МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт машиностроения

(наименование института полностью)

Кафедра «Энергетические машины и системы управления»

(наименование кафедры)

13.03.03 «Энергетическое машиностроение»

(код и наименование направления подготовки, специальности)
Двигатели внутреннего сгорания

(направленность (профиль/специализация)

БАКАЛАВРСКАЯ РАБОТА

Обеспечение параметров надежности поршневых групп для двигателя с на тему повышенной удельной мощностью Студент М.Ч. Шакармамадов (И.О. Фамилия) (личная подпись) Руководитель А.М. Дзюбан (И.О. Фамилия) (личная подпись) Консультанты А.Г. Егоров (И.О. Фамилия) (личная подпись) С.А. Гудкова (И.О. Фамилия) (личная подпись) Допустить к защите Заведующий кафедрой к.т.н., Д.А. Павлов (ученая степень, звание, И.О. Фамилия) (личная подпись) «_____»____ 2018 г.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

<u>Институт машиностроения.</u>
(наименование института полностью)
Кафедра «Энергетические машины и системы управления»
(наименование кафедры)

УТВЕРЖДАЮ	
Зав. кафедрой ЭМ	ЛиСУ
	Д.А. Павлов
(подпись)	(И.О. Фамилия)
« »	2018Γ

ЗАДАНИЕ на выполнение бакалаврской работы

Студент	ент Шакармамадов Миликмамад Чоршанбиевич								
1. Тема	Обеспечение параметров на	адежности поршне	вых групп для двигателей с						
повышенн	ой удельной мощностью								
2. Срок сд	ачи студентом законченной б	акалаврской работ	гы						
3. Исходн	ые данные к бакалаврской раб	боте 4-ех цили	ндровый бензиновый двигатель,						
iV_h =1,6 л,	частота вращения $n_N = 5800$ с	об/мин,степень сжа	атия $\varepsilon=10,5.$						
4. Содерж	ание выпускной квалификаци	ионной работы (пе	речень подлежащих разработке						
вопросов,	разделов) Тепловой расчет	двигателя, расчет	кинематики и динамики двигателя,						
прочности	юй расчет, проблемы и мерог	риятия поршневы	х групп						
5. Ориент	ировочный перечень графиче	ского и иллюстрат	ивного материала						
продольни	ый и поперечный разрез двига	ателя							
6. Консулі	ьтанты по разделам — д.т.	н., профессор Егор	оов А.Г.,						
к.т.н., про	фессор Фесина М.И., к.т.н. Г	удкова С.А.							
7. Дата вы	дачи задания «	»	201 г.						
Руководит	гель бакалаврской работы		А.М. Дзюбан						
	_	(подпись)	(И.О. Фамилия)						
Задание п	ринял к исполнению		М.Ч. Шакармамадов						
	-	(подпись)	(И.О. Фамилия)						

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

<u>Институт машиностроения.</u> (наименование института полностью) Кафедра «<u>Энергетические машины и системы управления»</u> (наименование кафедры)

УТВЕРЖДАЮ

		Зав. кафедј	рой ЭМиСУ			
			<u>Д</u> .А. Павло	<u>B</u>		
		(под	пись) (И	сь) (И.О. Фамилия)		
		« »	2018	Γ		
		СНДАРНЫЙ ПЛА				
		ия бакалаврской р	работы			
Студента Шакар	мамадов Миликмам	ад Чоршанбиевич				
по теме Обеспе	ечение параметров н	адежности поршне	евых групп для дви	гателя с		
ПОВЫШ	іенной удельной мог	цностью				
Наименование	Плановый срок	Фактический	Отметка о	Подпись		
раздела работы	выполнения	срок	выполнении	руководителя		
	раздела	выполнения				
	1	раздела				
Лит.обзор по теме	29 апреля 2018	1				
работы	Γ.					
Тепловой расчет	5 2010					
двигателя	5 мая 2018 г.					
Расчет						
кинематики	11 мая 2018 г.					
двигателя						
Расчет динамики	15 мая 2018 г.					
двигателя	13 May 2016 1.					
Проблемы и						
мероприятия	18 мая 2018 г.					
поршневых групп						
Безопасность и	30 мая 2018 г.					
экологичность	30 Max 2016 1.					
Предварительная						
защита и						
корректировка						
ВКР						
Защита перед						
ГИК						
Руководитель бака	алаврской работы		A.M.	Дзюбан		
		(подпись)	(И.О. 0	Фамилия)		
Задание принял к	исполнению		М.Ч. Ша	кармамадов		
-		(подпись)	.О.И)	(И.О. Фамилия)		

КИЦАТОННА

данной выпускной квалификационной работе рассматривается поршневая группа четырехтактного четырехцилиндрового двигателя мощностью 72кВт с номинальной частотой вращения до 5800 мин-1 и больше. Основной задачей в данной работе является уменьшение массы поршневой группы и обеспечение её надежности при больших оборотах коленчатого вала. С помощью Т и П- образного разреза можно уменьшить массу поршня до 10-15 % но с потерей массы поршень теряет свою прочность, жесткость и надежность. Для того чтобы поршень работал стабильно и без нагрузок мы используем разные покрытия и вставки на поверхности поршня. Особо нагруженным местом поршня является его днище. В днище поршня температура достигает до 250-300°C. В поршнях, заготовки изготавливаются методом горячего прессования, вставку делают в виде бандажа и в головке поршня привариваются электронно-лучевой сваркой.

Диотермик это такой вид вставок, заливаемый в юбку поршня. Фигурные вставки верхней кромки доходят до торцевой поверхности канавки маслосъемного кольца.

Клероматик – используется в верхней части юбки поршня, прикрывается стальным армирующим кольцом прямоугольного или круглого сечения, повышает жесткость юбки и обеспечивает радиальные тепловые деформаци

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	7
ГЛАВА 1 Тепловой расчет по методике И.И. Вибе	9
ГЛАВА 2 Проблемы и мероприятия поршневых групп	20
2.1 Функции поршневых уплотнений	21
2.2 Проблемы поршневых уплотнений	23
2.3 Конструктивные мероприятия поршневых групп	24
2.3.1 Конструктивные мероприятия элементов поршня, обеспечивающ	цие
повышение параметров прочности, жесткости, долговечности	24
2.3.2 Мероприятия – терморегулирующие вставки поршней	27
ГЛАВА 3 Кинематический и динамический расчет кривошипно-шатунног	ГО
механизма	29
3.1 Кинематические параметры кривошипно-шатунного механизма	29
3.1.1 Перемещение поршня	29
3.1.2 Скорость поршня	30
3.1.3 Ускорение поршня	31
3.2 Динамические параметры кривошипно-шатунного механизма	35
3.2.1 Силы инерции возвратно-поступательно движущихся масс	36
3.2.2 Силы инерции вращающихся масс	38
3.2.3 Суммарные силы, действующие в КШМ	39
3.2.4 Равнодействующая сила <i>Rшш</i>	42
3.3 Расчет поршня	48
ГЛАВА 4 Преддипломная практика	52
4.1 Поршневая группа	52

4.2 Вид и общие понятия о поршневой группе	53
4.3 Поршневые кольца	59
4.4 Поршневые пальцы	64
4.5 Повышения прочность и срок службы поршня	65
ЗАКЛЮЧЕНИЕ	67
СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ	68
ПРИЛОЖЕНИЕ А	71
ПРИЛОЖЕНИЕ Б	69
ПРИЛОЖЕНИЕ В	75
ПРИЛОЖЕНИЕ Г	73
ПРИЛОЖЕНИЕ Д	75

ВВЕДЕНИЕ

Цель: Разработки мероприятии для обеспечения надежности в условиях нагрузки. Мероприятии, которое обеспечит нагрузки с учетом отечественного и зарубежного двигателестроения.

Задачи:

- 1 Обзор достигнутого уровня обеспечение надежности поршневых комплектов.
- 2 Сформулировать противоречия между обеспечение параметров надежности и необходимостью снижение массы поршневого комплекта при росте удельных нагрузок.
 - 3 Предлагаемые решение для проектируемого двигателя.

Двигатели внутреннего сгорания - одни из наиболее распространенных тепловых машин. Первый ДВС был, разработан в 1860г. французским механиком Ленуаром Э, он только работал на светильном газе и был двухтактным без предварительного сжатия заряда. В данное время отечественные и зарубежные разработчики успешно разрабатывают новые модели ДВС и работают над решениями связанных с ними проблем и вопросов.

В данном курсовом проекте модернизируем, группа поршней бензинового двигателя при увеличение мощностью, путем установки турбокомпрессора и принимаются, исходные данные на их основе проводится, расчет двигателя на пяти скоростных режимах. Проводится анализ полученных результатов. Результаты расчетов представлены в табличном виде.

Турбокомпрессор — это сложный с технической стороны механизм, использующий кинетическую энергию отработанных газов для увеличения давления внутри впускной системы. Сжимаясь, смесь топлива и воздуха

увеличивает массу горючего заряда внутри цилиндров, из-за чего растет калорийность и как следствие мощность двигателя

Двигатель четырехтактный, имеет распределенный впрыск топливовоздушной смеси, а также распределительный вал, имеющий верхнее расположение. В двигателе оборудована жидкостная система охлаждения закрытого вида, а также комбинированная система смазки, в которой масло подается под давлением или разбрызгиванием. Перед модернизацией данный двигатель имел 8 клапанов, в последствии их количество было увеличено до 16.

ГЛАВА 1 Тепловой расчет по методике И.И. Вибе

Исходные данные

$$VL=1.597$$
 л

 $n_N = 5800 \text{ мин}^{-1}$

 $\tau = 4$ -тактность

і = 4 - число цилиндров

 $\varepsilon = 10,5$ - степень сжатия.

Расчет производится на разных скоростных этапах:

n_{min}=850 об/мин

 $n = 1500 \text{ мин}^{-1}$

 $n=2700 \text{ MUH}^{-1}$

 $n=4000 \text{ мин}^{-1}$

 $n_N = 5800 \text{ мин}^{-1}$.

Средний элементарный состав бензина

C=0,885 ; H=0,145; O = 0 и
$$\mu_m$$
 = 115 кг/моль.

Теплота сгорания топлива

$$H_u = 33.91 \cdot C + 125.6 \cdot H - 10.89 \cdot (O - S) - 2.51 \cdot (9 \cdot H + W) =$$

= 33.91 \cdot 0.885 + 125.6 \cdot 0.145 - 10.89 \cdot (0 - 0) - 2.51 \cdot (9 \cdot 0.145 + 0) = 44936 \ \mathcal{B} \text{Hc} / ke

Количество воздуха для сгорания 1 кг топлива

$$L_0 = \frac{1}{0,208} \left(\frac{C}{12} + \frac{H}{4} - \frac{O}{32} \right) = \frac{1}{0,208} * \left(\frac{0,885}{12} + \frac{0,115}{4} - \frac{0}{32} \right) = 0,530 \qquad \frac{кмольвозд}{кмольтопл}; \quad (11)$$

$$l_0 = \frac{1}{0.23} * \left(\frac{8}{3}C + 8H - O\right) = \frac{1}{0.23} * \left(\frac{8}{3} \cdot 0.885 + 8 \cdot 0.145 - 0\right) = 15.37 \frac{\kappa 26030}{\kappa 2000\pi};$$
 (1.2)

Коэффициент избытка воздуха для пяти режимах: α = 0,96 для n_{min} =850 об/мин, α = 1 для n_2 = 1500 об/мин, α = 1,15 для n_3 =2700 об/мин, α = 1,21 для

 n_4 =4000 об/мин, α = 1,24 для n_N =5800 об/мин. Количество горючей смеси определяется по формуле:

$$\mathbf{M}_1 = \alpha \cdot \mathbf{L}_0$$
; (кмоль*гор.см)/кг топл. (13)

 $M_1 = 0.96*0.530 = 0.508$ кмль гоорь. см/кг топл. Количество отдельных компонентов продуктов сгорания при K = 0.5:

$$M_{CO_2} = \frac{C}{12}$$
 (кмоль CO2)/(кг топл); (1.4)

$$M_{H_2O} = \frac{H}{2}$$
 (кмоль H_2O)/(кг топл); (1.5)

$$M_{O_2} = 0.208 \cdot (\alpha - 1) \cdot L_0$$
 (кмоль H_2)/(кг топл) : (1.6)

$$M_{N_2} = 0.792 \cdot \alpha \cdot L_0$$
 (кмоль N_2)/(кгтопл). (1.7)

Общее количество продуктов сгорания:

$$\mathbf{M}_2 = M_{CO_2} + M_{H_2O} + M_{O_2} + M_{N_2}$$
; кмольпр.сг/кг топл. (1.8)

Коэффициент свежей смеси молекулярного изменения $\mu_o = M_2/\ M_1$

Таблица 1.1 Параметры рабочего тела

Часто- та враще- ния, об/мин	Коэф. избытка воздуха	М _{СО2} , кмоль СО ₂ /кг топл	M_1 , кмольгор.см./кг топл.	$M_{\rm H2O}$, кмоль $H_2{\rm O}/{ m k}\Gamma$ топл.	$M_{\rm N2},$ кмоль $N_2/\kappa\Gamma$ топл.	M _{O2} , кмоль О ₂ /кг топл.	μο	μ_{o} M_{2} , кмольпр.сг./кг топл.
850	0,96	0,50880	0,07370	0,07251	0,040297	0	0,366543	0,1864971
1500	1	0,5300	0,07370	0,07251	0,041976	0	0,355049	0,188176
2700	1,15	0,60950	0,07370	0,07251	0,048272	0	0,319069	0,194472
4000	1,21	0,64130	0,07370	0,07251	0,050791	0	0,307174	0,196991
5800	1,24	0,65720	0,07370	0,07251	0,05205	0	0,301001	0,19825

Атмосферные температуры и давления : $p_0 = 100 \ \kappa \Pi a$ и $T_0 = 293 \ K$.

Плотность заряда на впуске: $\rho_0 = (p_0 \cdot 10^6)/(R_B T_0) \ (\kappa \Gamma/\text{m}^3)$

Температура остаточных газов приведена в таблице 1.2.

Давление остаточных газов:

$$p_r = p_0(1,035 + A_p \cdot 10^{-8} n^2),$$
 (1.10)

где
$$p_{rN} = 1,18p_0 = 1,18 \cdot 0,1 = 0,118$$
 МПа; $A_p = (p_{rN} - p_0 \cdot 1,035) \ 10^8 / (n_N^2 \ p_0).$

Таблица 1.2 Параметры окружающей среды и остаточных газов:

Частота вращения, мин ⁻¹	Плотность воздуха, кг/м3	T ₀ , K	Р ₀ , Мпа	Температура остаточных газов, К	Давление остаточных газов, МПа
850	1,2041	293	0,1	740	0,1035
1500	1,2041	293	0,1	780	0,1035001
2700	1,2041	293	0,1	810	0,1035
4000	1,2041	293	0,1	840	0,10350
5800	1,2041	293	0,1	850	0,10351

Температура подогрева свежего заряда рассчитывается по ниже приведенным формулам:

$$\Delta T = A_T(110 - 0.0125n).$$
 (1.11)

где $A_T = \Delta T_N / (110 - 0.0125 n_N)$.

Потери давления на впуске;

$$\Delta p_a = (\beta^2 + \xi_{B\Pi}) A_n^2 n^2 \rho_k \cdot 10^{-6} / 2 \qquad \text{M}\Pi a. \tag{1.12}$$

Давление в конце впуска: $p_a = p_\kappa - \Delta p_a$; МПа.

Коэффициент остаточных газов:

$$\gamma_r = \frac{T_{\kappa} + \Delta T}{T_r} \cdot \frac{\varphi_{ou} p_r}{\varepsilon \varphi_{oos} p_a - \varphi_{ou} p_r}, \tag{1.13}$$

где $\phi_{\text{оч}}$ – коэф. очистки; $\phi_{\text{доз}}$ – коэф.дозарядки.

Температура в конце впуска:

$$T_a = (T_K + \Delta T + \gamma_r T_r)/(1 + \gamma_r) ; K.$$
 (1.14)

Коэффициент наполнения:

$$\eta_{V} = \frac{T_{\kappa}}{T_{\kappa} - \Delta T} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{1}{p_{\kappa}} \left(\varphi_{\partial o 3} \cdot \varepsilon \cdot p_{a} - \varphi_{o 4} \cdot p_{r} \right)$$
(1.15)

Удельный объем рабочего тела в конце процесса наполнения

$$V_{a} = 8.314 \cdot 10^{-3} \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[(1 + \alpha \cdot l_{0}) p_{a} \right]$$
(M³), (1.16)

где $\mu_{\scriptscriptstyle B}$ = 29 молярная масса воздуха.

Таблица 1.3 Расчет процесса впуска

Часто- тавра ще- ния, мин ⁻¹	Δра, Мпа	Δра, МпаТе е-рату подог рева, ^с	мп ра ј	pa, M	Мпа ф _{оч} ф		φ	103	γr	T _a , K		$\eta_{ m v}$	Va,
850	0,0003	21	0,09	97	1	0,	86	0,	045947	325,116	0,0)81735	0,889 624
1500	0,0010	19	0,09	90	0,95	5 0,9	92	0,	040411	322,323	0,0)88286	0,887 412
2700	0,0033	16	0,09	67	0,98	3 1	Ĺ	0,	038736	321,473	0,0)95012	0,903 049
4000	0,0071	13	0,09	29	0,84	1 0,9	96	0,	035139	319,636	0,0)89776	0,922 479
5800	0,0150	8	0,08	50	0,79	0,9	93	0,	036045	320,100	0,0	082310	0,974

										751
--	--	--	--	--	--	--	--	--	--	-----

Коэффициент молекулярного изменения рабочей смеси

$$\mu = (\mu_0 + \gamma_r)/(1 + \gamma_r) \tag{1.17}$$

Показатель политропы сжатия

$$n_1 = 1 + \frac{8.314}{20.16 + 1.738 \cdot 10^{-3} (\varepsilon^{n_1 - 1} + 1) \cdot T_a}$$

Давление, температура и удельный объём в конце сжатия определяется по формуле:

$$P_c = P_a \varepsilon^{n_1} \qquad M\Pi a \qquad (1.18)$$

$$T_c = T_a \varepsilon^{n_1 - 1} \qquad K \tag{1.19}$$

Давление, удельный объём и температура рабочего тела, при угле опережения впрыска топлива Θ ,

$$V_{y} = \frac{V_{a}}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \left[\left\{ 1 + \frac{1}{\lambda} \right\} - \left\langle \cos(\Theta) + \frac{1}{\lambda} \sqrt{1 - \lambda^{2} (\sin(\Theta))^{2}} \right\rangle \right] \right]; \tag{1.20}$$

$$P_{y} = P_{a} \left(\frac{V_{a}}{V_{y}}\right)^{n_{1}}; M\Pi a \qquad T_{y} = T_{a} \left(\frac{V_{a}}{V_{y}}\right)^{n_{1}-1}; K \qquad (1.21)$$

Таблица 1.4 Давление, температура и удельный объём в конце сжатия и воспламенения:

n,об/ мин	n_{I}	M	P_c , M Π a	T_c , K	V_y , м $^3/$ кг	<i>Ө</i> °ПКВ	T_y , K	P_y , МПа

Продолжение таблицы 1.4

850	1,04852	1,07760	2,5427485	788,910	0,350374	15	461,956	0,36004
050	7	2	47	8	79	13	9	8
1500	1.04990	1.04964	2.52101	792 122	0.257176	10	151 252	0.24705
1500	1,04889	1,04864	2,53191	782,133	0,357176	19	454,253	0,34795
2700	1,04901	1,01670	2,4961734	780,068	0,375368	24	447,586	0,32815
4000	1,04926	1,00611	2,4344041	775,612	0,391762	27	441,443	0,31071
	ŕ	ĺ	,	ĺ	,		,	ŕ
5800	1,04919	1,00116	2,309305	776,738	0,423445	30	438,325	0,28570
2000	1,0 .717	1,00110	2,00000	,,,,,,,	0,123113		.50,525	3,23370

Коэффициент использования теплоты Ψ приведен в таблице 2.5, а коэффициент δ равен единице при полном сгорании.

Коэффициент эффективности сгорания топлива:

$$\xi = \delta^* \Psi; \tag{1.22}$$

Удельная теплота сгорания рабочей смеси

$$q_z = \frac{\xi * H_u}{(1 + \gamma_r)(\alpha * l_0 + 1)}; \, \kappa \square \times / \kappa \Gamma.$$
(1.23)

$$E_2 = \left(0.002 \frac{\varepsilon}{V_a}\right) q_z; M\Pi a \tag{1.24}$$

Давление газов в процессе сгорания

$$P_{2} = \frac{E_{2}\Delta X_{1-2} + P_{1} \cdot (K_{1-2}\psi(\varphi'_{1}) - \psi(\varphi'_{2}))}{K_{1-2}\psi(\varphi'_{1}) - \psi(\varphi'_{2})},$$
(1.25)

где
$$\psi(\varphi') = 1 + \frac{\varepsilon - 1}{2} \left[\left(1 + \frac{1}{\lambda} \right) - \left(\cos \varphi' + \frac{1}{\lambda} \sqrt{1 - \lambda^2 \cdot \sin^2 \varphi'} \right) \right];$$
 (1.26)

Топлива, сгоревшего на определенном участке:

$$X_{1-2} = \exp\left[-6.908 \left[\frac{\varphi_1}{\varphi_z}\right]^{m+1}\right] - \exp\left[-6.908 \left[\frac{\varphi_2}{\varphi_z}\right]^{m+1}\right], \tag{1.27}$$

Значение топлива сгоревшего на участке 1-2;

$$\Delta \chi_{1-2} = \frac{1}{2} \left[\exp \left[-6.908 \left[\frac{\varphi_1}{\varphi_z} \right]^{m+1} \right] - \exp \left[-6.908 \left[\frac{\varphi_2}{\varphi_z} \right]^{m+1} \right] \right]$$
(1.28)

Соотношение рабочего тела на определенном участке.

$$k_{1-2} = 1.259 + \left[76.7 - \left(13.6 - \frac{14.2}{\alpha}\right)x_{1-2}\right] \frac{1}{T_{1-2}} - \left(0.0665 - \frac{0.0245}{\alpha}\right)x_{1-2}$$
(1.29)

Фактор теплоёмкостей К₁₋₂

$$K_{1-2} = \frac{k_{1-2} + 1}{k_{1-2} - 1} - \tag{1.30}$$

Средняя температура T_{1-2} на участке 1-2.

$$T_{1-2} = \frac{T_1 + T_2}{2} \tag{1.31}$$

Температура (Т2) газов в процессе сгорания:

$$T_{2} = \frac{T_{y} P_{2} \psi(\varphi_{2}')}{P_{y} \psi(\varphi_{2}') \mu_{1-2}},$$
(1.32)

где:

$$\Psi(\varphi') = 1 + \frac{\varepsilon - 1}{2} * \sigma; \qquad (1.33)$$

$$\sigma = \left(1 + \frac{1}{\lambda}\right) - \left[\cos(\varphi') + \frac{1}{\lambda} * \sqrt{1 - \lambda^2 \cdot (\sin(\varphi'))^2}\right]; \quad (1.34)$$

Средний на рассматриваемом участке коэффициент молекулярного изменения рабочей смеси,

$$\mu_{1-2} = \frac{\mu_1 + \mu_2}{2} , \qquad (1.35)$$

$$\mu_{1} = 1 + \frac{\left(\mu_{0_{\text{max}}} - 1\right)\left[1 - \exp\left[-6.908\left[\frac{\varphi_1}{\varphi_z}\right]^{m+1}\right]\right]}{1 + \gamma_r} .$$

15

Сгоревшего топлива χ рассчитывается по уравнению выгорания:

$$\chi = 1 - \exp\left[-6.908 \left(\frac{\varphi}{\varphi_z}\right)^{m+1}\right]. \tag{1.36}$$

Таблица 1.5 Коэффициенты термодинамического расчета:

Частота враще- ния, об/мин	Ψ	ζ		q _z , (ж/кг	E ₂ ,	Показател характер сгорания		рактера	Продолжительность п роцесса сгорания, град, пкв.
850	0,91	0	,9	687	75,898	135,9	8798	0,31	35
1500	0,919	0,	92	718	89,891	132,40	0438	0,32	45
2700	0,95	0,	96	821	15,087	5,087 129,28		0,33	53
4000	0,97	0,	97	865	51,577	127,9	4589	0,34	57
5800	0,91	0,	91	882	29,554	126,49	9647	0,35	63

Степень последующего расширения при V_z :

$$\delta = V_a/V_{z}$$
 (2.44)

Средний показатель политропы расширения:

$$n_2 = 1 + \frac{8.314}{23.7 + 0.0046 \left(\frac{1}{\delta^{n_1 - 1}} + 1\right) \cdot T_Z}$$

Параметры в конце процесса расширения как политропного процесса

$$P_b = \frac{P_z}{\delta^{n_2}} = \text{M}\Pi a \tag{1.37}$$

$$T_b = \frac{T_Z}{\delta^{n_2 - 1}} \,\mathrm{K} \tag{1.38}$$

Текущие значения удельного объёма, давления и температуры газов от конца процесса сгорания до 540° ПКВ :

$$V_{PT} = \frac{V_a}{\varepsilon} \left[1 + \frac{\varepsilon - 1}{1} \cdot \left(\left(1 + \frac{1}{\lambda} \right) - \left[\cos(\varphi_{PT}) + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^2 \sin^2(\varphi_{PT})} \right] \right) \right], \tag{1.39}$$

где $\varphi_{{\scriptscriptstyle PT}}-$ текущее значение поворота коленчатого вала

$$P_{PT} = P_b \cdot \left(\frac{V_a}{V_T}\right)^{n_2}; \tag{1.40}$$

$$T_{PT} = T_b \left(\frac{V_a}{V_T}\right)^{n_2 - 1}$$
; (1.41)

Уточенная температура отработавших газов

$$T_r = \frac{T_b}{\sqrt[3]{\frac{P_b}{P_r}}} \qquad K \tag{1.42}$$

погрешность расчёта Δ :

$$\Delta = \frac{100(T_r - T_r')}{T_r} \qquad \%$$
 (1.43)

Таблица 1.6 - Расчет процесса расширения и выпуска

Частота враще- ния, мин ⁻¹	V z , m ³	$T_{z, K}$	Р z , МПа	δ	n_2	P_b , МПа	T_b , K	T_{r} , K	Δ, %
850	0,1494	1973	6,35920	2,14615	1,197),5354	1994,70	741,	0,472
1500	0,1684	2078	6,72688	2,125465	1,194),5504	2078	751,	0,083

Продолжение таблицы 1.6									
4000	0,1972	2223	6,97737	2,063232	1,192),5789	2112,26	820	0,0347
5800	0,2052	2273	6,75804	2,021397	1,191),5669	2147,11	870,	0,449

Индикаторная работа цикла

$$L_{iT} = \sum_{i=1}^{n} \frac{P_{1i} + P_{2i}}{2} |V_{2i} - V_{1i}|;$$
(1.44)

Расчётное среднее индикаторное давление

$$P_{iT} = \frac{\varepsilon \cdot L_{iT}}{(\varepsilon - 1)V_a}, \quad \text{M}\Pi a$$
 (1.45)

Индикаторный коэффициент полезного действия

$$\eta_i = 8.314 \frac{M_1 \cdot P_{iT} \cdot T_0}{P_0 \cdot \eta_V \cdot H_u} \tag{1.46}$$

Идикаторный расход топлива

$$g_i = \frac{3600}{\eta_i \cdot H_u} \cdot 10^3, \ \text{r/kBt} \cdot \text{q}$$
 (1.47)

Таблица 1.7 Индикаторные показатели рабочего цикла

Част.вращения, об/мин	Индикаторная работа, кДж	Р _і , Мпа	Ni, кВт	$\eta_{\rm i}$	g _i , г/кВт*ч
850	1,001	1,107	15,2886	0,489854	196,093
1500	1,09	1,16	42,8947	0,405874	187,051
2700	1,101	1,241	60,5621	0,484105	184,552
4000	1,209	1,255	77,4121	0,413589	175,613
5800	1,29	1,220	89,247	0,429888	169,992

Среднее давление механических потерь

$$P_M = 0.034 + 0.0113v$$
 , M Π a . (1.48)

где $v_n = \frac{Sn}{30}$, м/с скорость поршня при S/D = 84/76 = 1.165.

Среднее эффективное давление определяется по формуле.

$$P_e = P_{iT} - P_M, \text{M}\Pi \text{a} \qquad (1.49)$$

Механический К.П.Д определяется по формуле.

$$\eta_{\scriptscriptstyle M} = {P_e / \over P_{\scriptscriptstyle iT}} \,. \tag{1.50}$$

Эффективный К.П.Д определяется по формуле.

$$\eta_e = \eta_i \cdot \eta_M \ . \tag{1.51}$$

Удельный эффективный расход топлива определяется по формуле.

$$g_e = \frac{g_i}{\eta_M}, \text{kBt} \cdot \text{y}$$
 (1.52)

Эффективная мощность определяется по формуле.

$$N_e = \frac{P_e \cdot V_{\mathcal{I}} \cdot n}{30\tau}, \text{ KBT.}$$
 (2.53)

Часовой расход топлива определяется по формуле.

$$G_T = N_e \cdot g_e, \quad \text{K}\Gamma/\text{Y} \tag{1.54}$$

Крутящий момент определяется по формуле.

$$M_e = \frac{3 \cdot 10^4 \cdot N_e}{\pi \cdot n}, \text{ H} \cdot \text{M}$$
 (1.55)

Таблица 1.8 Эффективные показатели двигателя.

Частота вращения, об/мин	Средняя скорость поршня, м/с	р _м , Мпа	ре, Мпа	$\eta_{\scriptscriptstyle M}$	η _e	g _e , г/(кВт.ч)	Ne, кВт	Ме, Н.м	Gт, кг/ч
850	3,1	0,0751	1,0499	0,993	0,429	227,371 9	16,8	124,99	4,77
1500	7,15	0,132	1,0579	0,868	0,351	229,399 8	34,6	126,72	7,43
2700	9,56	0,1446	1,0914	0,851	0,324	230,332	55,1	130,3	13,64
4000	12,33	0,2152	1,041	0,842	0,464	243,52	67,3	125,29	19,336
5800	15,53	0,239	1,0091	0,848	0,466	255,434	73,9	122,19	22,208

ГЛАВА 2 Проблемы и мероприятия поршневых групп

Конструкторы новых двигателей понимают, что в поршневых машинах рабочая область находится над поршнем, и эта среда сжимает рабочую смесь в цилиндрах от 7 до 21МПа. Газодинамические процессы в ДВС очень зависят от технико-экономических характеристик и экологических показателей двигателя. Газодинамические процессы создают рабочее

давление в цилиндре двигателя. Даже некоторые специалисты не уделяют поршневому уплотнению необходимого внимания и считают, что 2...4% газодинамических потерь незначительны для процессов, протекающих в двигателе. При меньших газодинамических потерях в камере сгорания, большая часть рабочего давления реализуется в работу поршня. До сегодняшнего дня отсутствовал нормальный поршневой уплотнитель, который полностью перекрывает пространства между поршнем и цилиндром. Механические и газодинамические потери, связанные с работой

компрессионного кольца, отражаются в размерах и характеристиках двигателя. Как прижимаются кольца к стенками цилиндра? Невозможно не согласится с тем, что силы упругости прижимают кольца к стенкам

2.1 Функции поршневых уплотнений

Поршневые уплотнения предназначены для устранения рабочих газов через зазор между поршнем и цилиндром, часто изменяющие свои значения в процессе работы. В большинстве двигателей применяются три поршневых кольца (2 компрессионных и 1 маслосъемное) расположены в специальных канавках. Существует конструкции, в которых установлены дополнительное поршневые кольца в нижней части поршня, это уменьшает динамические нагрузки и стуки поршня о стенку цилиндра. Количества поршневых колец зависит от частоты вращения коленчатого вала, диаметра цилиндра и мощности. Встречаются поршневые канавки, в которых могут быть установлены несколько поршневых колец. При проектировании поршневого уплотнения во внимание принимаются две основных функции. Первая - сокращать до минимума прорыв рабочих газов в картер двигателя и обеспечивать разряжение над поршнем в такте «впуска» свежего заряда воздуха. Вторая - отдавать теплоту от прогретой головки поршня к охлаждаемому цилиндру. При этом необходимо соблюдать следующее обстоятельство. Зазор между поршнем и цилиндром минимален, конструкция должна устранять не только пропуск сжимаемого воздуха, но и предотвращать попадание в поршневую канавку копоти и сажи. На такте «выпуск» при движении поршня к верхней мертвой точке, верхним торцом верхнего компрессионного кольца со стенки цилиндра снимаются продукты сгорания в виде копоти и сажи. Часть этих продуктов попадает в камеру сгорания, другая часть - в поршневую канавку. Из за больших давлений копоть и сажа коксуются, лишая компрессионные кольца подвижности и сокращая срок службы двигателя. По второй функции поршневого уплотнения, через компрессионные кольца отводится до 65%

теплоты, теряемой поршнем. Отвод тепла от поршня к цилиндру тем эффективнее, чем больше масса поршневого кольца и усилия прижатия одной детали системы к другой. Если в эту систему подключить дополнительный элемент, который имеет хорошую теплопроводность, то происходит улучшение теплоотдачи от прогретой головки поршня к охлаждаемому цилиндру. Уплотнение между поршнем и цилиндром является подготовительными физико-механическими термодинамическими процессами призванными получить расчетное давление рабочих газов в цилиндре и процессами которые должны максимально эффективно это давление отработать с наименьшими потерями. Доказано, при низкий КПД двигателя, составляющий 45% обуславливается большими газодинамическим и и механическими потерями, а причина этого кроется в неэффективных поршневых колец. Газодинамическая уплотнениях схема компрессионного поршневого кольца, представленная на рисунке 1.1, где 1цилиндр, 2-поршень, 3-компресионное кольца. Сила действует через зазор между поршнем 2 и цилиндром 1 в верхней канавке, рабочее давление прижимает поршневое кольцо 3 к нижней полке канавки с помощью газодинамической силы F_0 , а на стенки цилиндра будет действовать радиальная сила F_{pag} и сила упругости.

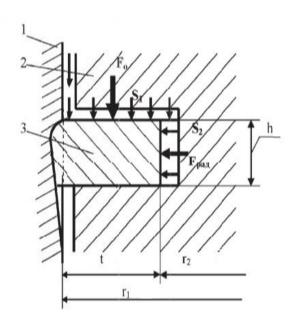


Рисунок 1.1- Газодинамическая схема компрессионного кольца

Большое внимание конструкции маслосъемных колец стало проявляться с началом форсирования ДВС. Они перестали справляться со своими функциями. Возрос расход масло на угар, нагарообразование поршней и цилиндров, возникло повышение вредных поверхностях выхлопных газов. Эту проблему решили, придав компрессионным кольцам не только свойственные функции, но и возможность освобождения стенки цилиндра от масла, с которым не справились маслосъемные кольца.

2.2 Проблемы поршневых уплотнений

Чтобы понять влияние и оценит эффективность технического изделия, следует проводить анализ его работоспособности при разных условиях: минимальных и максимальных влияющих параметров. Следуя из этого, поршневые уплотнения можно представить в виде двух конструктивных вариантов: 1-поршень без уплотнения, 2 - поршень с уплотнением, которое не допускает вообще каких-либо утечек свежего заряда из цилиндра в картер двигателя. В первом случае двигатель даже не запустится. И никакие варианты технологических решений не смогут это исправить. Внутренний диаметр цилиндра при нагреве увеличится больше чем диаметр поршня. При проектировании цилиндра и поршня гарантированный зазор принимают 0,04-0,06% от величины диаметра цилиндра. Рабочие газы прорываются через этот зазор в картере двигателя и рабочего давление резко уменьшается, в цилиндре происходят процессы воспламенения и по всему объему камеры сгорания распространяется фронт пламени, что приводит к сжиганию топливовоздушной Эффективность смеси. таких процессов снижает эффективность определенных рабочих процессов в камере сгорания или двигатель отказывается работать. Одним из основных факторов, которые происходящие влияют на процессы, В камере сгорания, является определенное давление в цилиндре над поршнем, которое влияет на эффективность работы двигателя. Известно, что давление в цилиндре очень зависит от качества уплотнения между поршнем и цилиндром и это влияет на технико-экономические характеристики. Зазор в замке компрессионного кольца на ВАЗовсих двигателях составляет 0,25-0,45 мм. При больших

размерах пределы зазора компрессионных колец вызывают газодинамический дисбаланс двигателя и повышают его вибрацию. Практика и экспериментальные исследования показали, что величину зазора между поршнем и цилиндром можно минимизировать или совсем обнулить. Во время вспышки, когда поршень в ВМТ давление в верхнее канавке равняется давлению в цилиндре P_z , а в канавке ниже составляет 45-50% этой величины. При повышение утечек газа через ЦПГ в двигателе проявляются следующие неисправности:

- ускорение старения масла и повышение его расхода;
- уменьшается мощность, а расход топлива увеличивается;
- дымный выхлоп с синим оттенком;
- коксование и пригорание колец в канавках;
- повышений износ колец и гильз цилиндров.

2.3 Конструктивные мероприятия поршневых групп

Одним из важных уязвимых элементов поршня являются стенки внутреннего компрессионного кольца, которые разрушаются в результате механического и коррозионного износа. Срок службы поршневых групп определяет моторесурс всего двигателя. Для устранения данного дефекта в двигателестроении используют конструктивные мероприятия, основными являются следующие.

2.3.1 Конструктивные мероприятия элементов поршня, обеспечивающие повышение параметров прочности, жесткости, долговечности

Размещение в головке поршня из алюминиевого сплава вставки из износостойкого материала показано на рисунке 1.1. В качестве вставок используются материал из аустенитного чугуна (14...18% Ni, 6% Cr, 2,5% Cu) и слаболегированной стали. Вставка вставляется с использованием альфина – процесса, целью которого является алитированиие ее наружных поверхностей. После этого видно диффузионную металлургическая связь между вставкой и поверхностью поршня в виде алюмида железа толщиной

0,02...0,03 мм. Этот метод увеличивает износостойкость в 2...4 раза. Изготовление поршня тоже увеличивается на 45...65% и происходит увеличение его массы на 7...10%. Существует еще один метод повышения прочности поршня, заготовки изготавливаются методом горячего прессования, вставку делают как бандажа, и приваривают к головке поршня электронно-лучевой сваркой как показано на рисунке 1.1 б.

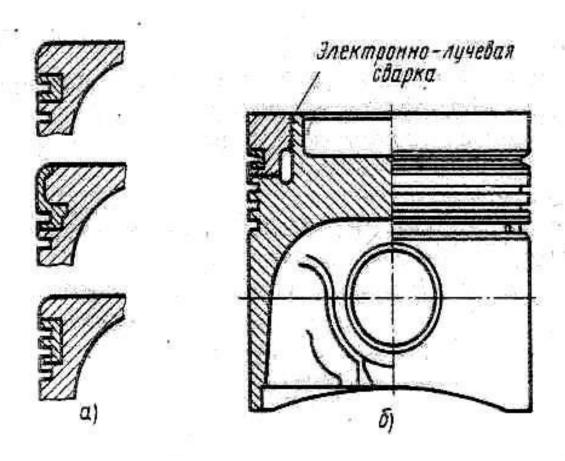


Рисунок 1.1 – Противоизносные вставки поршневых канавок .

С помощью этого метода одновременно решается формирование в поршне охлаждающих каналов для циркуляции масла. Увеличение жаропрочности и твердости элементов канавки поршня переплавом поверхностного использованием легированных слоя \mathbf{c} материалов. Переплавка делается электродом из железоникель - хромовой проволоки. Повышение жаропрочности поршневых сплавов удается путем легирования элементов, образующими тугоплавкие соединения, этот метод не всегда оказывается приемлемым c экономической, технологической экологической точки зрения. Увеличение прочности верхней канавки поршня происходит с введением в структуру его головки керамических волокон из карбида кремния и оксида алюминия. Поршни изготавливаются методом жидкой штамповки, достоинством метода является высокая И износостойкость механическая прочность элементов поршня добавления материалоемкости его конструкции. В качестве присадочного нихром в количестве 3-4,5 % от объема материала используется расплавленного материала поршня, для выполнения кольцевой канавки в упрочненной зоне, что является оптимальным. При содержании нихрома меньше 4% от указанного объема расплавленного материала поршня степень пресыщения твердого раствора алюминия, так как силумин является сплавом на основе алюминия, чтобы обеспечить стабильность свойств направленного материала и снижение твердости при последующем перестаривании сплава. Покрытие головки поршня включая кольцевую канавку осуществляется эмалью, что обеспечивает не только защиту от эрозии и коррозии но уменьшает тепловосприимчивость материала. Это условие облегчает работу поршня и компрессионных колец. Основной проблемой конструирования поршней является ограничение температуры В зоне верхнего компрессионного кольца. Если температура увеличится выше 200°C для рядовых масел с низкой температурой коксования, возможно закоксовывание кольцевой канавки, что приведет к потере подвижности кольца. Проблема решается при увеличении высоты огневого пояса, это приводит к ухудшению массогабаритных характеристик поршня, либо добавит больше масла в канал для охлаждения этой зоны. Это усложняет конструкцию поршня и сокращает срока службы моторного масла. Сутью является использование специальных самоочищающиеся компрессионных колец. Уменьшение коэффициента теплоотдачи от поршня к холодному (охлаждающему) маслу на 40% при равномерной температуре по сравнению с рассчитанным повышает максимальную температуру днища поршня на 2—5%, а верхнего поршневого кольца на 1,5-3%. Вследствие меньшего количества воспринимаемого тепла и большей теплопроводности температура днища поршней из алюминиевых сплавов почти в два раза ниже, чем поршней из чугуна. Уменьшение количества теплоты подводимой к направляющему поясу, позволяет сократить зазоры между направляющей частью и гильзой, но температура днища поршня при этом повышается. При наличии поперечных прорезей уменьшается жесткость поршня.

2.3.2 Мероприятия – терморегулирующие вставки поршней

При изменении режима работы двигателя, термостабилизацию зазора между цилиндром и юбкой поршня осуществляет вертикальные прорезы а также избегание прижимания к цилиндру во время рабочего хода поршня. Регулирование теплового расширения осуществляется специальными терморегулирующими вставками, которые размешены в верхней части юбки. Распространение конструкции поршней со вставками представленно ниже. На рисунке 1.2 а показано автотермические вставки - поршень заливается стальными вставками, с литыми стенками которые связывают юбку с бобышками. Два поперечных прореза между головкой и юбкой могут уменьшить температуру юбки поршня и обеспечат деформацию головки на форму. Из-за разности коэффициентов линейного расширения металлическая стенка нагревается в направлении оси пальца и втягивает внутрь участок юбки и увеличивается ее диаметр.

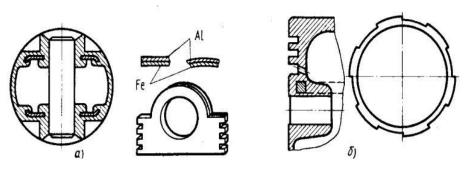


Рисунок 1.2 - Терморегулирующие вставки поршней

Автотерматик конструктивно аналогичен автотермику, но здесь отсутствует поперечный прорез между головкой и юбкой. Такая конструкция позволяет поршню иметь высокую жесткость и маленькую температуру уплотняющего пояса. Клероматик (конформатик) - в верхнюю часть юбки заливается стальное кольцо круглого или прямоугольного сечения, как показано на рисунке 1.2 б. Такая конструкция увеличивает жесткость верхней зоны юбки и уменьшает равномерные тепловые деформации по всей высоте юбки.

Диотерматик. В юбку поршня заливаются фигурные вставки, верхние кромки которых доходят до торцевой поверхности канавки маслосъемного кольца.

ГЛАВА 3 Кинематический и динамический расчет кривошипношатунного механизма

3.1 Кинематические параметры кривошипно-шатунного механизма

Исходные данные

Обороты коленчатого вала	n=5800 об/мин
Диаметр цилиндра	$D_n = 82 {\it мм}$
Ход поршня	S=75,6 мм
Отношение радиуса кривошипа к	3 -0.25
длине шатуна	$\lambda = 0.25$

Расчет параметров КШМ

Угловая скорость вращения коленчатого вала	$\omega = \frac{\pi \cdot n}{30} = \frac{3,14 \cdot 5800}{30} = 586,43 c^{-1}$
Радиус кривошипа	$r = \frac{S}{2} = \frac{75,6}{2} = 37,8 \text{мм}$
Длина шатуна	$l = \frac{r}{\lambda} = \frac{37.8}{0.25} = 151.2 \text{ мм}$

3.1.1 Перемещение поршня

Перемещение поршня состоит из перемещения первого порядка $S_{\Pi 1}$ при длине шатуна равной ∞ , и второго порядка $S_{\Pi 2}$, дополнительного перемещения, зависящей от конечной длины шатуна и определяется по формуле:

$$S_x = r \quad 1 - \cos\varphi + \frac{\lambda}{4} \quad 1 - \cos2\varphi \tag{5.1.1}$$

где φ — угол поворота коленчатого вала;. $S_{\Pi 1} = r \ 1 - cos \varphi$ — перемещение первого порядка;

 $S_{\Pi 2}=r^{-\frac{\lambda}{4}} \ 1-cos2\varphi$ — перемещение второго порядка.

При $\varphi = 0^\circ$:

$$S_x = 37.8 \quad 1 - \cos 0 + \frac{0.25}{4} \quad 1 - \cos 2 \cdot 0 = 0 \text{ mm}$$

Расчет проводится до $\varphi=720^\circ$. Результаты вычислений в таблице 5.1. S По результатам расчета строится график $S_x=f(\varphi)$.

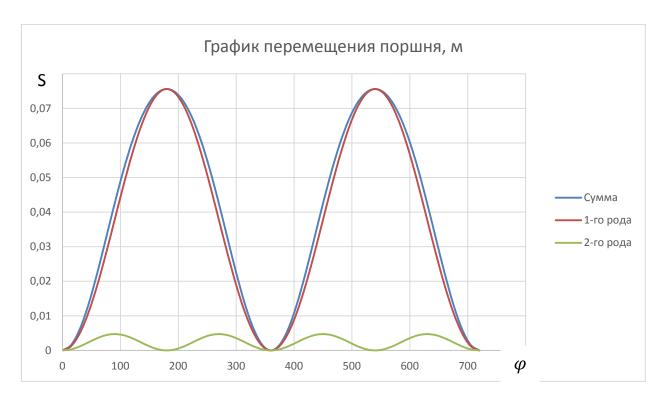


Рисунок 4.1– Зависимость перемещения поршня от угла П.К.В.

3.1.2 Скорость поршня

Скорость поршня вычисляется по формуле:

$$V_x = \omega \cdot r \sin \varphi + \frac{\lambda}{2} \sin 2\varphi \tag{5.2.1}$$

где $V_{x1} = \omega \cdot r \ sin \varphi \ -$ скорость первого порядка;

 $V_{x2} = \omega \cdot r \frac{\lambda}{2} sin2\varphi$ — скорость второго порядка.

При $\varphi = 0^\circ$:

$$V_x = 586,43 \cdot 37,8 \quad \sin 0 + \frac{\lambda}{2} \sin 2 \cdot 0 = 0 \text{ m/c}$$
 (5.2.2)

Расчет проводится до $\varphi = 720^\circ$. Результаты вычислений в таблице 5.2.

По результатам расчета строится график $V_x = f(\varphi)$.

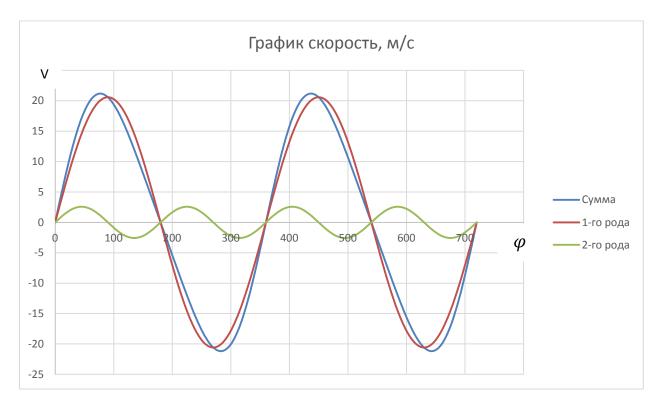


Рисунок 4.2– Зависимость скорости поршня от угла П.К.В.

3.1.3 Ускорение поршня

Ускорение поршня вычисляется по формуле:

$$j = \omega^2 \cdot r \, \cos\varphi + \lambda \cos 2\varphi \tag{5.3.1}$$

где $j_{\Pi 1} = \omega^2 \cdot r \; cos \varphi$ — ускорение первого порядка;

 $j_{\Pi 2} = \omega^2 \cdot r \ \lambda cos2\varphi$ — ускорение второго порядка.

При $\varphi = 0^\circ$:

$$j = 586,43^2 \cdot 37,5 \cos 0 + 0,25\cos 2 \cdot 0 = 15,74 \text{ m}^2/\text{c}$$

Расчет проводится до $\varphi = 720^\circ$. Результаты вычислений в таблице 5.3.

По результатам расчета строится график $j = f(\varphi)$.

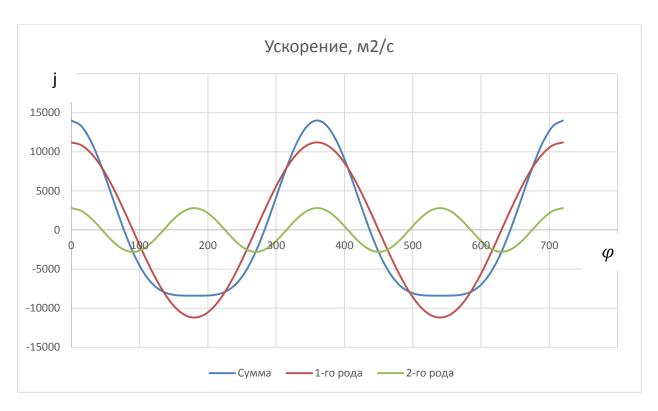


Рисунок 4.3– Зависимость ускорения поршня от угла П.К.В.

Таблица 4.1 Кинематические характеристики двигателя

φ	S_Π (MM)	$S_{\Pi 1}$	$S_{\Pi 2}$	$V_{\!\scriptscriptstyle \mathcal{X}}$ (m/c)	V_{x1}	V_{x2}	$j (M^2/c)$	$j_{\Pi 1}$	$j_{\Pi 2}$
0°	0	0	0	0	0	0	15,74	12,20	3,54
10°	0,18	0,14	0,04	2,1	1,82	0,26	15,64	12,15	3,48
20°	0,69	0,53	0,15	4,14	3,62	0,51	15,35	12,02	3,32
30°	1,55	1,21	0,34	6,15	5,39	0,75	14,85	11,79	3,06
40°	2,73	2,13	0,60	8,09	7,12	0,97	14,18	11,47	2,71
50°	4,25	3,34	0,92	9,96	8,81	1,15	13,33	11,06	2,27
60°	6,04	4,76	1,29	11,72	10,41	1,30	12,34	10,57	1,77
70°	8,12	6,43	1,69	13,37	11,95	1,41	11,20	9,99	1,21
80°	10,43	8,31	2,22	14,87	13,39	1,48	9,96	9,35	0,61

90°	12,97	10,40	2,57	16,23	14,72	1,50	8,63	8,63	0
100°	15,69	12,67	3,02	17,43	15,95	1,48	7,23	7,85	-0,61
110°	18,57	15,12	3,45	18,47	17,05	1,41	5,79	7,00	-1,21
120°	21,61	17,75	3,86	19,34	18,03	1,30	4,33	6,10	-1,77
130°	24,71	20,48	4,22	20,02	18,86	1,15	2,88	5,16	-2,27
140°	27,90	23,36	4,54	20,54	19,57	0,97	1,46	4,17	-2,71
150°	31,1	26,31	4,8	20,87	20,11	0,75	0,95	3,16	-3,06
160°	34,31	30,6	4,99	21,02	20,51	0,51	-1,20	2,12	-3,32
170°	37,50	32,41	5,1	20,99	20,7	0,26	-2,41	1,06	-3,48
180°	40,64	35,5	5,14	20,82	20,82	0	-3,54	0	-3,54
190°	43,69	38,6	5,1	20,47	20,74	-0,26	-4,54	-1,06	-3,48
200°	46,66	41,68	4,99	19,99	20,51	-0,51	-5,45	-2,12	-3,32
210°	49,49	44,69	4,8	19,36	20,11	-0,75	-6,22	-3,16	-3,06
220°	52,18	47,64	4,54	18,6	19,57	-0,97	-6,88	-4,17	-2,71
230°	54,74	50,52	4,22	17,71	18,86	-1,15	-7,44	-5,16	-2,27
240°	57,11	53,25	3,86	16,72	18,03	-1,30	-7,87	-6,10	-1,77
250°	59,33	55,88	2,91	15,63	17,05	-1,41	-8,21	-7,00	-1,21
260°	61,34	58,33	3,02	14,46	15,95	-1,48	-8,46	-7,85	-0,61
270°	63,17	60,6	2,57	13,21	14,72	-1,50	-8,63	-8,63	0
280°	64,82	62,69	2,22	11,9	13,39	-1,48	-8,73	-9,35	0,61
290°	66,27	64,57	1,69	10,53	11,95	-1,41	-8,78	-9,99	1,21
300°	67,53	66,24	1,29	9,10	10,41	-1,30	-8,80	-10,57	1,77
310°	68,58	67,66	0,92	7,65	8,81	-1,15	-8,78	-11,06	2,27
320°	69,47	68,87	0,60	6,15	7,12	-0,97	-8,76	-11,47	2,71

330°	70,14	69,79	0,34	4,64	5,39	-0,75	-8,72	-11,79	3,06
340°	70,59	70,43	0,15	3,11	3,62	-0,51	-8,68	-12,02	3,32
350°	70,9	70,86	0,04	1,55	1,82	-0,26	-8,67	-12,15	3,48
360°	71	71	0	0	0	0	-8,66	-12,20	3,54
370°	70,9	70,86	0,04	-2,08	-1,82	0,26	-8,67	-12,15	3,48
380°	70,59	70,43	0,15	-4,14	-3,62	0,51	-8,68	-12,02	3,32
390°	70,14	69,79	0,34	-6,15	-5,39	0,75	-8,72	-11,79	3,06
400°	69,47	68,87	0,60	-8,09	-7,12	0,97	-8,76	-11,47	2,71
410°	68,58	67,66	0,92	-9,96	-8,81	1,15	-8,78	-11,06	2,27
420°	67,53	66,24	1,29	-11,72	-10,41	1,30	-8,80	-10,57	1,77
430°	66,27	64,57	1,69	-13,37	-11,95	1,41	-8,78	-9,99	1,21
440°	64,82	62,69	2,22	-14,87	-13,39	1,48	-8,73	-9,35	0,61
450°	63,17	60,6	2,57	-16,23	-14,72	1,50	-8,63	-8,63	0
460°	61,34	58,33	3,02	-17,43	-15,95	1,48	-8,46	-7,85	-0,61
470°	59,33	55,88	3,45	-18,47	-17,05	1,41	-8,21	-7,00	-1,21
480°	57,11	53,25	3,86	-19,34	-18,03	1,30	-7,87	-6,10	-1,77
490°	54,74	50,52	4,22	-20,02	-18,86	1,15	-7,44	-5,16	-2,27
500°	52,18	47,64	4,54	-20,54	-19,57	0,97	-6,88	-4,17	-2,71
510°	49,49	44,69	4,8	-20,87	-20,11	0,75	-6,22	-3,16	-3,06
520°	46,66	41,68	4,99	-21,02	-20,51	0,51	-5,45	-2,12	-3,32
530°	43,69	38,6	5,1	-20,99	-20,74	0,26	-4,54	-1,06	-3,48
540°	40,64	35,5	5,14	-20,82	-20,82	0	-3,54	0	-3,54
550°	37,50	32,41	5,1	-20,47	-20,74	-0,26	-2,41	1,06	-3,48
560°	34,31	30,6	4,99	-19,99	-20,51	-0,51	-1,20	2,12	-3,32

570°	31,1	26,31	4,8	-19,36	-20,11	-0,75	0,95	3,16	-3,06
580°	27,90	23,36	4,54	-18,6	-19,57	-0,97	1,46	4,17	-2,71
590°	24,71	20,48	4,22	-17,71	-18,86	-1,15	2,88	5,16	-2,27
600°	21,61	17,75	3,86	-16,72	-18,03	-1,30	4,33	6,10	-1,77
610°	18,57	15,12	2,91	-15,63	-17,05	-1,41	5,79	7,00	-1,21
620°	15,69	12,67	3,02	-14,46	-15,95	-1,48	7,23	7,85	-0,61
630°	12,97	10,40	2,57	-13,21	-14,72	-1,50	8,63	8,63	0
640°	10,43	8,31	2,22	-11,9	-13,39	-1,48	9,96	9,35	0,61
650°	8,12	6,43	1,69	-10,53	-11,95	-1,41	11,2	9,99	1,21
660°	6,04	4,76	1,29	-9,10	-10,41	-1,30	12,31	10,57	1,77
670°	4,25	3,34	0,92	-7,65	-8,81	-1,15	13,33	11,06	2,27
680°	1,73	2,13	0,60	-6,15	-7,12	-0,97	14,18	11,47	2,71
690°	1,55	1,21	0,34	-4,64	-5,39	-0,75	14,85	11,79	3,06
700°	0,69	0,53	0,15	-3,11	-3,62	-0,51	15,35	12,02	3,32
710°	0,18	0,14	0,04	-1,55	-1,82	-0,26	15,64	12,15	3,48
720°	0	0	0	0	0	0	15,74	12,20	3,54

3.2 Динамические параметры кривошипно-шатунного механизма

Силы, возникающие в кривошипно-шатунном механизме:

Силы давления газов

Силы давления газов определяются по формуле:

$$P_{\Gamma} = p_{\Gamma} \cdot F_{\Pi} \tag{6.1}$$

где F_{Π} – площадь поршня.

$$P_{\Gamma} = (p_{X} - p_{0}) \cdot \frac{\pi \cdot d_{\Pi}^{2}}{4}$$

$$(6.2)$$

Давление p_X берется с индикаторной диаграммы, p_0 – атмосферное давление, d_Π – диаметр поршня.

$$d_{\Pi} = 0.082 \text{ M};$$

$$p_0 = 0.093 \text{ M}\Pi a.$$

При $\varphi = 0^\circ$:

$$P_{\Gamma} = 0.0092 - 0.093 \cdot \frac{\pi \cdot 0.082^2}{4} = -0.044 \text{ H}$$

Расчет проводится до $\varphi=720^\circ$. Результаты вычислений в таблице 2. По результатам расчета строится график $P_\Gamma=f(\varphi)$.

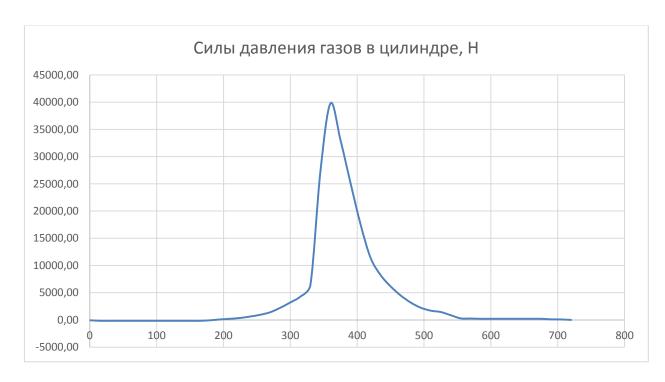


Рисунок 5.1 – Зависимость силы давления газов от угла П.К.В.

3.2.1 Силы инерции возвратно-поступательно движущихся масс

К возвратно-поступательно движущимся массам относятся: поршень, поршневой палец, поршневые кольца, верхняя часть шатуна (0,275 массы шатуна).

Суммарная сила инерции определяется по формуле:

$$P_j = -m_j \cdot j$$

где j – ускорение поршня,

 m_i – суммарная масса поршневой группы, которая равна:

$$m_j = m_{\Pi} + m_{\coprod \Pi}$$

Масса поршня

$$m_\Pi = m'_\Pi \cdot F_\Pi = 100 \cdot 0,0053 = 0,53$$
 кг

удельную конструктивную массу поршня принимают равной $m'_{\Pi} = 100 \text{ кг/m}^2$.

Масса шатуна:

$$m_{\rm III} = m'_{\rm III} \cdot F_{\rm II} = 130 \cdot 0,0053 = 0,689$$
 кг

удельную конструктивную массу шатуна принимают равной $m'_{\rm III} = 130~{\rm kr/m^2}.$

Масса шатуна, сосредоточенная на оси поршневого пальца:

$$m_{\text{IIII}} = 0.275 \cdot m_{\text{III}} = 0.275 \cdot 0.689 = 0.189$$
 кг

Массы, совершающие возвратно-поступательное движение:

$$m_j = m_\Pi + m_{\Pi\Pi\Pi} = 0.53 + 0.189 = 0.719$$
 кг

Формулу суммарной силы инерции можно представить в виде:

$$\begin{split} P_{j} &= -m_{j} \cdot j = -m_{j} \cdot r \; cos\varphi + \lambda cos2\varphi \; \cdot \omega^{2} \\ P_{j} &= -m_{j} \cdot \omega^{2} \cdot rcos\varphi - m_{j} \cdot \lambda cos2\varphi \cdot \omega^{2} \\ P_{j} &= P_{j1} + P_{j2} \end{split}$$

Сила инерции первого рода:

$$P_j = -m_j \cdot \omega^2 \cdot rcos\varphi = -m_j \cdot j_{\Pi 1}$$

Сила инерции второго рода:

$$P_i = -m_i \cdot \lambda \cos 2\varphi \cdot \omega^2 = -m_i \cdot j_{\Pi 2}$$

При $\varphi = 0^\circ$:

$$P_{j1} = -m_j \cdot j_{\Pi 1} = -0,719 \cdot 12,20 = -8,8$$
 кН

$$P_{j2} = -m_j \cdot j_{\Pi 2} = -0.719 \cdot 3.54 = -2.5 \text{ кH}$$

 $P_j = P_{j1} + P_{j2} = -8.8 - 2.5 = -11.3 \text{ кH}$

Расчет проводится до $\varphi=720^\circ$. Результаты вычислений в таблице 2. По результатам расчета строится график $P_i=f(\varphi)$.

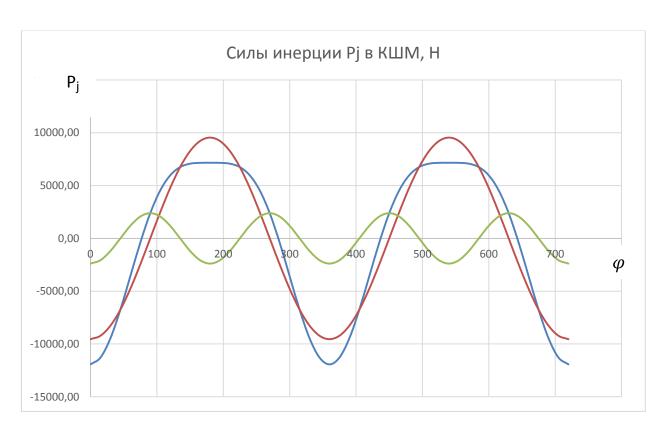


Рисунок 5.2 – Зависимость сил инерции возвратно-поступательных движущихся масс от угла П.К.В.

3.2.2 Силы инерции вращающихся масс

К вращающимся массам относятся кривошип и нижняя часть шатуна (0,725 массы шатуна).

Сила инерции определяется по формуле:

$$P_r = -m_r \cdot \omega^2 \cdot r$$

где m_r – масса вращающихся деталей.

$$m_r = m_k + m_{\text{HIK}}$$

Масса неуравновешенных частей одного колена без противовесов:

$$m_k = m_k' \cdot F_{\scriptscriptstyle \Pi} = 170 \cdot 0,0053 = 0,901$$
 кг

удельную конструктивную массу вала примем равной $m'_k = 170 \text{ кг/м}^2$.

Масса шатуна, сосредоточенная на оси кривошипа:

$$m_{\text{шк}} = 0.725 \cdot m_{\text{ш}} = 0.725 \cdot 0.689 = 0.5 \text{ кг}$$

Тогда масса вращающихся частей равна:

$$m_r = m_k + m_{\text{и к}} = 0.901 + 0.5 = 1.4 \text{ кг}$$

А силы инерции, создаваемые ими:

$$P_r = -m_r \cdot \omega^2 \cdot r = -1.4 \cdot 586.43^2 \cdot 0.0355 = -17098 \text{ H}$$

3.2.3 Суммарные силы, действующие в КШМ

Суммарная сила Р₁ определяется по формуле:

$$P_1 = P_{\Gamma} + P_i$$

При $\varphi = 0^\circ$:

$$P_1 = P_\Gamma + P_i = -0.044 - 11.3 = -11.3$$
 κH

Расчет проводится до $\varphi = 720^\circ$. Результаты вычислений в таблице 2.

По результатам расчета строится график $P_1 = f(\varphi)$.

Рисунок 5.3 – Зависимость суммарных сил в КШМ от угла П.К.В.

На поршневом пальце суммарная сила инерции P_1 раскладывается на две составляющие:

N — нормальная к поверхности цилиндра, прижимающая поршень к поверхности цилиндра, вызывает механические потери и износ цилиндропоршневой группы.

K — действует вдоль оси шатуна, передает усилие поршня на коленчатый вал, вызывает деформации сжатия и растяжения в шатунах.

Сила N вычисляется по формуле:

$$N = P_1 \cdot t g \beta$$

При $\varphi = 0^\circ$:

$$N = P_1 \cdot tg\beta = -11,3 \cdot 0 = 0$$
 кН

Расчет проводится до $\varphi = 720^\circ$. Результаты вычислений в таблице 2.

Сила Квычисляется по формуле:

$$K = \frac{P_1}{\cos\beta}$$

При $\varphi = 0^\circ$:

$$K = \frac{P_1}{\cos\beta} = \frac{-11.3}{1} = 11.3 \text{ KH}$$

Расчет проводится до $\varphi = 720^\circ$. Результаты вычислений в таблице 2.

Сила K на кривошипе раскладывается на две составляющие:

Z – радиальная сила, изгибает шатунную шейку.

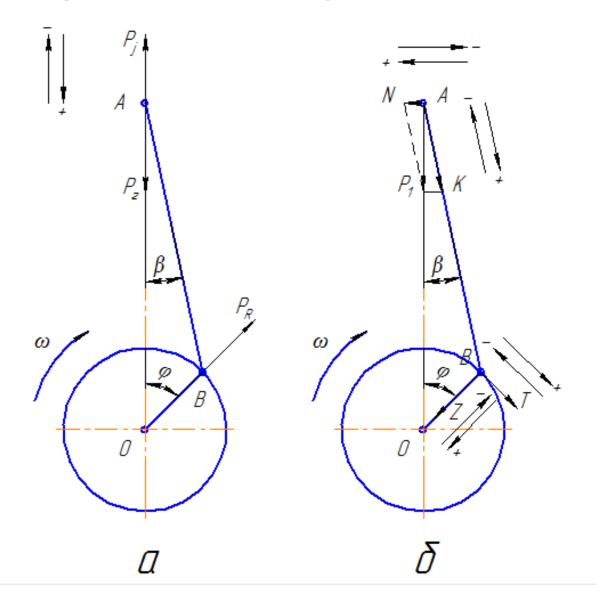
 Т – тангенциальная сила, изгибает шатунную шейку, щеки коленчатого вала, а также скручивает коренную шейку.

Сила Z вычисляется по формуле:

$$Z = P_1 \cdot \frac{\cos(\varphi + \beta)}{\cos\beta}$$

При $\varphi = 0^\circ$:

$$Z = P_1 \cdot \frac{\cos \varphi + \beta}{\cos \beta} = -11,3 \text{ κH}$$


Расчет проводится до $\varphi = 720^\circ$. Результаты вычислений в таблице 2.

Сила Т вычисляется по формуле:

$$T = P_1 \cdot \frac{\sin \varphi + \beta}{\cos \beta} = -11,3 \cdot 0 = 0 \text{ κH}$$

Расчет проводится до $\varphi = 720^{\circ}$. Результаты вычислений в таблице 2. Все значения тригонометрических функций берутся из справочных данных.

Направление действия всех сил изображены на схеме.

Построение полярной диаграммы сил, действующих на шатунную шейку

3.2.4 Равнодействующая сила $R_{\text{шш}}$

Равнодействующая $R_{\text{шш}}$ сил, действующих на шатунную шейку, складывается из сил P_r , Z, T и подсчитывается по формуле:

$$R_{\text{\tiny IIIIII}} = \overline{T^2 + (Z + P_r)^2}$$

При $\varphi = 0^\circ$:

$$R_{\text{IIIII}} = \overline{T^2 + (Z + P_r)^2} = \overline{0^2 + (-11300 - 17098)^2} = 28.4 \text{ kH}$$

Расчет проводится до $\varphi = 720^\circ$. Результаты вычислений в таблице 2.

По результатам расчета строится диаграмма полярной силы $R_{\text{шш}}$, которая показывает направление действия силы в каждый момент времени.

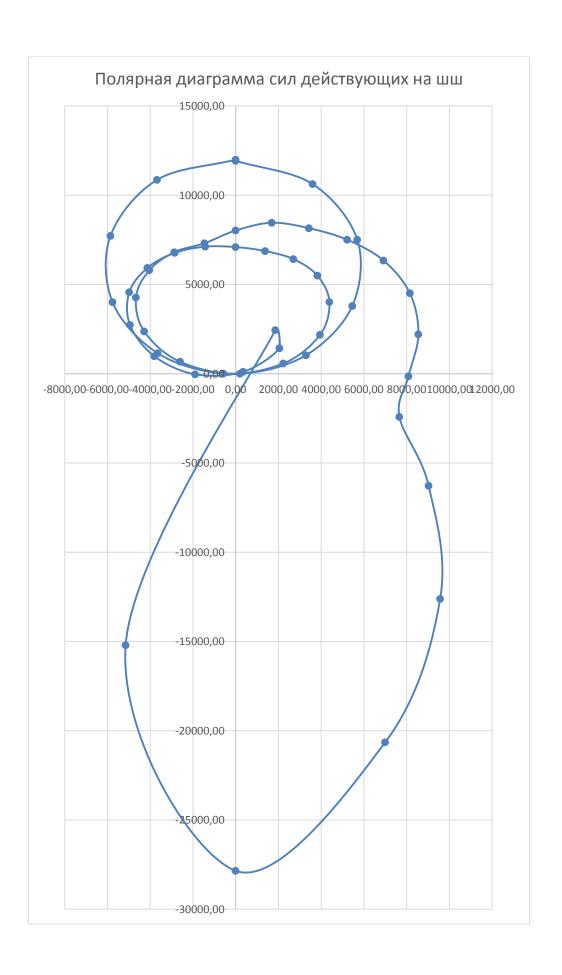


Таблица . Все силы, действующие в кривошипно-шатунном механизме Н .

φ	P_{Γ}	P_{j}	P_1	N	K	Z	Т	R_{min}
0°	40	-11323,46	-11363,46	0	-11363,5	-11363,5	0	28461,46
10°	2,1	-11039,06	-11036,96	-552,5392	-11050,8	-10706,1	-2737,82	27938,6
20°	4,2	-10201,12	-10196,92	-1024,829	-10248,3	-9235,46	-4442,27	26705,52
30°	6,3	-8874,436	-8868,136	-1299,614	-8962,86	-7067,66	-5503,11	24784,33
40°	8,4	-7166,787	-7158,387	-1355,107	-7285,52	-4647,34	-5610,8	22457,54
50°	10	-5201,25	-5191,245	-1170,758	-5321,63	-2400,22	-4738,11	20065,65
60°	13	-3116,15	-3103,147	-801,2291	-3204,92	-857,689	-3088,02	18219,29
70°	15	-1052,12	-1037,117	-290,8225	-1077,12	-68,5733	-1074,21	17200,15
80°	17	865,5	882,49903	257,39555	919,2698	-103,624	913,4107	17225,86
90°	20	2545,59	2565,585	777,42835	2680,787	-812,337	2565,585	18093,16
100°	21	3920,2	3941,2009	1171,8414	4111,724	-1824,79	3684,62	19278,18
110°	23	3941,2	3964,2009	1111,6194	4117,109	-2433,55	3350,085	19816,77
120°	26	5661,7	5687,7321	1468,5661	5874,264	-4115,68	4191,437	21623,79
130°	27	6087,1	6114,1081	1378,8867	6267,667	-4999,14	3815,44	22424,12
140°	29	6280,9	6309,9237	1194,49	6421,989	-5620,78	3106,251	22930,15
150°	28	6328,85	6356,8509	931,58874	6424,75	-5994,69	2323,774	23209,31
160°	34	6301,29	6335,2884	636,72044	6367,204	-6172,4	1562,921	23322,83
170°	36	6244,6	6280,5833	314,42244	6288,449	-6217,62	941,6863	23334,63
180°	1038	6232,29	7270,2943	0	7270,294	-7270,29	0	24368,29
190°	40	6244,6	6284,5833	-314,6227	6292,454	-6096,2	-1558,947	23246,54
200°	42	6301,29	6343,2884	-637,5245	6375,245	-5745,18	-2763,441	23009,73
210°	44	6328,85	6372,8509	-933,9335	6440,921	-5078,98	-3954,667	22526,83

220°	46	6280,9	6326,9237	-1197,708	6439,291	-4107,54	-4959,09	21777,68
230°	66	6087,1	6153,1081	1387,6822	6307,646	-5031,03	-3839,777	22459,69
240°	94	5661,7	5755,7321	-1486,124	5944,495	-1590,85	-5727,672	19546,85
250°	130	4951,95	5081,9528	-1425,053	5277,975	-336,015	-5263,716	18211,3
260°	190	3920,2	4110,2009	-1198,809	4281,459	-482,6247	-4254,17	17151,35
270°	2600	2545,6	5145,585	-1559,225	5376,637	-1629,239	-5145,585	16302,14
280°	3500	865,5	4365,499	-1297,998	4554,381	-2021,24	-4081,295	15619,4
290°	4600	-1052,12	3547,8834	-994,878	3684,733	-2177,977	-2998,261	15218,3
300°	6200	-3116,15	3083,8529	-796,2474	3184,99	2231,497	2272,571	15039,2
310°	8100	-5201,25	2898,7554	-653,743	2971,559	2370,139	1808,935	14838,54
320°	10700	-7166,79	3533,2127	-668,8492	3595,963	3147,329	1739,331	14058,68
330°	14300	-8874,4	5425,5641	-795,1098	5483,516	5116,458	1983,338	12144,59
340°	19200	-10201,12	8998,8754	-904,421	9044,21	8767,508	2220,031	8621,231
350°	25700	-11039,06	14660,939	-733,965	14679,3	14513,96	2198,204	3392,545
360°	37000	-11323,46	25676,536	0	25676,54	25676,54	0	8578,536
370°	63000	-11039,06	51960,939	2601,3006	52026,01	50403,42	12889,37	35712,56
380°	14900	-10201,12	4698,8754	472,25474	4722,547	4255,822	2047,056	13004,31
390°	8000	-8874,436	-874,4359	-128,1475	-883,776	-696,901	-542,63	17803,17
400°	5800	-7166,787	-1366,787	-258,7375	-1391,06	-887,34	-1071,3	18017,22
410°	4500	-5201,25	-701,2446	-158,1485	-718,857	-324,227	-640,034	17433,98
420°	3600	-3116,15	483,85286	124,93027	499,7211	133,7336	481,494	16971,1
430°	2900	-1052,12	1847,8834	518,17331	1919,16	122,1806	1913,975	17083,38
440°	230	865,5	1095,499	319,52055	1141,145	-128,635	1133,872	17263,91

450°	180	2545,59	2725,585	825,91185	2847,972	-862,998	2725,585	18166,62
460°	150	3920,2	4070,2009	1210,1971	4246,306	-1884,52	3805,222	19360,16
470°	120	3941,2	5071,9528	1422,2491	5267,589	-3113,57	4286,229	20661,06
480°	100	5661,7	5761,7321	1487,6728	5950,691	-4169,23	4245,97	21686,94
490°	90	6087,1	6177,1081	1393,0948	6332,249	-5050,65	3854,754	22481,59
500°	80	6280,9	6360,9237	1204,1444	6473,895	-5666,21	3131,357	22978,57
510°	70	6328,85	6398,8509	937,74379	6467,199	-6034,3	2339,127	23250,26
520°	60	6301,29	6358,2884	639,03203	6390,32	-6194,81	1568,595	23345,57
530°	57	6244,6	6301,5833	315,47375	6309,475	-6238,41	944,835	23355,53
540°	52	6232,29	6284,2943	0	6284,294	-6284,29	0	23382,29
550°	50	6244,6	6294,5833	-315,1233	6302,466	-6105,9	1561,427	23256,38
560°	49	6301,29	6350,2884	-638,228	6382,28	-5751,52	2766,49	23016,39
570°	48	6328,85	6376,8509	-934,5197	6444,964	-5082,17	3957,149	22530,4
580°	46	6280,9	6326,9237	-1197,708	6439,291	-4107,54	4959,09	21777,68
590°	45	6087,1	6132,1081	1382,9461	6286,119	-5013,86	3826,672	22440,54
600°	44	5661,7	5705,7321	-1473,214	5892,855	-1577,03	5677,916	19519,1
610°	43	4951,95	3984,2009	-1117,228	4137,88	-263,432	4126,701	17845,14
620°	42	3920,2	3962,2009	-1155,642	4127,293	465,2463	4100,986	17130,87
630°	40	2545,6	2585,585	-783,4888	2701,685	818,6698	2585,585	16483,38
640°	39	865,5	904,49903	-268,9357	943,6339	418,7859	845,6141	16700,64
650°	37	-1052,12	-1015,117	284,65342	-1054,27	-623,161	-857,859	17741,91
660°	31	-3116,15	-3085,147	796,58157	-3186,33	-2232,43	-2273,53	19463,67
670°	25	-5201,25	-5176,245	1167,3746	-5306,25	-4232,31	-3230,18	21573,5
680°	19	-7166,79	-7147,787	1353,1004	-7274,73	-6367,13	-3518,71	23727,49
690°	13	-8874,4	-8861,436	1298,6326	-8956,09	-8356,58	-3239,34	25659,87

700°	9	-10201,12	-10192,12	1024,3471	-10243,5	-9930,08	-2514,41	27144,78
710°	5	-11039,06	-11034,06	552,39397	-11047,9	-10923,4	-1654,4	28070,24
720°	-2	-11323,46	-11325,46	0	-11325,5	-11325,5	0	28423,46

3.3 Расчет поршня

От действия максимальных газовых давлений на днище поршня рассчитывается на изгиб и усилия изгиба в днище поршня вычисляется по формуле (МПа)

$$6_{\text{H3}} = \frac{M_{\text{H3}}}{W_{\text{H3}}} = P_{zmax} * (\frac{r_i}{6})^2$$

$$M_{\text{H3}} = \frac{1}{3} * P_{zmax} * r_i^3$$

$$W_{\text{H3}} = \frac{1}{3} * r_i * 6^2$$

$$6_{\text{H3}} = 45 \text{M}\Pi \text{a}$$

Для чугунных поршней при разности температур внутренней и внешней поверхностей, напряжение давление газов на днище поршня определяются по формуле:

$$6_{\text{теп}} = \frac{\alpha * E * q * 6}{200 \lambda_{\text{теп}}}$$

$$6_{\text{\tiny TEII}} = \frac{11*10^{-6}*1,1*10^{5}*19287,84*0.15}{200*58} = 0,274\text{M}\Pi \text{a}$$

Головка поршня в сечении x-x отверстиями для отвода масла проверяется на сжатие и разрыв. Формула для определении напряжение сжатия причислен ниже

$$6_{\text{CK}} = \frac{P_{zmax}}{F_{x-x}}$$

$$F_{x-x} = \frac{\pi}{4} * d_k^2 - d_i^2 - n_M^{'} * F^{'}$$

$$F_{x-x} = \frac{3,14}{4} * 79,7^2 - 62^2 - 850 * 1,01 = 1110.35 \text{M}^2$$

$$6_{\text{\tiny CM}} = \frac{6,35}{0,111} = 57,20\text{M}\Pi\text{a}$$

В сечение х-х напряжение разрыва поршней определяется по формуле

$$6_p = \frac{P_j}{F_{x-x}}$$

$$P_j = m_{x-x} * R * \omega_{x.x max}^2 * (1 + \lambda)$$

$$P_j = 1.24 * (3.14 * \frac{3000}{30})^2 * 1 + \frac{0.041}{0.133} = 4.8 \text{M}\Pi a$$

Высота кольцевой перемычки двигателей с высокой степенью сжатия определяется на изгиб и срез

$$\tau = 0.0314 * P_{zmax} * \frac{D}{h_{\pi}}$$

$$\tau = 0.0314 *= 0.0314 * 6.35 * \frac{0.081}{0.003} = 5.38 M\Pi a$$

Напряжение изгиба кольцевой перемычки

$$6_{\text{\tiny H3}} = 0.0045 * P_{zmax} * (\frac{D}{h_{\Pi}})^2$$

$$6_{\text{\tiny M3}} = 0.0045 * 6.35 * \frac{0.081^{-2}}{0.003^{-2}} = 21 \text{M}\Pi \text{a}$$

Суммарное напряжение по третьей теории прочности

$$6_{\text{сумм}} = \overline{6_{\text{из}}^2 + 4\tau^2}$$

$$6_{\text{сумм}} = \overline{21^2 + 4 * 5,38^2} = 23\text{M}\Pi\text{a}$$

Давление кольца на стенку цилиндра определяют по формуле

$$P_{\rm cp} = 0.125 * E * \frac{\frac{A_0}{t}}{(\frac{D}{t} - 1)^3 * \frac{D}{t}}$$

$$P_{\rm cp} = 0.125 * 10^5 * \frac{\frac{3}{1.1}}{(\frac{82}{1.1} - 1)^3 * \frac{82}{1.1}} = 0.557$$

Напряжение изгиба кольца, возникающие в сечении кольца, в рабочем состоянии

$$6_{\text{из}} = 2,61 * p_{\text{ср}} * (\frac{D}{e} - 1)^2$$

$$6_{\text{из}} = 2,61 * 0.557 (\frac{82}{1.1} - 1)^2 = 941 \text{М} \Pi \text{a}$$

Сила действующая на поршневой палец определяется по формуле:

$$P = P_{zmax} * F_{\Pi} + k * P_{j}$$

$$P_{j} = -m_{\Pi} * R * \omega_{x.x\,max}^{2} * 1 + \lambda * 10^{-6}$$

$$P_{j} = -0.124 * 607^{2} * 41 1 + 0.25 * 10^{-6} = -0.032$$

$$P = 6,35 * 47,76 * 10^{-4} + 80 * 0,032 = 0,0298MH$$

Давления, которое действует на втулку поршневой головки шатуна

$$Q_{ ext{ iny III}}=rac{P}{d_{ ext{ iny I}}st l_{ ext{ iny III}}$$
 $Q_{ ext{ iny III}}=rac{0.0298}{0.02*0.133}=27.33 ext{М} ext{ iny I} ext{ iny I}$

Давления, которое действует на бобышки пальца

$$q_6 = \frac{P}{d_{\Pi} * l_{\Pi} - b}$$

$$q_6 = \frac{0,298}{0,019(0,050 - 0,02)} = 52,8$$
M Π a

Давление изгиба в среднем сечении пальца

$$6_{_{\mathrm{H3}}} = \frac{P(l_{_{\Pi}} + 2b - 1.5l_{_{\mathrm{III}}}}{1.2(1 - \alpha^4)d_{_{\Pi}}^3}$$

$$6_{_{\mathrm{H3}}} = \frac{0.298\ 0.19 + 2*0.02 - 1.5*0.133}{1.2\ 1 - 0.682^4\ 0.19^3} = 190\mathrm{M}\Pi\mathrm{a}$$

ГЛАВА 4 Преддипломная практика

4.1 Поршневая группа

В поршневую группу входят уплотняющие кольца, поршневой палец и детали для его крепления.

В задачи поршневой группы входит:

- сдерживание давления газов и передача этого давления через шатун на коленчатый вал двигателя;

уплотнение надпоршневой полости цилиндра для предотвращения распространения газов в картере и от излишнего проникновения внутрь картера смазочного масла

нормальной работы двигателей, функции уплотнения выполняет поршневая группа. Уплотняющие способности поршневой группы могут общее техническое состояние двигателя. Например, в указывать на двигателях не допускается, чтобы расход масла из-за угара превышал отметку в 3% от расхода топлива. При сгорании масла в камере сгорания замечается повышение уровня дыма в отработавших газах и двигатель выходит из эксплуатации вне зависимости от мощностных и других его показателей. Поршневая группа работает в сложных температурных диапазонах с резко изменяющимися нагрузками при ограниченной смазке и недостаточном теплоотводе вследствие сложности охлаждения. Для этого детали поршней имеют наиболее высокую напряженность, что учитывается выборе их конструкции и материала. Обычно элементы поршневой разрабатывают cучетом назначения двигателей группы И вида (транспортные, форсирование, двухтактные, четырехтактные, дизели, стационарные). Конструкцию поршни разделяют на две части; верхнюю часть – головку, в которой размешаются поршневые кольца и второе нижнюю часть - называемой юбкой поршня.

4.2 Вид и общие понятия о поршневой группе

Поршень состоит из двух важных частей: головки 1 и направляющей части 2, как показано на рисунке 1

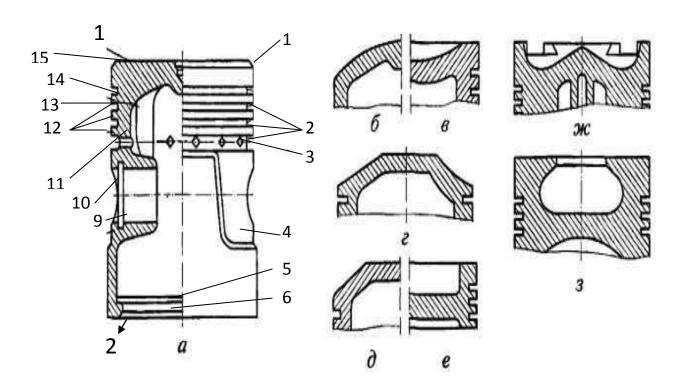


Рисунок 7.1- Конструкция поршня и отдельных его элементов

Тронковую часть поршня обычно называют юбкой поршня а его внутренняя поверхность имеет проливы – бобышки в которых существует отверстие для поршневого пальца. Для фиксации пальца в отверстиях 9 делают канавки 10, в которых размещают деталь – поршневой палец. Нижнюю кромку юбки поршня используют как технологической базы при механической обработке поршня. При этом она часто снабжается точно растачиваемым буритком 6. При подгонке поршня по весу в случаях, если обработки превышает норму, масса поршня после принятую определенного двигателя, с внутреннего торца 5 буритка снимают лишний слой металла. В зоне выхода поршневого пальца на внешних стенках юбки

(нижняя часть поршня) делают углубления 4, вследствие чего стенки этих зон связанны со стенками цилиндра и не изнашиваются о них, так называемые холодильники. Юбки обеспечивают не только направляющую часть поршня но и выдерживают силы бокового давления N_{δ} , это повышает силу их трения о стенки цилиндра и увеличивает нагрев поршня, блок Чтобы свободно цилиндров. поршень перемещался В цилиндре нагруженного двигателя между направляющей (юбкой) и стенками блока цилиндров предусматривают небольшой зазор. Величину зазора можно определить из условий линейного расширения материала (между поршнем и блоком цилиндров) при нормальном тепловом состоянии двигателя. Перегрев поршня приводит к аварийному заклиниванию его в цилиндре. Большой зазор между поршнем и стенками цилиндра приводит к ухудшению уплотняющих свойств поршневой группы и вызывает стуки поршня о стенки блока цилиндров. Работа таких двигателей (со стуком поршней) не допускается. Верхняя часть поршня имеет днище 1 и уплотняющие поршневые кольца, которые размещены на боковых ее стенках 11 в канавках 2 разделяемых друг от друга 12. Нижняя канавка (маслосъемная) снабжается дренажными отверстиями 3, с помощью этого со стенок цилиндра отводят смазочное масло чтобы предотвратить его попадание в камеру сгорания. Обычно диаметр дренажей составляет 2,5-3 мм. При маленьком диаметре они быстро изнашиваются и выходят из строя. На поршнях изготавливают несколько дренажных отверстий, располагая их на под поршневым кольцами. Днище поршня тоже воспринимает большие давления газов и омывается пламенем до температуры 1500-2500° С газами. Для улучшения жесткости днища и повышения прочности головки ее боковые стенки 11 снабжают массивными ребрами 13, которые связывают стенки и днище с бобышками 8. Оребряют и днище поршня, но в легком случае оно выполняется гладкими и постепенно утолщающимся к периферии (на рис.1). При такой конструкции увеличится отвод тепла от днища поршня и ухудшается температура его нагрева. Высокий нагрев днища доводит к ухудшению весового наполнения цилиндров, при этом уменьшается мощность двигателя из-за повышенного нагрева свежего заряда. При этом проявляется преждевременное сгорание топлива, так называемые детонации. Формы поршня выбирается по типу двигателя, камеры сгорания, принятой технологии изготовления поршней. Самый распространенный и простой вид форму. Такие днища имеет плоскую имеют, малую поверхность соприкосновения с нагретыми газами, что положительно действует на их тепловую напряженность. Несложную геометрическую форму выпуклые и вогнутые днища (рис.1 г, д). Выпуклая форма днища обеспечит большую жесткость и уменьшает возможное нагарообразование. Вогнутая форма днищ уменьшает общую компоновку камеры сгорания, но за одно увеличивает условия для повышенного нагарообразования. Проникающее масло в камеру сгорания, накапливается в наиболее горячей центральной зоне днища. В четырехтактных двигателях принимаются разные фигурные днища с различного рода вытеснителями (рис.1 ж). Днища с вытеснителями легко позволяют видоизменять или уменьшить объем камеры сгорания. Верхняя часть (головка) поршня по сравнению с юбкой имеют высокую рабочую температуру и следовательно юбки поршня больше увеличивается в размерах. Для этого $D_{\scriptscriptstyle \Gamma}$ делают меньше диаметра юбки $D_{\scriptscriptstyle Ю}$ и это разница составляет 0,5мм. Размеры головки выбирают так, чтобы стенки головки при максимальной температуре на максимальной мощности двигателя не соприкасались со стенками блока цилиндров. Головку считают уплотняющей частью поршня, так что стенки и поршневые кольца образуют уплотняющий лабиринт. В стенки головка у некоторых двигателей делают проточку 14, это изменяет направление теплового потока. На днище поршня делают центровочное отверстие 15, при отсутствии оребрения предусматривает специальный прилив. Если центровка днища отсутствует в конструкции, то крепят с использованием отверстий поршень 9 в бобышках. При растачивании непосредственно юбки поршня, бобышки снабжаются приливами и технологическими отверстиями. Если буритка 6 отсутствует, то

подгонка поршней по массу делаются за счет снятия металла с торцов на бобышках.

Поршневая группа совершает поступательно – вращательное движение и подвергается воздействию сил инерции. Опыт показывает, что при максимальном действии сил инерции на больших скоростных режимах составляет огромную долю работы OT газовых сил. Ha поршень одновременно действует комплекс различных силовых и тепловых нагрузок. Для двигателей внутреннего сгорания поршни изготавливают из алюминиевых сплавов чугуна. Иногда можно встречать магниевые сплавы для изготовления поршня. Чтобы поршня были прочны и износостойки их изготавливают из чугуна и благодаря маленькому коэффициенту линейного расширения они могут работать с малыми зазорами. В связи с большим весом чугуна применения таких поршней ограничивается удельным сравнительно тихоходными двигателями, где силы инерций у таких двигателей возвратно движущихся масс не превосходят одной шестой от силы давления газа на днище поршня. Температура у днищ чугунных поршней достигает 350-400°C, в совокупности с низкой теплопроводностью. Стенки стальных поршней тоньше стенок чугунных поршней, но сложность отливки удорожает ИΧ производства. Стальные поршни так распространены как чугунные поршни в автомобилестроении. Мало используются поршни из магниевых сплавов, в составе которых есть 6-11% алюминия. Такие сплавы имеют небольшой вес и обладают плохой прочностью. Зависимости от марки алюминиевых сплавов поршневые сплавы содержат в маленьких количествах никель, железо, магний. Широко используется силумины- алюминиевые сплавы, содержащие до 13 % кремния. Алюминиевые поршневые сплавы примерно в 2,5 раза легче чугуна и обладают в 3-4 раза большей теплопроводностью. Благодаря такому весу изготовленные из таких сплавов алюминиевые поршни, на 30% легче чугунных. Нагрев днища таких поршней не должен превышать 250°C, что

способствует лучшему наполнению цилиндров. Мощностные И экономические показатели двигателей c алюминиевыми улучшаются. Алюминиевые поршневые сплавы тоже имеют недостатки: коэффициент линейного расширения в 2 раза больше, чем у чугуна и малая износостойкость. Современные методы производства алюминиевых поршней позволяют использовать их для любых быстроходных двигателей. Повышение механической прочности поршней из алюминиевых сплавов достигается путем одно или многоступенчатой термической обработки. Для нормальной работы поршневой группы большие зазоры между стенками цилиндра и юбкой поршня. Опыт показывает, что даже с малыми зазорами, отсутствует стук в холодном состоянии.

В практике принимают сразу несколько дополняющих друг друга мероприятий. Основные причисляем ниже:

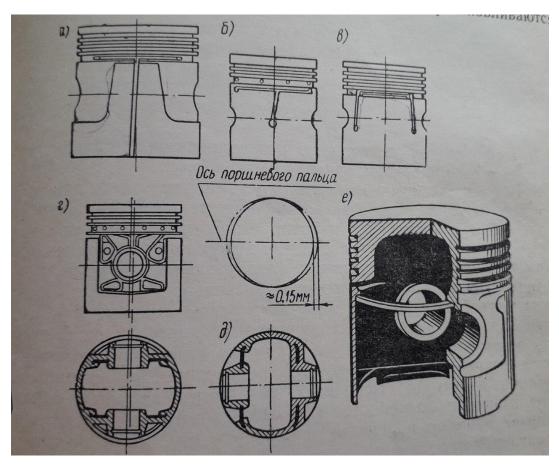


Рисунок 7.2 – Компенсационные вставки и прорези, выполняемые в стенках поршней

- 1) Разрез юбки по всей длине. Этот разрез делают косым для того чтобы верхний и нижний участки его перекрывались. Такой разрез не оставляет следа на стенках блока цилиндров, позволяет разрезным стенкам юбки при их нагреве сближается за счет уменьшения ширины прорези, это поможет свободному в цилиндре. Чтобы повышать перемещению поршня свойства разделенных стенок и уменьшить температуру их пружинящие нагрева, юбка отделяется от головки, которая проходит по канавке нижнего поршневого кольца, показана на рис.2,а. В данном случае горизонтальная прорезь является изолирующей, защищая юбку от теплового нагрева, который идет от стороны горячей головки. Юбка с разрезом по всей ее длине делается цилиндрической, а ширину прорези выбирают так, чтобы происходил захват горячего поршня в цилиндре.
- 2) Разрез юбки не на полную ее длину, а внешний вид Т- и П- образных прорезей, как показано на рисунке 2, б, в. Прорези сочетаются овальной формой юбки и величина овала примерно 0,3-0,5 мм. Юбки поршня соприкасаются со стенками цилиндра в плоскости качания шатуна маленькими полосками и при нагреве расширяется в обе стороны по оси пальца, увеличивает площадь своего контакта с цилиндром. Прорези в Т- и П-образный поршней делают в обеих сторон бобышек, тепловой поток всегда направляется от головки к бобышке и отсутствует влияние на нагрев стенок юбки в зоне их контакта с цилиндром. Чтобы не допустить трещин на конце прорези поршень просверливают как показано на рисунке 2. Поршни с овальной, разрезанной юбкой обладают хороший прочностью и имеют малые тепловые зазоры, величина которых составляет 0,02-0,03 мм. Иногда юбке таких поршней делают не овальную, а конусную форму, величина конусности составляет 0,05 мм.
- 3) Компенсационные вставки, при качения шатуна ограничивают тепловое расширение юбки. Чтобы уменьшить температуру нагрева юбки поршня, в бобышке двух сторон отделяется поперечными изолирующими

прорезами. В данный момент широко изготавливаются инварные вставки, содержащие около 35% никеля и имеют малый коэффициент расширения почти 9-12 раза меньше чем у алюминиевых сплавов. Только с помощью инварных вставок зазор между юбкой поршня и стенками цилиндра удается сохранить как в холодном, так и в прогретом состоянии двигателя. имеют развитые холодильники и могут свободно расширятся по оси поршневого пальца как показано на рисунке 2, д. Инварные вставки более дешевыми вставками из нелегированной стали, они являются заливаются в бобышки так, что вместе с тонким слоем основного алюминиевым сплава образуют биметаллические пари рис. 2, г.

4.3 Поршневые кольца

Поршневые кольца являются основными деталями поршневой группы, предназначенными ДЛЯ уплотнения цилиндра OT прорыва надпоршневой полости, так и от попадания масла в камеру сгорания. Кольца представляют собой разрезные пружины прямоугольного сечения и установленные для них канавки на поршне. Когда разрезные поршневых колец перемещается на величину S_0 , они имеют радиус кривизны и величину которая больше радиуса цилиндра. Правильно изготовление поршневые кольца, должны свободно одеваться на поршень а на цилиндре иметь геометрическую круглую форму, плотно прилегать к стенками и равномерно действовать по всей свой окружности. Примерно радиальное давления поршневых колец составляет 0,1-0,4Mн/м². На рисунок 3 показано основные элементы поршневых колец. Поверхность 1, скользящая по стенке цилиндра, так называемая рабочая сторона кольца. Внутреннюю образующий 3 поверхность кольца называются внутренней стороной. Боковые поверхности 4 соприкасаются со стенками канавок поршня и являются рабочими поверхностями кольца. Величина между боковыми поверхностями кольца называют высотой кольца h. Радиальная толщина это разность между

радиусом наружной и внутренней поверхности кольца, выбирающаяся в зависимости от размера цилиндра и примерно равна 0,05 его диаметра.

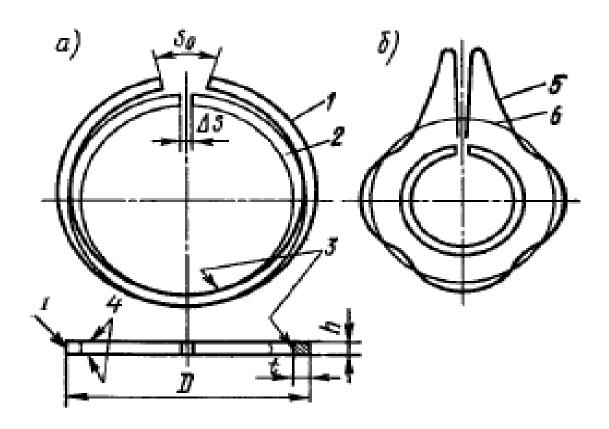


Рисунок 7.3 – Конструкция поршневого кольца и упругое равномерное давление его на стенку цилиндра

Кольца изготавливают так, чтобы внутри цилиндра у них сохранялся зазор разрезанными концами. Разрезы делают прямыми и косыми под углом 45° и ступенчатыми, как показано на рис 3,г. Косые замки имеют целью уменьшить прорыв газов через зазор в замке кольца. Если кольца расположены ближе к днищу поршня, то выше температура его нагрева, и оно изготавливается с большими зазорами в замке. Расстояние зазора прижатого строго регламентируется инструкцией кольца заводаизготовителя. При отсутствие зазора в стыке кольцо утрачивает свободу перемещения. Оно может повредить стенки цилиндра и само выйти из строя. Уплотняющие кольца и канавки под них тщательно обрабатываются. Кольцо, должно свободно без заедания перемещаться в канавках при зазоре 0,04-0,08мм. Глубина канавки под кольцо протачивается и составляет в

среднем 0,5 мм. Условия работы очень сложные: большая скорость скольжения по зеркалу; нехватка смазочного масла в верхней зоне цилиндра; высокое тепловое напряжение при прикосновения с нагретыми газами. Практика показывает, что на поршневых кольцах происходит 50-60% всех потер на трение в двигателе и 80 % тепла отводят от головки поршня именно кольца, в условиях когда теплоотвод затруднен. Рабочая температура верхних поршневых колец возрастает 300-360 °C к материалу поршневых колец предъявляются повышенные требования. Материал для изготовления поршневых колец должен обладать высокой прочностью и упругостью при повышенных температурах, должен иметь высокую износостойкость и малый коэффициент трения при рабочей температуре кольца. Лучше всего этим условиям отвечает чугун. Для поршневых колец используют перлитный высокосортный чугун с твердостью НВ 220-240 единиц, но в последнее время широкое применение находит сталь. Стальные кольца имеют высокую твердость по сравнению с гильзами цилиндров. Гильзы отливаются из чугуна с твердостью около НВ 200. Для увеличения срока службы поршневого кольцо, его твердость должна быть больше твердости стенок цилиндра. При сравнении стенок цилиндра с поршневыми кольцами получается, что кольца имеют меньшую поверхность трения и работают при большей температуре нагрева.

Компрессионные поршневые кольца предотвращают прорыв утечки газов из надпоршневой полости. Поршневые кольца подразделяют на: скрученные, клиновидные, комбинированные и витые. Кольца с нарушенной симметрий сечения, при установке в цилиндре закручиваются, вследствие чего принимают форму усеченного конуса. Такие кольца называется скрученными. Они используются для всех двигателей. Скрученные кольца оказывают радиальное давление на стенки цилиндра, что увеличивает их работоспособность. При одевании таких поршневых колец надо следить, чтобы проточка была обращена к днищу поршня, а наружная проточка в

сторону юбки. Клиновидные или трапецеидальные кольца делаются с непараллельными боковыми поверхностями, под углом примерно 5-12°. Сравнительно с другими типами колец клиновидные более сложны в производстве и зазоры у боковых поверхностей у них обычно выше. Клиновидные поршневые кольца часто используются в качестве верхних компрессионных колец. Комбинированные поршневые кольца состоят из прямоугольных колец и двух пластинчатых колец радиального расширителя. Стальные кольца, кроме функций уплотнения, снижают износ стенок канавки поршня а радиальные расширители (экспандеры) обеспечивают давление колец на стенки цилиндра. Радиальные расширители или экспандеры изготавливают ИЗ стальной ленты придает форму многоугольника. Такая пружина обеспечивает нужное радиальное давление: установленная в канавке поршня за кольцом, она поджимает его к стенкам цилиндра. Кольца с расширителями не используется в качестве верхних компрессионных колец. Такие поршневые кольца не очень распространенны громоздкости. Витые поршневые кольца изготавливают из-за высокоуглеродистой стальной полированной ленты. Толщина этой ленты составляет 0,7 мм. Витые кольца устанавливают в не расточенные цилиндры вместо изношенных чугунных двигателей. колец при ремонте Эффективность служба компрессионных колец характеризуется прилеганием их к стенкам цилиндра. Установление в канавки поршня они ограничивают прорыв газов из цилиндра через систему зазоров обязательных для его уплотнительного механизма. Из практики известно, что эффективность лабиринтного уплотнения очень завысит от обработки боковых поверхностей поршневых колец. Если при ремонте двигателя видится уменьшение высоты в некоторых местах поршневых колец, то необходимо снимать металл с одной боковой поверхности и при сборке поршневой группы эта поверхность должна быть обращена в сторону днища поршня.

Маслосъемные поршневые кольца обеспечивают отвод излишнего масла со стенок цилиндра, и ограничивают проникновение масла в камеру сгорания, а также регулируют смазку верхней зоны стенок цилиндров. Дренажного типа маслосъемные кольца представляют собой прямоугольную конструкцию с канавкой, проточенной по наружной стороне. Со стенкой цилиндра они соприкасаются двумя малыми кромками показано на рисунке 4. Величина этого радиального давления их на стенки цилиндра составляет до 0,3–0,4 Мн/м².

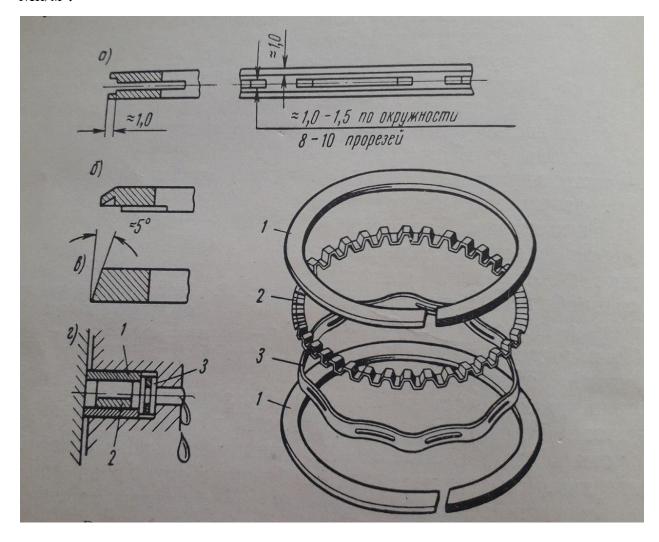


Рисунок 7.4 – Маслосъемные поршневые кольца

Скребковые маслосъемные кольца делают с остроугольной соскабливаю щей кромкой, а для отвода масла из него снизу делают проточку и дренажные вырезы, как показано на рисунке 4, б. Для повышения отвода масла в канавку поршня устанавливают по два скребковых кольца. При

использовании скребковых колец удорожается производство. В данное время больше распространение получают составные маслосъемные кольца. Они состоят из двух пластинчатых колец 1, осевого 2 и радиального расширителя 3, показанного на рисунке 4, г. Обычно высота маслосъемных колец составляет 4 -5 мм. Трудные условия работы поршневых колец приводит к повышенному износу. Чтобы увеличить срок службы поршневых колец проводятся специальные мероприятия. Основными ДЛЯ них мероприятий являются: защитные покрытия колец, применение антифрикционных наполнителей и вставок с использование маслонакопитель ных проточек, пористое хромирование колец и покрытие их твердым хромом. В качестве покрытий для колец используют легкие металлы, которые прочно сцепляются c основным материалом кольца. Антифрикционные наполнители обычно применяются для компрессионных колец, работающих в условиях повышенной тепловой напряженности. С этой целью кольца протачивают на глубину до 0,8 мм. Пористое хромирование является мероприятии для повышения долговечности кольца. Внутреннюю сторону колец покрывают слоем в 0,1-0,15 мм твердого хрома.

4.4 Поршневые пальцы

Поршневой палец обеспечит осью в шарнирном соединении поршня с шатунном и воспринимает передающейся между ними силовые нагрузки. В четырехтактных двигателях нагрузки на поршневой палец резко изменяются как по величине так и по направлению. Поршневые пальцы испытывают ударный характер нагрузки и работают в условиях ограниченной смазки. По поршневые должно иметь конструкцию пальцы меньшего веса, ограниченным поперечным сечением и малым опорным поверхностями. Чтобы выполнить эти требования, поршневые пальцы изготавливают в виде стального цилиндра и подвергают их соответствующей термической обработке. Материалы для изготовления поршневых пальцев выбирают стали марок 15, 20 или 45, а для напряженных двигателях углеродистые

применяют хромистые 15X, 40X и другие легирование стали. Обычно поршневые пальцы изготавливают из малоуглеродистых сталей, содержащих до 0,2% углерода Для уменьшения износа поршневого пальца в бобышках поршня запрессованы бронзовые втулки. Замена втулок производится после пробега в пределах 20—40 тыс. км. При замене втулок необходимо следить, чтобы отверстия для прохода масла во втулках совпадали с отверстиями в бобышках. Признаком разработки поршневого пальца или втулки служит появление звонкого стука. В разобранном двигателе износ втулок и пальца определяется по качанию поршня в вертикальном направлении. В некоторых автомобилях крепление поршневого пальца иногда делается в поршне, тогда в шатуне палец будет вращаться свободно.

За последнее время большое распространение получила конструкция так называемого плавающего пальца, при которой палец не крепится ни в поршне, ни в шатуне, а вращается в обеих деталях, равномерно при этом изнашиваясь. Для предупреждения возможного бокового сдвига пальца и порчи зеркала цилиндра устанавливаются по концам шайбы из мягкого материала или специальные кольцевые замки

4.5 Повышения прочность и срок службы поршня

Долговечность поршня определяет моторесурс всего двигателя. Для определения данного дефеката проводятся некоторые конструктивные мероприятия. Если поршень изготовят методом горячего прессования, вставка делают, как бандажа потом приваривают его на головке поршня электронно-лучевой сваркой. Для увеличения твердости и жаропрочности элементов проводят переплав их поверхностного слоя с введением легирующих элементов. С помощью электрода железоникельхромовой проволоки можно сделать переплавки. Покрытие верхней часть поршня защитит его от эрозии коррозии и уменьшит тепловосприимчивость днища. Этот способ облегчает работы компрессионного кольца и работу поршня. Конструктивной проблемой поршней является ограничение температуры в

зоне верхнего компрессионного кольца, там температура может достигать до 250-300 °C. Решить данную проблему можно путём увеличения высоты огневого пояса, но увеличивается массогабаритное характеристики. В днище поршня за один цикл работы двигателя температура изменится на 2000....3000К, что превзойдет к трещинам на поверхности поршня.

ЗАКЛЮЧЕНИЕ

В основе исходных данных было сделано тепловой расчет по методу Вибе и получении результат в табличном виде. Дальше рассматривали варианты для уменьшения массы элементов поршня, Т и П- образный разрез. При разрезы, много элементы поршня теряют свой прочности, жесткости и срок службы. И провели много мероприятии для того чтобы увеличит эти показатели. С помощью специальные покрытие и вставки можно сохранят конструктивные показатели элементов поршня.

Проведено ознакомление и изучение конструкции поршневых групп, а также различные варианты применения их в промышленности. На основании проведенного анализа тенденций использование малогабаритными поршневых групп и направлений их дальнейшего развития можем утверждать, что их использование является перспективным во многих областях.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- 1. Автомобильные двигатели внутреннего сгорания/ Райков И. Я. Рытвинский Г.Н. // Учебное пособие для втузо. М: Высшая школа 1970. 432стр.
- 2. Колчин, А.И. Расчет автомобильных и тракторных двигателей/ Колчин, А.И. Демидов В.П. // Учебное пособие для вузов 2-е изд., перераб. и доп. М: Высшая школа 2007.
- 3. Thermo-syphon Water Cooling System [Электронный ресурс] Режим доступа http://what-when-how.com/automobile/thermo-syphon-water-cooling-system-automobile/
- 4. Алексеев И.В., Богданов С.Н., Пришвин С.А. и др. Учебное пособие по курсовому проектированию двигателей внутреннего сгорания. МАДИ, 2006.
- 5. Алексеев И.В., Богданов С.Н., Пришвин С.А. и др. Учебное пособие по курсовому проектированию двигателей внутреннего сгорания. Методика выполнения динамического расчета. МАДИ, 2005.
- 6. Алексеев И.В., Богданов С.Н., Горшков Ю.В. и др. Учебное пособие по курсовому проектированию двигателей внутреннего сгорания. Методика выполнения прочностных расчетов и разработка конструкции ДВС. МАДИ, 2006.
- 7. Луканин В.Н., Алексеев И.В., Шатров М.Г. и др. Рабочие процессы ДВС. М.: Высшая школа, 1995.
- 8. Луканин В.Н., Алексеев И.В., Шатров М.Г. и др. Динамика и конструирование. М.: Высшая школа, 1995.

- 9. Гергенов С.М. Кривошипно-шатунные механизмы ДВС. Восточно-Сибирский ГТУ, 2001.
 - 10. http://www.niva-faq.msk.ru/tehnika/obsch/ustrojst/albom/dvig.htm
- 11. Яметов В.А., Косарев С.Н. и др. Руководство по ремонту, эксплуатации и обслуживанию автомобилей ВАЗ. «РусьАвтокнига», 2001
 - 12. http://avtorial.ru/VAZ2/Niva2121_18.html
- 13. Двигатели внутреннего сгорания. Кн.2. Динамика и конструирование: Учебник для ВУЗов/В.Н. Луканин, И.В. Алексеев, М.Г. Шатров и др.; Под ред. В.Н. Луканина и М.Г. Шатрова. 2-е изд., переработ. и доп. М.: Высш.шк., 2005.
- 14. К.С. Шестопалов, С.К. Шестопалов. Легковые переднеприводные автомобили. М: «Патриот», 2005.
- 15. Квайт С.М., Менделевич Я.А., Чижков Ю.П. Пусковые качества м системы пуска автотракторных двигателей, 1990. -256 с.
- 16. Чижков Ю.П. Исследование процесса прокручивания вала двигателя при использовании в системе электростартерного пуска емкостного накопителя энергии. Межвузовский сборник научных трудов «Автомобильные и тракторные двигатели». М.: МАМИ, 1996 –С. 118-124.
- 17. Шестопалов К.С. Устройство, техническое обслуживание легкового автомобиля. Учебное пособие. Москва. Издательство ДОСААФ. 1990.
- 18. Heywood, J. B.: Internal Combustion Engine Fundamentals [Текст]/. McGraw-Hill International Editions, New York, 1988.
- 19. Huber, K. (1992) Der Warm cube rgang schnelllaufend, direkteinspritzender Dieselmotoren [Текст]/. Dissertation, TU Munich.

- 20. Launder, B.E and Spalding, D.B. Lectures in Mathematical Models of Turbu-lence [Tekct]/ Academic Press, London and New York, 1972, page 46-70
- 21. Mahmoud, K., Bachler, G., Ennemoser, A.: Fluid-Structure Coupling for Ther-mal Analysis h Internal Combustion Engines [Τεκcτ]/, ABAQUS Users' Conference May 30-June I, 2001, Maastricht, The Netherlands
- 22. Reitz, R D., 1987, Modeling Atomization Processes in High-Pressure Vaporiz-ing Sprays [Tekct]/ Atomization and Spray Technology 3 (1987) 309-337.
- 23. Versacvel, P., Motte, P. and Wieser, K., (2000) A new 3D Model for Vaporizing Diesel Sprays based on Mixing- Limited Vaporization [Τεκcτ]/ SAE 2000-01-0949.

ПРИЛОЖЕНИЕ А

Таблица A1 - Результаты теплового расчета при n =850 мин⁻¹

Значение	111 100)		плового р			000 11111										
угла ПКВ		_	T1-2	k1-2	K1-2	Vpm	pI	<i>p</i> 2	,	,				σ		
om	T_{I}	T_2	11 2	KI Z	KI Z	rpin	<i>P</i> 1	P2	$\psi(\phi_1)$	$\psi(\phi_2)$	μ_I	μ_2	μ_{1-2}		X1-2	∆X1-2
начала																
сгорания																
0	1337,3403	1337,3403	1341,2600	1,3161	7,3266	0,4117	0,9894	1,5278	1,2097	1,1829	1,0000	1,0000	1,0000	0,0441	0,0000	0,0000
1	1348,0311	1386,7121	1342,6857	1,3159	7,3309	0,3970	0,5278	1,0565	1,1829	1,1578	1,0000	1,0000	1,0000	0,0385	0,0000	0,0000
2	1347,4486	1425,8141	1347,7399	1,3159	7,3304	0,3834	0,0564	1,5719	1,1578	1,1346	1,0000	1,0000	1,0000	0,0332	0,0001	0,0001
3	1346,8904	1463,8956	1347,1695	1,3160	7,3299	0,3708	0,5717	1,0705	1,1346	1,1132	1,0000	1,0000	1,0000	0,0283	0,0003	0,0001
4	1346,3761	1500,7000	1346,6332	1,3160	7,3294	0,3593	1,0701	1,5489	1,1132	1,0937	1,0000	1,0001	1,0000	0,0238	0,0006	0,0003
5	1345,9227	1535,9773	1346,1494	1,3160	7,3288	0,3488	1,5479	1,0039	1,0937	1,0759	1,0001	1,0001	1,0001	0,0197	0,0011	0,0006
6	1345,5448	1569,4903	1345,7337	1,3160	7,3283	0,3393	1,0021	1,4326	1,0759	1,0600	1,0001	1,0002	1,0002	0,0160	0,0019	0,0009
7	1345,2529	1601,0197	1345,3988	1,3161	7,3278	0,3309	1,4295	1,8323	1,0600	1,0460	1,0002	1,0004	1,0003	0,0126	0,0028	0,0014
8	1345,0526	1630,3692	1345,1527	1,3161	7,3273	0,3234	1,8276	1,2011	1,0460	1,0338	1,0004	1,0006	1,0005	0,0097	0,0041	0,0021
9	1344,9427	1657,3697	1344,9977	1,3161	7,3267	0,3170	1,1941	1,5373	1,0338	1,0235	1,0006	1,0010	1,0008	0,0071	0,0057	0,0029
10	1344,9140	1681,8824	1344,9284	1,3162	7,3260	0,3116	1,5275	1,8397	1,0235	1,0150	1,0010	1,0014	1,0012	0,0049	0,0077	0,0038
11	1344,9472	1703,8002	1344,9306	1,3162	7,3253	0,3072	1,8265	1,1079	1,0150	1,0085	1,0014	1,0020	1,0017	0,0032	0,0100	0,0050
12	1345,0125	1723,0473	1344,9799	1,3162	7,3245	0,3038	1,0905	2,3416	1,0085	1,0038	1,0020	1,0027	1,0024	0,0018	0,0126	0,0063
13	1345,0682	1739,5761	1345,0404	1,3163	7,3235	0,3013	1,3195	2,5412	1,0038	1,0009	1,0027	1,0037	1,0032	0,0008	0,0157	0,0078
14	1345,0616	1753,3631	1345,0649	1,3163	7,3224	0,2999	2,5137	2,7074	1,0009	1,0000	1,0037	1,0048	1,0042	0,0002	0,0191	0,0095
15	1344,9294	1764,4016	1344,9955	1,3164	7,3210	0,2994	2,6739	2,8408	1,0000	1,0009	1,0048	1,0061	1,0054	0,0000	0,0228	0,0114
16	1344,6001	1772,6937	1344,7648	1,3165	7,3193	0,2999	2,8009	3,9424	1,0009	1,0038	1,0061	1,0077	1,0069	0,0002	0,0267	0,0134
17	1343,9965	1778,2420	1344,2983	1,3166	7,3173	0,3013	2,8957	4,0128	1,0038	1,0085	1,0077	1,0095	1,0086	0,0008	0,0308	0,0154
18	1343,0392	1781,0408	1343,5178	1,3167	7,3150	0,3038	2,9592	4,0525	1,0085	1,0150	1,0095	1,0115	1,0105	0,0018	0,0350	0,0175
19	1341,6512	1781,0691	1342,3452	1,3168	7,3122	0,3072	2,9920	4,0614	1,0150	1,0235	1,0115	1,0138	1,0127	0,0032	0,0392	0,0196
20	1339,7626	1778,2860	1340,7069	1,3170	7,3091	0,3116	2,9942	4,0389	1,0235	1,0338	1,0138	1,0163	1,0151	0,0049	0,0431	0,0215
21	1337,3160	1772,6293	1338,5393	1,3172	7,3056	0,3170	3,9657	3,9840	1,0338	1,0460	1,0163	1,0191	1,0177	0,0071	0,0467	0,0234
22	1334,2719	1764,0182	1335,7939	1,3174	7,3017	0,3234	3,905 <u>6</u>	3,8949	1,0460	1,0600	1,0191	1,0220	1,0205	0,0097	0,0498	0,0249
23	1330,6135	1752,3600	1332,4427	1,3176	7,2975	0,3309	3,812 4	3,7696	1,0600	1,0759	1,0220	1,0250	1,0235	0,0126	0,0523	0,0261
		'	1	•				ı		,	<i>'</i>		, I	ı	ı	

Продолжение таблицы А1

продоли	сние табл	ицы ил														
24	1326,3513	1737,5609	1328,4824	1,3178	7,2931	0,3393	3,6842	3,6057	1,0759	1,0937	1,0250	1,0282	1,0266	0,0160	0,0540	0,0270
25	1321,5252	1719,5398	1323,9382	1,3180	7,2884	0,3488	3,5190	3,4008	1,0937	1,1132	1,0282	1,0314	1,0298	0,0197	0,0548	0,0274
26	1316,2058	1698,2436	1318,8655	1,3183	7,2836	0,3593	3,3142	3,1526	1,1132	1,1346	1,0314	1,0346	1,0330	0,0238	0,0546	0,0273
27	1310,4924	1673,6627	1313,3491	1,3185	7,2788	0,3708	3,0679	3,8595	1,1346	1,1578	1,0346	1,0377	1,0361	0,0283	0,0534	0,0267
28	1304,5088	1645,8451	1307,5006	1,3188	7,2742	0,3834	2,7782	3,5206	1,1578	1,1829	1,0377	1,0407	1,0392	0,0332	0,0513	0,0256
29	1298,3966	1614,9063	1301,4527	1,3190	7,2697	0,3970	2,4442	2,1363	1,1829	1,2097	1,0407	1,0435	1,0421	0,0385	0,0483	0,0241
30	1292,3067	1581,0350	1295,3516	1,3192	7,2655	0,4117	2,0659	2,7078	1,2097	1,2382	1,0435	1,0461	1,0448	0,0441	0,0445	0,0222
31	1286,3894	1544,4924	1289,3480	1,3194	7,2616	0,4274	2,6444	2,2380	1,2382	1,2686	1,0461	1,0485	1,0473	0,0502	0,0401	0,0200
32	1280,7841	1505,6056	1283,5867	1,3196	7,2582	0,4441	2,1822	2,7308	1,2686	1,3007	1,0485	1,0505	1,0495	0,0565	0,0353	0,0177
33	1275,6101	1464,7555	1278,1971	1,3197	7,2553	0,4617	2,6829	2,1913	1,3007	1,3345	1,0505	1,0523	1,0514	0,0633	0,0304	0,0152
34	1270,9590	1422,3604	1273,2846	1,3199	7,2528	0,4804	2,1511	2,6253	1,3345	1,3700	1,0523	1,0538	1,0530	0,0704	0,0255	0,0127
35	1266,8898	1378,8563	1268,9244	1,3200	7,2507	0,4999	2,5925	1,0393	1,3700	1,4073	1,0538	1,0550	1,0544	0,0779	0,0208	0,0104
36	1263,4275	1334,6775	1265,1587	1,3200	7,2491	0,5203	2,0132	1,4398	1,4073	1,4462	1,0550	1,0560	1,0555	0,0857	0,0165	0,0082
37	1260,5646	1290,2377	1261,9960	1,3201	7,2479	0,5415	2,4197	1,8333	1,4462	1,4868	1,0560	1,0567	1,0563	0,0939	0,0127	0,0064
38	1258,2654	1245,9147	1259,4150	1,3202	7,2470	0,5635	2,8181	1,2256	1,4868	1,5290	1,0567	1,0573	1,0570	0,1025	0,0095	0,0048
39	1256,4734	1202,0390	1257,3694	1,3202	7,2463	0,5862	2,2146	1,6221	1,5290	1,5728	1,0573	1,0577	1,0575	0,1114	0,0069	0,0034
40	1255,1182	1158,8877	1255,7958	1,3202	7,2459	0,6094	1,6143	1,0272	1,5728	1,6182	1,0577	1,0580	1,0578	0,1206	0,0048	0,0024
41	1254,1239	1116,6824	1254,6210	1,3202	7,2455	0,6332	1,0219	0,4445	1,6182	1,6653	1,0580	1,0581	1,0581	0,1302	0,0033	0,0016
42	1253,4160	1075,5919	1253,7700	1,3202	7,2453	0,6574	1,4410	0,8768	1,6653	1,7138	1,0581	1,0583	1,0582	0,1401	0,0021	0,0011
43	1252,9702	1035,7374	1253,1931	1,3202	7,2453	0,6819	1,8746	0,3260	1,7138	1,7639	1,0583	1,0584	1,0583	0,1503	0,0013	0,0007
44	1252,6923	997,2559	1252,8312	1,3182	7,2853	0,7065	1,3247	0,7942	1,7639	1,8155	1,0584	1,0584	1,0584	0,1608	0,0008	0,0004
45	1338,9022	1026,6492	1295,7972	1,3076	7,5029	0,7313	0,7935	0,6574	1,8155	1,6481	1,0584	1,0000	1,0292	0,1717	0,0005	0,0002

ПРИЛОЖЕНИЕ Б

ПРИЛОЖЕНИЕ Б1

Таблица Б1 - Результаты теплового расчета при n = 1500 мин⁻¹

Значение угла ПКВ			1													
om	T_{I}	T_2	T1-2	k1-2	K1-2	Vpm	p1	<i>p</i> 2	$\psi(\phi_1^{'})$	$\psi(\phi_2^{'})$	μ_I	μ_2	μ_{1-2}	σ	X1-2	∆X1-2
начала	- 1	- 2							Ψ (Ψ1)	$\varphi (\varphi_2)$	pr 1	P* 2	Pt 1-2			
сгорания																
0	1117,1187	1117,1187	1121,4200	1,3274	7,1090	0,4185	1,0263	1,2988	1,2097	1,1829	1,0000	1,0000	1,0000	0,0441	0,0000	0,0000
1	1126,0631	1158,9440	1121,5909	1,3271	7,1138	0,4036	1,2988	1,5665	1,1829	1,1578	1,0000	1,0000	1,0000	0,0385	0,0000	0,0000
2	1125,6245	1191,9481	1125,8438	1,3272	7,1134	0,3897	1,5665	1,8280	1,1578	1,1346	1,0000	1,0000	1,0000	0,0332	0,0001	0,0001
3	1125,2670	1224,1886	1125,4457	1,3272	7,1130	0,3769	1,8278	1,0816	1,1346	1,1132	1,0000	1,0000	1,0000	0,0283	0,0003	0,0001
4	1125,0345	1255,5187	1125,1507	1,3272	7,1127	0,3652	1,0811	1,3264	1,1132	1,0937	1,0000	1,0000	1,0000	0,0238	0,0006	0,0003
5	1124,9703	1285,8188	1125,0024	1,3272	7,1126	0,3545	1,3253	1,5613	1,0937	1,0759	1,0000	1,0001	1,0001	0,0197	0,0011	0,0006
6	1125,1162	1315,0020	1125,0432	1,3272	7,1127	0,3449	1,5593	1,7857	1,0759	1,0600	1,0001	1,0001	1,0001	0,0160	0,0019	0,0009
7	1125,5098	1343,0171	1125,3130	1,3272	7,1130	0,3363	1,7824	1,9994	1,0600	1,0460	1,0001	1,0002	1,0002	0,0126	0,0028	0,0014
8	1126,1830	1369,8511	1125,8464	1,3271	7,1135	0,3288	1,9942	1,2024	1,0460	1,0338	1,0002	1,0004	1,0003	0,0097	0,0041	0,0021
9	1127,1583	1395,5287	1126,6706	1,3271	7,1143	0,3222	1,1948	1,3951	1,0338	1,0235	1,0004	1,0006	1,0005	0,0071	0,0057	0,0029
10	1128,4458	1420,1098	1127,8020	1,3270	7,1153	0,3168	1,3846	1,5784	1,0235	1,0150	1,0006	1,0009	1,0007	0,0049	0,0077	0,0038
11	1130,0407	1443,6833	1129,2432	1,3270	7,1166	0,3123	1,5642	1,7532	1,0150	1,0085	1,0009	1,0012	1,0010	0,0032	0,0100	0,0050
12	1131,9200	1466,3577	1130,9804	1,3269	7,1180	0,3088	1,7346	1,9208	1,0085	1,0038	1,0012	1,0017	1,0014	0,0018	0,0126	0,0063
13	1134,0414	1488,2486	1132,9807	1,3268	7,1196	0,3063	1,8970	2,0823	1,0038	1,0009	1,0017	1,0022	1,0019	0,0008	0,0157	0,0078
14	1136,3417	1509,4631	1135,1915	1,3267	7,1211	0,3048	2,0528	2,2391	1,0009	1,0000	1,0022	1,0029	1,0026	0,0002	0,0191	0,0095
15	1138,7378	1530,0817	1137,5397	1,3267	7,1227	0,3043	2,2032	2,3922	1,0000	1,0009	1,0029	1,0037	1,0033	0,0000	0,0228	0,0114
16	1141,1282	1550,1399	1139,9330	1,3266	7,1240	0,3048	2,3493	2,5421	1,0009	1,0038	1,0037	1,0047	1,0042	0,0002	0,0267	0,0134
17	1143,3954	1569,6098	1142,2618	1,3265	7,1251	0,3063	2,4920	2,6889	1,0038	1,0085	1,0047	1,0057	1,0052	0,0008	0,0308	0,0154
18	1145,4101	1588,3841	1144,4027	1,3265	7,1259	0,3088	2,6314	2,8321	1,0085	1,0150	1,0057	1,0070	1,0064	0,0018	0,0350	0,0175
19	1147,0365	1606,2651	1146,2233	1,3265	7,1261	0,3123	2,7672	2,9703	1,0150	1,0235	1,0070	1,0084	1,0077	0,0032	0,0392	0,0196
20	1148,1391	1622,9595	1147,5878	1,3265	7,1257	0,3168	2,8983	3,1012	1,0235	1,0338	1,0084	1,0099	1,0091	0,0049	0,0431	0,0215
21	1148,5898	1638,0808	1148,3645	1,3265	7,1247	0,3222	3,0228	3,2218	1,0338	1,0460	1,0099	1,0116	1,0107	0,0071	0,0467	0,0234
22	1148,2773	1651,1609	1148,4335	1,3266	7,1230	0,3288	3,1379	3,3283	1,0460	1,0600	1,0116	1,0133	1,0124	0,0097	0,0498	0,0249
23	1147,1152	1661,6709	1147,6962	1,3268	7,1205	0,3363	3,2400	3,4164	1,0600	1,0759	1,0133	1,0152	1,0142	0,0126	0,0523	0,0261
24	1145,0514	1669,0495	1146,0833	1,3269	7,1172	0,3449	3,3250	3,4811	1,0759	1,0937	1,0152	1,0171	1,0161	0,0160	0,0540	0,0270

Продолжение таблицы Б1

1 ' '		,														
25	1142,0745	1672,7390	1143,5629	1,3272	7,1132	0,3545	3,3883	3,5178	1,0937	1,1132	1,0171	1,0190	1,0181	0,0197	0,0548	0,0274
26	1138,2191	1672,2236	1140,1468	1,3274	7,1085	0,3652	3,4253	3,5218	1,1132	1,1346	1,0190	1,0210	1,0200	0,0238	0,0546	0,0273
27	1133,5666	1667,0698	1135,8928	1,3277	7,1033	0,3769	3,4312	3,4890	1,1346	1,1578	1,0210	1,0228	1,0219	0,0283	0,0534	0,0267
28	1128,2435	1656,9623	1130,9050	1,3280	7,0977	0,3897	3,4021	3,4165	1,1578	1,1829	1,0228	1,0247	1,0238	0,0332	0,0513	0,0256
29	1122,4139	1641,7330	1125,3287	1,3283	7,0919	0,4036	3,3347	3,3023	1,1829	1,2097	1,0247	1,0264	1,0255	0,0385	0,0483	0,0241
30	1116,2698	1621,3796	1119,3419	1,3286	7,0859	0,4185	3,2270	3,1460	1,2097	1,2382	1,0264	1,0280	1,0272	0,0441	0,0445	0,0222
31	1110,0172	1596,0718	1113,1435	1,3289	7,0801	0,4344	3,0782	2,9486	1,2382	1,2686	1,0280	1,0294	1,0287	0,0502	0,0401	0,0200
32	1103,8611	1566,1435	1106,9391	1,3292	7,0746	0,4514	2,8889	2,7125	1,2686	1,3007	1,0294	1,0306	1,0300	0,0565	0,0353	0,0177
33	1097,9906	1532,0726	1100,9258	1,3295	7,0694	0,4694	2,6611	2,4414	1,3007	1,3345	1,0306	1,0317	1,0312	0,0633	0,0304	0,0152
34	1092,5656	1494,4492	1095,2781	1,3298	7,0648	0,4883	2,3983	1,1401	1,3345	1,3700	1,0317	1,0326	1,0322	0,0704	0,0255	0,0127
35	1087,7066	1453,9377	1090,1361	1,3300	7,0608	0,5081	2,1049	1,8140	1,3700	1,4073	1,0326	1,0333	1,0330	0,0779	0,0208	0,0104
36	1083,4889	1411,2348	1085,5977	1,3302	7,0574	0,5289	1,7860	1,4691	1,4073	1,4462	1,0333	1,0339	1,0336	0,0857	0,0165	0,0082
37	1079,9423	1367,0298	1081,7156	1,3303	7,0547	0,5505	1,4474	1,1110	1,4462	1,4868	1,0339	1,0344	1,0341	0,0939	0,0127	0,0064
38	1077,0545	1321,9694	1078,4984	1,3304	7,0525	0,5728	1,0948	1,7453	1,4868	1,5290	1,0344	1,0347	1,0345	0,1025	0,0095	0,0048
39	1074,7786	1276,6314	1075,9165	1,3305	7,0508	0,5958	0,7335	1,3769	1,5290	1,5728	1,0347	1,0350	1,0348	0,1114	0,0069	0,0034
40	1073,0435	1231,5082	1073,9110	1,3306	7,0496	0,6195	1,3686	1,0101	1,5728	1,6182	1,0350	1,0351	1,0350	0,1206	0,0048	0,0024
41	1071,7642	1186,9992	1072,4038	1,3306	7,0487	0,6436	1,0044	1,6481	1,6182	1,6653	1,0351	1,0352	1,0352	0,1302	0,0033	0,0016
42	1070,8521	1143,4131	1071,3081	1,3307	7,0481	0,6682	1,6444	1,2937	1,6653	1,7138	1,0352	1,0353	1,0353	0,1401	0,0021	0,0011
43	1070,2588	1100,9756	1070,5555	1,3307	7,0478	0,6931	1,2913	1,9487	1,7138	1,7639	1,0353	1,0354	1,0353	0,1503	0,0013	0,0007
44	1069,8824	1059,8995	1070,0706	1,3287	7,0845	0,7182	1,9472	1,6149	1,7639	1,8155	1,0354	1,0354	1,0354	0,1608	0,0008	0,0004
45	1131,2000	1079,5549	1100,5412	1,3076	7,5029	0,7434	1,6141	1,7791	1,8155	1,6481	1,0354	1,0000	1,0177	0,1717	0,0005	0,0002

ПРИЛОЖЕНИЕ В

Таблица В1 - Результаты теплового расчета при $n = 2700 \text{ мин}^{-1}$

	D1 - 1 C3y	JIDIUIDI IC	I P	, ac 101a	npn n	27001	11111		I			I	I	1		
Значение угла ПКВ от начала сгорания	T_{I}	T_2	T1-2	k1-2	K1-2	Vpm	pΙ	<i>p</i> 2	$\psi(\phi_{_{1}}^{'})$	$\psi(\phi_{2}^{'})$	μ_{I}	μ_2	μ_{1-2}	σ	X1-2	ΔX1-2
0	961,1914	961,1914	959,8732	1,3385	6,9088	0,4262	0,1562	0,3132	1,2097	1,1829	1,0000	1,0000	1,0000	0,0441	0,0000	0,0000
1	968,9021	997,6773	965,0467	1,3382	6,9141	0,4111	0,3132	0,4675	1,1829	1,1578	1,0000	1,0000	1,0000	0,0385	0,0000	0,0000
2	968,5751	1026,3802	968,7386	1,3382	6,9137	0,3969	0,4675	0,6185	1,1578	1,1346	1,0000	1,0000	1,0000	0,0332	0,0001	0,0001
3	968,3813	1054,5329	968,4782	1,3382	6,9135	0,3839	0,6184	0,7656	1,1346	1,1132	1,0000	1,0000	1,0000	0,0283	0,0003	0,0001
4	968,3868	1082,0939	968,3840	1,3382	6,9136	0,3720	0,7653	1,9087	1,1132	1,0937	1,0000	1,0000	1,0000	0,0238	0,0006	0,0003
5	968,6583	1109,0741	968,5225	1,3382	6,9141	0,3611	0,9079	1,0477	1,0937	1,0759	1,0000	1,0000	1,0000	0,0197	0,0011	0,0006
6	969,2614	1135,5404	968,9598	1,3381	6,9150	0,3513	1,0464	1,1831	1,0759	1,0600	1,0000	1,0001	1,0000	0,0160	0,0019	0,0009
7	970,2576	1161,6186	969,7595	1,3380	6,9165	0,3425	1,1808	1,3155	1,0600	1,0460	1,0001	1,0001	1,0001	0,0126	0,0028	0,0014
8	971,7005	1187,4914	970,9790	1,3379	6,9185	0,3348	1,3121	1,4461	1,0460	1,0338	1,0001	1,0002	1,0001	0,0097	0,0041	0,0021
9	973,6323	1213,3944	972,6664	1,3378	6,9212	0,3282	1,4411	1,5761	1,0338	1,0235	1,0002	1,0003	1,0002	0,0071	0,0057	0,0029
10	976,0785	1239,6065	974,8554	1,3376	6,9244	0,3226	1,5691	1,7072	1,0235	1,0150	1,0003	1,0004	1,0003	0,0049	0,0077	0,0038
11	979,0440	1266,4359	977,5613	1,3374	6,9283	0,3180	1,6977	1,8411	1,0150	1,0085	1,0004	1,0005	1,0005	0,0032	0,0100	0,0050
12	982,5092	1294,2008	980,7766	1,3371	6,9327	0,3145	1,8287	1,9795	1,0085	1,0038	1,0005	1,0007	1,0006	0,0018	0,0126	0,0063
13	986,4270	1323,2055	984,4681	1,3368	6,9375	0,3120	1,9637	2,1243	1,0038	1,0009	1,0007	1,0010	1,0009	0,0008	0,0157	0,0078
14	990,7214	1353,7124	988,5742	1,3366	6,9426	0,3105	2,1046	2,2769	1,0009	1,0000	1,0010	1,0013	1,0011	0,0002	0,0191	0,0095
15	995,2875	1385,9115	993,0045	1,3363	6,9479	0,3099	2,2530	,4384	1,0000	1,0009	1,0013	1,0016	1,0015	0,0000	0,0228	0,0114
16	999,9927	1419,8889	997,6401	1,3360	6,9532	0,3105	2,4100	,6095	1,0009	1,0038	1,0016	1,0021	1,0019	0,0002	0,0267	0,0134
17	1004,6797	1455,5977	1002,3362	1,3357	6,9582	0,3120	2,5762	,7899	1,0038	1,0085	1,0021	1,0026	1,0023	0,0008	0,0308	0,0154
18	1009,1709	1492,8329	1006,9253	1,3354	6,9627	0,3145	2,7518	2,9787	1,0085	1,0150	1,0026	1,0031	1,0028	0,0018	0,0350	0,0175
19	1013,2750	1531,2135	1011,2230	1,3352	6,9666	0,3180	2,9357	2,1740	1,0150	1,0235	1,0031	1,0037	1,0034	0,0032	0,0392	0,0196
20	1016,7952	1570,1760	1015,0351	1,3350	6,9696	0,3226	2,1264	,3728	1,0235	1,0338	1,0037	1,0044	1,0041	0,0049	0,0431	0,0215
21	1019,5389	1608,9791	1018,1671	1,3349	6,9715	0,3282	,3209	3,5713	1,0338	1,0460	1,0044	1,0051	1,0048	0,0071	0,0467	0,0234
22	1021,3297	1646,7240	1020,4343	1,3349	6,9722	0,3348	2,5158	,7648	1,0460	1,0600	1,0051	1,0059	1,0055	0,0097	0,0498	0,0249
23	1022,0198	1682,3880	1021,6747	1,3349	6,9716	0,3425	2,7064	3,9479	1,0600	1,0759	1,0059	1,0067	1,0063	0,0126	0,0523	0,0261
24	1021,5028	1714,8728	1021,7613	1,3350	6,9697	0,3513	2,8876	3,1149	1,0759	1,0937	1,0067	1,0076	1,0072	0,0160	0,0540	0,0270

Продолжение таблицы В1

1 ' '		1														
25	1019,7251	1743,0632	1020,6139	1,3352	6,9663	0,3611	9,0536	3,2598	1,0937	1,1132	1,0076	1,0085	1,0080	0,0197	0,0548	0,0274
26	1016,6938	1765,8932	1018,2094	1,3355	6,9615	0,3720	9,1987	3,3769	1,1132	1,1346	1,0085	1,0093	1,0089	0,0238	0,0546	0,0273
27	1012,4816	1782,4143	1014,5877	1,3358	6,9556	0,3839	9,3171	3,4611	1,1346	1,1578	1,0093	1,0102	1,0097	0,0283	0,0534	0,0267
28	1007,2255	1791,8595	1009,8536	1,3362	6,9486	0,3969	9,4037	3,5083	1,1578	1,1829	1,0102	1,0110	1,0106	0,0332	0,0513	0,0256
29	1001,1199	1793,6972	1004,1727	1,3367	6,9408	0,4111	9,4543	3,5156	1,1829	1,2097	1,0110	1,0117	1,0114	0,0385	0,0483	0,0241
30	994,4041	1787,6695	997,7620	1,3371	6,9324	0,4262	9,4659	3,4815	1,2097	1,2382	1,0117	1,0124	1,0121	0,0441	0,0445	0,0222
31	987,3452	1773,8098	990,8747	1,3376	6,9239	0,4425	9,4367	3,4061	1,2382	1,2686	1,0124	1,0131	1,0128	0,0502	0,0401	0,0200
32	980,2178	1752,4381	983,7815	1,3381	6,9154	0,4597	9,3667	3,2911	1,2686	1,3007	1,0131	1,0136	1,0133	0,0565	0,0353	0,0177
33	973,2831	1724,1340	976,7505	1,3386	6,9073	0,4780	9,2571	3,1394	1,3007	1,3345	1,0136	1,0141	1,0139	0,0633	0,0304	0,0152
34	966,7696	1689,6907	970,0264	1,3390	6,8998	0,4973	9,1109	3,9552	1,3345	1,3700	1,0141	1,0145	1,0143	0,0704	0,0255	0,0127
35	960,8576	1650,0534	963,8136	1,3394	6,8931	0,5175	8,9319	3,7436	1,3700	1,4073	1,0145	1,0148	1,0147	0,0779	0,0208	0,0104
36	955,6703	1606,2519	958,2639	1,3397	6,8874	0,5387	8,7251	2,5101	1,4073	1,4462	1,0148	1,0151	1,0150	0,0857	0,0165	0,0082
37	951,2699	1559,3321	953,4701	1,3400	6,8825	0,5607	8,4957	2,2601	1,4462	1,4868	1,0151	1,0153	1,0152	0,0939	0,0127	0,0064
38	947,6619	1510,2959	949,4659	1,3402	6,8787	0,5834	8,2493	2,9991	1,4868	1,5290	1,0153	1,0154	1,0154	0,1025	0,0095	0,0048
39	944,8036	1460,0529	946,2328	1,3404	6,8757	0,6069	7,9913	2,7319	1,5290	1,5728	1,0154	1,0155	1,0155	0,1114	0,0069	0,0034
40	942,6168	1409,3883	943,7102	1,3405	6,8734	0,6309	7,7264	2,4627	1,5728	1,6182	1,0155	1,0156	1,0156	0,1206	0,0048	0,0024
41	941,0016	1358,9477	941,8092	1,3406	6,8718	0,6555	7,4589	2,1949	1,6182	1,6653	1,0156	1,0157	1,0157	0,1302	0,0033	0,0016
42	939,8503	1309,2356	940,4259	1,3407	6,8707	0,6806	7,1925	2,9313	1,6653	1,7138	1,0157	1,0157	1,0157	0,1401	0,0021	0,0011
43	939,0880	1260,6260	939,4691	1,3407	6,8700	0,7059	6,9297	2,6737	1,7138	1,7639	1,0157	1,0157	1,0157	0,1503	0,0013	0,0007
44	938,6000	1213,4424	938,8440	1,3388	6,9024	0,7315	6,6727	1,4238	1,7639	1,8155	1,0157	1,0157	1,0157	0,1608	0,0008	0,0004
45	982,9403	1452,6681	960,7702	1,3076	7,5029	0,7571	6,4233	1,2590	1,8155	1,0000	1,0157	1,0000	1,0079	0,1717	0,0005	0,0002

ПРИЛОЖЕНИЕ Г

Таблица $\Gamma 1$ - Результаты теплового расчета при n=4000 мин $^{-1}$

· ·	11 105	yJIBTATBI TC	IIIIODOIO	paciera	npn n	1000 1		1					ı			
Значение угла ПКВ от начала сгорания	T_I	T_2	T1-2	k1-2	K1-2	Vpm	p1	<i>p</i> 2	$\psi(\phi_{_{1}}^{'})$	$\psi(\phi_2^{'})$	μ_I	μ_2	μ_{1-2}	σ	X1-2	∆X1-2
0	851,0050	851,0050	583,3640	1,3488	6,7345	0,4344	0,2446	1,3442	1,2097	1,1829	1,0000	1,0000	1,0000	0,0441	0,0000	0,0000
1	857,8468	883,7217	854,4259	1,3484	6,7402	0,4189	0,3442	1,4422	1,1829	1,1578	1,0000	1,0000	1,0000	0,0385	0,0000	0,0000
2	857,6089	909,4033	857,7279	1,3484	6,7399	0,4045	0,4422	1,5382	1,1578	1,1346	1,0000	1,0000	1,0000	0,0332	0,0001	0,0001
3	857,5535	934,7209	857,5812	1,3484	6,7400	0,3912	0,5382	1,6323	1,1346	1,1132	1,0000	1,0000	1,0000	0,0283	0,0003	0,0001
4	857,7681	959,7403	857,6608	1,3484	6,7406	0,3791	0,6322	1,7247	1,1132	1,0937	1,0000	1,0000	1,0000	0,0238	0,0006	0,0003
5	858,3417	984,6091	858,0549	1,3483	6,7418	0,3680	0,7244	1,8159	1,0937	1,0759	1,0000	1,0000	1,0000	0,0197	0,0011	0,0006
6	859,3626	1009,5601	858,8522	1,3482	6,7438	0,3580	0,8154	1,9068	1,0759	1,0600	1,0000	1,0000	1,0000	0,0160	0,0019	0,0009
7	860,9143	1034,9119	860,1385	1,3480	6,7467	0,3491	0,9060	1,9987	1,0600	1,0460	1,0000	1,0000	1,0000	0,0126	0,0028	0,0014
8	863,0715	1061,0649	861,9929	1,3478	6,7506	0,3412	0,9974	1,0930	1,0460	1,0338	1,0000	0,9999	1,0000	0,0097	0,0041	0,0021
9	865,8942	1088,4911	864,4828	1,3475	6,7555	0,3345	1,0911	1,1917	1,0338	1,0235	0,9999	0,9999	0,9999	0,0071	0,0057	0,0029
10	869,4220	1117,7177	867,6581	1,3471	6,7615	0,3288	1,1890	1,2966	1,0235	1,0150	0,9999	0,9999	0,9999	0,0049	0,0077	0,0038
11	873,6687	1149,3040	871,5453	1,3467	6,7686	0,3241	1,2930	1,4099	1,0150	1,0085	0,9999	0,9998	0,9998	0,0032	0,0100	0,0050
12	878,6171	1183,8109	876,1429	1,3462	6,7766	0,3205	1,4052	1,5337	1,0085	1,0038	0,9998	0,9998	0,9998	0,0018	0,0126	0,0063
13	884,2153	1221,7639	881,4162	1,3457	6,7854	0,3179	1,5277	2,6701	1,0038	1,0009	0,9998	0,9997	0,9997	0,0008	0,0157	0,0078
14	890,3744	1263,6117	887,2949	1,3451	6,7948	0,3164	1,6626	2,8205	1,0009	1,0000	0,9997	0,9996	0,9996	0,0002	0,0191	0,0095
15	896,9680	1309,6805	893,6712	1,3446	6,8046	0,3159	1,8115	2,9864	1,0000	1,0009	0,9996	0,9995	0,9995	0,0000	0,0228	0,0114
16	903,8335	1360,1287	900,4007	1,3440	6,8145	0,3164	1,9756	2,1681	1,0009	1,0038	0,9995	0,9993	0,9994	0,0002	0,0267	0,0134
17	910,7751	1414,9042	907,3043	1,3434	6,8241	0,3179	2,1555	2,3655	1,0038	1,0085	0,9993	0,9992	0,9992	0,0008	0,0308	0,0154
18	917,5689	1473,7083	914,1720	1,3429	6,8331	0,3205	2,3510	2,5773	1,0085	1,0150	0,9992	0,9990	0,9991	0,0018	0,0350	0,0175
19	923,9701	1535,9703	920,7695	1,3424	6,8413	0,3241	2,5611	2,8014	1,0150	1,0235	0,9990	0,9988	0,9989	0,0032	0,0392	0,0196
20	929,7226	1600,8361	926,8464	1,3420	6,8482	0,3288	2,7835	2,0346	1,0235	1,0338	0,9988	0,9986	0,9987	0,0049	0,0431	0,0215
21	934,5713	1667,1752	932,1470	1,3417	6,8537	0,3345	2,0151	2,2727	1,0338	1,0460	0,9986	0,9983	0,9984	0,0071	0,0467	0,0234
22	938,2767	1733,6068	936,4240	1,3415	6,8573	0,3412	2,2518	2,5105	1,0460	1,0600	0,9983	0,9981	0,9982	0,0097	0,0498	0,0249
23	940,6308	1798,5473	939,4537	1,3414	6,8590	0,3491	2,4885	2,7421	1,0600	1,0759	0,9981	0,9978	0,9979	0,0126	0,0523	0,0261
24	941,4742	1860,2773	941,0525	1,3414	6,8586	0,3580	2,7194	2,9614	1,0759	1,0937	0,9978	0,9975	0,9977	0,0160	0,0540	0,0270

Продолжение таблицы Г1

продоли	ciiric i ac	инцы т														
25	940,7111	1917,0263	941,0926	1,3415	6,8560	0,3680	2,9383	2,1618	1,0937	1,1132	0,9975	0,9972	0,9974	0,0197	0,0548	0,0274
26	938,3219	1967,0688	939,5165	1,3418	6,8514	0,3791	2,1388	2,3372	1,1132	1,1346	0,9972	0,9970	0,9971	0,0238	0,0546	0,0273
27	934,3706	2008,8261	936,3463	1,3422	6,8447	0,3912	2,3147	2,4818	1,1346	1,1578	0,9970	0,9967	0,9968	0,0283	0,0534	0,0267
28	929,0050	2040,9645	931,6878	1,3427	6,8362	0,4045	2,4602	2,5909	1,1578	1,1829	0,9967	0,9964	0,9966	0,0332	0,0513	0,0256
29	922,4504	2062,4822	925,7277	1,3433	6,8263	0,4189	2,5706	2,6610	1,1829	1,2097	0,9964	0,9962	0,9963	0,0385	0,0483	0,0241
30	914,9950	2072,7740	918,7227	1,3439	6,8153	0,4344	2,6423	2,6902	1,2097	1,2382	0,9962	0,9960	0,9961	0,0441	0,0445	0,0222
31	906,9688	2071,6686	910,9819	1,3446	6,8037	0,4509	2,6733	2,6778	1,2382	1,2686	0,9960	0,9957	0,9959	0,0502	0,0401	0,0200
32	898,7182	2059,4327	902,8435	1,3453	6,7920	0,4685	2,6629	2,6251	1,2686	1,3007	0,9957	0,9956	0,9957	0,0565	0,0353	0,0177
33	890,5786	2036,7408	894,6484	1,3460	6,7805	0,4872	2,6122	2,5346	1,3007	1,3345	0,9956	0,9954	0,9955	0,0633	0,0304	0,0152
34	882,8495	2004,6134	886,7140	1,3466	6,7697	0,5068	2,5238	2,4101	1,3345	1,3700	0,9954	0,9953	0,9953	0,0704	0,0255	0,0127
35	875,7729	1964,3313	879,3112	1,3472	6,7599	0,5274	3,4013	2,2565	1,3700	1,4073	0,9953	0,9952	0,9952	0,0779	0,0208	0,0104
36	869,5203	1917,3350	872,6466	1,3477	6,7513	0,5490	3,2495	2,0789	1,4073	1,4462	0,9952	0,9951	0,9951	0,0857	0,0165	0,0082
37	864,1869	1865,1214	866,8536	1,3482	6,7440	0,5714	3,0735	2,8829	1,4462	1,4868	0,9951	0,9950	0,9951	0,0939	0,0127	0,0064
38	859,7950	1809,1490	861,9909	1,3485	6,7382	0,5945	3,8789	2,6738	1,4868	1,5290	0,9950	0,9950	0,9950	0,1025	0,0095	0,0048
39	856,3045	1750,7605	858,0498	1,3488	6,7336	0,6185	2,6708	2,4564	1,5290	1,5728	0,9950	0,9949	0,9950	0,1114	0,0069	0,0034
40	853,6283	1691,1287	854,9664	1,3490	6,7301	0,6430	,4543	2,2350	1,5728	1,6182	0,9949	0,9949	0,9949	0,1206	0,0048	0,0024
41	851,6496	1631,2276	852,6389	1,3492	6,7276	0,6681	2,2336	2,0131	1,6182	1,6653	0,9949	0,9949	0,9949	0,1302	0,0033	0,0016
42	850,2395	1571,8263	850,9445	1,3493	6,7258	0,6936	2,0121	2,7934	1,6653	1,7138	0,9949	0,9949	0,9949	0,1401	0,0021	0,0011
43	849,2961	1513,5012	849,7678	1,3494	6,7247	0,7194	2,7928	2,5780	1,7138	1,7639	0,9949	0,9949	0,9949	0,1503	0,0013	0,0007
44	848,6891	1456,7242	848,9926	1,3478	6,7508	0,7454	2,5776	2,3686	1,7639	1,8155	0,9949	0,9949	0,9949	0,1608	0,0008	0,0004
45	879,5146	1454,8685	864,1019	1,3076	7,5029	0,7716	2,3684	2,0949	1,8155	1,6481	0,9949	1,0000	0,9974	0,1717	0,0005	0,0002
-	•		•													

ПРИЛОЖЕНИЕ Д

Таблица	. Д1 - Резу	льтаты те	плового р	асчета	при n =	5800 м	ин-,									
Значение угла ПКВ от начала сгорания	T_{I}	T_2	T1-2	k1-2	K1-2	Vpm	p1	<i>p</i> 2	$\psi(\phi_{_{1}}^{'})$	$\psi(\phi_2^{'})$	μ_I	μ_2	μ_{I-2}	σ	X1-2	∆X1-2
0	757,5214	771,5087	753,2290	1,3583	6,5816	0,4468	2,0213	2,0837	1,2097	1,1829	1,0000	1,0000	1,0000	0,0441	0,0000	0,0000
1	786,9479	801,4845	772,2347	1,3551	6,6329	0,4309	2,0837	2,1452	1,1829	1,1578	1,0000	1,0000	1,0000	0,0385	0,0000	0,0000
2	809,9792	824,9653	798,4636	1,3524	6,6757	0,4161	2,1452	2,2055	1,1578	1,1346	1,0000	1,0000	1,0000	0,0332	0,0001	0,0001
3	832,8175	848,2911	821,3984	1,3499	6,7166	0,4024	2,2055	2,2652	1,1346	1,1132	1,0000	1,0000	1,0000	0,0283	0,0003	0,0001
4	855,6621	871,6968	844,2398	1,3475	6,7562	0,3899	2,2652	2,3247	1,1132	1,0937	1,0000	1,0000	1,0000	0,0238	0,0006	0,0003
5	878,8255	895,5422	867,2438	1,3451	6,7950	0,3785	2,3247	2,3850	1,0937	1,0759	1,0000	1,0001	1,0001	0,0197	0,0011	0,0006
6	902,7351	920,3120	890,7803	1,3428	6,8339	0,3682	2,3850	2,4475	1,0759	1,0600	1,0001	1,0001	1,0001	0,0160	0,0019	0,0009
7	927,9289	946,6104	915,3320	1,3405	6,8735	0,3590	2,4475	2,5138	1,0600	1,0460	1,0001	1,0002	1,0002	0,0126	0,0028	0,0014
8	955,0443	975,1469	941,4866	1,3381	6,9146	0,3510	2,5138	2,5857	1,0460	1,0338	1,0002	1,0004	1,0003	0,0097	0,0041	0,0021
9	984,7991	1006,7137	969,9217	1,3357	6,9579	0,3440	2,5857	2,6654	1,0338	1,0235	1,0004	1,0006	1,0005	0,0071	0,0057	0,0029
10	1017,9634	1042,1525	1001,3812	1,3331	7,0040	0,3382	2,6654	2,7551	1,0235	1,0150	1,0006	1,0009	1,0007	0,0049	0,0077	0,0038
11	1055,3225	1082,3119	1036,6429	1,3304	7,0530	0,3334	2,7551	2,8570	1,0150	1,0085	1,0009	1,0012	1,0010	0,0032	0,0100	0,0050
12	1097,6324	1127,9961	1076,4775	1,3276	7,1052	0,3296	2,8570	2,9733	1,0085	1,0038	1,0012	1,0017	1,0014	0,0018	0,0126	0,0063
13	1145,5679	1179,9078	1121,6001	1,3247	7,1602	0,3270	2,9733	3,1060	1,0038	1,0009	1,0017	1,0022	1,0019	0,0008	0,0157	0,0078
14	1199,6687	1238,5875	1172,6183	1,3217	7,2176	0,3254	3,1060	3,2563	1,0009	1,0000	1,0022	1,0029	1,0026	0,0002	0,0191	0,0095
15	1260,2842	1304,3533	1229,9764	1,3186	7,2765	0,3249	3,2563	3,4253	1,0000	1,0009	1,0029	1,0037	1,0033	0,0000	0,0228	0,0114
16	1327,5221	1377,2461	1293,9031	1,3157	7,3361	0,3254	3,4253	3,6131	1,0009	1,0038	1,0037	1,0047	1,0042	0,0002	0,0267	0,0134
17	1401,2026	1456,9824	1364,3623	1,3127	7,3953	0,3270	3,6131	3,8191	1,0038	1,0085	1,0047	1,0057	1,0052	0,0008	0,0308	0,0154
18	1480,8242	1542,9204	1441,0134	1,3099	7,4532	0,3296	3,8191	4,0416	1,0085	1,0150	1,0057	1,0070	1,0064	0,0018	0,0350	0,0175
19	1565,5418	1634,0430	1523,1830	1,3073	7,5087	0,3334	4,0416	4,2783	1,0150	1,0235	1,0070	1,0084	1,0077	0,0032	0,0392	0,0196
20	1654,1622	1728,9609	1609,8520	1,3048	7,5611	0,3382	4,2783	4,5254	1,0235	1,0338	1,0084	1,0099	1,0091	0,0049	0,0431	0,0215
21	1745,1600	1825,9396	1699,6611	1,3026	7,6097	0,3440	4,5254	4,7788	1,0338	1,0460	1,0099	1,0116	1,0107	0,0071	0,0467	0,0234
22	1836,7145	1922,9510	1790,9372	1,3006	7,6540	0,3510	4,7788	5,0330	1,0460	1,0600	1,0116	1,0133	1,0124	0,0097	0,0498	0,0249
23	1926,7713	2017,7506	1881,7429	1,2988	7,6938	0,3590	5,0330	5,2824	1,0600	1,0759	1,0133	1,0152	1,0142	0,0126	0,0523	0,0261

Продолжение таблицы Д1

24 2013,1259 2107,9769 1969,9486 1,2972 7,7288 0,3682 0,2824 1,5207 1,0759 1,0937 1,0152 1,0171 1,0161 0,0160 0,0540 0,0270 25 2093,5265 2191,2682 2053,3262 1,2959 7,7589 0,3785 0,5207 1,7418 1,0937 1,1132 1,0171 1,0190 1,0210 0,0238 0,0234 0,0273 26 2165,7912 2265,3884 2129,68888 1,2948 7,7842 0,3896 2,1087 1,1346 1,1370 1,0210 1,0228 1,0219 0,0283 0,0534 0,0267 28 2278,2656 2378,5464 2253,0980 1,2932 7,8207 0,4161 0,1087 2,2447 1,1578 1,0224 1,0228 1,0219 0,0283 0,0534 0,0265 29 2315,5304 2414,8094 2296,8980 1,2927 7,8320 0,4408 1,4343 2,4055 1,2024 1,0256 0,0353 0,0414 0,0222	продоли	Kelline Taos	тицы Ді														
26 2165,7912 2265,3884 2129,6588 1,2948 7,7842 0,3899 0,7418 1,9396 1,1132 1,1346 1,0190 1,0210 1,0200 0,0238 0,0546 0,0273 27 2227,9305 2328,3536 2196,8608 1,2939 7,8048 0,4024 0,9396 2,1087 1,1346 1,1578 1,0210 1,0228 1,0219 0,0233 0,0534 0,0267 28 2278,2656 2378,5464 2253,0980 1,2927 7,807 0,4161 0,1087 2,2447 1,1578 1,1829 1,0228 1,0247 1,0255 0,0332 0,0513 0,0256 29 2315,5304 2414,8094 2296,8980 1,2927 7,8388 0,4468 1,3443 2,4055 1,2081 1,0264 1,0255 0,0383 0,0383 0,0411 30 2338,9487 2436,5934 2343,6117 1,2923 7,8412 0,4638 1,4055 2,4278 1,2382 1,666 1,0280 1,0294 1,0264 1,02	24	2013,1259	2107,9769	1969,9486	1,2972	7,7288	0,3682	0,2824	1,5207	1,0759	1,0937	1,0152	1,0171	1,0161	0,0160	0,0540	0,0270
27 2227,9305 2328,3536 2196,8608 1,2939 7,8048 0,4024 0,9396 2,1087 1,1346 1,1578 1,0210 1,0228 1,0219 0,0283 0,0534 0,0267 28 2278,2656 2378,5464 2253,0980 1,2932 7,8207 0,4161 0,1087 2,2447 1,1578 1,1829 1,0224 1,0247 1,0238 0,0332 0,0513 0,0256 29 2315,5304 2414,8094 2296,8980 1,2927 7,8320 0,4309 0,2447 2,3443 1,1829 1,0207 1,0264 1,0255 0,0385 0,0483 0,0214 30 2338,9487 2436,5078 2327,2395 1,2924 7,8388 0,4468 1,3443 2,4055 1,2097 1,2382 1,0264 1,0280 1,0272 0,0401 0,0424 31 2348,7962 2436,3934 2346,0355 1,2924 7,8395 0,4819 1,4278 2,4124 1,2686 1,0280 1,0312 0,0633 0,0104	25	2093,5265	2191,2682	2053,3262	1,2959	7,7589	0,3785	0,5207	1,7418	1,0937	1,1132	1,0171	1,0190	1,0181	0,0197	0,0548	0,0274
28 2278,2656 2378,5464 2253,0980 1,2932 7,8207 0,4161 0,1087 2,2447 1,1578 1,1829 1,0228 1,0247 1,0238 0,0332 0,0513 0,0256 29 2315,5304 2414,8094 2296,8980 1,2927 7,8320 0,4309 0,2447 2,3443 1,1829 1,2097 1,0247 1,0264 1,0255 0,0385 0,0483 0,0241 30 2338,9487 2436,5078 2327,2395 1,2924 7,8388 0,4468 1,3443 2,4055 1,2097 1,2382 1,0264 1,0280 1,0272 0,0441 0,0445 0,0222 31 2348,2748 2443,5934 2346,0355 1,2924 7,8395 0,4819 1,4278 2,4124 1,2686 1,0200 1,0294 1,0300 0,0565 0,0411 0,0222 32 2343,7962 2436,3934 2346,0355 1,2924 7,8336 0,5011 1,4124 2,3614 1,3007 1,0317 1,0312 0,0633 0,	26	2165,7912	2265,3884	2129,6588	1,2948	7,7842	0,3899	0,7418	1,9396	1,1132	1,1346	1,0190	1,0210	1,0200	0,0238	0,0546	0,0273
29 2315,5304 2414,8094 2296,8980 1,2927 7,8320 0,4309 0,2447 2,3443 1,1829 1,2097 1,0247 1,0264 1,0255 0,0385 0,0483 0,0241 30 2338,9487 2436,5078 2327,2395 1,2924 7,8388 0,4468 1,3443 2,4055 1,2097 1,2382 1,0264 1,0280 1,0272 0,0441 0,0445 0,0222 31 2348,2748 2443,5539 2343,6117 1,2923 7,8412 0,4638 1,4055 2,4278 1,2382 1,2686 1,0290 1,0294 1,0287 0,0502 0,0401 0,0200 32 2343,7962 2436,3334 2346,0355 1,2924 7,8395 0,4819 1,4278 2,4124 1,2686 1,3007 1,0317 1,0312 0,0503 0,0157 33 2326,2940 2415,9527 2335,0451 1,2927 7,8336 0,5011 1,4124 2,3614 1,3007 1,3345 1,0306 1,0317 1,0312 0,	27	2227,9305	2328,3536	2196,8608	1,2939	7,8048	0,4024	0,9396	2,1087	1,1346	1,1578	1,0210	1,0228	1,0219	0,0283	0,0534	0,0267
30 2338,9487 2436,5078 2327,2395 1,2924 7,8388 0,4468 1,3443 2,4055 1,2097 1,2382 1,0264 1,0280 1,0272 0,0441 0,0445 0,0222 31 2348,2748 2443,5539 2343,6117 1,2923 7,8412 0,4638 1,4055 2,4278 1,2382 1,2686 1,0280 1,0294 1,0287 0,0502 0,0401 0,0200 32 2343,7962 2436,3934 2346,0355 1,2924 7,8395 0,4819 1,4278 2,4124 1,2686 1,3007 1,0306 1,0300 0,0565 0,0353 0,0177 33 2326,2940 2415,9527 2335,0451 1,2927 7,8336 0,5011 1,4124 2,3614 1,3007 1,3345 1,0306 1,0317 1,0312 0,0633 0,0304 0,0152 34 2296,9676 2383,5539 2311,6308 1,2931 7,8101 0,5425 1,2782 1,3345 1,3006 1,0317 1,0322 0,0704 0,	28	2278,2656	2378,5464	2253,0980	1,2932	7,8207	0,4161	0,1087	2,2447	1,1578	1,1829	1,0228	1,0247	1,0238	0,0332	0,0513	0,0256
31 2348,2748 2443,5539 2343,6117 1,2923 7,8412 0,4638 1,4055 2,4278 1,2382 1,2686 1,0280 1,0294 1,0287 0,0502 0,0401 0,0200 32 2343,7962 2436,3934 2346,0355 1,2924 7,8395 0,4819 1,4278 2,4124 1,2686 1,3007 1,0294 1,0306 1,0300 0,0565 0,0353 0,0117 33 2326,2940 2415,9527 2335,0451 1,2927 7,8336 0,5011 1,4124 2,3614 1,3007 1,3345 1,0306 1,0317 1,0312 0,0633 0,0304 0,0152 34 2296,9676 2383,5539 2311,6308 1,2931 7,8237 0,5213 1,3614 1,2782 1,3345 1,3000 1,0317 1,0326 1,0322 0,0704 0,0225 0,0127 35 2257,3319 2340,8073 2277,1498 1,2937 7,8101 0,5425 1,2782 1,1672 1,3370 1,4073 1,4662 1,	29	2315,5304	2414,8094	2296,8980	1,2927	7,8320	0,4309	0,2447	2,3443	1,1829	1,2097	1,0247	1,0264	1,0255	0,0385	0,0483	0,0241
32 2343,7962 2436,3934 2346,0355 1,2924 7,8395 0,4819 1,4278 2,4124 1,2686 1,3007 1,0294 1,0306 1,0300 0,0565 0,0353 0,0177 33 2326,2940 2415,9527 2335,0451 1,2927 7,8336 0,5011 1,4124 2,3614 1,3007 1,3345 1,0306 1,0317 1,0312 0,0633 0,0304 0,0152 34 2296,9676 2383,5539 2311,6308 1,2931 7,8237 0,5213 1,3614 1,2782 1,3345 1,3700 1,0317 1,0326 1,0322 0,0704 0,0255 0,0127 35 2257,3319 2340,8073 2277,1498 1,2937 7,8101 0,5425 1,2782 1,1672 1,3700 1,4073 1,0326 1,0333 1,0330 0,0779 0,0208 36 2209,0982 2289,4921 2233,2151 1,2944 7,7929 0,5646 1,1672 1,0331 1,4073 1,4462 1,0333 1,0339 1,	30	2338,9487	2436,5078	2327,2395	1,2924	7,8388	0,4468	1,3443	2,4055	1,2097	1,2382	1,0264	1,0280	1,0272	0,0441	0,0445	0,0222
33 2326,2940 2415,9527 2335,0451 1,2927 7,8336 0,5011 1,4124 2,3614 1,3007 1,3345 1,0306 1,0317 1,0312 0,0633 0,0304 0,0152 34 2296,9676 2383,5539 2311,6308 1,2931 7,8237 0,5213 1,3614 1,2782 1,3345 1,3700 1,0317 1,0326 1,0322 0,0704 0,0255 0,0127 35 2257,3319 2340,8073 2277,1498 1,2937 7,8101 0,5425 1,2782 1,1672 1,3700 1,4073 1,0326 1,0333 1,0330 0,0779 0,0208 0,0104 36 2209,0982 2289,4921 2233,2151 1,2944 7,7929 0,5646 1,1672 1,0331 1,4073 1,462 1,0333 1,0339 1,0336 0,0857 0,0165 0,0082 37 2154,0521 2231,4380 2181,5752 1,2953 7,7724 0,5877 1,0331 0,808 1,4462 1,4868 1,0339 1,03	31	2348,2748	2443,5539	2343,6117	1,2923	7,8412	0,4638	1,4055	2,4278	1,2382	1,2686	1,0280	1,0294	1,0287	0,0502	0,0401	0,0200
34 2296,9676 2383,5539 2311,6308 1,2931 7,8237 0,5213 1,3614 1,2782 1,3345 1,3700 1,0317 1,0326 1,0322 0,0704 0,0255 0,0127 35 2257,3319 2340,8073 2277,1498 1,2937 7,8101 0,5425 1,2782 1,1672 1,3700 1,0317 1,0326 1,0333 1,0330 0,0779 0,0208 0,0104 36 2209,0982 2289,4921 2233,2151 1,2944 7,7929 0,5646 1,1672 1,0331 1,4073 1,4462 1,0333 1,0336 0,0857 0,0165 0,0082 37 2154,0521 2231,4380 2181,5752 1,2953 7,7724 0,5877 1,0331 0,8808 1,4462 1,4868 1,0339 1,0344 1,0341 0,0939 0,0127 0,0064 38 2093,9423 2168,4181 2123,9972 1,2963 7,7488 0,6115 1,8808 0,7150 1,4868 1,5290 1,0344 1,0347 1,	32	2343,7962	2436,3934	2346,0355	1,2924	7,8395	0,4819	1,4278	2,4124	1,2686	1,3007	1,0294	1,0306	1,0300	0,0565	0,0353	0,0177
35 2257,3319 2340,8073 2277,1498 1,2937 7,8101 0,5425 1,2782 1,1672 1,3700 1,4073 1,0326 1,0333 1,0330 0,0779 0,0208 0,0104 36 2209,0982 2289,4921 2233,2151 1,2944 7,7929 0,5646 1,1672 1,0331 1,4073 1,4462 1,0333 1,0336 0,0857 0,0165 0,0082 37 2154,0521 2231,4380 2181,5752 1,2953 7,7724 0,5877 1,0331 0,8808 1,4462 1,4868 1,0339 1,0344 1,0341 0,0939 0,0127 0,0064 38 2093,9423 2168,4181 2123,9972 1,2963 7,7488 0,6115 1,8808 0,7150 1,4868 1,5290 1,0344 1,0347 1,0345 0,1025 0,0095 0,0048 39 2030,3884 2102,0629 2062,1653 1,2975 7,7225 0,6361 1,7150 0,5402 1,5290 1,5728 1,0344 1,0350 1,	33	2326,2940	2415,9527	2335,0451	1,2927	7,8336	0,5011	1,4124	2,3614	1,3007	1,3345	1,0306	1,0317	1,0312	0,0633	0,0304	0,0152
36 2209,0982 2289,4921 2233,2151 1,2944 7,7929 0,5646 1,1672 1,0331 1,4073 1,4462 1,0333 1,0339 1,0336 0,0857 0,0165 0,0082 37 2154,0521 2231,4380 2181,5752 1,2953 7,7724 0,5877 1,0331 0,8808 1,4462 1,4868 1,0339 1,0344 1,0341 0,0939 0,0127 0,0064 38 2093,9423 2168,4181 2123,9972 1,2963 7,7488 0,6115 1,8808 0,7150 1,4868 1,5290 1,0344 1,0347 1,0345 0,1025 0,0095 0,0048 39 2030,3884 2102,0629 2062,1653 1,2975 7,7225 0,6361 1,7150 0,5402 1,5290 1,5728 1,0344 1,0350 1,0348 0,1114 0,0069 0,0044 40 1964,8162 2033,8003 1997,6023 1,2988 7,6937 0,6613 1,5402 0,3602 1,5728 1,6182 1,0350 1,	34	2296,9676	2383,5539	2311,6308	1,2931	7,8237	0,5213	1,3614	1,2782	1,3345	1,3700	1,0317	1,0326	1,0322	0,0704	0,0255	0,0127
37 2154,0521 2231,4380 2181,5752 1,2953 7,7724 0,5877 1,0331 0,8808 1,4462 1,4868 1,0339 1,0344 1,0341 0,0939 0,0127 0,0064 38 2093,9423 2168,4181 2123,9972 1,2963 7,7488 0,6115 1,8808 0,7150 1,4868 1,5290 1,0344 1,0347 1,0345 0,1025 0,0095 0,0048 39 2030,3884 2102,0629 2062,1653 1,2975 7,7225 0,6361 1,7150 0,5402 1,5290 1,5728 1,0347 1,0350 1,0348 0,1114 0,0069 0,0048 40 1964,8162 2033,8003 1997,6023 1,2988 7,6937 0,6613 1,5402 0,3602 1,5728 1,6182 1,0350 1,0350 0,1206 0,0048 0,0024 41 1898,4212 1964,8227 1931,6187 1,3002 7,6628 0,6871 1,3602 0,1783 1,6182 1,0351 1,0352 1,0352 0,	35	2257,3319	2340,8073	2277,1498	1,2937	7,8101	0,5425	1,2782	1,1672	1,3700	1,4073	1,0326	1,0333	1,0330	0,0779	0,0208	0,0104
38 2093,9423 2168,4181 2123,9972 1,2963 7,7488 0,6115 1,8808 0,7150 1,4868 1,5290 1,0344 1,0347 1,0345 0,1025 0,0095 0,0048 39 2030,3884 2102,0629 2062,1653 1,2975 7,7225 0,6361 1,7150 0,5402 1,5290 1,5728 1,0347 1,0350 1,0348 0,1114 0,0069 0,0034 40 1964,8162 2033,8003 1997,6023 1,2988 7,6937 0,6613 1,5402 0,3602 1,5728 1,6182 1,0350 1,0351 1,0350 0,1206 0,0048 0,0024 41 1898,4212 1964,8227 1931,6187 1,3002 7,6628 0,6871 1,3602 0,1783 1,6182 1,6653 1,0351 1,0352 1,0352 0,1302 0,0033 0,0016 42 1832,1582 1896,0803 1865,2897 1,3017 7,6300 0,7134 1,1783 0,9970 1,6653 1,7138 1,0353 1,	36	2209,0982	2289,4921	2233,2151	1,2944	7,7929	0,5646	1,1672	1,0331	1,4073	1,4462	1,0333	1,0339	1,0336	0,0857	0,0165	0,0082
39 2030,3884 2102,0629 2062,1653 1,2975 7,7225 0,6361 1,7150 0,5402 1,5290 1,5728 1,0347 1,0350 1,0348 0,1114 0,0069 0,0034 40 1964,8162 2033,8003 1997,6023 1,2988 7,6937 0,6613 1,5402 0,3602 1,5728 1,0350 1,0351 1,0350 0,1206 0,0048 0,0024 41 1898,4212 1964,8227 1931,6187 1,3002 7,6628 0,6871 1,3602 0,1783 1,6182 1,6653 1,0351 1,0352 0,1302 0,0033 0,0016 42 1832,1582 1896,0803 1865,2897 1,3017 7,6300 0,7134 1,1783 0,9970 1,6653 1,7138 1,0352 1,0353 0,1401 0,0021 0,0011 43 1766,7534 1828,2938 1799,4558 1,3032 7,5955 0,7399 1,9970 0,8184 1,7138 1,0354 1,0354 1,0354 0,1608 0,0008	37	2154,0521	2231,4380	2181,5752	1,2953	7,7724	0,5877	1,0331	0,8808	1,4462	1,4868	1,0339	1,0344	1,0341	0,0939	0,0127	0,0064
40 1964,8162 2033,8003 1997,6023 1,2988 7,6937 0,6613 1,5402 0,3602 1,5728 1,6182 1,0350 1,0351 1,0350 0,1206 0,0048 0,0024 41 1898,4212 1964,8227 1931,6187 1,3002 7,6628 0,6871 1,3602 0,1783 1,6182 1,6653 1,0351 1,0352 0,1302 0,0033 0,0016 42 1832,1582 1896,0803 1865,2897 1,3017 7,6300 0,7134 1,1783 0,9970 1,6653 1,7138 1,0352 1,0353 0,1401 0,0021 0,0011 43 1766,7534 1828,2938 1799,4558 1,3032 7,5955 0,7399 1,9970 0,8184 1,7138 1,7639 1,0353 1,0354 1,0353 0,1503 0,0013 0,0007 44 1702,7619 1762,0146 1734,7577 1,3042 7,5744 0,7667 1,8184 0,6438 1,7639 1,8155 1,0354 1,0354 0,1608 0,0008 0,0004	38	2093,9423	2168,4181	2123,9972	1,2963	7,7488	0,6115	1,8808	0,7150	1,4868	1,5290	1,0344	1,0347	1,0345	0,1025	0,0095	0,0048
41 1898,4212 1964,8227 1931,6187 1,3002 7,6628 0,6871 1,3602 0,1783 1,6182 1,6653 1,0351 1,0352 1,0352 0,1302 0,0033 0,0016 42 1832,1582 1896,0803 1865,2897 1,3017 7,6300 0,7134 1,1783 0,9970 1,6653 1,7138 1,0352 1,0353 0,1401 0,0021 0,0011 43 1766,7534 1828,2938 1799,4558 1,3032 7,5955 0,7399 1,9970 0,8184 1,7138 1,7639 1,0353 1,0354 1,0353 0,1503 0,0013 0,0007 44 1702,7619 1762,0146 1734,7577 1,3042 7,5744 0,7667 1,8184 0,6438 1,7639 1,8155 1,0354 1,0354 0,1608 0,0008 0,0004	39	2030,3884	2102,0629	2062,1653	1,2975	7,7225	0,6361	1,7150	0,5402	1,5290	1,5728	1,0347	1,0350	1,0348	0,1114	0,0069	0,0034
42 1832,1582 1896,0803 1865,2897 1,3017 7,6300 0,7134 1,1783 0,9970 1,6653 1,7138 1,0352 1,0353 1,0353 0,1401 0,0021 0,0011 43 1766,7534 1828,2938 1799,4558 1,3032 7,5955 0,7399 1,9970 0,8184 1,7138 1,0353 1,0354 1,0353 0,1503 0,0013 0,0007 44 1702,7619 1762,0146 1734,7577 1,3042 7,5744 0,7667 1,8184 0,6438 1,7639 1,8155 1,0354 1,0354 0,1608 0,0008 0,0004	40	1964,8162	2033,8003	1997,6023	1,2988	7,6937	0,6613	1,5402	0,3602	1,5728	1,6182	1,0350	1,0351	1,0350	0,1206	0,0048	0,0024
43 1766,7534 1828,2938 1799,4558 1,3032 7,5955 0,7399 1,9970 0,8184 1,7138 1,7639 1,0353 1,0354 1,0353 0,1503 0,0013 0,0007 44 1702,7619 1762,0146 1734,7577 1,3042 7,5744 0,7667 1,8184 0,6438 1,7639 1,8155 1,0354 1,0354 1,0354 0,1608 0,0008 0,0004	41	1898,4212	1964,8227	1931,6187	1,3002	7,6628	0,6871	1,3602	0,1783	1,6182	1,6653	1,0351	1,0352	1,0352	0,1302	0,0033	0,0016
44 1702,7619 1762,0146 1734,7577 1,3042 7,5744 0,7667 1,8184 0,6438 1,7639 1,8155 1,0354 1,0354 1,0354 0,1608 0,0008 0,0004	42	1832,1582	1896,0803	1865,2897	1,3017	7,6300	0,7134	1,1783	0,9970	1,6653	1,7138	1,0352	1,0353	1,0353	0,1401	0,0021	0,0011
	43	1766,7534	1828,2938	1799,4558	1,3032	7,5955	0,7399	1,9970	0,8184	1,7138	1,7639	1,0353	1,0354	1,0353	0,1503	0,0013	0,0007
45 1691.3458 1795.1406 1697.0539 1,3076 7,5029 0,7936 1,6438 0,2726 1,8155 1,6481 1,0354 1,0000 1,0177 0,1717 0,0005 0,0002	44	1702,7619	1762,0146	1734,7577	1,3042	7,5744	0,7667	1,8184	0,6438	1,7639	1,8155	1,0354	1,0354	1,0354	0,1608	0,0008	0,0004
1,000 1	45	1691,3458	1795,1406	1697,0539	1,3076	7,5029	0,7936	1,6438	0,2726	1,8155	1,6481	1,0354	1,0000	1,0177	0,1717	0,0005	0,0002