МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт энергетики и электротехники

Кафедра «Электроснабжение и электротехника»

<u>13.04.02 Электроэнергетика и электротехника</u> (код и наименование направления подготовки, специальности)

Режимы работы электрических источников питания, подстанций, сетей и

<u>СИСТЕМ</u> (направленность (профиль))

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

на тему <u>«Модернизация системы возбуждения гидрогенератора ГЭС</u> «Сангтуда – 1» Дангарского района Республики Таджикистан»

Студент	Ч.Э. Миралибеков	
Научный	(И.О. Фамилия) В.П. Тараканов	(личная подпись)
руководитель	(И.О. Фамилия)	(личная подпись)
Руководитель программ	ы д.т.н., профессор В.В. Вахнина	
	(ученая степень, звание, И.О. Фамилия)	(личная подпись)
«»	_2017 Г.	
Лопустить к защите		
Departure water	TTU Unotheren D.D. Devuuue	
заведующий кафедрой	<u>Д.Т.Н., Профессор Б.Б. Бахнина</u> (ученая степень, звание, И.О. Фамилия)	(личная подпись)
«»	_2017 г.	
	Тольятти 2017	

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 4
1 Сравнительный анализ системы возбуждения синхронных генераторов
расчет и выбор измерительных Тр и микропроцессорных реле 6
1.1 Неявнополюсный генератор без АРВ ($E_q = const$)
1.2 Явно полюсный генератор без АРВ 10
1.4. Генератор снабжены АРВ сильного действия 14
1.5 Частотный критерии устойчивости 22
1.6 Расчет токов короткого замыкания 35
1.7 Выбор измерительных трансформаторов тока и напряжения
1.8 Расчёт защита блока генератор-трансформатор 40
1.9 Поперечная дифференциальная защита генератора 42
1.10 Защита от повышения напряжения 44
1.11 Максимальная токовая защита 46
1.12 Продольная дифференциальная защита трансформатора 48
1.13 Максимальная токовая защита 52
1.14 Максимальная токовая защита с пуском по напряжения 53
1.15 Защита от Перегрузки 54
1.16 Выбор микропроцессорных реле 55
Выводы по главе 1 56
2 Системы возбуждения гидрогенераторов и исследование режимов
работы системы тристорного возбуждения в стационарных и переходных
режимах
2.1 Электромашинная система возбуждения с генератором постоянного
тока
2.2 Высокочастотная система возбуждения с неуправляемыми
полупроводниковыми выпрямителями 59
2.3 Независимая система возбуждения с управляемыми вентилями 60

2.4 Бесконтактная система возбуждения 61
2.5 Схема самовозбуждения с управляемыми вентилями 62
2.6 Системы оснащения гидрогенераторов 63
2.7. Системы тиристорного независимого возбуждения (СТН) 65
2.8. Системы бесщеточные диодные (СБД) 66
2.9. Определение параметров системы возбуждения 69
2.10 Расчет тиристорного системы возбуждения 69
2.11 Расчет и выбор тиристорного выпрямителя 71
2.12 Регулировочная и внешняя характеристики выпрямителя
2.13 Коэффициент полезного действия выпрямителя 79
2.14 Высшие гармоники в кривой выпрямленного напряжения и
первичного тока выпрямителя
Выводы по главе 2
3 Экономическое расчет модернизированной системы возбуждения ГЭС
«Сангтуда-1»
3.1 Расчет капитальных затрат 86
3.2 Расчет амортизационных отчислений 87
3.3 Расчет технико-экономических показателей 87
Выводы по главе 391
4 Компьютерное моделирование системы возбуждения гидрогенератора и
описание модели в Matlab
4.1 Моделирование процесса возбуждения
Выводы по главе 496
Заключение
Список использованных источников 98

Введение

Для оценки качества формирования энергосистемы необходимо рассмотреть вопрос статической и динамической устойчивости. Любая энергосистема начинается с генератора, преобразующего известные виды энергии в электрическую. Статическая и динамическая устойчивость оказывает характер влияния на процессы, происходящие в энергосистеме. Рассмотрение любого переходного процесса в энергосистеме надо начинать с источника электрической энергии, а, следовательно, устойчивость энергосистемы на макроуровне обеспечивается генераторами.

Исследование переходных процессов даже на макроуровне энергосистемы — это сложная задача, поскольку очень тяжело учесть все факторы и процессы, происходящие в энергосистеме. Сложность заставляет идеализировать эти процессы. Поэтому дисциплина «Переходные процессы в электрических системах» условно делятся на две части: часть первое – «Электромагнитные переходные процессы», где изучаются вопросы, связанные К.З.. непосредственно с протеканием процессов И второе «Электромеханические переходные процессы», связанные в основном С относительного движения роторов синхронных явлениями машин И устойчивостью их параллельной работы.

В данной диссертационный работе рассматривается вторая часть дисциплины «Электромеханические переходные процессы».

Энергетические системы все в большей степени становится и будут становится автоматически регулируемыми сложными системами, все с большей степенью приближаясь к самообслуживающимся системам с исключением человеческого участия. Данный факт не только не противоречит вышесказанному, а даже на против его усиливает.

Цель работы: в данной магистерской диссертации рассматривается модернизация системы возбуждения Сангтуденской ГЭС мощность генераторов, которой равна 167,5МВт. Модернизация будет происходить путем

4

замены, устаревшей статической тиристорной системы возбуждения, на более современную цифровую систему возбуждения с микропроцессорным управлением.

Задачи:

1.Расчет АРВ сильного и пропорционального типов действия, а также экономическое сравнение с существующей статической тиристорной системой возбуждения.

2. Определение параметров электрических схем систем возбуждения и анализ существующей электрической схемы статической системы возбуждения.

3. Анализ работы тиристорной системы возбуждения гидрогенератора и исследование основных требований к системе управления возбуждением.

4. Моделирование процесса возбуждения и описание модели в Matlab.

1 Сравнительный анализ системы возбуждения синхронных генераторов, расчет и выбор измерительных Тр и микропроцессорных реле защиты

Рисунок 1.1 - Исходная схема ГЭС «Сангтуда-1»

Рисунок 1.2 - Схема замещения ГЭС «Сангтуда-1»

Исходные данные для расчета устойчивости представлены в таблице 1.1,1.2.

ТИП	S _H	P _H	cos φ	U _H	n _{син}	X ["] _d	X _d	X _d	X_q
	MBA	MBm		кВ	Об/мин				
CB-1500/175-84	186,1	167,5	0.9	15.75	100	0,27	0,38	1,1	0.66

Таблица 1.1-Исходные данные гидрогенератора

Таблица 1.2-Исходные данные Тр, АТ

	Тип	S _H	U _{BH}	U _{CH}	U _{HH}	U _{k%}	U _{k%}	U _{k%}
		MBA	кВ	кВ	кВ	BH-	BH-	CH-
						СН	HH	HH
Тр	ТЦ-200000 (220-76-	200	242	-	15,75	-	11	-
	У1)							
AT	АТДЦТН-	125	230	121	10,5	-	11	-
	125000/220/110/10							

В качестве базисной мощности принимаем передаваемую активную мощность, $S_6 = P_0$, а в качестве основной ступени будем принимать напряжение системы.

Базисная мощность ступени будет равна:

$$S_{6} = P_{0} = 165, 5 \cdot 4 \cdot 0, 6 = 397, 68MBA.$$
 (1.1)

За основную ступень принимаем напряжения приёмной станции - $U_{_{\rm focrHII}} = 121 \kappa B.$

Определяем напряжение остальных ступеней:

$$U_{\rm 6II} = U_{\rm for HII} \cdot K_{\rm TA} = 121 \cdot \frac{230}{121} = 230 \text{ kB}; \tag{1.2}$$

$$U_{61} = U_{611} \cdot K_{T} = 230 \cdot \frac{15,75}{242} = 14,97 \text{KB}.$$
(1.3)

Для расчетов нам необходимо определить реактивное сопротивление всех элементов системы, поскольку активным мы пренебрегаем.

Находим сопротивление всех элементов:

$$X_{dr}^{\cdot} = X_{d}^{\cdot} \cdot \frac{S_{E}}{S_{Hr1}} \cdot \left(\frac{U_{Hr}}{U_{E1}}\right)^{2} = 0.33 \cdot \frac{397,68}{186,1} \cdot \left(\frac{15,75}{14,97}\right)^{2} = 0,899 \text{ o.e;}$$
(1.4)

$$X_{dr} = X_{d} \cdot \frac{S_{b}}{S_{Hr1}} \cdot \left(\frac{U_{Hr}}{U_{b1}}\right)^{2} = 1, 1 \cdot \frac{397, 68}{186, 1} \cdot \left(\frac{15, 75}{14, 97}\right)^{2} = 2,602 \text{ o.e;}$$
(1.5)

$$X_{qr} = X_{q} \cdot \frac{S_{E}}{S_{Hr1}} \cdot \left(\frac{U_{Hr}}{U_{E1}}\right)^{2} = 0,66 \cdot \frac{397,68}{186,1} \cdot \left(\frac{15,75}{14,97}\right)^{2} = 1,561 \text{ o.e;}$$
(1.6)

$$X_{T} = \frac{U_{\kappa}}{100} \cdot \frac{S_{E}}{S_{T}} \cdot \left(\frac{U_{BH}}{U_{BH}}\right)^{2} = \frac{11}{100} \cdot \frac{397,68}{200} \cdot \left(\frac{397,68}{230}\right)^{2} = 0,242 \text{ o.e;}$$
(1.7)

$$X_{AT} = \frac{U_{\kappa}}{100} \cdot \frac{S_{E}}{S_{H}} \cdot \left(\frac{U_{cH}}{U_{EH}}\right)^{2} = \frac{11}{100} \cdot \frac{397,68}{125} \cdot \left(\frac{121}{121}\right)^{2} = 0,349 \text{ o.e;}$$
(1.8)

$$X_{\pi} = X_0 \cdot L \cdot \frac{S_{E}}{U_{EII}^2} = 0.41 \cdot 33 \cdot \frac{397,68}{230^2} = 0,102 \text{ o.e.}$$
 (1.9)

Исходя из номинальных параметров системы $U_{c^*} = 1$ ое, $P_o = 397,68$ MBr, $\cos \phi_o = 0,9$ произведем расчет номинальной активной и реактивной мощности:

$$Q_0 = P_0 \cdot \tan \phi_0 = P_0 \cdot tg(\arccos \phi_0) = 397, 68 \cdot tg(\arccos 0,9) = 192, 605 \text{MBap};$$
 (1.10)

$$P_{o^*} = \frac{P_0}{S_{\rm b}} = \frac{397,68}{397,68} = 1 \text{ o. e;}$$
(1.11)

$$Q_{o^*} = \frac{Q_0}{S_b} = \frac{192,605}{397,68} = 0,484 \text{ o.e.}$$
 (1.12)

Для расчета необходимо упростить схему замещения (рисунок 1.2) и привести ее к одной лучевой схеме замещения. Произведем расчет эквивалентных элементов схемы замещения. Упрощение элементов схемы замещения рассчитаем по формулам (1.13-1.19):

$$X_1 = \frac{X'_{dr}}{n_r} = \frac{0,899}{4} = 0,225 \text{ o.e};$$
 (1.13)

$$X_2 = \frac{X_{dr}}{n_r} = \frac{2,602}{4} = 0,651 \text{ o.e};$$
(1.14)

$$X_{3} = \frac{X_{qr}}{n_{r}} = \frac{1,561}{4} = 0.39 \text{ o.e.}$$
(1.15)

Определяем сопротивление системы:

$$X_{\rm C} = \frac{X_{\rm T}}{n_{\rm m}} + \frac{X_{\rm A}}{n_{\rm A}} + \frac{X_{\rm AT}}{n_{\rm AT}} = \frac{0,242}{4} + \frac{0,102}{2} + \frac{0,349}{2} = 0,285 \text{ o.e.}$$
(1.16)

Определяем суммарное сопротивление:

$$X'_{d\Sigma} = X_{C} + X_{1} = 0,285 + 0,225 = 0,51 \text{ o.e};$$
 (1.17)

$$X_{d\Sigma} = X_c + X_2 = 0,285 + 0,651 = 0,936 \text{ o.e};$$
 (1.18)

$$X_{q\Sigma} = X_c + X_3 = 0,285 + 0,39 = 0,675 \text{ o.e.}$$
 (1.19)

В результате расчетов мы получили суммарные сопротивления необходимых элементов сети для последующего расчета статической устойчивости электрической системы.

1.1 Неявнополюсный генератор без APB (Eq=const)

Произведем расчет неявнополюсного генератора без APB (Eq=const):

Для расчета статической устойчивости и коэффициента запаса статической устойчивости нам необходимо определить ЭДС генератора с учетом угла положения ротора.

Определяем ЭДС генератора по формуле (1.21) и угол положения ротора (1.22):

$$E_{q} = \sqrt{\left(U_{C} + \frac{Q_{*0} \cdot X_{d\Sigma}}{U_{C}}\right)^{2} + \left(\frac{P_{*0} \cdot X_{d\Sigma}}{U_{C}}\right)^{2}} = \sqrt{\left(1 + \frac{0,484 \cdot 0,936}{1}\right)^{2} + \left(\frac{1 \cdot 0,936}{1}\right)^{2}} = 1,728 \text{ o.e;}$$
(1.1.1)

$$\delta = \operatorname{arctg} \frac{P_{*0} \cdot X_{d\Sigma}}{U_{c}^{2} + Q_{*0} \cdot X_{d\Sigma}} = \operatorname{arctg} \frac{1 \cdot 0,936}{1^{2} + 0.484 \cdot 0,936} = 32,788^{\circ}.$$
(1.1.2)

Определяем предел передаваемой мощности:

$$P_{np} = \frac{E_q \cdot U_C}{X_{d\Sigma}} \cdot \sin \delta_{np} = \frac{1,728 \cdot 1}{0,936} \cdot \sin 90^0 = 1,846 \text{ oe}, \qquad (1.1.3)$$

где - $\delta_{\rm np}=90^{\rm 0}$

Определяем коэффициент запаса статической устойчивости:

$$K_{3} = \frac{P_{np} - P_{*0}}{P_{*0}} \cdot 100\% = \frac{1,846 - 1}{1} \cdot 100\% = 84,6\%.$$
(1.1.4)

Полученные результаты сводим в таблицу 1.3.

Таблица 1.3 - Предел зависимости передаваемой мощности от угла для неявнополюстного генератора без АРВ (Eq=const)

δ	0	10	20	30	40	50	60	70	80	90	100
P _{np}	0	0,32	0,63	0,932	1.186	1,41	1,6	1,73	1.818	1,846	1,818
δ	110	120	130	140	150	160	170	180			
δ	110	120	130	140	150	160	170	180			

1.2 Явнополюсный генератор без АРВ

Произведем расчет явнополюсного генератор без АРВ:

$$E_{Q} = \sqrt{\left(U_{C} + \frac{Q_{*0} \cdot X_{q\Sigma}}{U_{C}}\right)^{2} + \left(\frac{P_{*0} \cdot X_{q\Sigma}}{U_{C}}\right)^{2}} = \sqrt{\left(1 + \frac{0,484 \cdot 0,675}{1}\right)^{2} + \left(\frac{1 \cdot 0,675}{1}\right)^{2}} = 1,4880.e,$$
(1.2.1)

где угол между E_{ϕ} и U_{c} будет равен:

$$\delta = \operatorname{arctg} \frac{P_{*0} \cdot X_{q\Sigma}}{U_{C} + Q_{*0} \cdot X_{q\Sigma}} = \operatorname{arctg} \frac{1 \cdot 0,675}{1 + 0,484 \cdot 0,675} = 27^{\circ};$$
(1.2.2)

$$E' = \sqrt{\left(U_{C} + \frac{Q_{*0} \cdot X'_{d\Sigma}}{U_{C}}\right)^{2} + \left(\frac{P_{*0} \cdot X'_{d\Sigma}}{U_{C}}\right)^{2}} = \sqrt{\left(1 + \frac{0,484 \cdot 0,51}{1}\right)^{2} + \left(\frac{1 \cdot 0,51}{1}\right)^{2}} = 1,347 \text{ o.e}$$
;
(1.2.3)

$$\delta' = \operatorname{arctg} \frac{P_{*_0} \cdot X'_{d\Sigma}}{U_C + Q_{*_0} \cdot X'_{d\Sigma}} = \operatorname{arctg} \frac{1 \cdot 0,51}{1 + 0,484 \cdot 0,51} = 22,246^{\circ};$$
(1.2.4)

$$E_{q} = E_{Q} \cdot \frac{X_{2} - X_{1}}{X_{3} - X_{1}} - E_{q} \cdot \frac{X_{2} - X_{3}}{X_{3} - X_{1}} = 1,488 \cdot \frac{0,651 - 0,22}{0,39 - 0,225} - 1,342 \cdot \frac{0,651 - 0,39}{0,39 - 0,225} = 1,719 \text{ o.e;}$$
(1.2.5)

$$E'_{q} = E' \cos(\delta - \delta') = 1,347 \cos(27 - 22,246) = 1,3420.e;$$
 (1.2.6)

$$P_{np} = \frac{E_{q} \cdot U_{C}}{X_{d\Sigma}} \cdot \sin \delta_{np} + \frac{U_{C}^{2}}{2} \cdot \frac{X_{dr} - X_{qr}}{X_{d\Sigma} \cdot X_{q\Sigma}} \cdot \sin 2\delta_{np}; \qquad (1.2.7)$$

$$A = \frac{E_{q} \cdot U_{C}}{X_{d\Sigma}} = \frac{1,719 \cdot 1}{0,936} = 1,836 \text{ o.e};$$
(1.2.8)

$$\mathbf{B} = \frac{\mathbf{U}_{\rm C}^{\ 2}}{2} \cdot \frac{\mathbf{X}_2 - \mathbf{X}_3}{\mathbf{X}_{\rm d\Sigma} \cdot \mathbf{X}_{\rm q\Sigma}} = \frac{1^2}{2} \cdot \frac{0,651 - 0,39}{0,936 \cdot 0,675} = 0,206 \text{ o.e};$$
(1.2.9)

$$\mathbf{P}_{np} = \mathbf{A} \cdot \sin \delta_{np} + \mathbf{B} \cdot \sin 2\delta_{np} = 1.657 \cdot \sin \delta_{np} + 0.207 \cdot \sin 2\delta_{np}; \qquad (1.2.10)$$

 $\frac{dP}{d\delta} = A \cdot \sin \delta_{np} + B \cdot \sin 2\delta_{np} = A \cdot \cos \delta_{np} + 2 \cdot B \cdot \cos 2\delta_{np} = A \cdot \cos \delta_{np} + 2 \cdot B \cdot (\cos \delta_{np}^{2} - 1)$ (1.2.11) ;

$$\mathbf{A} \cdot \cos \delta_{\mathrm{np}} + 4 \cdot \mathbf{B} \cdot \cos \delta_{\mathrm{np}}^{2} - 2 \cdot \mathbf{B} = 0; \qquad (1.2.12)$$

$$\cos 2\delta_{\rm np} = 2 \cdot \cos \delta_{\rm np}^2 - 1; \qquad (1.2.13)$$

$$\cos \delta_{\rm np} = X; \qquad (1.2.14)$$

$$4 \cdot B \cdot X^{2} + A \cdot X - 2 \cdot B = 0; \qquad (1.2.15)$$

$$0,206 \cdot X^{2} + 1,836 \cdot X - 2 \cdot 0,206 = 0; \qquad (1.2.16)$$

$$0,824 \cdot X^{2} + 1,836 \cdot X - 0,412 = 0; \qquad (1.2.17)$$

$$D = b^{2} - 4 \cdot a \cdot c = 1,836 - 4 \cdot 1,412 \cdot -0,824 = 4,729; \qquad (1.2.18)$$

$$X_{1} = \frac{-b + \sqrt{D}}{2 \cdot a} = \frac{-1,836 + \sqrt{4,729}}{2 \cdot 0,824} = 0,205;$$
(1.2.19)

$$X_{2} = \frac{-b - \sqrt{D}}{2 \cdot a} = \frac{-1,836 - \sqrt{4,729}}{2 \cdot 0,824} = -2,433;$$
(1.2.20)

$$\delta_{np} = \arccos X_1 = \arccos 0,205 = 78,17^\circ;$$
 (1.2.21)

$$P_{np} = A \cdot \sin \delta_{np} + B \cdot \sin 2\delta_{np} = 1,836 \cdot \sin 78,17 + 0,206 \cdot \sin 2 \cdot 78,17 = 1,879 \text{ o.e.}$$
(1.2.21)

Определяем коэффициент запаса статической устойчивости генератора без APB:

$$K_{3} = \frac{P_{np} - P_{*0}}{P_{*0}} \cdot 100\% = \frac{1,879 - 1}{1} \cdot 100\% = 87,9\%.$$
(1.2.22)

Полученные результаты сводим в таблицу 1.4.

Таблица 1.4 - Предел зависимости передаваемой мощности от угла для явнополюстного генератора без АРВ

δ	0	10	20	30	40	50	60	70	80	90	100
P _{np}	0	0,389	0,76	1,09	1,38	1,60	1,76	1,857	1,87	1,83	1,73
δ	110	120	130	140	150	160	170	180			
P _{np}	1,5	1,41	1,2	0,98	0,74	0,49	0,14	0			

1.3 Генераторы, снабженные АРВ пропорционального типа действия

Произведем расчет параметров генераторов, снабженных APB пропорционального типа. Расчет производим аналогично главе 1.2.

Параметры генератора:

$$P_{np} = A \cdot \sin \delta_{np} - B \cdot \sin 2\delta_{np}; \qquad (1.3.1)$$

$$A = \frac{E'_{q} \cdot U_{C}}{X'_{d\Sigma}} = \frac{1,342 \cdot 1}{0,51} = 2,6310.e; \qquad (1.3.2)$$

$$\mathbf{B} = \frac{\mathbf{U}_{c}^{2}}{2} \cdot \frac{\mathbf{X}_{3} - \mathbf{X}_{1}}{\mathbf{X}_{d\Sigma} \cdot \mathbf{X}_{q\Sigma}} = \frac{1^{2}}{2} \cdot \frac{0,39 - 0,225}{0,675 \cdot 0,51} = 0,239 \text{ o.e};$$
(1.3.3)

$$\cos \delta_{\rm m} = X; \qquad (1.3.4)$$

$$4 \cdot B \cdot X^{2} - A \cdot X - 2 \cdot B = 0; \qquad (1.3.5)$$

$$4 \cdot 0,239 \cdot X^2 - 2,631 \cdot X - 2 \cdot 0,239 = 0; \qquad (1.3.6)$$

$$0,956 \cdot X^2 - 2,631 \cdot X - 0,478 = 0; \qquad (1.3.7)$$

$$D = b^{2} - 4 \cdot ac = 2,631^{2} - 4 \cdot 0,956 \cdot -0,478 = 8,75; \qquad (1.3.8)$$

$$X_{1} = \frac{-b + \sqrt{D}}{2a} = \frac{2,631 + \sqrt{8,75}}{2 \cdot 0,956} = 2,923;$$
(1.3.9)

$$X_{2} = \frac{-b + \sqrt{D}}{2a} = \frac{2,631 - \sqrt{8,75}}{2 \cdot 0,956} = -0,171;$$
(1.3.10)

$$\delta_{np} = \arccos X_2 = \arccos -0.171 = 99.846;$$
 (1.3.11)

$$P_{np} = A \cdot \sin \delta_{np} - B \cdot \sin 2\delta_{np} = 2,631 \cdot \sin 99,846 - 0.239 \cdot \sin 2 \cdot 199,846 = 2,672 \text{ o.e;} \quad (1.3.12)$$

$$K_{3} = \frac{P_{np} - P_{*0}}{P_{*0}} \cdot 100\% = \frac{2,672 - 1}{1} \cdot 100\% = 167,2\%.$$
(1.3.13)

Полученные результаты сведены в таблицу 1.5.

Таблица 1.5 - Предел зависимости передаваемой мощности от угла, для генераторов, которые снабжены АРВ пропорционального типа

δ	0	10	20	30	40	50	60	70	80	90	100
P _{np}	0	0,37	0,756	1,108	1.456	1.78	2,07	2,318	2,51	2,631	2,67
δ	110	120	130	140	150	160	170	180			
P _{np}	2,626	2,485	2,25	1,926	1,52	1,05	0,538	0			

1.4. Генераторы, снабженные АРВ сильного действия

Произведем расчет параметров генераторов, снабженных АРВ сильного действия.

Определим напряжение генератора:

$$U_{\Gamma} = \sqrt{\left(U_{C} + \frac{Q_{*0} \cdot X_{C}}{U_{C}}\right)^{2} + \left(\frac{P_{*0} \cdot X_{C}}{U_{C}}\right)^{2}} = \sqrt{\left(1 + \frac{0,484 \cdot 0,285}{1}\right)^{2} + \left(\frac{1 \cdot 0,285}{1}\right)^{2}} = 1,173 \text{ o.e.} \quad (1.4.1)$$

Где угол δ_c между U_{Γ} и U_{C} равен:

$$\delta_{\rm c} = \operatorname{arctg} \frac{P_{*0} \cdot X_{\rm C}}{U_{\rm C} + Q_{*0} \cdot X_{\rm C}} = \operatorname{arctg} \frac{1 \cdot 0,285}{1 + 0,484 \cdot 0,285} = 14,06^{\circ}.$$
(1.4.2)

Определяем напряжение генератора U_{Γ_q} :

$$U_{\Gamma q} = U_{\Gamma} \cdot \cos \delta - \delta_{c} = 1,173 \cdot \cos 27^{0} - 14,06^{0} = 1,143 \text{ oe} .$$
(1.4.3)

Произведем расчет предела передаваемой мощности P_{пp}:

$$A = \frac{U_{\Gamma q} \cdot U_{C}}{X_{C}} = \frac{1,173 \cdot 1}{0,285} = 4,116;$$
(1.4.4)

$$B = \frac{U_{c}^{2}}{2} \cdot \frac{X_{3}}{X_{q\Sigma} \cdot X_{c}} = \frac{1^{2}}{2} \cdot \frac{0,39}{0,675 \cdot 0,285} = 1,013;$$
(1.4.5)

$$\mathbf{P}_{\rm np} = \mathbf{A} \cdot \sin \delta_{\rm np} - \mathbf{B} \cdot \sin 2\delta_{\rm np} ; \qquad (1.4.6)$$

$$\frac{dP}{d\delta} = A \cdot \sin \delta_{np} - B \cdot \sin 2\delta_{np} = A \cdot \cos \delta_{np} - 2 \cdot B \cos 2\delta_{np} = A \cos \delta_{np} - 2 \cdot B (\cos \delta_{np}^{2} - 1) =$$
(1.4.7)
= $A \cos \delta_{np} - 4 \cdot B \cos \delta_{np}^{2} + 2B = 0.$

$$\cos 2\delta_{\rm np} = 2 \cdot \cos \delta_{\rm np}^2 - 1; \qquad (1.4.8)$$

$$\cos \delta_{np} = X ; \qquad (1.4.9)$$

$$4 \cdot B \cdot X^2 - A \cdot X - 2B = 0; \qquad (1.4.10)$$

$$4 \cdot 1,013 \cdot X^2 - 4,116 \cdot X - 2 \cdot 1,013 = 0; \qquad (1.4.11)$$

 $4,052 \cdot X^2 - 4,116 \cdot X - 2,026 = 0; \qquad (1.4.12)$

$$D = b^{2} - 4 \cdot ac = 4,116^{2} - 4 \cdot 4,052 \cdot -2,026 = 49,779; \qquad (1.4.13)$$

$$X_{1} = \frac{-b + \sqrt{D}}{2 \cdot a} = \frac{4,116 + \sqrt{49,779}}{2 \cdot 4,052} = 1.378; \qquad (1.4.14)$$

$$X_{2} = \frac{-b - \sqrt{D}}{2 \cdot a} = \frac{4,116 - \sqrt{49,779}}{2 \cdot 4,052} = -0,362; \qquad (1.4.15)$$

$$\delta_{np} = \arccos X_2 = \arccos -0.362 = 111,223^{\circ};$$
 (1.4.16)

$$P_{np} = A \cdot \sin \delta_{np} - B \cdot \sin 2\delta_{np} = 4,116 \cdot \sin 111,223^{\circ} - 1,013 \cdot \sin 2 \cdot 111,223^{\circ} = 4,52 \text{ o.e.} \quad (1.4.17)$$

Коэффициент запаса статической устойчивости будет равен:

$$K_{3} = \frac{P_{np} - P_{*0}}{P_{*0}} \cdot 100\% = \frac{4,32 - 1}{1} \cdot 100\% = 352\%.$$
 (1.4.18)

Полученные результаты предела зависимости передаваемой мощности с учетом угла положения ротора, для генераторов с АРВ сильного типа действи вносим в таблицу 1.6.

генера	генераторов, которые снабжены АРВ сильного типа действия											
δ	0	10	20	30	40	50	60	70	80	90	100	
P _{np}	0	0,368	0,756	1,06	1,648	2,155	2,68	3,21	3,7	4,11	4,4	
δ	110	120	130	140	150	160	170	180				
P _{np}	4,52	4,44	4,15	3,64	2.935	2,06	1,06	0				

Таблица 1.6 - Предел зависимости передаваемой мощности от угла, для генераторов, которые снабжены АРВ сильного типа действия

Рисунок 1.3-Предел передаваемой мощности при ограниченном

изменении угла

Электростанции, работающие на дальние лини электропередач, выдают в

систему неограниченную мощность, поэтому для создания условий статической устойчивости, производится настройка АРВ. АРВ как любая система управления должна реагировать на изменение контролируемого параметра и иметь жесткую или гибкую обратную связь с энергосистемой.

Находим область параметров настройки $T_e=T_{eo}+K_{roc}$, K_{ou} , обеспечивающие возможность статической устойчивости, регулируемой электроэнергетической системы, работающей в режиме $\delta_o=90^{\circ}$, $U_r=U=1$ и имеющей следующие параметры (синхронная машина неявнополюсная) $X_d = 0,651$; $X_d = 0,225$; $X_c = 0,285$; $X_a = 0,39$; $T_{do} = 5.3c$.

$$T_{i}=2,74 \cdot 10^{-6} (GD^{2}/S_{n}) n^{2}=2,74 \cdot 10^{-6} \cdot (8200/186,1) \cdot 71,5^{2}=6,172c;$$
 (1.4.19)

$$T_{j\delta} = S_r \cdot n \cdot T_j / S\delta \cdot 186, 1 \cdot \frac{6,172}{397,68} = 11,55.$$
(1.4.20)

Используем метод D-разбиения, подробно изложенный выше. Примем форму записи исходных уравнений, в которых время выражается в секундах, углы – в радианах, мощность, напряжение, сопротивления – в относительных единицах. В этом случае числовое значение T_j(c), входящее в расчетные уравнения, определяется как:

$$T_j = T_j/2 \cdot 3, 14 \cdot f = \frac{11,55}{314} = 0,037c$$
 (1.4.21)

Расчеты кривой D- разбиения будем проводить по параметрическим уравнениям. Частные производные, входящие в эти уравнения, вычисляются по упрощенным выражениям с учетом таких параметров $\delta_0 = 90^0$, U_r=U=1. С учетом вышесказанного произведем расчет по упрощенным выражениям:

$$C_{1}=0 \quad C_{2}=(X_{d}-X_{d})/X_{d\Sigma}\cdot X_{d\Sigma}^{\prime}=(0.651-0.225)/0.936\cdot 0.51=0.892; \quad (1.4.22)$$

$$C_{3} = X_{d} / (X_{d\Sigma^{\Box}} \cdot X_{c}) = 0,651 / (0,936 \cdot 0.285) = 2,44;$$
(1.4.23)

$$b_1/b_2 = (X_c/X_{d\Sigma^{\Box}}) \cos \delta_z = 0.285 / (0.936 \cdot 0.718) = 0.218;$$
 (1.4.24)

$$\cos \delta_{e} = \sqrt{1 - \left(\frac{X_{d}}{X_{d\Sigma}}\right)^{2}} = \sqrt{1 - \left(\frac{0,651}{0,936}\right)^{2}} = 0,718; \qquad (1.4.25)$$

$$T_{\rm d}^{\cdot} = T_{\rm do} \frac{X_{\rm d\Sigma}^{\cdot}}{X_{\rm d\Sigma\Delta}} = 5, 3 \cdot \frac{0, 51}{0, 936} = 2,888.$$
 (1.4.26)

Подставляя эти значения, получим расчетные выражения:

$$T_{e} = -T_{d}^{\prime} ((U-C_{2})/T_{J}\omega^{2})) = -2,888((1-0,892)/0,037\omega^{2}); \qquad (1.4.27)$$

$$K_{ou} = -(T_{J}^{2} \omega^{4} + T_{d}^{2} \omega^{2} (T_{J} \omega^{2} - C_{2})^{2}) / (b_{1} / b_{2}) \cdot T_{J} \omega^{2} \cdot (T_{J} \omega^{2} - C_{3})) =$$

$$= -(0,037^{2} \omega^{4} + 2,282^{2} \omega^{2} \cdot (0,037 \omega^{2} - 0,892)^{2}) / (0,218 \cdot 0,037 \omega^{2} (0,037 \omega^{2} - 2,44))$$

$$(1.4.28)$$

$$(1.4.28)$$

$$(1.4.28)$$

Построим кривую D-разбиения при изменении *ω* от 0 да ±∞ по следующим характерным параметрам:

A)
$$\omega = 0;$$
 $T_e \to \infty;$ $K_{ou} = 337,179;$

Б)
$$\omega_1^2 = C_2 / T_J = 0.892 / 0.037 = 24,108 : \omega_1 = 4,91;$$
 (1.4.29)

$$T_e=0$$
: Kou= $-0,169 \cdot 24,108 (0,037 \cdot 24,108 - 2,44) = 2,632;$ (1.4.30)

В) Точка разрыва:

$$\omega_{2}^{2} = C_{3} / T_{J} = 2,44 / 0,037 = 65,946; \omega_{2} = 8,121;$$
 (1.4.31)

$$T_e = -2,888((1 - 0,892)) / (0,037.65,94)) = -1,832.$$
 (1.4.32)

Kou= ±∞
Γ)
$$ω \rightarrow ∞$$
; T_e=-2,88 ;Kou→-∞

Частоты, соответствующие экстремумам кривой D- разбиения, при $0 < \omega < \omega_2$ и $\omega_2 < \omega < 0$ находится из условия $d^2 K_{ou} \omega / d\omega^2 = 0$

C учетом:

$$\omega_3^2 = \omega_3 = ($$
)
 $\omega_4^2 = \omega_4 = ($)

Произведем расчет и найдем координаты точке кривой D- разбиения при ω_3 и ω_4 :

$$\Pi p_{\rm H} \ \omega_{3} = \ T_{\rm e} = - T_{\rm d}^{\cdot} ((U-C_{2})/T_{\rm J}\omega^{2})) = -2,888((1-0,892)/0,037\omega^{2}) = K_{\rm ou} = -(T_{\rm J}^{2}\omega^{4} + T_{\rm d}^{2}\omega^{2}(T_{\rm J}\omega^{2} - C_{2})^{2})/(b_{1}/b_{2}) \cdot T_{\rm J}\omega^{2} \cdot (T_{\rm J}\omega^{2} - C_{3})) = = -(0,037^{2}\omega^{4} + 2,282^{2}\omega^{2} \cdot (0,037\omega^{2} - 0,892)^{2})/(0,218 \cdot 0,037\omega^{2}(0,037\omega^{2} - 2,44))$$

$$= -(0,169\omega^{2} + 1034(0,037\omega^{2} - 0,892)^{2})/(0,037\omega^{2} - 2,44);$$

$$(1.4.33)$$

$$\Pi p_{\rm H} \,\omega_4 = T_{\rm e} = -T_{\rm d}^{\cdot} ((U-C_2)/T_J \omega^2)) = -2,888((1-0,892)/0,037 \omega^2) = K_{\rm ou} = -(T_J^2 \omega^4 + T_{\rm d}^2 \omega^2 ((T_J \omega^2 - C_2)^2)/(b_1/b_2) \cdot T_J \omega^2 \cdot ((T_J \omega^2 - C_3))) = -(0,037^2 \omega^4 + 2,282^2 \omega^2 \cdot (0,037 \omega^2 - 0,892)^2)/(0,218 \cdot 0,037 \omega^2 (0,037 \omega^2 - 2,44))$$

$$= -(0,169 \omega^2 + 1034 (0,037 \omega^2 - 0,892)^2)/(0,037 \omega^2 - 2,44).$$

$$(1.4.34)$$

Найдем особые прямые в точках $\omega = 0$ и $\omega \to \infty$ и нанесем их на плоскость настроечных параметров совместно с характерными точками: $\omega = 0$, $a_n = 0$, $K_{ou} = (-C_1 / C_3) (b_3 / b_1) = 0$; $\omega = 0$, $a_0 = 0$, $T_e = 0$.

Штриховка кривой D- разбиения проводится исходя из знака главного определителя с учетом правил:

Так как при $0 < \omega < \omega_2$ величина знака главного определителя $\Delta > 0$, то при возрастании ω от 0 до ω_2 заштриховываем левую область кривой D - разбиения. При $\omega > \omega_2$ знак главного определителя меняется в результате

заштриховываем правую область кривой D - разбиения при $\omega_2 < \omega < \infty$. Особые прямые штрихуются в соответствии с правилами, как показано на рисунке 1.4. График области D - разбиения (значение занесенное в скобки говорит о количестве корней в первой полуплоскости характеристического уравнения) отмечает область D (0), которая представляет из себя область статической устойчивости, в которой должны проходить значения настроечных параметров регулятора.

На графике видно, что граница статической устойчивости изображена на участке $0 < \omega < \omega_2$ очень грубо и не точно, поэтому при необходимости ее уточнения следуют провести дополнительные расчеты, взяв несколько промежуточных значений в исследуемом диапазоне (на рисунке 1.4 кривой D разбиения нанесены точки с частотами $\omega = 0,7$; 0,8; 0,9; 1:1,2; 1,5:1,6). На основе данных расчета сведенных в таблицу 1.7.

	0,7	0,8	0,9	1	1,2	1,5	1,6	1,8
ω								
T _e	139,2	105,9	83,07	66,73	54,65	45,46	28,05	24,31
K _{ou}	326,06	322,69	318,875	314,627	309,65	304,86	287,13	280,436

Таблица 1.7-Разметка областей D - разбиения

На основе данных таблицы 1.7 была построена кривая D-разбиения при изменении 00 от 0 до \pm^{∞} для исследования статической устойчивости генераторов энергосистемы. Как известно, чтоб определить и достаточно достоверно сказать о границах статической устойчивости необходимо очертить границы устойчивости, исследуемой двух факторной системы и провести исследование одной точки лежащей в этой плоскости одним из известных способом определения статической устойчивости (Гурвица, Михайлова). Если исследуемая точка в данной плоскости будет устойчиво, то это условие будет справедливо и для остальных точек, лежащих в этой плоскости.

19

Рисунок 1.4-Построим кривую D-разбиения при изменении ω от 0 до $\pm \infty$

1.5 Частотные критерии устойчивости

Существует множество критерий устойчивости. Самый распространенный и использующийся в системах автоматического управления критерий устойчивости это частотный. Преимущества частотного критерия устойчивости – это более простая передаточная функция разомкнутой системы; определение устойчивости по частотным характеристикам полученным

экспериментальным путем; возможность исследования переходного процесса по полученной частотной характеристике. В данной работе будет использоваться частотный критерий устойчивости для получения требуемых характеристик.

Существует множество исследователей, которые предложили использовать свой алгоритм исследования устойчивости систем. К примеру критерий устойчивости Михайлова, который первым предложил использовать использованный в радиотехнике Найквистом частотный метод, для анализа устойчивости линейных систем регулирования. В честь него назван критерий устойчивости, который он создал в 1938 г. Используем и рассмотрим его критерий.

Исходя из критерия характеристическое уравнение замкнутой системы имеет вид:

$$D(\lambda) = \lambda^{n} + a_{1}\lambda^{n-1} + a_{2}\lambda^{n-2} + \dots + a_{n} = 0.$$
 (1.5.1)

Для замкнутой системы с автоматическим регулированием характеристическое уравнение имеет вид:

$$D(\lambda) = \lambda^{3} + a_{1}\lambda^{2} + a_{2}\lambda + a_{3} = 0; \qquad (1.5.2)$$

$$\lambda^3 + 0.146\lambda^2 + 8.2\lambda + 2.24 = 0.$$
 (1.5.3)

Определяем коэффициенты устойчивости исходя из уравнения замкнутой системы:

$$a_{0} = \frac{T_{j}}{\omega_{0}} \cdot T_{d} \cdot T_{B} = \frac{14,38}{314} \cdot 4,13 \cdot 2 = 0,38 \text{ o.e}; \qquad (1.5.4)$$

$$a_{1} = \frac{T_{j}}{\omega_{o}} \cdot (T_{d0} + T_{B}) = \frac{14,38}{314} \cdot (1,2+20) = 0,146 \text{ o.e;}$$
(1.5.5)

$$a_{2} = \frac{T_{j}}{\omega_{o}} \cdot T_{d} \cdot T_{B} \left(\frac{E_{d} \cdot U_{C}}{X_{d}} \cdot \cos \delta_{np} - U_{C}^{2} \cdot \frac{X_{d} + X_{d}^{*}}{X_{d} \cdot X_{d}^{*}} \cdot \sin^{2} \delta_{np} \right)$$

= $\frac{14.38}{314} + 1.2 \cdot 2 \cdot \left(-8.17 \cdot \frac{1}{1.31} \cdot \cos 90^{0} + \frac{1,31 + 0,38}{1,31 \cdot 0,38} \cdot 1^{1} \cdot 1 \right) = 8,2 \text{ o.e;}$ (1.5.6)

$$\sin^2 \delta = \frac{1 - \cos 2\delta}{2} = \frac{1 - \cos 290}{2} = \frac{1 - -1}{2} = 1;$$
(1.5.7)

$$a_{3} = T_{d}^{!} \cdot T_{B} \cdot \left(\frac{E_{d}^{\cdot} \cdot U_{C}}{X_{d}} \cdot \cos \delta_{np} - U_{C}^{2} \cdot \frac{X_{d} - X_{d}^{\cdot}}{X_{d} \cdot X_{d}^{\cdot}} \cdot \sin^{2} \delta_{np}\right) \cdot \frac{E_{d}^{\cdot} \cdot U_{C}}{X_{d}} \cdot \cos \delta_{np} =$$
(1.5.8)

$$=1.2 \cdot 2 \cdot \left(-8.17 \cdot \frac{1}{1.31} \cdot \cos 90^{0} + \frac{1.31 + 0.38}{1.31 \cdot 0.38} \cdot 1^{1} \cdot 1\right) \frac{14.38}{314} + 1.2 = 2.24 \text{ o.e;}$$
(1.5.9)

$$a_{3} = \frac{E_{d} \cdot U_{C}}{X_{d}} \cdot \cos \delta_{np} = \frac{-8.17 \cdot 1}{1.31} \cos 90 = 0 \text{ o.e.}$$
(1.5.10)

$$T_{j} = 2,74 \cdot \frac{10^{-6} \text{GD}^{2}}{\text{S}_{_{\rm HT}}} \cdot \text{n}^{2} = 2.74 \cdot \frac{10^{-6} 26500}{394} 200^{2} = 7.37 \text{ cek}; \qquad (1.5.11)$$

$$GD^2 = j \cdot 10^4 = 26500;$$
 (1.5.12)

$$T_{j\delta} = T_j \cdot \frac{S_{\Sigma\Gamma}}{S_{\delta}} = 7,37 \cdot \frac{3 \cdot 394}{603} = 14,38 \text{ cek}; \qquad (1.5.13)$$

$$T_d' = T_d \cdot \frac{X_d'}{X_d} = 4.13 \cdot \frac{0.38}{1.31} = 1.2 \text{ cek};$$
 (1.5.14)

$$T_d = 4,13 \text{ cek}$$
 (1.5.15)

$$T_{_{\rm B}} = 2 \,\,{\rm cek}$$
 (1.5.16)

$$\frac{\mathbf{r}}{\mathbf{X}_{d}} = 0.015 \cdot \mathbf{r} = 0.015 \cdot \mathbf{X}_{d} = 0.015 \cdot 1.31 = 0.02 \text{ сек};$$
 (1.5.17)

$$E_{q}^{!} = \sqrt{\left(U_{C} + \frac{Q_{*0} \cdot X_{\Sigma d}^{!}}{U_{C}}\right)^{2} + \left(\frac{P_{*0} \cdot X_{\Sigma d}^{!}}{U_{C}}\right)^{2}} = \sqrt{\left(1 + \frac{0,62 \cdot 0,672}{1}\right)^{2} + \left(\frac{1 \cdot 0,672}{1}\right)^{2}} = 1,568 \text{ o.e;}$$
(1.5.18)

$$I_{d} = -\frac{E_{q}^{!} \cdot X_{q}}{r^{2} + X_{d}^{!} \cdot X_{q}} = -\frac{1.568 \cdot 0.62}{0.02^{2} + 0.38 \cdot 0.62} = -4.12 \text{ o.e}; \qquad (1.5.19)$$

$$E_{d} = U_{C} \cdot \cos \delta + \sqrt{3} \cdot I_{d} \cdot X_{\Sigma d} = 1 \cdot \cos 90^{\circ} + \sqrt{3} \cdot -4.12 \cdot 1.145 = -8.17 \text{ o.e}; \qquad (1.5.20)$$

$$ω_0 = 2 \cdot \pi f = 2 \cdot 3.14 \cdot 50 = 314 \frac{\text{pag}}{\text{cek}}.$$
(1.5.21)

Необходимо проверить устойчивость системы путем построения годографа Михайлова. Для этого предположим, (λ = jω) тогда уравнение

разделяется на действительную и мнимую части:

$$U' \ \omega = 2.24 - 0.146\omega^2 \ ; \tag{1.5.22}$$

$$V' \omega = \omega \ 8.2 - \omega^2 \ . \tag{1.5.23}$$

Зададимся различным значениями ω и вычислим U' ω и V' ω . Соответствующие вычисления приведены в таблицу 1.8.

Сводим полученные данные мнимой и частотных функций в таблицу 1.8.

Таблица 1.8-Значения мнимой и частотных функций

ω	0	1	1,5	2,5	5	6
U' ω	2,24	2,094	1,91	-1,32	-1,41	-3,02
ν' ω	0	7,2	8,9	4,87	-8,4	-166,8

На рисунке 1.5 по данным таблицы 1.8 построен годограф Михайлова. Исходя из критерия Михайлова: годограф при n=3 обходит в положительном направлении три квадранта. Следовательно, система автоматического регулирования устойчива.

Рисунок 1.5-Годограф Михайлова

На рисунке 1.5 видно кривая с начало растает, но потом постепенно снижается, и система остается устойчива.

Определим для схемы, представленной на рисунке 1.6. предельное время отключение к.з возникшего на центральном участке одной из цепей линии Л (в точке К), считая, что отключение поврежденной лини будет произведено с двух сторон т.е. оба выключателя в конце и вначале линии сработают.

Условия:

а) При трехфазном к.з.

Принять $E_{q} = const$ и $U_{C} = const$

Рисунок 1.6 - Исходная схема рассматриваемой электрической сети

Рисунок 1.7-Схема замещения рассматриваемой электрической сети

Произведем расчет параметров сети.

Суммарное сопротивление системы в нормальном режиме:

$$X_{Hop} = X_1 + \frac{X_{T1}}{n_{T1}} + \frac{X_{T}}{n_{T}} + \frac{X_{AT}}{n_{AT}} = 0.194 + \frac{0.165}{3} + \frac{0.276}{2} + \frac{0.57}{2} = 0.672 \text{ o.e.}$$
(1.5.24)

Определяем ЭДС генератора:

$$E'_{q} = \sqrt{\left(U_{C} + \frac{Q_{*0} \cdot X_{HOP}}{U_{C}}\right)^{2} + \left(\frac{P_{*0} \cdot X_{HOP}}{U_{C}}\right)^{2}} = \sqrt{\left(1 + \frac{0,62 \cdot 0,672}{1}\right)^{2} + \left(\frac{1 \cdot 0,672}{1}\right)^{2}} = 1,568 \text{ o.e.} \quad (1.5.25)$$

Произведем расчет предела передаваемой мощности:

$$P_{np}^{1} = \frac{E'_{q} \cdot U_{C}}{X_{Hop}} \sin \delta_{np} = \frac{1,568 \cdot 1}{0,672} \sin 90 = 2,33 \text{ oe}.$$
(1.5.26)

Схема замещения для послеаварийного режима представлена на рисунке 1.8.

Рисунок 1.8-Схема замещения послеаварийного режима

Произведем расчет параметров системы для послеаварийного режима.

Суммарное сопротивление в послеаварийном режиме:

$$X_{_{\Pi AB}} = X_{_{1}} + \frac{X_{_{T1}}}{n_{_{T1}}} + X_{_{JT}} + \frac{X_{_{AT}}}{n_{_{AT}}} = 0.194 + \frac{0.165}{3} + 0.276 + \frac{0.57}{2} = 0.81 \text{ o.e.}$$
(1.5.27)

Предел передаваемой мощности в послеаварийном режиме:

$$P_{np n/a}^{3} = \frac{E'_{q} \cdot U_{C}}{X_{Hop}} \sin \delta_{np} = \frac{1,568 \cdot 1}{0,81} \sin 90 = 1,935 \text{ o.e.}$$
(1.5.28)

На рисунке 1.9 представлена схема замещения для аварийного режима работы сети. На рисунке 1.10 представлена эквивалентная схема замещения схема на рисунке 1.9.

Рисунок 1.10 – Эквивалентная схема замещения

Произведем расчет параметров исходя из рисунков 1.9,1.10 аварийного режима. Параметры аварийного режима:

$$X_4 = X_1 + \frac{X_{T1}}{n_{T1}} = 0,194 + \frac{0,165}{3} = 0,25 \text{ o.e};$$
 (1.5.29)

$$X_{5} = \frac{X_{\pi}}{n_{\pi}} + \frac{X_{AT}}{n_{AT}} = \frac{0,276}{2} + \frac{0,57}{2} = 0,423 \text{ o.e}; \qquad (1.5.30)$$

$$X_{aB} = X_4 + X_5 + \frac{X_4 \cdot X_5}{X_{K3}^3} = 0,25 + 0,423 + \frac{0,25 + 0,423}{0} = \infty.$$
(1.5.31)

Предел передаваемой мощности:

$$P_{np}^{2} = \frac{E_{q}U_{C}}{X_{d\Sigma}}\sin\delta_{np} = \frac{1,872 \cdot 1}{\infty}\sin90 = 0 \text{ o.e.}$$
(1.5.32)

Определяем предельный угол отключение в момент возникновения трехфазного к.з.

Начальный угол:

$$\delta_0 = \sin^{-1} \frac{P_0}{P_{np}^1} = \sin^{-1} \frac{1}{2,33} = 25,41^0.$$
(1.5.33)

Критический угол:

$$\delta_{\kappa p} = 180 - \sin^{-1} \frac{P_0}{P_{\pi p}^3} = 180 - \sin^{-1} \frac{1}{1,35} = 148,88^0.$$
(1.5.34)

Угол отключения срабатывание выключателя:

$$\delta_{\text{отк пр}} = \cos^{-1} \frac{\frac{\pi}{180} P_0 \cdot \delta_{\text{кp}} - \delta_0 + P_{\text{пp}}^3 \cdot \cos \delta_{\text{кp}} - P_{\text{пp}}^2 \cdot \cos \delta_0}{P_{\text{пp}}^3 - P_{\text{пp}}^2} = (1.5.35)$$
$$= \cos^{-1} \frac{\frac{3.14}{180} \cdot 1 \cdot 148.88^0 - 25.41^0 + 1.935 \cdot \cos 148.88^0 - 0 \cdot \cos 25.41^0}{1.935 - 0} = 75.117^0.$$

Определяем постоянную времени обусловленную инерционностью масс всех механических элементов генератора:

$$T_{j} = 2,74 \cdot \frac{10^{-6} \text{GD}^{2}}{\text{S}_{\text{HF}}} \cdot n^{2} = 2.74 \cdot \frac{10^{-6} 26500}{394} 200^{2} = 7.37 \text{ cek;}$$
(1.5.36)

$$GD^2 = j \cdot 10^4 = 26500;$$
 (1.5.37)

$$T_{j\delta} = T_j \cdot \frac{S_{\Sigma\Gamma}}{S_{\delta}} = 7,37 \cdot \frac{3 \cdot 394}{603} = 14,38 \text{ сек}.$$
 (1.5.38)

Определяем время отключения:

$$t_{\text{откл п}} = \sqrt{\frac{\delta_{\text{отк пр}} - \delta_0 \cdot T_{j\delta}}{9000 \cdot P_0}} = \sqrt{\frac{75.114 - 25.41 \cdot 14.38}{9000 \cdot 1}} = 0.282 \text{ cek}.$$
(1.5.39)

Для оценки динамический устойчивости необходимо использовать метод фазовой плоскости, поскольку мы исследуем нелинейную систему.

Для схемы, указанной на рисунке 1.11, выполняем расчет динамической устойчивости методом фазовой плоскости.

Рисунок 1.11-Исходная схема

Будем считать, что трехфазное КЗ произошло в начале линии Л. Вводим условие что короткое замыкание, устраняется отключением поврежденной линии в момент времени t = 0.18 с. Автоматического повторного включения (АПВ) линии нет.

Вычисления удобней всего производить в относительных единицах. Постоянную механической инерции T_j , выраженную в секундах, необходимо умножить на $2\pi f_0 = 314.16$ для перевода в радианы, так как углы следует задавать в радианах. Условия для расчета переходного режима: $P_{max ab} = 0$; $P_{max}_{n/a} = 1,935$; $P_{Typ6} = 1$; $\delta'_{(0)} = 25,41$ град; скольжение S равно нулю; $T_j = 14,38c$ в относительных базисных единицах. В рассматриваемом случае скольжение в функции угла меняется по закону:

$$S = \pm \sqrt{\frac{2P_{myp\delta}\delta' + 2P_{\max}\cos\delta' + 2C}{T_j}}, \qquad (1.5.40)$$

где $T_j = T_j 2\pi f_0 = 14,38 \cdot 2 \cdot 3,14 \cdot 50 = 4515$ рад. При трехфазном КЗ в начале линии Л:

$$P_{\max aB} = 0;$$
 (1.5.41)

$$C = -P_{\text{typ6}} \,\delta'_{(0)} = -1 \cdot 25.41 \cdot 3.14/180 = -0.443 \text{ o.e.}$$
(1.5.42)

Таким образом:

$$S = \pm \sqrt{\frac{2 \cdot 1 \cdot \delta \cdot 3.14/180 + 2 \cdot 0 \cdot \cos \delta + 2(-0.443)}{4515}}.$$
 (1.5.43)

Далее следует изменять значения параметра угла б' и вычислять согласно ему соответствующие скольжения S. Вычисления необходимо продолжать до угла отключения К.З., который был определен выше аналитическими методами. Полученные результаты заносим в таблицу 1.9.

Таблица 1.9- Зависимость угла отключения К.3. от скольжения в аварийном режиме

б', град	25,41	30	40	50	60	75,117
S, %		0,6	1,06	1,3	1,64	1,96

Рассмотрим режим при очередной коммутации – отключении поврежденной линии Л и переходе на характеристику послеаварийного режима при угле $\delta' = 75,117$ град с максимумом $P_{\text{max n/a}} = 1,935$. В результате меняется постоянная интегрирования С:

$$C = T_j \cdot S^2 / 2 - P_{\text{турб}} \delta' - P_{\text{max п/a}} \cos \delta' = 4515 \cdot (0,0192)^2 / 2 - (1.5.44)$$

1.75,117.3.1416/180 - 1,935 \cos(75,117) = -0,968 o.e.

Далее следует продолжить вычисления, используя выражение 1.5.45:

$$S = \pm \sqrt{\frac{2 \cdot 0.2 \cdot \delta \cdot 3.14/180 + 2 \cdot 0.401 \cdot \cos \delta + 2(-0.243226)}{442.96}} .$$
(1.5.45)

Результаты расчетов зависимости угла отключения К.З. от скольжения в послеаварийном режиме заносим в таблицу 1.10.

б', град	75,11	90	110	130	148,88
S, %	1,92	1,633	1,132	0,5	100√(-1,2.10 ⁻⁵)

Таблица 1.10-Послеаварийный режим

Мнимое число, полученное при $\delta' = 148,88$, указывает на отсутствие решения, этот угол лежит за рамками траектории. По результатам вычислений построим фазовую траекторию, которая даст возможность судить об устойчивости. Устойчивость сохраняется, если траектория не выходит за замкнутую кривую, называемую предельным циклом. Фазовая траектория

представлена на рисунке 1.12

Рисунок 1.12-Фазовой плоскость

Если траектория выходит за замкнутую кривую устойчивость нарушается. Для рассматриваемых условий полная траектория построена с применением программы MUSTANG. Стрелочками указано направление движения по траектории. По оси абсцисс отложен угол δ', по оси ординат – скольжение в процентах. Устойчивость сохраняется. Произведем расчет по рисунку 1.13 динамический устойчивости способом площадей.

Рисунок 1.13-Исходная схема

Для схемы, указанной на рисунке 1.13, выполняем расчет динамической устойчивости способом площадей. Вводим условие, что трехфазное КЗ произошло в начале линии Л. и короткое замыкание устраняется отключением поврежденной линии в момент времени t = 0.18 с. Автоматического повторного включения (АПВ) линии нет.

Условия для расчета переходного режима: $P_{max aB} = 0$; $P_{max \pi/a} 1,935$; $P_{Typ\delta} = 1$; $\delta'_{(0)} = 25,41$ град; $T_j = 14,38$ с; угол отключения короткого замыкания, соответствующий моменту времени t = 0.18 с, возможно определить только численными методами, его значение составляет $\delta'_{oткл} = =75,115$ град; критический угол при отключенной линии Л:

$$δ'_{\kappa p} = 180 - δ'_{0 \pi/a} = 180 - arc sin (P_{Typ6}/P_{max \pi/a}) = (1.5.46)$$
180 - arc sin (1/1,935) = 148,88 град.

На рисунке 1.14 представлено графическое представление расчета методом площадей, заштрихованные площади - это режимы ускорения и торможения.

Рисунок 1.14 – Графическое представление метода площадей в режиме

ускорения и торможения

Исходя из рисунка 1.14 определим площадь ускорения:

$$F_{yc\kappa} = \int_{\delta_0}^{\delta_{omer}} (P_{myp\delta} - P_{as}\sin\delta')d\delta'.$$
(1.5.47)

Определим площадь торможения:

$$F_{mop_{\mathcal{M}}} = \int_{\delta_{omks}}^{\delta_{\mathcal{K}}p} (P_{n/a} \sin \delta' - P_{myp\delta}) d\delta'.$$
(1.5.48)

Определим критерии устойчивости:

$$F_{yc\kappa} = P_{Ty\delta}(\delta'_{0T\kappa\pi} - \delta'_{(0)}) = 1(75,115 - 25,41) \cdot 3.1416/180 = 0,8670.e;$$
(1.5.49)

$$F_{TOPM} = -P_{max \pi/a} (\cos\delta'_{\kappa p} - \cos\delta'_{0T\kappa\pi}) - P_{Ty\delta}(\delta'_{\kappa p} - \delta'_{0T\kappa\pi}) = -1,935(\cos 148,88 - \cos 75,115) - 1(148,88 - 75,115) \cdot 3.1416/180 = 0,8670.e.$$
(1.5.50)

Устойчивость сохраняется, поскольку F_{уск} ≤ F_{торм}.

Определим предельный угол отключения в момент короткого замыкания, при котором система находится на границе устойчивости, из условия F_{уск}=F_{торм}:

$$\cos \delta_{omk\pi np} = \frac{P_{myp\delta}(\delta_{\kappa p}' - \delta_{(0)}')\pi / 180 + P_{\max n/a} \cos \delta_{\kappa p}' - P_{\max as} \cos \delta_{(0)}'}{P_{\max n/a} - P_{\max as}} = \frac{\frac{3.14}{180} \cdot 1 \cdot 148.88^{\circ} - 25.41^{\circ} + 1.935 \cdot \cos 148.88^{\circ} - 0 \cdot \cos 25.41^{\circ}}{1.935 - 0} = 75.117^{\circ};$$

$$\delta_{0TK\pi np}' = 75,117 \text{ град.}$$
(1.5.51)

При трехфазном коротком замыкании в начале линии Л уравнение движения ротора принимает вид:

$$\frac{1}{18000}T_{j}\frac{d^{2}\delta}{dt^{2}} = P_{myp\delta}.$$
(1.5.52)

Время отключения выключателя при К.З:

$$t_{o_{TKJ \Pi}} = \sqrt{\frac{\delta_{o_{TK \Pi p}} - \delta_0 \cdot T_{j\delta}}{9000 \cdot P_0}} = \sqrt{\frac{75.114 - 25.41 \cdot 14.38}{9000 \cdot 1}} = 0.282 \text{ cer },$$
(1.138)

Где постоянная механической инерции ротора T_j приведенная к базисной мощности и выраженная в секундах, где время t – в секундах, угол δ' в градусах, $P_{Typ\delta}$ в относительных базисных единицах. В последнем уравнении углу δ' присвоено значение $\delta'_{\text{откл пр}}$, и таким образом определено предельное время отключения трехфазного K3.

На рисунке 1.15 представлены переходные процессы генератора при нарушении и сохранение устойчивости. Расчеты выполнены с помощью программы MUSTAMG. Для создания более тяжелого аварийного режима и оценки нарушения и сохранения устойчивости было использовано увеличение параметра времени К.З.

Рисунок 1.15 - Переходный процесс генератора с сохранением устойчивости функционирования, t_{откл} = 0.282с. Осциллограммы режимных параметров, а) представление процесса сохранения устойчивости методом фазовой плоскости б) указан предельный цикл сохранения устойчивости

Рисунок 1.16 - Переходный процесс с нарушением устойчивости, t_{откл} = 0.3 с. Осциллограмма режимных параметров, а) представление процесса на фазовой плоскости б) указан цикл нарушения устойчивости

1.6 Расчет токов короткого замыкания

Рисунок 1.17-Исходная схема ГЭС «Сангтуда-1»

Рисунок 1.18 -Схема замещения ГЭС «Сангтуда-1»

Примем базисную мощность $S_{\scriptscriptstyle B}$ = 1000*MBA* - базисная мощность.

Базисные напряжения

Базисные токи на ступенях КЗ.

$$U_{cp1}=15,75 \kappa B \qquad I_{\delta\kappa-1} = \frac{S_{\delta}}{\sqrt{3} \cdot U_{cp}} = \frac{1000}{\sqrt{3} \cdot 15,75} = 36,657 \ \kappa A \qquad (1.6.1)$$
$$U_{cp2}=230 \kappa B \qquad I_{\delta\kappa-2} = \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta\kappa-2}} \frac{1000}{\sqrt{3} \cdot 230} = 2,51 \ \kappa B \qquad (1.6.2)$$

Для рисунка 1.18 произведем расчёт всех сопротивлений элементов в схеме замещения в относительных единицах.

Генератор:

$$X_{r} = X_{d}^{"} \cdot \frac{S_{6}}{S_{HOM}} = 0,27 \cdot \frac{1000}{186,1} = 1,451 \text{ o.e.}$$
 (1.6.3)

Трансформатор:

$$X_T = \frac{X_{T\%}}{100} \cdot \frac{S_{\delta}}{S_{HOM}} = \frac{11}{100} \cdot \frac{1000}{200} = 0,55 \, o.e \; . \tag{1.6.4}$$

Линия:

$$X_{n} = X_{y\partial} \cdot l \cdot \frac{S_{\delta}}{U_{cp}^{2}} = 0,41 \cdot 33 \cdot \frac{1000}{230^{2}} = 0,256 \, o.e \; . \tag{1.6.5}$$

Автотрансформатор:

$$X_{AT} = \frac{X_{m\%}}{100} \cdot \frac{S_{\delta}}{S_{max}} = \frac{11}{100} \cdot \frac{1000}{125} = 0,880.e \;. \tag{1.6.6}$$

Энергосистема:

$$X_{c} = \frac{S_{\delta}}{\sqrt{3} \times U_{cp}^{2} \times I_{HOMK}} = \frac{1000}{\sqrt{3} \times 115^{2} \times 40} = 0,00110.e.$$
 (1.6.7)

Рисунок 1.19- Схема замещения с точкой короткого замыкания К1

Для схемы замещения представленной на рисунке 1.19 произведем расчет параметров элементов цепи:

$$X_1 = \frac{X_2}{3} = \frac{1,451}{3} = 0,4840.e; \qquad (1.6.8)$$

$$X_2 = \frac{X_m}{3} = \frac{0.55}{3} = 0,183 o.e ; \qquad (1.6.9)$$

$$X_{3} = \frac{X_{\pi}}{2} + \frac{X_{AT}}{2} + X_{c} = \frac{0,256}{2} + \frac{0,88}{2} + 0,0011 = 0,569 \text{ o.e}; \qquad (1.6.10)$$

$$X_4 = X_1 + X_2 = 0,484 + 0,183 = 0,667 o.e$$
 (1.6.11)

Определяем ЭДС генератора:

$$E_{r} = \sqrt{(I_{0} \cdot X_{d}^{*} \cdot \cos\varphi)^{2} + (U_{0} + I_{0} \cdot X_{d}^{*} \cdot \sin\varphi)^{2}} =$$

$$= \sqrt{1 \cdot 0.27 \cdot 0.9^{2} + 1 + 1 \cdot 0.27 \cdot 0.436^{2}} = 1.14 \text{ o.e},$$
(1.6.12)

где $I_0 = 1\cos\varphi = 0.85$, $U_0 = 1\sin\varphi = 0,436$.

Принимаем ЭДС системы: Е_с = 1.

Произведем упрощение схемы замещения представленной на рисунке 1.19. Эквивалентная схема замещения представлена на рисунке 1.20.

Рисунок 1.20-Эквивалетная схема замещения

Для схемы замещения представленной на рисунке 1.20 произведем расчет сопротивлений элементов и эквивалентной ЭДС:

$$E_{_{3\kappa1}} = \frac{E_{_{c}} \cdot X_{_{3}} + E_{_{c}} \cdot X_{_{4}}}{X_{_{3}} + X_{_{4}}} = \frac{1,144 \cdot 0,569 + 1 \cdot 0,667}{0,569 + 0,667} = 1,066 \text{ o.e};$$
(1.6.13)

$$X_{5} = \frac{X_{3} \cdot X_{4}}{X_{3} + X_{4}} = \frac{0,569 \cdot 0,667}{0,569 + 0,667} = 0,307 \, o.e \; ; \tag{1.6.14}$$

$$X_6 = X_5 + X_T = 0,307 + 0,55 = 0,857 \, o.e \;. \tag{1.6.15}$$

Определяем значение токов короткого замыкания в точке К1:

$$I_{noc} = \frac{E_c}{X_c} \cdot I_{\delta\kappa-1} = \frac{1,144}{1,451} \cdot 36,657 = 28,9\kappa A;$$
(1.6.16)

$$I_{noc} = \frac{E_{_{3\kappa\sigma}}}{X_6} \cdot I_{_{6\kappa-1}} = \frac{1,066}{0,857} \cdot 36,657 = 45,597 \,\kappa A \;; \tag{1.6.17}$$

$$I_{\Sigma\kappa 1} = I_{noc} + I_{noc} = 28,9 + 45,597 = 74,497 \,\kappa A \,. \tag{1.6.18}$$

Для расчета токов коротко замыкания упростим схему замещения рисунок 1.21.

Рисунок 1.21-Упрощённая схема замещения для точки К2

Произведем расчет сопротивления элементов для схемы, представленной на рисунке 1.21:

$$X_{7} = \frac{X_{r} + X_{r}}{4} = \frac{1,451 + 0,55}{4} = 0,50.e .$$
(1.6.19)

Определяем значение токов короткого замыкания в точке К2:

$$I_{noe} = \frac{E_e}{X_7} \cdot I_{\delta\kappa-2} = \frac{1,144}{0,5} \cdot 2,51 = 5,743 \,\kappa A \,; \tag{1.6.20}$$

$$I_{noc} = \frac{E_c}{X_3} \cdot I_{\delta\kappa-2} = \frac{1}{0,569} \cdot 2,51 = 4,411 \kappa A;$$
(1.6.21)

$$I_{\Sigma\kappa2} = I_{noc} + I_{noc} = 5,743 + 4,411 = 10,154\kappa A.$$
 (1.6.22)

1.7 Выбор измерительных трансформаторов тока и напряжения

Для того что бы выбрать трансформаторы тока и напряжения необходимо соблюдение определенного количества условий, а именно:

Трансформатор тока выбираем по напряжению установки: $U_{ycm} \leq U_{hom}$

По току: $I_{neps} \leq I_{HOM}$; $I_{max} \leq I_{HOM}$

на стороне HH – 15,75кВ.

Для установки на низкой стороне выбираем трансформатор тока:

Тип: ТШЛ 20 Б - І.

 $U_{HOM} = 20 \text{ kB}, I_1 = 10000 \text{ A}, I_2 = 5 \text{ A}.$

Для установки на высокой стороне выбираем трансформатор тока:

Тип: ТФЗМ-220 Б - IV.

 U_{HOM} =220kB, I_1 =1000 A I_2 =5 A.

Выбор трансформаторов напряжение.

Для установки на низкой стороне выбираем измерительный трансформатор напряжения:

на стороне НН – 15,75кВ.

Тип: НОМ-15 -77У4.

С номинальными параметрами:

U_{ном}=15кВ, U_{н1}=15750В, U_{н2}=100В.

Для установки на высокой стороне выбираем измерительный трансформатор напряжения:

Тип: НКФ-220 -58Т1.

С номинальными параметрами:

 $U_{HOM} = 220 \text{ kB}, U_{H1} = 22000 / \sqrt{3} \text{ B}, U_{H2} = 100 / \sqrt{3} \text{ B}.$

1.8 Расчет защиты блока генератор-трансформатор

Для защиты генератора необходимо выбрать защиту, поскольку аварийный режим не является нормальным и требует отключения. В данной работе для защиты генераторы выбираем дифференциальную токовую защиту.

Для выбранной защиты произведем расчет основных параметров. Продольная дифференциальная токовая защита, выполнен на основе реле типа PHT-565.

Произведем расчет максимального расчетного тока небаланса:

$$I_{\mu\delta,pac4.} = k_{\rho\partial\mu} \cdot k_a \cdot \varepsilon \cdot I^{(3)}; \qquad (1.8.1)$$

где _{*k*_{odн}}— коэффициент учитывающий количество и тип трансформаторов тока (TA) (принимается равным 1 при разных TA);

 ε — абсолютная погрешность (в данной работе принимаем 0,1);

I⁽³⁾— периодическая составляющая тока трехфазного КЗ или наибольшее значение тока асинхронного хода.

В результате несовершенства трансформаторов тока возникает ток небаланса. Произведем расчет максимального значения первичного тока небаланса:

$$I_{H\tilde{b}.pacy.} = 1.0.5 \cdot 0.1 \cdot 28,9 = 1,445 \,\mathrm{KA}. \tag{1.8.2}$$

Произведем расчет тока срабатывания защиты:

$$I_{C3} = 1, 3 \cdot I_{H\tilde{D}.pac4.} = 1, 3 \cdot 1, 445 = 1,878 \kappa A \cdot$$
(1.8.3)

С учетом номинального тока генератора:

$$I_{HOM} = \frac{S_{HOM \Gamma}}{\sqrt{3} \cdot U_{HOM \Gamma}} = \frac{186,1}{\sqrt{3} \cdot 15,75} = 6822 \text{ A};$$
(1.8.4)

$$I_{C3} = (0, 5 - 0, 6) \cdot I_{HOM2} = 0, 6 \cdot 6822 = 4093, 2A.$$
 (1.8.5)

Определяем число витков рабочей обмотки реле типа РНТ 565:

$$W_{\text{pa6.pac}} = \frac{K_{\text{T}}}{I_{\text{cs n}}} = 100 \cdot \frac{2000}{1878.5} = 106,46 \text{ BMT}, \qquad (1.8.6)$$

$$W_{pac} = 106.$$
 (1.8.7)

Рассчитаем тока срабатывания защиты с учетом коэфициента трансформации:

$$I_{c.3.} = \frac{K_{\rm T}}{W_{\rm pa6\,pac}} = 100 \cdot \frac{2000}{106} = 1887 \,\,{\rm A} \,\,. \tag{1.8.8}$$

Определяем коэфициент чуствительности с учетом требований ПУЭ:

$$K_{q} = \frac{I_{\kappa_{3} \min}^{2}}{I_{cp}} = \frac{25028}{1887} = 13,26 > 2.$$
(1.8.9)

где ток двухфазного КЗ будет равен:

$$I_{\kappa_{3}\min}^{2} = \frac{\sqrt{3}}{2} \cdot I_{\kappa_{3}}^{3} = \frac{\sqrt{3}}{2} \cdot 28,9 = 25,03 \text{ KA}.$$
(1.8.10)

Коэффициент чувствительности отвечает требованиям ПУЭ, следовательно, можно использовать данную защиту.

Рисунок 1.22- Продольная дифференциальная токовая защита, выполнена на основе реле типа PHT-565

1.9 Поперечная дифференциальная защита генератора

Для повышения надежности как указанно в иностранных источниках: «Необходимо использовать поперечную дифференциальную защиты для

повышения надежности защиты в целом.» Поэтому для защиты так же будем использовать поперечную дифференциальную защиту.

Основой для поперечной дифференциальной защиты будет реле типа РТ-40/Ф с фильтром высших гармоник. Это реле в соответствие с ТУ присоединяется к трансформаторам тока типа ТШЛО-20-Р-1500/5, встроенным перемычку между нейтралями параллельных обмоток статора.

При грубом расчете первичный ток срабатывания в начале проектировании принимается равным 0,2 · *I*_{ном} генератора. Однако это лишь первичное условие, которое необходимо уточнить. При эксплуатации в момент наладки ток срабатывания уточняется по результатам измерений тока небаланса трансформаторов тока и существенно снижается. В результате ток срабатывания защиты, а именно реле будет определяться по:

$$I_{c.p.} = \frac{I_{c.3.} \cdot k_{cX}}{k_I},$$
 (1.9.1)

где ток срабатывания защиты рассчитывается по формуле:

$$I_{c,3} = 0, 2 - 0, 3 = 0, 3 \cdot 6822 = 2046, 6 A.$$
 (1.9.2)

Производим расчет тока срабатывания реле с учетом тока срабатывания защиты:

$$I_{c.p.} = \frac{2046,6}{10000/5} = 1,023A \cdot$$
(1.9.3)

Производим расчет коэффициента чувствительности:

$$K_{_{\rm Y}} = \frac{I_{_{_{\rm K3}\,\rm min}}^2}{I_{_{\rm CD}}} = \frac{25028}{1023,6} = 24 > 2. \tag{1.9.4}$$

Как видно защита отвечает требуемой чувствительности в соответствие с ПУЭ, поэтому возможно ее применение в данной схеме.

Рисунок 1.23- Схема поперечной дифференциальной токовой защиты

1.10 Защита от повышения напряжения

Перенапряжения являются опасным процессом, поскольку приводят к пробоям изоляции и ведут к возникновению коротких замыканий. Для недопущения перенапряжений необходимо предусмотреть защиту. Защиты от повышения напряжения основана на гашение поля в режиме холостого хода, т.е. защита срабатывает, когда продает ток на реле РТ-40/Р. Выводе генератора из работы включается защита от повышения напряжения которая автоматически вводится в действие с выдержкой времени. Выдержка времени необходимо чтоб исключить ложное срабатывание при кратковременном броске нагрузки (повышение напряжения) в момент включения. Защита от повышения напряжения выполнена на базе реле максимального напряжения РСН 14-30 с коэффициентом возврата (K_в = 0,95). Реле напряжения с учетом технологических условий включается на линейное напряжение трансформатора напряжения, установленного на выводах генератора. Это необходимо для более качественной и дешевой защиты чтоб не сооружать громоздких линий цепей защиты.

Рассчитаем уставку срабатывания защиты от максимального напряжения:

$$U_{m} = 1,5-1,5 \cdot U_{max} = 1,5\cdot15750 = 23625 \text{ B}.$$
 (1.10.1)

Произведем расчет уставки напряжения срабатывания реле:

$$U_{cp} = \frac{U_{cs}}{K_{T}} = \frac{23625}{157,5} = 150 \text{ B}.$$
 (1.10.2)

На основе расчетов выбираем реле СНТ 14-30.

Для исключений ложных срабатываний принимаем выдержку времени $t_{c_3} = 3 c$.

Кроме повышенного напряжения, пониженное напряжение так же является недопустимым, поскольку приводит к увеличению тепловой нагрузки на токоведущие части генератора. Исходя из сказанного необходимо произвести расчет и выбрать защиту от понижения напряжения на генераторе.

Рассчитаем защиту от понижения напряжения гидрогенератора.

Производим расчет уставки напряжения срабатывания защиты:

$$U_{c2} = 0,5-0,6 \cdot U_{uov} = 0,6\cdot15750 = 9450 \text{ B}.$$
 (1.10.3)

Производим расчет напряжения срабатывания реле:

$$U_{cp} = \frac{U_{c3}}{K_r} = \frac{9450}{157,5} = 600 \text{ B}.$$
 (1.10.4)

Исходя из описанных выше условий выбираем реле УЗА-10В2.

Рисунок 1.24 - Защита генератора от повышения напряжения основанная на реле УЗА-10В2

1.11 Максимальная токовая защита

Поскольку защита генератора является ответственным делом и необходима максимальная эффективность. Исходя из вышесказанного в данной

работе применяется многоступенчатая защиты чтоб максимально надежно защитить данный объект, поэтому добавим в комплекс максимальную токовую защиту. Рассчитаем максимальную токовую защиту.

Производим расчет тока срабатывания защиты:

$$I_{c_3} = \frac{K_{_{\rm H}}}{K_{_{\rm B}}} \cdot I_{_{\rm HOM\,\Gamma}} = \frac{1.1}{0.8} \cdot 6822 = 9380, 25 \text{ A}, \qquad (1.11.1)$$

где – коэффициент надежности $K_{H} = 1,1$;

коэффициент возврата $K_{B} = 0,8$.

Рассчитаем ток срабатывания реле с учетом тока срабатывания защиты:

$$I_{cp} = \frac{I_{c3}}{K_{T}} = \frac{9380,25}{2000} = 4,69 \text{ A}.$$
 (1.11.2)

Производим расчет коэффициента чувствительности:

$$K_{q} = \frac{I_{\kappa_{3} \min}^{2}}{I_{cp}} = \frac{25028}{9380, 25} = 2,668 > 2, \qquad (1.11.3)$$

где ток двухфазного короткого замыкания равен:

$$I_{\kappa_{3}\min}^{2} = \frac{\sqrt{3}}{2} \cdot I_{\kappa_{3}}^{3} = \frac{\sqrt{3}}{2} \cdot 28900 = 25028 \text{ A}.$$
(1.11.4)

Исходя из коэффициентов чувствительности и параметров, рассчитанных выше выбираем реле типа УЗА-10А2.

Рисунок 1.25 - Максимальная токовая защита реле тип: УЗА-10А2

1.12 Продольная дифференциальная защита трансформатора

Для защиты блока генератор трансформатор так же необходимо защитить и повышающий трансформатор, поскольку он является следующим за генератором объектом. Для защиты трансформатора выбираем комплекс защит. Исходя из условий, предъявляемых к релейной й защите выбираем дифференциальную защиту.

Произведем расчет защиты на основе реле типа ДЗТ-21. Рассчитаем первичный ток срабатывания защиты:

$$I_{\text{comin}} \ge I_{\text{HOM TD}} \cdot K_{\text{or}} = 477, 1 \cdot 0, 3 = 143, 13 \text{ A},$$
 (1.12.1)

где — коэффициент отстройки $K_{or} = 0.3$.

Произведем расчет номинального тока трансформатора на высокой и

низкой стороне:

$$I_{HOM 220} = \frac{S_{HOM T}}{\sqrt{3} \cdot U_{HOM T}} \frac{200}{\sqrt{3} \cdot 242} = 477.1 \text{ A}; \qquad (1.12.2)$$

$$I_{\text{HOM}15,75} = \frac{S_{\text{HOM T}}}{\sqrt{3} \cdot U_{\text{HOM T}}} \frac{200}{\sqrt{3} \cdot 15.75} = 7331.43 \text{ A}.$$
(1.12.3)

Произведем расчет номинальных токов ветвей реле типа ДЗТ-21:

$$I_{\rm B1} = \frac{I_{\rm HOM TP BH} \cdot K_{\rm cx}}{K_{\rm T}} = \frac{477.1 \cdot \sqrt{3}}{200} = 4.132 \text{ A}; \qquad (1.12.4)$$

$$I_{B2} = \frac{I_{HOM TD HH} \cdot K_{cx}}{K_{T}} = \frac{7331.43 \cdot 1}{2000} = 3.67 \text{ A}.$$
(1.12.5)

Рассчитаем номинальный ток ответвлений реле типа ДЗТ-21:

$$I_{\text{OTB HOM}2} \le I_{\text{B}2} = 3,63 \text{ A};$$
 (1.12.6)

$$I_{\text{OTB.HOM1}} = I_{\text{OTB.pac1}} = 4.087 \text{ A.}$$
 (1.12.7)

где ток ответвления первичной обмотки равен:

$$I_{_{\text{OTB,pacl}}} = I_{_{\text{OTB,HOM2}}} \cdot \frac{I_{_{\text{Bl}}}}{I_{_{\text{B2}}}} = 3.63 \cdot \frac{4.132}{3.67} = 4.087 \text{ A}.$$
(1.12.8)

Рассчитаем ток на стороне низкого напряжения реле ДЗТ-21:

$$I_{*cp \min} = I_{*c3 \min} \cdot \frac{I_{B2}}{I_{otb Hom2}} = 0,02 \cdot \frac{3.67}{3.63} = 0.02 \text{ A}, \qquad (1.12.9)$$

где ток срабатывания защиты на стороне низкого напряжения будет равен:

$$I_{*_{C3 \text{ min}}} = \frac{I_{C3 \text{min}}}{I_{HOM \text{ Tp HH}}} = \frac{143.1}{7331.43} = 0,02.$$
(1.12.10)

Ток срабатывания защиты на стороне высокого напряжения:

$$\mathbf{I}_{*_{\text{cp min}}} = \mathbf{I}_{*_{\text{c3 min}}} \cdot \frac{\mathbf{I}_{\text{B1}}}{\mathbf{I}_{\text{отв ном1}}} = 0, 3 \cdot \frac{4.132}{477.1} = 0,303 \text{ A}, \qquad (1.12.11)$$

где ток срабатывания защиты на стороне высокого напряжения будет равен:

$$I_{*_{C3 \text{ min}}} = \frac{I_{C3 \text{min}}}{I_{HOM \text{ Tp BH}}} = \frac{143.1}{477.1} = 0,3 \text{ A}.$$
(1.12.12)

Рассчитаем ток ответвления трансформатора:

$$I_{orb,T1} = I_{B1} = 4.132 \text{ A};$$
 (1.12.13)

$$I_{_{OTB,T2}} = I_{_{BTCH}};$$
 (1.12.14)

$$I_{\rm btch} = \frac{S_{\rm hom tch}}{\sqrt{3} \cdot U_{\rm muh} \cdot K_{\rm tt tch}}.$$
(1.12.15)

Для исключения ложных срабатываний рассчитаем коэффициент торможения:

$$K_{T} = \frac{I_{*p}}{0.5 \sum I_{*M}} = \frac{K_{orc} \cdot I_{*p} - I_{*cp \text{ MHH}}}{0.5 \sum I_{*M} - I_{*HT}} = \frac{1.5 \cdot 0.636 - 0.303}{0.5 \cdot 12.56 - 1} = 0.123, \qquad (1.12.16)$$

где — коэффициент отстройки $I_{*_{HT}} = 1K_{ore} = 1.5$. Рабочий ток реле:

$$I_{p} = I_{H\delta pac B} = 2,5.$$
(1.12.17)

Для повышения чувствительности рассчитаем ток небаланса:

$$I_{H6 \text{ pac } B} = I_{H6 \text{ pac } B} + I_{H6 \text{ pac } B} = 2,5 + 0 = 2,5 \text{ A}; \qquad (1.12.18)$$

$$I'_{H6 \text{ pac B}} = K_{0,0H} \cdot K_a \cdot EI_{\kappa_3}^3 = 1 \cdot 0, 5 \cdot 0, 1 \cdot 49, 736 = 2, 5 \text{ A};$$
 (1.12.19)

$$I_{_{K_3}B}^{_3} = \frac{\sqrt{3} \cdot I_{_{K_3}}^{_3}}{K_{_{T}}} = \frac{\sqrt{3} \cdot 5743}{200} = 49,736 \text{ A}; \qquad (1.12.20)$$

$$I_{H\delta pac B}^{"} = \frac{I_{OTB, pac B} - I_{OTB, Pac A}}{I_{OTB, pac A}} \cdot I_{K3 B}^{3} = \frac{4.087 - 4.087}{4.087} \cdot 49,736 = 0 \text{ A};$$
(1.12.21)

$$I_{T1} = I_{K3B}^3 = 49,736 \text{ A};$$
 (1.12.22)

$$I_{*p} = \frac{I_p}{I_{orb HoMI}} = \frac{2.5}{4.087} = 0,611 \text{ A}; \qquad (1.12.23)$$

$$I_{*_{T}} = \frac{I_{T}}{I_{OTB1}} = \frac{49,736}{4.132} = 12,04 \text{ A}.$$
 (1.12.24)

Проверим коэффициент чувствительности защиты на минимальные требования:

$$K_{_{\rm Y}} = \frac{I_{_{K3\,MH}}^{\,2}}{I_{_{C3\,MH}}} = \frac{4973,6}{143.1} = 34,75 > 2. \tag{1.12.25}$$

Рисунок 1.25 - Продольная дифференциальная защита трансформатора реле ДЗТ-21

1.13 Максимальная токовая защита

Кроме дифференциальной защиты, исходя из рекомендаций по повышению надежности выбираем защиту по максимальному току срабатывания(МТЗ).

Произведем расчет тока срабатывания МТЗ с учетом коэффициента возврата токовых реле при максимальной нагрузки:

$$I_{c_3} = \frac{K_{\rm H} \cdot K_{\rm cx}}{K_{\rm B}} \cdot I_{\rm pa6\,\,Mak} = \frac{1.3 \cdot \sqrt{3}}{0.8} \cdot 477, 1 = 1342, 84 \,\,\text{A}\,\,, \tag{1.13.1}$$

где $K_{H} = 1,3$ - коэффициент ненадежности срабатывания;

К_в = 0,8 - коэффициент возврата;

 $K_{cx} = \sqrt{3}$ - коэффициент само запуска нагрузки.

Рассчитаем ток срабатывания реле исходя из условий срабатывания защиты:

$$I_{cp} = \frac{I_{c3}}{K_{T}} = \frac{1342,84}{200} = 6,714 \text{ A}.$$
 (1.13.2)

Проверим коэфициент чуствительности :

$$K_{q} = \frac{I_{\kappa_{3} \min}^{2}}{I_{c_{3}}} = \frac{4307, 26}{1413, 72} = 3, 67 > 2, \qquad (1.13.3)$$

где ток двухфазного короткого замыкания:

$$I_{\kappa_{3}\min}^{2} = \frac{\sqrt{3}}{2} \cdot I_{\kappa_{3}}^{3} = \frac{\sqrt{3}}{2} \cdot 4973, 6 = 4307, 26 \text{ A}.$$
(1.13.4)

Исходя из условий, рассчитанных выше выбираем реле УЗА-10А2.

1.14 Максимальная токовая защита с пуском по напряжению

Поскольку как известно перенапряжения ведут к пробою изоляции, а пониженное напряжение ведет к повышенной тепловой нагрузки на обмотки отстроим защиты от верхнего и нижнего предела напряжения.

Рассчитаем ток срабатывания защиты:

$$I_{_{C3}} = \frac{K_{_{H}}}{K_{_{B}}} \cdot I_{_{HOM T}} = \frac{1.2}{0,8} \cdot 477, 1 = 715,65 \text{ A}, \qquad (1.14.1)$$

где $K_{H} = 1,2$, - коэффициент ненадежности срабатывания;

 $K_{_{B}} = 0.8$ - коэффициент возврата.

Рассчитаем возврат после отключения КЗ с учетом минимального напряжения:

$$U_{c_{3}} \leq \frac{U_{_{MHH}}}{K_{_{OTC}} \cdot K_{_{B}} \cdot K_{_{u}}}; \qquad (1.14.2)$$

$$K_{u} = \frac{U_{MUH}}{K_{orc} \cdot K_{B} \cdot U_{c3u}} = \frac{0.9 \cdot U_{H}}{1.2 \cdot 1.1 \cdot 0.7 \cdot U_{H}} = \frac{0.9 \cdot 242}{1.2 \cdot 1.1 \cdot 0.7 \cdot 242} = 0.974.$$
(1.14.3)

Рассчитаем остаточное напряжения самозапуска после действия АПВ или ABP:

$$U_{cp} = \frac{U_{c3}}{K_{orc} \cdot K_{u}}; \qquad (1.14.4)$$

$$U_{cp} = U_{cp} \cdot K_{orc} \cdot K_{u} = 0, 7 \cdot U_{H} \cdot 1, 2 \cdot 0, 974 = 0, 7 \cdot 242 \cdot 1, 2 \cdot 0, 974 = 198 \text{ kB}.$$
(1.14.5)

где U_{мин} -междуфазное напряжение в месте установки МТЗ в условиях самозапуска после отключения К.З будет равно:

$$(0,9-0,85) \cdot U_{H}$$
. $U_{cp} = 0,7 \cdot U_{H}$. $K_{orc} = 1,2$, (1.14.6)

Выбираем реле УЗА-10В с коэффициентом $K_{B} = 1, 1$.

Проверим чуствительность реле минимального напряжения по формуле:

$$K_{q} = \frac{I_{\kappa_{3} \min}^{2}}{I_{c_{3}}} = \frac{4307,26}{715,65} = 6,02 > 2.$$
(1.14.7)

1.15 Защита от Перегрузки

Поскольку для трансформатора перегрузка является ненормальным режимом. В результате перегрузки срок службы трансформатора уменьшается в 2 и более раз чем в нормальном режиме. Произведем расчет и выбор защит от перегрузок.

Произведем расчет тока срабатывания защиты от перегрузки:

$$I_{c_3} = \frac{K_{_{\rm H}}}{K_{_{\rm B}}} \cdot I_{_{\rm HOM\,TP}} = \frac{1.05}{0.8} \cdot 477, 1 = 626 \text{ A}, \qquad (1.15.1)$$

где К_н = 1 - коэффициент ненадежности срабатывания;

К_в = 0,8 - коэффициент возврата.

Исходя из условий срабатываний защиты рассчитаем условия срабатывания реле:

$$I_{cp} = \frac{I_{c3}}{K_{T}} = \frac{626}{200} = 3,13 \text{ A}.$$
 (1.15.2)

После расчета срабатывания защиты и реле произведем проверку по коэфициенту чуствительности защиты:

$$K_{q} = \frac{I_{\kappa_{3} \min}^{2}}{I_{cp}} = \frac{4307,28}{626} = 6,88 > 2, \qquad (1.15.3)$$

где ток двухфазного короткого замыкания равен:

$$I_{\kappa_{3}\min}^{2} = \frac{\sqrt{3}}{2} \cdot I_{\kappa_{3}}^{3} = \frac{\sqrt{3}}{2} \cdot 4973, 6 = 4307, 28 \text{ A}.$$
(1.15.4)

Исходя из условий и параметров, рассчитанных выше выбираем реле типа УЗА-10А2.

1.16 Выбор микропроцессорных реле

Поскольку в настоящее время в блоках микропроцессорных защит реализуется сразу несколько видов защит, нет необходимости выбора каждой защиты по отдельности всего лишь достаточно выбрать блок от завода изготовителя с наличием функций и алгоритмов необходимых для заказчика.

Поэтому в данной работе мы выбираем блоки микропроцессорной релейной защиты для генератора и трансформатора:

1.МІСОМР632 (МХЗДРТЗА) -Продольная дифференциальная защита повещенной чувствительности.

2.МІСОМР924 или 922 (на стороне низкого напряжения) – МТЗ отстройка от тока КЗ.

Выводы по главе 1

В 1 главе данной работы проведено аналитическое исследование и расчет характеристик генераторов. Рассчитан и проведен анализ критериев статической и динамической устойчивости. Для оценки был выбран частотный критерий устойчивости. Исходя из полученных данных выведены критерии устойчивости рассматриваемого генератора и разработаны условия для выбора новой отвечающий основным требованиям системы возбуждения.

Для защиты блока «генератор-трансформатор» выбраны устройства, требованиям. отвечающие основным а именно чувствительность, Для подключения исходя из технологических селективность, надежность. условий выбраны трансформаторы тока и напряжения. Для защиты генератора был выбран комплекс защит: максимальная токовая защиты, защиты от перенапряжений, защиты ОТ минимального напряжения, продольная и поперечная дифференциальная защиты. Для защиты трансформатора были выбраны защиты: максимальная токовая защита, защита от перегрузки, защита ОТ перенапряжений, защита от минимального напряжения, продольная дифференциальная защита. На основе выбранных защит и полученных аналитическим путем расчетов для интеграции в существующую АСУ ТП были выбраны комплексы микропроцессорных устройств защиты, реализующие все перечисленные выше защиты: МІСОМР632 (МХЗДРТЗА), МІСОМР924.

2 Системы возбуждения гидрогенераторов и исследование режимов работы системы тиристорного возбуждения в стационарных и переходных режимах

Гидрогенерация - это один основных экологичных видов получения электроэнергии. Себестоимость одного кВт/ч генерируемой электроэнергии очень мала и составляет не более 10 копеек. ГЭС - это электростанции работаю в часы максимума, поскольку очень легко изменять выдаваемую мощность в сеть. Все гидрогенераторы выполняются из синхронных машин.

Для управления синхронными машинами необходимо использовать системы возбуждения. Система возбуждения – это механизм и все его дополнения предназначенные для питания обмотки возбуждения синхронной машины, с целью управления и подержания режима работы генератора.

Система возбуждения если рассматривать генератор в целом является его основной частью, поскольку без управления машиной мы не сможем запустить ее в сеть и начать генерацию электрической энергии. Система возбуждения отвечает за статическую и динамическую устойчивость генератора, а генераторы в свою очередь влияют на процессы, происходящие в системе. Условия и режимы, которые невозможно обеспечить при отсутствии возбуждения:

. первоначальный запуск;

. включение в сеть и последующая синхронизация и самосинхронизация;

. холостой ход;

. удержание генератора в синхронизации при перегрузках и недогрузках;

. дистанционное управление напряжением генератора выдаваемое в пределах от 80 до 100% U_{ном};

. обеспечение регулировки возбуждения с помощью блока с нелинейными характеристиками;

. форсировка возбуждения с заданной кратностью по напряжению и току; . разгрузку по реактивной мощности до заданного значения;

. гашения поля генератора.

Системы возбуждения можно разделить на два типа: с независимым и зависимым возбуждением.

2.1. Система возбуждения с генератором постоянного тока

Рисунок 2.1-а) с самовозбуждением возбудителя; под б)-с возбудителем

На рисунке 2.1 представлена схема возбуждения со следующими (1);возбуждения элементами: синхронный генератор обмотка генератора (2) устройство (3); рассматриваемого ; гашения поля

дугогасительная решетка (4); возбудитель(5); обмотка возбуждения возбудителя (6); подвозбудитель (7).

2.2. Высокочастотная система возбуждения с неуправляемыми полупроводниковыми выпрямителями

Рисунок 2.2- Высокочастотная система возбуждения

На рисунке 2.2 представлена высокочастотная система возбуждения с элементами: синхронный генератор (1); обмотка возбуждения генератора (2); автомат для гашения поля АГП (3); выпрямительный орган (4); возбудитель высокочастотный (5); последовательная обмотка возбуждения ОПВ (6); независимые обмотки возбуждения высокочастотного возбудителя ВЧВ (7); высокочастотный довозбудитель Г1В (8); выпрямитель В (9); магнитные усилители МУ (10,11) бесконтактной форсировки и автоматического регулятора возбуждения (АРВ); Р — разрядник.

2.3 Независимая система возбуждения с управляемыми вентилями

Рисунок 2.3- Независимая система возбуждения

На рисунке 2.3 мы можем видеть синхронный генератор (1); обмотка возбуждения (2); вспомогательный генератор с двумя обмоткам расположенный на статоре (3); обмотка возбуждения для возбудителя (4); под возбудитель (5); обмотка возбуждения под возбудителя (6); форсировочная и рабочая группы управляемых вентилей (номер 7,8).

2.4 Бесконтактная система возбуждения

Рисунок 2.4 - Бесконтактная система возбуждения

На рисунке 2.4 мы можем видеть синхронный генератор (1); обмотка возбуждения генератора (2); вращающиеся полупроводниковые выпрямители (3); высокочастотный возбудитель (обращенная индукторная машина) (4); обмотка возбуждения возбудителя (5); высокочастотный подвозбудитель (6); выпрямитель (7); магнитный усилитель цепи возбуждения подвозбудителя (8).

2.5 Схема самовозбуждения с управляемыми вентилями

Рисунок 2.5 - Схема самовозбуждения с управляемыми вентилями 1 - синхронный генератор; 2 — обмотка возбуждения; 3 выпрямительный трансформатор; 4, 6 — рабочая и форсировочная группы управляемых вентилей

Повышение гибкости систем возбуждения возможно с помощью полупроводниковых преобразователей переменного тока с частотой 50 Гц в постоянный (управляемые вентили, ионные или тиристорные).

Повысить быстродействие системы возбуждения можно использованием полупроводниковых элементов. Повышение быстродействия достигается при вентилей, помощи управляемых ионных или тиристорных, которые преобразуют переменный ток независимого синхронного генератора, В постоянный. Дополнительный (независимый) генератор имеет

автоматизированную систему возбуждения и при независимой системе находится на одном валу с главным. Если по технологическим условиям необходимо обеспечить высокую кратность форсирования возбуждения (к > 2) группы управляемых вентилей: тогда применяют лве рабочую И форсировочную. Оба описанных выше типа управляемых вентилей выполняют по 6 или 3-х фазной мостовой схеме. Все схемы соединяют параллельно для повышения надежности и подключают к обмотке возбуждения. Рабочая группа вентилей необходима для регулировки малых углов и используется только в нормальном режиме работы. Фазы по отдельности выполняются из двух частей: низковольтной, необходимой для присоединения вентилей рабочего типа, и высоковольтной, обеспечивающих питание вентилей форсировочного типа. Поскольку вентили являются ответственным узлом, для их защиты используются шести полюсные анодные выключатели быстрого действия. Возбуждением управляет автоматический регулятор, поскольку процесс изменения регулировки возбуждения непрерывен и постоянен и доверить человеку управление таким процессом не предоставляется возможным. В результате того что такая система вентилей безынерционна то возбуждение будет иметь малые постоянные времени (Тв < 0,02 с) и при необходимости высокой кратности форсирования (к = 4) обеспечивать высокую скорость нарастания напряжения возбудителя.

2.6 Системы оснащения гидрогенераторов

Существующие основные системы возбуждения генераторов:

- 1) тиристорные независимые (СТН);
- тиристорные самовозбуждения (СТС);
- 3) бесщеточные диодные (СБД).

Система тиристорного самовозбуждения (СТС) это система в которой обмотки возбуждения турбо и гидрогенераторов питаются выпрямленным регулируемым током.

Рассмотрим систему СТН. В данной системе номинальное напряжение после преобразования может составлять 700 В, а выпрямленный номинальный ток может достигать значения 5,5 кА. Минимальная кратность форсировки по напряжению и току составляют не менее 2, а длительность форсировки может достигать значения в 50 с. Точность регулирования напряжения генератора составляет в пределах $\pm 0,5\%$ и до $\pm 1\%$.

Для охлаждения тиристорного выпрямителя в системах СТН и СТС используются воздушные, естественные и комбинированные системы (воздушно-водяные).

2.6 (CTC) Ha рисунке представлена схема с выпрямительным трансформатором (BT) группами рабочих и форсированных И ДВУМЯ тиристоров.

Рисунок 2.6 - Система тиристорного самовозбуждения (СТС) с выпрямительным трансформатором (ВТ) и двумя группами тиристоров. ТСНР, ТСНФ – трансформаторы СН тиристорных выпрямителей рабочей и форсировочной групп.

2.7. Системы тиристорного независимого возбуждения (СТН)

Системы тиристорные независимые (СТН) были созданы для питания CTH крупных турбо И гидрогенераторов. Системы питают обмотки возбуждения постоянным регулируемым током и обеспечивают требуемые крупных генераторов В системе. Мощные характеристики системы возбуждения необходимы на системообразующих электростанциях.

Дополнительный генератор переменного тока для возбуждения имеют схему самовозбуждения. CTH имеет неоспоримое преимущество-ЭТО процессов, отсутствие зависимости ОТ внутренних происходящих В энергосистеме. Дополнительный генератор необходим для того что бы, возбуждения при аварийных процессах, чтоб сохранить независимость отсутствовала зависимость от длительности и удаленности КЗ и других энергосистеме. Дополнительный факторов, происходящих генератор обеспечивает высокую скорость нарастания напряжения возбуждения: гибкая связь с откликом не более 25 м/с чтобы достигнуть максимального значения форсировки при уменьшении рабочего напряжения в заданной точки не более чем на 5%. Для обеспечения быстрого снятия возбуждения в системе СТН используется изменение полярности напряжения возбуждения. Следует отметить что время снятия возбуждения, от максимального положительного до отрицательного минимального напряжения, не превышает 100 мс.

Системы самовозбуждения СТС имеют принципиальное отличие от систем с независимым возбуждением СТН, т.е. тиристорные выпрямители главного генератора имеют независимый источник питания. Независимый источник питания является синхронный генератор, вращающийся на одном валу с главным генератором и выдающий напряжение переменного тока с частотой 50 Гц.

На рисунке 2.7 изображена схема тиристорной независимой системы возбуждения с возбудителем переменного тока, а так же двумя группами тиристоров со схемой резервного возбуждения от агрегата с двумя машинами (асинхронные двигатели-возбудители постоянного тока).

Рисунок 2.7- Система тиристорная независимая (СТН) с возбудителем переменного тока В – возбудитель (вспомогательный генератор) переменного тока, ОВВ обмотка возбуждения возбудителя, ВРГ, ВФГ – тиристорные вентили рабочей и форсировочной групп, ВВВ – тиристорные вентили выпрямителя возбудителя, СУВРГ, СУВФГ, СУВВВ – системы управления вентилями соответствующих групп, ВТВ – выпрямительный трансформатор возбудителя, ТСНВ – трансформатор СН тиристорных выпрямителей.

2.8. Системы бесщеточные диодные (СБД)

Системы бесщеточные диодные (СБД) применяются для подачи питания на обмотку возбуждения выпрямленного постоянного тока.

Бесщеточная система возбуждения выполнена синхронным генератором обращенного исполнения. Якорь генератора соединен с обмоткой переменного тока, а диодный выпрямитель имеет жесткую связь с ротором возбужденного генератора. Следует отметить что обмотка возбуждения возбудителя находится на его статоре.

Основное отличие и достоинство бесщеточных возбудителей - это уменьшение габаритов агрегата возбуждения и отсутствие щеточных контактов

в цепи обмотки статора. Данная система возбуждения имеет улучшенные характеристики и используется для возбуждения очень мощных машин где токи возбуждения превышают отметку 5,5 кА. В системе СТН предельный ток возбуждения 5,5 кА. В системе СБД номинальное напряжение после выпрямителя достигает 600В, а номинальный ток может достигать 7800А.

Рисунок 2.8- СБД независимого возбуждения а) с подвозбудителем, б) без подвозбудителя

На рисунке 2.8 бесщеточная система возбуждения с питанием от выпрямительного трансформатора (ВТ) обмотки возбуждения возбудителя (ОВВ) и с диодными вентилями на роторе (ДВ).

Следует отметить высокую надежность и улучшенные параметры по току и напряжению тиристоры выпрямителей. Исходя из вышесказанного возможно

применение одной группы тиристорных выпрямителей за место двух с обеспечением требуемой форсировки и возбуждения системы.

Рисунок 2.9 - Система бесщеточная диодная (СБД) с тиристорным возбуждением (ТВ-1, ТВ-2) обмотки возбуждения возбудителя (ОВВ)

На рисунке 2.9 представлены СГ – синхронный генератор; ОВГ – обмотка возбуждения генератора; ДСВ – диодный синхронный возбудитель; ДВ – вращающийся диодный выпрямитель; В – обращенный синхронный возбудитель и его обмотка возбуждения ОВВ; ТВ-1, ТВ-2 – тиристорные выпрямители первого и второго канала для питания ОВВ; ВТ-1, ВТ-2 – выпрямительные трансформаторы первого и второго каналов; АРВ-1, АРВ-2 – автоматические регуляторы возбуждения первого и второго каналов; Р1, Р2, Р3, Р4 – разъединители; ТТ1, ТТ2, ТН1, ТН2 – измерительные трансформаторы

тока и напряжения первого и второго каналов; ТА11, ТА12 – датчики тока возбуждения возбудителя; АГП – автомат гашения поля; ТР – тиристорный разрядник

2.9. Определение параметров системы возбуждения

В таблицу 2.1 представлены характеристики система возбуждения типа СТС-400.

Номинальное напряжение	400	В
Номинальная ток	2500	А
Номинальная мощность	1000	кВт
Предел по току	2,5	0.e
Предел по напряжению	2	0.e
Быстродействие	0,051	С
Длительность форсировки	50	С
Коэффициент полезного действия	94	%
Охлаждение	Естественное воздушное	
Принцип возбуждения	Параллельное самовозбуждение	
Полный срок службы	25	Лет
Коэффициент готовности	99,8	%

Таблица 2.1- Параметры системы возбуждения типа СТС-400-2500-2,5УХЛ4

2.10 Расчет тиристорной системы возбуждения

Произведем расчет и выбор трансформатора для обеспечения питания тиристорного выпрямителя. Для того что бы выбрать управляемый выпрямитель необходимо провести расчет по известным параметрам U_d и I_d . Силовой понижающий трансформатор выбирается исходя из расчетных значений токов первичной и вторичной обмотки I_1 и I_2 , и напряжения вторичной обмотки U_2 и полной рассчитанной мощности S_t . Расчетное напряжение вторичной обмотки трансформатора определяется по формуле:

$$U_{2\Phi} = K_{u} \cdot K_{c} \cdot K_{\alpha} \cdot K_{R} \cdot U_{d\mu} =$$

=0,439.1,06.1,06.1,1.400=217,034B. (2.10.1)

Рассчитаем напряжение вторичной обмотки трансформатора с учетом режима форсировки :

$$U_{2\Phi} = K_u \cdot K_c \cdot K_a \cdot R_{\mathcal{R}} \cdot U_{d\mu} = 0,439 \cdot 1,06 \cdot 1,106 \cdot 1,10910 = 493,734B,$$
 (2.10.2)

где K_u - расчетный коэффициент, который равен отношению $U_{2\phi}$ / U_{d0} (0,439);

Ks - коэффициент запаса по напряжению, который учитывает возможное снижение напряжения до U=0,9 U_d , принимается в пределах $K_s = (1,05\div1,1)$;

*К*_{*R*} - коэффициент запаса по напряжению, который учитывает падение напряжения в обмотках трансформатора и в вентилях;

 K_{α} - коэффициент запаса, который учитывает неполное открытие вентилей при открытии на полную, принимается равным в пределах $K_{\alpha} = 1,05 \div 1,10$.

Произведем расчет значения тока во вторичной обмотке:

$$I_{2=}K_{I}\cdot K_{i} I_{d} =$$
(2.10.3)
=1, 06.0, 55.2500 =1457, 5 A.

где K_i - коэффициент, учитывающий отклонение формы анодного тока вентилей от прямоугольной, принимается в пределах K_i = 1.05÷1.10; K_I - коэффициент схемы, характеризующий отношение токов $I_{2\phi}A_d$ в идеальном выпрямителе, для заданной схемы принимаем 0,55.

Как было сказано выше для расчета необходимо определить табличную мощность силового трансформатора. Рассчитаем типовую мощность силового трансформатора в номинальном режиме:

$$S_T = K_{\mathcal{S}} \cdot K_{\alpha} \cdot K_I K_c \cdot K_{\mathcal{R}} \cdot U_d I_d; \qquad (2.10.4)$$

=1,04·1,06·1,06·1,06·1,1·400· 2500 = 1362522,3BA.

Рассчитаем мощность с учетом режима форсировки генератора:

$$S_T = K_S \cdot K_a \cdot K_I K_c \cdot K_R \cdot U_d I_d = 1,04 \cdot 1,06 \cdot 1,06 \cdot 1,06 \cdot 1,1 \cdot 910 \cdot 4400 = 5455539,3BA, \quad (2.10.5)$$

где K_s - коэффициент схемы, характеризующей соотношение мощностей для идеального выпрямителя $S_t / U_d \cdot I_d$, (в данной работе принимаем 1,04).

Трансформатор выбирается с учетом режима форсировки и условий, представленных в формуле 2.10.6:

$$S_n \ge S_t, U_2 \ge U_{2pac^4}, I_2 \ge I_{2pac^4}.$$
 (2.10.6)

С учетом режима форсировки и условиями, описанными в формуле 2.10.6 выбираем трансформатор со следующими параметрами (таблица 2.2):

Тип трансформатора	ТСЗП-4000/20ВУЗ	
Первичное номинальное	15,75	кВ
напряжение		
Номинальная мощность	4000	кВА
Вторичное номинальное	1200	В
напряжение		
Потери холостого хода	4,6	Вт
Потери короткого замыкания	19,5	Вт
Напряжение короткого	6,5	%
замыкания		

Таблица 2.2 - Технические данные трансформатора

2.11 Расчет и выбор тиристорного выпрямителя

Тиристорный выпрямитель, а именно сами тиристоры выбираются исходя из обратного приложенного напряжения, способа охлаждения и среднего значения тока, пропускаемого через тиристоры. Произведем расчет среднего тока, пропускаемого через тиристор:

$$I_{dcp} = K_I I_d / K_0 m = 2.2500 / 0.33^3 = 5050, 5A,$$
 (2.11.1)

где К₁ – коэффициент запаса по току, в данной работе принимаем равным 2 – 2,5;

m=3 – число фаз выходной обмотки трансформатора;

 K_0 - коэффициент который учитывает интенсивность охлаждения тиристора, принимаем равным $K_0=1$ при принудительном и $K_0=0,3 \div 0,35$ при естественном воздушном охлаждении со стандартным радиатором.

Произведем расчет обратного напряжения для выбора тиристора:

$$U_{bmax} = k_z \cdot k_0 \cdot U_{d0} \cdot k_z \cdot k_{01} \cdot U_{d0},$$

$$= 1,8 \cdot 1,065 \cdot 2,275 \cdot 217,034 = 946,52B,$$
(2.11.2)

где k_z - коэффициент запаса по напряжению, который учитывает всплески напряжения и возможное повышение напряжения в сети, для данной работы принимаем в пределах 1,5 – 1,8;

 k_0 - коэффициент обратного напряжения, зависящий от вида схемы, принимаем равным 1,065;

 U_{d0} - напряжение выпрямителя при $\alpha = 0$.

В управляемых выпрямителях на схемы воздействуют два вида напряжений: сетевое и схемное (внутри коммутационные перенапряжения). Схемные перенапряжения можно разделить на два вида по характеру действия: повторяющиеся и неповторяющиеся.

Схемные перенапряжения могут иметь повторяющийся и неповторяющийся характер. Коммутационные (схемные) перенапряжение не повторяющегося характера связаны в основном с подключением (коммутацией) и отключением выпрямителя от сети. Исходя из приведенных выше условий
выбираем тиристор Т253-1250. Характеристики тиристора представлены в таблице 2.3.

T	TOTO 1050	
Гип тиристора	1253-1250	
Предельный ток тиристора с типовым	1250	А
	1200	
охпалителем І		
	1800	р
допустимос обратнос напряжение O_{Π}	1800	D
Неповторяющееся напряжение Ц	1900	В
	1900	D
	0.4.5.50	D
Рабочее напряжение U _p	946,52	В

Таблица 2.3-Параметры тиристора Т253-1250

Для сглаживания перенапряжений в результате коммутационных процессов необходимо в цепь вести RC-фильтр. Для выбора RC-фильтра необходимо рассчитать емкость конденсатора, которого будет достаточно для устранения перенапряжений, вызванных одной из-за коммутационных опасных перенапряжений. Причина возникновения опасных коммутационных перенапряжений связанна с отключением обмотки питающего трансформатора, работающем в режиме холостого хода или отключением тока индуктивной нагрузки выпрямителя выключателем. Исходя из вышесказанного рассчитаем емкость конденсатора:

$$C = \frac{2}{3} \frac{U_K S_T K_n^2}{\omega_c U_{nu}^2 - U_p^2};$$
 (2.11.3)

$$C = \frac{2}{3} \frac{U_{K}S_{T} K_{n}^{2}}{\omega_{c} U_{nn}^{2} - U_{p}^{2}} = \frac{2}{3} \frac{1023,75*400000*4}{314\ 1900^{2} - 946.2^{2}} = \frac{32760000000}{2557252673.52} = 12.8 \text{ MK}\Phi.$$
(2.11.4)

где Uk - напряжение короткого замыкания, в данной работе принимаем значение равное 1023.75В;

S_т – номинальная мощность трансформатора, принимаем 4000кВА;

k п - отношение тока при перегрузке к номинальному, принимаем исходя из рекомендаций равным k п = 2;

ωс – угловая частота переменного напряжения сети;

U неп – допустимое (исходя из таблицы 2.3) для вентиля значение неповторяющегося напряжения (1900В);

U_р – рабочая амплитуда напряжения на вентиле, в данной работе принимаем равной 946,2 В;

Сопротивление активной составляющей для RC-фильтра выбирается с учетом обеспечения максимального рассеивания остаточного тока, а именно по наибольшему значению тока вторичной обмотки:

$$\mathbf{R} \le \frac{U_{_{HII}} - U_{_{P}}}{K_{_{I}}I_{_{H}}},$$
(2.11.5)

$$\mathbf{R} \le \frac{U_{_{HI}} - U_{_{P}}}{K_{_{N}}I_{_{H}}} = \frac{1900 - 946, 2}{2*1457, 5} \frac{1}{2} = 0,320\mathrm{M},$$
(2.11.6)

где I_н – номинальный ток вторичной обмотки, в данной работе данный параметр будет равен 1457, 5 А.

2.12 Регулировочная и внешняя характеристики выпрямителя

Для построение регулировочной характеристики необходимо учесть режим форсировки и исходя из этого произвести построение. Зависимость напряжения *U*^{*d*} от α управляемого выпрямителя называется его регулировочной характеристикой.

Произведем расчет и построение характеристики для трехфазного мостового выпрямителя при α≤60. При α≤60 регулировочная характеристика будет иметь вид:

$$Ud = Udo \cos(\alpha); \qquad (2.12.1)$$

Исходя из формулы 2.12.1 производим расчет с изменением угла α:

Ud =Udo $\cos(\alpha)=2,275 \cdot 217,034 \cos(15)=2,275 \cdot 217,034 \cdot 0,966=476,96B$; Ud =Udo $\cos(\alpha)=2,275 \cdot 217,034 \cos(30)=2,275 \cdot 217,034 \cdot 0,866=427,589B$; Ud =Udo $\cos(\alpha)=2,275 \cdot 217,034 \cos(45)=2,275 \cdot 217,034 \cdot 0,707=349,08B$; Ud =Udo $\cos(\alpha)=2,275 \cdot 217,034 \cos(60)=2,275 \cdot 217,034 \cdot 0,5=246,876B$.

Полученные данные при угле α≤60 сводим в таблицу 2.4.

Таблица	2.4-Зависи	мости нап	ряжения	U_d ot α
---------	------------	-----------	---------	-------------------

А	0	15	30	45	60
Ud	493,75	476,96	427,589	349,08	246,876

Расчет при угле α≥60 и активной нагрузке характеристика выражается выражением:

$$U d = U_{d0} (1 + \cos(60 + \alpha)); \qquad (2.12.2)$$

Исходя из формулы 2.12.2 производим расчет при угле а≥60

$$U d = U_{d0} (1 + \cos(60+70)) = 2,275 \cdot 217,034(1 + \cos(130)) = 176,37B;$$

$$U d = U_{d0} (1 + \cos(60+90)) = 2,275 \cdot 217,034(1 + \cos(150)) = 66,15B;$$

$$U d = U_{d0} (1 + \cos(60+120)) = 2,275 \cdot 217,034(1 + \cos(180)) = 0.$$

Полученные данные сводим при угле α≥60 в таблицу 2.5.

Аналогично производим расчет для условия L_н →∞ и строим зависимость

 U_d от α на рисунке 2.10(2). Для графического рассмотрения вводим полученные данные в программу MICROSOFT EXCEL и строим завимость U_d от α при активной нагрузке (рисунок 2.10(1)).

Таблица 2.5-Зависимости на	напряжения U _d от α
----------------------------	--------------------------------

α	70	90	120
U d	176,37	66,15	0

Рисунок 2.10- График регулировочной характеристики выпрямителя

1) активная нагрузке; 2) L_н→∞.

Регулировочная характеристика выпрямителя будет находится между двумя зависимостями, представленными на рисунке 2.10.

Произведем расчет внешней характеристики выпрямителя в номинальном режиме. Внешняя характеристика описывается выражением:

$$Ud = Udo \cos(\alpha) - \frac{3I_d X_a}{\pi}, \qquad (2.12.3)$$

где x_a – приведенное ко вторичной обмотке суммарное индуктивное сопротивление:

$$X_{a} = \frac{U_{k\%}^{*} U_{1}}{I_{1} \mu^{*} K_{T}^{2}^{*} 100},$$
(2.12.4)

где І_{1н} – ток первичной обмотки трансформатора:

$$I_{1H} = \frac{I_2}{K_m};$$

$$I_{1H} = \frac{I_2}{K_m} = \frac{1457, 5}{1,25} = 1165,76A;$$
(2.12.5)

где K_m – коэффициент трансформации:

$$K_{m} = \frac{U_{1}}{U_{2}};$$

$$K_{m} = \frac{U_{1}}{U_{2}} = \frac{1500}{1200} = 1.25.$$
(2.12.6)

Производим расчет значения ха:

$$X_{a} = \frac{U_{k\%}^{*} U_{1}}{I_{1} H^{*} K_{T}^{2} * 100} = \frac{6,5^{*}1500}{1165,76^{*}1,25^{2} * 100} = 0,050M,$$
(2.12.7)

Исходя из формулы 2.12.3 рассчитываем значения напряжения U_d при разных значениях I_d:

Ud =Udo cos(60) -
$$\frac{3I_d X_a}{\pi}$$
 =493,75*0,5 - $\frac{3*0*0,05}{3,14}$ =246.875B;
Ud =Udo cos(60) - $\frac{3I_d X_a}{\pi}$ =493,75*0,5 - $\frac{3*1500*0,05}{3,14}$ =175,219B;
Ud =Udo cos(60) - $\frac{3I_d X_a}{\pi}$ =493,75*0,5 - $\frac{3*2000*0,05}{3,14}$ =151,33B;
Ud =Udo cos(60) - $\frac{3I_d X_a}{\pi}$ =493,75*0,5 - $\frac{3*2500*0,05}{3,14}$ =127,448B;
Ud =Udo cos(60) - $\frac{3I_d X_a}{\pi}$ =493,75*0,5 - $\frac{3*1000*0,05}{3,14}$ =199,1B,

Полученные данные зависимости U_d от I_d сводим в таблицу 2.6.

Таблица 2.6- Внешняя характеристика выпрямителя α=60°

I _d	0	500	1000	1500	2000	2500
U _d	246,875	222,99	199,1	175,219	151,33	127,448

Произведем расчет внешней характеристики выпрямителя с учетом режима форсировки при угле α=0° согласно выражению 2.12.3:

Ud =Udo cos(
$$\alpha$$
) - $\frac{3I_d X_a}{\pi}$ =493,75*1 - $\frac{3*0*0,05}{3,14}$ =493,75B;
Ud =Udo cos(0) - $\frac{3I_d X_a}{\pi}$ = 493,75*1 - $\frac{3*1000*0,05}{3,14}$ =445,979B;
Ud =Udo cos(0) - $\frac{3I_d X_a}{\pi}$ =493,75*1 - $\frac{3*2000*0,05}{3,14}$ =398,208B;
Ud =Udo cos(0) - $\frac{3I_d X_a}{\pi}$ =493,75*1 - $\frac{3*3000*0,05}{3,14}$ =350,438B;
Ud =Udo cos(0) - $\frac{3I_d X_a}{\pi}$ =493,75*1 - $\frac{3*4000*0,05}{3,14}$ =302,667B;
Ud =Udo cos(0) - $\frac{3I_d X_a}{\pi}$ =493,75*1 - $\frac{3*4500*0,05}{3,14}$ =278,781B.

Полученные данные зависимости Ud от I_d в режиме форсировки с углом $\alpha=0^\circ$ сводим в таблицу 2.7.

Таблица 2.7- Внешняя	характери	истика выпр)ямителя
----------------------	-----------	-------------	----------

Id	0	1000	2000	3000	4000	4500
Ud1	493,75	445,979	398,208	350,438	302,667	278,781

На основе данных приведенных в таблицах 2.6 и 2.7 строим внешнюю характеристику выпрямителя (рисунок 2.11).

Рисунок 2.11- График внешней характеристики выпрямителя

2.13 Коэффициент полезного действия выпрямителя

Чтобы рассчитать коэффициент полезно действия выпрямителя необходимо отдаваемую активную мощность в сеть поделить на активную мощность, потребляемую из сети. Разница возникает в результате активных потерь, складывающихся из потерь в трансформаторе и вентиле выпрямителя.

Для определения суммарных потерь в установке и для расчета КПД выпрямителя, определим потери в трансформаторе:

$$P\Sigma = P_{XX} + P_{K3} k_{HT}^2 = 4,6+19,5 \cdot 1^2 = 24,1B_T$$
 (2.13.1)

где P_{xx} – потери холостого хода;

,

Ркз-потери короткого замыкания;

k_{нг} – коэффициент нагрузки трансформатора рассчитывается по выражению 2.13.2:

$$k_{\rm HF} = I2 / I_{2\rm H} (k_{\rm HF} = 1).$$
 (2.13.2)

Чтобы определить суммарные потери определим активные потери в вентиле выпрямителя:

$$\Delta Pb = m\Delta UaIa; \qquad (2.13.3)$$

где т – количество вентилей в схеме выпрямителя;

 ΔU_a , I_a –падение напряжения на вентиле и средний ток, протекающий через него.

Согласно выражению 2.13.3 потери в вентиле составят:

$$\Delta Pb = m\Delta U_a I_a = 4 \cdot 1.8 \cdot 1250 = 9000BT$$

КПД выпрямителя с учетом идеального сглаживания будет иметь вид:

$$\eta = \frac{P_d}{P_d + P}; \qquad (2.13.4)$$

где P_d - мощность на выходе выпрямителя в данной работе принимаем 100 кВт (*U*d·*I*d=400·2500=100000Вт);

 $\sum \Delta P$ – суммарные потери в трансформаторе и в вентилях выпрямителя.

Произведем расчет КПД выпрямителя согласно выражению 2.13.4:

$$\eta = \frac{P_{d}}{P_{d} + P} = \frac{1000000}{1000000 + 24, 1 + 9000} = 0,99,$$

Кпд выпрямителя стремится к 1 это означает, что потери мощности в данном техническом изделие минимальны.

2.14 Высшие гармоники в кривой выпрямленного напряжения и первичного тока выпрямителя

Рассмотрим гармоники, которые появляются в результате использования вентильного выпрямителя. Выпрямленное напряжение содержит две составляющие:

 Постоянная составляющая равная среднему значения выпрямленного напряжения;

2) Переменная состоящую из определенного спектра гармоник.

Если выпрямитель работает с большой индуктивной нагрузкой, его ток непрерывен и регулировочная характеристика будет выражаться:

$$Ud = Udo \cos(\alpha); \qquad (2.14.1)$$

Для нахождения максимальной амплитуды высший гармоники n-го порядка будет использоваться выражение:

Umn =Udo cos(
$$\alpha$$
) - $\frac{2}{m^2 n^2 - 1} \sqrt{1 + m^2 n^2 \tan^2 \alpha}$; (2.14.2)

где Unm – амплитуда высшей гармонической составляющей n-го порядка;

n – порядок высшей гармонической составляющей;

m – число пульсаций выпрямителя за период сетевого напряжения, в данной работе принимаем m=6.

Исходя из формулы 2.14.2 произведем расчет максимальной амплитуды для гармоник 1,3,5,7 порядка:

Umn =Udo cos(60)-
$$\frac{2}{m^2 n^2 - 1} \sqrt{1 + m^2 n^2 \tan^2 \alpha} =$$

=493,75.0,5 $\frac{2}{6^2 1^2 - 1} \sqrt{1 + 6^2 1^2 \tan^2 60} = 147,283B$;
Umn =Udo cos(α)- $\frac{2}{m^2 n^2 - 1} \sqrt{1 + m^2 n^2 \tan^2 \alpha} =$
=493,75.0,5 $\frac{2}{6^2 3^2 - 1} \sqrt{1 + 6^2 3^2 \tan^2 60} = 47,683B$;
Umn =Udo cos(α)- $\frac{2}{m^2 n^2 - 1} \sqrt{1 + m^2 n^2 \tan^2 \alpha} =$
=493,75.0,5 $\frac{2}{6^2 5^2 - 1} \sqrt{1 + 6^2 5^2 \tan^2 60} = 28,543B$;
Umn =Udo cos(α)- $\frac{2}{m^2 n^2 - 1} \sqrt{1 + m^2 n^2 \tan^2 \alpha} =$
=493,75.0,5 $\frac{2}{6^2 5^2 - 1} \sqrt{1 + 6^2 5^2 \tan^2 60} = 28,543B$;

Следует отметить что кривая тока потребляемая для выпрямления из сети содержит большой спектр гармоник кроме основной. Форма кривой тока, которая необходима для потребления выпрямителем, зависит от множества факторов: схема выпрямителя (3-х или 6-ти мостовая), схема соединения питающей обмотки трансформатора и т.п.

Проведем гармонический анализ кривых потребляемого тока выпрямителем. Для гармонического анализа произведем разложение кривой тока в тригонометрический ряд Фурье. Разложение в тригонометрический ряд Фурье производится выражением:

$$i = \frac{2\sqrt{3} \cdot I_{d}}{\pi K_{T}} \cdot (\cos \theta - \frac{1}{5}\cos 5\theta + \frac{1}{7}\cos \theta - \frac{1}{11}\cos 11\theta + \dots) =$$

$$= i = \frac{2\sqrt{3} \cdot I_{d}}{\pi K_{T}} \cdot \frac{1}{n}.$$
(2.14.3)

Исходя из формулы Фурье разложим кривую тока на основные 1,3,5,7 гармоники:

$$i = \frac{2\sqrt{3} \cdot I_{d}}{\pi K_{T}} \cdot \frac{1}{n} = \frac{2\sqrt{3} \cdot 2500}{3.14 \cdot 1.25} \cdot \frac{1}{1} = 220,64A;$$

$$i = \frac{2\sqrt{3} \cdot I_{d}}{\pi K_{T}} \cdot \frac{1}{n} = \frac{2\sqrt{3} \cdot 2500}{3.14 \cdot 1.25} \cdot \frac{1}{3} = 73,548A;$$

$$i = \frac{2\sqrt{3} \cdot I_{d}}{\pi K_{T}} \cdot \frac{1}{n} = \frac{2\sqrt{3} \cdot 2500}{3.14 \cdot 1.25} \cdot \frac{1}{5} = 44,128A;$$

$$i = \frac{2\sqrt{3} \cdot I_{d}}{\pi K_{T}} \cdot \frac{1}{n} = \frac{2\sqrt{3} \cdot 2500}{3.14 \cdot 1.25} \cdot \frac{1}{7} = 31,52A.$$

Следует отметить что в идеальном выпрямителе в отличие от реального выпрямителя, с учетом процесса коммутации амплитуды высших гармоник зависят от нагрузки на выпрямитель, но следует что при этом изменяется только амплитуда фазы U_d, а порядок высших гармоник остается неизменным.

Выводы по главе 2

Во второй главе данной диссертационной работы были рассмотрены системы возбуждения с генератором постоянного тока, с неуправляемыми полупроводниковыми выпрямителями, независимая система возбуждения с управляемыми вентилями, а также бесконтактная система возбуждения. Все перечисленные системы разработаны давно и применяются на существующем оборудовании.

В данной работе предлагается использование тиристорных систем возбуждения на основе микроэлектронного управления, так как применение данных систем является наиболее надежным экономичным и инновационным вариантом.

Глава так же включает в себя проведение расчетов по выбору тиристорной системы возбуждения. Расчет включает в себя выбор силового понижающего трансформатора, расчет и выбор тиристорного выпрямителя. По результатам проведения расчетов было решено выбрать понижающий трансформатор типа ТСЗП-4000/20ВУЗ, тиристорную установку T253-1250, так как данное оборудование соответствует всем требованиям надежности, экономичности и долговечной работы.

После проведения расчетов по выбору основного оборудования, были построены регулировочные и внешние характеристики выпрямительной установки.

Расчет коэффициента полезного действия выпрямительной установки показал, что значение КПД выпрямителя равно 0,99. После проведен анализ высших гармоник кривой выпрямленного напряжения и первичного тока выпрямителя.

3 Экономическое расчет модернизированной системы возбуждения ГЭС «Сангтуда-1»

данной диссертации рассматривается проведение модернизация B системы возбуждения гидрогенератора. С точки зрения технологического процесса и технических расчетов замена системы возбуждения СВ-1500/175-84 СТС-400-2500-2,5УХЛ4 является целесообразной. Однако на кроме технических расчетов, где так же стоит отметить что установленная система ГОСТ 21558-200 возбуждения не отвечает «Системы возбуждения гидрогенераторов и синхронных компенсаторов. Общие технические условия», необходимо провести экономические расчета чтобы удостоверится что данная модернизация системы возбуждения экономически выгодна. Так же следует сказать, что в результате внедрения АСУ ТП на ГЭС модернизация является актуальной и целесообразной, поскольку необходимо интегрировать систему возбуждения в иерархию АСУ ТП.

В результате интеграции цифрового управления системой возбуждения в АСУ ТП получаем весомые преимущества. Основными преимущества данного подхода являются:

 возможность раскрыть функционально и реализовать любые сложные и комбинированные усовершенствованные алгоритмы управления систему возбуждения;

 уменьшение погрешностей заложенных характеристик, в результате повышение статической и динамической характеристик гидрогенераторов, с целью повышения возможностей и вывода генератора на его предельные конструктивные возможности;

 создание системы постоянного контроля исправности системы и диагностики на всем интервале времени работы, повышающие стабильность, надежность системы в целом и в частности уменьшение времени поиска неисправностей для более быстрого аварийного ремонта;

• возможность создания резервирования и регулирования всех функций системы, с уменьшением технической части устройства;

 постоянный контроль в режиме реального времени, включающий дополнительную защиту, тем самым уменьшая время обнаружения и простоя во время аварийного ремонта;

• гибкость системы позволяющая быстро вводить и выводить генераторы в эксплуатации из сети и в сеть.

3.1. Расчет капитальных затрат

Произведем расчет капитальных затрат на установку модернизированной системы возбуждения. Состав капитальных затрат делится на:

1)Затраты на покупку нового оборудования;

2) Затраты на строительно-монтажные работы.

В таблице 3.1 представлены капитальные вложения с учетом всех факторов повышающих данные вложения.

Экспликация оборудования	Количество	Стоимость
		согласно сметы
		, тыс. рублей
СТС-400-2500-2,5УХЛ4	1	629,496
Стоимость, тыс. рублей		899,280
Строительно-монтажные		269,784
работы, тыс. рублей		
Прочие расходы, тыс. рублей		215,827
Общая сумма капитальных		
Сощая сумниа капитальных		
затрат составит, тыс. рублей		1 079,136

Таблица 3.1-Расчет капитальных вложений

3.2. Расчет амортизационных отчислений

В данной главе произведем расчет амортизационных отчислений методом плановой амортизации. Метод плановой амортизации – это фиксированные отчисления в год на восстановление устаревающего оборудования.

Годовые амортизационные отчисления для планового метода рассчитываются по:

$$C_a = \frac{H_a \cdot K}{100}, \qquad (3.2.1)$$

где H_a- норма амортизационных отчислений;

k – стоимость объекта в денежном измерении.

Исходя из формулы 3.2.1 и принимая норму амортизационных отчислений равную 9% получим:

$$C_a = \frac{H_a \cdot K}{100} = \frac{1079,136 \cdot 9}{100} = 97,122$$
 тыс. рублей,

В результате расчетов амортизационные отчисления на новую систему возбуждения в год составят: 97,122 тыс. рублей.

3.3. Расчет технико-экономических показателей

Исходя из данных и исследований, проведенных на электростанциях, отметим что работа генератора в анормальных режимах составляет не более 3-х раз в год на одну рассматриваемую единицу. Исследования показывают, что возникновение анормальных режимов можно исключить путем использования системы возбуждения генератора в заданных пределах. Одна следует отметить что система возбуждения в соответствие с исследованиями может исключать лишь половину таких случаев. Следовательно, если среднее восстановления составляет 4-9 часов, то в среднем мы сможем уменьшить простой то 10 часов на год на единицу рассматриваемого изделия.

Исходя из вышесказанного рассчитаем недоотпуск электроэнергии среднего генератора мощность 165 МВт с коэффициентом загрузки 0,9. Недоотпуск электроэнергии составит:

$$\Delta W = P \cdot \eta \cdot T;$$
 (3.3.1)
 $\Delta W = P \cdot \eta \cdot T = 167500 \cdot 0, 9 \cdot 9 = 1356750 \text{ kBt/y}.$

При сниежение КПД генератора на 1% с учетом номинальной мощности генератора 167,5МВт и коэффициента загрузки генератора k_и=0,9, потери в мощности генератора составят:

$$\Delta P = K_{u} \cdot \eta \cdot P; \qquad (3.3.2)$$

$$\Delta P = K_{u} \cdot \eta \cdot P = 0,009 \cdot 167, 5 \cdot 0, 9 = 1,3567 \text{ MBt.}$$

С учетом годового значения часов выхода за пределы номинальной частоты в сторону снижения T= 4380 потери энергии составят:

$$\Delta W=1,3567.4380.1000=5,924346 \text{ kBt } \text{H};$$
 (3.3.3)

Исходя из факторов, которые необходимо учесть, а именно средняя заработная плата, командировочные и прочие денежные затраты на ремонт, с учетом профессионального контроля составляет 224,82 тыс. рублей. Исходя из статических данных о проведение профессионального контроля 1 раз в 3 года, издержки буду составлять:

Рассмотрим положительный экономический эффект от внедрения новой системы возбуждения типа СТС-400.

Из расчета формулы 3.3.3 экономия от внедрения новой системы позволяет сэкономить:

$$\Delta W = 5,924346 \ \kappa B \tau$$
-ч.

Исходя из формулы 3.3.1 экономия от внедрения новой системы позволяет сэкономить:

$$\Delta W = 1356750 \text{ кВт-ч.}$$

Рассчитаем суммарные потери, от которых можно избавится если внедрить новую систему возбуждения:

$$\Delta W = 5,924346 + 1356750 = 7281096 \text{ kBt/y}. \qquad (3.3.5)$$

Рассчитаем в денежном эквиваленте с учетом себестоимости электроэнергии b = 1,3рублей на электростанции Сангтуда-1 в 2015 г.:

$$C = b \cdot \Delta W 1, 3 \cdot 7281096 = 9465, 4$$
 тыс. рублей. (3.3.6)

Рассчитаем суммарные издержки за 1 год:

$$\Delta C = C + C_{пк} = 9465, 4 + 74, 94 = 9540, 34$$
 тыс. рублей. (3.3.7)

Месячная экономия от внедрения современной системы возбуждения составит:

Рассмотрев все факторы можно с достаточной достоверностью рассчитать и сказать, что срок окупаемости данного проекта составит:

Ток =
$$3/C_{\rm M} = 1\ 0791,36/788,783 = 13,7$$
 месяцев ≈ 2 года. (3.3.9)

Срок окупаемости в энергетике России с учетом нестабильной экономики составляет 5 лет. Все проекты срок окупаемости которых больше 5 лет не рассматриваются поскольку в течение приведенного выше срока вероятность окупится достаточно высока. Планирование на более длительный срок невозможно поскольку изменения экономики — это стохастический процесс и спрогнозировать изменение отдельных параметров на таком длительном интервале времени очень тяжело. Исходя из сказанного, чтоб проект был интересно для капиталовложений срок окупаемости должен попадать в предел 5 лет. В расчете данной магистерской работы приблизительный срок окупаемости капиталовложений составит два года, что является приемлемыми перспективным с точки зрения капиталовложений. Исходя из экономического расчета можно сделать вывод, что установка СТС-400 является перспективным капиталовложением с дальнейшей отдачей.

Выводы по главе 3

Данная глава включает в себя расчет технико-экономических показателей системы тиристорного возбуждения СТС-400-2500-2,5УХЛ4, который должен показать на сколько данная система экономически эффективна и на сколько будут затратными капиталовложения в данное оборудование.

Первый пункт включает в себя расчет капитальных затрат, который показывал, что общая сумма капитальных затрат с учетом монтажных работ, стоимости самой системы, прочих расходов, составит 1 079,136 тыс. рублей.

Далее был произведен расчет амортизационных отчислений. В результате расчетов амортизационные отчисления на новую систему возбуждения в год составят: 97,122 тыс. рублей.

После проведен расчет самих технико-экономических показателей проведя анализ расчетов можно сделать вывод о том, что месячная экономия от внедрения данной системы на производство составит 788783 рублей. Срок окупаемости после введения в работу системы по расчетным данным составит 13,7 месяцев или более грубо 2 года, а с учетом нестабильности экономики которая ставит жесткие критерии окупаемости 5 лет - это является приемлемым показателем и на основании вышесказанного можно сделать вывод что внедрение данной системы является перспективным шагом к модернизации.

ГЛАВА 4 Компьютерное моделирование системы возбуждения гидрогенератора и описание модели в Matlab

4.1 Многофакторное моделирование процессов возбуждения гидрогенератора

В главах 2 и 3 были составлены и исследованы математические модели систем возбуждения гидрогенераторов с рассматриваемыми параметрами. Однако для того что бы учесть множество случайных факторов необходимы вычислительные мощности ЭВМ и моделирование процесса на компьютере.

В настоящее время нет необходимости практического эксперимента, а именно создание физической модели, уменьшенной BO много крат. мощности ЭВМ Современные дают возможность компьютерного моделирования любого процесса с учетом всех факторов изученных наукой. Компьютерное моделирование так же дает возможность изменяя любой из параметров, по выбору, устанавливать зависимости изменения других факторов с учетом изменяемого. Однако практический эксперимент исключать не стоит поскольку не все параметры изучены и существуют частные случай которые компьютерное моделирование рассмотреть не может.

Генераторы есть механизм преобразования одного из видов энергии в электрическую, а значит это источник электрической энергии в системе. Для подержания требуемых параметров энергосистемы генераторы имеют системы возбуждения, которые отвечают за выдаваемые параметры генератора. Генераторы как первоисточник влияют на происходящие процессы в энергосистеме, следовательно, системы возбуждения их регулируют. Исходя из вышесказанного необходимо правильно еще на стадии проектирования для последующего эксплуатирования выбрать систему возбуждения генератора.

Поскольку как известно основным фактором происходящих аварий является человек необходимо, более глубокое изучение процессов, которые возникают в результате действия систем регулировки возбуждения генераторов. Более глубокое изучение всех переходных процессов при работе

систем возбуждения можно исследовать с помощью компьютерных моделей. Следовательно, в данной работе необходимо рассмотреть компьютерную модель для более глубоко исследования рассматриваемых систем возбуждения.

В данной работе для использования мощностей ЭВМ использовалась программа MATLAB программное расширение Simulink. Simulink - это упрощенное моделирование при котором нет необходимости записывать все формулы описывающие связь элементов системы, а лишь необходимо выбрать блоки из которых будет состоять схема замещения и вести расчетные параметры. Программа Simulink дает возможно графического представления моделирования и впоследствии разложение графической части в численную часть. Для работы в программном расширение необходимо лишь знать схему замещения и расчетные параметры, чтоб произвести моделирование и получить его результаты.

В данной работе исследуются системы управления, возбуждения генераторов электрической энергии. Для исследования систем управления существуют специальные блоки типа Control System Toolbox. Следует отметить что функции Simulink не ограничиваются блоками библиотеки, в программе MATLAB есть возможность слияния языка программирования и блоков программы SIMULINK. В программе MATLAB возможно описать языком программирования принцип действия и включения блоков управления и моделирования программы SIMULINK.

Построение с помощью блоков не ограничивается только блоками системы. Существует возможность объединения и разбиения блоков на новые более громоздкие и более миниатюрные схемы, то есть каждый отдельные блок — это макроуровень более мелких блоков библиотеки.

Пользователь является основной единицей управления, а именно он может выбирать дифференциальные уравнения для расчета, задавать время для расчета переходного процесса, задавать способ подачи управляющего сигнала, а также формы управляющего сигнала и т.п. В ходе моделирования имеется возможность наблюдать весь процесс моделирования от начала до конца

возможность следить за процессами, происходящими в системе. Для наблюдения есть как программный способ выхода на весь процесс, так и блочный имеющийся в библиотеке Simulink. Результаты моделирования можно получить в любой форме, численной графической и комбинированной.

Рисунок 4.1- Модель тиристорной системы возбуждения

Схема, собранная в программном пакете Simulink для моделирования системы возбуждения представлена на рисунке 4.1. На рисунке 4.1 мы можем видеть источник переменного напряжения, тиристорный выпрямитель, систему управления тиристорами выпрямителя и обмотку возбуждения. На рисунке 4.1 представлена схема на которой были произведены процессы моделирования переходных процессов характерные для тиристорной обмотки возбуждения.

В результате моделирования схемы (рисунок 4.1) были получены графики переходного процесса, представленные на рисунке 4.2. Графики переходного процесса были получены для трех этапов переходного процесса, а именно при включении на номинальное напряжение, при форсировке возбуждения и при гашении поля после отключения возбуждения.

Рисунок 4.2-Графики переходных процессов

Как видно из рисунка 4.2 на верхнем графике представлено изменение напряжение на обмотке возбуждения исходя из трех этапов переходного процесса. До 30 мс происходит включение на номинальное напряжение, после 30 мс по 60 мс происходит форсировка возбуждения генератора, напряжение на обмотке возбуждения возрастает до значения 1000 В, а ток поднимается до отметки 4 кА. После 60 мс происходит отключение возбуждения и последующее гашение поля генератора, напряжение на обмотке возбуждения и принимает отрицательные значения, в то время как ток на втором графике падает в ноль

Выводы по главе 4

Данная глава включает в себя построение электронной модели использовалась программа MATLAB с программным расширением Simulink. В наше время прогресс не стоит на мести и уже нет необходимости для проведения испытаний оборудования создания уменьшенной физической модели так как это можно сделать на ЭВМ.

В ходе работы в программе была сформированная электронная модель тиристорной системы возбуждения состоящая из блоков. Данные блоки представляют из себя электронную копию реальных элементов системы.

После построения схемы провели моделирование работы системы, результатом моделирования стали графики переходных процессов, которые показывают что система при включении на номинальное напряжение, форсировке возбуждения и при гашении поля после отключения возбуждения остается стабильной.

Полученные переходные процессы дают возможность судить о статической и динамической устойчивости системы «генераторатрансформатор». Повышение устойчивости генератора ведет к повышению устойчивости всей системы в целом, поэтому данное исследование очень важно для проектирования и эксплуатирования энергетических систем.

Заключение

В магистерской диссертации было проведено исследование систем возбуждения сравнительный И проведен анализ между статической тиристорной системой И более современной цифровой системой С микропроцессорным управлением. Основной задачей данной магистерской работы является выбор более надежной и отвечающей современным требованиям системы возбуждения.

В процессе разработки была использована система компьютерного моделирования Matlab, программный пакет Simulink. В процессе проектирования были исследованы и получены аналитическим и путем компьютерного моделирования характеристики, необходимые для обоснования и выбора новой системы возбуждения генератора.

В настоящее время происходит развитие энергосистемы и в частности рост единичных мощностей генераторов и суммарных мощностей электрических станций, в результате чего изменяются классы напряжения, растет протяженность ЛЭП, усложняются конструкции электрического оборудования и соответственно его проектирование.

Все вышеперечисленные факторы заставляют создавать новые требования к экономичности и надежности работы, элементов энергосистемы. Задачи экономичности и надежности в основном решаются на стадии проектирования объектов электроэнергетического комплекса.

Таким образом, будущему специалисту в области электроэнергетики необходимо получать навыки проектирования, которые можно подчеркнуть, изучив данную диссертацию, для осуществления расчетов и принятия правильных технических решений в будущем.

Список использованных источников

1. Неклепаев, Б.Н. Электрическая часть электростанций и подстанций / Б.Н. Неклепаев, И.П. Крючков. - М.: Энергоатомиздат, 2010.- 340 с.

2. Степкина, Ю. В. Проектирование электрической части понизительной подстанции : учеб.-метод. пособие к выполнению курсового и дипломного проектирования / Ю. В. Степкина ; ТГУ ; каф. "Электроснабжение и электротехника". - ТГУ. - Тольятти : ТГУ, 2007. - 123 с.

3. Технические данные завода-изготовителя на гидрогенераторы типа CB-1225/130-56.

4. Выписки из журналов дефектов Капчагайской ГЭС, подтверждающие высокую аварийность оборудования систем возбуждения в связи с износом и старением.

5. Степкина, Ю. В. Электрооборудование станций и подстанций предприятий : учеб. пособие / Ю. В. Степкина, В. В. Вахнина ; ТГУ ; Электротехн. фак. ; каф. "Электроснабжение и электротехника". - Гриф УМО; ТГУ. - Тольятти : ТГУ, 2009. - 67 с.

6. Хрущев, Ю. В. Электромеханические переходные процессы в электроэнергетических системах [Электронный ресурс] : учеб. пособие / Ю. В. Хрущев, К. И. Заподовников, А. Ю. Юшков ; Томский политехнический университет. - Томск : ТПУ, 2012. - 153 с.

7. Переходные процессы в электроэнергетических системах : учеб. для вузов / И. П. Крючков [и др.] ; под ред. И. П. Крючкова. - 2-е изд., стер. ; Гриф MO. - Москва : Изд. дом МЭИ, 2009. - 414 с.

8. Правила устройства электроустановок : все действующие разделы 6-го и 7-го изд. с изм. и доп. по сост. на 1 января 2010 г. - М. : КноРус, 2010. - 480 с.

7. Шойко, В. П. Автоматическое регулирование в электрических системах [Электронный ресурс] : учебное пособие / В. П. Шойко. - Новосибирск : НГТУ, 2012. - 194 с.

9. Электрические машины [Электронный ресурс] : Асинхронные и синхронные машины : практикум по дисциплинам "Электр. машины" и "Электромеханика" / Ю. П. Петунин [и др.] ; ТГУ ; Ин-т энергетики и электротехники ; каф. "Электроснабжение и электротехника". - Тольятти : ТГУ, 2015. - 100 с.

10. Ванурин, В. Н. Электрические машины [Электронный ресурс] : учебник / В. Н. Ванурин. - Санкт-Петербург : Лань, 2016. - 304 с.

11. Усольцев, А. А. Электрические машины [Электронный ресурс] : учеб. пособие / А. А. Усольцев. - Санкт-Петербург : НИУ ИТМО, 2013. - 416 с.

12. СТСГМП1-400-1400-2,5 УХЛ4. Техническое описание и инструкция по эксплуатации. 1СМ.572035.ТО., ООО «СКБ ЭЦМ», г.Екатеринбург, 2007.

13. Fogel D. B. Evolutionary computation: towards a new philosophy of machine intelligence/D. B. Fogel. Piscatway: IEEE Press, 2000. 257 c.

14. Gibbard MJ. Coordinated design of multimachine power system stabilisersbased on damping torque concepts. Proc IEE, Pt.C, 1988. Vol.135. C. 276284.

15. Gibbard M.J., Martins N., Sanchez-Gasca J.J., Uchida N., Vittal V., Wang L. Recent Applications in Linear Analysis Techniques, IEEE Transactions on Power Systems, 2001. Vol. 16, no. 1. C. 154-162.

16. Gibbard M.J., Vowles D.J. Reconciliation of methods of compensation for PSSs in multimachine systems, IEEE Transactions on Power Systems, 2004. Vol. 19, no. 1.C. 463-472.

17. Goldberg D. Genetic Algorithms in Search, Optimization, and Machine Learning/D. Goldberg. — Massachusetts: Addison-Wesley, 1989. 189 c.

18. Gu W., Bollinger K.E. A Self-Tuning Power System Stabilizer for Wide Range Synchronous Generation II IEEE Transactions on Power Systems, Vol. 4, №3, August 1989. C. 1191-1199.

 Hartmann A.K., Rieger H. Optimization Algorithms in Physics. — Berlin: Wiley-VCH, 2002. 383 c.

20. Holland J. H. Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence /J. H. Holland. — The MIT Press, Cambridge, 1992. 162 c.

21. IEEE guide for identification, testing, and evaluation of the dynamic performance of excitation control systems // IEEE Std 421.2. 1990. 44 c.

22. IEEE Recommended Practice for Excitation System Models for Power System Stability Studies // IEEE Std 421.5. 1992. 56 c.

23. IEEE Recommended Practice for Excitation System Models for Power System Stability Studies // IEEE Std 421.5. 2005. 84 c.

24. IEEE Standard Definitions for Excitation Systems for Synchronous Machines //IEEE Std421.1.2007. 22 c.

25. Klein M., Rogers G.J., Moorty S., Kundur P. Analytical Investigation of Factors Influencing Power System Stabilizers Performance, IEEE T-EC, 1992. Vol. 7, No. 3. C. 382-390.

26. Русина, А. Г. Режимы электрических станций и электроэнергетических систем [Электронный ресурс] : [учебник] / А. Г. Русина, Т. А. Филиппова. - Но-восибирск : НГТУ, 2014. - 399 с.

27. СО 34.45.629-2002. Методические указания по техническому обслуживанию микропроцессорных АРВ и систем управления силовых преобразователей систем возбуждения генераторов. РАО «ЕЭС России», Департамент научно-технической политики и развития, 2003.

28. Сорокин, Д.В. Координация настроек автоматических регуляторов возбуждения генераторов на основе применения генетического алгоритма / Д.В. Сорокин // Научно-технические ведомости СПБГПУ. – 2009. – №1. – С. 18-25.

29. Овчаренко, Н. И. Автоматика энергосистем [Электронный ресурс] : учеб. для вузов / Н. И. Овчаренко ; под ред. А. Ф. Дьякова. - 3-е изд., испр. ; Гриф МО. - Москва : Изд-во МЭИ, 2009. - 476 с..

30. Шелест, В. А. Автоматизированные системы в энергетике [Электронный ресурс] : метод. указ. для самостоятельной работы студентам специальности 140400.62 «Электроэнергетика и электротехника» по профилю

«Электроснабжение» / В. А. Шелест. - Черкесск : БИЦ СевКавГГТА, 2013. - 28 с.

31. Шаргин, Ю.М. Методическое и модельно-программное обеспечение расчетов установившихся режимов и электромеханических переходных процессов в электрических системах: Учебное пособие для дистанционного обучения. СПб.: СЗФ АО «ГВЦ Энергетики», 2004. 34 с.