федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

ИНСТИУТ ЭНЕРЕГТИКИ И ЭЛЕКТРОТЕХНИКИ

(наименование института полностью) Кафедра «Промышленная электроника» (кафедра) 11.03.04 Электроника и наноэлектроника (код и наименование направления подготовки, специальности) Промышленная электроника (направленность (профиль)/специализация)

БАКАЛАВРСКАЯ РАБОТА

на тему: Источник тока для технологии микродугового оксидирования

Студент	Гусаров В.В.	
-	(И.О. Фамилия)	(личная подпись)
Руководитель	Позднов М.В.	
-	(И.О. Фамилия)	(личная подпись)
Консультанты	Емелина М.В.	
-	(И.О. Фамилия)	(личная подпись)

(личная подпись)

Допустить к защите Заведующий кафедрой <u>доцент к.т.н. Шевцов А.А.</u> (ученая степень, звание, И.О. Фамилия) (личная подпись) « » 20 г.

Аннотация

Объем 65 с., 58 рис., 2 табл., 20 источников, 3 прил.

ИСТОЧНИК ТОКА, ПОСТОЯННЫЙ ИСТОЧНИК, МИКРУДОГОВОЕ ОКСИДИРОВАНИЕ, РЕГУЛИРУЕМЫЙ ИСТОЧНИК ПИТАНИЯ

Объектом исследования является источник тока для технологии микродугового оксидирования.

Цель работы — разработка технологического источника тока для производства покрытий МДО.

Задачи проекта заключались в изучение схемотехнического решения источников питания, произведение мотивированного выбора для разработки. Математическое моделирование режимов работы источника питания. Выбор элементной базы для сборки силовой части.

Работа включает в себя четыре раздела, в которых сделаны упомянутые ранее задачи.

Для расчета и моделирования режимов работы электрической схемы, оформление чертежей, аналитических расчётов использовались программные пакеты MathCad 15, MatLab R2014a /Simulink и КОМПАС-3D V14.

В процессе работы была разработана и промоделирована схема источника тока для технологии микродугового оксидирования и получены теоретические результаты моделирования.

Степень внедрения — рекомендуется к проектированию, сборке источника тока.

Областью применения данного источника тока являются предприятия, использующие технологию МДО в своём производстве.

Применение источника тока на таких вентильных устройствах как тиристоры, позволило эксплуатировать схему при более жёстких параметрах работы.

Abstract

The graduation work includes -p. 65, tables -2, figures -70, annex -3.

SOURCE OF CURRENT, CONSTANT SOURCE, MICRO ARC OXIDATION, REGULATED POWER SOURCE.

The object of the study is the current source for microarc oxidation technology.

The tasks of the project were to study the circuit design of power supplies, the product of a motivated choice for development. Mathematical modeling of power supply modes. Selection of the element base for power unit assembly.

The work includes four sections in which the previously mentioned tasks are done.

For calculating and modeling the modes of operation of the electrical circuit, the design of drawings, analytical calculations used software packages MathCad 15, MatLab R2014a / Simulink and KOMPAS-3D V14.

In the process of work, the current source scheme for micro arc oxidation technology was developed and modeled and theoretical results of modeling were obtain.

Degree of implementation - it is recommend to design, build a current source.

The field of application of this current source is the enterprises using the MAO technology in their production.

The use of a current source on such gate devices as thyristors allowed operating the circuit with more stringent operating parameters.

Содержание.

Введение	6
1.Состояние вопроса	
1.1Требования к силовой схеме	7
1.2Выбор структурной схемы преобразователя	7
1.3Выбор способа регулирования напряжений преобразователя	9
1.4Описание работы схемы	12
2.Расчётный раздел	
2.1Расчёт максимальной мощности на выходе преобразователя	16
2.2Соотношения для коммутирующих элементов	17
2.3Подбор параметров контура коммутации	20
2.4Снаберная цепь для тиристоров	21
2.5 Расчёт L-С фильтра после выпрямителя	26
3.Раздел моделирования	
3.1Моделирование схемы инвертора	27
3.2Моделирование схемы питания	30
3.3Полученные результаты моделирования схем	36
3.4 Нарастание напряжения $\frac{dU}{dt}$ на коммутирующих тиристорах	41
3.5Перенапряжения на тиристорах	46
3.6Основы для программирования системы управления	48
4.Выбор элементов	
4.1Выбор источника питания схемы	49
4.2Выбор коммутирующего тиристора	53
4.3 Предохранители перед тиристорами	54
4.4Выбор коммутирующего конденсатора	
4.5Выбор обратных диодов для силовых тиристоров	58
4.6Выбор элементов для L-С фильтра после выпрямителя	58

Заключение	62
Список используемой литературы	63
Приложение1	66
Приложение2	70
Приложение3	73

Введение

В настоящее время технологии получения покрытий с новыми свойствами получают высокий интерес. Одной среди них является технология микродугового оксидирования.

Микродуговое оксидирование – это электротехническое явление преобразования (окисления) поверхности проводимых металлов и их сплавов в электролитном растворе, для того чтобы получить оксидный слой (покрытий). Данный технологический процесс происходит от анодирования, однако выполняется при большом напряжении, в связи с этим образуются микро дуговые микроразряды в месте пробоя барьерного слоя на покрытие. В месте пробоя скачком увеличивается температура и давление, часть металла изменяется в раствор, где находится в качестве ионов. Вторая часть расплавленного металла контактирует с другими элементами электролита и создаёт МДО-покрытие. За счёт этого покрытие создаётся во внутри изделия, а не только на поверхности. Кроме этого, большие температуры в области пробоя приводят к созданию градиентного переходного слоя на переходе металлпокрытие. Это покрытие гарантирует крепкое сцепление МДО-покрытия с гарантирует адгезию подложкой, ЧТО также полимерных покрытий, напыляемых на поверхность детали

Технология МДО осуществляется на электрооборудовании близком гальваническому электрооборудованию. Для МДО техническое оформление приводит к явлению анодирования алюминия. Их основные различия включают в себя используемые источники питания и электролиты.

Для использования технологии требуются мощные источники тока с широким набором параметров регулирования, т.к. технология МДО для различных обрабатываемых сплавов требует гибкого подбора их параметров. Данная работа направлена на разработку и исследование подобного источника. Предполагается в основе использовать схемотехнику, позволяющую использовать более надежную элементную базу, что позволит снизить

6

1.Состояние вопроса

1.1Требования к силовой схеме

Обозначения на схемах расшифровываются по списку ниже:

Φ	-	Фильтр
ИП	-	Источник питания
Д	-	Диод
В	-	Выпрямитель
И	-	Инвертор
СТ	-	Согласующий трансформатор
Н	-	Нагрузка
	Ha	рисунке 1.1 показана общая силовая схема для данного

преобразователя

Рисунок 1.1 – Общий вид силовой схемы.

К выбору силовой схемы в соответствии с техническим заданием предъявляются следующие требования:

1)Регулировка частоты импульсов напряжения на нагрузке

2)Регулирование импульсов положительного и отрицательного напряжения на нагрузке

3)Гальваническая развязка нагрузки от питания сети.

1.2Выбор структурной схемы преобразователя

Подбор структурной схемы преобразователя проходил, учитывая следующие параметры:

Выбор места ввода гальванической развязки.
 Это можно осуществить двумя способами.

А) Низкочастотный согласующий трансформатор.

На рисунке 1.2 показана схема с низкочастотным трансформатором.

Если выбрать низкочастотный трансформатор, то трансформатор с частотой 50 Гц получится большой по габариту и весу, потому что чем ниже частота, тем меньше наводится ЭДС в одном витке обмотки, и тем самым нужно намотать больше витков на одно и тоже напряжение и(или) взять большее сечение стали, таким образом выходит, что нужно больше сечение сердечника и размеры трансформатора в целом.

Рисунок 1.2 – Структурная схема с низкочастотным согласующим трансформатором.

Б) Высокочастотный согласующий трансформатор.

На рисунке 1.3 показана схема с высокочастотным согласующим трансформатором.

Рисунок 1.3 – Структурная схема с высокочастотным согласующим трансформатором.

Высокочастотный трансформатор включает в себя во всех случаях

первичную обмотку и вторичную обмотку, а также магнитопровод (сердечник).

Применение сердечника повышает КПД, уменьшает рассеивание магнитных полей, поэтому уменьшает затрачиваемую мощность, которая идёт на потери в трансформаторе, так же уменьшает габариты трансформатора.

Главными недостатками применения высокочастотного согласующего трансформатора является уменьшение технологичности его изготовления, трансформатор, увеличение цены на более высокий нагрев обмоток увлечение условий к классу трансформатора, изоляции на обмотках трансформатора.

Ha 1.4 И 1.5 показаны рисунках схемы С использованием высокочастотного трансформатора инвертора после С одноканальным выпрямительным и двух канальным выпрямителем.

Рисунок 1.4 – Структурная схема с одноканальным выпрямителем после трансформатора.

Рисунок 1.5 – Структурная схема с одноканальным выпрямителем после трансформатора.

1.3Выбор способа регулирования напряжений преобразователя

1.3.1 Фазовое регулирование выпрямленного напряжения.

Регулирование происходит путём изменения времени задержки (угла) открытия тиристора, от его начала полупериода, тем самым осуществляется регулирование выходного напряжения выпрямителя. Фазовое регулирование одноканального и двухканального выпрямителя показана на соответствующих рисунках 1.6 и 1.7.

Рисунок 1.6 – Структурная схема с одноканальным управлением выпрямителя.

Рисунок 1.7 – Структурная схема с двухканальным управлением выпрямителя.

Главным недостатком фазного регулирования является пониженный коэффициент мощности установки с его использованием. На понижение коэффициента мощности влияет импульсное потребление тока из сети с высшими гармониками тока, и фазовый сдвиг основной гармоники тока относительно напряжения.

Это параметр обычно называется X и определяется по формуле 1.1.

$$X = \frac{P_1}{S_1} \tag{1.1}$$

Где P_1 это активная мощность используемая выпрямителем расписанная в формуле 1.2.

$$P_1 = I_{1(1)} \cdot U_1 \cdot \cos \varphi \tag{1.2}$$

А S₁ это полная мощность выпрямителя, который потребляет её от сети переменного напряжения (формула 1.3).

$$S_1 = U_1 \cdot I_1 \tag{1.3}$$

Запишем формулы 1.3 с учётом гармонических колебаний тока (формула 1.4).

$$S_{1} = U_{1} \cdot \sqrt{I_{1(1)}^{2} + I_{1(3)}^{2} \dots I_{1(n)}^{2}}$$
(1.4)

Подставляя формулу 1.4 и формулу 1.2 в выражение 1.1, мы получим что реактивная мощность равна:

$$X = \frac{I_{1(1)} \cdot \cos \varphi}{\sqrt{I_{1(1)}^2 + I_{1(3)}^2 \dots I_{1(n)}^2}} = k \cdot \cos \varphi$$

Где *k* это коэффициент изменения формы кривой потребляемого тока; Для увеличения коэффициента мощности необходимо использовать активные фильтры на транзисторах или специальные выпрямители на транзисторах.

1.3.2 ШИМ (широтно-импульсная модуляция). ШИМ – это процесс изменения мощности, подаваемой к нагрузке, за счёт изменения скважности управляющих импульсов, при одной и той же частоте (периоде).

На рисунке 1.8 показано регулирование положительного и отрицательного напряжения на нагрузке с помощью ШИМ

$$\frac{t_u}{T} \xrightarrow{Var} E_K; E_A$$

Учитывая все выше написанные параметры, можно выбрать одну из 7

предложенных структурных схем, которые имеют свои минусы и плюсы (рисунок 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9).

Из всех выше предложенных схем, схема под рисунком 1.2 имеет оптимальный набор параметров необходимых для создания преобразователя.

Рисунок 1.8 – Широтно-импульсная модуляция.

Рисунок 1.9- Структурная схема с ШИМ управлением инвертора.

1.4Описание работы схемы

На рисунке 1.10 изображена принципиальная схема преобразователя. Рассмотрим принцип работы схемы как однофазный полумостовой АИН с параллельной коммутацией.

На рисунке 1.11 показаны временные диаграммы, показывающие работу схемы в процессе коммутации.

Проанализируем и рассмотрим коммутационные процессы, проходящие в схеме.

Источники питания E1 и E2 имеют напряжение 800 и 300, они предназначены для создания искусственной средней точки ИП. Коммутационные процессе в схеме на рисунке 1.10 создаются чередующимися перезаряда коммутирующего конденсатора C_k либо через контур с

Рисунок 1.10 – Принципиальная схема преобразователя.

первым коммутирующим тиристором VS_{k1} , либо через контур с вторым коммутирующим тиристором VS_{k2} , эти процессы протекают как в схеме двухтактного ИППН.

Рассмотрим более подробно процессы, которые происходят в схеме. Допустим что ток протекает через тиристор VSc_2 , в период времени t_1 . Коммутирующий конденсатор к этому времени заряжен на напряжение U(0), а к нагрузке приложено напряжение равное половине напряжения источника питания (0.5E). В нагрузке течёт ток $i_{_{H}}$, сквозь открытый тиристор VSc_2 .[6]

К моменту времени t_1 , поступает управляющий импульс на открытие тиристора VS_{k2} . Тиристор VSc_2 , диод VD_2 и только что открывшийся второй коммутирующий тиристор VS_{k2} , создают колебательный контур перезаряда коммутирующего конденсатора C_k . На отрезке времени $t_1 - t_2$ ток i_c , который изменяется по закону синуса, течёт через открытый тиристор VSc_2

Напряжение на коммутирующим конденсаторе C_k к моменту времени t_3 имеет обратное напряжение больше напряжения E. Из-за этого создаются благоприятные параметры для открытия первого диода VD_1 . При открытие диода VD_1 полярность напряжения на нагрузке сменится на противоположную и далее создастся контур перезарядки коммутирующего конденсатора на отрезке времени $t_3 - t_4$.После перезаряда коммутирующего конденсатора напряжение U(0) на нём становится такое же, как и в начале перезаряда, но с обратной полярностью.

В момент времени t_4 в конце процесса заряда конденсатора C_k , в период этого времени выполняется условие для восстановления запирающих свойств второго силового тиристора. Далее отправляется управляющий импульс для того чтобы открыть тиристор VSc_1 . Но через этот тиристор не будет течь ток нагрузки i_n , т.к. он имеет обратное направление по сравнению с тиристором VSc_2 , поэтому ток нагрузки i_n протекает через диод VD_1 . Ток в нагрузке i_n изменяется по экспоненциальному закону с постоянной времени

 $\tau = \frac{L_{_{_{H}}}}{R_{_{_{H}}}}$, потому что в нагрузке присутствует индуктивность $L_{_{_{H}}}$. Энергия, которая была запасена в индуктивности нагрузки, сбрасывается в активное сопротивление нагрузки и цепь источника питания.[2] С момента времени t_5 ток в нагрузку течёт сквозь тиристор VSc_1 , в тот момент, когда ток нагрузки $i_{_{H}}$, который ранее протекал через диод VD_1 , будет равен нулю. В момент времени t_5 направление тока нагрузки изменится на противоположное и нагрузка опять будет питаться от ИП. Ток в нагрузке растёт по экспоненциальному закону

Рисунок 1.11 – Временные диаграммы преобразователя.

 $\tau = \frac{L_{_{H}}}{R_{_{H}}}$. Если поменять значение нагрузки $L_{_{H}}$ и $R_{_{H}}$, то необходимо будет поменять управление силовыми тиристорами АИН, иначе отпирания одного из силовых тиристоров в определённый момент времени не произойдёт. В момент времени t_6 открывается тиристор VS_{k1} . Далее идут аналогичные процессы, рассмотренные выше.[7]

2. Расчётный раздел

2.1 Расчёт максимальной мощности на выходе преобразователя

Произведём расчёт максимальной мощности на выходе данного преобразователя, для этого для начала посчитаем действующей ток, далее анодный ток и катодный ток. Все эти преобразования нужны, для того чтобы при создании источника тока выбрать элементы с правильными параметрами.

Действующий ток рассчитал по формуле 2.1. [4]

$$\mathbf{i} = \mathbf{j} \cdot \sum S_{\mathbf{i}} \tag{2.1}$$

где *j* – плотность действующего тока

 $\sum S_i$ – суммарная площадь тока

Неизвестным параметром оказался $\sum S_i$, который я рассчитал по формуле 2.2.

$$\sum S_i = 5 \cdot S_1 = 5 \cdot \frac{\pi d^2}{4}$$
(2.2)

*где S*₁ – площадь одного поршня для двигателя внутреннего сгорания d -диаметр обрабатываемого поршня

$$\sum S_i = \frac{5 \cdot 3, 14 \cdot (0.76)^2}{4} = 2,27$$
дм²
 $i = 35 \cdot 2.27 = 80$ А

Далее производим расчёт суммарного действующего значения анодного и катодного тока по формуле 2.3.

$$i = \sqrt{i_k^2 + i_a^2}$$
 (2.3)

где *i_k* – катодный ток

i_a – анодный ток

По техническому заданию сказано, что отношение анодного и катодного тока ($\frac{i_a}{i_k}$)равно в диапазоне от 0,5 до 1,5, обозначим его как коэффициент k (формула 2.4).[8]

$$k = \frac{i_a}{i_k} = 0,5 \dots 1,5$$
 отсда $i_a = \frac{i_k}{k}$ (2.4)

Возьмём максимальный коэффициент, тогда по третьей формуле ток будет равен

$$i = \sqrt{i_k^2 + \frac{i_k^2}{k^2}} = i_k \sqrt{1 + \frac{1}{k^2}}$$

из этого преобразования выражаем анодный ток который равен

$$i_{k} = \frac{i}{\sqrt{1 + \frac{1}{k^{2}}}} = \frac{80}{\sqrt{1 + \frac{1}{1.5}}} = 66,6 \text{ A}$$
$$i_{a} = \sqrt{i^{2} - i_{k}^{2}} = \sqrt{80^{2} - 62^{2}} = 45,2 \text{ A}$$

Далее рассчитал катодный и анодный ток при коэффициенте 0,5

$$i_{k} = \frac{i}{\sqrt{1 + \frac{1}{k^{2}}}} = \frac{80}{\sqrt{1 + \frac{1}{0.5}}} = 35,7 \text{ A}$$
$$i_{a} = \sqrt{i^{2} - i_{k}^{2}} = \sqrt{80^{2} - 35,7^{2}} = 71,6 \text{ A}$$

Затем рассчитал суммарную мощность при максимальных значениях анодного и катодного тока по формуле 2.5.

$$\sum P = P_a + P_k$$
(2.5)
$$P_a = i_a \cdot E_a = 71, 6 \cdot 800 = 57280 \text{BT}$$
$$P_k = i_k \cdot E_k = 66 \cdot 300 = 19800 \text{BT}$$
$$\sum P = 57280 + 19800 = 77080 \text{ BT}$$

2.2Соотношения для коммутирующих элементов

Выключение силового тиристора VSc1 и VSc2 происходит на интервале tк, когда *Ivsk*1 > *Id*. Это время зависит как от T0/2, так и от соотношения $\frac{im}{Id}$. Чем выше $\frac{im}{Id}$ тем ближе $t_k \rightarrow \frac{T_0}{2}$. Так при $\frac{im}{Id}$ = 3,4,5,10; $\frac{t_k}{T_0}$ = 0.78;0.84;0.87;0.94 т.е. если принять например при $\frac{im}{Id}$ = 3, то время

коммутации будет находиться по формуле 2.6[1].

$$t_k = \frac{0.78 \cdot T_0}{2}$$
(2.6)

Импульс тока коммутации представлен на рисунке 2.1.

С другой стороны *i_m* определяется коммутацией напряжения на коммутирующем контуре и его характеристическим сопротивлением (формула 2.7).

$$i_{m} = \frac{E_{_{KOM}}}{\rho} = \frac{E_{_{KOM}}}{\sqrt{\frac{L}{C}}} = \frac{(E_{_{A}} + E_{_{K}}) \cdot 2}{\sqrt{\frac{L}{C}}}$$
(2.7)

Рисунок 2.1 – Импульс тока коммутации.

Так же для колебательного контура LC (формула 2.8).

$$\frac{2\pi}{T_0} = \frac{1}{\sqrt{L \cdot C}} \tag{2.8}$$

Из уравнения 2.6, 2.7 и 2.8 можно выбрать параметры коммутирующего контура, полагая что $t_k = t_{BBIKR} \cdot 1.5$ за счёт того что восстановление тиристора идет при малом обратном напряжении:

$$U_{o\delta n} = (0.7 \div 1)B.$$

Далее рассмотрим коммутационные процессы на напряжение на нагрузке показанным на рисунке 2.2, где частота $f = 1\kappa\Gamma u$, а соотношение анодного тока к катодному будет равно 0,5.

Для надежной коммутации запирания импульса тока ick коммутирующей ёмкости должен оканчиваться до момента запуска t1 и t2 очередного силового тиристора. [9]

По рисунку 2.2 видно, что при $\frac{T}{2} = 500 \mu C$ самое позднее выключение коммутирующего тиристора Vsk1 может быть в момент запаздывания от начала периода на 350 μ C (включения Vsc1).

Рисунок 2.2 – Напряжение и ток на нагрузке преобразователя.

Полупериод $\frac{T_0}{2}$ коммутирующего разряда LC должен быть больше времени запирания силовых тиристоров, иначе возможно не закрывание силового тиристора и тогда в этом случае произойдёт опрокидывание инвертора.

Открытие коммутирующих тиристоров начинает процесс запирания силовых тиристоров, однако нагрузка в практически весь полупериод $\frac{T_0}{2}$ потребляет ток.[3]

2.3Подбор параметров контура коммутации

Питающие напряжения составляют Ek =300B, а Ea =800B. Зададимся параметрами колебательного контура L и C:

$$L = 24.5 \cdot 10^{-5} \Gamma \mu$$
$$C = 9 \cdot 10^{-6} \Phi$$
$$E_{K} + E_{A} = 1100B$$

Подставив эти данные в уравнение 2.9, мы получим максимальный ток преобразователя.

$$i_m = \frac{(E_K + E_A) \cdot 2}{\sqrt{\frac{L}{C}}} = \frac{2200}{5.2} = 423A$$
(2.9)

Отношение максимального тока к анодному и к катодному току равно:

$$\frac{i_m}{i_A} = \frac{423}{66} = 6.41$$
$$\frac{i_m}{i_K} = \frac{423}{71} = 6$$

Значит $t_k = 0.9 \cdot \frac{I_0}{2}$

При этому уравнение 2.10 принимает вид:

$$\frac{2\pi}{T_0} = \frac{1}{\sqrt{L \cdot C}} \Longrightarrow \frac{T_0}{2} = \pi \cdot \sqrt{L \cdot C} = \pi \cdot \sqrt{24.5 \cdot 10^{-5} \cdot 9 \cdot 10^{-6}} = 148 \mu C \quad (2.10)$$

Что больше требуемого $t_k = t_{\text{выкл}} \cdot 1.5 = 80 \cdot 1.5 = 120 \mu C$

2.4Снабберная цепь для тиристоров

Практически все полупроводниковые преобразователи восприимчивы к перенапряжению. Когда превышается предельное значение V_{RSM} тогда это практически во всех случаях приводит к пробою, следовательно перегрузки по напряжению, к этому имеют отношения коммутационные скачки, сетевые шумы и т. д., они должны быть уменьшены до устойчивых уровней. Варисторы, лавинные диоды и RC-снабберные цепи, все эти супрессоры применяются для этой цели.[10]

Снабберы состоят из последовательного резонансного контура, который гасит большие скачки напряжения в ультранизкочастотные колебания, которые затухают. В этом процесс энергия малого длительного выброса напряжения большой амплитуды преобразуется в энергию продолжительного, но низкого по напряжению процесс резонанса.

Другие, сказанные ранее элементы, включают в себя нелинейные особенности, с увеличением напряжения внутреннее сопротивление их уменьшается. Они вместе с сопротивлениями и индуктивностями схемы, создают нелинейную искусственную среднюю точку, которая практически не оказывает влияние на низковольтные сигналы, но заметно убирают превышающий допустимый уровень высоковольтных скачков. В следствии чего энергия помехи делится на продолжительный промежуток времени и почти полностью расходуется демпфирующими компонентами.

Схема защиты от перенапряжения включается в состав преобразователя, ее компоненты ставятся параллельно тиристорам. Самым легким методом защиты полупроводникового устройства служит применение RC-снаббера,

21

которые показаны на рисунке 2.3. Главным исключительным достоинством данного способа является независимость от источника перенапряжения, однако он не идеален.

Так как максимальное напряжение на одном коммутирующем плече схемы равно 4000 В, то нужно использовать по 2 тиристорных модуля, которые включенны последовательно. Для этого используем демпфирующие и выравнивающие цепочки (рисунок 2.8).[11]

На рисунке 2.3 резистор R1 обеспечивает равномерное распределение напряжения во время переходных процессов выключения и включения. Неравномерность может возникать из-за разброса динамических параметров приборов.

Рисунок 2.3 - Демпфирующая и выравнивающая цепочка.

Значение шунтирующего сопротивления можно рассчитать следующим образом по формуле 2.11:

$$R1 = \frac{nU_{VS1} - U_{o\delta u_{l}}}{(1-1)_{ym_{max_{VS1}}}} = \frac{2 \cdot 1600 - 2800}{(2-1) \cdot 0.15} = 26.6 \text{ KOM}, \qquad (2.11)$$

Где *п* – число последовательно включенных приборов;

 U_{VS1} - максимально допустимое напряжение на коммутирующем тиристоре, В; $U_{o \delta u u}$ – максимальное напряжение на приборах при их последовательном соединении, В;

*I*_{*ym_max_VS1} – максимальный обратный ток тиристора VS1, А.*</sub>

Мощность, выделяющаяся на резисторе по уравнению 2.12.

$$P_{R1} = \frac{U_{VS1}^2}{R_1} = \frac{1600^2}{26666} = 96 \text{ BT.}$$
(2.12)

Для выравнивания распределения переходного напряжения применили шунтирующие RC-цепи. Для того чтобы ограничить ток конденсатора C1 последовательно к нему ввели низкоомный резистор R2 сопротивлением 20 Ом

В качестве диода выбираем КД900А: $U_{odp} = 2,1 \text{ кB}$; I = 600 А.

Ёмкость шунтирующего конденсатора рассчитали по следующей формуле 2.13:

$$C1 = \frac{Q_{rr} \Phi - 1}{nU - U_{o \delta u q}} = \frac{1(2-1)}{2 \cdot 1600 - 2800} = 2.5 \text{ M}\Phi, \qquad (2.13)$$

где *Q*_{rr} – заряд обратного восстановления, Кл.

Вторым способом защиты от перенапряжения можно использовать варисторы (рисунок 2.4), которые будут срезать напряжение до нужного нам значения.[12]

Рисунок 2.4 – Схема с варисторами для коммутирующего тиристора.

Три варистора S20K510 по 510В, поставленные параллельно одному из коммутирующих тиристоров, будут срезать напряжение на 1530В, чтобы не дать выйти из строя выбранному тиристору. Основные параметры варистора показаны на рисунке 2.5. Параметры токов утечки показаны на рисунке 2.6.

Туре	Ordering code	V _{RMS}	V _{DC}	i _{max}	W _{max}	Pmax
(untaped)				8/20 μs	(2 ms)	
SIOV-		V	V	Α	J	W
S10K510	B72210S0511K101	510	670	2500	55,0	0,40
S14K510	B72214S0511K101	510	670	4500	110,0	0,60
S20K510	B72220S0511K101	510	670	6500	190,0	1,00
S10K550	B72210S0551K101	550	745	2500	60,0	0,40
S14K550	B72214S0551K101	550	745	4500	120,0	0,60
S20K550	B72220S0551K101	550	745	6500	210,0	1,00
S10K625	B72210S0621K101	625	825	2500	68,0	0,40
S14K625	B72214S0621K101	625	825	4500	130,0	0,60
S20K625	B72220S0621K101	625	825	6500	230,0	1,00
S10K680	B72210S0681K101	680	895	2500	72,0	0,40
S14K680	B72214S0681K101	680	895	4500	140,0	0,60
S20K680	B72220S0681K101	680	895	6500	250,0	1,00
S14K1000 ¹⁾	B72214S0102K101	1100	1465	4500	230,0	0,60
S20K10001)	B72220S0102K101	1100	1465	6500	410,0	1,00

Maximum ratings (T_A = 85 °C)

Рисунок 2.5 – Основные параметры варистора.

Выравнивающий резистор R1 рассчитывал по формуле 2.14, где для выбранного варистора выбрали $i_{ymRu} = 10^{-2}$ по рисунку 2.6, максимальное напряжение на одном из варисторов принял равное $U_{\max Ru} = 510B$.

$$R_1 = \frac{U_{\max Ru}}{i_{\max Ru}} = \frac{510}{10^{-2}} = 51\kappa O_M$$

Аналогичные расчёты производятся для других выравнивающих резисторов R2, R3, то есть можно сделать вывод что:

$$R_1 = R_2 = R_3 = 51 \kappa O M$$

Потери на резисторе вычисляем по формуле 2.12

$$P_{R1} = \frac{U_{VS1}^2}{R_1} = \frac{1600^2}{51000} \approx 50Bm$$

Выбрали резистор типа 0.062Вт 0402 51 кОм, 1%, Чип резистор (SMD) для всех трёх выравнивающих цепочек.

2.5 Расчёт L-С фильтра после выпрямителя

Производится расчёт L-C фильтра после выпрямителя, показного на рисунке 2.7.

Для начала посчитаем фильтра для первого выпрямителя у которого выходное напряжение 800В.

Рисунок 2.7 – L-С фильтр выпрямителя.

Индуктивность фильтра L_1 рассчитал по формуле 2.14, при этом взял сопротивление нагрузки равное: $R_A = 1.6(O_M)$, фазность выпрямителя m = 6, циклическая частота сети $\omega_c = 2 \cdot \pi \cdot f_c = 2 \cdot 3.14 \cdot 50 = 314(pad/c)$ [13]

$$L_{1} = \frac{2 \cdot R_{A}}{(m^{2} - 1) \cdot m \cdot \omega_{c}} = \frac{2 \cdot 1.6}{(6^{2} - 1) \cdot 6 \cdot 314} = 49(m\kappa\Gamma\mu)$$
(2.14)

Ёмкость фильтра рассчитал по формуле 2.15, при этом взял значения переменных из предыдущей формулы, за исключением коэффициента сглаживания $K_{\phi} = 3$

$$C_1 = \frac{K\phi}{m^2 \cdot \omega_c^2 \cdot L_1} = \frac{3}{6^2 \cdot 314^2 \cdot 152 \cdot 10^{-6}} = 5.56(M\pi\Phi)$$
(2.15)

Далее посчитаем значения для второго фильтра, для которого

сопротивление равно: $R_{K} = 0.9(O_{M})$, остальные параметры взял одинаковые что и для первого фильтра.

$$L_{2} = \frac{2 \cdot 0.9}{(6^{2} - 1) \cdot 6 \cdot 314} = 27(M\kappa\Gamma H)$$
$$C_{2} = \frac{3}{6^{2} \cdot 314^{2} \cdot 90 \cdot 10^{-6}} = 9.4(M\pi\Phi)$$

3. Раздел моделирования

3.1 Моделирование схемы инвертора

Моделирование исследуемого преобразователя проходили В лицензированной программе MatLab Simulink. Изначально собиралась силовая добавилась схема схема, далее к ней управления тиристорами как коммутирующими, так и силовыми, так же на схему добавил осциллоскопы для получения временных диаграмм. В схему подставлялись значения ранее элементов. Ha рисунке 3.1 посчитанных показана силовая схема преобразователя. В схеме был использован колебательный контур, который служит для того чтобы принудительно закрывать силовые тиристоры. Этот колебательный контур состоит из конденсатора Ck3 и Ck1.Нагрузка в схеме активная, диоды Diode3 и Diode2 служат для того чтобы убирать реактивную мощность с нагрузки. Для того чтобы не давать конденсатору поднять напряжение больше 4000В были использованы Diode4 и Diode5.[5]

На рисунке 3.2 показана схема управления тиристорами.

В качестве задающего импульсы генератора построил схему одновибратора на логических элементах, показанную на рисунке 3.3

На рисунке 3.4 показаны осциллоскопы для получения временных и фазовых диаграмм.

27

Рисунок 3.1 – Силовая схема в MatLab Simulink.

Рисунок 3.2 – Схема управления тиристорами в MatLab Simulink.

Рисунок 3.3 Одновибратор в MatLab Simulink.

Рисунок 3.4 – Осциллоскопы в MatLab Simulink.

В качестве способа моделирования я использовал способ под названием: "Rosenbrock", и с другими параметрами моделирования показанных на рисунке 3.5.

Данный алгоритм интегрирования переменного шага соднан на основе L-устойчивом трехстадийном методе типа Розенброка третьего порядка точности. [14]

S Configuration Parameters: dadan:	sojdkbahjkd/Configura	ation (Active)	ADDREY Drawn		×
Select:	Simulation time				^
Solver Data Import/Export Optimization	Start time: 0.0		Stop time: 0.2		
 Optimization Diagnostics Hardware Implementation Model Referencing Simulation Target Code Generation Simscope SimMechanics 1G SimMechanics 2G 	Solver options Type: Max step size: Min step size: Initial step size: Number of conse Solver Jacobian r Tasking and samp Tasking mode for Automatically Higher priority Zero-crossing option	Solver options Type: Variable-step Max step size: 1E-6 Min step size: auto Initial step size: auto Number of consecutive min steps: Solver Jacobian method: Solver Jacobian method: Tasking and sample time options Tasking mode for periodic sample times: Image: Automatically handle rate transition for data transfer Higher priority value indicates higher task priority Image: Automatical task priority		ode23s (stiff/Mod. Rosenbrock) 1e-2 auto Disable All	
	Zero-crossing cor Time tolerance: Number of consec	Itrol: Use local settings 10*128*eps Lutive zero crossings:	Algorithm: Signal threshold	I: auto 1000	
0				OK Cancel Help	Apply

Рисунок 3.5– Параметры моделирования в MatLab Simulink.

3.2Моделирование схемы питания

Схема питания моделировалась на управляемых тиристорах, показанная на рисунке 3.6, с помощью задания угла управления, мне необходимо было получить на выходе первого выпрямителя 800В на выходе второго 300В. В качестве первичного источника питания я использовал трансформируемое напряжение, взятое с вторичной обмотки трансформатора, для первого это напряжение составило 380В на одну фазу, для второго это напряжение составило 127В на одну фазу, в качестве фильтра на выходе выпрямителя использовал L-С фильтр. Для сглаживания, как напряжения, так и тока на выходе источника питания. Управление схемой осуществляется через IGBT транзистора, которые можно будет заменить на тиристоры при проектировки данного источника питания

Промоделировал схему, задавая разную частоту и коэффициент заполнения IGBT транзистора:

Рисунок 3.6 Схема источника питания с L-С фильтром.

1)Задал 0,49Т периода заполнения для первого IGBT транзистора и такое же число задал для второго IGBT транзистора с паузой между включениями транзисторов равной 0,02 от всего периода, для того чтобы транзисторы успели закрыться.

А) Промоделировал при частоте схемы 1000Гц (Рисунок 3.7)

- Б) Промоделировал при частоте схемы 500Гц (Рисунок 3.8)
- В) Промоделировал при частоте схемы 20Гц (Рисунок 3.9)

Рисунок 3.7 – Работа схемы при 1000Гц, заполнение транзисторов 0.49Т и 0.49Т.

На рисунках 3.7,3.8,3.9,3.10,3.11,3.12,3.13,3.14,3.15 показаны Ucf,Ucf2 – это напряжения на первом и втором сглаживающем конденсаторе, которые ставятся после выпрямителя; In1,In2-это токи на нагрузке источника питания; Ilf1,Ilf2 – это токи на сглаживающем дросселе, которые ставятся после выпрямителя; Ia1,Ua1 – это ток и напряжение на одной из трёх фаз у первого выпрямителя; Ia2,Ua2 – это ток и напряжение на одной из трёх фаз у второго выпрямителя;

Рисунок 3.8 – Работа схемы при 500Гц, заполнение транзисторов 0.49Т и 0.49Т.

Рисунок 3.7 – Работа схемы при 20Гц, заполнение транзисторов 0.49Т и

0.49T

2)Задал 0,94Т периода заполнения для первого IGBT транзистора и 0,4Т задал для второго IGBT транзистора с такой же паузой между включениями транзисторов равной 0,02 от всего периода, как и в первом случае. Промоделировал при тех же самых частотах: 20,500,1000Гц, показанных на рисунках 3.10,3.11,3.12.

Рисунок 3.10 – Работа схемы при 1000Гц, заполнение транзисторов 0.94Т и 0.4Т.

Рисунок 3.11 – Работа схемы при 500Гц, заполнение транзисторов 0.94Т и

Рисунок 3.12 – Работа схемы при 20Гц, заполнение транзисторов 0.94Т и 0.4Т.

3)Задал 0,65Т периода заполнения для первого IGBT транзистора и 0,32Т задал для второго IGBT транзистора с такой же паузой между включениями транзисторов равной 0,02 от всего периода, как и в первом случае. Промоделировал при тех же самых частотах: 20,500,1000Гц, показанных на рисунках 3.13,3.14,3.15.

Рисунок 3.12 – Работа схемы при 1000Гц, заполнение транзисторов 0.65Т и 0.32Т.

Рисунок 3.12 – Работа схемы при 500Гц, заполнение транзисторов 0.65Т и 0.32Т.

Стоит отметить, что регулировка напряжения и тока на выходе источника питания, на фильтре выпрямите при разных углах управления и при различных частотах схемы варьируется в зависимости от их параметров.

Рисунок 3.12 – Работа схемы при 20Гц, заполнение транзисторов 0.65Т и 0.32Т.

Вывод моделирования источника питания, является то что параметра для расчёта дросселя, параметра для выбора тиристоров для выпрямителя, тиристора силовых и коммутирующих выбираем по среднему значению на выходе источника питания напряжения, когда схема работает при частоте 1000 ГЦ и имеет равное заполнение IGBT транзисторов в схеме выпрямителя. По рисунку 3.7 для первого источника питания среднее напряжение на выходе равно 800В, а для второго источника 300В.

3.3Полученные результаты моделирования схем

Параметры моделирования: напряжение на источнике питания DC Voltage Source 3 равно Ek=300 (B). Напряжение на источнике питания DC Voltage Source 2 равно Ea=800 (B). Индуктивность коммутирующего контура равна Lк= 245 (мкГн), емкость коммутирующего контура равна Ck= 9 (мкФ), анодная и катодная нагрузка соответственно равны Rk=4.2 (Ом), Ra=12 (Ом). Задержка для первого коммутирующего тиристора в блоке "Delay ta" равна tk1=350 (мкС), задержка для второго коммутирующего тиристора в блоке "Delay tk" равна tk2=100 (мкС), [15]

В ходе моделирования обнаружил, что коммутирующий конденсатор по истечению некоторого времени не успевает дозаряжаться до нужного значения и происходит срыв коммутации, показанный на рисунке 3.13. На этом рисунке изображено: напряжение на нагрузке, напряжение на коммутирующем конденсаторе, ток на коммутирующем конденсаторе, управляющие импульсы на силовых тиристорах, управляющие импульсы на коммутирующих тиристорах и ток на втором коммутирующем тиристоре.

36

Рисунок 3.13 – Срыв коммутации тиристоров.

Для решения этой проблемы я ввёл дополнительные импульсы для принудительной коммутации тиристоров, показанные на рисунке 3.14, на котором изображены: управляющие импульсы для силовых тиристоров и управляющие импульсы для коммутирующих тиристоров. Данное решение помогло, перевести схему преобразователя в автономный режим без срыва коммутации.

Далее отснял все осциллограммы токов и напряжений по данной схеме.

На рисунке 3.15 показана фазовая диаграмма перезаряда конденсатора, где по оси Y отложен ток конденсатора, а по оси X отложено напряжение на конденсаторе.

Рисунок 3.14- Импульсы принудительной коммутации.

Рисунок 3.15 Фазная диаграмма коммутирующего конденсатора.

На рисунке 3.16 показана первая серия отснятых осциллограмм, на которых показано: напряжение на нагрузке, напряжение на коммутирующем конденсаторе, ток на коммутирующем конденсаторе, управляющие импульсы на силовых тиристорах и управляющие импульсы на коммутирующих тиристорах. На этой серии осциллограмм видно, что катодное максимальное напряжение на нагрузке равно 300 В, а анодное 800 В, что удовлетворяет поставленному условию. Напряжение на коммутирующем конденсаторе с времени становится всё меньше И меньше И доходит до течением определенного момента времени, когда его нужно перезарядить, для этого подаём управляющие импульсы сначала на первый коммутирующий тиристор, затем на второй. Максимальное напряжение на коммутирующем конденсаторе равно около Uckmax=3000 В. Максимальный ток в конденсаторе равен Ickmax=500A. По этим осциллограммам можно увидеть, что через каждые 0.057c нужно подавать импульсы принудительной коммутации чтобы перезарядить конденсатор.[16]

38

Рисунок 3.16 – Первая серия осциллограмм преобразователя.

Далее отснял вторую серию осциллограмм, токи на силовых тиристорах и токи на коммутирующих тиристорах, показанные на рисунке 3.17. По рисунку видно, что токи, проходящие через силовые тиристоры намного которые текут через коммутирующие тиристоры, меньше токов, ЭТО обусловлено тем, что к коммутирующему тиристором приложено не только суммарное напряжение с двух источников, но и напряжение с коммутирующего конденсатора. Так, к примеру, максимальный ток на первом силовом тиристоре примерно равен Ivs1=70A. На втором силовом тиристоре ток равен примерно в максимальном значение Ivs2=100А. На коммутирующих тиристорах ток в 6-7 раз выше, чем на силовых и равен на первом Ivsk1 = 600A, на втором Ivsk2 =630А. Из этого следует, что при выборе тиристорных модулей нужно учитывать максимальный ток, протекающий как через коммутирующие тиристоры, так и силовые.

Рисунок 3.17 – Вторая серия осциллограмм преобразователя.

На третьей серии осциллограмм изображенных на рисунке 3.13, показаны: напряжение на первом силовом тиристоре, напряжение на втором силовом тиристоре, напряжение на первом коммутирующем тиристоре, напряжение на втором коммутирующем тиристоре, напряжение на коммутирующем конденсаторе. Для более удобного сравнения я вынес не только напряжения на коммутирующих и силовых тиристорах, но и напряжение на коммутирующем конденсаторе. По рисунку 3.18 можно заметить, что самый максимальный скачок напряжения на коммутирующих тиристорах происходит в момент принудительной коммутации их, когда подаются дополнительные импульсы управления. Максимальные напряжения силовых тиристорах равны Uvsc1=Uvsc2=1100(B), в то время как на максимальное напряжение на коммутирующих тиристорах равно Uvsc1=4000B, Uvsc2=3400(В). Напряжение на коммутирующих тиристорах выше, чем на силовых в 3-4 раза. На основании этого можно сделать вывод, что нужно

40

ставить не один модуль коммутирующих тиристоров.

Рисунок 3.18 Третья серия осциллограмм преобразователя.

3.4Нарастание напряжения $\frac{dU}{dt}$ на силовых и коммутирующих тиристорах

Для того чтобы нарастание на силовых и коммутирующих тиристорах не было скачкообразное, вводим 4 дополнительных дросселя (L1, L2, L1k, L2k) в схему преобразователя, показанную на рисунке 3.19.

На рисунках 3.20, 3.21 показаны подъём и спад напряжения на первых и вторых, силовых и коммутирующих тиристорах, до того, как я ввёл эти дросселя, напряжения на первом и втором силовом тиристоре и напряжение на коммутирующем конденсаторе. Далее собрал схему с этими 4 дросселями и промоделировал её. Результаты моделирования показаны на рисунке 3.22, 3.23, на этом рисунке изображены спад и нарастание напряжения на первых и вторых силовых и коммутирующих тиристорах, после того, как я ввёл эти дросселя, напряжения на первом и втором силовом тиристоре и напряжение на коммутирующем конденсаторе. Сравнивая напряжения на силовых и коммутирующих конденсаторах до ввода дополнительных дросселей и после, можно заметить, что подъём напряжения на коммутирующих тиристорах $\frac{dU}{dt}$, увеличился и стал плавным, а не скачкообразным как был до ввода дросселей; на силовых тиристорах рассчитал это падение напряжения. [17]

Рисунок 3.19 – Преобразователь с дополнительными дросселями.

Посчитаем максимальное нарастание напряжения при коммутации, когда в схему ввели дополнительные индуктивности на первом силовом тиристоре. Допустим, что время спада напряжения на индуктивности по формуле 3.1 равно.

$$t = \frac{L}{R} \tag{3.1}$$

Где L – это индуктивность нагрузки

R – Это сопротивление нагрузки

Тогда по формуле 3.2 U(t) равно.

$$U(t) = E_1 \cdot \exp(-\frac{t}{\tau})$$
(3.2)

Где Е1 – это напряжение с первого источника

Рисунок 3.21 – Коммутация до ввода дополнительных дросселей.

Возьмём производную от U(t), показанную в формуле 3.3:

$$U'_{t} = E_{1} \cdot e^{-\frac{t}{\tau}} \cdot (-\frac{1}{\tau})$$
(3.3)

Подставим в формулу 3.3 максимальное значение напряжения на индуктивности в момент времени *t* = 0 :

$$U'_{tmax} = -\frac{E_1}{\tau} = \frac{E_1 \cdot R}{L} = \frac{800 \cdot 12}{10 \cdot 10^{-6}} = 980 \frac{B}{MKC}$$

Такое нарастание напряжение удовлетворяет условию, максимальное нарастание напряжения на тиристоре не должно превышать 1000В/мкс.

Рисунок 3.21 – Напряжения после ввода дополнительных дросселей

Рисунок 3.21 – Напряжения после ввода дополнительных дросселей

По рисунку 3.22 определим нарастание напряжения на первом коммутирующем напряжения

Рисунок 3.22 – Нарастание напряжения на первом коммутирующем тиристоре.

По рисунку 3.22 видно, что время dt = 300 мкc, напряжение dU = 2800B, тогда по формуле 3.4:

$$\frac{dU}{dt} = \frac{2800}{300} = 9.3 B_{MKC}$$
(3.4)

Далее по рисунку 3.23 определим нарастание напряжение на втором коммутирующем тиристоре.

Рисунок 3.23 – Нарастание напряжения на втором коммутирующем тиристоре.

Так же по рисунку 3.23 можно увидеть, что время dt = 500 мкc, напряжение dU = 2300B, тогда:

$$\frac{dU}{dt} = \frac{2300}{500} = 4,6 \frac{B}{MKC}$$

Данные $\frac{dU}{dt}$, полученные для коммутирующих тиристорах с большим запасом удовлетворяют требованию, чтобы нарастание напряжение не превышало 1000В/мкс.

3.5 Перенапряжения на тиристорах.

На рисунке 3.22 показана схема замещения преобразователя, для того чтобы проанализировать максимальные прикладываемые напряжения к тиристорам.

Рисунок 3.22 – Схема замещения преобразователя.

Проанализируем напряжения на первом силовом тиристоре VSc1, который показан на рисунке 3.23

Когда тиристор закрыт к нему прикладывается напряжение с первого

Рисунок 3.23 – Напряжение на первом силовом тиристоре VSc1.

источника: $U_{VS} = U_1 = 800B$.

Когда тиристор открыт к нему прикалывается напряжение с 2 источников:

$$U_{\rm VS} = U_1 + U_2 = 800 + 300 = 1100B$$

Аналогичные действия происходят и со вторым силовым тиристором VSc2(рисунок 3.24):

Рисунок 3.24 – Напряжение на втором силовом тиристоре VSc2.

Когда тиристор закрыт к нему прикладывается напряжение с первого источника : $U_{VS} = U_2 = 300B_{.}$

В тот момент, когда тиристор находится в открытом состоянии, то есть проводит ток и к нему прикалывается напряжение с 2 источников:

$$U_{\rm VS} = U_2 + U_1 = 300 + 800 = 1100B$$

Далее рассмотрим падение напряжения на первом коммутирующим тиристоре VSк1, который изображен на рисунке 3.25:

Изначально конденсатор заряжен на напряжение 2000В далее он постепенно недозаряжается до нужного значения и с каждым периодом

напряжение на нём уменьшается до 1300В. Затем в схему вводится импульсы принудительной коммутации это делается для того чтобы не произошёл срыв коммутации схемы. После того как мы ввели импульсы принудительной коммутации конденсатор зарядился до напряжения 3100-3200В.[18]

Рисунок 3.25 – Напряжение на первом коммутирующим тиристоре VSк2.

Максимальное прикладывается напряжение, когда первый силовой тиристор закрыт и на первый коммутирующий тиристор падает сумма напряжений:

$$U_{VS\kappa 1} = U_1 + U_c = 800 + 3200 = 4000B$$

Практически идентичные процессы происходят в втором коммутирующем тиристоре VSк1(рисунок 3.26), в котором задействован не первый источник напряжения, а второй максимальное напряжение, на котором равно:

Рисунок 3.26 – Напряжение на втором коммутирующим тиристоре VSк2.

3.6Основы для программирования системы управления

1)Изначально открываем VSc1 для того чтобы зарядить коммутирующей

конденсатор Сk3 до 2 кВ, схема преобразователя показана на рисунке 3.1.

2)Открываем Vsk1, чтобы закрыть принудительно первый силовой тиристор Vsc1, для этого прикладываем к нему обратное напряжение, тиристор Vsc1 закрывается и восстанавливает свои запирающие свойства, далее ток идёт через обратный диод Diode, поставленный параллельный силовому тиристору.

3) Далее открываем второй силовой тиристор VSc2, перезаряжаем конденсатор Ck3 обратной полярностью.

4)После того как мы перезарядили конденсатор Ck3, открываем Vsk2 и принудительно закрываем второй силовой тиристор Vsc2, для того чтобы он восстановил свои запирающие свойства, после того как мы приложили обратное напряжение, тиристор закрылся и ток начал протекать через обратный диод Diode1.

5)В дальнейшем этапы коммутации повторяются, но только недозаряжая конденсатор Ck3 примерно на 250В, поэтому вводим импульсы принудительной коммутации, рассказанные ранее в пункте 3.3.

4.Выбор элементов

4.1Выбор источника питания схемы

В качестве выпрямителя для источника питания рассматривалось 3 схемы:

1) Трёхфазный выпрямитель с нулевым выводом (рисунок 4.1).

Рисунок 4.1 – Управляемый трёхфазный выпрямитель с нулевой точкой.

2) Трёхфазный мостовой выпрямитель (рисунок 4.2).

Рисунок 4.2 – Управляемый трёхфазный мостовой выпрямитель.

3) Двойной трехфазный выпрямитель с уравнительным реактором (рисунок 4.3).

Рисунок 4.3 - Двойной трехфазный управляемый выпрямитель с уравнительным реактором.

Если сравнивать эти 3 выпрямителя по таким параметрам как:

1)Наличие простого или сложного трансформатора.

2)Обратное напряжение, прикладываемое к вентилям (тиристорам), при котором нужно выбирать элементы.

3)Наличие или отсутствие подмагничивания трансформатора.

4)Количество элементов в схеме.

5)Суммарные потери на тиристорах.

6)Большое или маленькое падение напряжения на тиристоры.

Проанализировав все эти схемы, пришёл к выводу, что большими плюсами, чем минусами обладает мостовая схема, показанная на рисунке 1.12.

В качестве источника питания я выбрал тиристорные модули под названием: "Модули регулируемого выпрямителя МОЗ0"

Данный выпрямитель имеет нужные параметры для питания инвертора. На вход этого выпрямителя подаётся трёхфазное действующее напряжение 380В. В качестве фильтра в этом выпрямителе используется LC фильтр, для того чтобы уменьшить коэффициент пульсации на выходе выпрямителя. Нужно использовать два таких модуля, первого для получения на выходе 800В, второго для получения на выходе 300В. В качестве регулирования будет использоваться фазовое регулирование выпрямителя для получения нужного на выходе напряжения.[19]

Структурна схема данного выпрямителя можно увидеть на рисунке 4.4.

Рисунок 4.4 – Структурная схема выпрямителя.

На рисунке 4.5 показана схема включения этого модуля.

Рисунок 4.5 – Схема включения модуля МОЗО.

Параметры модуля МОЗО показаны в таблице 4.1.

Таблица 4.1 – Основные и предельно допустимые параметры МОЗО.

Наименование параметра,	Обозна-	Макс	имальны	й ток мод	уля, А	
единица измерения	чение	63	100	160	250 *	
Повторяющееся импульсное напряжение обратное / в закрытом состоянии (не более), В	V _{DRM} /V _{RRM}		1200			
Линейное напряжение (ср.кв.значение), В	V _{O(RMS)}		~ 100	430		
Выходной ток (среднее значение), (не более), А	I _{O (AV)}	63	100	160	250	
Ударный ток в открытом состоянии, t=10 мс (не более), А	I _{TSM}	300	600	1200	1600	
Повторяющийся импульсный ток в закрытом состоянии / обратный ток (не более), мА	I _{DRM} / I _{RRM}	2				
Импульсное напряжение в открытом состоянии при I= $I_{O\left(AV\right)}$ (не более), В	V _{TM}		1,65			
Критическая скорость нарастания тока в открытом состоянии (не более), А/мкс	(di _T /dt) _{crit}		1:	50		
Критическая скорость нарастания напряжения в закрытом состоянии (не более), В/мкс	$(\mathrm{d} u_{\mathrm{d}}/\mathrm{d} t)_{\mathrm{crit}}$		10	00		
Тепловое сопротивление переход-основание каждого тиристора (не более), °С/Вт	R _{thjc t}	1,3 0,6 0,4 0,2			0,2	
Ток срабатывания защиты (типовой), А	I _{CP}	63 100 160 250				
Температура перехода (не более), °С	TJ	125				
Электрическая прочность изоляции между силовой схемой и корпусом (DC, 1 мин), В	VISOL		4000			

Назначение выводов модулей можно увидеть в таблице 4.2 Остальную информацию по этому источнику питания можно увидеть в приложение 2.

№ вывода	Обозначение	Назначение
1	Упр.общ.	
2	+Упр	тыводы цепи управления (регулировки угла проводимости тиристоров)
5	Общ.	
6	+5 B	тыводы цени питания схемы управления
7	ДТа	Вход датчика тока фазы А
8	ДТв	Вход датчика тока фазы В (незадействован для MO30.1)
9	ДТс	Вход датчика тока фазы С
11	СТк	Вывод коллектора транзистора-формирователя сигнала статуса
12	СТэ	Вывод эмиттера транзистора-формирователя сигнала статуса
Силовые	+, -	Выводы подключения нагрузки, «+» и «-» соот.
выводы	Фа, Фв, Фс	Входы фазы А, В, С соот. силовой сети переменного тока
CROTOTHOTH	Работа	Светодиод зелёного цвета индикации напряжения питания схемы управления
Светодиоды	Перегрузка	Светодиод красного цвета индикации токовой перегрузки силовой цепи

Таблица 4.2 Назначение модулей.

4.2 Выбор коммутирующего и силового тиристоров

Выбор тиристорного модуля проходил по следующим параметрам:

1)Время выключения тиристора должно быть не более 80мкС

2)Падение напряжение на тиристор не должно превышать 1600В

3) Максимальный ток, проходимый через тиристор не должен превышать 300А.

Приняв во внимание все вышеперечисленные параметры, выбрал тиристорный модуль: SKKT 56/16E с техническими данными, показанными на рисунке 4.6.

V _{RSM}	V _{RRM}	(dv/	I _{TRMS}	ITRMS (maximum value for continuous operation)					
	V _{DRM}	dt) _{cr}		95	5 A				
				I _{TAV} (sin. 180	; T _{case} = 74°C)				
V	V	V/µs		60 A					
500	400	500	-	-	SKKH 56/04 D	-			
700	600	500	SKKT 56/06 D	SKKT 57/06 D	SKKH 56/06 D	SKKH 57/06 D			
900	800	500	SKKT 56/08 D	SKKT 57/08 D ¹⁾	SKKH 56/08 D	SKKH 57/08 D			
1300	1200	1000	SKKT 56/12 E	SKKT 57/12 E ¹⁾	SKKH 56/12 E	SKKH 57/12 E			
1500	1400	1000	SKKT 56/14 E	SKKT 57/14 E ¹⁾	SKKH 56/14 E	SKKH 57/14 E			
1700	1600	1000	SKKT 56/16 E	SKKT 57/16 E ¹⁾	SKKH 56/16 E	SKKH 57/16 E			
1900	1800	1000	SKKT 56/18 E	SKKT 57/18 E ¹⁾	SKKH 56/18 E	SKKH 57/18 E			
2100	2000	1000	SKKT 56/20 E	SKKT 57/20 E ¹⁾	-	SKKH 57/20 E			
2300	2200	1000	SKKT 56/22 E	SKKT 57/22 E ¹⁾	-	SKKH 57/22 E			

Рисунок 4.6 Параметры тиристорного модуля SKKT 57.

Остальную информацию по этому модулю можно увидеть в приложение 1.

4.3Предохранители перед тиристорами.

Предохранители - это коммутирующие электротехнические устройства, используемые для того, чтобы защитить электрическую сеть от сверхтоков и токов короткого замыкания. Принцип действия предохранителей основан на разрушении специально предназначенных для этого токоведущих частей (плавких вставок) внутри самого устройства при протекании по ним тока, величина превышает определенное значение. Подобрали которого ограничитель по току для силовых тиристорных модулей: SKKT 57/16E, подобранных ранее в пункте 4.2. Ограничитель выбирал по параметру тиристора, называемый $i^2 t$ минимальное значение которое равно 8000 при температуре $T_{vj} = 125^{\circ}$ должен срабатывать за менее 10мс, чтобы тиристор не сгорел(приложение 2).[20]

Для силовых тиристоров подбирал по среднему току, рассчитанному по формулам 4.1, 4.2

$$i_{\max 1} = \frac{U_1}{R_{\mu 1}} = \frac{800}{12} = 66,7A \tag{4.1}$$

$$i_{\max 2} = \frac{U_2}{R_{\mu 2}} = \frac{300}{4.2} = 71,4A \tag{4.2}$$

По данным параметрам подобрал быстродействующий ограничитель под названием: Bussmann BS88 80FE, этот ограничитель рассчитан на максимальный ток 80A. Основные параметры показаны на рисунке 4.8, время срабатывания показано на рисунке 4.9.

Чтобы рассчитать для коммутирующих тиристоров предохранители, промоделировал схему при максимальной задаваемой частоте 1000Гц. Средний ток первого и второго коммутирующего тиристора показаны на рисунке 4.7.

Рисунок 4.7 – Средний ток на Vsk1 и Vsk2.

По рисунку 4.7 средний квадратичный ток равен 110А для первого и второго коммутирующего тиристора.

Для коммутирующих тиристоров добрал предохранитель под названием Bussmann BS88 120FEE, рассчитанный на среднеквадратичный ток равный $I_{rms} = 120A$. Основные параметры показаны на рисунке 4.8. Време

	-		Electrical	Characteri	stics	
		Rated		It (A ² Sec)	
Catalog		Current		Clearing	Clearing	Watts
Numbers	Туре	RMS-Amps	Pre-arc	at 415V	at 660V	Loss
6CT		6	1.8	8.5	12	2
10CT		10	7	30	48	3
12CT	CT	12	10	40	65	3
16CT		16	16	66	110	7
20CT		20	32	150	220	7
25ET		25	25	150	250	7
32ET		32	32	190	350	11
35ET		35	52	310	500	11
40ET	ET	40	103	600	900	9
45ET	EI	45	103	680	1100	11
56ET		56	135	950	1500	14
63ET		63	171	1200	2000	16
80ET		80	360	2500	4000	18
35FE		35	33	130	200	9
40FE		40	52	180	300	9
45FE		45	76	270	450	11
50FE		50	103	380	600	11
63FE	FE	63	135	480	750	12
71FE		71	210	600	950	17
80FE		80	250	900	1500	20
90FE		90	360	1300	2100	20
100FE		100	470	1800	2800	23
90EET		90	490	3000	4500	19
110EET	EET	110	600	4000	6500	27
140EET	EET	140	1050	7000	12000	35
160EET		160	1500	10000	17000	39
100FEE		100	400	1600	2400	24
120FEE		120	540	1900	3100	32
140FEE	FEE	140	850	2500	3800	36
160FEE	FEE	160	1000	3700	5700	46
180FEE		180	1400	5300	8400	46
200FEE		200	1900	7100	11400	52

Catalog Numbers

Рисунок 4.8 - Основные параметры ограничителя по току.

По рисунку 4.7 видно то, что данные быстродействующий ограничители по току, имеют максимальный допустимый ток 80А,120А при коэффициенте $i^2t = 1500,3100$

По характеристикам, показанным на рисунках 1.17,1.18, выбранный предохранитель: Bussmann BS88 100FE, подходит по таким параметрам, как максимальный допустимый ток, максимальное время срабатывания предохранителя, максимальное допустимое напряжение на предохранителе, к тиристору SKKT 57/16E, остальные параметры данного предохранителя можно посмотреть в приложение 3.

Рисунок 4.9 – Временные характеристики ограничителя. 56

4.4Выбор коммутирующего конденсатора.

Выбор коммутирующего конденсатора проходил по следующим параметрам: максимальная частота $f = 1000\Gamma \mu$, максимальное допустимое напряжение с запасом 100В $U_c = 2100B$ и ёмкость конденсатора $C = 10 M \kappa \Phi$.

По выше описанным параметрам был подобран мощный плёночный конденсатор фирмы TDK, под названием B25834D2106K4, имеющий параметры показанные на рисунке 4.10.

C _R ¹⁾	I _{max}	î	I _s	R _S 20 ℃	L _{self}	$\begin{array}{l} \text{Dimensions} \\ \text{d} \times \text{I} \end{array}$	Fig.	Appr. weight	Ordering code	
μF	Α	Α	Α	mΩ	nH	mm		g		
$V_{\rm B} = AC 1400 V$ $\hat{V} = 1800 V$ $V_{\rm TT} = AC 100 V$									1800 V, 10 s	
	1	1		$V_s = 2$	400 \	/	V	TC = AC	3600 V, TU S	
4.7	60	470	1200	9.3	150	64.2 × 176	1	680	B25834-D0475-K004	
6.8	60	680	1700	6.6	150	64.2 × 176	1	680	B25834-D0685-K004	
10	80	1000	2500	5.2	150	79.2 × 176	1	1000	B25834-D0106-K004	
15	80	1500	3800	3.8	150	89.3 × 176	1	1300	B25834-D0156-K004	
22	80	2200	5500	2.9	150	99.3 × 176	1	1600	B25834-D0226-K004	
V- - A	$\hat{v} = 2100 V$ $\hat{v} = 2100 V$ $V_{TT} = AC 2100 V, 10 s$									
*R - A	0 1700	•		$v_s = 2$	900 \	/	V _{TC} = AC 4000 V, 10 s			
4.7	60	560	1400	13.0	220	64.2 × 248	1	960	B25834-D1475-K004	
6.8	60	820	2000	9.0	220	64.2 × 248	1	960	B25834-D1685-K004	
10	80	1200	3000	7.0	220	79.2 × 248	1	1500	B25834-D1106-K004	
15	80	1800	4500	5.3	220	89.3 × 248	1	1900	B25834-D1156-K004	
22	80	2600	6600	3.9	220	99.3 × 248	1	2300	B25834-D1226-K004	
V - A	C 2100	v		ŷ = 2	600 V		V	TT = AC	2600 V, 10 s	
V _R = A	6 2100	v		$v_s = 3$	8600 \	/	V	$T_{TC} = AC$	4800 V, 10 s	
3.3	60	530	1300	13.0	220	64.2 × 248	1	960	B25834-D2335-K004	
4.7	60	750	1900	9.4	220	64.2 × 248	1	960	B25834-D2475-K004	
6.8	80	1100	2700	7.4	220	79.2 × 248	1	1500	B25834-D2685-K004	
10	80	1600	4000	5.4	220	89.3 × 248	1	1900	B25834-D2106-K004	
15	80	2400	6000	4.1	220	99.3 × 248	1	2300	B25834-D2156-K004	

Characteristics and ordering codes

Рисунок 4.10 – Основные характеристики конденсатора

4.5Выбор обратных диодов для силовых тиристоров.

Выбор обратных диодов проходил по параметрам тока и напряжения на них, по ранее рассчитанным параметрам были подобраны высоковольтные диоды марки VUB135-22NO1, с характеристиками: $U_{RRM} = 2200B, I_{DAV} = 150A$. Основные характеристики диодов показаны на рисунке 4.11

Rectifier				E F	Rating	s	
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocking	voltage	$T_{VJ} = 25^{\circ}C$			2300	۷
VRRM	max. repetitive reverse blocking volt	age	$T_{VJ} = 25^{\circ}C$			2200	۷
I _R	reverse current	V _R = 2200 V	$T_{VJ} = 25^{\circ}C$			100	μA
		V _R = 2200 V	$T_{VJ} = 150^{\circ}C$			2	mA
VF	forward voltage drop	I _F = 50 A	$T_{VJ} = 25^{\circ}C$			1.20	۷
		I _F = 150 A				1.68	v
		I _F = 50 A	T _{vJ} = 125°C			1.13	V
		I _F = 150 A				1.74	v
DAV	bridge output current	T _c = 105°C	T _{vJ} = 150°C			150	Α
		rectangular d = 1/3					
V _{F0}	threshold voltage		T _{vJ} = 150°C			0.79	V
r _F	slope resistance } for power loss	calculation only				6.4	mΩ
R _{thJC}	thermal resistance junction to case					0.5	K/W
R _{thCH}	thermal resistance case to heatsink				0.1		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			250	W
FSM	max. forward surge current	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			1.10	kA
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			1.19	kA
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			935	Α
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			1.01	kA
l²t	value for fusing	t = 10 ms; (50 Hz), sine	$T_{VJ} = 45^{\circ}C$			6.05	kA ² s
		t = 8,3 ms; (60 Hz), sine	$V_{R} = 0 V$			5.89	kA ² s
		t = 10 ms; (50 Hz), sine	T _{vJ} = 150°C			4.37	kA ² s
		t = 8,3 ms; (60 Hz), sine	$V_R = 0 V$			4.25	kA²s
C	junction capacitance	V _R = 400 V; f = 1 MHz	$T_{VJ} = 25^{\circ}C$		37		pF

Рисунок 4.11 – Основные характеристики диодов.

4.6Выбор элементов для L-С фильтра после выпрямителя.

1)Выбор фильтра для первого источника питания.

Первый источник питания рассчитан на 800В, поэтому напряжение на конденсаторе должно быть не больше 1000В. Конденсатор должен иметь ёмкость 2-3 мкФ.

По вышеописанным параметрам был подобран конденсатор: КЕМЕТ SM36B225K102A, имеющий ёмкость 2,2мкФ и рассчитанный на напряжение 1000В. Более подробные параметры показаны на рисунке 4.12.

Style/Size				SI	//36				
Dir	Dimensions – inches (mm)								
Length		1.350 ± 0.030 (33.00 ± 0.76)							
Width				0.600	± 0.03	0			
wiath				(15.20) ± 0.7	6)			
Thickness Maximum				0.	220 .59)				
Lead Width				0.	500				
Maximum	<u> </u>			(1	2.7)	0			
Lead Length				(2.54	± 0.02)			
Lead Length "J"				0.100	± 0.02 ± 0.51	20			
	X	7R Di	ielect	tric					
Voltage Code	501	102	202	302	402	502	752	103	
Voltage DC	500	1 K	2 K	3 K	4 K	5 K	7.5 K	10 K	Capacitance Tolerance
Capacitance			Cap	pacita	ance	Code			
1,500 pF								152	
1,800 pF 2,200 pF								182	
2,700 pF								272	
3,300 pF								332	
3,900 pF	172	472	472	472	472	472	472	392	
5,600 pF	562	562	562	562	562	562	562	562	
6,800 pF	682	682	682	682	682	682	682	682	
8,200 pF	822	822	822	822	822	822	822	822	
0.012 µF	123	123	123	123	123	123	123	103	
0.015 µF	153	153	153	153	153	153	153		
0.018 µF	183	183	183	183	183	183	183		
0.022 µF	273	273	273	273	273	273	223		
0.033 µF	333	333	333	333	333	333			
0.039 µF	393	393	393	393	393				
0.056 µF	563	473 563	473 563	563	563				
0.068 µF	683	683	683	683	683				
0.082 µF	823	823	823	823					K M D 7
0.12 µF	124	124	124	124					K, M, F, Z
0.15 µF	154	154	154	154					
0.18 µF	184	184	184						
0.27 µF	274	274	274						
0.33 µF	334	334	334						
0.39 µF	394	394							
0.56 µF	564	564							
0.68 µF	684	684							
0.82 µF	824	824 105							
1.2 µF	125	125							
1.5 μF	155	155							
1.8 µF	185	185							
2.7 µF	275	220							
2.9 µF	295								
3.3 µF 3 9 µF	335								
4.7 µF	475								
5.6 µF	565								

Рисунок 4.12 – Параметры конденсатора КЕМЕТ SM36B225K102A4.

2) Выбор фильтра для второго источника питания.

Второй источник питания рассчитан на напряжение 300В, поэтому конденсатор выбираем, на напряжение, которое не должно превышать 400В, ёмкость конденсатора 100 мкФ.

По вышеназванным параметрам был подобран конденсатор: KEMET C44AJGR6100ZA0J. Технические параметры, показанные на рисунке 4.13.

Code	с	Un	к	Tgδ	x 10⁴	ESR Typ.	dv/dt	I _{RMS}	I _{PKR}	Ca	ise	Approx Weight
Code	μF	Vdc	°C/W	Max	Тур.	mΩ	V/µs	A	A	D	н	g
C44AFFP5150ZA0J	15	400	7.8	10	5	5	30	16	450	45	80	135
C44AFFP5200ZE0J	20	400	6.2	10	5	5	30	18	600	45	80	135
C44AFFP5220ZA0J	22	400	6.2	12	6	5	30	18	660	45	80	135
C44AFFP5250ZA0J	25	400	6.2	12	7	5	30	18	750	45	80	135
C44AFFP5300ZA0J	30	400	3.5	20	15	6	20	22	600	50	101	200
C44AFFP5400ZA0J	40	400	2.7	20	15	6	20	25	800	50	101	200
C44AFFP5500ZE0J	50	400	2.6	20	15	6	20	25	1000	50	101	200
C44AFGP5600ZA0J	60	400	2.6	25	15	6	20	25	1200	60	101	240
C44AFGP5750ZA0J	75	400	3.2	30	20	5	20	30	1500	60	101	240
C44AFGP6100ZG0J	100	400	4.0	30	20	4	15	32	1500	60	138	315
C44AFGP6130ZA0J	130	400	4.0	30	20	4	15	32	2000	65	138	360
C44AFGP6150ZA0J	150	400	4.0	40	30	4	15	32	2250	70	138	530
C44AFGP6200ZE0J	200	400	4.0	40	30	4	10	32	2000	76	138	740
C44AFGR6250ZA0J	250	400	4.0	40	30	4	10	32	2500	85	150	900
C44AFGR6300ZA0J	300	400	1.25	50	40	5	20	50	6000	85	185	1080
C44AFGR6330ZA0J	330	400	1.25	50	40	5	20	50	6000	85	185	1150
C44AHFP5100ZA0J	10	600	7.8	10	5	5	40	16	400	45	80	135
C44AHFP5150ZA0J	15	600	7.7	10	5	4	40	18	600	45	105	160
C44AHFP5200ZB0J	20	600	5.2	15	6	4	30	22	600	45	101	160
C44AHFP5220ZA0J	22	600	5.3	15	6	3	30	25	660	50	101	200
C44AHFP5250ZB0J	25	600	3.5	20	15	6	20	22	600	50	101	200
C44AHFP5300ZC0J	30	600	10.3	15	7	2	30	25	900	50	101	200
C44AHGP5330ZA0J	33	600	8.0	15	7	2	30	25	990	55	101	235
C44AHGP5400ZB0J	40	600	8.0	10	6	2	30	25	1200	60	101	240
C44AHGP5500ZG0J	50	600	3.2	15	10	5	20	25	1000	55	138	300
C44AHGP5600ZB0J	60	600	3.1	15	8	5	20	32	1200	60	138	315
C44AHGP5700ZA0J	70	600	3.2	25	15	5	20	32	1400	65	138	360
C44AHGP5750ZA0J	75	600	3.2	25	15	5	20	32	1500	65	138	360
C44AHGP5800ZA0J	80	600	3.2	25	15	5	20	32	1600	65	135	530
C44AHGP6100ZA0J	100	600	3.2	25	15	5	20	32	2000	76	135	625
C44AHGR6100ZB0J	100	600	1.25	15	10	5	30	50	3000	85	138	770

GENERAL CHARACTERISTICS

Рисунок 4.13 – Основные параметры конденсатора КЕМЕТ

C44AJGR6100ZA0J.

Дроссели на 154мкГн и 156мкГн, рассчитанные на ток 100А к первому и второму фильтру не были найдены, в просмотренных каталогах.

Заключение

Выполнив данную работу, могу отметить, что мною была рассчитана и промоделирована в лицензированной программе Matlab Simulink схема данного источника тока. Так же я выбрал структурную схему, рассчитал возможные перенапряжения на некоторых элементах. Мною было предложено решение данной проблема с помощью введение в схему демпфирующих и выравнивающих цепочек. Подобрал и рассчитал источник питания для преобразователя.

Список используемой литературы

1. Белоус А. И. Полупроводниковая силовая электроника [Электронный ресурс] : [учеб. пособие] / А. И. Белоус, С. А. Ефименко, А. С. Турцевич. - Москва : Техносфера, 2013. - 228 с. - (Мир электроники). - ISBN 978-5-94836-367-7.

2. Онищенко Г. Б. Силовая электроника : силовые полупроводниковые преобразователи для электропривода и электроснабжения : учеб. пособие для бакалавров и магистров / Г. Б. Онищенко, О. М. Соснин. - Москва : ИНФРА-М, 2016. - 121 с. : ил. - (Высшее образование. Бакалавриат). - Библиогр.: с. 86. - Прил.: с. 87-119. - ISBN 978-5-16-011120-9 : 278-09.

3. Фролов В. Я. .Устройства силовой электроники и преобразовательной техники с разомкнутыми и замкнутыми системами управления в среде Matlab-Simulink [Электронный ресурс] : учеб. пособие / В. Я. Фролов, В. В. Смородинов. - Санкт-Петербург : Лань, 2017. - 332 с. : ил. - (Учебники для вузов. Специальная литература). - ISBN 978-5-8114-2583-9.

4. Миленина С. А. Электротехника, электроника и схемотехника : учеб. и практикум для акад. бакалавриата / С. А. Миленина ; под ред. Н. К. Миленина. - Гриф УМО. - Москва : Юрайт, 2016. - 398, [1] с. : ил. - (Бакалавр. Академический курс). - Библиогр.: с. 3398-399. - ISBN 978-5-9916-7353-2 (ч. 1).
- ISBN 978-5-9916-7354-9 : 952-15.5.

Водовозов А. М. Основы электроники [Электронный ресурс] : учеб.
 пособие / А. М. Водовозов. - Москва : Вологда : Инфра-Инженерия, 2016. - 130
 с. : ил. - ISBN 978-5-9729-0137-1.

6. Singh, A., Britten, A.C., Stephen R., et al.: 'Optimised conductor and conductor bundle solutions for long distance HVDC transmission'. IEEE Power Engineering Society Conference and Exposition, Durban, South Africa, 2015, pp. 403–409.

7. D. A. Neamen, Microelectronics: Circuit Analysis and Design, 4th ed, Singapore McGraw-Hill, Inc., 2015.

63

8. BinWu,High-power converters and AC Drives. Piscataway, NJ: Wiley-IEEE Press,2016.

9. H. Li, H. M. Rein, T. Suttorp, and J. Böck, "Fully integrated VCOswith powerful output buffer for 77 GHz automotive radar systems and applications around 100 GHz," IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1650–1658, Oct. 2014.

10. M. A. Oakley, U. S. Raghunathan, B. R. Wier, P. S. Chakraborty and J. D. Cressler, "Large-signal reliability analysis of SiGe HBT Cascode Driver Amplifiers," IEEE Trans. on Electron Devices, vol. 62, no. 5, pp. 1383-1389, May 2015.

11. Тараканов В. П. Информационно-измерительная техника и электроника. Электрические измерения в системах электроснабжения : учеб.метод. пособие / В. П. Тараканов, М. С. Макеев ; ТГУ ; Ин-т энергетики и электротехники ; каф. "Электроснабжение и электротехника". - ТГУ. - Тольятти : ТГУ, 2013. - 87 с. : ил. - Библиогр.: с. 83. - Прил.: с. 84-86. - 41-28.

12. Ощепков А. Ю. Системы автоматического управления : теория, применение, моделирование в МАТLAB : учеб. пособие / А. Ю. Ощепков. - Изд. 2-е, испр. и доп. - Санкт-Петербург ; Москва ; Краснодар : Лань, 2013. - 208 с. : ил. - (Учебники для вузов) (Специальная литература). - Библиогр.: с. 205. - Прил.: с. 188-204. - ISBN 978-5-8114-1471-0 : 590-04. - 536-40.

Моделирование систем : учеб. пособие для студентов вузов, обуч.
 по направлению "Автоматизация технолог. процессов и пр-в" / И. А. Елизаров
 [и др.]. - Гриф УМО. - Старый Оскол : ТНТ, 2013. - 135 с. : ил. - Библиогр.: с.
 135. - ISBN 978-5-94178-350-2 : 257-27.

14. Герман-Галкин С. Г. Виртуальные лаборатории полупроводниковых систем в среде MATLAB-SIMULINK : учебник / С. Г. Герман-Галкин. - Санкт-Петербург : Лань, 2013. - 442 с. : ил. - Библиогр.: с. 438-440. - ISBN 978-5-8114-1520-5 : 706-00.

15. Веремей Е. И. Линейные системы с обратной связью : учеб. пособие / Е. И. Веремей. - Гриф УМО. - Санкт-Петербург : Лань, 2013. - 447 с. : ил. - (Учебники для вузов. Специальная литература). - Библиогр.: с. 443-445. - Прил.:

c. 397-442. - ISBN 978-5-8114-1412-3 : 588-50.

16. Смирнов Ю. А. Физические основы электроники : учеб. пособие / Ю. А. Смирнов, С. В. Соколов, Е. В. Титов. - Изд. 2-е, испр. - Санкт-Петербург ; Москва ; Краснодар : Лань, 2013. - 560 с. : ил. - (Учебники для вузов) (Специальная литература). - Библиогр.: с. 558-559. - ISBN 978-5-8114-1369-0 : 1100-00.

17. Денисов В. А. Теория и переходные процессы электромагнитных устройств и электромеханических преобразователей энергии [Электронный ресурс] : электрон. учеб. пособие / В. А. Денисов, М. Н. Третьякова ; ТГУ ; Ин-т энергетики и электротехники ; каф. "Электрооборудование автомобилей и электромеханика". - Тольятти : ТГУ, 2014. - 108 с. : ил. - Библиогр.: с. 108. - ISBN 978-5-8259-0814-4 : 1-00.

18. Плещинская И. Е. Интерактивные системы Scilab, Matlab, Mathcad [Электронный ресурс] : учеб. пособие / И. Е. Плещинская [и др.] ; Казанский нац. исслед. технол. ун-т. - Казань : КНИТУ, 2014. - 195 с. : ил. - ISBN 978-5-7882-1715-4.

19. Чеканов А. Н. Расчеты и обеспечение надежности электронной аппаратуры : учеб. пособие для студентов вузов, обучающихся по специальностям "Проектирование и технология радиоэлектронных средств" и "Проектирование и технология электронно-вычислительных средств" / А. Н. Чеканов. - Москва : КНОРУС, 2014. - 438 с. : ил. - Библиогр.: с. 435-437. - ISBN 978-5-406-03673-0 : 504-00.

20. Баканов Г. Ф. Основы конструирования и технологии радиоэлектронных средств : учеб. пособие для студентов вузов, обуч. по направлению подготовки "Радиотехника" / Г. Ф. Баканов, С. С. Соколов ; под ред. И. Г. Мироненко. - 2-е изд., испр. и доп. ; гриф УМО. - Москва : Академия, 2014. - 366, [1] с. : ил. - (Высшее образование. Бакалавриат). - Библиогр.: с. 361-262. - ISBN 978-5-4468-0441-2 : 765-45.

65

Приложение 1

SKKT 57, SKKH 57, SKKT 57B

			6	a g
A	Luna	EMIKRON EMIPACK®1	12-11-2-4	96 ¹⁰
3	s	X81 106 / 76 8	/	

Thyristor / Diode Modules

VRSM	VRRM [,] VDRM	I _{TRMS} – 95 A (ma	55 A (cip 180: T = 1		(II)
900	800	TAV -	SKKT 57B08E		085
1300	1200	SKKT 57/12E	SKKT 57B12E	SKKH 57/	12E
1500	1400	SKKT 57/14E	SKKT 57B14E	SKKH 57/	145
1700	1600	SKKT 57/16E	SKKT 57B16E	SKKH 57/	165
1900	1800	SKKT 57/18E	SKKT 57B18E	SKKH 57/	18E
1000	1000	Oraci on ioe	SIGN STBIE	Sidiron	ICL
Symbol	Conditions		Valu	es	Units
TAV	sin. 180; T _c = 85 (10	0) °C;	50 (3	5)	A
I _D	P3/180; T _a = 45 °C;	B2 / B6	57/6	88	A
	P3/180F; T _a = 35 °C	; B2 / B6	100 /1	30	A
I RMS	P3/180F; T _a = 35 °C	; W1 / W3	130 / 3 >	: 100	A
I _{TSM}	T _{vj} = 25 °C; 10 ms		150)	Α
	T _{vj} = 125 °C; 10 ms	5	125)	A
i²t	$T_{vj} = 25 \text{ °C}; 8,3 \dots 10$) ms	1100	0	A²s
	T _{vj} = 125 °C; 8,3 1	10 ms	800)	A²s
V _T	$T_{vj} = 25 \text{ °C}; I_T = 200$	A	max. 1	,65	V
V _{T(TO)}	T _{vj} = 125 °C		max. (),9	
r _T	T _{vj} = 125 °C		max. 3	3,5	mΩ
IDD; IRD	T _{vj} = 125 °C; V _{RD} = V	V _{RRM} ; V _{DD} = V _{DRM}	max.	15	mA
^t gd	T _{vj} = 25 °C; I _G = 1 A;	di _G /dt = 1 A/μs	1		μs
t _{gr}	$V_{\rm D} = 0,67 * V_{\rm DRM}$		2		μs
(di/dt) _{cr}	T _{vj} = 125 °C		max. 1	50	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C		max. 1	000	V/µs
t _q	T _{vj} = 125 °C ,		80		μs
Н	T _{vj} = 25 °C; typ. / ma	IX.	150 / 2	250	mA
IL.	T _{vj} = 25 °C; R _G = 33	Ω; typ. / max.	300/6	500	mA
V _{GT}	T _{vj} = 25 °C; d.c.		min.	3	
GT	$T_{vj} = 25 ^{\circ}C; d.c.$		min. 1	50	mA
V _{GD}	$T_{vj} = 125 ^{\circ}C; d.c.$		max. 0	,25	
GD	T _{vj} = 125 °C; d.c.		max.	6	MA
R _{th(j-c)}	cont.; per thyristor / j	per module	0,5770	0,29	K/W
R _{th(j-c)}	sin. 180; per thyristo	r / per module	0,670	1,3	KIW
Rth(j-c)	nec. 120; per inyristo	r / per module	0,0470	0,32	K/W
Tth(c-s)	per invitator / per inc	June	10,270	, I 105	00
'vj T			- 40 +	125	°C
'stg	a.c. 50 Hz: rm c : 1	e / 1 min	3600/3	125	Va
V isol M	to beatsink	57 111111.	5+15	o/_1}	Nm
M.	to terminals		3+15	%	Nm
a			5*9	81	m/s ²
m	approx.		95	-	a
Case	SKKT		A 46	<u>.</u>	3
	SKKT B		A 48	3	
	SKKH			7	
			A4	8	

SKKT 57 SKKH 57

SEMIPACK[®] 1

SKKT 57B

Features

- Heat transfer through aluminium oxide ceramic isolated metal baseplate
- Hard soldered jounts for high reliability
- UL recognized, file no. E 63 532

Typical Applications*

- DC motor control
- (e. g. for machine tools)AC motor soft starters
- Temperature control
- (e. g. for ovens, chemical processes)
- Professional light dimming (studios, theaters)
- 1) See the assembly instructions

	₽ ۲ ۲	
SKKT	SKKH	

05-04-2011 GIL

© by SEMIKRON

05-04-2011 GIL

2

© by SEMIKRON

05-04-2011 GIL

© by SEMIKRON

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

05-04-2011 GIL © by SEMIKRON

4

19.04.2018

МО30-63(100,160,200,250)-12 Изм.12

Сделано в России Предл.№42-18

АО "ЭЛЕКТРУМ АВ" модуль трехфазного регулируемого выпрямителя мозо этикетка

Модуль трехфазного регулируемого выпрямителя типа MO30 (в дальнейшем – модуль) предназначен для формирования из трехфазного напряжения сети 50 Гц выпрямленного пульсирующего напряжения, регулируемого фазовым методом. Величина напряжения регулируется подачей управляющего сигнала стандартного вида (0÷5 B, 0÷10 B, 4÷20 мA, 0÷5 мA, 0÷20 мA), изменение которого от минимума до максимума меняет величину средне-квадратичного значения выпрямленного напряжения в диапазоне от 0 до 100%. В модуле обеспечена гальваническая развязка цепей управления и силовых цепей, а также имеется встроенная система защиты от перегрузки.

Габаритные и присоединительные размеры модуля приведены на рисунке 1.

Неуказанные предельные отклонения присоединительных размеров ±0,5 мм Рисунок 1 – Габаритные и присоединительные размеры модуля

Таблица 1 – Таблица исполнений габаритных чертежей

Обозначение изделия	Рис.
MO30-X-X-63-12	1a
MO30-X-X-100-12	16
MO30-X-X-160-12	16
MO30-X-X-200-12	1в
MO30-X-X-250-12	1в

В модуле применен фазовый метод регулирования выпрямленного напряжения, при котором изменение среднеквадратичного значения выпрямленного напряжения на нагрузке производится изменением длительности открытого состояния тиристоров в течение полупериода. При достижении средне-квадратичного значения тока в нагрузке Iн = Io модуль отключается. Загорается индикатор «Перегрузка» (красный светодиод), происходит открытие статусного транзистора. Через 300 мс защита снимается. Если аварийная ситуация не устранена, выше описанный процесс продолжается до тех пор, пока не будет устранена неисправность. В модуле имеется схема плавного пуска по включению питания и перегрузке, предназначенная для ограничения начального пускового тока.

Принцип действия и функциональное назначение узлов МО30 показаны на рисунке 2.

Рисунок 2 – Функциональная схема модуля

Определитель перехода напряжения сети через нуль (ОПНН) формирует импульсы в момент перехода напряжения сети через нуль, которые синхронизируют генератор пилообразного напряжения (ГПН). В компараторе (К) сравнивается напряжение ГПН и управляющего сигнала Uynp, получаемого со схемы преобразователя сигнала управления. Когда напряжение ГПН достигает величины Uynp, вырабатывается импульс включения тиристоров. Изменяя величину управляющего сигнала, тем самым изменяем момент равенства напряжения ГПН и Uynp и, соответственно, фазу включения тиристоров. Этим самым и достигается регулирование угла открытия тиристора и, соответственно, величина ср. кв. значения выходного напряжения на нагрузке

Функциональное назначение выводов отражено в таблице 2.

Габлица 2 – Функциональное назначение вы	водов модуля
--	--------------

№ вывода	Обозначение	Назначение							
	Фа	Вход фазы А силовой сети переменного тока							
	Фв	Вход фазы В силовой сети переменного тока							
2	Фс	Вход фазы С силовой сети переменного тока							
1	Упр.общ	Dunam unamenanta							
2	+Упр	сыводы цени управления							
5	Общ (-5 В)								
6	+5 B	Быводы цени питания							
7	ДТа								
8	ДТв	Входы датчиков тока							
9	ДТс								
11	СТк	Вывод коллектора формирователя сигнала статуса							
12	СТэ	Вывод эмиттера формирователя сигнала статуса							

Преобразователь сигнала управления, в зависимости от варианта исполнения модуля, производит преобразование управляющего сигнала пяти видов (0...5 В; 0...10 В; 0...5 мА; 0...20мА; 4...20 мА) в сигнал «Uynp» для двух типов характеристики управления. Зависимость угла проводимости тиристоров (времени, в течение которого тиристоры проводят ток) от относительной величины управляющего сигнала показана на рисунке 3.

Рисунок 3 - Типы характеристик управления

Основные технические данные и характеристики цепей управления отражены в таблице 3. Основные технические данные и характеристики силовой цепи отражены в таблице 4.

Таблица 3 – Основные технические данные и характеристики цепей управления

Наименование и	Ед.	Обозначение видов и типов цепей управления										
обозначение параметра	ИЗМ.	A-1	A-2	A-3	A-4	A-5	Б-1	Б-2	Б-3	Б-4	Б-5	примечание
		C	сновны	ые элект	рическ	ие пара	метры	0	54			
Ток потребления, Іпот, мА 100							Uпит = 5 B					
2 Значение сигнала управле-	в	5±0,5	10 ± 1	14	340	3 9 3	0÷0,5	0÷1	-	-	380	
ния, соответствующее мини- мальному ср. кв. значению напряжения на нагрузке	мА	25	3 <u>3</u>	20±2	5±0,5	20±2	8 <u>-2</u> 1	-	4±0,4	0÷0,5	0÷2	
3 Значение сигнала управле-	В	0÷0,5	0÷1	i.	-	-	5±0,5	10±1			-	
ния, соответствующее макси- мальному ср. кв. значению напряжения на нагрузке	мА	R	U.	4±0,4	0÷0,5	0÷2	1.51	E.	20±2	5±0,5	20±2	
4 Сопротивление входной цепи сигнала управления, Rвх	кОм	≥10	≥ 10	-	-	7 1 3	≥10	≥ 10	-	-	2	
Продолжение таблицы 3												

Наименование и		Ед.		Обозначение видов и типов цепей управления									
обозначение параметра		ИЗМ.	A-1	A-2	A-3	A-4	A-5	Б-1	Б-2	Б-3	Б-4	Б-5	Примечание
5 Напряжение изоляции по постоянному току (между цепями управления и силовы- ми цепями)		В	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	1 мин
Предельно допустимые значения основных параметров													
1 Напряжение	не менее	р	4,5										
питания, Uпит	не более	ы	6										
2 Максимальное напряжение между выводами «СТю», «СТэ»		В	50										
З Минимальный ток нагрузки статусного выхода «СТю», «СТэ»		мА	20										

Таблица 4 – Основные технические данные и характеристики силовых цепей

Наименование и обозначение параметра*	Ед.		Примечание							
		63A	100A	160A	200A	250A	Tiprivic sature			
Основные эле	жтрические параметры									
1 Импульсное прямое напряжение вентиля (диода										
/тиристора), U _{FM} / U _{TM} , не более	В	63	100	160	200	250				
при I ₀ , А		- 05	100	100	200	2.50	15			
2 Обратный ток вентиля I _R , не более	мА		$\begin{array}{c} U_0 \!\!=\! \pm 1200 \\ B \end{array}$							
З Повторяющееся/ неповторяющееся импульсное обратное напряжение вентиля, U _{REM} / U _{DRM} , не более	В									
4 Электрическая прочность изоляции по постоянному току между радиатором и силовыми выводами U _{ISOL} , не менее	в									
5 Тепловое сопротивление переход-радиатор, Rth(j-c), не более	°C/Вт	1,3	0,6	0,4	0,3	0,2				
Предельно-допусти	мые реж	имы экс	плуатациі	1						
1 Максимальный средний выпрямленный ток, I ₀	A	63	100	160	200	250				
2 Минимальное линейное напряжение (ср. кв.), Uлин min	В			100						
3 Максимальное линейное напряжение (ср. кв.), Uлин тах	В			500						
4 Ударный прямой ток, I _{FSM} , не более	A	300	600	1200	1400	1600	T=125 °C			
5 Температура перехода, T _{VJ} **										
- не менее	°C			- 40						
- не более				+125						
* для всех видов и характеристик сигналов управления ** модули рассчитаны на работу в аппаратуре с применения	ем охлад	ителей, 1	поддержи	вающих .	температ	уру пере	хода в задан-			

ных пределах

Драгоценных металлов не содержится
Приложение 3

High Speed Fuses

British BS 88 — 690V: 6-710A

CT, ET, FE, EET, FEE, FM, FMM, MT, MMT

Specifications Description: BS 88 style stud-mount fuses. Dimensions: See dimensions illustrations. Ratings: Volts: - 690Vac/500Vdc

IR: - 200kA RMS Sym.

Agency Information: CE, Designed and tested to: BS 88 Part 4, IEC 269 Part 4, UL Recognized. MT and MMT — 350Vdc (IEC) rating. Consult Cooper Bussmann for UL Recognition status.

Electrical Characteristics

Total Clearing I²t

Amps: - 6-710A

The total clearing I²t at rated voltage and at power factor of 15% are given in the electrical characteristics. For other voltages, the clearing I²t is found by multiplying by correction factor, K, given as a function of applied working voltage, E_g, (rms).

Arc Voltage

This curve gives the peak arc voltage, U_L, which may appear across the fuse during its operation as a function of the applied working voltage, E_g , (rms) at a power factor of 15%.

Power Losses

Watts loss at rated current is given in the electrical characteristics. The curve allows the calculation of the power losses at load currents lower than the rated current. The correction factor, K_p , is given as a function of the RMS load current, lb, in % of the rated current.

uses

- Features and Benefits
- · Excellent cycling capability
- · Excellent DC performance
- · Low arc voltage and low energy let-through (I2t)
- Low watts loss

Typical Applications

- · DC common bus
- DC drives
- · Power converters/rectifiers
- Reduced voltage starters

For product data sheets, visit www.cooperbussmann.com/datasheets/ulcsa

191

High Speed Fuses

Bussmann

British BS 88 - 690V: 6-710A

Catalog Numbers

		Reted Bt (At Sec)				
Catalog Numbers	Туре	Current RIMS-Amps	Pre-arc	Clearing at 415V	Clearing at 660V	Watts Loss
6CT		6	1.8	8.5	12	2
10CT		10	7	30	48	3
12CT	CT	12	10	40	65	3
16CT		16	16	66	110	7
20CT		20	32	150	220	7
25ET		25	25	150	250	7
32ET		32	32	190	350	-11
35ET		35	52	310	500	11
40ET	FT	40	103	600	900	9
45ET		45	103	680	1100	11
56ET		56	135	950	1500	14
63ET		63	171	1200	2000	16
80ET		80	360	2500	4000	18
35FE		35	33	130	200	9
40FE		40	52	180	300	9
45FE		45	76	270	450	11
50FE	201212	50	103	380	600	11
63FE	FE	63	135	480	750	12
71FE		71	210	600	950	17
80FE		80	250	900	1500	20
90FE		90	360	1300	2100	20
100FE		100	470	1800	2800	23
90EET		90	490	3000	4500	19
110EET	EET	110	600	4000	6500	27
140EET	102203-004	140	1050	7000	12000	35
160EET	-	160	1500	10000	1/000	39
TOUFEE		100	400	1600	2400	24
120FEE		120	540	1900	3100	32
140FEE	FEE	140	4000	2500	3800	30
TOUFEE	2000 C	100	1400	5700	5/00	40
DOOFEE		100	1000	7100	11400	40
190EM		200	1400	7100	12500	40
200EM		200	2600	10500	18500	40
200F M		200	3700	14500	28500	44
250EM	EM	250	5200	20500	37500	48
280EM	1.00	280	7000	30500	55000	48
315EM		315	10000	40000	77000	55
350EM		350	15000	60000	105000	55
400EMM		400	10000	40000	72500	85
450EMM		450	15000	60000	105000	90
500EMM		500	20000	82000	150000	100
550EMM	FMM	550	30000	120000	215000	100
630EMM		630	45000	180000	310000	100
700EMM		700	60000	245000	420000	120
160MT		160	2400	15000	25000	26
180MT		180	3800	25000	38000	26
200MT		200	6000	40000	58000	27
250MT	MT	250	11500	80000	110000	32
280MT		280	16500	100000	150000	35
315MT		315	19000	125000	180000	42
355MT		355	22000	160000	200000	51
180MMT		180	1650	12000	18000	42
200MMT		200	2200	16000	23000	42
225MMT		225	3700	26000	40000	42
280MMT		280	6600	47000	70000	47
315MMT		315	8600	62000	91000	51
355MMT	MANAT	355	13500	97000	140000	54
400MMT	IVIIVI I	400	21000	150000	220000	60
450MMT		450	30000	220000	320000	57
500MMT		500	42000	300000	450000	64
560MMT		560	60000	430000	640000	64
630MMT		630	68500	500000	720000	86
710MMT		710	78000	600000	850000	105
Watts loss provided at rated current.						

CT 6-20, ET 25-80A: 690V

Time-Current Curve

 Note: FC, BT, 12ET, 15ET, 20ET, 65EET and 75EET are available for replacement purposes on existing equipment.
See accessories on page 195.

For product data sheets, visit www.cooperbussmann.com/datasheets/ulcsa

High Speed Fuses

British BS 88 - 690V: 6-710A

EET 90-160A, MT 160-355A: 690V

Time-Current Curve

MMT 180-710A: 690V

High Speed Fuses

Peak Let-Through Curve

For product data sheets, visit www.cooperbussmann.com/datasheets/ulcsa

193

High Speed Fuses

British BS 88 - 690V: 6-710A

FE 35-100A & FM 180-350A: 690V

Time-Current Curve

Peak Let-Through Curve

Curve

Data Sheet: 35785314

Data Sheet: 35785292

194

Peak Lee Through Guiner

For product data sheets, visit www.cooperbussmann.com/datasheets/ulcsa

FEE 100-200A & FMM 400-700A: 690V

Time-Current Curve

Peak Let-Through Curve

Purpose Construction Constru