# МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

# Институт математики, физики и информационных технологий (наименование института полностью) Кафедра «Прикладная математика и информатика» (наименование кафедры) 02.03.03 Математическое обеспечением и администрирование информационных систем (код и наименование направления подготовки, специальности) Технология программирование

# БАКАЛАВРСКАЯ РАБОТА

(направленность (профиль)/специализация)

на тему «Синтез нечеткой системы диагностики контактной сварки»

| Студент            | С.Р. Никитин                           |                  |  |
|--------------------|----------------------------------------|------------------|--|
| Drugon o myrmany   | (И.О. Фамилия)<br>D. С. Илтина в       | (личная подпись) |  |
| Руководитель       | В.С. Климов                            |                  |  |
|                    | (И.О. Фамилия)                         | (личная подпись) |  |
|                    |                                        |                  |  |
|                    |                                        |                  |  |
|                    |                                        |                  |  |
|                    |                                        |                  |  |
|                    |                                        |                  |  |
| _                  |                                        |                  |  |
| Допустить к защите | e                                      |                  |  |
|                    |                                        |                  |  |
| Заведующий кафедр  | ой к.т.н, доцент, А.В. Очеповский      |                  |  |
| 1 1                | (ученая степень, звание, И.О. Фамилия) | (личная подпись) |  |
| «»_                | r.                                     |                  |  |

#### **АННОТАЦИЯ**

Тема бакалаврской работы: «Синтез нечеткой системы диагностики контактной сварки».

В данной бакалаврской работе исследуются способы синтеза нечеткой системы диагностики контактной сварки. В исследовании рассматривается задача генерации базы нечетких правил на основе экспериментальных данных сварки. С помощью алгоритмов Mamdani и Larsen по полученной базе правил прогнозируется прочность сварных соединений. На основе полученных прогнозов делается вывод о качестве сварки. В работе исследуется точность работы предложенной нечеткой системы на основе реальных экспериментальных данных.

Структура бакалаврской работы представлена введением, тремя главами, заключением, списком литературы.

Во введении описывается актуальность проводимого исследования, формулируется цель и ставятся задачи, которые необходимо решить.

В первой главе проводится обзор методов интеллектуального анализа, применяемых для прогнозирования качества сварных соединений.

Во второй главе описывается математический аппарат нечетких систем управления и диагностики. Описан разработанный алгоритм формирования базы нечетких правил на основе экспериментальных данных сварки. Также описываются принятые решения по адаптации математического аппарата нечетких систем к решаемой в бакалаврской работе задаче.

В третьей главе приведены примеры использования предложенных подходов и описано разработанное программное обеспечение.

В заключении представлены выводы по проделанной работе.

В работе использовано 4 таблиц, 14 рисунка, список литературы содержит 20 литературных источников. Общий объем выпускной квалификационной работы составляет 44 страниц.

#### **ABSTRACT**

The topic of the bachelor's work is "Synthesis of fuzzy contact welding diagnostics system".

In this bachelor's work the methods of synthesis of fuzzy system of diagnostics of contact welding are investigated. The study deals with the problem of generating a base of fuzzy rules based on experimental welding data. Using the Mamdani and Larsen algorithms, the strength of welded joints is predicted from the obtained rule base. Based on the received forecasts, a conclusion is made about the quality of welding. The accuracy of the proposed fuzzy system is investigated on the basis of real experimental data.

The structure of the bachelor's work is represented by an introduction, three chapters, a conclusion, a list of literature.

The introduction describes the relevance of the ongoing research, formulates the goal and sets tasks that need to be addressed.

The first chapter reviews the methods of intellectual analysis used to predict the quality of welded joints.

The second chapter describes the mathematical apparatus of fuzzy control systems and diagnostics. The developed algorithm for forming the base of fuzzy rules is described on the basis of experimental welding data. Also described are the decisions taken to adapt the mathematical apparatus of fuzzy systems to the problem solved in the bachelor's work.

The third chapter gives examples of the use of the proposed approaches and describes the developed software.

In conclusion conclusions on the work done are presented.

The work uses 4 tables, 14 figures, the list of literature contains 20 literature sources. The total volume of the final qualifying work is 44 pages.

# СОДЕРЖАНИЕ

| ВВЕДЕНИЕ5                                                         |
|-------------------------------------------------------------------|
| 1 АНАЛИЗ СОСТОЯНИЯ ВОПРОСА                                        |
| 2 РАЗРАБОТКА АЛГОРИТМА СИНТЕЗА НЕЧЕТКОЙ СИСТЕМЫ                   |
| ДИАГНОСТИКИ КОНТАКТНОЙ СВАРКИ11                                   |
| 2.1 Алгоритмы, используемые в нечетких системах управления и      |
| диагностики                                                       |
| 2.2. Анализ экспериментальных данных                              |
| 2.3 Алгоритм синтеза нечеткой системы на основе экспериментальных |
| данных                                                            |
| 3 ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ ПРЕДЛОЖЕННЫХ РЕШЕНИЙ 30                 |
| 3.1 Пример использования                                          |
| 3.2 Программная реализация                                        |
| ЗАКЛЮЧЕНИЕ                                                        |
| СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 41                                 |

### **ВВЕДЕНИЕ**

Контактная сварка является основным технологическим процессом, применяемым на автоматизированных производствах, для получения неразъёмных соединений деталей из листового материала.

Контактная сварка характеризуется высокой производительностью - длительность сварки одного точечного соединения от 0,1 до 0,4 секунды, а также широкой распространённостью в различных отраслях машиностроения.

Основной проблемой контактной сварки является низкая стабильность прочностных характеристик получаемых соединений. По этой причине актуальным остается вопрос разработки способов сквозной высокопроизводительной диагностики сварки. Т.е. таких способов, которые сразу после окончания сварки позволяют констатировать факт получения качественного сварного соединения [1].

Анализ литературных источников показал, что развитие алгоритмов машинного обучения позволило сформировать отдельный класс интеллектуальных систем диагностики качества сварки. Такие системы учатся прогнозировать качество сварки на основе полученных лабораторных условиях экспериментальных данных.

В основе таких систем лежат:

- алгоритмы обучения нейронных сетей различной конфигурации,
- алгоритмы построения деревьев решений,
- различные индуктивные алгоритмы классификации.

Данные алгоритмы необходимы для нахождения и математического описания связи между измеряемыми в процессе сварки параметрами и получаемыми характеристиками соединений.

Однако в настоящее время не изучена возможность использования нечетких систем для диагностики качества сварки.

Это связано с тем, что алгоритмы синтеза нечетких систем относятся к дедуктивному типу машинного обучения. Это означает, что правила работы таких систем формулируются программистом путем опроса экспертов из предметной области. Такой подход считается устаревшим, трудоемким и не может применяться в тех случаях, когда требуется высокая точность работы (диагностики или управления).

В настоящее время исследованиями на тему совершенствования возможностей нечетких систем занимаются такие ученые, как Z. Weihong, M. Jamshidi, D. Król, K. Zorlu, I. Saleh, M. Gabryel, M. Antonelli, M.A. Cema, C. Tran, A.F. Abate, F.X. Aymerich, B.S. Butkiewicz, D.A. Gadanayak, S. Schmidt, R. Nowicki и др [2-16].

Для преодоления описанных выше недостатков в бакалаврской работе разрабатывается математическая модель и алгоритм анализа экспериментальных данных контактной сварки и автоматизированного синтеза на их основе нечеткой системы диагностики. Данная система диагностики позволяет прогнозировать прочность сварного соединения на основе измеренных в процессе сварки параметров.

В исследовании проверяется гипотеза о том, возможности автоматизированного синтеза нечеткой системы диагностики контактной сварки

Целью работы является снижение трудоёмкости контроля качества сварных соединений за счет разработки новых подходов к синтезу нечетких систем диагностики.

В ходе выполнения исследований была разработана программа, позволяющая, с использованием предложенных подходов, по данным экспериментальных сварок производить синтез нечетких систем диагностики.

Полученную в ходе исследований нечеткую системы диагностики сварки можно использовать для оценки прочности соединений по измеряемым в процессе сварки параметрам.

В ходе выполнения бакалаврской работы было опубликовано четыре статьи на тему практического применения алгоритмов машинного обучения [17-20].

Основные результаты работы были доложены на IV Международной научно-практической конференции (школы-семинара) молодых ученых «Прикладная математика и информатика: современные исследования в области естественных и технических наук»

работа Бакалаврская «Синтез нечеткой системы диагностики контактной сварки», направленна на разработку математической алгоритмической модели, поэтому данная тема соответствует требованиям Федерального государственного образовательного стандарта высшего образования подготовки 02.03.03 Математическое направлению обеспечение и администрирование информационных систем.

#### 1 АНАЛИЗ СОСТОЯНИЯ ВОПРОСА

Контактная точечная сварка применяется для получения неразъемных соединения деталей из листового металла. Технология контактной сварки предусматривает сжатие заготовок между парой медных электродов, пропускание через них нескольких импульсов тока для локального расплавления металла, удерживание электродов в сжатом состоянии до окончания процесса кристаллизации расплавленного металла.

Достоинствами контактной сварки является высокая производительность, простота механизации и автоматизации.

Главным недостатком контактной сварки является низкая стабильность качества получаемых соединений. Низкая стабильность связано с внешними случайными возмущениями, действующими на процесс сварки.

Для диагностики качества сварки сначала применялись различные способы неразрушающего контроля, основанные на различных физических явлениях — ультразвуковой контроль, радиографический контроль и т.д. Но такой подход к контролю качества имел ряд недостатков — низкая производительность, не сопоставимая с производительность сварки, а также высока стоимость.

Позже, за счет использования методов машинного обучения был сформирован отдельный класс способов сквозной высокопроизводительной диагностики сварки. Такие интеллектуальные системы сразу после окончания сварки позволяют констатировать факт получения качественного сварного соединения (на основе измеряемых в процессе сварки данных).

Машинное обучение здесь использовано для нахождения и математического описания связи между измеряемыми в процессе сварки параметрами и получаемыми характеристиками соединений.

В таблице 1.1 приведен обзор современных подход интеллектуальной диагностики контактной точечной сварки.

Таблица 1.1 – Интеллектуальные системы диагностики сварки [1].

| Используемый математический аппарат | Описание                                                                                                                                                                          | Авторы                               |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Нейронные сети<br>LVQ               | На основе измеренных значений сварочного тока и напряжения строится график изменения сопротивления на участке между                                                               | R.B. Chinnam, D. Filev, M. El-Banna. |
| 11. 0                               | электродами. На основе данных графика производится классификация качества сварного соединения                                                                                     | N. D. I. I.                          |
| Нейронная сеть<br>прямого           | На основе измеренных значений сварочного тока и напряжения                                                                                                                        | V. Balendran, A. Aravinthan, D. Al-  |
| распространения                     | рассчитывается динамика изменения активного сопротивления сварочного участка. На основе анализа графика изменения активного сопротивления прогнозируется прочность сварной точки. | Dabass, K. Sivayoganathan.           |
| Байесовские сети                    | Производится измерения                                                                                                                                                            | J. Röning, P.                        |
| доверия                             | осциллограмм сварочного тока и                                                                                                                                                    | Laurinen, L.                         |
|                                     | напряжения. На основе анализа                                                                                                                                                     | Tuovinen, H.                         |
|                                     | характеристик осциллограмм                                                                                                                                                        | Junno.                               |
|                                     | определяется диаметр литого ядра<br>сварной точки.                                                                                                                                |                                      |
| Рекуррентная                        | В процессе сварки производится                                                                                                                                                    | В.С. Климов, А.В.                    |
| нейронная сеть                      | измерение коэффициента мощности в                                                                                                                                                 | Комиренко, А.С.                      |
|                                     | каждом периоде сетевого                                                                                                                                                           | Климов.                              |
|                                     | напряжения. На основе полученных                                                                                                                                                  |                                      |
|                                     | данных прогнозируется прочность                                                                                                                                                   |                                      |
|                                     | сварного соединения.                                                                                                                                                              |                                      |
| Деревья                             | На основе данных об изменении                                                                                                                                                     | В.С. Климов, А.С.                    |
| принятия                            | коэффициента мощности сварки                                                                                                                                                      | Климов, С.А.                         |
| решений                             | производиться классификация                                                                                                                                                       | Петрушкин, А.Д.                      |
|                                     | качества полученного соединения                                                                                                                                                   | .ни жиШ                              |

Использование алгоритмов машинного обучения в системах диагностики сварки необходимо для нахождения и математического описания связи между измеряемыми параметрами и получаемыми характеристиками сварного соединений.

Однако в настоящее время не изучена возможность использования нечетких систем для диагностики качества сварки. Это связано с тем, что применение нечетких систем затруднено по следующим причинам:

- классический алгоритм синтеза нечетких систем основан на формулировании программистом правил путем опроса экспертов из предметной области.
- для формализации базы правил нечеткой системы необходимо понимать, как изменение наблюдаемых параметров влияет на конечные характеристики. Именно этот вопрос вызывает наибольшие споры среди экспертов в области контактной сварки.
- из-за необходимости "ручного" формирования правил процесс синтеза нечеткой системы диагностики является трудоемким и длительным.

Преодоление данных недостатков возможно за счет разработки алгоритма автоматизированного синтеза нечетких систем основанного на анализе экспериментальных данных. Таким образом, целью бакалаврской работы снижение трудоёмкости контроля качества сварных соединений за счет разработки новых подходов к синтезу нечетких систем диагностики.

Поставленная цель достигается за счет последовательного решения следующих задач:

- 1. Анализ состояния вопроса об использовании алгоритмов машинного обучения в системах диагностики сварки.
- 2. Разработка алгоритма синтеза нечеткой системы диагностики контактной сварки.
- 3. Тестирование предложенных подходов на реальных данных, а также проектирование, разработка, апробация программного обеспечения по реализации разработанного алгоритма.

## 2 РАЗРАБОТКА АЛГОРИТМА СИНТЕЗА НЕЧЕТКОЙ СИСТЕМЫ ДИАГНОСТИКИ КОНТАКТНОЙ СВАРКИ

# 2.1 Алгоритмы, используемые в нечетких системах управления и диагностики

Системы нечеткого вывода применяются как в экспертных системах, так и при синтезе систем управления и диагностики. Механизм нечеткого логического вывода основан на использовании базы знаний, которая формулируются специалистами и з рассматриваемой предметной области.

База знаний состоит из предикатных правил  $R_1...R_2$  вида:

$$R_1$$
: если  $x$  есть  $A_1$  и  $y$  есть  $B_1$ , то  $z$  есть  $C_1$   $R_2$ : если  $x$  есть  $A_2$  и  $y$  есть  $B_2$ , то  $z$  есть  $C_2$  , ... 
$$R_n$$
: если  $x$  есть  $A_n$  и  $y$  есть  $B_n$ , то  $z$  есть  $C_n$ 

где x, y — входные переменные, z — выходная переменная, A — функция принадлежности определенная на x, B — функция принадлежности определенная на y, C — функция принадлежности определенная на y

Левая часть каждого правила (между "если" и "то") называется предпосылкой, а правая часть правила называется заключением.

Расчёт вывода на основе базы нечетких правил состоит из последовательного выполнения следующих шагов:

- 1. Ведения нечеткости (фаззификация).
- 2. Логический вывод.
- 3. Композиция.
- 4. Приведение к четкости (дефаззификация).

На первом этапе (введение нечеткости) необходимо воспользоваться функциями принадлежности  $\mu A_1(x) \dots \mu A_n(x)$ ,  $\mu B_1(y) \dots \mu B_n(y)$  определённые для входных переменных. При этом подставление фактических значений входных переменных в соответствующие функции принадлежности позволяет рассчитать степень истинности  $\alpha_1 \dots \alpha_n$  предпосылок для каждого правила  $R_1 \dots R_n$ .

На втором этапе (логический вывод) производится расчет нечеткого заключения по каждому из правил. Для этого применяется значение истинности предпосылки (вычисленное на предыдущем этапе) к функции принадлежности заключения правила. В качестве операции для расчета логического вывода по правилу используется или функция *min* (в алгоритме Mamdani) или операция *prod* (в алгоритме Larsen).

При использовании функции *min* функция приспособленности заключения правила отсекается на уровне степени достоверности предпосылки.

При использовании операции prod функция приспособленности заключения правила масштабируется по оси  $\mu$  до уровня степени достоверности предпосылки.

На третьем этапе (композиция) производится объединение заключений по всем правилам базы знаний. Для этого все функции принадлежности заключений правил (модифицированных степенью достоверности соответствующих предпосылок) объединяются с использованием операции тах (поиска максимальных значений).

В результате выполнения этого этапа получается нечеткое множество.

На четвертом этапе (приведение к четкости) производится расчёт четкого значения выходной переменной на основе непрерывного нечеткого множества полученного на предыдущем этапе.

Существуют несколько алгоритмов расчета логического вывода на основе правил  $R_1 \dots R_n$ :

- алгоритм Mamdani;
- алгоритм Tsukamuto;
- алгоритм Larsen.

Данные алгоритмы отличаются друг от друга определенными особенностями при выполнении шагов логического вывода и композиции.

Наиболее часто используемыми алгоритмами является Mamdani и Larsen.

В соответствии с алгоритмом Mamdani на примере набора правил 2.1 расчет значения  $z_0$  выходной переменной z в зависимости от значений  $x_0$  и  $y_0$  входных переменных x и y осуществляется следующим образом.

Сначала на этапе фаззификации рассчитываются степени истинности отдельных частей предпосылок правил  $R_1...R_n$ :  $A_1(x_0),A_2(x_0),...,A_n(x_0)$  и  $B_1(y_0),B_2(y_0),...,B_n(y_0)$ 

Затем для расчета степени истинности  $\alpha_1...\alpha_n$  с учетом всех частей предпосылок каждого из правил  $R_1...R_n$  выполняется операция min (обозначается символом «  $\wedge$  »). Получаем:

$$\alpha_1 = A_1(x_0) \wedge B_1(y_0)$$

$$\alpha_2 = A_2(x_0) \wedge B_2(y_0)$$

$$\dots$$

$$\alpha_n = A_n(x_0) \wedge B_n(y_0)$$
(2.2)

На следующем этапе с использованием операции *min* по каждому из правил рассчитывается вывод:

$$C_1'(z) = (\alpha_1 \wedge C_1(z))$$

$$C_2'(z) = (\alpha_2 \wedge C_2(z))$$
...
$$C_n'(z) = (\alpha_n \wedge C_n(z))$$
(2.3)

Композиция в алгоритме Mamdani осуществляется следующим образом. Полученные на предыдущем этапе функции  $C_1'(z),...,C_n'(z)$  объединяются с использованием операции max (обозначается символом « $\vee$ »). Образом получаем функцию

$$\mu_{\text{sum}}(z) = C_1'(z) \vee C_2'(z) \vee ... \vee C_n'(z)$$
(2.4)

На последнем этапе (дефаззификация) алгоритма Mamdani на основе полученной функции  $\mu_{\text{sum}}(z)$  осуществляется расчет выходного значения  $z_0$  с использование выбранного метода.

Графическая интерпретация алгоритма Mamdani представлена на рисунке 2.1.

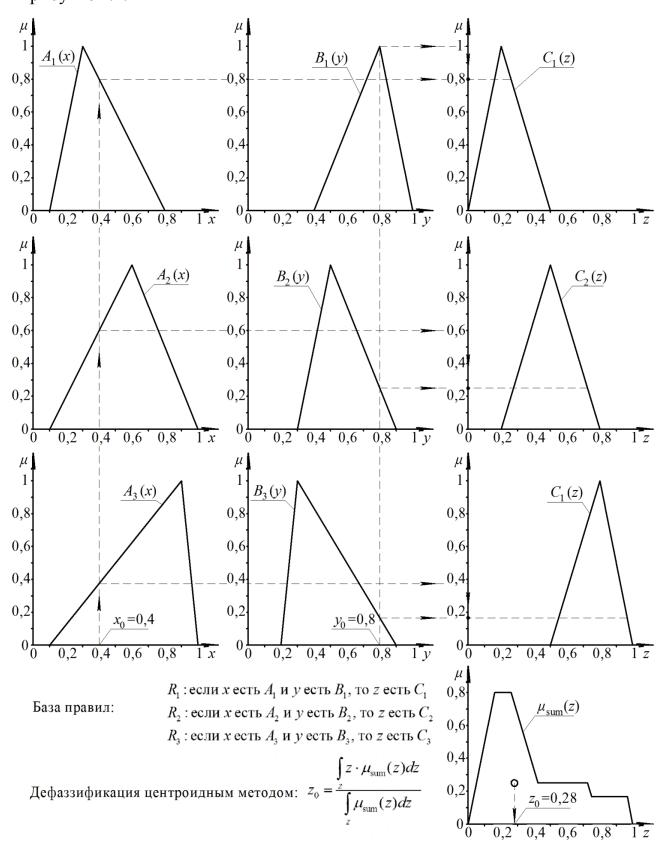



Рисунок 2.1 – Графическая интерпретация расчета выходного значения  $z_0$  с использованием алгоритма Mamdani

Дефаззификации на основе полученной функции  $\mu_{\text{sum}}(z)$  может осуществляться с использованием различных методов:

• Центроидный метод дефаззификации. Графическая интерпретация данного метода представлена на рисунке 2.2а. В этом случае расчет четкого выходного значения  $z_0$  осуществляется по формуле:

$$z_0 = \frac{\int_{z} z \cdot \mu_{\text{sum}}(z) dz}{\int_{z} \mu_{\text{sum}}(z) dz}$$
 (2.5)

• Метод первого максимума. Графическая интерпретация данного метода представлена на рисунке 2.26. Вычисление значения  $z_0$  осуществляется с использованием следующего выражения:

$$z_0 = \min(\{z \mid \mu_{sum}(z) = \max_k \mu_{sum}(k)\})$$
 (2.6)

• Метод среднего максимума. Значения  $z_0$  рассчитывается следующим образом:

$$z_0 = \frac{\int z dz}{\int dz}$$
 (2.7)

где G — подмножество множества z на котором функция  $\mu_{\text{sum}}(z)$  принимает максимальное значение. Графическая интерпретация данного метода представлена на рисунке 2.1 б.

• Метод максимума с учетом критериев. Значение  $z_0$  выбирается произвольно среди множества значений z, при которых функция  $\mu_{\text{sum}}(z)$  принимает максимальное значение:

$$z_0 \in \{ z \mid \mu_{sum}(z) = \max_k \mu_{sum}(k) \}$$
 (2.8)

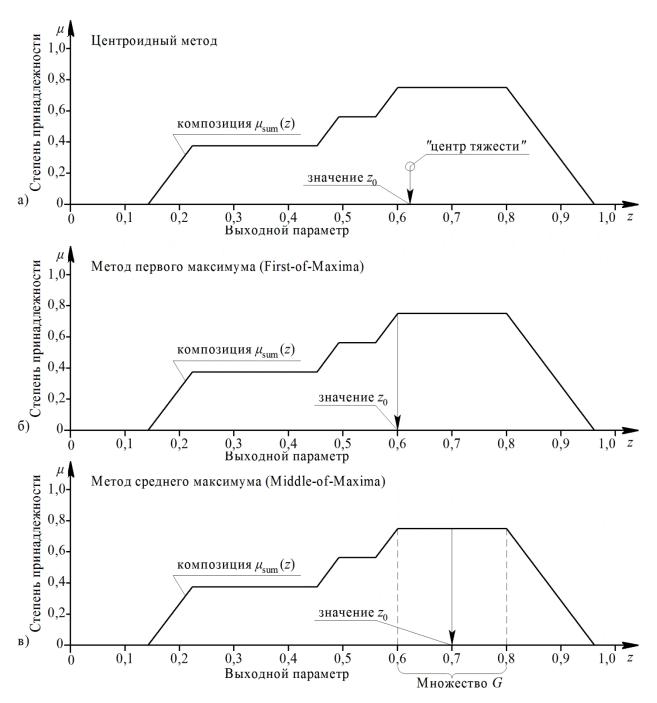



Рисунок 2.2 – Дефаззификации на основе полученной функции  $\mu_{\text{sum}}(z)$  с использованием: а – центроидного метода, б – метода первого максимума, в – метода среднего максимума.

Как видно из рисунка 2.2 метод дефаззификации напрямую влияет на конечный результат (на выходное значение  $z_0$ ), а, следовательно, и на точность работы нечеткой системы. Однозначных рекомендаций по выбору того или иного метода дефаззификации нет.

В литературе есть указания о том, что цендроидный метод дефаззикации подходит в большинстве случаев при синтезе нечетких систем различного назначения.

Алгоритм Larsen во многом схож с алгоритмом Mamdani, однако в нем при импликации используется оператор prod. Таким образом, алгоритм Larsen выглядит следующим образом. Сначала на этапе фаззификации рассчитываются степени истинности отдельных частей предпосылок правил  $R_1...R_n$ . Затем для расчета степени истинности  $\alpha_1...\alpha_n$  с учетом всех частей предпосылок каждого из правил  $R_1...R_n$  выполняется операция min по формуле 2.2.

На следующем этапе с использованием операции *prod* по каждому из правил рассчитывается вывод:

$$C_1'(z) = \alpha_1 \cdot C_1(z)$$

$$C_2'(z) = \alpha_2 \cdot C_2(z)$$
...
$$C_n'(z) = \alpha_n \cdot C_n(z)$$
(2.9)

Композиция в алгоритме Larsen осуществляется также как и в алгоритме Mamdani по формуле 2.4. Дефаззификация на основе полученной функции  $\mu_{\text{sum}}(z)$  осуществляется одним из методов рассмотренных выше (2.5-2.8).

Графическая интерпретация алгоритма Larsen показана на рисунке 2.3.

Алгоритм Tsukamoto для решения нашей задачи не подходит, так как он предполагает, что все используемые функции принадлежности монотонны. В нашем случае характер связи между вектором входных параметров и выходным параметром не соотносится с данным ограничением алгоритма Tsukamoto.

Таким образом, в нашем случае при синтезе системы диагностики будет использован наиболее популярный алгоритм нечеткого вывода

Mamdani. При этом этап дефаззификации будет выполняться цендроидным методом.

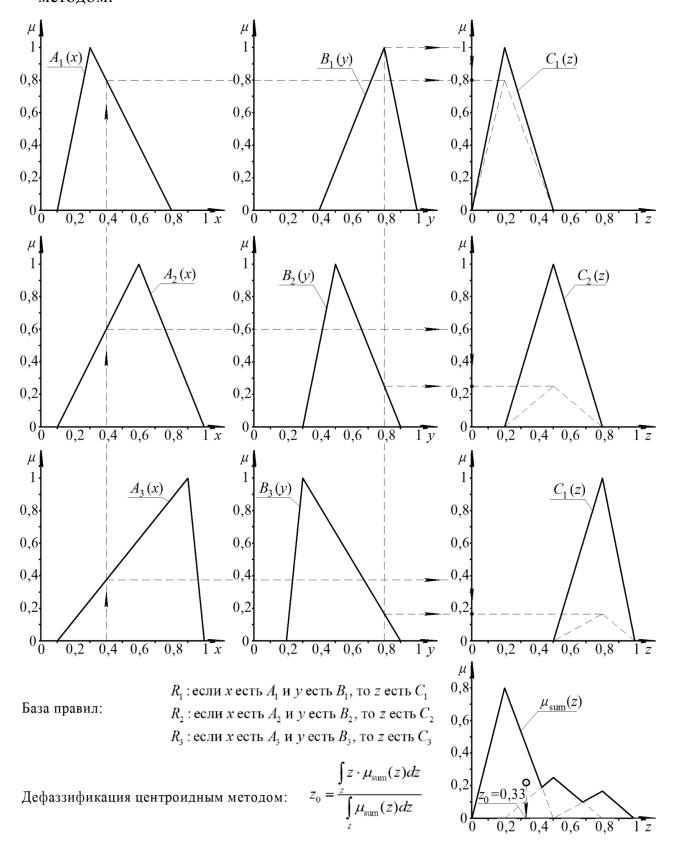



Рисунок 2.3 – Графическая интерпретация расчета выходного значения  $z_0$  с использованием алгоритма Larsen

#### 2.2. Анализ экспериментальных данных

Исходными данными, для синтеза нечеткой системы диагностики являются результаты экспериментальных сварок заготовок из низкоуглеродистой стали. При проведении экспериментальных сварок выполнялось неразъемное точечное соединение двух деталей, толщина каждой из которых равна 0,8 мм. Длительность сварки — 0,18 с, что соответствует 9 периодам сетевого напряжения.

В общей сложности было произведено 100 экспериментальных сварок. Из них около половины было выполнено под действием различных возмущающих факторов, которые оказывали негативное влияние на качество получаемых соединений.

В процессе каждой сварки производилось измерение коэффициента мощности  $\cos \varphi$  для каждого периода сетевого напряжения. Известно, что изменение коэффициента мощности  $\cos \varphi$  в процессе сварки связано с металлургическими процессами, протекающими в зоне сварки (нагрев, размягчение и плавление металла). При этом характер протекания металлургических процессов напрямую связан с получаемыми прочностными характеристиками соединения.

Все полученные в результате экспериментов сварные соединения испытывались на разрывной машине для определения предельной силы разрушения соединения.

Таким образом, данные по каждой экспериментальной сварке состоят из (рисунок 2.4):

- Измеренные для каждого периода сетевого напряжения коэффициенты мощности  $\cos \varphi$ :

$$\mathbf{cos}\boldsymbol{\varphi} = (\cos(\varphi_1), \cos(\varphi_2), ..., (\cos\varphi_i)) \tag{2.10}$$

где i — количество периодов сетевого напряжения, на протяжении которых производиться сварка. В нашем случае i=9.

- Сила разрушения  $F_{\rm пр}$  сварного соединения, измеренная на разрывной машине.

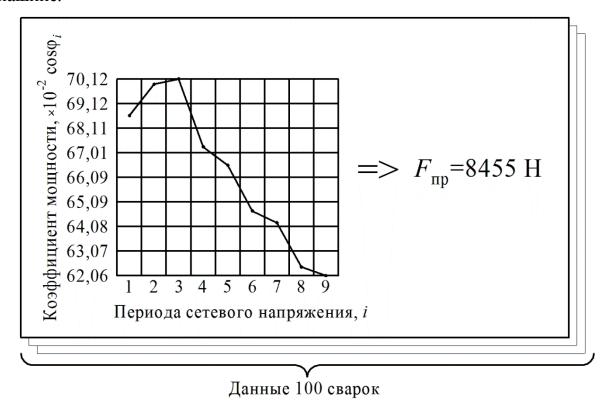



Рисунок 2.4 – Экспериментальные данные

С точки зрения диагностики ценностью обладает динамика изменения  $\cos \varphi_i$  в процессе сварки (форма кривой  $\cos \varphi$ ), а не абсолютные значения  $\cos \varphi_i$ . Поэтому, чтобы результаты диагностики разрабатываемой системы не зависели от абсолютных значений  $\cos \varphi$  необходимо провести нормировку вектора  $\cos \varphi$  в масштабах сварки.

Нормировка значений  $\cos \varphi_i$  в рамках одной каждой сварки производилась путем линейного преобразования к диапазону [0, 100]. Таким образом, нормированному значению 100 будет соответствовать максимальное значение  $\cos \varphi_i$  за сварку, а значению 0 — минимальное значение  $\cos \varphi_i$  за сварку. Нормировка производилась по следующей формуле:

$$P_{i} = \frac{\cos \varphi_{i} - \min(\mathbf{cos}\varphi)}{\max(\mathbf{cos}\varphi) - \min(\mathbf{cos}\varphi)} \cdot 100$$
 (2.10)

где  $\max$  — функция, возвращающая максимальное значение  $\cos \varphi$  из вектора  $\cos \varphi$ ,  $\min$  — функция, возвращающая минимальное значение  $\cos \varphi$  из вектора  $\cos \varphi$ .

Пример нормировки данных представлен на рисунке 2.5.

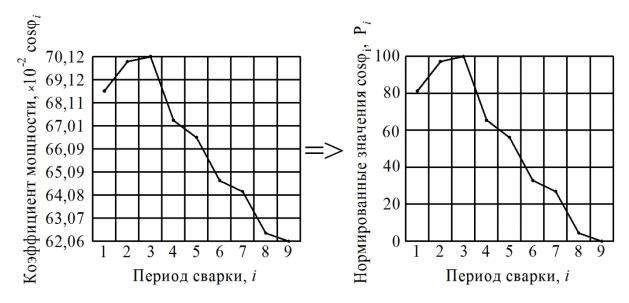



Рисунок 2.5 — Нормировка значений  $\cos \varphi_i$  в масштабах одной сварки После проведения нормировки экспериментальных данные выполненных сварок выглядят так, как это представлено в таблице 2.1.

Таблица 2.1 — Фрагмент экспериментальных данных, после нормировки значений  $\cos \varphi_i$ 

| $N_{\underline{0}}$ | $P_1$ | $P_2$ | $P_3$ | $P_4$ | $P_5$ | $P_6$ | $P_7$ | $P_8$ | $P_9$ | $F_{\rm np}$ , H |
|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------|
| 1                   | 61,83 | 85,40 | 100   | 100   | 32,53 | 16,67 | 0     | 0     | 0     | 4267             |
| 2                   | 100   | 74,67 | 65,60 | 65,60 | 65,60 | 65,60 | 21,34 | 10,94 | 0     | 4267             |
| 3                   | 83,82 | 17,59 | 83,82 | 100   | 100   | 100   | 100   | 17,59 | 0     | 4238             |
| 4                   | 87,50 | 66,32 | 100   | 66,32 | 59,01 | 59,01 | 17,05 | 8,74  | 0     | 5171             |
| 5                   | 62,17 | 93,74 | 100   | 68,66 | 93,74 | 62,17 | 15,98 | 8,19  | 0     | 5278             |
| 6                   | 93,18 | 58,79 | 93,18 | 100   | 65,86 | 51,33 | 51,33 | 8,48  | 0     | 5739             |
| 7                   | 76,26 | 71,37 | 100   | 80,95 | 76,26 | 42,13 | 36,56 | 30,72 | 0     | 6141             |
| 8                   | 100   | 84,51 | 80,30 | 80,30 | 51,66 | 46,84 | 11,73 | 6,00  | 0     | 6553             |
| 9                   | 94,50 | 100   | 100   | 100   | 64,33 | 58,32 | 14,61 | 7,47  | 0     | 6347             |
| 10                  | 74,75 | 94,61 | 100   | 100   | 63,84 | 58,03 | 14,13 | 7,23  | 0     | 6471             |
| 11                  | 88,99 | 100   | 100   | 100   | 63,84 | 20,71 | 7,23  | 0     | 0     | 6661             |
| 12                  | 94,85 | 83,99 | 100   | 83,99 | 62,35 | 36,40 | 29,22 | 4,33  | 0     | 6671             |
| 13                  | 100   | 100   | 100   | 75,18 | 45,80 | 36,94 | 5,30  | 0     | 0     | 7014             |
| 14                  | 80,55 | 97,20 | 100   | 60,78 | 50,59 | 25,79 | 21,64 | 0     | 12,73 | 6377             |

| 15  | 93,74 | 100   | 100    | 100   | 75,74 | 47,47 | 13,83 | 4,81  | 0 | 7014 |
|-----|-------|-------|--------|-------|-------|-------|-------|-------|---|------|
| 16  | 93,19 | 100   | 82,19  | 79,84 | 58,92 | 37,22 | 11,27 | 3,92  | 0 | 7122 |
| 17  | 84,35 | 100   | 88,481 | 70,73 | 49,77 | 27,44 | 21,11 | 17,73 | 0 | 7240 |
|     |       |       |        |       |       | •     |       |       |   |      |
| 100 | 100   | 76,61 | 33,39  | 36,36 | 22,71 | 19,49 | 5,624 | 1,94  | 0 | 8191 |

# 2.3 Алгоритм синтеза нечеткой системы на основе экспериментальных данных

Одним из важных этапов синтеза нечетких систем управления и диагностики является формирование базы правил. Именно база правил задает логику работы нечеткой системы. При классическом подходе для формирования базы правил приглашается эксперт из предметной области. Путем опроса эксперта формализуются правила работы системы.

Такой подход отличается большим количеством недостатков, среди которых:

- зависимость точности работы нечеткой системы от знаний и профессионализма опрашиваемого эксперта предметной области;
- низкая степень автоматизация, связанная с необходимостью "ручного" формулирования каждого правила.

Для преодоления этих недостатков был разработан алгоритм формирования базы правил нечеткой системы на основе экспериментально полученных данных.

Алгоритм состоит из двух этапов:

- 1. Введение лингвистических переменных для описания состояния вектора входных значений (  $\mathbf{P} = (P_1, P_2, ..., P_9)$  ).
- 2. Процедурная генерация нечетких правил с учетом введенных лингвистических переменных.

На первом этапе осуществляется ввод лингвистических переменных, состав которых зависит от количества входных и выходных параметров. В нашем случае входными параметрами являются -  $P_1, P_2, ..., P_9$ , а выходным параметром -  $F_{np}$ . Названия лингвистической переменной для удобства

следует выбирать таким же, как и название связанного с ним параметром. Область определения лингвистических переменных P1,P2,...,P9, Гпр ограничивается соответствующими наименьшим и наибольшим значениями паромеров  $P_1,P_2,...,P_9,F_{\rm пp}$  вычисленных по таблице экспериментальных данных.

каждой лингвистической переменной создаётся свое терм множество. Для ЭТОГО область определений рассматриваемой лингвистической переменной делится на несколько равных частей. Количество частей выбирается должно определяться опытным путем, и работы нечеткой корректироваться, если точность системы неудовлетворительная.

В нашем случае области определений лингвистических переменных связанных со входными параметрами были поделены на 5 равных частей. Таким образом, у лингвистической P1 терм множество выглядит как {P1\_0\_20, P1\_20\_40, P1\_40\_60, P1\_60\_80, P1\_80\_100}, у лингвистической переменной P2 терм множество – {P2\_0\_20, P2\_20\_40, P2\_40\_60, P2\_60\_80, P2\_80\_100} и т.д.

Область определения лингвистической переменной Fпр намного шире, поэтому она была поделена 9 частей, таким образом было сформировано терм-множество следующего вида -  $\{F_4000_4500, F_4500_5000, F_5000_5500, F_5500_6000, F_6000_6500, F_6500_7000, F_7000_7500, F_7500_8000, F_8000_8500\}$ .

Разделение области определений между элементами терм-множеств лингвистический переменных показано на рисунке 2.6.

Перечень введенных лингвистических переменных показан в таблице 2.2.

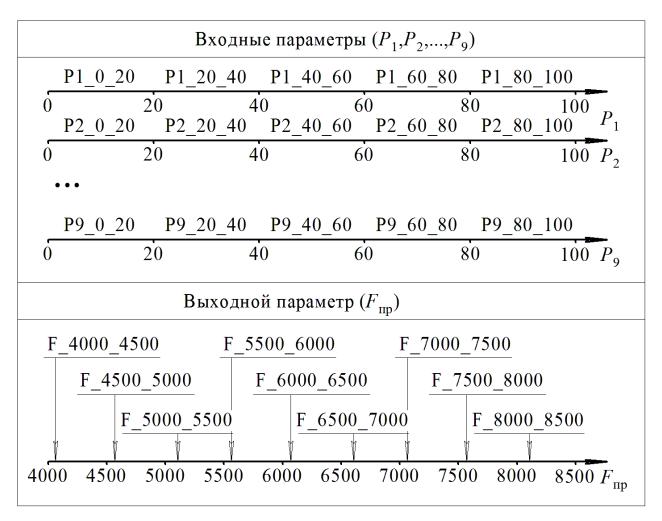



Рисунок 2.6 – разделение области определений между элементами терммножеств лингвистический переменных

Таблица 2.2 – Перечень лингвистических переменных

| Наимено-<br>вание<br>лингвисти-<br>ческой<br>переменной | Связанный с переменной параметр | Терм множество                                      | Область<br>определения |
|---------------------------------------------------------|---------------------------------|-----------------------------------------------------|------------------------|
| P1                                                      | $P_1$                           | P1_0_20, P1_20_40, P1_40_60,<br>P1_60_80, P1_80_100 | [0; 100]               |
| P2                                                      | $P_2$                           | P2_0_20, P2_20_40, P2_40_60,<br>P2_60_80, P2_80_100 | [0; 100]               |

| Р3  | $P_3$       | P3_0_20, P3_20_40, P3_40_60,<br>P3_60_80, P3_80_100                                                                            | [0; 100]     |
|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|
| P4  | $P_4$       | P4_0_20, P4_20_40, P4_40_60,<br>P4_60_80, P4_80_100                                                                            | [0; 100]     |
| P5  | $P_5$       | P5_0_20, P5_20_40, P5_40_60,<br>P5_60_80, P5_80_100                                                                            | [0; 100]     |
| P6  | $P_6$       | P6_0_20, P6_20_40, P6_40_60,<br>P6_60_80, P6_80_100                                                                            | [0; 100]     |
| P7  | $P_{7}$     | P7_0_20, P7_20_40, P7_40_60,<br>P7_60_80, P7_80_100                                                                            | [0; 100]     |
| P8  | $P_8$       | P8_0_20, P8_20_40, P8_40_60,<br>P8_60_80, P8_80_100                                                                            | [0; 100]     |
| Р9  | $P_9$       | P9_0_20, P9_20_40, P9_40_60,<br>P9_60_80, P9_80_100                                                                            | [0; 100]     |
| Fпр | $F_{ m np}$ | F_4000_4500, F_4500_5000,<br>F_5000_5500, F_5500_6000,<br>F_6000_6500, F_6500_7000<br>F_7000_7500, F_7500_8000,<br>F_8000_8500 | [4000; 8500] |

На втором этапе работы алгоритма происходит процедурная генерация нечетких правил с учетом введенных лингвистических переменных.

Для этого циклически осуществляется последовательный переход от первого диапазона области определения выходного параметра  $F_{\rm np}$  к последнему. При этом на каждом шаге цикла выполняется формирование одного (своего) нечеткого правила.

Графическая интерпретация цикла по формированию нечетких правил представлена на рисунке 2.7.

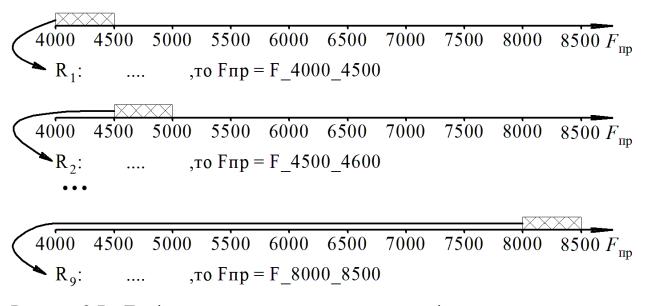



Рисунок 2.7 – Графическая интерпретация цикла по формированию нечетких правил

На каждой итерации цикла выполняются следующие шаги.

- 1. Производится поиск элементов (строчек) в таблице с экспериментальными данными, которые удовлетворяют текущему диапазону значений выходного параметра.
- 2. Затем по каждому найденному элементу производится анализ принадлежности каждого значений его входных параметров ( $P_1...P_9$ ) выделанным ранее диапазонам значений, соответствующим элементам терм множеств (рисунок 2.6). Если у разных элементов таблицы один и тот же рассматриваемый входной параметр  $P_i$  принадлежит разным диапазонам значений, то связанные с данными диапазонами элементы терм множеств включаются в правило с использованием ИЛИ. Части правила, относящиеся к разным входным параметрам, объединяются с использованием логической операции И.

На рисунке 2.8 показано, как генерируется правило на четвертой итерации цикла (диапазон значений  $F_{\rm mn}$ =[5500, 6000]).

Таким образом, для каждого диапазона области определения выходной переменной будет сформулировано по одному правилу. В нашем случае

количество диапазонов области определения выходной переменной – 9, значит и правил в базе знаний будет 9.

| $P_1$ | $P_2$ | $P_3$ | $P_4$ | $P_5$ | $P_6$ | $P_7$ | $P_8$ | $P_9$ | $F_{\rm np}$ |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------------|
| 80,79 | 93,89 | 100   | 61,72 | 55,10 | 48,14 | 7,91  | 0     | 0     | 5709         |
| 93,18 | 58,79 | 93,18 | 100   | 65,87 | 51,34 | 51,34 | 8,49  | 0     | 5739         |
| 100   | 50,86 | 64,43 | 68,62 | 68,62 | 42,36 | 10,61 | 0     | 0     | 5808         |
| 93,89 | 100   | 100   | 61,72 | 55,10 | 48,14 | 48,14 | 7,91  | 0     | 5906         |

Рисунок 2.8 – Генерация правила  $R_4$  на четвертой итерации цикла (диапазон значений  $F_{m}$ =[5500, 6000]).

После того, как на основе экспериментальных данных с использованием предложенного алгоритма сгенерирован набор правил можно переходить к заключительному этапу синтеза нечеткой системы — задание функций степени принадлежности для элементов терм множеств лингвистических переменных.

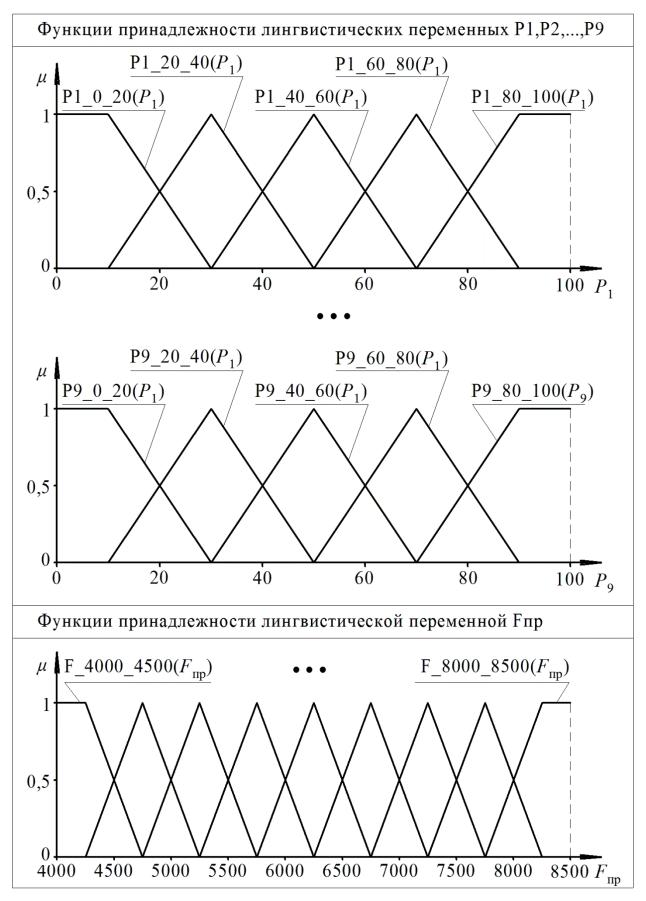



Рисунок 2.9 – Функции принадлежности лингвистических переменных

В нашем алгоритме синтеза нечеткой системы мы будем использовать треугольные функции принадлежности. При этом максимальная степень принадлежности элемента терм множества достигается в середине связанного с ним диапазона области определения параметра. Степень принадлежности линейно уменьшается и достигает минимального значения в средине двух соседних диапазонов области определения параметра.

Графически функции принадлежности нечетких переменных показаны на рисунке 2.9.

Таким образом, разработанный алгоритм синтеза нечеткой системы диагностики состоит из следующих этапов:

- 1. Накапливание экспериментальных данных и их предобработка путем нормировки.
- 2. На основе анализа экспериментальных данных осуществляется ввод лингвистических переменных: по одной лингвистической переменной на каждый входной/выходной параметр.
- 3. На основе анализа областей определения параметров для лингвистических переменных вводятся терм множества.
- 4. Путем анализа экспериментальных данных и введённых терм множеств генерируются правила для базы знаний нечеткой системы (алгоритм генерации правил рассмотрен выше).
- 5. Для каждого элемента терм множества задается треугольная функция принадлежности.

Для того, чтобы нечеткая система диагностики рассчитала прочность сварного соединения на ее вход нужно подать вектор параметров  $\mathbf{P}_{\mathbf{x}} = (P_{x1}, P_{x2}, ..., P_{x9})$ . Затем с использованием одного из известных алгоритмов расчета вывода по базе знаний (алгоритм Mamdani или Larsen) рассчитать четкое выходное значение  $F_{\mathbf{y}}$ . Значение  $F_{\mathbf{y}}$  как раз и будет является прогнозируемой прочностью сварного соединения.

# 3 ПРАКТИЧЕСКАЯ РЕАЛИЗАЦИЯ ПРЕДЛОЖЕННЫХ РЕШЕНИЙ 3.1 Пример использования

Продемонстрируем пример использования автоматизированного алгоритма синтеза нечеткой системы диагностики сварки. При этом будут использованы экспериментальные данные, представленные в таблице 2.1.

Области поредения входных параметров  $P_1...P_9$  и выходного параметра  $F_{\rm np}$  была разделена на диапазоны значений так, как это показано на рисунке 2.6. В результате были введены лингвистические переменные, представленные в таблице 2.2. Для элементов терм множеств были заданы треугольные функции степени принадлежности (рисунок 2.9).

В ходе выполнения разработанного алгоритма генерации правил на основе экспериментальных данных были рассчитаны правила  $R_1...R_9$ , представленные в таблице 3.1.

Таблица 3.1 – Таблица сгенерированных правил

| Обозначение    | Сгенерированное правило    |
|----------------|----------------------------|
|                | ЕСЛИ                       |
|                | (Р1_60_80 ИЛИ Р1_80_100) И |
|                | (Р2_60_80 ИЛИ Р2_80_100) И |
|                | (Р3_60_80 ИЛИ Р3_80_100) И |
|                | (Р4_60_80 ИЛИ Р4_80_100) И |
| $\mathbf{R}_1$ | (Р5_20_40 ИЛИ Р5_60_80) И  |
|                | (Р6_0_20 ИЛИ Р6_60_80) И   |
|                | (Р7_0_20 ИЛИ Р7_20_40) И   |
|                | Р8_0_20 И                  |
|                | Р9_0_20 И                  |
|                | TO F_4000_4500             |
|                | ЕСЛИ                       |
|                | (Р1_80_100) И              |
| $R_2$          | (Р2_80_100) И              |
|                | (Р3_60_80) И               |
|                | (Р4_60_80) И               |

|       | (Р5_40_60) И                          |
|-------|---------------------------------------|
|       | (Р6_40_60) И                          |
|       | (Р7_20_40) И                          |
|       | (Р8_0_20) И                           |
|       | (Р9_0_20) И                           |
|       | TO F_4500_5000                        |
|       | ЕСЛИ                                  |
|       | (Р1_60_80 ИЛИ Р1_80_100) И            |
|       | (Р2_60_80 ИЛИ Р2_80_100) И            |
|       | (Р3_80_100) И                         |
|       | (Р4_60_80) И                          |
| $R_3$ | (Р5_40_60 ИЛИ Р5_80_100) И            |
|       | (Р6_0_20 ИЛИ Р6_40_60 ИЛИ Р6_60_80) И |
|       | (Р7_0_20) И                           |
|       | (Р8_0_20) И                           |
|       | (Р9_0_20) И                           |
|       | TO F_5000_5500                        |
|       | ЕСЛИ                                  |
|       | (Р1_80_100) И                         |
|       | (Р2_40_60 ИЛИ Р2_80_100) И            |
|       | (Р3_60_80 ИЛИ Р3_80_100) И            |
|       | (Р4_60_80 ИЛИ Р4_80_100) И            |
| $R_4$ | (Р5_40_60 ИЛИ Р5_60_80) И             |
|       | (Р6_40_60) И                          |
|       | (Р7_0_20 ИЛИ Р7_40_60) И              |
|       | (Р8_0_20) И                           |
|       | (Р9_0_20) И                           |
|       | TO F_5500_6000                        |
|       | ЕСЛИ                                  |
|       | (Р1_80_100) И                         |
|       | (Р2_80_100) И                         |
| $R_5$ | (Р3_80_100) И                         |
|       | (Р4_60_80 ИЛИ Р4_80_100) И            |
|       | (Р5_40_60 ИЛИ Р5_60_80) И             |
|       | (Р6_20_40 ИЛИ Р6_40_60) И             |

|       | (Р7_0_20 ИЛИ Р7_20_40) И                            |
|-------|-----------------------------------------------------|
|       | (Р8_0_20) И                                         |
|       | (Р9_0_20) И                                         |
|       | TO F_6000_6500                                      |
|       | ЕСЛИ                                                |
|       | (Р1_60_80 ИЛИ Р1_80_100) И                          |
|       | (Р2_80_100) И                                       |
|       | (Р3_80_100) И                                       |
|       | (Р4_0_20 ИЛИ Р4_60_80 ИЛИ Р4_80_100) И              |
| $R_6$ | (Р5_0_20 ИЛИ Р5_40_60 ИЛИ Р5_60_80) И               |
|       | (Р6_0_20 ИЛИ Р6_20_40 ИЛИ Р6_40_60) И               |
|       | (Р7_0_20 ИЛИ Р7_20_40) И                            |
|       | (Р8_0_20) И                                         |
|       | (Р9_0_20) И                                         |
|       | TO F_6500_7000                                      |
|       | ЕСЛИ                                                |
|       | (Р1_60_80 ИЛИ Р1_80_100) И                          |
|       | (Р2_80_100) И                                       |
|       | (Р3_0_20 ИЛИ Р3_20_40 ИЛИ Р3_60_80 ИЛИ Р3_80_100) И |
|       | (Р4_0_20 ИЛИ Р4_20_40 ИЛИ Р4_40_60 ИЛИ Р4_60_80 ИЛИ |
| D     | Р4_80_100) И                                        |
| $R_7$ | (Р5_0_20 ИЛИ Р5_20_40 ИЛИ Р5_40_60 ИЛИ Р5_60_80) И  |
|       | (Р6_0_20 ИЛИ Р6_40_60 ИЛИ Р6_60_80) И               |
|       | (Р7_0_20 ИЛИ Р7_20_40) И                            |
|       | (Р8_0_20) И                                         |
|       | (Р9_0_20) И                                         |
|       | TO F_7000_7500                                      |
|       | ЕСЛИ                                                |
|       | (Р1_80_100) И                                       |
|       | (Р2_60_80 ИЛИ Р2_80_100) И                          |
| $R_8$ | (Р3_0_20 ИЛИ Р3_40_60 ИЛИ Р3_60_80 ИЛИ Р3_80_100) И |
|       | (Р4_0_20 ИЛИ Р4_20_40 ИЛИ Р4_60_80) И               |
|       | (Р5_0_20 ИЛИ Р5_20_40) И                            |
|       | (Р6_0_20 ИЛИ Р6_20_40) И                            |
|       | (Р7_0_20) И                                         |
|       | l .                                                 |

|       | (Р8_0_20) И                           |
|-------|---------------------------------------|
|       | (Р9_0_20) И                           |
|       | TO F_7500_8000                        |
|       | ЕСЛИ                                  |
|       | (Р1_80_100) И                         |
|       | (Р2_60_80 ИЛИ Р2_80_100) И            |
|       | (Р3_0_20 ИЛИ Р3_20_40 ИЛИ Р3_40_60) И |
|       | (Р4_0_20 ИЛИ Р4_20_40 ИЛИ Р4_40_60) И |
| $R_9$ | (Р5_0_20 ИЛИ Р5_20_40 ИЛИ Р5_40_60) И |
|       | (Р6_0_20 ИЛИ Р6_20_40) И              |
|       | (Р7_0_20) И                           |
|       | (Р8_0_20) И                           |
|       | (Р9_0_20) И                           |
|       | TO F_8000_8500                        |

Теперь с учётом введенных лингвистических переменных и полученных правил протестируем работы нечеткой системы диагностики, обеспечивающей прогнозирование прочности сварного соединения на следующем векторе входных параметров:

$$P_{x1} = 74,75, P_{x2} = 94,61, P_{x3} = 100, P_{x4} = 100, P_{x5} = 63,84, P_{x6} = 58,03, P_{x7} = 14,13,$$
  
 $P_{x8} = 7,23, P_{x9} = 0$ 

Рассчитаем вывод с использованием алгоритмов Mamdani и Larsen. Для этого сначала определим степень достоверности каждого из 9 правил:

$$\alpha_{1} = a(R_{1}) = 0,4$$
 $\alpha_{2} = a(R_{2}) = 0$ 
 $\alpha_{3} = a(R_{3}) = 0$ 
 $\alpha_{4} = a(R_{4}) = 0,2$ 
 $\alpha_{5} = a(R_{5}) = 0,2$ 
 $\alpha_{6} = a(R_{6}) = 0,6$ 
 $\alpha_{7} = a(R_{7}) = 0,6$ 
 $\alpha_{8} = a(R_{8}) = 0$ 
 $\alpha_{9} = a(R_{9}) = 0$ 
(3.1)

Теперь найдем нечеткий вывод  $\mu_{\text{sum}}(F_{\text{пр}})$  в соответствии с алгоритмом Mamdani:


$$\mu_{\text{sum}}(F_{\text{np}}) = \max[\min(F_{4000_{4500}(F_{\text{np}}), 0.4), \\ \min(F_{5500_{6000}(F_{\text{np}}), 0.2), \min(F_{6000_{6500}(F_{\text{np}}), 0.2), \\ \min(F_{6500_{7000}(F_{\text{np}}), 0.6), \min(F_{7000_{7500}(F_{\text{np}}), 0.6)]$$

$$(3.2)$$

А также нечеткий вывод  $\mu_{\text{sum2}}(F_{\text{пр}})$  в соответствии с алгоритмом Larsen:

$$\begin{split} &\mu_{\text{sum2}}(F_{\text{np}}) = \text{max}[\text{min}(F\_4000\_4500(F_{\text{np}})\cdot0.4),\\ &\min(F\_5500\_6000(F_{\text{np}})\cdot0.2), \text{min}(F\_6000\_6500(F_{\text{np}})\cdot0.2),\\ &\min(F\_6500\_7000(F_{\text{np}}),0.6), \text{min}(F\_7000\_7500(F_{\text{np}})\cdot0.6)] \end{split} \tag{3.3}$$

Графики  $\mu_{\text{sum}}(F_{\text{пр}})$  и  $\mu_{\text{sum2}}(F_{\text{пр}})$  представлены на рисунке 3.1.



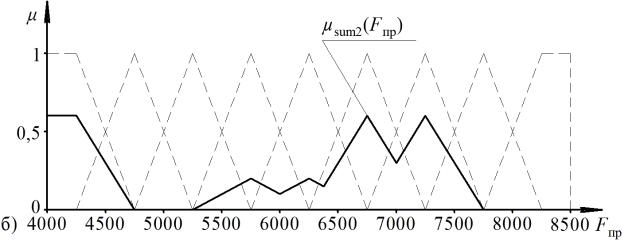



Рисунок 3.1 – Нечеткий вывод: а – в соответствии с алгоритмом Mamdani, б – в соответствии с алгоритмом Larsen

Теперь для поиска точного значения прочности сварного соединения проведем дефаззификацию полученных функций центроидным методом.

По алгоритму Mamdani полученное значение прочности:

$$F_{y} = \frac{\int_{4000}^{8500} F_{np} \cdot \mu_{sum}(F_{np}) dF_{np}}{\int_{4000}^{8500} \mu_{sum}(F_{np}) dF_{np}} = 6203 \text{ H}$$
(3.4)

По алгоритму Larsen полученное значение прочности:

$$F_{y} = \frac{\int_{4000}^{8500} F_{np} \cdot \mu_{sum2}(F_{np}) \ dF_{np}}{\int_{4000}^{8500} \mu_{sum2}(F_{np}) \ dF_{np}} = 6187 \text{ H}$$
(3.5)

Измеренное на разрывной машине фактическое значение прочности данного сварного соединения составила 6671 Н. Таким образом относительная погрешность данного прогноза составила 7%.

При тестировании точности работы нечеткой системы на данных 60 сварок было установлено, что показатель RMSE (корень среднеквадратической ошибки) составляет 480 Н. Во всех случаях относительная ошибка не превышала значения в 10%.

## 3.2 Программная реализация

В ходе выполнения бакалаврской работы было разработано программное обеспечение, обладающее следующим особенностями:

- наличие графического интерфейса;
- программная реализация предложенного алгоритма синтеза нечетких систем;
- расчет логического вывода нечеткой системы с использованием алгоритмов Mamdani и Larsen;
- импорт экспериментальных данных (обучающей выборки) и тестовой выборки из Excel;

- экспорт результатов тестирования нечеткой системы на тестовой выборки в Excel файл для дальнейшего анализа точности работы системы;
  - сохранение правил работы системы в отдельный файл.

Алгоритм работы с программой следующий. Сначала необходимо ипортировать экспериментальные данные их Excel файла, для этого необходимо в главном меню программы выбрать пункт «Файл», подпункт «Открыть исходные данные» (рисунок 3.2). Результат импорта исходных данных представлен на рисунке 3.3.

Затем в правой части главного окна программы необходимо задать параметры генерации правил работы нечеткой системы и нажать кнопку «Сгенерировать правила». После выполнения расчётов правила отобразятся в средней области окна программы (рисунок 3.4).

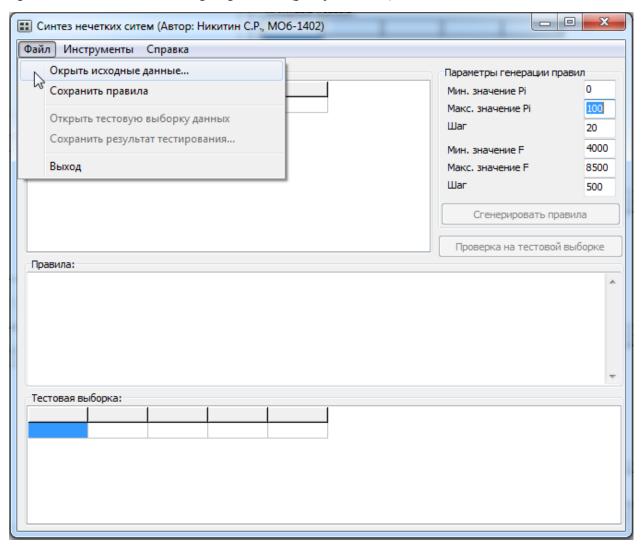



Рисунок 3.2 – Главное окно программы и содержимое пункта меню «Файл»

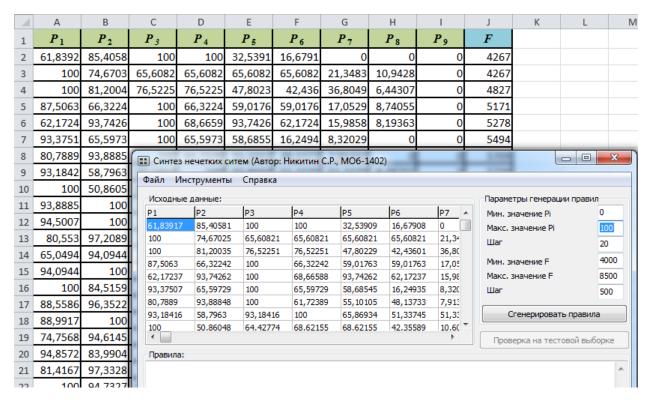



Рисунок 3.3 – Экспорт данных экспериментальных сварок из Excel файла

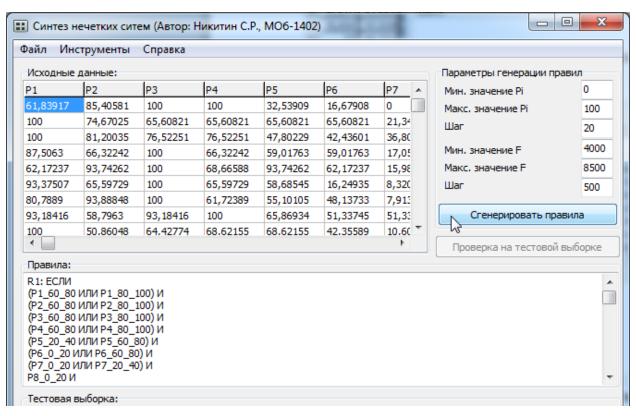



Рисунок 3.4 — Синтез нечеткой системы диагностики с использованием предложенных подходов

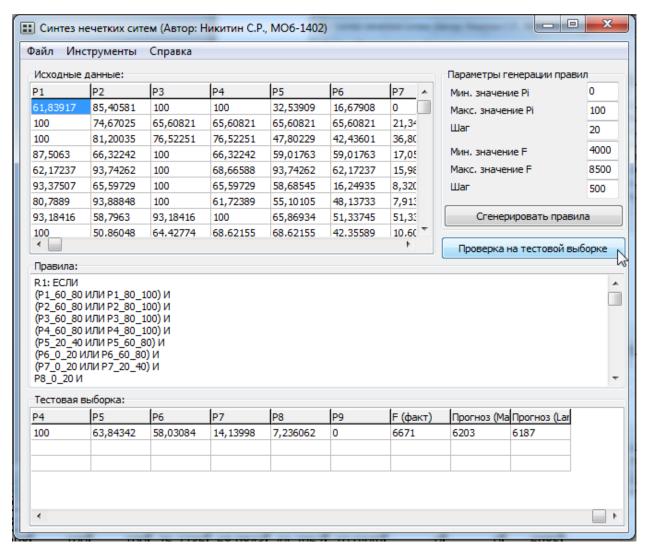



Рисунок 3.5 – Проверка работы системы на тестовой выборке данных

Для проверки работы нечеткой системы можно загрузить тестовую выборку из Excel файла и нажав на кнопку «Проверка на тестовой выборке» получить для каждого элемента выборки выходные значения, рассчитанные по алгоритму Mamdani (предпоследний столбец) и Larsen (последний столбец) (рисунок 3.5).

#### ЗАКЛЮЧЕНИЕ

В результате выполнения бакалаврской работы были сделаны следующие выводы:

- 1. На основе проведенного литературного обзора установлено, что дальнейшее расширение систем диагностики техпроцессов возможно путем использования в них алгоритмов машинного обучения.
- 2. Анализ алгоритмов синтеза нечетких систем показал, что их широкое использование осложнено за счет необходимости привлечение экспертов из предметной области и "ручной" правил работы системы программистом. Поэтому актуальными являются исследования направленный на автоматизацию синтеза нечетких систем.
- 3. Разработан алгоритм автоматизированного синтеза нечетких систем, основанный на анализе экспериментальных данных. Он заключается в разбиении области определения входных и выходных параметров на равные основе на основе диапазоны, введение на данных диапазонов лингвистических переменных и формулирования для каждого диапазона области определения выходной переменной (на основе экспериментальных данных) по одному правилу. Для расчета выхода системы могут быть использованы стандартных алгоритмы - Mamdani и Larsen. Подробное описание приведено во второй главе.
- 4. Предложенный алгоритм автоматизированного синтеза нечеткой системы был использован для создания нечеткой системы диагностики контактной сваркой. Входными параметрами которой являются данные об изменения коэффициента мощности в процессе сварки. Такая система позволяет прогнозировать силу разрушения сварного соединения с точностью не менее 90%. При этом показатель RMSE составляет 480 H.
- 5. В результате выполнения бакалаврской работы было реализовано программное обеспечение позволяющее демонстрировать предложенные подходы по синтезу нечетких систем на практике.

В ходе выполнения бакалаврской работы было опубликовано четыре статьи на тему практического применения алгоритмов машинного обучения [17-20].

Основные результаты работы были доложены на IV Международной научно-практической конференции (школы-семинара) молодых ученых «Прикладная математика и информатика: современные исследования в области естественных и технических наук»

## СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Управление тепловыми и металлургическими процессами при контактной сварке с применением систем искусственного интеллекта : отчет о НИР (промежуточ.) / Тольяттинский государственный университет; рук. Климов В. С. Тольятти, 2016. 50 с. Исполн.: Климов А. С., Кудинов А. К. № ГР 115020230051.
- 2. Weihong, Z. Construction of Mamdani Fuzzy Classifier Based on Genetic Algorithm / Zhou Weihong, Xiong Shunqing // International Conference on Intelligence Computation and Evolutionary Computation (ICEC 2012). Springer-Verlag Berlin Heidelberg, 2013. pp. 583-590
- 3. Jamshidi, M. Takagi-Sugeno Approximation of a Mamdani Fuzzy System / Mo Jamshidi, Vladik Kreinovich, Janusz Kacprzyk // International Conference on Advance Trends in Soft Computing (WCSC 2013). Springer International Publishing Switzerland, 2014. pp. 293-300
- 4. Król, D. Comparison of Mamdani and TSK Fuzzy Models for Real Estate Appraisal / Dariusz Król, Tadeusz Lasota, Bogdan Trawiński, Krzysztof Trawiński // International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES 2007). Springer-Verlag Berlin Heidelberg, 2007. pp. 1008-1015
- 5. Zorlu, K. Prediction of the Collapse Index by a Mamdani Fuzzy Inference System / Kivanc Zorlu, Candan Gokceoglu // International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES 2008). Springer-Verlag Berlin Heidelberg, 2008. pp. 74-81
- 6. Saleh, I. Comparison of Mamdani and Sugeno Fuzzy Logic Performance as Speed Controller / Izzati Saleh, S.N. Alhady, Wan Rahiman // 9th International Conference on Robotic, Vision, Signal Processing and Power Applications: Empowering Research and Innovation. Springer Science+Business Media Singapore, 2017. pp. 369-376
- 7. Gabryel, M. Evolutionary Learning of Mamdani-Type Neuro-fuzzy Systems / Marcin Gabryel, Leszek Rutkowski // International Conference on

- Artificial Intelligence and Soft Computing (ICAISC 2006). Springer-Verlag Berlin Heidelberg, 2006. pp. 354-359
- 8. Antonelli, M. A Three-Objective Evolutionary Approach to Generate Mamdani Fuzzy Rule-Based Systems / Michela Antonelli, Pietro Ducange, Beatrice Lazzerini, Francesco Marcelloni // International Conference on Hybrid Artificial Intelligence Systems (HAIS 2009). Springer-Verlag Berlin Heidelberg, 2009. pp. 613-620.
- 9. Cema, M.A. Mamdani Fuzzy Decision Model for GIS-Based Landslide Hazard Mapping / Monalee A. dela Cerna, Elmer A. Maravillas // The World Congress on Engineering and Computer Science: Transactions on Engineering Technologies (WCECS 2015). Springer Nature Singapore Pte Ltd., 2017. pp. 59-73.
- 10. Tran, C. Adaptation of a Mamdani Fuzzy Inference System Using Neuro-genetic Approach for Tactical Air Combat Decision Support System / Cong Tran, Ajith Abraham, Lakhmi Jain // Australian Joint Conference on Artificial Intelligence (AI 2002). Springer-Verlag Berlin Heidelberg, 2002. pp. 672-680.
- 11. Abate, A.F., A Lightweight Mamdani Fuzzy Controller for Noise Removal on Iris Images / Andrea Francesco Abate, Silvio Barra, Gianni Fenu, Michele Nappi, Fabio Narducci // International Conference on Image Analysis and Processing (ICIAP 2017). Springer International Publishing AG, 2017 pp. 93-103
- 12. Aymerich, F.X. Application of a Mamdani-Type Fuzzy Rule-Based System to Segment Periventricular Cerebral Veins in Susceptibility-Weighted Images / Francesc Xavier Aymerich, Pilar Sobrevilla, Eduard Montseny, Alex Rovira // International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2016). Springer International Publishing Switzerland, 2016. pp. 612-623

- 13. Butkiewicz, B.S. Inference in Fuzzy Models of Physical Processes / Bohdan S. Butkiewicz // International Conference on Computational Intelligence. Springer-Verlag Berlin Heidelberg, 2001. pp. 782-790
- 14. Gadanayak, D.A. A Comparative Study of Two Types of Fuzzy Logic Controllers for Shunt Active Power Filters / D. A. Gadanayak, Irani Majumder // International Conference on Swarm, Evolutionary, and Memetic Computing (SEMCCO 2014). Springer International Publishing Switzerland, 2015. pp. 49-61
- 15. Schmidt, S. Towards Usage Policies for Fuzzy Inference Methodologies for Trust and QoS Assessment / Stefan Schmidt, Robert Steele, Tharam S. Dillon // 9th International Conference on Computational Intelligence, Theory and Applications. Springer Verlag, 2006. pp. 263-274
- 16. Nowicki, R. Rough Sets in the Neuro-Fuzzy Architectures Based on Monotonic Fuzzy Implications / Robert Nowicki // International Conference on Artificial Intelligence and Soft Computing (ICAISC 2004). Springer-Verlag Berlin Heidelberg, 2004. pp. 510-517
- 17. Никитин, С.Р. Применение машинного обучения с подкреплением для поиска оптимальных параметров [Текст] / В.А. Костылев, С.Р. Никитин // IV Международной научно-практической конференции (школы-семинара) молодых ученых «Прикладная математика и информатика: современные исследования в области естественных и технических наук». Тольятти: Изд. ТГУ, 2018. с. хх
- 18. Никитин, С.Р. Применение алгоритма индуктивного машинного обучения ID3 для диагностики качества сварки [Текст] / С.Р. Никитин, М.М. Аврангшоев // IV Международной научно-практической конференции (школы-семинара) молодых ученых «Прикладная математика и информатика: современные исследования в области естественных и технических наук». Тольятти: Изд. ТГУ, 2018. с. 🔀
- 19. Никитин, С.Р. Сегментация изображения с помощью алгоритма кластеризации / Д.А. Александров, С.Р. Никитин // IV Международной

научно-практической конференции (школы-семинара) молодых ученых «Прикладная математика и информатика: современные исследования в области естественных и технических наук». – Тольятти: Изд. ТГУ, 2018. – с.

 $X_X$ 

20. Никитин, С.Р. Реализация алгоритмов машинного обучения в среде МАТLAB / С.Р. Никитин, В.А. Костылев // IV Международной научнопрактической конференции (школы-семинара) молодых ученых «Прикладная математика и информатика: современные исследования в области естественных и технических наук». – Тольятти: Изд. ТГУ, 2018. – с.