 

животных, кровеносная система[12]. 

1.2 Свойства фрактальных множеств 

Первое фракталов – нерегулярность. Если описать фрактал функцией, то 

нерегулярность будет означать, что эта функция не дифференцируема, 

следовательно, ни в какой точке она не будет гладкой. Это имеет прямое 

отношение к рынку. Колебания цен порой так изменчивы, что приводят в 

замешательство многих трейдеров. 

Второе свойство фракталов – самоподобие. Фрактал – это объект, точно 

или приближенно совпадающий с частью себя самого без значительных 

изменений. Однако изменения все же есть, и это может повлиять на восприятие 

объекта. 

Однако, далеко не все фракталы имеют правильную и бесконечно 

повторяющуюся структуру. Многие фракталы, которые встречаются в природе, 

не имеют геометрического подобия, но воспроизводят в каждом фрагменте себя 

статистические свойства целого объекта. Фракталы, форма развития которых 

нелинейна, называются мультифракталами. Мультифракталы обладают 

переменной фрактальной размерностью. Мультифракталами сильно упрощают 

описание процессов и объектов реального мира[18]. 

Помимо понятия самоподобных фракталов зачастую используют понятие 

самоафинных фракталов. О самоафинности говорят в случае, если при 

построении или, напротив, “разложении” фрактала на подобные целому части, 

масштабирование вдоль разных пространственных осей, в которых 

производится построение, происходит с разными масштабными 

https://elementy.ru/posters/fractals/dimensions
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коэффициентами. В таких случаях оси неэквивалентны и, как правило, 

отвечают разным физическим величинам. Классическим примером 

самоафинных фракталов являются фрактальные временные ряды, к примеру, 

временная зависимость координаты броуновской частицы[9]. 

1.3 Фрактальная размерность 

Для множеств существуют разные размерности в природе. Размерность 

во многом зависит от того, как ее измеряют. В это понятие входит то, что 

помимо формул для нахождения размерности следует задать операциональный 

набор метода измерения и интерпретации размерности. Под размерностью 

обычно понимают количество независимых параметров, которые нужны для 

задания положения точки в пространстве. 

По определению фрактальная размерность D является одним из методов 

определения размерности множества в метрическом пространстве. Для n-

мерного множества фрактальная размерность может быть определена по 

формуле: 

,          (1) 

Где Nɛ  - минимальный размер n-мерных «шаров» радиуса ɛ , 

необходимых для покрытия множества. 

Фрактальная размерность показывает, как плотно и равномерно элементы 

данного множества заполняют собой пространство. Для линии (или группы 

линий) на плоскости значение фрактальной размерности D близкое к 1, 

означает «гладкость», к 2 – о ее сильной извилистости и изрезанности в разных 

масштабах[21]. 

Для введения дробной размерности необходимы формулы нахождения 

объемов n-мерных тел, которые зависящих от n. Допустим, объем n-мерного 

куба . В случае с евклидовыми пространствами n принимает 

исключительно целые неотрицательные значения. В случае с задаваемыми 

фрактальными множествами в пространстве n может принимать 

неотрицательные вещественные значение, где . 
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Размерность Минковского. Минковский предложил теорию с 

обобщением размерности для компактного множества . Представим 

наглядно с помощью аппроксимации А объединением шаров и 

просуммированием их объемов или мер. 

 

Рисунок 1 – Объединение шаров 

Допустим, N(ɛ ) – минимальное необходимое для покрытия множества A 

число шаров радиуса ɛ . Сумма их объема V пропорциональна . 

При . Логарифмируем обе части и получаем 

. 

Тогда 

        (3) 

При ɛ →0 значение ln(const) пренебрежимо мало по сравнению с 

ln(N(ɛ )). Получаем, что формула для определения размерности Минковского 

выглядит следующим образом: 

         (4) 

 

1.4 Показатель Херста 

Показатель Херста (H) – основная величина, используемая при анализе 

временных рядов. Эта величина возрастает при уменьшении задержки между 

двумя идентичными парами значений во временном ряду. Впервые она была 

применена на практике для определения размеров плотины на реке Нил в 

условиях долгосрочных осадков и засухи.  
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Показатель Херста определяется точнее, если временной ряд достаточно 

длинный. 

Последовательности с H>0.5, считаются постоянными – они сохраняют 

текущую тенденцию, то есть увеличение в прошлом скорее всего приводит к 

возрастанию в будущем, и наоборот. При значении 0,5 последовательность 

является случайной, а при меньших значениях процесс является непостоянным 

— текущая тенденция стремится к изменению на противоположную[4]. 

Результаты исследований ученых говорят о том, что динамике рыночных 

цен соответствуют показатели Херста намного выше 0,5. Это значит, что 

рыночная динамика не является случайной. Для природных объектов значения 

показателя Херста группируются вблизи 0.72-0.73. 

Показатель Херста взаимосвязан с фрактальной размерностью: 

 У случайного временного ряда фрактальная размерность равна 1.5; 

 У кривой фрактальная размерность равна 1; 

 У геометрической плоскости фрактальная размерность равна 2. 

Таким образом можно сделать вывод, что Фрактальная размерность 

случайного блуждания лежит между кривой и плоскостью. Индекс Херста 

может быть преобразован во фрактальную размерность по следующей 

формуле: 

          (5) 

Таким образом, если показатель Херста H=0,5, то размерность  D=1,5. 

Обе величины являются характеристикой независимой стохастической 

системы. Условие 0,5<Н≤1 соответствует фрактальной размерности множества, 

приближенного к кривой линии. Величина H, соответствующая 0<Н<0,5 

характеризует подверженную переменам систему. 

1.5 Самоподобие 

Геометрический смысл самоподобия: 
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Если разделить отрезок на N равных частей, получим Несколько 

отрезков, каждый из которых будет являться копией, уменьшенной в 1/r раз. N 

и r связаны как Nr=1. Общая формула соотношения выглядит так: 

          (6) 

Самоподобный фрактал – это множество, в котором индекс D из 

равенства (6) не является целым числом, т.е. когда исходный набор разбит на N 

непересекающихся подмножеств, полученных путем масштабирования 

исходных данных с коэффициентом r, значение D не будет целым. 

D, выраженное через N и r, получается логарифмированием: 

          (7) 

Процессы самоподобия похожи между собой, за одним исключением. Все 

процессы не повторяются между собой, а повторяются только их 

статистические свойства, поскольку статистические характеристики не 

изменяются при масштабировании. Важной частью самоподобия является 

показатель Херста, поскольку это показатель самоподобия случайного процесса 

и он характеризует свойство долговременной зависимости. 

1.6 Нахождение фрактальной размерности 

Попробуем определить клеточную размерность для снежинки Коха. По 

мере ее построения будем измерять размер периметра N. За единицы измерения 

u возьмем стороны многоугольников, которые будут получаться в результате 

каждого шага. Номера шагов обозначим как n. Изначально при n=0 имеем u0=1, 

N0=3. После каждого следующего шага единица измерения будет уменьшаться 

в 3 раза, а периметр в этих единицах измерения будет увеличиваться в 4 раза: 

 

 

 и т.д. 

Для снежинки Коха это можно обобщить следующим образом:  
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.        (8) 

Подставив эти значения u и N в формулу , мы получим 

.          (9) 

Одно из важных свойств снежинки Коха – ее бесконечная длина. В связи 

с этим Мандельброт опубликовал несколько работ, в которых он изучил вопрос 

об измерении британской береговой линии. В качестве модели он использовал 

фигуру, подобную снежинке Коха. Единственным исключением является 

введение случайного элемента. Результаты показывают, что кривая, 

описывающая береговую линию, имеет бесконечную длину[17, 20]. 

Доказательство. Пусть исходный отрезок K0 имеет единичную длину. 

Тогда длина кривой K1 равна 4/3. Длина кривой K2 равна 4
2
/3

2
. После n шагов, 

получим, что длина Kn равна 4
n
/3

n
. Отсюда следует, что длина предельной 

кривой K равна бесконечности: 

.        

 (10)  
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Глава 2 МОДЕЛИРОВАНИЕ ФРАКТАЛЬНЫХ 

ВРЕМЕННЫХ РЯДОВ 

2.1 Алгоритмы генерации фрактальных временных рядов 

Ниже приводится краткое описание некоторых из реальных методов, 

используемых для генерации фрактальных временных рядов. 

Одним из наиболее распространенных методов генерации фрактальных 

временных рядов является алгоритм смещения средней точки, поскольку он 

наиболее адаптируемый и легко реализуется в виде компьютерных 

алгоритмов[10]. 

Возьмем отрезок единичной длины. Далее этот отрезок должен быть 

разделен на N=2
m
 частей, где m – произвольное натуральное число. 

Изначальный отрезок постепенно делится на более маленькие отрезки путем 

многократного деления пополам. Для каждого разделения вычисляется 

значение функции  в середине нового отрезка xc, основываясь на значениях 

 и  на концах этого отрезка  и по следующей формуле: 

,         (11) 

где h – случайная нормально распределенная величина, с нулевым мат 

ожиданием и дисперсией , где  – расстояние от середины 

текущего отрезка xc, в которой вычисляется новое значение функции, до его 

концов. 

Другим популярным методом генерации фрактальных рядов является 

метод Фурье. Он основан на методе разложения функции на ряд Фурье. 

Фрактальную кривую  можно выразить как разложение Фурье[15]: 

,      (12) 

где  – набор частот, которые входят в разложение 

Фурье; 

 – амплитуда,  – фаза соответствующих гармоник. 
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Фаза φ для каждой гармоники f  выбирается случайно из диапазона 

[0, 2π]. Амплитуда c зависит от частоты  f  по следующему соотношению: 

,          (13) 

где k – общий амплитудный коэффициент, а β совпадает со значением 

показателя Херста[6]. 

Обобщенное броуновское движение является моделью, описывающей 

движение гипотетических частиц, которые случайным образом перемещаются в 

пространстве[10]. Движение частиц – итог большого числа малых случайных 

перемещений. Зависимость перемещения обобщенной броуновской частицы 

вдоль одной из пространственных координат от времени описывается 

следующим соотношением: 

,      (14) 

Где  – гамма функция;  – стохастические независимые 

перемещения броуновской частицы в моменты времени ; функция , 

которая является ядром равенства (14), отвечает за предыдущие этапы системы 

и определяется следующим образом: 

.      (15) 

L-системы является формальным языком, используемым для построения 

различных геометрических фракталов. Фактически, чтобы использовать этот 

язык, необходимо установить интерпретатор, понимающий и выполняющий 

команды языка L-систем, а также использовать компьютерную графику для 

отображения результатов. 

Зачастую при описании L-систем применяют термин тертл-графика. В 

данном методе точка движется по экрану дискретными шагами и отрисовывает 

собственный след, но при необходимости может двигаться и без следа. В 

каждый момент времени состояние точки описывается параметрами , 

где  – координаты черепашки на плоскости,  – направление взгляда 

точки. Точка может идентифицировать и выполнять серию инструкций, 
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которые записаны в виде кодового слова, буквы которого читаются слева 

направо. Всего букв-команд шесть: 

F – передвинуться на один шаг вперед, рисуя след. 

b – передвинуться на один шаг вперед, не рисуя след. 

[ – открыть ветвь (сохранить текущее состояние (x,y,α) в конец стека). 

] – закрыть ветвь (извлечь с удалением параметры (x,y,α)). 

+ – увеличить угол α на величину θ. 

- – уменьшить угол α на величину θ. 

Все остальные символы, которые могут содержаться в кодовом слове, 

игнорируются. Размер шага и величина θ заданы заранее и остаются 

неизменными для всех перемещений точки[20]. 

Работа L-систем состоит из двух основных стадий: запись кодового слова, 

которое содержит команды для построения фигуры, и выполнение 

последовательности полученных команд с помощью тертл-графики. 

L-система состоит из слова инициализации (аксиомы), набора 

порождающих правил, определяющих, как следует преобразовать кодовое 

слово с каждой новой итерацией, начального состояния параметров , 

размера шага Δ и угла приращения θ. Как правило, , а  и при 

описании начальных условий не указываются. 

Важнейшей частью любой L-системы являются порождающие правила. 

Они обеспечивают многократное усложнение фигуры в процессе работы L-

системы, а так же обеспечивают самоподобие фигуры. Для примера 

рассмотрим L-систему, порождающую снежинку Коха: 

Слово инициализации: F++F++F. 

Порождающее правило: F=F-F++F-F. 

Начальные параметры α0=0, θ=π/3. 

Графическое представление аксиомы – равносторонний треугольник. 

Точка делает один шаг вперед, затем угол α увеличивается на 2π/3, точка делает 

еще один шаг вперед, угол α снова увеличивается на 2π/3 и точка делает еще 

один шаг вперед, возвращаясь в исходное положение. 
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На первом шаге работы L-системы все буквы F в аксиоме заменяются на 

F-F++F-F, согласно порождающему правилу. В результате получим новое 

кодовое слово: 

F-F++F-F++ F-F++F-F++ F-F++F-F. 

Графическое представление соответствует следующему шагу построения 

снежинки Коха. Общее количество итераций естественным образом 

определяется разрешающей возможностью графического устройства. Когда при 

выводе полного изображения фигуры на экран размеры отдельных отрезков 

становятся сравнимы с размером одного пикселя, дальнейшие итерации 

бессмысленны. 

Классическим примером применения команд ветвления является фрактал 

Куст (Рисунок 2): 

 

Рисунок 2 - фрактал Куст 

Слово инициализации: F. 

Порождающее правило: F=-F+F+[+F-F-]-[-F+F+F]. 

Начальные параметры: α0= π/3, θ=22.5
о
. 
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При построении более сложных фигур в алфавит L-систем вводят буквы-

переменные, используемые только для преобразования кодового слова в 

процессе итерирования, но игнорируемые тертл-графикой. К примеру, 

рассмотрим дракона Хартера-Хейтуэя: 

Слово инициализации: FX. 

Порождающие правила: 

X=X+YF+; 

Y=-FX-Y. 

Начальные параметры: α0=0, θ=π/2. 

2.2 Реализация алгоритма смещения средней точки 

Выполним реализацию алгоритма смещения средней точки, используя 

технологию matlab. 

Результат работы алгоритма – массив y, который задает значения для 

моделируемой функции в точках x. 

Исходные данные зададим произвольно: 

a=0;b=1;    %Границы генерируемого фрактального множества; 

m=10; %Произвольное положительное число;  

Количество отрезков зависит от заданного числа m: 

; 

Следовательно, элементов массивов y и x будет N+1. 

H=0.5;  %Показатель Херста; 

y(1)=-1;         

y(N+1)=1; %Значения на концах фрактального множества. 

Далее, в итеративном процессе изначальный отрезок постепенно делится 

на меньшие части. При каждом разделении рассчитывается значение функции 

y(imid) в середине нового рабочего отрезка xc используя значения y(ileft), 

y(iright) в граничных точках этого отрезка. 

В итоге, блок вычисления значений массива y будет выглядеть 

следующим образом: 

for i=0:(m-1) 
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    w=((length(x)-1)/(2^i)); 

    for j=1:(2 î); 

        left=1+w*(j-1); %Индекс левого элемента отрезка 

        right=1+w*(j);  %Индекс правого элемента отрезка 

        mid=(left+right)/2; %Индекс среднего элемента отрезка 

        y(mid)=(y(left)+y(right))/2+h(mid); %Задание значения элемента 

    end 

end; 

Полный код программы представлен в приложении A. 

Ниже представлены результаты работы программы при различных 

заданных показателях Херста (Рисунки 3 и 4): 

 

Рисунок 3 – Результат работы программы при H=0.7 



20 

 

 

Рисунок 4 – Результат работы программы при H=0.3  
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Глава 3 АНАЛИЗ ФРАКТАЛЬНОЙ РАЗМЕРНОСТИ 

3.1 Выделение периодичностей временных рядов 

Одной из важнейших задач анализа временных рядов является 

сегментация или, другими словами, выделение периодов с разной динамикой. В 

рамках решение данной задачи анализ Херста позволяет выявить 

периодические циклы даже пре их наложении, однако, для решения данной 

задачи существуют другие методы. Главным преимуществом применения R/S 

анализа является возможность выявления с помощью него непериодических 

циклов[16]. 

Непериодические циклы представляют большой интерес в 

гидрометеорологии. Зачастую известно, что некоторые вещи имеют циклы, но 

нельзя точно определить, как долго будет длиться каждый цикл. Такие 

ситуации возникают, например, при изучении экстремальных значений 

температуры. Непериодические циклы не имеют абсолютной частоты, но 

вместо нее имеют среднюю частоту. Возникновение подобных циклов может 

иметь два источника. Они могут быть статистическими циклами, которые 

иллюстрируются явлениями персистентности Херста и резкими изменениями 

направлений, или же результатом нелинейной динамической системы, другими 

словами детерминированного хаоса[5]. 

Таблица 1 – Характеристика различных значений показателей Херста 

Значения H Характеристика процесса 

H=0 Движения отсутствуют или они цикличны с 

очень большой частотой колебаний 

0≤H≤0,5 Ряд неустойчив, антиперсистентен 

H=0,5 Абсолютно случайный ряд 

0,326≤H≤0,674 С высокой вероятностью случайный ряд 

0,5≤H≤1 Трендоустойчивый, персистентный ряд 

H~0,72 Эмперическое значение показателя Херста 

для природных явлений 

H→0,86 К этому значению стремится линейный 

тренд при сравнительно больших N (до 

5000) 

H>1 Очень редкое явление. Возникают 
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независимые скачки амплитуды. 

 

Однако этот метод также имеет и недостатки. В некоторых случаях, как, 

например, при анализе рядов солнечной активности, при попытке выделить 

периоды будут получены завышенные значения. Это может быть связано, 

например, с тем, что в естественных рядах обычно имеется дело с 

квазипериодами, то есть с некоторыми усредненными значениями. Однако, 

одна и та же компонента может иметь достаточно широкий диапазон 

изменчивости, что приводит к получению ошибки[2]. 

Наиболее легким способом для выделения циклов из полученных 

графиков является статистика, первоначально используемая Херстом для 

проверки на стабильность. Эта статистика, называется V-статистикой и 

определяется следующим способом: 

          (16)  

3.2 Алгоритмы методов анализа фрактальной размерности 

Определение фрактальной размерности – одна из основных задач в 

теории фракталов. Однако большинство методы имеют определенные 

ограничения на область применимости. При применении фрактального анализа 

часто ставится подзадача определения оптимального метода. Также зачастую 

одновременно применяются несколько разных методов, чтобы получить более 

адекватную оценку фрактальной размерности. 

Метод Ричардсона является одним из первых методов расчета 

размерности кривой. Для этого нужно построить график зависимости 

логарифма длины кривой от логарифма длины отрезка измерения. 

Кривая на плоскости задается последовательностью точек, которые 

представляют кривую. Начиная с левой границы множества находится 

пересечение окружности радиуса r и кривой, определенной множеством 

отрезков. После этого находится следующее пересечение кривой и окружности, 

построенной из полученной ранее точки пересечения, и т.д.[8]. 
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Длина кривой является суммой N найденных отрезков длины r, и 

последнего частичного отрезка  от последнего найденного пересечения до 

конца кривой: 

.        (17) 

Чтобы найти фрактальную размерность D исследуемой кривой строится 

зависимость logL(logr) и проводится аппроксимирующая прямая. Коэффицент 

наклона β линейной аппроксимации связан с величиной D=1- β. 

Метод подсчета ящиков широко используется для определения 

фрактальной размерности различных явлений. Этот метод с равной 

эффективностью может применяться к наборам точек, линейным функциям, 

областям и объемам. 

Алгоритм метода на примере линейной функции: 

1. Накрыть функцию одним квадратом («ящиком»); 

2. Разделить ящик на четыре квадранта и подсчитать, в скольких из них 

лежит функция; 

3. Продолжать делить каждый последующий квадрант на четыре 

подквадранта, пока минимальный размер «ящика» не будет равен 

разрешению данных. 

Фрактальная размерность получается из графика зависимости 

логарифмов[13]. 

Со стандартной реализацией метода подсчета ящиков были выявлены 

несколько проблем. Этот метод требует значительного количества памяти 

компьютера и вычислительного времени, поскольку необходимо хранить очень 

большое количество ячеек. Из-за этой проблемы Либович и Тот ввели 

«быстрый» алгоритм, который, используя статистический подход к выборке, не 

требует полного перечисления каждой ячейки при более высоких разрешениях. 

Их метод лучше всего применять только к наборам данных с низкими 

фрактальными размерностями. 
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Метода подсчета ящиков также требует большое количество точек 

данных для создания правильной размерности. Метод является неустойчивым, 

когда количество используемых точек слишком мало. 

Либовичем и Тотом был поставлен вопрос об определении минимального 

и максимального размера ящика. Первые две итерации (когда используются 

один и четыре блока) не должны использоваться в определении наклона. Также 

не должны учитываться итерации, когда размер ячейки приближается к 

разрешению данных, т.е. когда каждая точка данных попадает в отдельный 

ящик. 

Метод также имеет проблему «остатка». Иногда ящики не могут 

равномерно распределять данные, тогда некоторые ячейки будут пропущены, 

если размеры ящиков будут увеличиваться геометрически. Из-за этой 

потенциальной проблемы некоторые авторы предлагают сначала сопоставить 

необработанные данные с квадратной единицей. Однако, если исходные данные 

образуют неквадратную область, эта опция будет недоступна[8]. 

Спектральные методы также являются широко используемыми методами. 

Несмотря на строгость методов, они являются довольно сложными. Эти методы 

требуют гораздо большей предварительной обработки данных, чем любой 

другой метод, все из которых работают с данными «как есть». Спектральные 

методы требуют, чтобы необработанные данные были обрезаны и сужены. Если 

этого не делать, результат может значительно измениться. Они должны 

применяться только к самоаффинным кривым, поскольку метод всегда будет 

возвращать фрактальную размерность равную единицы для самоподобных 

кривых. 

Раннее применение метода энергетического спектра для изучения 

топографии поверхности было сообщено в «Сейлз и Томас». Впоследствии 

Берри и Ханни внесли эти результаты во фрактальную структуру. Берри и 

Льюис установили формальную связь между фрактальной размерностью и 

спектром мощности. Наконец, Мандельброт и другие выяснили некоторые 

практические вопросы, связанные с методом, возникшим в литературе[3]. 
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Упоминаются несколько проблем с применением спектральных методов. 

Одна из проблем заключается в том, что типичная частота, используемая в 

алгоритмах быстрых преобразований Фурье, является арифметической. Это 

приводит к тому, что более высокие частоты неудобно сравнивать с более 

низкими частотами на логарифмических графиках, используемых для 

определения фрактальной размерности. Другие методы легко корректируются 

для создания близко расположенных точек на независимой оси, что приводит к 

более устойчивым параметрам в методе наименьших квадратов. Более 

значительная проблема заключается в том, что некоторые авторы сделали 

неправильные предположения о соответствующем наклоне графика спектра 

мощности, возможно, потому, что существует множество способов выражения 

спектров мощности или амплитуды. Некоторые авторы сообщали о более 

низких показателях из методов энергетического спектра по сравнению с их 

другими результатами. Они обнаружили, что точки на логарифмическом 

графике редко образуют прямую линию, увеличивая нестабильность 

полученных значений наименьших квадратов[11]. 

Вычислительная сложность спектральных методов хорошо 

иллюстрируется серией работ Хуанга, Туркотта и Гоффа. В своей первой статье 

Хуан и Туркотт сообщили, что показатели Херста одномерных профилей были 

значительно ниже (0.5), чем у поверхностей (-1), определенных с помощью 

двумерного БПФ. Впоследствии была отмечена ошибка в их формулировке. 

Хуан и Туреотт пересмотрели свою оригинальную работу и сообщили, что 

коэффициенты (+1), полученные однократным БПФ, были в пределах 

статистической неопределенности двумерных значений БПФ. 

R/S- анализ был первоначально создан британским гидрологом 

Гарольдом Эдвином Херстом, когда он изучал проблему хранения воды на реке 

Нил. Позже он был популяризирован Бенуа Мандельбротом, особенно в 

области долгосрочного анализа зависимости фондового рынка. Анализ R/S 

оценивает параметр H, который является показателем Херста. 
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Из алгоритма можно заметить, что H - наклон линии, которая лучше всего 

подходит для отношения . Предполагая, что  и   

существенно не изменяются вокруг значений   и , и учитывая, что 

, мы можем отдельно анализировать числитель и знаменатель 

при оценке Н. Таким образом, оцениваются масштабные показатели R и S, 

используя только среднее размах диапазона R(L) по кумулятивным 

отклонениям и используя среднее значение стандартных отклонений  

соответственно. 

Оценивая наклон линии зависимости  от  и  от 

, а затем вычитая один из другого, мы получаем аппроксимацию наклона 

линии, выражающейся как  от . Тангенс угла наклона является 

показателям Херста. Такое приближение позволяет нам анализировать 

поведение статистики R/S и понимать, как отклонение диапазона и стандартное 

отклонение способствуют процессу оценки[10]. 

Метод вариограмм широко используется при определении фрактальной 

размерности поверхностей и довольно прост в использовании, что делает его 

предпочтительным методом спектрального анализа. Хотя он гораздо реже 

применяется к строго линейным явлениям, этот метод очень легко реализовать 

при анализе самоафинных профилей. Путем выборки большого числа пар точек 

(с разными расстояниями) вдоль профиля и вычисления разностей по их 

вертикальным значениям фрактальная размерность легко выводится из графика 

логарифма квадрата горизонтальных разлностей по z от логарифма расстояний 

между парами точек. 

Выбор максимальных расстояний между парами точек, используемых в 

анализах, требует некоторых размышлений. Максимальное расстояние между 

парами точек обычно составляет половину абсолютного максимального 

расстояния между точками. Хотя некоторые авторы предложили рассмотреть 

гораздо более короткие максимумы, например, одну четверть максимального 



27 

 

расстояния. Однако это правило может быть более ограничительным, чем 

необходимо. Отмечены очень линейные соотношения, простирающиеся до 

абсолютных максимальных расстояний. Однако чаще всего размеры, связанные 

с расстояниями, которые больше, чем предполагаемое отсечение, больше, чем 

размеры, связанные с расстояниями, которые меньше предполагаемого 

отсечения. Минимальное расстояние между точками, используемое в методе, 

обычно зависит от разрешения данных. 

Для статистических целей важно, чтобы выборка пар точек, используемая 

в анализах, равномерно распространяла диапазон расстояний. Чтобы получить 

статистически достоверные средние значения разности z, расстояния между 

точками и парами обычно помещаются в ряд определенных классов. Это 

означает, что, как и в случае других методов, которые используют линейную 

регрессию при определении наклона, следует выбирать классы расстояний так, 

чтобы они были равномерно распределены в пространстве журналов, 

используемых в регрессии наименьших квадратов. Рассеяние точек данных в 

логарифмическом графике может вызвать некоторые неустойчивости в 

производных параметрах наименьших квадратов. 

Метод создает согласованные фрактальные размеры при применении к 

функциям с различными топологическими размерностями. Установлено, что 

вариограммические фрактальные размеры профилей равны фрактальной 

размерности поверхностей. Лавджой и Шерцер критиковали метод 

вариограммы, заявляя, что метод исследует только масштабный характер 

вертикальных флуктуаций и не включает масштабирование горизонтальных 

структур. Хотя вариограмма является функцией различий в, как правило, 

высоте и горизонтальном расстоянии, можно представить себе перевернутую 

вариограмму, где вертикальные различия становятся независимой переменной, 

а средние (квадрат горизонтальных разностей), связанные с каждой 

вертикальной разницей, зависят от переменной. С этой точки зрения их критика 

заслуживает некоторого рассмотрения[14]. 
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Методы, основанные на площади. Для определения фрактальной 

размерности линейных признаков можно использовать два метода, основанных 

на площади, если эти функции образуют замкнутые петли. Для определения 

фрактальной размерности озер, контурных петель и островов использовалось 

соотношение площади и периметра и эмпирическое соотношение Корчака для 

островов. Если данные подходят, то это относительно простые методы для 

использования, и их реализация довольно проста и не требует некоторых 

решений, которые требуются большинством других методов. Однако, 

используя отношение площади к периметру, нельзя смешивать отношение, 

используя периметры, полученные из источников разных масштабов (т. е. 

площадь данной функции не будет сильно изменяться при измерении из 

источников разных масштабов, но измерения периметра может заметно 

измениться). 

Требование того, чтобы функции образовывали замкнутые циклы, 

ограничивает использование методов на основе площади. Например, хотя все 

контуры должны, в конечном счете, опираться на себя, они могут не делать 

этого в конкретной области исследования. Таким образом, для анализа может 

быть доступно несколько объектов. Однако эти методы должны быть 

достаточно надежными, так как они не будут страдать от проблем, 

определенных выше в отношении всего измерения по размеру или от проблемы 

малых островов. Сакеллариу и др. обнаружили, что метод зонального 

периметра является наиболее устойчивым и наименее двусмысленным методом 

из четырех, которые они рассматривали (который включал вариограмму и 

спектральные методы). Мандельброт и др. нашли размер, полученный из 

анализа по площади-периметру, чтобы согласовать с размером, полученным из 

спектрального анализа[1]. 

Метод пересчета линии. Одним из существенных аспектов фрактальных 

особенностей является их масштабный характер. Это означает, что статистика 

момента фрактальной функции (теоретически) неустойчива. Например, чем 

длиннее топографический профиль, тем выше наблюдаемая изменчивость 
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высот. Основываясь на этой концепции, Мацусита и Оуши разработали метод 

определения фрактальной размерности линейного элемента, который 

использовал наблюдаемую зависимость между размерами выборки и 

дисперсиями выборки. 

Этот метод концептуально очень прост для реализации и работает как на 

самоподобных, так и на самоафинных кривых. Из кривой берутся отрезки 

различной длины (например, n) и определяются стандартные отклонения 

координат вдоль каждой оси. Из двух логарифмических графиков стандартного 

отклонения (x и y) по сравнению с размером выборки (n) определяются 

соответствующие наклоны (Vx и Vy). Если Vx и Vy равны или почти равны, то 

это признак того, что кривая самоподобна. Для таких кривых фрактальная 

размерность считается как  

.        (18) 

Если Vx и Vy не равны – скорее всего кривая самоафинна, поскольку 

масштаб координат различен – две дисперсии связаны между собой с помошью 

параметра масштабирования Херста (H) как . 

Мацусита и Оуши проверили свой метод с использованием линейных 

признаков известных фрактальных размеров (как самоподобных, так и 

самоограниченных) и нашли результаты очень обоснованными. Этот метод еще 

предстоит широко протестировать, но он, по-видимому, обладает 

характеристиками, которые могут сделать его полезным инструментом во 

фрактальном анализе, учитывая, что он работает как с самоафинными, так и с 

самоподобными кривыми. Кроме того, Мацусита и Оуши расширили этот 

метод на обработку поверхностей и сообщили о положительных 

результатах[19]. 

Существует несколько дополнительных методов, требующих 

обсуждения. Метод межсегментных углов, введенный Истманом, основан на 

соотношении локальных мер кривизны кривой с ее фрактальной размерностью. 

Истмен проанализировал несколько хорошо известных природных кривых 
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(например, западное побережье Британии) и получил результаты, сопоставимые 

с данными, приведенными в литературе. Метод основан на связи между 

характерными генераторами систематических фрактальных кривых, их 

фрактальной размерностью и их извилистостью. Расширив идею генератора до 

случайных фракталов, Истман разработал приведенную ниже формулу. Она 

непосредственно связывает извилистость естественной кривой с ее 

фрактальной размерностью. 

        (19) 

a,b - длины сегмента вокруг точки j (т. е. a и b будут охватывать длины от 

j до j±k, где k = 1 до S), c - расстояние от j - k до j + к 

Метод вариаций, недавно разработанный Дубуком и др. является 

разновидностью метода Минковского. Вместо использования фиксированных 

шаров (или ящиков) для покрытия этой функции они используют адаптивную 

процедуру покрытия - ящики с размерами, которые являются функцией кривой 

внутри локальной окрестности. Оптимальный размер локальной окрестности 

выбирается путем наблюдения связи между разбросом точек данных и 

размером окрестности. Этот метод также может быть применен к 

поверхностям. 

Испытания метода с использованием математически определяемых 

случайных фрактальных кривых дали размеры, почти идентичные 

теоретическим размерам кривых. Однако другие методы, хорошо показавшие 

себя для получения точных размеров при работе с правильно построенными 

фрактальными кривыми, не всегда вели себя и при применении к фракталам 

реального мира. Еще предстоит выяснить, как метод вариации работает 

применительно к природным наборам данных[7]. 

3.3 Реализация алгоритма R/S-анализа. 

Выполним реализацию алгоритма R/S-анализа, используя технологию 

matlab. 
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В качестве входных данных будем использовать массив, генерируемый 

алгоритмом смещения средней точки. 

Результат работы алгоритма – оценка показателя Херста H, которая 

является коэффициентом наклона прямой, аппроксимирующей зависимость 

log(R/S(n)) от log(n). 

Произвольно зададим следующие данные: 

d0 = 10;  % начальный размер интервалов 

dmax = N/5; % максимальный размер интервалов 

m = 1.2;  % шаг изменения d 

d = d0;   % нач. значение 

 Рассчитаем логарифмические отношения 

for i=1:length(y)-1 

   z(i)=log(y(i+1)/y(i));  

end 

Последующие вычисления будем повторять в цикле до тех пор, пока 

значение d не превысит dmax. 

Запишем текущее значение d в массив v. 

Запишем индексы первых элементов каждого интервала в массив t: 

while d*(i-1) + 1 < N 

t(i) = d*(i-1) + 1; 

i = i+1; 

end 

Следующие действия проделаем для каждого интервала. Для этого 

воспользуемся циклом: 

for i = 1:length(t)-1 

Сохраним текущий интервал в массив Y: 

Y = z( t(i):t(i)+d-1 ); 
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Рассчитаем отклонение для интервала. Для этого воспользуемся 

функцией std(Y): 

S(i) = std( Y ); 

Функция sx = std(X) для одномерного массива возвращает стандартное 

отклонение элементов массива; в случае двумерного массива - это вектор-

строка, содержащая стандартное отклонение элементов каждого столбца.  

Перезапишем массив Y на значения отклонений от среднего. Для этого 

воспользуемся функцией mean: 

Y = Y - mean( Y ); 

Функция mx = mean(X) в случае одномерного массива возвращает 

среднее арифметическое элементов массива; для двумерного массива - это 

вектор-строка, которая содержит среднее арифметическое элементов каждого 

столбца. Таким образом, mean(mean(X)) - это арифметическое среднее 

(математическое ожидание) элементов массива, что совпадает со значением 

mean(X(:)). 

Далее рассчитаем суммы отклонений: 

for k = 1:length( Y )      % Пробегаем внутри каждого интервала 

 w(k) = sum( Y(1:k) ); % k-я сумма отклонений 

end 

Найдем размах интервала: 

R(i) = max(w) - min(w); 

Сохраним значение R(i)/S(i) в массив: 

Q(end+1) = R(i)./S(i); % накопление значений R/S 

D(end+1) = d;          % значения d для соответствующего R/S 

QQ(i)=R(i)./S(i);      % накопление значений R/S для данного d 

Закроем цикл for. 

Рассчитаем среднее значение R/S для текущего d: 

Q_sr(end+1) = mean(QQ);  

Увеличим текущее значение d: 

d = fix(d*m);  
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Перейдем на следующую итерацию цикла. 

После того, как значение d достигнет dmax, нужно построить график 

зависимости log(Q_sr) от log(v), а затем найти регрессию вида 

log(Q_sr)=H*log(v)+c, где H – оценка показателя Херста. Для этого будем 

использовать Curve Fitting Toolbox: 

Curve Fitting Toolbox позволяет приблизить данные полиномом n-ной 

степени методом наименьших квадратов. Для этого достаточно вызвать 

функцию Curve Fitting Toolbox, которая называется fit. В самом простом случае 

ее входными аргументами являются: 

 вектор-столбцы с данными; 

 имя модели, в данном случае для приближения полиномом первой 

степени имя будет 'poly1'. 

fresult = fit(log(v'),log(Q_sr'),'poly1'); 

Функция fit возвращает полученное приближение. 

fresult =  

     Linear model Poly1: 

     fresult(x) = p1*x + p2 

     Coefficients (with 95% confidence bounds): 

       p1 =      0.6235  (0.6086, 0.6383) 

       p2 =     -0.3588  (-0.4156, -0.3021) 

В данном случае в командное окно MATLAB вывелся вид 

полиномиальной модели и полученные значения коэффициентов вместе с 

границами доверительных интервалов, соответствующих уровню вероятности 

95%. Коэффицент p1 будет здесь буде являться оценкой показателя Херста. 

Для наглядности построим графики зависимостей log(Q_sr) от log(v) и 

log(Q) от log(d): 

plot(log(D),log(Q),'.r',log(v),log(Q_sr),'-b') 

Полный код программы представлен в приложении Б. 
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В качестве входных данных будем использовать ряды, генерируемые 

методом смещения средней точки, реализованным ранее (Рисунки 5 и 6). 

  

Рисунок 5 – Результат работы программы R/S-анализа при H=0.3 

 

  

Рисунок 6 – Результат работы программы R/S-анализа при H=0.7 
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Найдем значения показателя Херста для случайного ряда (Рисунок 7, 

ожидаемое значение H→0,5), для ряда, шагающего вокруг среднего значения 

(Рисунок 8, ожидается H→0) и для монотонно возрастающего ряда (Рисунок 9, 

ожидается H→1). 

  

Рисунок 7 – Результат работы программы для нормально 

распределенного случайного ряда 

 

Рисунок 8 – Результат работы программы для ряда, шагающего вокруг 

среднего значения 
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Рисунок 9 – Результат работы программы для монотонно возрастающего 

ряда 

Полученные результаты позволяют с достаточной степенью уверенности 

утверждать, что алгоритм реализован корректно.  
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ЗАКЛЮЧЕНИЕ 

Со времени возникновения теории фракталов прошло не более трети 

века, но за это время с помощью фракталов были обнаружены новые факты и 

закономерности в различных областях знаний. При помощи теории фракталов 

люди стали объяснять эволюцию галактик и развитие клетки, возникновение 

гор и образование облаков, движение цен на бирже и развитие общества и 

семьи. Поначалу увлечение фракталами было слишком бурным и попытки 

объяснять все с помощью фрактальной теории были неоправданными. Но, без 

сомнения, данная теория имеет право на существование. 

В результате проделанной работы были разработаны программная 

реализация построения фрактального ряда методом смещения средней точки и 

программная реализация определения показателя Херста методом R/S-анализа. 

При этом были решены следующие задачи. 

Были выявлены и описаны основные понятия, связанные с 

моделированием фрактальных рядов. 

Были рассмотрены некоторые популярные методы моделирования 

фракталов, такие как алгоритм смещения средней точки, обобщенное 

броуновское движение, L-системы, а так же выполнена компьютерная 

реализация алгоритма смещения средней точки. 

Были рассмотрены такие методы анализа фрактальной размерности, как 

метод Ричардсона, метод Минковского, метод R/S-анализа, метод разложения в 

ряд Фурье, а так же выполнена компьютерная реализация метода R/S-анализа.  
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ПРИЛОЖЕНИЕ A 

Реализация алгоритма смещения средней точки 

clc; clear all; 

a=0;b=100; %Границы фрактального множества 

m=16; %Произвольное положительное число 

n=2^m; %Количество интервалов 

H=0.7; %Показатель Херста 0<=H<1.0, непосредственно связанный с 

размерностью генерируемой прямой D=2-H 

x(1)=a; 

y(1)=100; 

y(n+1)=100;           %Значения y на концах отрезков задаются 

произвольно 

 

hx=(b-a)/n; %Шаг для массива x 

for i=2:n+1 

    x(i)=x(i-1)+hx; %Задается массив x 

end; 

for i=0:(m-1) 

    w=((length(x)-1)/(2^i)); 

    for j=1:(2^i); 

        left=1+w*(j-1); %Левая граница отрезка 

        right=1+w*(j);  %Правая граница отрезка 

        r=(x(right)-x(left))/2; 

        d=r^H; %Дисперсия 

        h = d*randn(); 

        %disp([num2str(fresult.p1)]) 

        mid=(left+right)/2; %Индекс среднего элемента отрезка 

        y(mid)=(y(left)+y(right))/2+h; %Задание значения для 

среднего элемента отрезка 

    end 

end; 

figure(2) 

hold on; 

grid on; 

title('Алгоритм ССТ') 

xlabel('x'),ylabel('y') 

plot(x,y,'k'); 

hold off;  
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ПРИЛОЖЕНИЕ Б 

Реализация алгоритма R/S-анализа 

algorithm; 

for i=1:length(y)-1 

    z(i)=log(y(i+1)/y(i)); 

end 

N = length(z); 

R = []; 

S = []; 

Q = []; 

D = []; 

Q_sr = []; 

v = []; 

e = []; 

Y = []; 

d0 = 10;    % начальный размер интервалов 

dmax = N/5; % максимальный размер интервалов 

m = 1.1;    % шаг изменения d 

d = d0; % нач. значение 

while d <= dmax 

    v(end+1) = d; 

    i=1; 

    t=[]; 

    %находим первые элементы каждого интервала 

    while d*(i-1) + 1 < N 

        t(i) = d*(i-1) + 1; 

        i = i+1; 

    end 

    QQ = []; 

    for i = 1:length(t)-1   % Пробегаем по всем интервалам 

        % Расчет W(i) 

        w = []; 

        Y = []; % Сохраняем сюда текущий интервал 

        Y = z( t(i):t(i)+d-1 ); 

        S(i) = std( Y );  % Отклонение на интервале 

        Y = Y - mean( Y );    % Масив отклонений 

        for k = 1:length( Y )      % Пробегаем внутри каждого 

интервала 

            w(k) = sum( Y(1:k) ); % k-я сумма отклонений 

        end 

        w(end+1) = 0; % Добавляем W(i,0) 

        R(i) = max(w) - min(w); % Размах интервала 

        Q(end+1) = R(i)./S(i); % накопление значений R/S 

        D(end+1) = d;          % значения d для соответствующего 

R/S 

        QQ(i)=R(i)./S(i);      % накопление значений R/S для 

данного d 

    end 

    Q_sr(end+1) = mean(QQ); % Нахождение среднего значения R/S для 

данного d 
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    d = fix(d*m);   % увеличиваем размер интервала 

end 

% Строим график результатов 

figure (1) 

hold on 

grid on 

title('R/S-анализ') 

xlabel('lg(d)'),ylabel('lg(R/S)') 

plot(log(D),log(Q),'.r',log(v),log(Q_sr),'-b') 

% Находим наклон аппроксимирующей прямой 

fresult = fit(log(v'),log(Q_sr'),'poly1'); 

disp(['Оценка показателя Херста: ',num2str(fresult.p1)]); 


