МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

<u>Институт</u> энергетики и электротехники .
(наименование института полностью)
Кафедра «Энергетические машины и системы управления»
(наименование кафедры)
13.03.03 «Энергетическое машиностроение»
(код и наименование направления подготовки, специальности)
Двигатели внутреннего сгорания
(направленность (профиль/специализация)

БАКАЛАВРСКАЯ РАБОТА

на тему Снижение токсичности по углеводородам двигателя ВАЗ

Студент	М.В. Ничипорук	
_	(И.О. Фамилия)	(личная подпись)
Руководитель	В.В. Смоленский	
_	(И.О. Фамилия)	(личная подпись)
Консультанты	М.И. Фесина	
	(И.О. Фамилия)	(личная подпись)
	А.Г. Егоров	
	(И.О. Фамилия)	(личная подпись)
	О.Н. Брега	
	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
Заведующий кафедрой	к.т.н., Д.А. Павлов	
	(ученая степень, звание, И.О. Фамилия)	(личная подпись)

Тольятти 2017

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

<u>Институт энергетики и электротехники</u> . (наименование института полностью)
Кафедра «Энергетические машины и системы управления» (наименование кафедры)

УТВЕРЖДАЮ)
Зав. кафедрой 3	ЭМиСУ
	<u> — Д.А. Павлов</u>
(подпись)	(И.О. Фамилия)
« »	2017Γ

ЗАДАНИЕ на выполнение бакалаврской работы

Студент	Ничипорук Михаил	Викторович				
1. Тема	ема Снижение токсичности по углеводородам двигателя ВАЗ					
2. Срок сда	чи студентом законч	енной бакалав	рской работы	16-22 июня 2017 года,		
	<u> </u>	-		базе BA3, с V _h =1,5 л.,		
частота вра	ащения n _N =5000 мин	¹ . Степень сжа	ε = 10,5.			
4. Содержа	ние выпускной квали	ификационной	работы (перече	нь подлежащих разработке		
вопросов, р	разделов) Теплової	й расчет двига	теля, Расчет кин	ематики и динамики двигателя,		
Расчет пор	шневой группы, Опи	сание констру	кции спроектиро	ованной двигателя,		
Безопаснос	сть и экологичность п	роекта				
5. Ориенти	ровочный перечень г	рафического и	и иллюстративно	ого материала		
Продольнь	ий и поперечный разр	ез двигателя,	Лист диаграмм т	геплового расчета		
Лист диагр	рамм ВСХ, Лист диагр	рамм кинематі	ического и динам	мического расчета		
Лист спец	части					
6. Консуль	танты по разделам	– д.т.н., про	фессор Егоров А	Α.Γ.		
к.т.н., проф	рессор Фесина М.И.					
7. Дата выд	цачи задания «		»	201 г.		
			_			
Руководите	ель бакалаврской раб	ОТЫ		В.В. Смоленский		
			(подпись)	(И.О. Фамилия)		
Задание пр	инял к исполнению			М.В. Ничипорук		
			(подпись)	(И.О. Фамилия)		

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт энергетики и электротехники . (наименование института полностью)

Кафедра «Энергетические машины и системы управления» (наименование кафедры)

УТВЕРЖДАЮ	
Зав. кафедрой Э	МиСУ
	Д.А. Павлов
(подпись)	(И.О. Фамилия)
« »	2017Γ

КАЛЕНДАРНЫЙ ПЛАН выполнения бакалаврской работы

Ничипорука Михаила Викторовича

30 мая 2017 г.

30-13 июня 2017

26-29 июня 2017

Студента

Безопасность и

экологичность Предварительная

защита и корректировка ВКР
Защита перед ГИК

по теме Снижение токсичности по углеводородам двигателя ВАЗ						
				Ι		
Наименование	Плановый срок	Фактический	Отметка о вы-	Подпись руко-		
раздела работы	выполнения	срок выполне-	полнении	водителя		
	раздела	ния раздела				
Тепловой расчет	5 мая					
двигателя	2017 г.					
Расчет кинематики	11 мая					
двигателя	2017 г.					
Расчет динамики	15 мая					
двигателя	2017 г.					
Описание кон-	20 мая					
струкции спроек-	20 мая 2017 г.					
тированного ДВС	201/1.					

Руководитель бакалаврской работы		В.В. Смоленский
	(подпись)	(И.О. Фамилия)
Задание принял к исполнению		М.В. Ничипорук
	(подпись)	(И.О. Фамилия)

КИДАТОННА

Снижение токсичности по несгоревшим углеводородам в бензиновых двигателях является значимой и актуальной задачей. В бакалаврской работе представлен способ снижение токсичности по несгоревшим углеводородам с помощью применения добавки водорода, позволяющей активировать процесс сгорания и повысить его полноту, что особенно важно на частичных нагрузках.

По этому в данном бакалаврской работе представлены результаты проектирования 8 клапанного двигателя ВАЗ с рабочим 1,5 л с системой подачи водорода для снижение токсичности по несгоревшим углеводородам. Бакалаврская работа состоит из пояснительной записки и графической части. Пояснительная записка состоит из следующих разделов:

- Обоснование эффективности применения добавки водорода в бензиновых двигателях для снижения токсичности отработавших газов.
- Тепловой расчет и тепловой баланс двигателя, где проведен расчет основных параметров проектируемого двигателя.
- Кинематический расчет показывает изменение кинематических параметров поршневой группы.
- Динамический расчет, где определяются силы и нагрузки действующие в кривошипно-шатунном механизме, а также условия для уравновешивания двигателя.
- В разделе специальной части, проведен анализ эффективности применения водорода для снижение токсичности по несгоревшим углеводородам при его добавках на различных режимах работы двигателя.

Графическая часть работы содержит 8 листов формата A1 иллюстрирующих мате-

Reducing the toxicity of unburned hydrocarbons in gasoline engines is a significant and urgent task. The bachelor's work presents a way to reduce the toxicity of unburned hydrocarbons by using the hydrogen additive, which allows activating the combustion process and increasing its completeness, which is especially important at partial loads.

Therefore, this bachelor's work presents the results of designing an 8-valve VAZ engine with a working capacity of 1.5 liters with a hydrogen supply system to reduce toxicity over unburned hydrocarbons. Bachelor's work consists of an explanatory note and a graphic part. The explanatory note consists of the following sections:

- Rationale for the effectiveness of the use of hydrogen additives in gasoline engines to reduce the toxicity of exhaust gases.
- Thermal calculation and heat balance of the engine, where the calculation of the main parameters of the engine being designed.
- Kinematic calculation shows the change in the kinematic parameters of the piston group.
- Dynamic calculation, where the forces and loads acting in the crank mechanism are determined, as well as the conditions for balancing the engine.
- Calculation of the main engine parts, consisting of the calculation of the most loaded elements of ICE, namely, the calculation of the piston group, the calculation of the crank group and the calculation of the crankshaft.
- Calculation of engine systems, consisting of calculating the cooling system and calculating the lubrication system.
- In the section of the special section, an analysis of the effectiveness of hydrogen has been performed to reduce the toxicity of unburned hydrocarbons with its additives at various engine operating conditions.

риал представленный в пояснительной за-	The graphic part of the work contains 8
писке.	sheets of A1 format illustrating the material pre-
	sented in the explanatory note.

СОДЕРЖАНИЕ

Введение	7
1 Обзор иностранных источников по способам снижения токсичности	
отработавших газов по углеводородам	8
2 Тепловой расчет двигателя	28
3 Расчет кинематики двигателя	41
4 Динамический расчет двигателя	42
5 Специальная часть	47
5.1 Описание системы непосредственного впрыска топлива спроек-	
тированного двигателя	47
5.2 Расчет основных элементов электромагнитной форсунки	50
6 Безопасность и экологичность проекта	53
6.1 Оценка безопасности и экологичности объекта разработки бака-	
лаврской работы	53
6.2 Выводы по разделу	55
Заключение	56
Список использованных источников	57
Приложение А - Результаты теплового расчета	59
Приложение Б - Результаты кинематического расчета	79
Приложение В - Результаты линамического расчета	81

ВВЕДЕНИЕ

Залогом успешного внедрения технологии GDI послужила разработка нового типа инжектора, который позволил увеличить давление впрыска, гарантировать стабильный и точный поток топлива, а также возможность контроля подачи воздуха. Это позволило добиться стабильности прямого впрыска. В настоящее время технология GDI расширяется за пределами Японии и это связано с дальнейшим ужесточением стандартов выхлопа вредных газов в атмосферу. Давайте теперь разберем эффективность технологии GDI и вопросы выхлопных газов, которые стояли до возникновения, а также определим причины, почему такая технология зародилась.

Все двигатели внутреннего сгорания воспламеняют топливо в воздухе, и каждый тип топлива имеет идеальное соотношение смеси, при котором топливо сгорит полностью или максимально полно. Во всем мире инженеры, создающие двигатели, ломают голову над тем, чтобы достигнуть идеального соотношения воздуха и топлива для полного сгорания смеси. Как правило, это так называемое стехиометрическое соотношение. У бензина оно равно 14,7:1 (14,7 частей воздуха и 1 часть воздуха по весу). Это соотношение должно поддерживаться на разных нагрузках двигателя и при разных условиях. Раньше такое соотношение иногда достигалось в карбюраторе. Однако карбюратор имел свой верхний предел развития, несмотря на экономичность и достаточную мощность, однако новые модели требовали еще большей мощности с одновременным ужесточением выхлопа.

1 Обзор иностранных источников по способам снижения токсичности отработавших газов по углеводородам

Оригинал и перевод научного текста

Review on Exhaust Gas Heat Recovery for I.C. Engine

Abstrac. The increasingly worldwide problem regarding rapid conomy development and a relative shortage of energy, the internal combustion engine exhaust waste heat and environmental pollution has been more emphasized heavily recently. Out of the total heat supplied to the engine in the form of fuel, approximately, 30 to 40% is converted into useful mechanical work; the remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste heat into useful work. The recovery and utilization of waste heat not only conserves fuel (fossil fuel) but also reduces the amount of waste heat and greenhouse gases damped to environment. The study shows the availability and possibility of waste heat from internal combustion engine, also describe loss of exhaust gas energy of an internal combustion engine. Possible methods to recover the waste heat from internal combustion engine and performance and emissions of the internal combustion engine. Waste heat recovery system is the best way to recover waste heat and saving the fuel.

INTRODUCTION

Recent trend about the best ways of using the deployable sources of energy in to useful work in order to reduce the rate of consumption of fossil fuel as well as pollution. Out of all the available sources, the internal combus-

Рассмотрение рекуперации тепла отработанных газов для двигателей внутреннего сгорания

Реферат . Все более распространенная в мире проблема быстрого экономического развития и относительной нехваткой энергии, выхлоп отработанных газов двигателя внутреннего сгорания и загрязнение окружающей среды было в большей степени подчеркнуто в последнее время. Из общего количества тепла, подаваемого в двигатель в виде топлива, приблизительно 30-40%, превращается в полезную работу. Механическая обработка; Оставшееся тепло выбрасывается в окружающую среду через выхлопные газы и систему охлаждения двигателя, что приводит к росту энтропии и серьезному загрязнению окружающей среды, поэтому требуется использовать отработанное тепло в полезную работу. Утилизация и использование отработанного тепла не только экономит топливо, но также уменьшает количество отработанного тепла и парникового газа, демпфированные В окружающую cpeду. Исследование показывает наличие и возможность использования отработанного тепла от внутреннего сгорания двигателя, также описывают потерю энергии выхлопных газов двигателя внутреннего сгорания. Возможные методы восстановления отработанного тепла от двигателя внутреннего сгорания и рабочих характеристик, и выбросов двигателя внутреннего ния. Система регенерации отработанного тепла лучший способ восстановить отработанное тепло и экономить топливо.

1.ВВЕДЕНИЕ

Недавняя тенденция к лучшим способам использования развертываемых источников энергии в полезную работу с целью снижения потребления ископаемого топлива, а также загрязнения окружающей среды. Из всех имеющиеся источников,

tion engines are the major consumer of fossil fuel around the globe. Out of the total heat supplied to the engine in the form of fuel, approximately, 30 to 40% is converted into useful mechanical work. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems, resulting in to entropy rise and serious environmental pollution, so it is required to utilized waste heat into useful work. The recovery and utilization of waste heat not only conserves fuel, usually fossil fuel but also reduces the amount of waste heat and greenhouse gases damped to environ ment. It is imperative that serious and concrete effort should be launched for conserving this energy through exhaust heat recovery techniques. Such a waste heat recovery would ultimately reduce the overall energy requirement and also the impact on global warming. The Internal Combustion Engine has been a primary power source for automobiles and automotives over the past century. Presently, high fuel costs and concerns about foreign oil dependence have resulted in increasingly complex engine designs to decrease fuel consumption. For example, engine manufacturers have implemented techniques such as enhanced fuel-air mixing, turbo-charging, and variable valve timing in order to increase thermal efficiency. However, around 60-70% of the fuel energy is still lost as waste heat through the coolant or the exhaust. Moreover, increasingly stringent emissions regulations are causing engine manufacturers to limit combustion temperatures and pressures lowering potential efficiency gains. As the most widely used source of primary power for machinery critical to the

двигатели внутреннего сгорания являются основным потребителем ископаемого топлива во всем мире. Общее количество тепла, подаваемого в двигатель в виде топлива, приблизительно 30-40% превращается в полезную механическую работу. Оставшееся тепло выбрасывается в окружающую среду через выхлопные газы и систему охлаждения двигателя, в связи с ростом энтропии и серьезным загрязнением окружающей среды, необходимо использовать отработанное тепло в полезную работу. Восстановление и использование отработанного тепла не только экономит топливо, но также уменьшает количество отработанного тепла и парниковые газы, демпфированные в окружающую среду. Необходимо приложить серьезные и конкретные усилия для сохранение этой энергии за счет рекуперации отработанного тепла. Такое восстановление отходящего тепла в конечном счете снизит общие потребности в энергии, а также воздействие на глобальное потепление. Двигатель внутреннего сгорания был первичным источник энергии для автомобилей в прошедшем столетии. В настоящее время высокие затраты на топливо и зависимость от иностранной нефти привели к усложнению эксплуатации таких автомобилей. Чтобы снизить расход топлива производители двигателей внедрили такие методы, как улчшенное смешивание топлива и воздуха, турбонагнетание и переменный клапан чтобы увеличить тепловую эффективность. Однако, около 60-70% топливной энергии все еще теряется в качестве отработанного тепла через хладагент или выхлоп. Более того, все более строгие нормы выбросов призывают производителей ограничить температуру горения и давление, снижающее потенциальные выгоды эффективности. Как наиболее широко используемый источник первичной энергии для машин, транспортном, строительном и сельскохозяйственном секторах, двигатель потреблет более 60% ископаемого масла. Сохранение энергии на двигателе - один из лучших способов поскольку это может улучшить использование энергии, КПД двигателя и уменьшает выбросы . Учитывая важность повышения эффективности преобразоtransportation, construction and agricultural sectors, engine has consumed more than 60% of fossil oil. On the other hand, legislation of exhaust emission levels has focused on carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and particulate matter (PM). Energy conservation on engine is one of best ways to deal with these problems since it can improve the energy utilization efficiency of engine and reduces emissions. Given the importance of increasing energy conversion efficiency for reducing both the fuel consumption and emissions of engine, scientists and engineers have done lots of successful research aimed to improve engine thermal efficiency, including supercharge, lean mixture combustion, etc. However, in all the energy saving technologies studied. Engine exhaust heat recovery is considered to be one of the most effective. Many researchers recognize that Waste Heat Recovery from engine exhaust has the potential to decrease fuel consumption without increasing emissions, and recent technological advancements have made these systems viable and cost effective. This paper gives a comprehensive review of the waste heat from internal combustion engine, waste heat recovery system and methods of waste heat recovery system.

II. POSSIBILITY OF HEAT RECOVERY AND AVAILABILITY FROM I.C. ENGINE Waste heat is heat, which is generated in a process by way of fuel combustion or chemical reaction, and then "dumped" into the environment even though it could still be reused for some useful and economic purpose. This heat depends in part on the temperature of the waste heat gases and mass flow rate of ex-

вания энергии для уменьшения как расхода топлива, так и выбросы двигателя, ученые и инженеры провели множество успешных исследований направленных на повышение тепловой эффективности двигателя, в том числе сжигание обедненной смеси и т. д. Однако во всех изученых энергосберегающих технологиях выхлопные газы двигателя считается одним из наиболее эффективных. Многие исследователи признают, что восстановление отработанного тепла от двигателя имеет потенциал для снижения расхода топлива без увеличения выбросов, а последние технологические усовершенствования сделали эти системы жизнеспособными и эффективными. В настоящем документе дается всесторонний обзор. Отработанное тепло двигателя внутреннего сгорания, отработанное тепло системы рекуперации и методов рекуперации отработанного тепла.

II. ВОЗМОЖНОСТЬ РЕКУПЕРАЦИИ ТЕПЛА И

ДОСТУПНОСТЬ ИСХОДНОГО ДВИГАТЕЛЯ

Отработанное тепло - это тепло, которое генерируется в процессе сжигания топлива или химической реакции, а затем "сбрасывается" в окружающую среду, несмотря на то, что он все еще может быть повторно использован для некоторых полезных и экономических целей. Это тепло зависит отчасти от температуры отходящих тепловых газов и удельного массового расхода выхлопных газов. Потери тепловой энергии возникают как из за неэффективности оборудования и от термодинамических ограничений на оборудовании и процессов. Например, рассмотрим внутренние, двигатель внутреннего сгорания приблизительно от 30 до 40% преобразуется в полезнаую механическую работу. Оставшееся тепло вытесняется в окружающую среду через выхлопные газы и системы охлаждения двигателя. Это означает приблизительно 60-70% потерь энергии.

Следовательно, эти газы имеют высокое теплосодержание, выброс выхлопных газов. Можно приложить больше усилий для энергосбережения, ревербератор с улучшенной передачей тепла и

Выхлопные газы, выходящие непосредственно из

двигателя, могут иметь температуру, которая до-

стигает 842-1112 ° F [450-600 ° С].

haust gas. Waste heat losses arise both from equipment inefficiencies and from thermodynamic limitations on equipment and processes. For example, consider internal combustion engine approximately 30 to 40% is converted into useful mechanical work. The remaining heat is expelled to the environment through exhaust gases and engine cooling systems. It means approximately 60 to 70% energy losses as a waste heat through exhaust (30% as engine cooling system and 30 to 40% as environment through exhaust gas). Exhaust gases immediately leaving the engine can have temperatures as high as 842-1112°F [450-600°C]. Consequently, these gases have high heat content, carrying away as exhaust emission. Efforts can be made to design more energy efficient reverberatory engine with better heat transfer and lower exhaust temperatures; however, the laws of thermodynamics place a lower limit on the temperature of exhaust gases. Fig. 2.1 show total energy distributions from internal combustion engine.

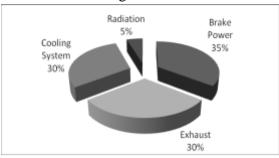


Fig. 1 Total Fuel Energy Content in I. C. Engine A. Benefits of 'waste heat recovery' can be broadly classified in two categories 1. Direct Benefits: Recovery of waste heat has a direct effect on the combustion process efficiency. This is reflected by reduction in the utility consumption and process cost. 2. Indirect Benefits: a) Reduction in pollution: A number of toxic combustible wastes such as carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and particulate matter (PM) etc, releasing to atmosphere. Recovering of

более низкие температуры выхлопных газов; однако, законы термодинамики устанавливают нижний предел температуры выхлопных газов. На рисунке показано полное распределение энергии от двигателя внутреннего сгорания.

- А. Преимущества «утилизации отходящего тепла» могут быть в широком смысле подразделяться на две категории
- 1. Прямые выгоды:

Восстановление отработанного тепла напрямую влияет на эффективность процесса сжигания. Это находит свое отражение в сокращении в расходах на коммунальные услуги и в процессе.

- 2. Косвенные выгоды:
- А) Снижение загрязнения: ряд токсичных горючих такие как монооксид углерода (СО), углеводороды (НС), оксиды азота (NOx) и твердые частицы (РМ) и т.д., выпуская в атмосферу. Восстановление тепла уменьшает уровни загрязнения окружающей среды.
- В) Сокращение размеров оборудования: утилизация отработанного тепла снижает расход топлива, что приводит к снижению производимого дымового газа. Это приводит к сокращению размера оборудования.
- С) Сокращение потребления вспомогательных энергоресурсов: сокращение размера оборудования дают дополнительные преимущества в виде уменьшение вспомогательного потребления энергии.

В автомобильных двигателях значительное количество тепла уходит окружающую среду. Например, целых 35% тепловой энергии, образующаяся при сгорании в автомобильном дви-

heat reduces the environmental pollution levels. b) Reduction in equipment sizes: Waste heat recovery reduces the fuel consumption, which leads to reduction in the flue gas produced. This results in reduction in equipment sizes. c) Reduction in auxiliary energy consumption: Reduction in equipment sizes gives additional benefits in the form of reduction in auxiliary energy consumption. In automobile engines significant amount of heat is released to the environment. For example, As much as 35% of the thermal energy generated from combustion in an automotive engine is lost to the environment through exhaust gas and other losses. The amount of such loss, recoverable at least partly or greatly depends on the engine load. Among various advanced concepts, Exhaust Energy Recovery for Internal Combustion (IC) engines has been proved to not just bring measurable advantages for improving fu el consumption but also increase engine power output (power density) or downsizing, further reducing CO2 and other harmful exhaust emissions correspondingly. Which was predicted that if 6% of the heat contained in the exhaust gases were converted to electric power, 10% reduction of fuel consumption can be achieved.

B. Possibility of Waste Heat from Internal Combustion Engine Today" s modern life is greatly depends on automobile engine, i.e. Internal Combustion engines. The majority of vehicles are still powered by either spark ignition (SI) or compression ignition (CI) engines. CI engines also known as diesel engines have a wide field of applications and as energy converters they are characterized by their high efficiency. Small air-cooled diesel engines of up to 35 kW output are used for irrigation purpose, small agricultural tractors and construction machines whereas large farms employ tractors of up to 150 kW output. Water or

гателе теряется в окружающей среде через выхлопные газы и других потерь. Сумма такого убытка, возмещаеться при хотя бы частичной или в значительной степени загруженности двигателя. Среди различных передовых концепций, выхлопная система для двигатели внутреннего сгорания, было доказано не только то что выхлопная система дает измеримые преимущества для улучшения потребления топлива, но также можно увеличить мощность двигателя (плотность мощности) или сокращение, дальнейшее сокращение СО 2 и других вредных выхлопных газов и выбросы соответственно. Который был предсказан, что если 6% тепла, содержащегося в выхлопных газах, были преобразованы в электроэнергию, снижение расхода топлива на 10% может быть достигнуто.

В. Возможность утилизации тепла от двигателя внутреннего сгорания Сегодняшняя современная жизнь во многом зависит от автомобиля. Двигатель. т.е. двигатели внутреннего сгорания. Большая часть чего-либо, транспортные средства все еще питаются либо искровым зажиганием (SI), либо двигателей с воспламенением от сжатия (CI). Двигатели CI, также известные как дизельные двигатели имеют широкую область применения и в качестве энергии они отличаются высокой эффективностью. Небольшие дизельные двигатели с воздушным охлаждением мощностью до 35 кВт используются для орошения, небольшие сельскохозяйственные тракторы и строительных машин, тогда как крупные фермы используют тракторы мощностью до 150 кВт. Водяные или воздушные двигатели используются для небольших судов и малых самолетов диапазон 35-150 кВт, двигатели с водяным охлаждением предпочтительнее для большей мощности. Машины для земляных работ используют двигатели с мощностью до 520 кВт или даже выше до 740 кВт. Морские суда и локомотивы обычно используют двигатели с мощностью 150 кВт и более. Грузовые автомобили и дорожные машины Обычно используют высокоскоростные дизельные двигатели мощностью 220 кВт или больше. Дизельные двигатели используются в air-cooled engines are used for a range of 35-150 kW and unless strictly air cooled engine is required, water-cooled engines are preferred for higher power ranges. Earth moving machinery uses engines with an output of up to 520 kW or even higher, up to 740 kW. Marine and locomotive applications usually employ engines with an output range of 150 kW or more. Trucks and road engines usually use high speed diesel engines with 220 kW output or more. Diesel engines are used in small electrical power generating units or as standby units for medium capacity power stations [10].

Table I. Various Engine and There Output

Sr. No.	Engine type	Power output kW	Waste heat
1	Small air cooled diesel engine	35	
2	Small agriculture tractors and construction machines	150	30-40% of Energy
3	Water air cooled engine	35-150	Waste loss
4	Earth moving machineries	520-720	From I.C. Engine
5	Marine applications	150-220	Lingine
6	Trucks and road engines	220	

The table I. shows that various engine and there power ranges. In general, diesel engines have an efficiency of about 35% and thus the rest of the input energy is wasted. Despite recent improvements of diesel engine efficiency, a considerable amount of energy is still expelled to the ambient with the exhaust gas. In a water-cooled engine about 35 kW and 30-40% of the input energy is wasted in the coolant and exhaust gases respectively. The amount of such loss, recoverable at least partly, greatly depends on the engine load. Mr. Johnson found that for a typical 3.0 l engine with a maximum output power of 115 kW, the total waste heat dissipated can vary from 20 kW to as much as 400 kW across the range of usual engine operation. It is suggested that for a typical and representative driving cycle, the average heating power available from waste heat is about 23 kW, compared to 0.8-3.9 kW of cooling capacity provided by typical passenger car VCR systems

малой мощности или в качестве резервных блоков для средней мощности электростанции. Таблица І. Различные двигатели и мощность на выходе.

	N.C	T	M	П
	$\mathcal{N}_{\underline{0}}$	Тип двигателя	Мощ-	•
			ность	энергии
			КВТ	
	1	Малый дизельный	35	
		двигатель с воздуш-		
		ным охлаждением		
	2	Малые сельскохозяй-	150	30-40%
		ственные трактора и		Потеря
		строительные маши-		энергии
		НЫ		для дви-
	3	Водяной двигатель с	55-150	гателя
		воздушным охлажде-		внутрен-
		нием		него сго-
	4	Землеройные меха-	520-	рания
		низмы	720	
	5	Судостроительная	150-	
		промышленность	220	
	6	Грузовые автомобили	220	
		и дорожные машины		
۱		, , - I -		

Таблица I. показывает, что различные двигатели и мощность. В целом, дизельные двигатели обладают кпд 35% и, таким образом, остальная часть входной энергии теряется. Несмотря на недавние улучшения эффективности дизельных двигателей, значительное количество энергии все еще вытесняется с выхлопным газом. В двигателе с водяным охлаждением около 35 кВт и 30-40% входной энергии теряется в хладагенте и выхлопных газах. Сумма такого ущерба, восстанавливаемое по меньшей мере частично, в значительной степени зависит от нагрузки двигателя. Г-н Джонсон обнаружил, что для типичного 3.0литрового двигателя с максимальной выходной мощностью 115 кВт, общее количество отработанного тепла может варьироваться от 20 кВт до 400 кВт в поперечнике. Это диапазон обычной работы двигателя. Предполагается, что для типичного и представительного цикла вождения, средний нагрев отработанного тепла составляет около 23 кВт, по сравнению с холодопроизводительностью 0.8-3.9 кВт, обеспечиваемая обыч[11]. Since, the wasted energy represents about two-thirds of the input energy and for the sake of a better fuel economy, exhaust gas from Internal Combustion engines can provide an important heat source that may be used in a number of ways to provide additional power and improve overall engine efficiency. These technical possibilities are currently under investigation by research institutes and engine manufacturers. For the heavy duty automotive diesel engines, one of the most promising technical solutions for exhaust gas waste heat utilization appears to be the use of a useful work.

Performance and Exhaust Gas Emission of Compressed Natural Gas Fueled Internal Combustion Engine in Dual Fuel Mode

Abstract

In this study, a comprehensive review of various operating parameters and concerns have been prepared for better understanding of operating condition (spark and compression ignited engines) and constrains for a natural gas fueled internal combustion engine. The overall objective of this project was to produce an engine control strategy to facilitate engine operation that was efficient, reduced exhaust emissions, and minimized fuel usage. The dual fuel and steady state are compared to determine if any emission and efficiency benefits are produced. In the present study an experimental investigation was carried out with CNG as an alternative fuel engine.

1. INTRODUCTION

Air pollution is fast becoming a serious urban as well as global problem with the increasing population and its sub sequent demands. This has resulted in an increased interest in using compressed natural gas (CNG) as a fuel for internal combustion engine (IC). CNG resources are vast and

ным пассажиром автомобильными системами VCR . Так как потерянная энергия представляет около двух третей входной энергии и ради улучшенная экономия топлива, выхлопные газы от двигателя внутреннего сгорания могут обеспечить важный источник тепла, который может быть использован несколькими способами для обеспечения дополнительной мощности и улучшить общую эффективность двигателя. Эти технические возможности в настоящее время исследуются исследованиями институтов и производителей двигателей. Для тяжелых условий эксплуатации автомобильные дизельные двигатели, одни из самых перспективных. Технические решения по утилизации отработанного газа по-видимому, является полезной работой.

Производительность и уровень выбросов выхлопных газов сжатого природного газа в двигателе внутреннего сгорания в двухтопливном режиме

Реферат

В данном исследовании показан комплексный обзор различных операционных параметров и рисков, были подготовлены для лучшего понимания рабочего состояния (искры и сжатия воспламенения смеси в двигателе) и ограничений по возможности добавления природного газа к топливу двигателя внутреннего сгорания. Цель этого проекта заключалась в создании двигателя, системе управления для облегчения его работы, чтобы эффективно, снизить объемы выхлопных газов и свести к минимуму использование топлива. В данном исследовании экспериментально проводилось использованием СПГ в качестве альтернативного топлива в двигателе

1. ВВЕДЕНИЕ

Загрязнение воздуха быстро становится серьезной городской, а также глобальной проблемой связанной с ростом населения. Это привело к повышенной заинтересованности в использовании компримированного природного газа (КПГ) в качестве топлива для двигателя внутреннего сгорания (ДВС). Ресурсы КПГ общирны и хорошо распространены географически и не ограничены в политически уязвимом месте, как это характер-

widespread geographically and are not limited to politically sensitive location as is typical for crude oil. Based on current consumption rates, the estimated total, recoverable gas, including proven reserves, is adequate for almost 200 years. To benefit from the use of CNG in IC engines, it is necessary to understand its combustion and to study the effect of various parameters on it. This review aim to prepare a conics state of art that provides an idea of various concerns related to employment of Compressed Natural Gas as a vehicular fuel in order to improve the rapidly deteriorating air quality condition in urban regions The parameters of particular interest are engine torque, power and specific fuel economy. The actual power output of an engine depends on the ambient air temperature and pressure in the test cell. These engine performance characteristics affect driving techniques and fuel economy. Engines are basically air pumps. For more power, an engine must burn more fuel; hence more air must be pumped into the cylinders. The amount of air available to the engine depends on the resistance to flow though the engine intake system. Space occupied by the fuel reduces the amount of air entering the engine; hence the power output of the engine is reduced. Theoretically, loss in power output for LPG (4%) is less than CNG (9.5%). Liquid fuels vaporize manifold as they mix with air in the engine's intake and then enter the cylinders. Gaseous fuels, on the other hand, are already in a vapor form and do not provide any cooling of air/fuel mixture. This loss of cooling constitutes an additional power loss of gasfueled engine compared to liquid fueled engine. Injection of the fuel directly into the engine cylinder would eliminate the power loss. Turbochargers and supercharges (T&S) is frequently used on engines to provide a better balance between но для сырой нефти. Исходя из нынешних темпах потребления, по оценкам, общего объема, извлекаемого газа, включая разведанные запасы, хватит на ,примерно 200 лет. Чтобы была выгода от использования КПГ в ДВС, необходимо понять процесс его сгорания и изучить влияния различных параметров. Этот обзор дает представление о сжатом природном газе в качестве автомобильного топлива с целью улучшения качества воздуха и снижению токсичности отработавших газов. Параметрами представляющими особый интерес двигателя являются крутящий момент, мощность и удельный расход топлива. Фактическая выходная мощность двигателя зависит от температуры окружающего воздуха и давления в камере сгорания. Эти характеристики двигателя показывают влияние на стиль вождения и экономию топлива. Двигатели -это в основном воздушные насосы. Для получения дополнительной мощности, двигатель должен сжечь больше топлива, следовательно больше воздуха должно поступать в камеру сгорания. Пространство, занимаемое топливом уменьшает количество воздуха, поступающего в двигатель; следовательно, Выходная мощность двигателя снижается. Теоретически, потеря в выходной мощности для сжиженного нефтяного газа (4%) меньше, чем КПГ (9.5%). Жидкое топливо испаряется в коллекторе, после того оно перемешивается с воздухом и по впускным каналам попадают в цилиндры. Это парообразование поэнергию охлаждает глощает топливовоздушную смесь. Газообразное топливо, с другой стороны, уже в виде пара не обеспечивают охлаждения воздуха/топливной смеси. Эта потеря охлаждения представляет собой дополнительные потери мощности из работающих на газе двигателей по сравнению с двигателем работающим на жидком топливе. Впрыск топлива непосредственно в цилиндр двигателя позволит устранить потери Турбокомпрессоры и нагнетатели зачастую используются на двигателях, чтобы обеспечить лучший баланс между мощностью и топливной экономичностью, за счет сжатия воздуха для горения, поступающего в цилиндры двигате-

ля, все это позволяет больше топлива, чтобы

power and fuel economy. T&S compress the combustion air entering the engine's cylinders thus allowing more fuel to be burned and providing more power for a given engine size.

A. Compressed Natural Gas as an Alternative fuel for IC Engines CNG defuses in air fuel mixing at lower inlet temperature than is possible with either gasoline or diesel. This leads to easier starting, more reliable idling, smoother acceleration and more complete and efficient burning with less unburned hydrocarbons present in the exhaust. The higher ignition temperature of gas compared with petroleum based fuel leads to reduced auto ignition delays. Due to the higher ignition temperature, CNG is less hazardous than any other petroleum based fuel. The higher octane rating (120) for CNG as compared to that of gasoline (87) and consequently more efficient fuel consumption. B. Types of Compressed Natural Gas Engines Gaseous fuels are more suitable for higher compression engines (due to high octane value that permits a high compression ratio, leading to higher thermal efficiency at full-load condition) as well as produce less polluting exhaust gases, if appropriate conditions are satisfied for their mixing and combustion. Therefore, it is more economical and of environmental advantage to use CNG in diesel DF engines. Hence, some type of ignition aid is required. Dual fuel (DF) is one practical way to use CNG in such engines. Hence, some type of ignition aid is required. Dual fuel (DF) is one practical way to use CNG in such engines.

C. Present Status of Compressed Natural Gas EnginesCombustion Characteristics In an experimental study on combustion characteristics of a turbo charged CNG and diesel duel-fuelled CI engine, ignition delays, and effects of pilot diesel and engine load on combustion characteristics were

сжечь и обеспечивая больше мощности для данного объема двигателя.

А. Сжатый природный газ в качестве альтернативного топлива для ДВС

Разряженный воздух смешивается с КПГ, и затем с топливом при более низкой входной температуре, чем бензин или дизельное топливо. Это приводит к легкому запуску, более плавному холостому ходу, плавному ускорению и более полному и эффективному горению с меньшим количеством несгоревших углеводородов, присутствующих в выхлопных газах. Высокая температура воспламенения газа по сравнению с нефтяной основе топлива приводит к снижению задержки воспламенения топлива. Из-за более высокой температуры воспламенения, КПГ является менее опасным, чем любое другое топливо, на нефтяной основе. Высокое октановое число (120) для КПГ по сравнению с бензином (87) позволяет достигать более эффективный расход топлива.

Б.Виды двигателей на сжатом природном газе Газообразное топливо больше подходят для двигателей с более высокой степенью сжатия (за счет высокого октанового числа значение, что обеспечивает высокий коэффициент сжатия, что приводит к повышению термического КПД при полной нагрузке), а также производят меньше выхлопных газов, при соответствующих условиях для их смешения и горения. Следовательно, он является более экономичным и экологических преимуществ использования СПГ в дизельных двигателях ДФ. Двойное топливо (ДТ) - это один из практических способов использования КПГ в таких двигателях.

В.Современное состояние и характеристики сжатого природного газа в ДВС. В экспериментальном исследовании на характеристики сгорания КПГ на дизельном турбированном моторе нагрузки были проанализированы по давлению. При низкой скорости и малой нагрузки условия эксплуатации, скорость нарастания давления наблюдалась довольно высокая. Количество выбросов возрастает с увеличением концентрации метана (нагрузки). Когда ДФ двигатели работают в условиях небольшой нагрузки, дымности дви-

analyzed using measured cylinder pressure of the engine. Under lowspeed and lowload operating conditions, the rate of pressure rise was observed rather high. When DF engines run under low-load conditions, that exhaust is always smokeless. Even if it is operated at full-load condition, smoke is less still less than that form diesel engine A study was undertaken as to hoe a pilot injection of diesel fuel affects the combustion of CNG-air mixture in an environment approximating that of a diesel cycle. After calibration of a 3D numerical mode by combustion bomb tests, parametric studies were carried on the pilot injection pressures and the number and size of nozzles holes for a fixed diesel fuel floe rate. The numerical model gave a very good agreement with experimental results in predicating the combustion pressure. However, at the tail of the burning period, the experimental results fall more rapidly than those of the simulation. Also, when the injection pressure increases (20-60 Mpa), the combustion pressure increases (30). The higher fuel injection pressure gives a faster combustion of CNG. The results show that a high injection pressure has the beneficial effect of increasing the performance of DF combustion. E. Air pollution A study or fueled vehicles on emission testing has shown that formaldehyde level of CNG vehicle are generally equivalent or less than formaldehyde levels for gasoline fuels. In terms of efficiency, performance and range study, DF vehicles suffer major drawback either in term of efficiency or acceleration performance.

2. RESULTS AND DISCUSSIONS Carbon monoxide is present in the exhaust gas is due to unavailability of oxygen for complete combustion process. Higher concentration of CO in the exhaust is a clear indication of incomplete combustion of the pre-mixed mixture. The CO levels were

гателя практически нет. Даже если он эксплуатируется при полной нагрузке условие, дыма меньше, чем на просто дизельном моторе. В исследовании также была предпринята попытка впрыска дизельного топлива на В СПГ и понять влияние на сгорание газа. После калибровки 3D численного режима горения смеси параметрические исследования проводились методом изменения давления, числа и размера сопел отверстий для фиксированного дизельного топлива. Численная модель дала очень хорошее совпадение с экспериментальными результатами Однако, в хвосте(конце) горения, экспериментальные результаты показывают, что падение давления происходит более быстрыми темпами, чем при моделирования. Также давление впрыска увеличивается (20-60 МПа), давление сгорания возрастает (30%). Более высокок давление впрыска топлива ускоряет сжигание СПГ. Результаты показывают, что высокое давление впрыска имеет благотворное влияние увеличения производительности системы DF сгорания. Е. Загрязнение воздуха Исследование топлив транспортных средств по эмиссии формальдегида показало, что уровень СПГ транспортного средства, как правило, эквивалентен или меньше уровня формальдегида для бензиновых топлив. В плане эффективности, производительности и диапазона исследования, ДФ автомобили отличаются серьезным недостатком либо в сроке работоспособности или ускорение производительности.

2. РЕЗУЛЬТАТЫ

Окись углерода присутствует в выхлопных газах происходит из-за отсутствия кислорода для полного процесса сгорания. Более высокие концентрации Со в выхлопных газах- это явный признак неполного сгорания предварительно смешанной смеси. Совместное уровни были выше из-за неэффективности сгорания.

Некоторое количество газа СПГ, попадает в коллектор, что приводит к недоступности воздуха для надлежащего горения. На основе производительности и параметров выбросов, КПГ индукции расположение на 2см от двигателя коллектор принимается в качестве оптимального. Тормоз-

higher due to combustion inefficiencies. Some amount of CNG gas replacing air in the intake pipe that leads to unavailability of air for proper combustion. Based on the performance and emission parameters, the CNG induction location is at 2cm away from the engine manifold is taken as optimum. The brake thermal efficiency is increasing with increasing the induction distance away from the engine manifold. The brake thermal efficiency of dual fuel inducted at 2 cm is 13.11% By inducting of CNG gas at the diesel consumption is reduced to the normal diesel operation

ной термический КПД возрастает с увеличением напряжения от двигателя коллектор. Тормозной термический КПД двойного топлива введен на 2 см 13.11%, Путем добавления СПГ на бензин расход уменьшается до нормального дизельного цикла.

Exhaust Emissions and Its Control Technology for an Internal Combustion Engine

Выбросы выхлопных газов и технология их контроля для двигателя внутреннего сгорания

I. Introduction

Undesirable emissions in internal combustion engines are of major concern because of their negative impact on air quality, human health, and global warming. Therefore, there is a concerted effort by most governments to control them. Undesirable emissions include unburned hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM), we present the U.S. and European emissions standards, both for gasoline and diesel operated engines, and strategies to control the undesirable emissions. The role of engine design, vehicle operating variables, fuel quality, and emission control devices in minimizing the above-listed pollutants are also detailed. "Emissions" is a collective term that is used to describe the undesired gases and particles which are released into the air or emitted by various sources, Its amount and the type change with a change in the industrial activity, technology, and a number of other factors, such as air pollution regulations and emissions controls. The U.S. Environmental Protection Agency (EPA) is primarily concerned with emissions that are or can be harmful to the public at large. EPA consid-

Введение

Нежелательные выбросы в двигателях внутреннего сгорания вызывают серьезное негативное воздействие на качество воздуха, здоровье человека,и глобальное потепление. Поэтому большинство правительств контролируют их. Нежелательный выбросы включают несгоревшие углеводороды (hc), монооксид углерода (со), оксиды азота (nox) и твердые частицы (рт), Мы представляем выбросы в сша и европе, они стандарты, как для бензиновых, так и дизельных двигателей. конструкции двигателя, транспортного средства эксплуатационные параметры, качество топлива и выбросы устройств управления в целях минимизации вышеперечисленных загрязнителей. «Выбросы» - это коллективный термин, который используется для описания нежелательных газов и частиц, которые выбрасываются в воздух или испускаемых различными источниками, его количество и тип изменения с изменением производственной деятельности, технологии и ряд других факторов, таких как регулированию загрязнения воздуха и контролю за выбросами. Агентство по охране окружающей среды США (ЕРА) восновном касаются выбросов, которые являются или могут быть вредным для общества в целом. ЕРА считает Окись углерода (СО), свинец (Pb), диоксид азота (NO2), озон (O3), твердые частицы (ТЧ) и Диоксид серы (SO2) в качестве

ers carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM), and sulphur dioxide (SO2) as the pollutants of primary concern, called the Criteria Pollutants. These pollutants originate from the following four types of sources. 1. Point sources, which include facilities such as factories and electric power plants. 2. Mobile sources, which include cars and trucks but also lawn mowers, airplanes, and anything else that moves and releases pollutants into the air. 3. Biogenic sources, which include trees and vegetation, gas seeps, and microbial activity. 4. Area sources, which consist of smaller stationary sources such as dry cleaners and degreasing operations. Gasoline and diesel fuels are mixtures of hydrocarbons, compounds which contain hydrogen and carbon atoms. In a "perfect" engine, oxygen in the air would convert all the hydrogen in the fuel to water and all the carbon in the fuel to carbon dioxide. Nitrogen in the air would remain unaffected. In reality, the combustion process cannot be "perfect," and automotive engines emit several types of pollutants. II. "Perfect" Combustion FUEL (hydrocarbons) + AIR (oxygen and nitrogen) CARBON DI-OXIDE + water + unaffected nitrogen Typical Engine Combustion: FUEL + AIR UNBURNED HYDROCARBONS + NI-TROGEN OXIDES + CARBON MON-OXIDE + CARBON DIOXIDE + water III. Exhaust Pollutants • HYDROCAR-BONS Hydrocarbon emissions result when fuel molecules in the engine do not burn or burn only partially. Hydrocarbons react in the presence of nitrogen oxides and sunlight to form ground-level ozone, a major component of smog. Ozone irritates the eyes, damages the lungs, and aggravates respiratory problems. It is our most widespread and intractable urban air pollution problem. A number of exhaust hydrocarзагрязнителей первичных Которые называются Критериями «Загрязнители». Эти Загрязнителей происходят из следующих четырех типов источники. 1. Точечные источники, которые включают объекты Таких как заводы и электростанции. 2. Мобильные источники, которые включают автомобили и грузовики, но также газонокосилки, самолеты и все остальное, что перемещает и высвобождает загрязняющие вещества в дух. 3. Биогенные источники, включающие деревья и растительности, газовых просачиваний и микробной активности. 4. Площадь Источники, которые состоят из более мелких стационарных источников Таких как химчистка и обезжиривание. Бензин и дизельное топливо представляют собой смеси Углеводороды, соединения, которые содержат водород И атомы углерода. В «идеальном» двигателе Воздух превратил бы весь водород в топливе, чтобы Вода и весь углерод в топливе к углероду диоксид. Азот в воздухе останется незатронутыми. На самом деле, процесс горения Не может быть «совершенным», а автомобильные двигатели излучают несколько видов загрязняющих веществ.

II. «Совершенное» сгорание ТОПЛИВО (углеводороды) + ВОЗДУХ (кислород и азот) УГЛЕ-РОДНЫЙ ДИОКСИД + вода + незатронутый азот Типичное сгорание топлива: ТОПЛИВНЫЕ + ВОЗДУХ НЕОБХОДИМЫЕ УГЛЕВОДОРОДЫ + ОКСИДЫ АЗОТА + МОЧЕННЫЙ УГЛЕРОД + ДИОКСИД УГЛЕРОДА + воды

III. Загрязнители выхлопных газов • УГЛЕВО-ДОРОДЫ

Выбросы углеводородов возникают, когда топливо Молекулы в двигателе не горят или горят только частично. Углеводороды реагируют в присутствии Оксидов азота и солнечного света с образованием наземного уровня Озон, основной компонент смога. Озон раздражает Глаза, повреждает легкие и усугубляет Проблемы с дыханием. Это наш самый распространенный и Неразрешимая проблема загрязнения воздуха в городах. Количество Выхлопные углеводороды также токсичны, Может вызвать рак.

• ОКСИДЫ АЗОТА (NOx)

bons are also toxic, with the potential to cause cancer. • NITROGEN OXIDES (NOx) Under the high pressure and temperature conditions in an engine, nitrogen and oxygen atoms in the air react to form various nitrogen oxides, collectively known as NOx. Nitrogen oxides, like hydrocarbons, are precursors to the formation of ozone. They also contribute to the formation of acid rain. • CARBON MONOX-IDE Carbon monoxide (CO) is a product of incomplete combustion and occurs when carbon in the fuel is partially oxidized rather than fully oxidized to carbon dioxide (CO). Carbon monoxide reduces the flow of oxygen in the blood stream and is particularly dangerous to persons with heart disease.

• CARBON DIOXIDE

In recent years, the U.S. Environmental Protection Agency (EPA) has started to view carbon dioxide, a product of "perfect" combustion, as a pollution concern .Carbon dioxide does not directly impair human health, but it is a "greenhouse gas" that traps the earth's heat and contributes to the potential for global warming. Evaporative Emissions

Hydrocarbon pollutants also escape into the air through fuel evaporation. With today's efficient exhaust emission controls and today's gasoline formulations, evaporative losses can account for a majority of the total hydrocarbon pollution from current model cars on hot days when ozone levels are highest. Evaporative emissions occur several ways:

DIURNAL: Gasoline evaporation increases as the temperature rises during the day, heating the fuel tank and venting gasoline vapours.

RUNNING LOSSES: The hot engine and exhaust system can vaporise gasoline when the car is running.

HOT SOAK: The engine remains hot for a

Под высоким давлением и температурой Условия в двигателе, атомах азота и кислорода В воздухе реагируют с образованием различных оксидов азота, Совместно именуемые NOx. Оксиды азота, как Углеводороды, являются прекурсорами формирования озон. Они также способствуют образованию кислоты дождь.

• МОНООКСИД УГЛЕРОДА

Окись углерода (СО) является продуктом Неполного сгорания и происходит, когда Топливо частично окисляется, а не полностью Окисляется до диоксида углерода (СО). Монооксид углерода Уменьшает поток кислорода в кровотоке и Особенно опасен для людей с сердечным болезни.

• УГЛЕКИСЛЫЙ ГАЗ

В последние годы Агентство по охране (ЕРА) начало рассматривать углерод диоксид, продукт «идеального» сжигания, как загрязнение. Углекислый газ не напрямую наносит вред здоровью человека, но это «парниковый газ», Ловушки тепла земли и способствует Потенциал для глобального потепления. Испарительные выбросы Загрязнители углеводородов также уходят в Воздух через испарение топлива. С сегодняшними эффективными Контроля выбросов выхлопных газов и современного бензина Составов, испарительные потери могут составлять Подавляющее большинство общего Текущие модели автомобилей в жаркие дни, когда уровни озона Являются самыми высокими. Испарительные выбросы имеют место несколько пути: Суточном: Бензиновые испарения возрастает при Температура поднимается в течение дня, нагревается топливо Танк и вентилирование паров бензина. Протечки: горячий двигатель и выхлопную Система может испарять бензин, когда автомобиль Бег. Прогревание в : Двигатель остается горячим в течение периода Времени после выключения автомобиля и бензина Испарение продолжается, когда автомобиль стоит на стоянке.

ЗАПРАВКА: Пары бензина всегда присутствуют В топливных баках. Эти пары вытесняются, когда Бак заполнен жидким топливом. Выбросы двигателей Si Выбросы двигателей SI делятся на Три категории - выброс выхлопных газов, испарение

period of time after the car is turned off, and gasoline evaporation continues when the car is parked. REFUELING: Gasoline vapours are always present in fuel tanks. These vapours are forced out when the tank is filled with liquid fuel.

Si engine emissions S.I. engine emissions are divided into three categories as exhaust emission, evaporative emission and crank case emission. The major constituents which contribute to air pollution are CO, NOx, and HC coming from S.I. engine exhaust. The relative amounts depend on engine design and operating conditions but are of order, NOx -> 500-1000 ppm (20 gm/kg of fuel), CO -> 122% (200gm/kg of fuel) and HC -> 43000 ppm (25 gm/kg of fuel). Fuel evaporation from fuel tank and carburettor exists even after engine shut down and these are unburned hydrocarbons. However in most modern engines, these non- exhaust unburned HCR effectively controlled by returning the blow by gases from the crank case to the engine. Intake system by venting the fuel tank and a vapour absorbing carbon canister which is purged as sum of the engine intake air during normal engine operation. The order constituent includes SO2 and lead compounds. The petrol rarely contains sulphur therefore; SO2 is not a pollutant from s.i. engine exhaust. Petrol contains lead in small percentages but its effect is more serious on human health. Therefore Delhi govt has restricted the use of petrol without lead. One of the most important variables in determining S.I. emission is the fuel air equivalence ratio. The SI engine is always operated at stoichiometric or slightly rich mixture. At the starting of the engine, very rich mixture is supplied as vaporization is very slow. Thus, until the engine warms up and this enrichment is stopped, CO and HC emissions are high. At part load conditions, lean mixture can be used which will

Эмиссионных кривошипных корпусов. Основным Составляющие, которые способствуют загрязнению воздуха, являются СО, NO x, и HC исходя из выхлопа двигателя SI. Относительные величины зависят от двигателя. Дизайн и условия эксплуатации, но имеют порядок, HET x -> 500-1000 частей на миллион (20 г / кг топлива), CO -> 122% (200 г / кг топлива) и HC -> 43000 ppm (25 Γ / кг топлива). Испарение топлива из топливного бака и Карбюратор существует даже после выключения двигателя и Это несгоревшие углеводороды. Однако в большинстве Современные двигатели, эти неисчерпаемые несгоревшие HCR Эффективно контролируется возвратом удара газами От картера к двигателю. Система впуска Вентиляция топливного бака и поглощающего пары углерода Канистра, которая очищается как сумма потребления двигателя Воздуха при нормальной работе двигателя. Приказ составляющей включает в себя SO 2 и соединения свинца. Поэтому бензин редко содержит серу; SO 2 не является Загрязнитель от выхлопных газов двигателя. Бензин содержит Лидерство в небольших процентах, но его эффект больше Серьезные ДЛЯ здоровья человека. Поэтому Делийское правительство Ограничено использование бензина без свинца. Один из Наиболее важные переменные при определении СИ Эмиссия - коэффициент эквивалентности эквивалента топлива. СИ Двигатель всегда работает при стехиометрическом или Слегка обогащенная смесь. При запуске двигателя, Очень богатая смесь поставляется, поскольку испарение очень медленный. Таким образом, пока двигатель не прогреется и Обогащение прекращается, выбросы СО и НС

высокая. При условиях частичной нагрузки обедненную смесь можно Используется для снижения выбросов УВ и СО и

умеренные выбросы NO X. Использование рециркулированных выхлопных газов для разбавленный воздухозаборник двигателя смесь снижает NO X Но ухудшает качество горения. выхлоп Рециркуляция газа (EGR). Метод используется с Стехиометрических смесей во многих двигателях

reduce HC and CO emissions and moderate NOx emissions. Use of recycled exhaust to dilute the engine intake mixture lowers the NOx level but deteriorates combustion quality. Exhaust gas recirculation (EGR). Method is used with stoichiometric mixtures in many engines to reduce emissions. The sources of pollution are mainly three as mentioned earlier, the engine exhaust, (CO, NOx,HC), the crankcase breather (HC) and direct evaporation of petrol from carburettor and fuel tank particularly in hot weather(HC). CI engine emissions Diesel combustion is heterogeneous in nature, unlike sparkignited engines where the combustible mixture is predominantly homogeneous. In diesel engines fuel is injected into a cylinder filled with high temperature compressed air. Emissions formed as a result of burning this heterogeneous air/fuel mixture depend on the prevailing conditions not only during combustion, but also during the expansion and especially prior to the exhaust valve opening. Mixture preparation during the ignition delay, fuel ignition quality, residence time at different combustion temperatures, expansion duration, and general engine design features play a very important role in emission formation. In essence, the concentration of the different emission species in the exhaust is the result of their formation, and their reduction in the exhaust system. Incomplete combustion products formed in the early stages of combustion may be oxidized later during the expansion stroke. Mixing of unburned hydrocarbons with oxidizing gases, high combustion chamber temperature, and adequate residence time for the oxidation process permit more complete combustion. In most cases, once nitric oxide (NO) is formed it is not decomposed, but may increase in concentration during the rest of the combustion proдля выбросы. Источниками загрязнения являются в основном три Как упоминалось ранее, выхлопных газов двигателя (CO, NO x, HC), сапун картера (НС) и прямой Испарение бензина из карбюратора и топливного бака Особенно в жаркую погоду (НС). Выбросы двигателей СІ Сжигание дизельного топлива неоднородно в Характер, в отличие от двигателей с искровым зажиганием, где горючий смесь является преимущественно однородна. В дизельных двигателях топливо впрыскивается в Цилиндр, наполненный высокотемпературным сжатым воздух. Выбросы, образовавшиеся в результате сжигания этого Гетерогенная смесь воздух / топливо зависит от Преобладающие условия не только во время горения, Но также во время расширения и особенно до Отверстие выпускного клапана. Подготовка смеси Во время задержки зажигания, качество зажигания топлива, Время пребывания при различных температурах горения, Продолжительность расширения и общий дизайн двигателя Функции играют очень важную роль в эмиссии образование. В сущности, концентрация Результатом являются различные виды выбросов в выхлопных газах Их образования и уменьшения их в выхлопных газах система. Неполные продукты сгорания, образованные в Ранние стадии горения могут быть окислены позднее Во время такта расширения. Смешивание несгоревших Углеводороды с окисляющими газами, высокое горение Температура в камере и достаточное время пребывания Для процесса окисления позволяют более полно сгорания. В большинстве случаев, когда оксид азота (NO) Сформирована, она не разлагается, но может увеличиваться Концентрация во время остальной части сгорания Процесс, если температура остается высокой Нормы евро Выхлопные газы от двигателей внутреннего сгорания в основном Содержат несгоревшие углеводороды (НС), монооксид углерода Оксид (СО) и оксиды азота (NOx), которые являются В основном ответственны за загрязнение воздуха, которые вызывают Опасностей для здоровья и плохих последствий для сельскохозяйственных культур. Поэтому правительство. Наложило на выбросы

cess if the temperature remains high IV. Euro norms

The exhaust gases from IC engines mainly contain unburned hydrocar-

bons(HC), carbon mono oxide(CO), and nitrogen oxides(NOx), which are mainly responsible for air pollution which cause health hazards and bad effects on the crops also. Therefore, the govt. has imposed on emission standards which limit the amount of each pollution emitted by the engine into the atmosphere. The govt. of India has accepted the emission norms laid down by European countries and these are known as "Euro- Norms"

Стандарты, которые ограничивают объем каждого загрязнения Испускаемого двигателем в атмосферу. Правительство. Индии приняла нормы выбросов, установленные По европейским странам, и они известны как «Евро-Нормы»

Exhaust emissions estimation during transient turbocharged diesel engine operation using a two-zone combustion model

Оценка выбросов выхлопных газов во время переходных процессов в дизельном двигателе с турбонаддувом, используя двухзонную модель горения

1 Introduction

Nowadays, the turbocharged diesel engine is the most preferred prime mover in medium and medium-large units applications (truck driving, land traction, ship propulsion and electrical generation). Moreover, it continuously increases its share in the highly competitive automotive market owing to its reliability that is combined with excellent fuel efficiency. Particularly, its transient operation is of great importance in everyday operating conditions of engines, being often linked with off-design and consequently non-optimum performance. Turbocharger lag is the most notable off-design feature of diesel engine transient operation that significantly differentiates the torque pattern from the respective steady-state conditions. It is caused because, although the fuel pump responds rapidly to the increased fuelling demand after a load or speed increase, the turbocharger compressor air-supply cannot match this higher fuel-flow instantly, but only after a number of engine cycles owing to the inertia of the whole system; the

1. Введение

В настоящее время дизельный двигатель с турбонаддувом является наиболее предпочтительным первичным двигателем в средних и больших единиц применения (вождение грузовика, тяговое усилие на суше, движение корабля и электрическая генерация). Кроме того, он постоянно увеличивает свою долю в конкурентоспособный автомобильный рынок благодаря своей надежности, сочетающейся с превосходным эффективность топлива. В частности, его переходная операция имеет большое значение в повседневной Эксплуатационные условия двигателей, часто связанные с нестандартным дизайном и, следовательно, Неоптимальная производительность. Задержка турбокомпрессора является наиболее заметной особенностью Переходный режим дизельного двигателя, который существенно отличает диаграмму крутящего момента от Соответствующие установившиеся условия. Это вызвано тем, что, хотя топливный насос Быстро реагирует на увеличение потребности в топливе после увеличения нагрузки или скорости, Воздушный поток компрессора турбокомпрессора не может мгновенно соответствовать этому более высокому расходу топлива, но толь-

above phenomenon is enhanced by the unfavourable turbocharger compressor characteristics at low loads and speeds. As a result of this slow reaction, the relative air-fuel ratio during the early cycles of a transient event assumes very low values (even lower than stoichiometric) deteriorating combustion and leading to slow engine (torque and speed) response, long recovery period and overshoot in particulate, gaseous and noise emissions. On the other hand, the high fuel-air equivalence ratios experienced after a speed or load increase transient event, produce high combustion temperatures favouring nitric oxide (NO) and soot formation, with the latter being identified as black smoke coming out of the exhaust pipe (Rakopoulos and Giakoumis, 2006a). During the last decades, diesel engine modelling has intensively supported the study of engine operation under transient conditions with simulations of various levels of complexity. Extensive studies have been conducted for a variety of purposes, such Exhaust emissions estimation during transient turbocharged diesel engine 129 as investigation of the effect of various parameters on engine transient response (Watson and Janota, 1982; Winterbone, 1986; Benajes, Luján and Serrano, 2000; Rakopoulos et al., 2004a; Rakopoulos and Giakoumis, 2006b), ways of improving response (Watson, 1984; Rakopoulos and Giakoumis, 2006a), compressor surging (Rakopoulos, Michos and Giakoumis, 2005), second-law balance (Rakopoulos and Giakoumis, 2004) and issues concerning engine dynamics (Rakopoulos, Giakoumis and Dimaratos, 2007). The study of exhaust emissions during transients – although of primary concern to engine manufacturers since newly produced engines must meet the stringent emission regulations following a legislated transient cycle – has been dealt with so far

ко После ряда циклов двигателя вследствие инерции всей системы; вышесказанное Явление усиливается неблагоприятными характеристиками компрессора турбокомпрессора при Низкие нагрузки и скорости. В результате этой медленной реакции относительное соотношение воздухтопливо в течение Ранние циклы переходного события предполагают очень низкие значения (даже ниже, чем Стехиометрическим) ухудшение сгорания и приводит к медленному двигателю (крутящий момент и скорость) Реагирование, длительный период восстановления и выбросы в виде частиц, газов и шумов. С другой стороны, высокие коэффициенты эквивалентности топлива и воздуха, возникающие после скорости или нагрузки Увеличивают переходное событие, производят высокие температуры горения в пользу оксида азота (NO) и образование сажи, причем последний был идентифицирован как черный дым, выходящий из выхлопная труба (Rakopoulos и Giakoumis, 2006а).

В течение последних десятилетий моделирование дизельных двигателей интенсивно поддерживало исследование Работы двигателя в переходных условиях с имитацией различных уровней сложность. Были проведены обширные исследования для различных целей, таких как Как исследование влияния различных параметров на переходный отклик двигателя (Watson И Janota, 1982; Winterbone, 1986; Benajes, Лухан и Serrano, 2000; Rakopoulos Et al., 2004a; Rakopoulos и Giakoumis, 2006b), пути улучшения реагирования (Watson, 1984; Rakopoulos and Giakoumis, 2006a), компрессорное нагнетание (Rakopoulos, Michos and Giakoumis, 2005), второй-правовой баланс (Rakopoulos и Giakoumis, 2004) и вопросы относительно динамики двигателя (Rakopoulos, Giakoumis и Dimaratos, 2007). Изучение выбросов выхлопов во время переходных процессов - хотя и имеет первостепенное значение для Изготовителей двигателей, поскольку новые двигатели должны удовлетворять строгим эмиссиям В соответствии с законодательством переходного цикла - в настоящее время экспериментальная база (Kang и Фареллы, 2005; Хаген,

mainly on an experimental basis (Kang and Farell, 2005; Hagena, Filipi and Assanis, 2006). On the other hand, the majority of transient models have not included exhaust emissions prediction in their simulations. The latter emanates from a compromise that has to be made, since transient simulations require relatively high computational time, which would become prohibitive if exhaust emissions prediction were also included. Thus, transient codes incorporating a multi-or even a two-zone combustion model are scarce (Bazari, 1994; Chan, He and Sun, 1999), with the latter reference addressing NO emissions predictions only. On the other hand, approximations using quasi-linear models that are based on steady-state engine performance fail to predict accurately exhaust emissions during transients, especially so for the turbocharger lag cycles (Hagena, Filipi and Assanis, 2006), since no actual modelling of the relevant off-design phenomena is included. The aim of the present work is to fill this apparent gap in the open literature by conducting a preliminary assessment of NO and soot exhaust emissions during transient operation of a turbocharged diesel engine. To achieve this target, an experimentally validated two-zone transient diesel combustion model is used, having the added advantage of limited requirements in terms of execution time and computer memory. Analytical modelling of in-cylinder processes, such as air motion, fuel spray development, wall impingement and combustion chemistry is included, and detailed equations concerning all engine sub-systems describe the phenomena, which diversify transient from steady-state operation. The results of the study will be given in a series of diagrams, which depict exhaust emissions development during transient operation. The response of important engine parameters,

Filipi и Assanis, 2006). На С другой стороны, большинство переходных моделей не включали выбросы выхлопных газов Прогнозирования в их симуляциях. Последнее исходит из компромисса, который должен быть Поскольку переходное моделирование требует относительно высокого вычислительного времени, которое Будет становиться запретительным, если будет также включен прогноз выбросов выхлопных газов. Таким образом, Переходных кодов, включающих многоили даже двухзональную модель сжигания, недостаточно (Bazari, 1994; Chan, Он и ВС, 1999), с последней ссылкой адресации NO Прогнозов выбросов. С другой стороны, приближения с использованием квазилинейных моделей Основанные на установившихся рабочих характеристиках двигателя, не могут точно предсказать выхлопные газы Выбросы во время переходных процессов, особенно для циклов запаздывания турбокомпрессора (Хаген, Filip я и Assanis, 2006), так как не фактическое моделирование соответствующих явлений нерасчетного не включен. Цель настоящей работы - заполнить этот очевидный пробел в открытой литературе Проведение предварительной оценки эмиссии NO и сажи во время переходных процессов Работа дизельного двигателя с турбонаддувом. Для достижения этой цели экспериментально Используется валидированная двухзонная модель переходного дизельного топлива, с добавлением Преимущество ограниченных требований с точки зрения времени выполнения и памяти компьютера. Аналитическое моделирование процессов в цилиндре, таких как движение воздуха, распыление топлива Разработки, химии стен и горения, а также подробные Уравнения, относящиеся ко всем подсистемам двигателя, описывают явления, которые диверсифицируют Переходный от стационарного режима работы. Результаты исследования будут представлены в серии Диаграммы, которые отражают развитие выбросов выхлопных газов во время переходных процессов. Реакция важных параметров двигателя, таких как коэффициент эквивалентности топливовоздушной смеси или заряд Температура, также

such as fuel-air equivalence ratio or charge temperature, will be also provided. In addition, individual intermediate transient cycles will be studied in comparison to their steady-state counterparts, in terms of incylinder NO and soot formation. Owing to the narrow speed range of the engine in hand, mainly load increases with constant governor setting are investigated, which, nonetheless, play a significant role in the European or American transient cycles of heavy duty engines.

будет предоставлена. Кроме того, отдельные промежуточные переходные циклы Будут изучаться по сравнению с их стационарными аналогами в терминах in-cylinder Образование NO и сажи. Благодаря узкому диапазону частоты вращения двигателя в руке, в основном Исследуются нагрузки с постоянными настройками регулятора, которые, тем не менее, играют роль Значительную роль в европейских или американских переходных циклах двигателей большой мощности.

Exhaust emissions of diesel engines operating under transient conditions with biodiesel fuel blends

Выбросы отработавших газов работающих дизельных двигателей в переходных режимах с биодизельным топливом

Abstract

The transient operation of turbocharged diesel engines can prove quite demanding in terms of engine response, systems reliability and exhaust emissions. It is a daily encountered situation that drastically differentiates the engine operation from the respective steady-state conditions, requiring careful and detailed study and experimentation. On the other hand, depleting reserves and growing prices of crude oil, as well as gradually stricter emission regulations and greenhouse gas concerns have led to an ever-increasing effort to develop alternative fuel sources, with particular emphasis on biofuels that possess the added benefit of being renewable. In this regard, and particularly for the transport sector, biodiesel has emerged as a very promising solution.

The target of the present work is to review the literature regarding the effects of diesel-biodiesel blends on the regulated exhaust emissions of diesel engines operating under transient conditions (acceleration, load increase, starting and transient cycles). The analysis focuses on all regulated pollutants, i.e. particulate matter, nitrogen oxides, carbon monoxide and unburned hydrocarbons; results are also presented

Реферат

Переходная работа дизельных двигателей с турбонаддувом может оказаться весьма сложной с точки зрения реакции двигателя, надежности систем и выбросов выхлопных газов. Это ежедневная ситуация, которая резко отличает работу двигателя от соответствующих стационарных условий, что требует тщательного и детального изучения и экспериментов. С другой стороны, истощающиеся запасы и растущие цены на сырую нефть, а также постепенно ужесточающиеся нормы выбросов и проблемы с парниковым газом привели к все возрастающим усилиям по разработке альтернативных источников топлива с уделением особого внимания биотопливам, которые обладают дополнительным преимуществом Быть возобновляемым. В этой связи, особенно для транспортного сектора, биодизель стал весьма перспективным решением.

Целью настоящей работы является обзор литературы о влиянии дизельно-биодизельных смесей на регулируемые выбросы выхлопных газов дизельных двигателей, работающих в переходных режимах (ускорение, увеличение нагрузки, пусковые и переходные циклы). В этом анализе основное внимание уделяется всем регулируемым загрязняющим веществам, то есть твердым частицам, оксидам азота, монооксиду углерода и несгоревшим углеводородам; Результаты также представлены для шума горения И концентрацию

for combustion noise and particle size concentration/distribution. The most important mechanisms of exhaust emissions during transients are analyzed based on the fundamental aspects of transient operation and on the impacts the physical and chemical properties of biodiesel have relative to conventional diesel oil. Biodiesel feedstock, transient cycle and fuel injection system effects are also discussed. For the majority of the reviewed transients, a decreasing trend in PM, HC and CO, and an increasing trend in NOx emissions is established when the biodiesel ratio in the fuel blend increases. Irrespective of driving cycle type, the NOx emission penalty and the PM benefit with biodiesel seem to increase for more aggressive cycles/driving patterns. Moreover, biodiesels produced from unsaturated feedstocks tend to increase the NOx emission liability, at least for older production engines; no such correlation has been established for the emitted PM. HC or CO. Since the research so far stems from engines optimized for diesel fuel, application of revised engine calibration (e.g. EGR, injection system) can prove very useful in eliminating, at least in part, any inefficiencies caused by the use of biodiesel.

Based on a large amount of published data over the last twenty years, best-fit correlations are deducted for quantification of biodiesel benefits or penalties on all regulated pollutants during various transient/driving cycles. Also, a detailed list is provided summarizing data from all published works on the subject during the last two decades.

Keywords: Diesel engine; Biodiesel; Transient operation; Exhaust emissions; Turbocharger lag; Transient cycle

/ распределение частиц по размерам. Наиболее важные механизмы выбросов выхлопных газов во время переходных процессов анализируются на основе фундаментальных аспектов работы транзистора и воздействия физических и химических свойств биодизеля относительно обычного дизельного топлива. Также обсуждаются биодизельное сырье, переходный цикл и эффекты системы впрыска топлива.

Для большинства рассмотренных переходных процессов наблюдается тенденция к снижению РМ, НС и СО и тенденция к увеличению выбросов NOx, когда соотношение биодизеля в топливной смеси увеличивается. Независимо от типа цикла вождения, штраф за выбросы NOх и выгоды от ТЧ с биодизельным топливом, видимому, увеличиваются для более агрессивных циклов / схем вождения. Кроме того, биодизели, полученные из ненасыщенных исходных материалов, как правило, повышают ответственность за выбросы NOx, по крайней мере для более старых двигателей производства; Такая корреляция не была установлена для выбросов РМ, НС или СО. Поскольку исследования до сих пор происходят из двигателей, оптимизированных для дизельного топлива, применение пересмотренной калибровки двигателя (например, EGR, система впрыска) может оказаться очень полезным для устранения, по крайней мере, Частично, любые неэффективности, вызванные использованием биодизеля.

Основываясь на большом количестве опубликованных данных за последние двадцать лет, оптимальные корреляции вычитаются для количественной оценки выгод от использования биодизельного топлива или штрафов за все регулируемые загрязнители в течение различных переходных / приводных циклов. Кроме того, приводится подробный перечень, обобщающий данные всех опубликованных работ по этому вопросу за последние два десятилетия.

Ключевые слова: дизельный двигатель; биодизель; переходные процессы; выбросы выхлопных газов; задержка турбокомпрессора; переходный цикл.

2 Тепловой расчет двигателя

Исходные данные для теплового расчета: $V_L = 1.5 \text{ л}$; $n_N = 5600 \text{ мин}^{-1}$; i = 4; $\tau = 4$; $\epsilon = 10.5$, при частоте вращения: $n_{min} = 900 \text{ мин}^{-1}$, $n = 2000 \text{ мин}^{-1}$, $n_M = 3500 \text{ мин}^{-1}$, $n_N = 5000 \text{ мин}^{-1}$, $n_{max} = 5600 \text{ мин}^{-1}$.

Средний элементарный состав и молекулярная масса топлива: C=0.855; H=0.145 и $m_T=115$ кг/кмоль.

Низшая теплота сгорания топлива:

$$H_u = 33,91C + 125,6H - 10,89(O - S) - 2,51 \cdot (9H + W); кДж/кг$$
 (2.1)
 $H_u = 33,91 \cdot 0,855 + 125,6 \cdot 0,145 - 2,51 \cdot 9 \cdot 0,145 = 43930 \ кДж/кг.$

Теоретически необходимое количество воздуха для сгорания топлива:

$$L_0 = \frac{1}{0,208} \left(\frac{C}{12} + \frac{H}{4} - \frac{O}{32} \right) = \frac{1}{0,208} \left(\frac{0,855}{12} + \frac{0,145}{4} \right) = 0,516$$
 кмоль возд/кг топл; (2.2)

$$l_0 = \frac{1}{0.23} \left(\frac{8}{3}C + 8H - O \right) = \frac{1}{0.23} \left(\frac{8}{3} \cdot 0.855 + 8 \cdot 0.145 \right) = 14,957$$
 кг возд/кг топл. (2.3)

Примем $\alpha = 1$ на всех режимах, как для базового так и для спроектированного двигателя.

Количество горючей смеси:

$$M_1 = \alpha L_0 + 1/m_T$$
; кмоль гор. см/кг топл. (2.4)

Количество отдельных компонентов продуктов сгорания при K = 0,5:

$$M_{CO_2} = \frac{C}{12} - 2 \cdot \frac{1 - \alpha}{1 + K} \cdot 0,208 \cdot L_0$$
; кмоль CO_2 /кг топл; (2.5)

$$M_{CO} = 2 \cdot \frac{1 - \alpha}{1 + K} \cdot 0,208 \cdot L_0$$
; кмоль СО/кг топл; (2.6)

$$M_{_{H_{2}O}} = \frac{H}{2} - 2K \cdot \frac{1-\alpha}{1+K} \cdot 0,208 \cdot L_{_{0}}; \text{ кмоль H}_{2}\text{O/кг топл;}$$
 (2.7)

$$M_{H_2} = 2K \cdot \frac{1-\alpha}{1+K} \cdot 0,208 \cdot L_0$$
; кмоль H_2 /кг топл; (2.8)

$$M_{N_2} = 0.792 \cdot \alpha \cdot L_0$$
; кмоль $N_2/\kappa \Gamma$ топл. (2.9)

Общее количество продуктов сгорания:

$$M_2 = {}^{M}{}_{CO_2} + {}^{M}{}_{CO} + {}^{M}{}_{H_2O} + {}^{M}{}_{H_2} + {}^{M}{}_{N_2}$$
; кмоль пр.сг/кг топл. (2.10)

Коэффициент молекулярного изменения свежей смеси

$$\mu_0 = M_2 / M_1$$
 (2.11)

В таблице 2.1 приведены параметры расчета рабочего тела для одного режима, так как состав смеси одинаков, то и на остальных режимх расчет не целесообразен.

Таблица 2.1 - Параметры рабочего тела

Коэффициент избытка воздуха	M ₁ , кмоль гор.см./кг топл.	M_{CO2} , кмоль $CO_2/к$ г топл.	M _{CO} , кмоль СО/кг топл.	$M_{\rm H2O},$ кмоль $H_2{\rm O}/{ m k}$ г топл.	$M_{H2},$ кмоль $H_2/к$ г топл.	$M_{ m N2},$ кмоль $N_2/{ m k}$ г	M ₂ , кмоль пр.сг./кг топл.	$\mu_{ m o}$
1	0,525523	0,07125	0	0,0725	0	0,409327	0,553077	1,052432

Атмосферные условия: $p_0 = 0.1 \text{ МПа и } T_0 = 293 \text{ K}.$

Давление остаточных газов:

$$p_{\rm r}=p_{\rm k}(1{,}035+A_{\rm p}\cdot 10^{-8}n^2), \eqno(2.12)$$
 где $p_{\rm rN}=1{,}18p_0=1{,}18\cdot 0{,}1=0{,}118$ МПа; $A_{\rm p}=(p_{\rm rN}-p_0\cdot 1{,}035)$ $10^8/({n_N^2\over p_0})$.

В таблице 2.2 примедены результаты расчета параметров окружающей среды и остаточных газов.

Таблица 2.2 - Параметры окружающей среды и остаточных газов

Давление остаточных газов, МПа	Частота вращения, мин ⁻¹	Плотность воздуха, кг/м3	Температура воздуха при впуске, К	Давление при впуске, Мпа	Температура ОГ, К					
0,103875	900	1,189	293	0,1	1160					
0,105349	2000	1,189	293	0,1	1170					
0,109164	3500	1,189	293	0,1	1195					
0,115059	5000	1,189	293	0,1	1235					
0,118	5600	1,189	293	0,1	1300					
	Двигатель ВАЗ-2112									
0,109	900	1,189	293	0,1	1080					
0,112	2600	1,189	293	0,1	1161					
0,114	3700	1,189	293	0,1	1245					
0,116	5000	1,189	293	0,1	1265					
0,118	5600	1,189	293	0,1	1305					

Принимается $\Delta T_N = 10^{\circ} C$, тогда, $A_T = \Delta T_N / (110 - 0.0125 n_N)$, следовательно ΔT :

$$\Delta T = A_T(110 - 0.0125n).$$
 (2.13)

Плотность заряда на впуске: $\rho_{\kappa} = p_{\kappa} \cdot 10^6 / (R_B T_{\kappa}); \ \kappa \Gamma/m^3.$

Потери давления на впуске.

$$\Delta p_a = (\beta^2 + \xi_{B\Pi}) A_n^2 n^2 \rho_k \cdot 10^{-6} / 2 \text{ M}\Pi a.$$
 (2.14)

Давление в конце впуска:

$$p_a = p_{\kappa} - \Delta p_a; M\Pi a. \qquad (2.15)$$

Коэффициент остаточных газов:

$$\gamma_r = \frac{T_{\kappa} + \Delta T}{T_r} \cdot \frac{\varphi_{oq} p_r}{\varepsilon \varphi_{oos} p_a - \varphi_{oq} p_r}, \qquad (2.16)$$

где ϕ_{oq} – коэффициент очистки; $\phi_{доз}$ – коэффициент дозарядки.

Температура в конце впуска:

$$T_a = (T_K + \Delta T + \gamma_r T_r)/(1 + \gamma_r)$$
; K. (2.17)

Коэффициент наполнения:

$$\eta_{V} = \frac{T_{\kappa}}{T_{\kappa} - \Delta T} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{1}{p_{\kappa}} \left(\varphi_{\partial o s} \cdot \varepsilon \cdot p_{a} - \varphi_{o q} \cdot p_{r} \right)$$
(2.18)

Удельный объем рабочего тела в конце процесса наполнения

$$V_{a} = 8.314 \cdot 10^{-3} \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[(1 + \alpha \cdot l_{0}) p_{a} \right]$$
(2.19)

Результаты расчета процесса впуска приведены в таблице 2.3.

Таблица 2.3 - Расчет процесса впуска

Коэффициент остаточных газов	Та, К	Коэффи- циент наполне- ния	Va, K	n, мин ⁻¹	ΔT, °C	Δра, Мпа	ра, Мпа	фоч	фдоз
0,036197	347,1114	0,755371	1,0209	900	24,6875	0,006783	0,093217	0,99	0,9
0,033024	341,6072	0,790464	1,04618	2000	21,25	0,010275	0,089725	0,94	0,96
0,029779	335,1675	0,832584	1,058665	3500	16,5625	0,013004	0,086996	0,88	1,02
0,032173	333,8676	0,750205	1,114729	5000	11,875	0,0176995	0,0823	0,84	0,97
0,031019	332,9951	0,722023	1,133133	5600	10	0,019425	0,080575	0,8	0,95
			Двигат	ель ВАЗ	3-2112				
0,043126	344,4703	0,721787	1,000492	900	19,75	0,005779	0,094221	1	0,85
0,036289	338,3532	0,770691	1,033941	2600	15,5	0,010275	0,089725	0,94	0,93
0,033797	336,4559	0,804532	1,067569	3700	12,75	0,013588	0,086412	0,98	1
0,029931	330,4714	0,758778	1,079382	5000	9,5	0,016054	0,083946	0,81	0,95
0,029751	330,0071	0,721778	1,122965	5600	8	0,019425	0,080575	0,77	0,94

Коэффициент молекулярного изменения рабочей смеси

$$\mu = (\mu_0 + \gamma_r)/(1 + \gamma_r) \tag{2.20}$$

Значение показателя политропы сжатия

$$n_1 = 1 + \frac{8.314}{20.16 + 1.738 \cdot 10^{-3} (\varepsilon^{n_1 - 1} + 1) \cdot T_a}$$
(2.21)

Давление, температура и удельный объём в конце сжатия:

$$P_c = P_a \varepsilon^{n_1} \qquad M\Pi a \qquad (2.22)$$

$$T_c = T_a \varepsilon^{n_1 - 1} \qquad K \tag{2.23}$$

Удельный объём, давление и температура рабочего тела в момент воспламенения, при угле опережения зажигания Θ ,

$$V_{y} = \frac{V_{a}}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \left[\left\{ 1 + \frac{1}{\lambda} \right\} - \left\langle \cos(\Theta) + \frac{1}{\lambda} \sqrt{1 - \lambda^{2} (\sin(\Theta))^{2}} \right\rangle \right] \right]_{;}$$
(2.24)

$$P_{y} = P_{a} \left(\frac{V_{a}}{V_{y}}\right)^{n_{1}}; M\Pi a$$
; $T_{y} = T_{a} \left(\frac{V_{a}}{V_{y}}\right)^{n_{1}-1}; K$; (2.25)

Результаты расчета процесса сжатия рабочего тела и начала воспламенения смеси приведены в таблице 2.4.

Таблица 2.4 - Давление, температура и удельный объём в конце сжатия и воспламенения:

Показатель политропы сжатия	P_c , МПа	T_c , K	<i>⊚</i> °ПКВ	V_y , м $^3/$ кг	P_y , МПа	T_y , K	n, мин ⁻¹	μ
1,3702	2,337381	828,9211	12	0,11026	1,967552	791,23	900	1,050601
1,374725	2,273893	824,503	14	0,117763	1,80708	774,445	2000	1,03894
1,37283	2,194925	805,3634	16	0,124724	1,639063	743,95	3500	1,039063
1,37496	2,086875	806,2679	19	0,141498	1,405866	723,92	5000	1,038972
1,37538	2,045133	804,9556	24	0,164719	1,143217	686,809	5600	1,050855
Двигатель ВАЗ-2112								
1,37058	2,364652	823,3493	15	0,115161	1,823871	767,52	900	1,060488
1,372	2,259369	811,433	20	0,134725	1,469604	722,15	2600	1,050596
1,3728	2,180028	808,4022	23	0,150917	1,267603	697,78	3700	1,050718
1,37378	2,122703	795,8551	26	0,166039	1,098591	665,27	5000	1,050909
1,3753	2,044748	797,5824	28	0,182916	0,977444	652,08	5600	1,050917

Коэффициент выделения теплоты δ , учитывающий неполное сгорание топлива;

$$\delta = \frac{\left[H_{U} - 119950(1 - \alpha)L_{o}\right]}{H_{U}}$$
(2.26)

Коэффициент эффективности сгорания топлива ξ:

$$\xi = \delta^* \Psi; \tag{2.27}$$

Удельная теплота сгорания рабочей смеси

$$q_z = \frac{\xi * H_u}{(1 + \gamma_r)(\alpha * l_0 + 1)}; \, \kappa \text{Дж/кг.}$$
(2.28)

$$E_2 = \left(0.002 \frac{\varepsilon}{V_a}\right) q_z; M\Pi a \tag{2.29}$$

Давление газов в процессе сгорания

$$P_{2} = \frac{E_{2}\Delta X_{1-2} + P_{1} \cdot (K_{1-2}\psi(\varphi'_{1}) - \psi(\varphi'_{2}))}{K_{1-2}\psi(\varphi'_{1}) - \psi(\varphi'_{2})},$$
(2.30)

$$\nu(\varphi') = 1 + \frac{\varepsilon - 1}{2} \left[\left(1 + \frac{1}{\lambda} \right) - \left(\cos \varphi' + \frac{1}{\lambda} \sqrt{1 - \lambda^2 \cdot \sin^2 \varphi'} \right) \right];$$
 (2.31)

Доля топлива, сгоревшего на рассматриваемом участке:

$$X_{1-2} = \exp\left[-6.908 \left[\frac{\varphi_1}{\varphi_z}\right]^{m+1}\right] - \exp\left[-6.908 \left[\frac{\varphi_2}{\varphi_z}\right]^{m+1}\right], \tag{2.32}$$

Среднее значение доли топлива сгоревшего на участке 1-2;

$$\Delta \chi_{1-2} = \frac{1}{2} \left[\exp \left[-6.908 \left[\frac{\varphi_1}{\varphi_z} \right]^{m+1} \right] - \exp \left[-6.908 \left[\frac{\varphi_2}{\varphi_z} \right]^{m+1} \right] \right]$$
(2.33)

Отношение средних теплоёмкостей рабочего тела на участке 1-2.

$$k_{1-2} = 1.259 + \left[76.7 - \left(13.6 - \frac{14.2}{\alpha}\right)x_{1-2}\right] \frac{1}{T_{1-2}} - \left(0.0665 - \frac{0.0245}{\alpha}\right)x_{1-2}$$
(2.34)

Фактор теплоёмкостей K_{1-2}

$$K_{1-2} = \frac{k_{1-2} + 1}{k_{1-2} - 1}$$
 (2.35)

Средняя температура T_{1-2} на участке 1-2.

$$T_{1-2} = \frac{T_1 + T_2}{2} \tag{2.36}$$

Температура Т₂ газов в процессе сгорания:

$$T_{2} = \frac{T_{y} P_{2} \psi(\varphi_{2}')}{P_{y} \psi(\varphi_{2}') \mu_{1-2}},$$
(2.37)

где:

$$\Psi(\varphi') = 1 + \frac{\varepsilon - 1}{2} * \sigma \tag{2.38}$$

$$\sigma = \left(1 + \frac{1}{\lambda}\right) - \left[\cos(\varphi') + \frac{1}{\lambda} * \sqrt{1 - \lambda^2 \cdot (\sin(\varphi'))^2}\right]; \tag{2.39}$$

средний на рассматриваемом участке коэффициент молекулярного изменения рабочей смеси,

$$\mu_{1-2} = \frac{\mu_1 + \mu_2}{2} - \mu_1 = 1 + \frac{\left(\mu_{0 \text{max}} - 1\right)\left[1 - \exp\left[-6.908\left[\frac{\varphi_1}{\varphi_z}\right]^{m+1}\right]\right]}{1 + \gamma_r}.$$
(2.40)

Доля выгоревшего топлива χ рассчитывается по уравнению выгорания:

$$\chi = 1 - \exp\left[-6.908 \left(\frac{\varphi}{\varphi_z}\right)^{m+1}\right]. \tag{2.41}$$

Основные коэффициенты термодинамического расчета приведены в таблице 2.5.

Таблица 2.5 - Коэффициенты термодинамического расчета

Удельная							
теплота сгорания	Е2, МПа	$ \varphi $	m	n, мин ⁻	δ	Ψ	ζ
рабочей	22, 141114	φ_{z} , град, пкв.		1			
смеси, Дж/кі							
2311,506	47,544497	28	2	900	1	0,87	0,87
2291,177	45,990604	36	2.2	2000	1	0,9	0,9
2375,011	47,11143	42	2.4	3500	1	0,93	0,93
2420,459	45,59819	50	2.6	5000	1	0,95	0,95
2643,545	48,99202	54	2.8	5600	1	0,99	0,99
		Двигатель Е	3A3-2112	!			
2095,696	43,98798	40	3.1	900	0.9435	0,81	0,764277
2284,733	46,40438	48	3.2	2600	1	0,86	0,86
2556,549	50,28953	55	3.3	3700	1	0,96	0,96
2592,875	50,44589	58	3.4	5000	1	0,97	0,97
2646,799	49,49647	62	3.5	5600	1	0,99	0,99

Степень последующего расширения при V г

$$\delta = V_a / V_z \tag{2.44}$$

Средний показатель политропы расширения:

$$n_2 = 1 + \frac{8.314}{23.7 + 0.0046 \left(\frac{1}{\delta^{n_1 - 1}} + 1\right) \cdot T_Z}; \qquad (2.45)$$

Параметры в конце процесса расширения как политропного процесса

$$P_b = \frac{P_z}{\delta^{n_2}} = \text{M}\Pi a$$
; (2.46)

$$T_b = \frac{T_Z}{\delta^{n_2 - 1}} \,\mathrm{K} \, \tag{2.47}$$

Текущие значения удельного объёма, давления и температуры в процессе расширения находят по следующим формулам:

$$V_{PT} = \frac{V_a}{\varepsilon} \left[1 + \frac{\varepsilon - 1}{1} \cdot \left(\left(1 + \frac{1}{\lambda} \right) - \left[\cos(\varphi_{PT}) + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^2 \sin^2(\varphi_{PT})} \right] \right) \right]. \quad (2.48)$$

$$P_{PT} = P_b \cdot \left(\frac{V_a}{V_T}\right)^{n_2}; (2.49)$$

$$T_{PT} = T_b \left(\frac{V_a}{V_T}\right)^{n_2 - 1}; (2.50)$$

$$T_{PT} = T_b \left(\frac{V_a}{V_T}\right)^{n_2-1}$$
; (2.50)

Для оценки правильности выбора значения температуры отработавших газов, произведём проверку

$$T_r = \frac{T_b}{\sqrt[3]{\frac{P_b}{P_r}}} \qquad K$$
(2.51)

погрешность расчёта Δ :

$$\Delta = \frac{100(T_r - T_r')}{T_r} \qquad \%$$
 (2.52)

Результаты расчета процесса расширения и выпуска приведены в таблице 2.6.

Таблица 2.6 - Расчет процесса расширения и выпуска

Степень		P_b	TI.	<i>T</i>		n, мин ⁻			D
расши-	n_2	,	T_b , K	T_r , K	Δ , %	1, МИП	Vz, M^3	$T_{z,K}$	P^z ,
рения		МПа	, 11	,			,	,	МПа
8,48804	1,177	0,58329	2067,555	1163,224	0,2779	900	0,120284	3019,243	7,230007
7,27169	1,1796	0,55548	2035,725	1169,602	-0,034	2000	0,143871	2907,209	5,768566
6,50078	1,1795	0,55682	2064,706	1199,442	0,3717	3500	0,162852	2889,058	5,06501
5,63196	1,1804	0,53085	2072,834	1245,126	0,8199	5000	0,197929	2831,083	4,08341
5,79622	1,17476	0,56284	2213,654	1315,048	1,157	5600	0,195495	3009,4	4,435073
			Ді	вигатель В	3A3-2112				
6,688	1,188	0,5354	1846,58	1086,178	0,572	900	0,1494	2639,83	5,121
6,139	1,1835	0,5504	1975,7	1162,08	0,093	2600	0,1684	2756,27	4,714
5,474	1,1775	0,5815	2155,05	1244,545	-0,036	3700	0,1951	2913,76	4,303
5,474	1,1767	0,5789	2168,77	1265,439	0,0347	5000	0,1972	2929,05	4,279
5,474	1,175	0,5669	2209,79	1309,556	0,349	5600	0,2052	2976,31	4,179

Теоретическая индикаторная работа цикла:

$$L_{iT} = \sum_{i=1}^{n} \frac{P_{1i} + P_{2i}}{2} |V_{2i} - V_{1i}|;$$
(2.53)

Расчётное среднее индикаторное давление

$$P_{iT} = \frac{\varepsilon \cdot L_{iT}}{(\varepsilon - 1)V_a}, \quad \text{M}\Pi a$$
(2.54)

Индикаторный коэффициент полезного действия

$$\eta_{i} = 8.314 \frac{M_{1} \cdot P_{iT} \cdot T_{0}}{P_{0} \cdot \eta_{V} \cdot H_{u}} . \tag{2.55}$$

Удельный индикаторный расход топлива

$$g_i = \frac{3600}{\eta_i \cdot H_u} \cdot 10^3, \ r/\text{kBT} \cdot \text{y}$$
 (2.56)

Результаты расчета индикаторных показателей рабочего цикла приведены в таблице 2.7.

Таблица 2.7 - Индикаторные показатели рабочего цикла

Индикаторное давление, Мпа	Мощность индикаторная, кВт	КПД индика- торный	g _i , г/кВт*ч	n, мин	Работа цикла, кДж
1,26863	14,27209	0,489426	167,4399	900	1,1718807
1,17975	29,49376	0,456318	179,5886	2000	1,1166917
1,200507	52,5222	0,440856	185,8873	3500	1,1498939
1,125416	70,33848	0,458662	178,6709	5000	1,1350542
1,234851	86,43956	0,498398	164,4257	5600	1,2659878
	Дв	игатель ВАЗ-211	2		
1,1060343	12,442886	0,4289854	191,03093	900	1,0012
1,1651984	37,868947	0,4405874	186,00051	2600	1,09
1,2379594	57,255621	0,4484105	182,75552	3700	1,1957
1,2533459	78,334121	0,4813589	170,24613	5000	1,224
1,2210353	85,47247	0,4929888	166,22992	5600	1,2406

Давление механических потерь при S/D=71/82=0.865, если средняя скорость поршня: $v_n=\frac{Sn}{30}$, м/с

Среднее давление механических потерь

$$P_M = 0.034 + 0.0113v$$
 , MIIa . (2.57)

Среднее эффективное давление

$$P_e = P_{iT} - P_M, \text{M}\Pi a \qquad (2.58)$$

Механический К.П.Д.

$$\eta_{M} = \frac{P_{e}}{P_{iT}}.$$
(2.59)

Эффективный К.П.Д.

$$\eta_e = \eta_i \cdot \eta_M \ . \tag{2.60}$$

Удельный эффективный расход топлива

$$g_e = \frac{g_i}{\eta_M}, \text{ kBt} \cdot \text{ q}$$
 (2.61)

Эффективная мощность

$$N_e = \frac{P_e \cdot V_{\mathcal{I}} \cdot n}{30\tau}, \text{ kBt.}$$
 (2.62)

Часовой расход топлива

$$G_T = N_e \cdot g_e, \quad \text{K}\Gamma/\Psi \tag{2.63}$$

Крутящий момент

$$M_e = \frac{3 \cdot 10^4 \cdot N_e}{\pi \cdot n}, \text{ H} \cdot \text{M}$$
 (2.64)

Расчет эффективных показателей двигателя приведен в таблице 2.8.

Таблица 2.8 - Эффективные показатели двигателя

Среднее эффективное давление, Мпа	$\eta_{\scriptscriptstyle M}$	η _e	g _e , г/(кВт.ч)	Мощность, кВт	Момент, Н.м	Gт, кг/ч	$V_{ m n.cp}, \ { m M/c}$	р _м , Мпа	n, мин ⁻¹
1,2035	0,9471	0,4643	176,4996	13,539	143,64	2,389	2,13	0,0671	900
1,0827	0,9143	0,4188	195,6686	27,069	129,23	5,296	4,733	0,10148	2000
1,0537	0,8765	0,3869	211,7794	46,1	125,76	9,763	8,283	0,14834	3500
0,9290	0,8263	0,3786	216,43	58,067	110,88	12,567	11,833	0,1952	5000
1,0188	0,8264	0,4112	199,2899	71,317	121,59	14,212	13,253	0,2139	5600
				Двигатель	BA3-2112				
1,0389	0,9393	0,4029	273,3719	11,68	123,99	3,377	2,13	0,0671	900
1,0449	0,8968	0,3951	267,3998	33,96	124,72	9,043	6,153	0,1202	2600
1,0834	0,8751	0,3924	258,8332	50,11	129,3	12,464	8,756	0,1546	3700
1,0581	0,8442	0,4064	261,652	66,13	126,29	15,336	11,833	0,1952	5000
1,0071	0,8248	0,4066	271,5434	70,49	120,19	17,208	13,253	0,2139	5600

Общее количество теплоты, введенной в двигатель с топливом: [1]

$$Q_o = \frac{H_u G_T}{3.6} = \frac{43930 G_T}{3.6} = 12203 G_T \tag{2.65}$$

Теплота, эквивалентная эффективной работе за 1 с:

$$Q_e = 1000N_e \ u \ q_e = Q_e * 100/Q_0 \tag{2.66}$$

Теплота, передаваемая охлаждающей среде:

$$Q_{B} = \frac{ciD^{1+2m}n^{m}(H_{u} - \Delta H_{u})}{\alpha H_{u}}, \qquad (2.67)$$

$$q_B = Q_B * 100/Q_0;$$
 (2.68)

Теплота, унесенная с отработанными газами:

$$Q_{r} = \left(\frac{G_{T}}{3.6}\right) \left\{ M_{2} \left[\left(mc_{V}^{H} \right)_{t_{o}}^{t_{r}} + 8.315 \right]_{r}^{t_{r}} - M_{1} \left[\left(mc_{V}^{H} \right)_{t_{o}}^{t_{20}} + 8.315 \right]_{r}^{t_{o}} + 8.315 \right\}_{o}, \qquad (2.69)$$

$$q_{r} = Q_{r} * 100 / Q_{0} \qquad (2.70)$$

где $(mc_V)_{t_o}^{20} = 20.775$ кДж/(кмоль* град) — теплоемкость свежего заряда. $(mc_V)_{t_o}^{t_r}$ - теплоемкость остаточных газов.

Теплота, потерянная из-за химической неполноты сгорания.

$$Q_{H,C} = \Delta H_U * G_T / 3,6 \tag{2.71}$$

$$q_{\text{H.C.}} = Q_{\text{H.C.}} *100/Q_0 \tag{2.72}$$

Неучтенные потери теплоты:

$$Q_{ocm} = Q_o - (Q_e + Q_s + Q_r + Q_{n.c}), (2.73)$$

$$q_{ocm} = Q_{ocm} * 100/Q_0 \tag{2.74}$$

Результаты расчетов тепловой баланс двигателя сводим в таблицу 2.9.

Таблица 2.9 - Тепловой баланс разрабатываемого двигателя

Q _e , Дж/с	q _e , %	Q _в , Дж/с	q _B , %	Q _r , Дж/с	q _r , %	Q _{н.с.} , Дж/с	Q _{ост} , Дж/с	q _{ост} , %	G _т , кг/ч	Полная энергия, Дж/с
8432	36,1	6352	27,2	6080	26,0	0	1181	5,1	2,389	23363
16556	38,5	12405	28,9	12509	29,1	0	1508	3,5	5,296	42977
22048	36,4	18022	29,8	18004	29,7	0	2450	4,0	9,763	60525
33381	30,9	34522	32,0	35201	32,6	0	4845	4,5	12,56	107949
33212	28,7	35804	30,9	36961	31,9	0	6514	5,6	14,21	115752

3 Расчет кинематики двигателя

Премещение поршня

$$S_{x} = R \left[\left(1 - \cos \varphi \right) + \frac{\lambda}{4} \left(1 - \cos 2\varphi \right) \right] MM. \tag{3.1}$$

Скорость поршня

$$\upsilon_{II} = \omega R \left(\sin \varphi + \frac{\lambda}{2} \sin 2\varphi \right) M/c. \tag{3.2}$$

Ускорении поршня

$$j = \omega^2 R(\cos\varphi + \lambda\cos 2\varphi); \, M/c^2.$$
(3.3)

4 Динамический расчет двигателя

Определим массу подвижных элементов кривошипно-шатунного механизма:

- масса поршневой группы (для поршня из алюминиевого сплава m_n =100 кг/м²)

$$m_n = m_n \cdot F_n = 100 \cdot 0,005282 = 0,528 \,\mathrm{kr};$$
 (4.1)

- масса шатуна (для стального кованного шатуна $m_{\text{m}} = 150 \text{ кг/м}^2$)

$$m_{ul} = m_{ul} \cdot F_n = 150 \cdot 0,0052783 = 0,792 \,\mathrm{kg};$$
 (4.2)

- масса неуравновешенных частей одного колена вала без противовесов

$$m_{\kappa} = m_{\kappa} \cdot F_{n} = 140 \cdot 0,0052783 = 0,739 \,\mathrm{kr}.$$
 (4.3)

Масса шатуна, сосредоточенная на оси поршневого пальца

$$m_{u.n.} = 0.275 \cdot m_u = 0.275 \cdot 0.792 = 0.218 \,\mathrm{kr}$$
 (4.4)

Масса шатуна, сосредоточенная на оси кривошипа

$$m_{u.\kappa.} = 0.725 \cdot m_u = 0.725 \cdot 0.792 = 0.574 \,\mathrm{kr}$$
 (4.5)

Массы, совершающие возвратно-поступательное движение

$$m_j = m_n + m_{u.n} = 0.528 + 0.218 = 0.746 \,\mathrm{kr}.$$
 (4.6)

Массы, совершающие вращательное движение

$$m_R = m_{\kappa} + m_{u.\kappa} = 0.739 + 0.574 = 1.313 \,\mathrm{kr}.$$
 (4.7)

Определяем значения силы инерции возвратно-поступательно движущих-ся масс

$$P_j = -m_j j = 0.746 * j (4.8)$$

Центробежная сила инерции вращающихся масс шатуна одного цилиндра

$$K_{Ruu} = -m_{u.\kappa.} \cdot R \cdot \omega^2 \cdot 10^{-3} = -0,574 \cdot 0,0355 \cdot 586^2 \cdot 10^{-3} = -6,9974 \,\text{kH}.$$
 (4.9)

Центробежная сила инерции вращающихся масс кривошипа

$$K_{R\kappa} = -m_{\kappa} \cdot R \cdot \omega^2 \cdot 10^{-3} = -0.739 \cdot 0.0355 \cdot 586^2 \cdot 10^{-3} = -9.0088 \,\mathrm{kH}.$$
 (4.10)

Центробежная сила инерции вращающихся масс кривошипа:

$$K_R = -m_R \cdot R \cdot \omega^2 = -1,0313 \cdot 0,0355 \cdot 586^2 \cdot 10^{-3} = -16,0062 \text{ kH}.$$
 (4.11)

Сила, сосредоточенная на оси поршневого пальца

$$P = \Delta P_{\Gamma} + P_{j}.(\kappa H) \tag{4.12}$$

Нормальная сила

$$N = Ptg\beta$$
. (kH) (4.13)

Сила, действующая вдоль шатуна

$$S = P * (1/\cos\beta).(\kappa H) \tag{4.14}$$

Сила, действующая по радиусу кривошипа

$$K = P * \cos(\varphi + \beta) / \cos\beta . \text{(kH)}$$
(4.15)

Полная тангенциальная сила

$$T = \frac{p\sin(\varphi + \beta)}{\cos\beta}.(\kappa H) \tag{4.16}$$

Результаты динамического расчета графически представлены на плакате.

Крутящий момент одного цилиндра

$$M_{\kappa p, u} = T \cdot R \tag{4.17}$$

Средний крутящий момент двигателя:

- по данным теплового расчета

$$M_{\kappa p. \mu.} = M_i = \frac{M_e}{\eta_M} = \frac{145}{0.86} = 168 \ H \cdot M;$$
 (4.18)

- по площади, заключенной под кривой $^{M_{\kappa p.}}$

$$M_{\kappa p.cp.} = \frac{\sum_{i=1}^{n} \left(\frac{M_{\kappa p.i} + M_{\kappa p.i+1}}{2} \right) \cdot 10^{\circ}}{360^{\circ}} = 155 \ H \cdot M$$
(4.19)

Ошибка расчета:

$$\Delta = (168-161)\cdot 100/168 = 4,2\%. \tag{4.20}$$

Максимальный и минимальный крутящие моменты:

$$M_{\kappa p.\,\text{max}} = 409.5 \text{ H·m},$$
 (4.21)

$$M_{\kappa p.\,\text{min}} = -57.0 \text{ H·m.}$$
 (4.22)

Суммарная сила, действующая на шатунную шейку по радиусу кривошипа:

$$P_{K} = K + K_{RIII} = (K-5108) H.$$
 (4.23)

Среднее значение $R_{u.u.}$ определяется по развернутой диаграмме

$$R_{u.u.cp} = \sum_{i=1}^{n} ((R_{u.u.i} + R_{u.u.i+1})/2) *10^{\circ} /720^{\circ} = 9342H$$
(4.24)

Суммарная сила, действующая на колено вала по радиусу кривошипа

$$K_{P_{\kappa}} = P_{\kappa} + K_{Rk} = (P_{k} - 15324), H$$
 (4.28)

Результирующая сила, действующая на колено вала

$$R_k = \sqrt{R_{u.u}^2 + K_{Rk}^2} {4.29}$$

Сила, действующая на первую коренную шейку

$$R_{\kappa.u.1} = -0.5 * R_{k1} \tag{4.30}$$

Сила, действующая на вторую коренную шейку

$$R_{\kappa,u,2} = \sqrt{T_{k2}^2 + K_{k2}^2} \,, \tag{4.31}$$

где:

$$T_{k2} = -0.5*(T_1 + T_2 * \cos \gamma_{k(1-2)} - K_{pk2} * \sin \gamma_{k(1-2)}) = -0.5*(T_1 + T_2 * \cos 180^\circ - K_{pk2} * \sin 180^\circ) = -0.5*(T_1 - T_2);$$

$$(4.32)$$

$$K_{k2} = -0.5*(K_{pk1} + T_2 * \sin \gamma_{k(1-2)} - K_{pk2} * \cos \gamma_{k(1-2)}) = -0.5*(T_1 + T_2 * \sin 180^\circ - K_{pk2} * \cos 180^\circ) = -0.5*(K_{pk1} - K_{pk2}).$$

$$(4.33)$$

Сила, действующая на третью коренную шейку

$$R_{\kappa,u.3} = \sqrt{T_{k3}^2 + K_{k3}^2} \tag{4.34}$$

где:

$$T_{k3} = -0.5*(T_2 + T_3 * \cos \gamma_{k(2-3)} - K_{pk3} * \sin \gamma_{k(2-3)}) \cos \gamma_{k(1-2)} = -0.5*(T_2 + T_3 * \cos 0^\circ - K_{pk3} * \sin 0^\circ) * \cos 180 = 0.5*(T_2 + T_3);$$

$$(4.35)$$

$$K_{k2} = -0.5*(K_{pk2} + T_3 * \sin \gamma_{k(2-3)} - K_{pk3} * \cos \gamma_{k(2-3)}) \cos \gamma_{k(1-2)} = -0.5*(K_{pk2} + T_3 * \sin 0^\circ - K_{pk3} * \cos 0^\circ) * \cos 180^\circ = 0.5*(K_{pk2} - K_{pk3}).$$

$$(4.36)$$

Диаграммы $R_{\kappa.u1}$, $R_{\kappa.u2}$, $R_{\kappa.u3}$, перестроены в прямоугольные координаты. По этим диаграммам определяем:

- для 1 (5)-й коренной шейки:

$$R_{\kappa.u1cp} = \sum_{i=1}^{n} ((R_{\kappa.u1i} + R_{\kappa.u1i+1})/2) *10^{\circ} /720^{\circ} = 9325H,$$
(4.36)

- для 2 (4)-й коренной шейки:

$$R_{\kappa.\omega2cp} = \sum_{i=1}^{n} ((R_{\kappa.\omega2i} + R_{\kappa.\omega2i+1})/2) *10^{\circ} /720^{\circ} = 3350H,$$
(4.37)

- для 3-й коренной шейки:

$$R_{\kappa,u3cp} = \sum_{i=1}^{n} ((R_{\kappa,u3i} + R_{\kappa,u3i+1})/2) *10^{\circ} /720^{\circ} = 18058H,$$
(4.38)

Равномерность крутящего момента

$$\mu = (M_{\kappa p. \text{max}} - M_{\kappa p. \text{min}}) / M_{\kappa p. cp.} = [499,87 - (201,57)] / 147,93 = 4,74.$$
(4.49)

Избыточная работа крутящего момента

Равномерность хода двигателя принимаем $\delta = 0.015$.

Момент инерции движущихся масс двигателя, приведенных к оси коленчатого вала

$$I_0 = L_{us\delta} / (\delta * \omega^2) = 592,02/(0,015*586^2) = 0,115\kappa 2 * M^2.$$
(4.51)

5 Специальная часть

5.1 Описание системы непосредственного впрыска топлива спроектированного двигателя

Непосредственный впрыск топлива с возможностью осуществления расслоения топливно-воздушной смеси реализуется многими автопроизводителями. В качестве аналога который мы хотим применить в ходе модернизации двигателя ВАЗ-2112 выбран системы непосредственного врпыска топлива применяемая концерном Фольцваген-Ауди групп, представленный на рисунке 5.1.

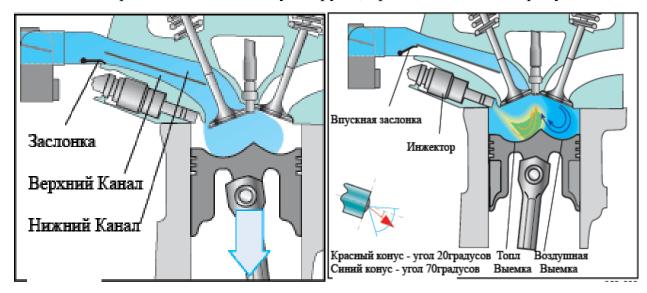


Рисунок 5.1 - Системы непосредственного врпыска топлива применяемая концерном Фольцваген-Ауди групп

В результате технического поиска оптимальных возможностей для модернизации двигателя ВАЗ-2112, выброаны и реализованы следущие шаги помодернизации:

- 1. спрофилирован поршень форма днища которого позволяет осуществлять расслоение горючего и окислителя в камере сгорания, на днище поршня применена форма со специальной направляющей к свече зажигания и зоной с окислителем;
- 2. расчитана и спроектирована форсунка для непосредственного впрыска топлива, на базе предложенной форсунки концерном Фольцваген-Ауди групп;

3. размещена форсунка в блоке цилиндров, для более эффективного распыления топлива в зону свечи зажигания.

Рассмотрим параметры работу и условия расслоения заряда в модернезируемом двигателе. В предложенной конструкции непосредственного впрыска топлива существует три основных режима работы и оди вспомогательный для снижения токсичности по оксидам азота.

Первый режим это основной мощностной режим при котором двигатель работает на стехиометрическом составе смеси, это обеспечивается в том случае, когда всё топливо подается в процессе впуска, тогда оно успевает перемешаться с воздухом и обеспечить гомогенность смеси для устойчивого воспламенения и быстрого сгорания. Данный режин назавается гомогенным и именно на этом режиме определяются параметры внешней скоростной характеристики.

Второй режим это режим частичных нагрузок, который осуществляется при нагрузках от 40 до 85%, в этом режиме часть топлива в зависимости от нагрузки впрыскивается в процессе впуска для равномерного распренделения по камере сгорания, а вторая порция впрыскивается за несколько градусов до подачи искрового разряда в зону свечи зажигания, причем величина второй порции постоянна, а количество подаваемого в цилиндр топлива варьируется первой частью вроыска топлива. Для этого режима характерно, что в пристеночной зоне обедненная смесь, а в зоне свечи зажигания обогащенная для быстрого воспламенения и устойчивого сгорания. Также на данном режиме количество подаваемого воздуха может варьироваться дроссельной заслонкой, т.к. общий коэффициет избытка воздуха составляет от 1,2 до 1,8, а локальный в зоне обеднения смеси не ниже 1,6-1,7, что соответствует условиям устойчивого распространения пламени в зоне догорания.

Третий режим это режим низких нагрузок и холосого хода, когда двигателю требуется минимальная мощность, тогда топливо впрыскивается только в конце сжатия к свече зажигания, что обеспечивает полное сгорания сверх обедненных смесей, так как топливо находится в зоне свечи зажигания, а в пристеночной и удаленных областях находится только воздух. Данный режим имити-

рут работы дизельного цикла для двигателей с искровым зажиганием. При этом состав смеси варьируется от 2 до 4 по коэффициенту избытка воздуха.

Дополнительным режимом работы является режим временного обогащения до состава в 0,8-0,9, что необходимо для нормальной работы нейтрализатора оксидов азота накопительного типа. Данный режим работы осуществляется при работе на бедных смесях (второй и третий режим) следующим образом, раз в 60 секунд производится кратковременное обогащение смеси на 1-3 секунды, что обеспецивает нетрализатор необходимым количеством несгоревших углеводородов для полного востановления накомленных оксидов азота.

- 5.2 Расчет основных элементов электромагнитной форсунки
- 1. Цикловая подача топлива:

$$Q_{\text{max}} = \frac{g_e \cdot N_e \cdot \tau}{120 \cdot n_{\text{max}} \cdot \rho_T} = \frac{270 \cdot 71,3 \cdot 4 \cdot 1000}{120 \cdot 6200 \cdot 790} = 0.1218 \, \text{cm}^3 / \text{цикл}$$
(5.1)

2. Период следования подач:

$$T_{\min} = \frac{60 \cdot \tau}{j \cdot n_{\max}} \cdot 10^3 = \frac{60 \cdot 2}{2 \cdot 6400} \cdot 1000 = 9.677 \quad mc,$$
(5.2)

Продолжительность управляющих импульсов:

$$\tau_{\text{max}} \le T - t_{omn} = 9,677 - 1 = 8,677 \,\text{MC};$$

$$\tau_{\text{max}} \le 8,677 \,\text{MC} \tag{5.3}$$

3. Статическая производительность форсунки:

$$g_0 = \frac{Q_{\text{max}}}{j \cdot \tau_{\text{max}}} = \frac{0.1210}{2 \cdot 8.677} = 0.00702 \, \text{cm}^3 / \text{mc} = 7,02 \, \text{mm}^3 / \text{mc}$$
(5.4)

4. Диаметр дозирующего отверстия:

$$\mu \mathcal{O} \cdot f \mathcal{O} = g_0 \sqrt{\frac{2\Delta p}{\rho_T}} = 7.02 \sqrt{\frac{2 \cdot 400 \cdot 10^3}{790}} = 0.2234 \, \text{Mm}^2$$
(5.5)

Диаметр дозирующего отверстия:

$$S = \frac{\pi \cdot d^2}{4} \Rightarrow d = \sqrt{\frac{4 \cdot S}{\pi}} = \sqrt{\frac{4 \cdot 0.1163}{3.14}} = 0.37 \,\text{MM}$$
 (5.6)

Дифференциальное уравнение форсунки

$$T\frac{dU_{\text{\tiny GbLX}}}{dt} + U_{\text{\tiny GbLX}} = U_{\text{\tiny GX}}; T = L/R$$
(5.7)

Усилие электромагнита:

$$F_{\mathfrak{I}} = -\left(\frac{Jw^2}{2}\right) \cdot \mu_0 S \frac{1}{x^2}, H \tag{5.8}$$

Площадь электромагнита

$$S = \frac{\pi}{4} (D^2 - d^2) = \frac{3.14}{4} (0.015^2 - 0.008^2) = 1.264 \cdot 10^{-4} \,\text{m}^2 = 126,4 \,\text{mm}^2$$
(5.9)

Момент инерции сердечника:

$$(Jw)^{2} = \frac{4 \cdot F \cdot x^{2}}{\mu_{0} \cdot S} = \frac{4 \cdot 26 \cdot (0.0012)^{2}}{1.257 \cdot 10^{-6} \cdot 1.264 \cdot 10^{-4}} = 94256971 \text{ MM}^{2}/\text{MC}$$

$$Jw = \sqrt{942569.71} = 970.86$$
(5.10)

Индуктивность катушки:

$$L = \frac{0.2 \cdot \pi \cdot w^2 \cdot S}{x} \cdot 10^{-8} = \frac{0.2 \cdot 3.14 \cdot 647^2 \cdot 1.264 \cdot 10^{-4}}{0.0012} = 2.8 \Gamma H$$
 (5.11)

Площадь поперечного сечения провода с изоляцией:

$$S_{np} = \frac{\pi \cdot d_{np}}{4} = \frac{3,14 \cdot 0,47}{4} = 0,1736 \text{MM}^2$$
(5.12)

Длина катушки электромагнита:

$$\lambda = \frac{S_{np} \cdot w \cdot 2}{D - d} = \frac{0.1736 \cdot 647 \cdot 2}{15 - 8} = 32.1 \text{MM}$$
(5.13)

Определяем сопротивление обмотки электромагнита:

Длина 1-го витка:

$$d_{cp} = \frac{D+d}{2} = \frac{0.015+0.008}{2} = 0.0115M \rightarrow \lambda' = \pi \cdot d = 3.14 \cdot 0.0115 = 0.036M$$
(5.14)

Длина всей обмотки:

$$\lambda_{o\delta M} = \lambda' \cdot w = 0.036 \cdot 647 = 23.29M \tag{5.15}$$

Сопротивление 1м провода $d = 0.4_{\text{MM}}$: $R' = 3.89 \cdot 10^{-2} \, Om$ Сопротивление всей катушка:

$$R = R' \cdot \lambda_{obs} = 3,89 \cdot 10^{-2} \cdot 23,29 = 0,91 \ Om$$
 (5.16)

Постоянная времени электромагнита:

$$T = L/R = 2.8 \cdot 10^{-4} / 0.91 = 3,07 \cdot 10^{-4} c$$
 (5.17)

6 Безопасность и экологичность проекта

6.1 Оценка безопасности и экологичности объекта разработки бакалаврской работы

В бакалаврской работе проведена модернизация двигателя ВАЗ с целью снижения токсичности по углеводородам за счет реализа, ции с учетом его компоновки, системы непосредственного впрыска топлива с расслоение горючего и окислителя в зоне свечи зажигания на частичных и низких нагрузках.

6.1.1 Оценка взрыво-пожаробезопасности объекта разработки бакалаврской работы

Пожаро- и взрыво-безопасность проектируемого двигателя не измениться так как вид топлива в ходе модернизации не поменялся, а следовательно и условий для изменения параметров пожаро- взрыво-безопасности автомобиля в целом не поменялись. Можно лишь отметить наличие насоса высокого давления обеспечивающего подачу топлива с давлением в 120 атмосфер, следовательно требуется более внимательно, на техническом обслуживании, проверять состояние топливопроводов высокого давления.

6.1.2 Снижение токсичнсоти по несгоревшим углеводородам в проетируемом двигателе

Состав выхлопных газов в нашем случае будет сильно зависить от режима работы двигателя, разделим наши режимы на два основных вида, это режим гомогенного стехиометрического сгорания, и режим обедненой работы при расслоение смеси.

 Для углеводородов в первом случае будет классическая ситуация, как и до модернизации, существенного изменения их концентрации на режиме максимальной мощности не наблюдается, для втрого случая режимы с расслоением горючего и окислителя, там будет заметное снижение выбросов углеводородов, причем при уменьшении нагрузки их колличество будет стремиться к нулю, так как основной источник углеводородов это пристеночный слой и зоны гашения, а в них концентрация топлива будет минимальна, а на третьем режиме работы и совсем равна нулю.

- Для монооксида углерода его содержание также будет на мощностном режиме примерно такимже как на базовом, а при обеднении смеси будет уменьшаться.
- Для оксидов азота ситуация не столь хорошая, хотя их колличство не будет заметно превышать то, которое образуется при работе базового двигателя, но они, за исключением режима максимальной мощности, не смогут востанавливаться на катализаторе из-за недостатка несгоревших углеводородов в продуктах сгорания, следовательно для их нейтрализации придется применять специальный нейтрализатор накопительного типа, который вылавливает их из потока выхлопных газов и накапливает в отстойнике, а при включении специального режима обогащения смеси он их востанавливает за счет энергии дожигания продуктов неполного сгорания.
- По твердым частицам все не так хорошо как с остальными видами токсичных компонентов, ведь не секрет, что именно массовое распространение двигателей с непосредственным впрыском топлива вынудило европейские власти, а также Японию и США ввести нормирование на выбросы твердфх частиц бензиновыми двигателями. Это происходит в том случае когда в зоне обогащения смеси у свечи зажигания при расслоении заряда, происходит неполное сгорание в связи с недостатком кислорода, и атомы углерода при высоком давлении начинают образовывать частички сажи, как на дизельном двигателе, а при перемешивании с воздухом эти частички сажи по какойто причине не всегда доокисляются до продуктов полного сгорания.

6.1.3 Оценка экологичности, по шуму, объекта разработки бакалаврской работы

Увеличение шама от работы двигателя будет связано с наличием дополнительного агрегата, а именно насоса высокого давления, работа которого может несколько сказаться на общем шуме двигателя, в остальном шум принципиално изменится не должен инаходится в тех же пределах как и для базового двигателя.

6.2 Выводы по разделу

- 1. Пожаробезопасность не изменится.
- 2. Шум двигателя на основных режимах работы не изменится.
- 3. Токсичность по продуктам неполного сгорания и углекислому газу снизится, для выполнения норм токсичности ЕВРО-6 требуется установка катализатора дожигателя продуктов неполного сгорания, после катализатора накопителя оксидов азота.
- 4. Для выполнения норм по токсичности оксидами азота, следует устанавливать каталитический нейтрализатор накопительного типа.
- 5. В целом двигатель удовлетворяет современным требованиям по экологичности, но требуется существенной модернизации системы нейтрализации отработавших газов установкой двух нейтрализаторов, один для оксидов азота, а второй для продуктов неполного сгорания, и совсем на выпуске сажеуловителя, для уменьшения вбросов твердых частиц.

ЗАКЛЮЧЕНИЕ

В бакалаврской работе проведена модрнизация двигателя ВАЗ-2112 для снижения токсичности по углеводородам, за счет адаптации двигателя под работу при непосредственном впрыске топлива в цилиндр. В ходе расчетов получены основные характеристики работы двигателя и нагрузки на элементы КШМ, проведенный расчет электромагнитной форсунки позволил спроектировать её и разместить в блоке цилиндров. Проведенная оценка влияния работы системы непосредственного впрыска на экологические характеристики работы двигателя показала, что:

- Токсичность по продуктам неполного сгорания и углекислому газу снизится, для выполнения норм токсичности ЕВРО-6 требуется установка катализатора дожигателя продуктов неполного сгорания, после катализатора накопителя оксидов азота и в конце установка сажевого фильтра.
- Для выполнения норм по токсичности оксидами азота, следует устанавливать каталитический нейтрализатор накопительного типа.

При этом энергетические характеристики работы изменились следующим образом:

- минимальный удельный эффективный расход топлива 242 г/кВт*ч, снижение по сравнению с базовым составило 6-8% в связи с тем что на основном режиме работы условия подготовки топливно-воздушной смеси схожи, а на режимах частичных нагрузов и холостого хода снижение удельного расхода составило до 50%;
- максимальную мощность составила 72 кВт при частоте вращения 5600 мин⁻¹, по сравнению с базовым увеличение составило 1-1,5%.
- снижение токсичности в отработавших газах по несгоревшим углеводородам (CH) и оксидам азота (NO).

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Колчин, А.И. Расчет автомобильных и тракторных двигателей [Текст]/ Колчин, А.И. Демидов В.П. // Учебное пособие для вузов 2-е изд., перераб. и доп. М: Высшая школа 1980. с.496.
- 2. Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / И.И. Вибе// М. Машиностроение, 1971. с.282
- 3. Луканин, В.Н. Промышленная транспортная экология [Текст] / М.: Высшая школа, 2001.
- 4. Долин, П.А. Справочник по технике безопасности [Текст] / М.: Энергоатомиздат, 1985.
- 5. Dake, A.R. Modeling and control of cold start hydrocarbon emissions [Teκcτ] / A.R. Dake // Master thesis. 2005. 101 c.
- 6. El-Mahallawy, F. Fundamentals and technology of combustion [Текст] / F. El-Mahallawy, S. E-Din Habik. London : Elsevier, 2002. 862 с.
- 7. Eriksson, L. Spark Advance Modeling and Control / L. Eriksson [Текст] // Doctoral thesis. 1999. 207 с.
- 8. Кузнецов, В.Р. Турбулентность и горение [Текст] / Кузнецов, В.Р., Собольников В.А.// М. Наука, 1986. 207 с.
- 9. Войнов, В.В. Процессы сгорания в двигателях внутреннего сгорания [Текст] / М. Наука, 1984. - 211 с.
- 10. Звонов, В.А. Токсичность двигателей внутреннего сгорания [Текст] / М. Машиностроение, 1981. 210 с.
- 11. Nlootat, G. A Model for Converting SI Engine Flame Arrival Signals into Flame Contours [Tekct] / SAE, SP 1099, №950109, ctp. 99-110, 1999.
- 12. Khalighi, B. Computation and Measurement of Flow and Combustion in a Four-Valve Engine with Intake Variations [Tekct] / SAE, SP 1101, №950287, 2001. c. 147-179,

- 13. Jones, P. Full Cycle Computational Fluid Dynamics Calculations in a Motored Four Valve Pent Roof Combustion Chamber and Comparison with Experiment [Tekct] / SAE, SP 1101, №950286, 2001. c. 131-146
- 14. Наканиши, К. Разработка новой системы впуска для четырёхклапанного двигателя, работающего на бедных смесях [Текст] / SAE, SP 1097, №95050, 1997. с. 25-43
- 15. Хашимото, Н. Разработка низкотоксичной, высокоэффективной камеры сгорания для высокомощного четырехклапанного двигателя [Текст] / SAE, SP 1098, №95068, 1998. с. 347-365
- 16. Аносов, Ю.М. Основы отраслевых технологий и организации производства [Текст] / С-П., Политехника, 2002.
- 17. Кутенёв, В.Ф. Комплексное решение проблем снижения выбросов вредных веществ и расхода топлива автомобильными двигателями. Автореф. дисс. докт. техн. наук. 05.04.02 / Кутенёв Вадим Федорович. М.: МАМИ. 1990. 45 с.
- 18. Машиностроение. Энциклопедия [Текст] /: в 40 т. / гл. ред. К.В. Фролов (пред.) и др.— М.: Машиностроение, 2013.- Т. IV-14: Двигатели внутреннего сгорания.- 784с.
- 19. Семенов, Е.С. Исследование турбулентности в цилиндре поршневого двигателя [Текст] // Е.С. Семенов, А.С. Соколик // Известия АН СССР. 1958. № 8. С. 130-140.
- 20. Смоленская, Н.М. Исследование эффективности рабочего процесса бензиновых двигателей с использованием электропроводности пламени [Текст] / Н.М. Смоленская, В.В. Смоленский, П.В. Ивашин, А.П. Шайкин // ВНТК "Проведение научных исследований в области машиностроения". 27-28 ноября 2009. Тольятти: Изд-во ТГУ. 2009. С.244-250.

ПРИЛОЖЕНИЕ А

Таблица А1 - Исходные данные для теплового расчета

				Коэф-									
				фициент									
	Продол-	Коэффи-	Сте-	молеку-						Коэффи-			
Объем ра-	жительность	циент из-	пень	лярного из-			Угол опе-	Полно-та		циент оста-		Показатель	Частота
бочего те-	процесс	бытка воз-	сжа-	менения			режения	сгора-ния	E ₂ ,	точных га-		характера	вращения
ла, м ³	сгорания	духа	ТИЯ	смеси	Py	Ty	зажигания	топли-ва	МПа	30B	λ	сгорания	КВ
				Двиг	гатель с нег	посредстве	нным впрыс	ком топли	іва				
1,029192	28	1	10,5	1,025724	1,913	789,86	13	0,94	51,95553	0,033925	0,29	3 2,5	900
1,043288	36	1.05	10,5	1,015327	1,8066	778,05	14	0,95	49,11692	0,032378	0,29	3 2,6	2000
1,055293	42	1.05	10,5	1,015368	1,4796	726,67	19	0,96	49,2143	0,029589	0,29	3 2,7	3500
1,044442	50	1.05	10,5	1,015341	1,2128	696,77	23	0,97	47,257	0,031428	0,29	3 2,8	5000
1,104081	54	1	10,5	1,025809	1,1001	680,13	25	0,98	49,2458	86 0,030549	0,29	3 2,9	5600
						Двигатель ?	BA3-2112						_
0,989923	40	0.96	10,5	1,060488	1,823	767,52	15	0,76	43,98798	0,043126	0,29	3 3.1	900
1,028942	48	1	10,5	1,050596	1,469	722,11	20	0,86	46,40438	0,036289	0,29	3 3.2	2600
1,05791	55	1	10,5	1,050718	1,267	697,718	23	0,96	50,28953	0,033797	0,29	3 3.3	3700
1,08835	58	1	10,5	1,050909	1,098	665,279	26		50,44589	0,029931	0,29	3 3.4	5000
1,150416	62	1	10,5	1,050917	0,977	652,082	28	0,99	49,49647	0,029751	0,29	3.5	5600

Таблица A2 - Результаты теплового расчета двигателя с непосредственным впрыском топлива при $n=900~\text{мин}^{-1}$

						Коэффи-									
Доля вы-	Сред-няя					циент мо-					Темпе-				
дели-	на участ-					ле-		Характе-	Угол		ратура	Темпе-			
вшегося	ке тем-					кулярного		ристика	ПКВ от	Текущий	предпо-	ратура			
на участ-	пре-					изменения		тепловы-	начала	угол	логае-	дейст-	Удельный		
ке тепла	ратура, К	k1-2	K1-2	D X1-2	Давление	смеси	m_{1-2}	деления	горения	ПКВ	мая/, К	витель-ная	объем	S	y(f1)
2,97E-05	790,9425			5,95E-05	1,91405	1	1	0	0	-13	787,0153	787,01531	0,11341	0,0331	1,15699
0,000307	801,2881	1,355958	6,618639	0,000613	1,972511	1	1	5,95E-05	1	-12	794,8697	794,8696	0,11114	0,0282	1,13391
0,001052	818,7097	1,35467	6,639044	0,002105	2,042709	1	1	0,000673	2	-11	807,7065	807,70583	0,10906	0,0237	1,11263
0,002403	847,6335	1,352568	6,672663	0,004806	2,135752	1	1,00002	0,002777	3	-10	829,7129	829,7102	0,10715	0,0196	1,09316

0,004451	892,7368	1,349273	6,726183	0,008902	2,264611	1,0001	1,00005	0,007583	4	-9	865,5541	865,5447	0,10542	0,0159	1,07552
0,007245	958,4727	1,344567	6,80438	0,01449	2,442867	1,0002	1,00011	0,016485	5	-8	919,9196	919,89361	0,10387	0,0126	1,05971
0,010782	1048,582	1,338506	6,908307	0,021563	2,683193	1,0003	1,00022	0,030975	6	-7	997,0259	996,96661	0,1025	0,0096	1,04574
0,01499	1165,654	1,33143	7,03445	0,029979	2,995772	1,0005	1,00039	0,052538	7	-6	1100,138	1100,0255	0,10131	0,0071	1,03363
0,01972	1310,784	1,323861	7,175483	0,039441	3,386877	1,0008	1,00063	0,082518	8	-5	1231,171	1230,9926	0,10031	0,0049	1,02336
0,024739	1483,306	1,316341	7,322287	0,049478	3,857693	1,0011	1,00095	0,121958	9	-4	1390,396	1390,1522	0,09948	0,0031	1,01496
0,029729	1680,63	1,309303	7,466143	0,059458	4,403405	1,0016	1,00136	0,171436	10	-3	1576,217	1575,9274	0,09884	0,0018	1,00842
0,034312	1898,172	1,30302	7,600216	0,068624	5,01263	1,0021	1,00187	0,230894	11	-2	1785,043	1784,7442	0,09838	0,0008	1,00374
0,038079	2129,472	1,297617	7,720046	0,076159	5,667379	1,0028	1,00246	0,299518	12	-1	2011,301	2011,0338	0,09811	0,0002	1,00094
0,040646	2366,532	1,293112	7,823342	0,081291	6,343794	1,0035	1,00313	0,375677	13	0	2247,643	2247,445	0,09802	0	1
0,041706	2600,422	1,289457	7,909484	0,083411	7,013788	1,0042	1,00386	0,456968	14	1	2485,421	2485,3209	0,09811	0,0002	1,00094
0,041093	2822,106	1,286574	7,979011	0,082187	7,647588	1,005	1,00463	0,540379	15	2	2715,423	2715,4349	0,09838	0,0008	1,00374
0,038823	3023,382	1,284365	8,033217	0,077645	8,216861	1,0058	1,0054	0,622566	16	3	2928,788	2928,9142	0,09884	0,0018	1,00842
0,035101	3197,789	1,282731	8,073866	0,070202	8,697945	1,0065	1,00614	0,700211	17	4	3117,977	3118,2084	0,09948	0,0031	1,01496
0,030307	3341,275	1,281572	8,102981	0,060614	9,074544	1,0072	1,00683	0,770413	18	5	3277,601	3277,9229	0,10031	0,0049	1,02336
0,024929	3452,519	1,280793	8,122677	0,049858	9,339307	1,0077	1,00743	0,831028	19	6	3404,95	3405,3437	0,10131	0,0071	1,03363
0,019483	3532,799	1,280308	8,135012	0,038966	9,493951	1,0082	1,00795	0,880885	20	7	3500,088	3500,5344	0,1025	0,0096	1,04574
0,014427	3585,476	1,280039	8,141868	0,028853	9,547915	1,0085	1,00836	0,919851	21	8	3565,509	3565,9906	0,10387	0,0126	1,05971
0,010091	3615,213	1,279922	8,144851	0,020183	9,515953	1,0088	1,00867	0,948704	22	9	3605,442	3605,9438	0,10542	0,0159	1,07552
0,006647	3627,128	1,279906	8,145248	0,013294	9,41527	1,009	1,0089	0,968887	23	10	3624,985	3625,4947	0,10715	0,0196	1,09316
0,00411	3626,06	1,279955	8,14401	0,008219	9,262908	1,0091	1,00906	0,982182	24	11	3629,272	3629,7817	0,10906	0,0237	1,11263
0,002377	3616,085	1,280042	8,141792	0,004754	9,073856	1,0092	1,00916	0,990401	25	12	3622,848	3623,3517	0,11114	0,0282	1,13391
0,001281	3600,309	1,280151	8,139004	0,002563	8,860108	1,0092	1,00922	0,995155	26	13	3609,322	3609,816	0,11341	0,0331	1,15699
0,000642	3580,895	1,280274	8,135878	0,001283	8,630544	1,0093	1,00925	0,997717	27	14	3591,297	3591,7787	0,11585	0,0383	1,18187
0,000297	3559,225	1,280405	8,132531	0,000594	8,391378	1,0093	1,00927	0,999	28	15	3570,492	3570,9599	0,11846	0,0439	1,20853

Таблица A3 - Результаты теплового расчета двигателя с непосредственным впрыском топлива при $n=2000\,\mathrm{Muh}^{-1}$

					Коэффи-										Доля
					циент мо-					Темпе-					выдели-
Сред-няя					ле-		Характе-	Угол	Т	ратура	Темпе-				вшегося
на участке темпре-					кулярного изменения		ристика тепловы-	ПКВ от начала	Текущий угол	предпо- логае-	ратура дейст-	Удельный			на участке
ратура, К	k1-2	K1-2	D X1-2	Давление	смеси	m_{1-2}	деления	горения	ПКВ	мая/, К	витель-ная	объем	s	y(f1)	тепла
777,7241			0,0000	1,8072	1,0000	1,0000	0,0000	0	-14	774,4584	774,45835	0,1174	0,0383	1,1819	0,0000
784,9117	1,3576	6,5926	0,0002	1,8616	1,0000	1,0000	0,0000	1	-13	780,9898	780,9897	0,1150	0,0331	1,1570	0,0001
794,0977	1,3567	6,6069	0,0007	1,9186	1,0000	1,0000	0,0002	2	-12	788,8336	788,83336	0,1127	0,0282	1,1339	0,0003
806,7931	1,3556	6,6251	0,0016	1,9814	1,0000	1,0000	0,0009	3	-11	799,3618	799,36107	0,1106	0,0237	1,1126	0,0008
824,7447	1,3540	6,6497	0,0031	2,0543	1,0001	1,0001	0,0025	4	-10	814,2243	814,22237	0,1086	0,0196	1,0932	0,0016
849,8438	1,3519	6,6837	0,0052	2,1422	1,0002	1,0002	0,0056	5	-9	835,265	835,26014	0,1069	0,0159	1,0755	0,0026
884,0182	1,3491	6,7294	0,0080	2,2504	1,0004	1,0003	0,0109	6	-8	864,4226	864,41121	0,1053	0,0126	1,0597	0,0040
929,1087	1,3455	6,7885	0,0114	2,3844	1,0007	1,0006	0,0188	7	-7	903,6137	903,58893	0,1039	0,0096	1,0457	0,0057
986,7400	1,3412	6,8614	0,0156	2,5494	1,0012	1,0010	0,0303	8	-6	954,6037	954,55412	0,1027	0,0071	1,0336	0,0078
1058,1941	1,3363	6,9473	0,0205	2,7496	1,0018	1,0015	0,0459	9	-5	1018,876	1018,7851	0,1017	0,0049	1,0234	0,0102
1144,2979	1,3309	7,0437	0,0259	2,9883	1,0026	1,0022	0,0663	10	-4	1097,512	1097,358	0,1008	0,0031	1,0150	0,0129
1245,3279	1,3253	7,1474	0,0317	3,2669	1,0036	1,0031	0,0922	11	-3	1191,084	1190,8438	0,1002	0,0018	1,0084	0,0159
1360,9357	1,3198	7,2545	0,0379	3,5848	1,0048	1,0042	0,1240	12	-2	1299,572	1299,2242	0,0997	0,0008	1,0037	0,0189
1490,0969	1,3144	7,3612	0,0440	3,9394	1,0063	1,0056	0,1618	13	-1	1422,3	1421,8278	0,0995	0,0002	1,0009	0,0220
1631,0878	1,3094	7,4643	0,0500	4,3256	1,0080	1,0072	0,2059	14	0	1557,894	1557,2895	0,0994	0,0000	1,0000	0,0250
1781,5009	1,3048	7,5611	0,0554	4,7360	1,0100	1,0090	0,2559	15	1	1704,281	1703,5433	0,0995	0,0002	1,0009	0,0277
1938,3077	1,3008	7,6498	0,0599	5,1610	1,0121	1,0110	0,3112	16	2	1858,721	1857,8562	0,0997	0,0008	1,0037	0,0299
2097,9766	1,2972	7,7294	0,0632	5,5893	1,0144	1,0133	0,3711	17	3	2017,895	2016,9173	0,1002	0,0018	1,0084	0,0316
2256,6475	1,2942	7,7992	0,0652	6,0082	1,0169	1,0157	0,4343	18	4	2178,058	2176,9839	0,1008	0,0031	1,0150	0,0326
2410,3539	1,2916	7,8594	0,0655	6,4046	1,0195	1,0182	0,4995	19	5	2335,237	2334,0831	0,1017	0,0049	1,0234	0,0328
2555,2769	1,2894	7,9101	0,0643	6,7658	1,0220	1,0207	0,5650	20	6	2485,471	2484,2559	0,1027	0,0071	1,0336	0,0321
2688,0045	1,2877	7,9519	0,0614	7,0806	1,0245	1,0233	0,6293	21	7	2625,083	2623,8215	0,1039	0,0096	1,0457	0,0307
2805,7675	1,2863	7,9856	0,0570	7,3398	1,0269	1,0257	0,6906	22	8	2750,926	2749,633	0,1053	0,0126	1,0597	0,0285
2906,6219	1,2852	8,0120	0,0514	7,5373	1,0291	1,0280	0,7476	23	9	2860,609	2859,2939	0,1069	0,0159	1,0755	0,0257
2989,5537	1,2844	8,0320	0,0451	7,6700	1,0311	1,0301	0,7991	24	10	2952,635	2951,3078	0,1086	0,0196	1,0932	0,0225
3054,4929	1,2838	8,0465	0,0383	7,7384	1,0329	1,0320	0,8442	25	11	3026,472	3025,1391	0,1106	0,0237	1,1126	0,0191

3102,2338	1,2834	8,0564	0,0315	7,7460	1,0344	1,0336	0,8824	26	12	3082,513	3081,1792	0,1127	0,0282	1,1339	0,0157
3134,2776	1,2832	8,0625	0,0250	7,6987	1,0356	1,0350	0,9139	27	13	3121,954	3120,6227	0,1150	0,0331	1,1570	0,0125
3152,6193	1,2831	8,0657	0,0192	7,6042	1,0366	1,0361	0,9389	28	14	3146,601	3145,2749	0,1174	0,0383	1,1819	0,0096
3159,5136	1,2830	8,0666	0,0142	7,4712	1,0373	1,0369	0,9581	29	15	3158,638	3157,319	0,1201	0,0439	1,2085	0,0071
3157,2518	1,2831	8,0657	0,0100	7,3081	1,0379	1,0376	0,9722	30	16	3160,39	3159,0799	0,1229	0,0499	1,2370	0,0050
3147,9783	1,2831	8,0635	0,0068	7,1231	1,0382	1,0381	0,9823	31	17	3154,114	3152,8146	0,1259	0,0562	1,2671	0,0034
3133,5632	1,2833	8,0604	0,0045	6,9232	1,0385	1,0384	0,9891	32	18	3141,843	3140,554	0,1291	0,0630	1,2991	0,0022
3115,5372	1,2834	8,0568	0,0028	6,7143	1,0387	1,0386	0,9936	33	19	3125,284	3124,0071	0,1324	0,0700	1,3327	0,0014
3095,0818	1,2836	8,0526	0,0017	6,5009	1,0388	1,0387	0,9964	34	20	3105,791	3104,526	0,1359	0,0775	1,3681	0,0008
3073,0605	1,2838	8,0482	0,0009	6,2864	1,0389	1,0388	0,9981	35	21	3084,373	3083,1213	0,1396	0,0853	1,4051	0,0005
3050,0737	1,2839	8,0435	0,0005	6,0733	1,0389	1,0389	0,9990	36	22	3061,748	3060,509	0,1435	0,0934	1,4438	0,0003

Таблица A4 - Результаты теплового расчета двигателя с непосредственным впрыском топлива при $n=3500~{\rm Muh}^{-1}$

					Коэффи-										Доля
					циент мо-					Темпе-	Темпе-				выдели-
Сред-няя					ле-		Характе-	Угол		ратура	ратура				вшегося
на участке					кулярного		ристика	ПКВ от		предпо-	дейст-				на
темпре-					изменения		тепловы-	начала	Текущий	логае-	витель-	Удельный			участке
ратура, К	k1-2	K1-2	D X1-2	Давление	смеси	m_{1-2}	деления	горения	угол ПКВ	мая/, К	ная	объем	S	y(f1)	тепла
726,8004			0,0000	1,4797	1,0000	1,0000	0,0000	0	-19	723,2775	723,2775	0,1339	0,0700	1,3327	0,0000
734,1506	1,3645	6,4865	0,0001	1,5328	1,0000	1,0000	0,0000	1	-18	730,3232	730,3231	0,1306	0,0630	1,2991	0,0000
742,4548	1,3635	6,5026	0,0003	1,5879	1,0000	1,0000	0,0001	2	-17	737,9779	737,9773	0,1274	0,0562	1,2671	0,0002
752,4924	1,3623	6,5204	0,0008	1,6464	1,0000	1,0000	0,0004	3	-16	746,9316	746,9301	0,1243	0,0499	1,2370	0,0004
765,2066	1,3609	6,5418	0,0015	1,7103	1,0000	1,0000	0,0012	4	-15	758,0532	758,05	0,1215	0,0439	1,2085	0,0007
781,6713	1,3592	6,5682	0,0025	1,7819	1,0001	1,0001	0,0026	5	-14	772,3599	772,3535	0,1188	0,0383	1,1819	0,0013
803,0529	1,3570	6,6016	0,0039	1,8642	1,0002	1,0002	0,0051	6	-13	790,9826	790,9704	0,1163	0,0331	1,1570	0,0020
830,5634	1,3544	6,6436	0,0058	1,9605	1,0004	1,0003	0,0091	7	-12	815,1232	815,1007	0,1140	0,0282	1,1339	0,0029
865,4064	1,3512	6,6952	0,0080	2,0740	1,0006	1,0005	0,0148	8	-11	846,0037	845,9634	0,1118	0,0237	1,1126	0,0040
908,7177	1,3474	6,7571	0,0107	2,2083	1,0009	1,0007	0,0229	9	-10	884,8091	884,7397	0,1099	0,0196	1,0932	0,0054
961,5053	1,3431	6,8291	0,0139	2,3666	1,0013	1,0011	0,0336	10	-9	932,6264	932,5115	0,1081	0,0159	1,0755	0,0069
1024,5898	1,3384	6,9103	0,0174	2,5517	1,0019	1,0016	0,0474	11	-8	990,3841	990,2022	0,1065	0,0126	1,0597	0,0087

											1100	должен	ine raon	ицы лт
1098,5510	1,3334	6,9988	0,0214	2,7659	1,0025	1,0022	0,0648	12	-7	1058,795 1058,52	0,1051	0,0096	1,0457	0,0107
1183,6796	1,3283	7,0926	0,0256	3,0105	1,0034	1,0029	0,0862	13	-6	1138,3071137,909	0,1039	0,0071	1,0336	0,0128
1279,9356	1,3231	7,1891	0,0301	3,2857	1,0044	1,0039	0,1118	14	-5	1229,0531228,504	0,1029	0,0049	1,0234	0,0151
1386,9143	1,3182	7,2859	0,0347	3,5908	1,0055	1,0050	0,1419	15	-4	1330,8191330,092	0,1020	0,0031	1,0150	0,0174
1503,8223	1,3135	7,3805	0,0393	3,9233	1,0069	1,0062	0,1766	16	-3	1443,01 1442,085	0,1013	0,0018	1,0084	0,0196
1629,4664	1,3091	7,4712	0,0437	4,2796	1,0084	1,0077	0,2159	17	-2	1564,6351563,496	0,1009	0,0008	1,0037	0,0218
1762,2593	1,3050	7,5565	0,0477	4,6543	1,0101	1,0093	0,2595	18	-1	1694,298 1692,94	0,1006	0,0002	1,0009	0,0238
1900,2473	1,3014	7,6353	0,0512	5,0410	1,0120	1,0111	0,3072	19	0	1830,22 1828,645	0,1005	0,0000	1,0000	0,0256
2041,1627	1,2982	7,7070	0,0539	5,4318	1,0140	1,0130	0,3584	20	1	1970,2741968,489	0,1006	0,0002	1,0009	0,0270
2182,5018	1,2954	7,7712	0,0558	5,8180	1,0161	1,0150	0,4123	21	2	2112,0512110,071	0,1009	0,0008	1,0037	0,0279
2321,6276	1,2929	7,8279	0,0568	6,1902	1,0183	1,0172	0,4681	22	3	2252,9532250,795	0,1013	0,0018	1,0084	0,0284
2455,8906	1,2908	7,8772	0,0566	6,5393	1,0205	1,0194	0,5249	23	4	2390,3032387,989	0,1020	0,0031	1,0150	0,0283
2582,7623	1,2890	7,9196	0,0554	6,8564	1,0227	1,0216	0,5815	24	5	2521,4792519,031	0,1029	0,0049	1,0234	0,0277
2699,9670	1,2875	7,9553	0,0531	7,1335	1,0249	1,0238	0,6370	25	6	2644,0462641,485	0,1039	0,0071	1,0336	0,0266
2805,6044	1,2863	7,9849	0,0499	7,3644	1,0269	1,0259	0,6901	26	7	2755,8882753,236	0,1051	0,0096	1,0457	0,0249
2898,2475	1,2853	8,0090	0,0459	7,5443	1,0289	1,0279	0,7400	27	8	2855,3212852,596	0,1065	0,0126	1,0597	0,0229
2977,0075	1,2846	8,0280	0,0412	7,6710	1,0307	1,0298	0,7858	28	9	2941,1742938,395	0,1081	0,0159	1,0755	0,0206
3041,5593	1,2840	8,0427	0,0362	7,7439	1,0323	1,0315	0,8270	29	10	3012,8413010,023	0,1099	0,0196	1,0932	0,0181
3092,1233	1,2835	8,0535	0,0310	7,7649	1,0337	1,0330	0,8632	30	11	3070,2783067,436	0,1118	0,0237	1,1126	0,0155
3129,4076	1,2832	8,0610	0,0258	7,7374	1,0349	1,0343	0,8942	31	12	3113,9693111,114	0,1140	0,0282	1,1339	0,0129
3154,5161	1,2831	8,0657	0,0210	7,6665	1,0359	1,0354	0,9200	32	13	3144,8463141,989	0,1163	0,0331	1,1570	0,0105
3168,8352	1,2830	8,0682	0,0166	7,5580	1,0367	1,0363	0,9410	33	14	3164,1863161,334	0,1188	0,0383	1,1819	0,0083
3173,9105	1,2829	8,0689	0,0128	7,4183	1,0374	1,0371	0,9576	34	15	3173,4843170,646	0,1215	0,0439	1,2085	0,0064
3171,3286	1,2830	8,0681	0,0095	7,2538	1,0379	1,0376	0,9704	35	16	3174,3363171,516	0,1243	0,0499	1,2370	0,0048
3162,6147	1,2830	8,0662	0,0069	7,0706	1,0383	1,0381	0,9799	36	17	3168,3213165,524	0,1274	0,0562	1,2671	0,0034
3149,1547	1,2831	8,0634	0,0048	6,8742	1,0385	1,0384	0,9867	37	18	3156,9093154,138	0,1306	0,0630	1,2991	0,0024
3132,1460	1,2833	8,0600	0,0032	6,6692	1,0387	1,0386	0,9915	38	19	3141,401 3138,66	0,1339	0,0700	1,3327	0,0016
3112,5756	1,2834	8,0561	0,0021	6,4596	1,0388	1,0388	0,9948	39	20	3122,8913120,182	0,1375	0,0775	1,3681	0,0011
3091,2223	1,2836	8,0519	0,0013	6,2484	1,0389	1,0389	0,9969	40	21	3102,26 3099,584	0,1412	0,0853	1,4051	0,0007

3068,6764	1,2838	8,0473	0,0008	6,0380	1,0390	1,0390	0,9982	41	22	3080,1853077,543	0,1451	0,0934	1,4438	0,0004
3045,3694	1,2840	8,0426	0,0005	5,8302	1,0390	1,0390	0,9990	42	23	3057,1683054,561	0,1492	0,1019	1,4842	0,0002

Таблица A5 - Результаты теплового расчета двигателя с непосредственным впрыском топлива при $n=5000~\text{мин}^{-1}$

					Коэффи-										Доля
					циент мо-					Темпе-	Темпе-				выдели-
Сред-няя					ле-		Характе-	Угол		ратура	ратура				вшегося
на участке темпре-					кулярного изменения		ристика тепловы-	ПКВ от начала	Текущий	предпо- логае-	дейст- витель-	Удельный			на участке
ратура, К	k1-2	K1-2	□X1-2	Давление		m ₁₋₂	деления		угол ПКВ	мая/, К	ная	объем	S	y(f1)	тепла
691,3046			0,0000	1,2764	1,0000	1,0000	0,0000			687,6783	687,6783	0,1476	0,1019	1,4842	0,0000
698,7904	1,3699	6,4062	0,0001	1,3259	1,0000	1,0000	0,0000	1	-22	694,9309	694,9307	0,1436	0,0934	1,4438	0,0000
706,9614	1,3688	6,4236	0,0002	1,3776	1,0000	1,0000	0,0001	2	-21	702,6499	702,649	0,1398	0,0853	1,4051	0,0001
716,3037	1,3675	6,4424	0,0005	1,4323	1,0000	1,0000	0,0003	3	-20	711,273	711,271	0,1361	0,0775	1,3681	0,0003
727,3907	1,3661	6,4636	0,0010	1,4911	1,0000	1,0000	0,0008	4	-19	721,3345	721,3304	0,1326	0,0700	1,3327	0,0005
740,8660	1,3644	6,4883	0,0016	1,5554	1,0001	1,0000	0,0017	5	-18	733,447	733,4396	0,1292	0,0630	1,2991	0,0008
757,4247	1,3625	6,5176	0,0025	1,6269	1,0001	1,0001	0,0033	6	-17	748,2849	748,2722	0,1260	0,0562	1,2671	0,0012
777,7935	1,3602	6,5527	0,0036	1,7075	1,0002	1,0002	0,0058	7	-16	766,5644	766,5438	0,1230	0,0499	1,2370	0,0018
802,7075	1,3575	6,5943	0,0049	1,7990	1,0004	1,0003	0,0094	8	-15	789,0225	788,9901	0,1202	0,0439	1,2085	0,0025
832,8854	1,3544	6,6432	0,0065	1,9037	1,0006	1,0005	0,0143	9	-14	816,3925	816,3432	0,1176	0,0383	1,1819	0,0033
869,0035	1,3509	6,6995	0,0084	2,0236	1,0008	1,0007	0,0208	10	-13	849,3783	849,306	0,1151	0,0331	1,1570	0,0042
911,6703	1,3470	6,7631	0,0105	2,1608	1,0011	1,0010	0,0292	11	-12	888,6288	888,5261	0,1128	0,0282	1,1339	0,0053
961,4019	1,3429	6,8334	0,0129	2,3171	1,0016	1,0013	0,0397	12	-11	934,7119	934,5712	0,1107	0,0237	1,1126	0,0065
1018,6000	1,3384	6,9094	0,0155	2,4941	1,0021	1,0018	0,0527	13	-10	988,0919	987,9054	0,1087	0,0196	1,0932	0,0078
1083,5321	1,3339	6,9898	0,0184	2,6929	1,0027	1,0024	0,0682	14	-9	1049,108	1048,869	0,1070	0,0159	1,0755	0,0092
1156,3142	1,3293	7,0730	0,0214	2,9143	1,0034	1,0030	0,0866	15	-8	1117,956	1117,659	0,1054	0,0126	1,0597	0,0107
1236,8954	1,3248	7,1576	0,0245	3,1582	1,0042	1,0038	0,1080	16	-7	1194,672	1194,313	0,1040	0,0096	1,0457	0,0123
1325,0458	1,3204	7,2420	0,0277	3,4240	1,0052	1,0047	0,1325	17	-6	1279,119	1278,695	0,1028	0,0071	1,0336	0,0139
1420,3466	1,3162	7,3248	0,0309	3,7103	1,0062	1,0057	0,1602	18	-5	1370,973	1370,487	0,1018	0,0049	1,0234	0,0155
1522,1849	1,3123	7,4048	0,0341	4,0150	1,0075	1,0069	0,1911	19	-4	1469,72	1469,174	0,1010	0,0031	1,0150	0,0170

											1100	должен	ine raon	пцыты
1629,7528	1,3086	7,4811	0,0370	4,3350	1,0088	1,0081	0,2252	20	-3	1574,65 1574,047	0,1003	0,0018	1,0084	0,0185
1742,0542	1,3052	7,5530	0,0398	4,6664	1,0102	1,0095	0,2622	21	-2	1684,8561684,203	0,0998	0,0008	1,0037	0,0199
1857,9181	1,3021	7,6200	0,0422	5,0046	1,0118	1,0110	0,3020	22	-1	1799,2521798,555	0,0996	0,0002	1,0009	0,0211
1976,0213	1,2993	7,6817	0,0443	5,3444	1,0134	1,0126	0,3442	23	0	1916,5841915,849	0,0995	0,0000	1,0000	0,0221
2094,9198	1,2968	7,7380	0,0458	5,6800	1,0151	1,0143	0,3885	24	1	2035,4592034,692	0,0996	0,0002	1,0009	0,0229
2213,0875	1,2946	7,7888	0,0468	6,0055	1,0169	1,0160	0,4343	25	2	2154,381 2153,59	0,0998	0,0008	1,0037	0,0234
2328,9633	1,2926	7,8344	0,0473	6,3147	1,0188	1,0178	0,4811	26	3	2271,7942270,984	0,1003	0,0018	1,0084	0,0236
2441,0022	1,2909	7,8748	0,0471	6,6018	1,0206	1,0197	0,5284	27	4	2386,1322385,308	0,1010	0,0031	1,0150	0,0235
2547,7290	1,2894	7,9103	0,0463	6,8611	1,0224	1,0215	0,5754	28	5	2495,8722495,038	0,1018	0,0049	1,0234	0,0231
2647,7918	1,2881	7,9412	0,0448	7,0879	1,0242	1,0233	0,6217	29	6	2599,5862598,747	0,1028	0,0071	1,0336	0,0224
2740,0112	1,2870	7,9676	0,0429	7,2783	1,0260	1,0251	0,6665	30	7	2695,9982695,156	0,1040	0,0096	1,0457	0,0214
2823,4221	1,2861	7,9901	0,0404	7,4293	1,0277	1,0268	0,7094	31	8	2784,0252783,183	0,1054	0,0126	1,0597	0,0202
2897,3063	1,2854	8,0088	0,0375	7,5393	1,0292	1,0285	0,7498	32	9	2862,8192861,979	0,1070	0,0159	1,0755	0,0187
2961,2122	1,2847	8,0241	0,0343	7,6076	1,0307	1,0300	0,7873	33	10	2931,7932930,956	0,1087	0,0196	1,0932	0,0171
3014,9610	1,2842	8,0364	0,0308	7,6349	1,0320	1,0314	0,8215	34	11	2990,6312989,799	0,1107	0,0237	1,1126	0,0154
3058,6395	1,2839	8,0460	0,0273	7,6229	1,0332	1,0326	0,8524	35	12	3039,2913038,463	0,1128	0,0282	1,1339	0,0136
3092,5785	1,2836	8,0531	0,0237	7,5743	1,0343	1,0338	0,8796	36	13	3077,9883077,166	0,1151	0,0331	1,1570	0,0119
3117,3212	1,2834	8,0581	0,0203	7,4924	1,0352	1,0348	0,9033	37	14	3107,1693106,353	0,1176	0,0383	1,1819	0,0101
3133,5813	1,2832	8,0612	0,0170	7,3811	1,0360	1,0356	0,9236	38	15	3127,4733126,663	0,1202	0,0439	1,2085	0,0085
3142,1968	1,2832	8,0628	0,0140	7,2447	1,0367	1,0363	0,9406	39	16	3139,6893138,885	0,1230	0,0499	1,2370	0,0070
3144,0809	1,2832	8,0630	0,0113	7,0876	1,0372	1,0370	0,9547	40	17	3144,7043143,906	0,1260	0,0562	1,2671	0,0057
3140,1751	1,2832	8,0621	0,0090	6,9140	1,0377	1,0374	0,9660	41	18	3143,4573142,665	0,1292	0,0630	1,2991	0,0045
3131,4069	1,2833	8,0603	0,0070	6,7280	1,0380	1,0378	0,9750	42	19	3136,8933136,107	0,1326	0,0700	1,3327	0,0035
3118,6544	1,2834	8,0577	0,0053	6,5331	1,0383	1,0382	0,9819	43	20	3125,9213125,141	0,1361	0,0775	1,3681	0,0026
3102,7201	1,2835	8,0544	0,0039	6,3328	1,0385	1,0384	0,9872	44	21	3111,3883110,613	0,1398	0,0853	1,4051	0,0020
3084,3134	1,2837	8,0507	0,0029	6,1297	1,0387	1,0386	0,9912	45	22	3094,0523093,284	0,1436	0,0934	1,4438	0,0014
3064,0427	1,2838	8,0466	0,0020	5,9262	1,0388	1,0387	0,9940	46	23	3074,5743073,812	0,1476	0,1019	1,4842	0,0010
3042,4144	1,2840	8,0422	0,0014	5,7242	1,0388	1,0388	0,9960	47	24	3053,5113052,755	0,1518	0,1108	1,5262	0,0007
3019,8387	1,2842	8,0376	0,0009	5,5251	1,0389	1,0389	0,9974	48	25	3031,3183030,568	0,1561	0,1200	1,5698	0,0005

2996,6395	1,2844	8,0327	0,0006	5,3300	1,0389	1,0389	0,9984	49	26	3008,36	3007,616	0,1606	0,1295	1,6150	0,0003
2973,0664	1,2846	8,0277	0,0004	5,1397	1,0390	1,0389	0,9990	50	27	2984,919	2984,182	0,1653	0,1393	1,6618	0,0002

Таблица A6 - Результаты теплового расчета двигателя с непосредственным впрыском топлива при $n=5600~\text{мин}^{-1}$

					Коэффи-					Томпо	Томпо				Доля
Сред-няя					циент мо- ле-		Характе-	Угол		Темпе- ратура	Темпе- ратура				выдели- вшегося
на участке					кулярного		ристика	ПКВ от		предпо-	дейст-				на
темпре-					изменения		тепловы-	начала	Текущий	логае-	витель-	Удельный			участке
ратура, К	k1-2	K1-2		Давление	смеси	m_{1-2}	деления	горения	угол ПКВ	мая/, К	ная	объем	S	y(f1)	тепла
682,0387			0,0000	1,1233	1,0000	1,0000	0,0000	0	-25	678,427	678,427	0,1651	0,1200	1,5698	0,0000
689,3775	1,3715	6,3842	0,0000	1,1677	1,0000	1,0000	0,0000	1	-24	685,651	685,6504	0,1605	0,1108	1,5262	0,0000
697,0662	1,3703	6,4016	0,0001	1,2138	1,0000	1,0000	0,0000	2	-23	693,105	693,1042	0,1561	0,1019	1,4842	0,0000
705,3810	1,3690	6,4196	0,0002	1,2620	1,0000	1,0000	0,0001	3	-22	701,028	701,0269	0,1518	0,0934	1,4438	0,0001
714,6706	1,3677	6,4388	0,0005	1,3129	1,0000	1,0000	0,0003	4	-21	709,734	709,7326	0,1477	0,0853	1,4051	0,0002
725,3484	1,3663	6,4599	0,0008	1,3672	1,0000	1,0000	0,0008	5	-20	719,607	719,604	0,1439	0,0775	1,3681	0,0004
737,8857	1,3647	6,4837	0,0013	1,4259	1,0001	1,0001	0,0016	6	-19	731,09	731,0852	0,1401	0,0700	1,3327	0,0006
752,8019	1,3629	6,5111	0,0019	1,4901	1,0001	1,0001	0,0029	7	-18	744,681	744,674	0,1366	0,0630	1,2991	0,0010
770,6538	1,3608	6,5428	0,0027	1,5611	1,0002	1,0002	0,0049	8	-17	760,922	760,9112	0,1332	0,0562	1,2671	0,0014
792,0225	1,3584	6,5796	0,0037	1,6403	1,0004	1,0003	0,0076	9	-16	780,385	780,3688	0,1301	0,0499	1,2370	0,0019
817,4977	1,3557	6,6221	0,0049	1,7292	1,0006	1,0005	0,0113	10	-15	803,66	803,6358	0,1271	0,0439	1,2085	0,0024
847,6611	1,3527	6,6706	0,0063	1,8295	1,0008	1,0007	0,0162	11	-14	831,336	831,3018	0,1243	0,0383	1,1819	0,0031
883,0686	1,3493	6,7254	0,0079	1,9428	1,0011	1,0010	0,0225	12	-13	863,987	863,9398	0,1217	0,0331	1,1570	0,0039
924,2318	1,3457	6,7861	0,0097	2,0706	1,0015	1,0013	0,0304	13	-12	902,151	902,0877	0,1192	0,0282	1,1339	0,0048
971,6002	1,3417	6,8523	0,0117	2,2144	1,0020	1,0018	0,0401	14	-11	946,313	946,2304	0,1170	0,0237	1,1126	0,0058
1025,5439	1,3377	6,9232	0,0139	2,3756	1,0026	1,0023	0,0518	15	-10	996,887	996,7819	0,1149	0,0196	1,0932	0,0070
1086,3373	1,3335	6,9979	0,0163	2,5549	1,0033	1,0030	0,0657	16	-9	1054,2	1054,069	0,1131	0,0159	1,0755	0,0081
1154,1442	1,3292	7,0751	0,0188	2,7532	1,0042	1,0037	0,0819	17	-8	1118,47	1118,315	0,1114	0,0126	1,0597	0,0094
1229,0037	1,3250	7,1537	0,0215	2,9705	1,0051	1,0046	0,1008	18	-7	1189,81	1189,626	0,1100	0,0096	1,0457	0,0108
1310,8174	1,3209	7,2324	0,0243	3,2065	1,0062	1,0057	0,1223	19	-6	1268,19	1267,975	0,1087	0,0071	1,0336	0,0122

												1100	должен	110 14031	пцыто
1399,3391	1,3169	7,3101	0,0271	3,4604	1,0074	1,0068	0,1466	20	-5	1353,44	1353,195	0,1076	0,0049	1,0234	0,0136
1494,1660	1,3132	7,3859	0,0299	3,7305	1,0088	1,0081	0,1737	21	-4	1445,24	1444,964	0,1067	0,0031	1,0150	0,0150
1594,7337	1,3097	7,4588	0,0327	4,0146	1,0103	1,0096	0,2037	22	-3	1543,1	1542,799	0,1060	0,0018	1,0084	0,0163
1700,3157	1,3064	7,5282	0,0353	4,3101	1,0120	1,0112	0,2364	23	-2	1646,37	1646,054	0,1055	0,0008	1,0037	0,0177
1810,0275	1,3033	7,5936	0,0377	4,6132	1,0138	1,0129	0,2717	24	-1	1754,26	1753,924	0,1052	0,0002	1,0009	0,0189
1922,8378	1,3005	7,6546	0,0399	4,9201	1,0157	1,0147	0,3094	25	0	1865,8	1865,447	0,1052	0,0000	1,0000	0,0199
2037,5857	1,2980	7,7110	0,0417	5,2262	1,0177	1,0167	0,3493	26	1	1979,88	1979,522	0,1052	0,0002	1,0009	0,0209
2153,0054	1,2957	7,7626	0,0432	5,5267	1,0198	1,0188	0,3910	27	2	2095,29	2094,927	0,1055	0,0008	1,0037	0,0216
2267,7566	1,2937	7,8096	0,0441	5,8164	1,0220	1,0209	0,4342	28	3	2210,72	2210,351	0,1060	0,0018	1,0084	0,0221
2380,4618	1,2919	7,8519	0,0446	6,0904	1,0243	1,0231	0,4783	29	4	2324,79	2324,424	0,1067	0,0031	1,0150	0,0223
2489,7472	1,2903	7,8897	0,0446	6,3436	1,0265	1,0254	0,5230	30	5	2436,13	2435,761	0,1076	0,0049	1,0234	0,0223
2594,2863	1,2889	7,9231	0,0441	6,5716	1,0288	1,0277	0,5676	31	6	2543,36	2542,999	0,1087	0,0071	1,0336	0,0220
2692,8435	1,2877	7,9525	0,0430	6,7704	1,0310	1,0299	0,6117	32	7	2645,21	2644,846	0,1100	0,0096	1,0457	0,0215
2784,3164	1,2866	7,9779	0,0414	6,9367	1,0332	1,0321	0,6546	33	8	2740,48	2740,123	0,1114	0,0126	1,0597	0,0207
2867,7730	1,2857	7,9997	0,0394	7,0681	1,0353	1,0343	0,6961	34	9	2828,15	2827,803	0,1131	0,0159	1,0755	0,0197
2942,4818	1,2850	8,0182	0,0369	7,1630	1,0373	1,0363	0,7354	35	10	2907,39	2907,048	0,1149	0,0196	1,0932	0,0185
3007,9337	1,2844	8,0335	0,0341	7,2211	1,0392	1,0382	0,7723	36	11	2977,57	2977,233	0,1170	0,0237	1,1126	0,0171
3063,8531	1,2838	8,0460	0,0311	7,2426	1,0409	1,0400	0,8064	37	12	3038,3	3037,963	0,1192	0,0282	1,1339	0,0155
3110,1989	1,2835	8,0559	0,0279	7,2290	1,0425	1,0417	0,8375	38	13	3089,41	3089,083	0,1217	0,0331	1,1570	0,0140
3147,1534	1,2831	8,0635	0,0247	7,1824	1,0439	1,0432	0,8655	39	14	3130,99	3130,665	0,1243	0,0383	1,1819	0,0123
3175,1016	1,2829	8,0691	0,0215	7,1056	1,0452	1,0445	0,8901	40	15	3163,32	3163,001	0,1271	0,0439	1,2085	0,0107
3194,6020	1,2828	8,0728	0,0183	7,0019	1,0462	1,0457	0,9116	41	16	3186,88	3186,57	0,1301	0,0499	1,2370	0,0092
3206,3505	1,2827	8,0750	0,0154	6,8748	1,0472	1,0467	0,9299	42	17	3202,32	3202,01	0,1332	0,0562	1,2671	0,0077
3211,1403	1,2827	8,0758	0,0127	6,7283	1,0480	1,0476	0,9454	43	18	3210,38	3210,074	0,1366	0,0630	1,2991	0,0064
3209,8214	1,2827	8,0754	0,0103	6,5660	1,0486	1,0483	0,9581	44	19	3211,9	3211,595	0,1401	0,0700	1,3327	0,0052
3203,2605	1,2827	8,0740	0,0082	6,3916	1,0491	1,0489	0,9684	45	20	3207,74	3207,441	0,1439	0,0775	1,3681	0,0041
3192,3065	1,2828	8,0719	0,0064	6,2085	1,0495	1,0493	0,9766	46	21	3198,78	3198,477	0,1477	0,0853	1,4051	0,0032
3177,7606	1,2829	8,0690	0,0049	6,0197	1,0499	1,0497	0,9830	47	22	3185,84	3185,536	0,1518	0,0934	1,4438	0,0024
3160,3543	1,2831	8,0656	0,0037	5,8279	1,0501	1,0500	0,9879	48	23	3169,69	3169,389	0,1561	0,1019	1,4842	0,0018

3140,7353	1,2832	8,0618	0,0027	5,6353	1,0503	1,0502	0,9916	49	24	3151,02	3150,727	0,1605	0,1108	1,5262	0,0013
3119,4599	1,2834	8,0576	0,0019	5,4438	1,0504	1,0504	0,9942	50	25	3130,45	3130,154	0,1651	0,1200	1,5698	0,0010
3096,9930	1,2836	8,0532	0,0013	5,2548	1,0505	1,0505	0,9961	51	26	3108,47	3108,179	0,1698	0,1295	1,6150	0,0007
3073,7125	1,2837	8,0485	0,0009	5,0696	1,0506	1,0506	0,9975	52	27	3085,51	3085,222	0,1747	0,1393	1,6618	0,0005
3049,9177	1,2839	8,0437	0,0006	4,8890	1,0506	1,0506	0,9984	53	28	3061,91	3061,62	0,1798	0,1495	1,7101	0,0003
3025,8403	1,2841	8,0388	0,0004	4,7134	1,0507	1,0507	0,9990	54	29	3037,92	3037,635	0,1851	0,1600	1,7599	0,0002

Таблица A7 - Результаты теплового расчета базового двигателя при ${\bf n}=900~{\rm MuH}^{-1}$

					Коэффи-										Доля
Сред-няя					циент мо-		V	3.7		Темпе-	Темпе-				выдели-
на участ-					ле-		Характе-	Угол ПКВ от		ратура	ратура				вшегося
ке тем-					кулярного		ристика	_	Тотично	предпо-	дейст-	V=0=1.11.1ŏ			на
пре- ратура, К	k1-2	K1-2	D X1-2	Давление	изменения смеси	m_{1-2}	тепловы- деления	начала горения	Текущий угол ПКВ	логае- мая/, К	витель- ная	Удельный объем	s	y(f1)	участке тепла
762,5295			1,9E-06			1	О	(-	759,4314			0,0439		
768,7397	1,3596	6,562	3E-05	1,88036	1	1	1,87E-06	1	-14	765,6275	765,6275	0,11143	0,0383	1,1819	1,5E-05
775,1405	1,3588	6,5746	0,00014	1,93641	1	1	3,2E-05	2	-13	771,8518	771,8518	0,10908	0,0331	1,157	6,8E-05
782,1335	1,3579	6,5875	0,00038	1,99269	1	1	0,000169	3	-12	778,4292	778,429	0,1069	0,0282	1,1339	0,00019
790,273	1,357	6,6015	0,00082	2,05016	1	1	0,000549	4	-11	785,8377	785 <i>,</i> 8373	0,1049	0,0237	1,1126	0,00041
800,2637	1,356	6,6176	0,00152	2,1103	1,0001	1,0001	0,001369	5	-10	794,7083	794,7076	0,10306	0,0196	1,0932	0,00076
812,9502	1,3548	6,6371	0,00254	2,17506	1,0002	1,0001	0,002889	6	-9	805,8191	805,8179	0,1014	0,0159	1,0755	0,00127
829,2989	1,3533	6,6614	0,00394	2,24685	1,0003	1,0003	0,005428	7	-8	820,0814	820,0795	0,09991	0,0126	1,0597	0,00197
850,368	1,3514	6,6919	0,00577	2,32849	1,0006	1,0004	0,009366	8	-7	838,5165	838,5132	0,09859	0,0096	1,0457	0,00288
877,2659	1,349	6,7301	0,00808	2,42309	1,0009	1,0007	0,015135	9	-6	862,2195	862,2141	0,09745	0,0071	1,0336	0,00404
911,0985	1,3462	6,7768	0,01091	2,53387	1,0014	1,0012	0,023217	10	-5	892,3123	892,3034	0,09648	0,0049	1,0234	0,00545
952,9056	1,3429	6,8326	0,01427	2,66395	1,0021	1,0017	0,034127	11	-4	929,8847	929,87	0,09569	0,0031	1,015	0,00714
1003,591	1,3391	6,8974	0,01816	2,81611	1,0029	1,0025	0,048397	12	-3	975,9264	975,9031	0,09507	0,0018	1,0084	0,00908
1063,852	1,335	6,9706	0,02255	2,99254	1,004	1,0035	0,066558	13	-2	1031,256	1031,22	0,09463	0,0008	1,0037	0,01128
1134,107	1,3306	7,0505	0,02737	3,19452	1,0054	1,0047	0,089109	14	-1	1096,448	1096,394	0,09437	0,0002	1,0009	0,01369
1214,43	1,326	7,1353	0,03253	3,42225	1,0071	1,0062	0,116484	15	0	1171,765	1171,686	0,09428	0	1	0,01627

1304,499 1,3214 7,2228 0,03788 3,67459 1,0091 0,0081 0,149015 16 1 1257,095,1256,984 0,09437 0,0002 1,0009 0,01894 1,01355 1,3169 7,3169 7,3169 7,3964 0,04323 3,94896 1,0114 1,0127 0,236394 13 3 1,455,197 1455,002 0,09507 0,0018 1,0084 0,02419 1623,243 1,3087 7,4784 0,05307 4,54569 1,0169 1,0155 0,278508 19 4 1565,52 1565,273 0,09509 0,0018 1,0018 0,02654 1,0099 1,3051 7,5552 0,05705 4,85541 1,0202 1,0185 0,331579 20 5 1680,965 1680,662 0,09648 0,0044 1,0234 0,02852 1858,477 1,3019 7,6254 0,06006 5,16221 1,0236 1,0219 0,388626 21 6 1799,232798,871 0,09745 0,0071 1,0336 0,03004 2088,964 1,2966 7,7439 0,06133 5,73146 1,031 1,0292 0,510554 23 8 2033,66 2033,184 0,09991 0,126 1,0597 0,03116 2195,596 1,2945 7,7917 0,06132 5,97612 1,0348 1,0329 0,572881 24 9 2144,2672143,738 0,1014 0,0159 1,0755 0,03066 2293,143 1,2992 7,8319 0,05866 6,34751 1,0421 1,0403 0,693068 26 11 2339,3612338,741 0,1049 0,0237 1,1126 0,02552 2433,447 1,2902 7,8914 0,05009 6,46395 1,0455 1,0438 0,4936 1,2887 7,917 0,04427 6,53105 1,0485 1,0457 0,4980 0,842472 29 14 2540,7572540,053 0,11143 0,3381 1,1819 0,01874 2540,6936 1,2887 7,9456 0,03795 6,54939 1,0515 1,0546 0,9480 1,0546 0,9486 1,2887 0,9487 0,9497 0,0446 0,5548 0,0498											проделяюще такинды
1510,359 1,3127 7,3964 0,04838 4,2412 1,014 1,0127 0,230128 18 3 1455,197455,002 0,09507 0,0018 1,0084 0,02419 1623,243 1,3087 7,4784 0,05307 4,54569 1,0169 1,0155 0,278508 19 4 1565,52 1565,273 0,09569 0,0031 1,015 0,02654 1,040,099 1,3051 7,5552 0,05705 4,85541 1,0202 1,0185 0,331579 20 5 1680,961680,662 0,09648 0,0049 1,0234 0,02852 1,0249 0,388626 21 6 1799,2321798,871 0,09745 0,0071 1,0336 0,03003 1975,691 1,299 7,6885 0,06187 5,45725 1,0273 1,0254 0,448681 22 7 1917,7211917,302 0,09859 0,0096 1,0457 0,03094 0,030	1304,499	1,3214	7,2228	0,03788	3,67459	1,0091	1,0081	0,149015	16	1	1257,0951256,984 0,09437 0,0002 1,0009 0,018
1623,243 1,3087 7,4784 0,05307 4,54569 1,0169 1,0155 0,278508 19 4 1565,52 1565,273 0,09569 0,0031 1,015 0,02654 1740,099 1,3051 7,5552 0,05705 4,85541 1,0202 1,0185 0,331579 20 5 1680,9631680,662 0,09648 0,0049 1,0234 0,02852 1858,477 1,3019 7,6254 0,06006 5,16221 1,0236 1,0219 0,388626 21 6 1799,2321798,871 0,09745 0,0071 1,0336 0,0303 1975,691 1,299 7,6885 0,06133 5,73146 1,031 1,0292 0,510554 23 8 2033,66 2033,184 0,0991 0,0126 1,0597 0,0316 2195,596 1,2945 7,7917 0,06132 5,97612 1,0348 1,0329 0,5752881 24 9 2144,2672143,738 0,1014 0,0159 1,0755 0,0314 2293,143 1,2913 7,865<	1403,55	1,3169	7,3105	0,04323	3,94896	1,0114	1,0102	0,186894	17	2	1351,9031351,753 0,09463 0,0008 1,0037 0,021
1740,099	1510,359	1,3127	7,3964	0,04838	4,2412	1,014	1,0127	0,230128	18	3	1455,1971455,002 0,09507 0,0018 1,0084 0,024
1858,477 1,3019 7,6254 0,06006 5,16221 1,0219 0,388626 21 6 1799,2321798,871 0,09745 0,0071 1,0336 0,03003 1975,691 1,299 7,6885 0,06187 5,45725 1,0273 1,0254 0,448681 22 7 1917,7211917,302 0,09859 0,0096 1,0457 0,03094 2088,964 1,2966 7,7439 0,06233 5,73146 1,031 1,0292 0,510554 23 8 2033,66 2033,184 0,09991 0,0126 1,0597 0,03116 2195,596 1,2945 7,7917 0,06132 5,97612 1,0348 1,0329 0,572881 24 9 2144,2672143,738 0,1014 0,0159 1,0755 0,03066 2293,143 1,2927 7,8319 0,05808 6,18353 1,0361 1,0403 0,69308 26 11 2339,3612338,44 0,1049 0,0237 1,1126 0,02752 2453,447 1,2902 7,8914 0,05009	1623,243	1,3087	7,4784	0,05307	4,54569	1,0169	1,0155	0,278508	19	4	1565,52 1565,273 0,09569 0,0031 1,015 0,026
1975,691 1,299 7,6885 0,06187 5,45725 1,0273 1,0254 0,448681 22 7 1917,721 1917,302 0,09859 0,0096 1,0457 0,03094	1740,099	1,3051	7,5552	0,05705	4,85541	1,0202	1,0185	0,331579	20	5	1680,9651680,662 0,09648 0,0049 1,0234 0,028
2088,964 1,2966 7,7439 0,06233 5,73146 1,031 1,0292 0,510554 23 8 2033,66 2033,184 0,09991 0,0126 1,0597 0,03116 2195,596 1,2945 7,7917 0,06132 5,97612 1,0348 1,0329 0,572881 24 9 2144,2672143,738 0,1014 0,0159 1,0755 0,03066 2293,143 1,2927 7,8319 0,05886 6,18353 1,0367 0,634205 25 10 2246,9252246,348 0,10306 0,0196 1,0932 0,02943 2379,581 1,2913 7,865 0,0505 6,34751 1,0421 1,0403 0,693068 26 11 2339,3612338,741 0,1049 0,0237 1,1126 0,02752 2453,447 1,2902 7,8914 0,05009 6,64395 1,0455 1,0438 0,748117 27 12 2419,8012419,147 0,1069 0,0282 1,1339 0,02504 2513,925 1,2884 7,9117 0,04427	1858,477	1,3019	7,6254	0,06006	5,16221	1,0236	1,0219	0,388626	21	6	1799,2321798,871 0,09745 0,0071 1,0336 0,030
2195,596 1,2945 7,7917 0,06132 5,97612 1,0348 1,0329 0,572881 24 9 2144,2672143,738 0,1014 0,0159 1,0755 0,03066 2293,143 1,2927 7,8319 0,05886 6,18353 1,0386 1,0367 0,634205 25 10 2246,9252246,348 0,10306 0,0196 1,0932 0,02943 2379,581 1,2913 7,865 0,05505 6,34751 1,0421 1,0403 0,693068 26 11 2339,3612338,741 0,1049 0,0277 1,1126 0,02752 2453,447 1,2902 7,8914 0,05009 6,46395 1,0455 1,0488 0,748117 27 12 2419,8012419,147 0,1069 0,0282 1,1339 0,02504 2513,925 1,2894 7,9117 0,04427 6,53105 1,0485 1,047 0,798203 28 13 2487,0922486,409 0,10908 0,0311 1,157 0,02213 2560,876 1,2887 7,9366 0,03149 <td>1975,691</td> <td>1,299</td> <td>7,6885</td> <td>0,06187</td> <td>5,45725</td> <td>1,0273</td> <td>1,0254</td> <td>0,448681</td> <td>22</td> <td>7</td> <td>1917,7211917,302 0,09859 0,0096 1,0457 0,030</td>	1975,691	1,299	7,6885	0,06187	5,45725	1,0273	1,0254	0,448681	22	7	1917,7211917,302 0,09859 0,0096 1,0457 0,030
2293,143 1,2927 7,8319 0,05886 6,18353 1,0386 1,0367 0,634205 25 10 2246,9252246,348 0,10306 0,0196 1,0932 0,02943 2379,581 1,2913 7,865 0,05505 6,34751 1,0421 1,0403 0,693068 26 11 2339,3612338,741 0,1049 0,0237 1,1126 0,02752 2453,447 1,2902 7,8914 0,05009 6,46395 1,0455 1,0438 0,748117 27 12 2419,8012419,147 0,1069 0,0282 1,1339 0,02504 2513,925 1,2894 7,9117 0,04427 6,53105 1,0485 1,047 0,798203 28 13 2487,0922486,409 0,10908 0,0331 1,157 0,02213 2560,876 1,2887 7,9266 0,03795 6,54939 1,0512 1,0499 0,842472 29 14 2540,7572540,053 0,11143 0,0331 1,157 0,01243 2594,806 1,2883 7,9433 0,02525 <td>2088,964</td> <td>1,2966</td> <td>7,7439</td> <td>0,06233</td> <td>5,73146</td> <td>1,031</td> <td>1,0292</td> <td>0,510554</td> <td>23</td> <td>8</td> <td>2033,66 2033,184 0,09991 0,0126 1,0597 0,031</td>	2088,964	1,2966	7,7439	0,06233	5,73146	1,031	1,0292	0,510554	23	8	2033,66 2033,184 0,09991 0,0126 1,0597 0,031
2379,581 1,2913 7,865 0,05505 6,34751 1,0421 1,0403 0,693068 26 11 2339,3612338,741 0,1049 0,0237 1,1126 0,02752 2453,447 1,2902 7,8914 0,05009 6,646395 1,0455 1,0438 0,748117 27 12 2419,8012419,147 0,1069 0,0282 1,1339 0,02504 2513,925 1,2894 7,9117 0,04427 6,53105 1,0485 1,047 0,798203 28 13 2487,0922486,409 0,10908 0,0331 1,157 0,02213 2560,876 1,2887 7,9266 0,03795 6,54939 1,0512 1,0499 0,842472 29 14 2540,7572540,053 0,11143 0,0383 1,1819 0,01897 2594,806 1,2883 7,9433 0,02525 6,45303 1,0554 0,9811906 31 16 2608,6152607,889 0,11662 0,0499 1,237 0,01262 2628,189 1,2879 7,9451 0,01453 6,21652	2195,596	1,2945	7,7917	0,06132	5,97612	1,0348	1,0329	0,572881	24	9	2144,2672143,738 0,1014 0,0159 1,0755 0,030
2453,447 1,2902 7,8914 0,05009 6,46395 1,0455 1,0438 0,748117 27 12 2419,8012419,147 0,1069 0,0282 1,1339 0,02504 2513,925 1,2894 7,9117 0,04427 6,53105 1,0485 1,047 0,798203 28 13 2487,0922486,409 0,10908 0,0331 1,157 0,02213 2560,876 1,2887 7,9266 0,03795 6,54939 1,0512 1,0499 0,842472 29 14 2540,7572540,053 0,11143 0,0383 1,1819 0,01897 2594,806 1,2883 7,9369 0,03149 6,52182 1,0535 1,0524 0,880418 30 15 2580,9962580,278 0,11394 0,0439 1,2085 0,01574 2616,76 1,288 7,9433 0,02525 6,45303 1,0554 1,0545 0,911906 31 16 2608,6152607,889 0,11662 0,0499 1,237 0,01262 2628,189 1,2879 7,9471 0,01453 <td>2293,143</td> <td>1,2927</td> <td>7,8319</td> <td>0,05886</td> <td>6,18353</td> <td>1,0386</td> <td>1,0367</td> <td>0,634205</td> <td>25</td> <td>10</td> <td>2246,9252246,348 0,10306 0,0196 1,0932 0,029</td>	2293,143	1,2927	7,8319	0,05886	6,18353	1,0386	1,0367	0,634205	25	10	2246,9252246,348 0,10306 0,0196 1,0932 0,029
2513,925 1,2894 7,9117 0,04427 6,53105 1,0485 1,047 0,798203 28 13 2487,0922486,409 0,10908 0,0331 1,157 0,02213 2560,876 1,2887 7,9266 0,03795 6,54939 1,0512 1,0499 0,842472 29 14 2540,7572540,053 0,11143 0,0383 1,1819 0,01897 2594,806 1,2883 7,9369 0,03149 6,52182 1,0535 1,0524 0,880418 30 15 2580,9962580,278 0,11394 0,0439 1,2085 0,01574 2616,76 1,288 7,9433 0,02525 6,45303 1,0554 1,0545 0,911906 31 16 2608,6152607,889 0,11662 0,0499 1,237 0,01262 2628,189 1,2879 7,9465 0,01953 6,34903 1,057 1,0562 0,937155 32 17 2624,9042624,175 0,11946 0,0562 1,2671 0,0097 2630,776 1,2879 7,9471 0,01453 <td>2379,581</td> <td>1,2913</td> <td>7,865</td> <td>0,05505</td> <td>6,34751</td> <td>1,0421</td> <td>1,0403</td> <td>0,693068</td> <td>26</td> <td>11</td> <td>2339,3612338,741 0,1049 0,0237 1,1126 0,027</td>	2379,581	1,2913	7,865	0,05505	6,34751	1,0421	1,0403	0,693068	26	11	2339,3612338,741 0,1049 0,0237 1,1126 0,027
2560,876 1,2887 7,9266 0,03795 6,54939 1,0512 1,0499 0,842472 29 14 2540,757,2540,053 0,11143 0,0383 1,1819 0,01897 2594,806 1,2883 7,9369 0,03149 6,52182 1,0535 1,0545 0,880418 30 15 2580,996,2580,278 0,11394 0,0439 1,2085 0,01574 2616,76 1,288 7,9433 0,02525 6,45303 1,0554 1,0545 0,911906 31 16 2608,615,2607,889 0,11662 0,0499 1,237 0,01262 2628,189 1,2879 7,9465 0,01953 6,34903 1,057 1,0562 0,937155 32 17 2624,904 2624,175 0,11946 0,0562 1,2671 0,00976 2630,776 1,2879 7,9471 0,01453 6,21652 1,0582 1,0576 0,956681 33 18 2631,473,2630,746 0,12247 0,063 1,2991 0,00727 2626,269 1,2879 7,9458	2453,447	1,2902	7,8914	0,05009	6,46395	1,0455	1,0438	0,748117	27	12	2419,8012419,147 0,1069 0,0282 1,1339 0,025
2594,806 1,2883 7,9369 0,03149 6,52182 1,0535 1,0524 0,880418 30 15 2580,9962580,278 0,11394 0,0439 1,2085 0,01574 2616,76 1,288 7,9433 0,02525 6,45303 1,0554 1,0545 0,911906 31 16 2608,6152607,889 0,11662 0,0499 1,237 0,01262 2628,189 1,2879 7,9465 0,01953 6,34903 1,057 1,0562 0,937155 32 17 2624,9042624,175 0,11946 0,0562 1,2671 0,00976 2630,776 1,2879 7,9471 0,01453 6,21652 1,0582 1,0576 0,956681 33 18 2631,4732630,746 0,12247 0,063 1,2991 0,00727 2626,269 1,2879 7,9458 0,01039 6,06231 1,059 1,0586 0,971215 34 19 2630,0782629,357 0,12565 0,07 1,3327 0,00519 2616,333 1,2881 7,943 0,00712	2513,925	1,2894	7,9117	0,04427	6,53105	1,0485	1,047	0,798203	28	13	2487,0922486,409 0,10908 0,0331 1,157 0,022
2616,76 1,288 7,9433 0,02525 6,45303 1,0554 1,0545 0,911906 31 16 2608,6152607,889 0,11662 0,0499 1,237 0,01262 2628,189 1,2879 7,9465 0,01953 6,34903 1,057 1,0562 0,937155 32 17 2624,904 2624,175 0,11946 0,0562 1,2671 0,00976 2630,776 1,2879 7,9471 0,01453 6,21652 1,0582 1,0576 0,956681 33 18 2631,473 2630,746 0,12247 0,063 1,2991 0,00727 2626,269 1,2879 7,9458 0,01039 6,06231 1,059 1,0586 0,971215 34 19 2630,0782629,357 0,12565 0,07 1,3327 0,00519 2616,333 1,2881 7,943 0,00712 5,89277 1,0597 1,0594 0,981604 35 20 2622,4592621,746 0,12898 0,0775 1,3681 0,00356 2602,441 1,2882 7	2560,876	1,2887	7,9266	0,03795	6,54939	1,0512	1,0499	0,842472	29	14	2540,7572540,053 0,11143 0,0383 1,1819 0,018
2628,189 1,2879 7,9465 0,01953 6,34903 1,057 1,0562 0,937155 32 17 2624,9042624,175 0,11946 0,0562 1,2671 0,00976 2630,776 1,2879 7,9471 0,01453 6,21652 1,0582 1,0576 0,956681 33 18 2631,4732630,746 0,12247 0,063 1,2991 0,00727 2626,269 1,2879 7,9458 0,01039 6,06231 1,059 1,0586 0,971215 34 19 2630,0782629,357 0,12565 0,07 1,3327 0,00519 2616,333 1,2881 7,943 0,00712 5,89277 1,0597 1,0594 0,981604 35 20 2622,4592621,746 0,12898 0,0775 1,3681 0,00356 2602,441 1,2882 7,9391 0,00466 5,71349 1,0601 1,0599 0,988721 36 21 2610,2072609,504 0,13247 0,0853 1,4051 0,00233 2585,811 1,2884 7,9345 0,00291 5,52909 1,0604 1,0602 0,993382 37 22 2594,676	2594,806	1,2883	7,9369	0,03149	6,52182	1,0535	1,0524	0,880418	30	15	2580,9962580,278 0,11394 0,0439 1,2085 0,015
2630,776 1,2879 7,9471 0,01453 6,21652 1,0582 1,0576 0,956681 33 18 2631,4732630,746 0,12247 0,063 1,2991 0,00727 2626,269 1,2879 7,9458 0,01039 6,06231 1,059 1,0586 0,971215 34 19 2630,0782629,357 0,12565 0,07 1,3327 0,00519 2616,333 1,2881 7,943 0,00712 5,89277 1,0597 1,0594 0,981604 35 20 2622,4592621,746 0,12898 0,0775 1,3681 0,00356 2602,441 1,2882 7,9391 0,00466 5,71349 1,0601 1,0599 0,988721 36 21 2610,2072609,504 0,13247 0,0853 1,4051 0,00233 2585,811 1,2884 7,9345 0,00291 5,52909 1,0604 1,0602 0,993382 37 22 2594,6762593,985 0,13612 0,0934 1,4438 0,00146 2567,389 1,2886 7,9294 0,00173 5,34313 1,0606 1,0605 0,998024 39 24 2557,83	2616,76	1,288	7,9433	0,02525	6,45303	1,0554	1,0545	0,911906	31	16	2608,6152607,889 0,11662 0,0499 1,237 0,012
2626,269 1,2879 7,9458 0,01039 6,06231 1,059 1,0586 0,971215 34 19 2630,0782629,357 0,12565 0,07 1,3327 0,00519 2616,333 1,2881 7,943 0,00712 5,89277 1,0597 1,0594 0,981604 35 20 2622,4592621,746 0,12898 0,0775 1,3681 0,00356 2602,441 1,2882 7,9391 0,00466 5,71349 1,0601 1,0599 0,988721 36 21 2610,2072609,504 0,13247 0,0853 1,4051 0,00233 2585,811 1,2884 7,9345 0,00291 5,52909 1,0604 1,0602 0,993382 37 22 2594,6762593,985 0,13612 0,0934 1,4438 0,00146 2567,389 1,2886 7,9294 0,00173 5,34313 1,0606 1,0605 0,998024 39 24 2557,8312557,166 0,14389 0,1108 1,5262 0,00049	2628,189	1,2879	7,9465	0,01953	6,34903	1,057	1,0562	0,937155	32	17	2624,9042624,175 0,11946 0,0562 1,2671 0,009
2616,333 1,2881 7,943 0,00712 5,89277 1,0597 1,0594 0,981604 35 20 2622,4592621,746 0,12898 0,0775 1,3681 0,00356 2602,441 1,2882 7,9391 0,00466 5,71349 1,0601 1,0599 0,988721 36 21 2610,2072609,504 0,13247 0,0853 1,4051 0,00233 2585,811 1,2884 7,9345 0,00291 5,52909 1,0604 1,0602 0,993382 37 22 2594,6762593,985 0,13612 0,0934 1,4438 0,00146 2567,389 1,2886 7,9294 0,00173 5,34313 1,0606 1,0605 0,996294 38 23 2576,9472576,269 0,13993 0,1019 1,4842 0,00087 2547,865 1,2889 7,9239 0,00098 5,15825 1,0607 1,0606 0,998024 39 24 2557,8312557,166 0,14389 0,1108 1,5262 0,00049	2630,776	1,2879	7,9471	0,01453	6,21652	1,0582	1,0576	0,956681	33	18	2631,4732630,746 0,12247 0,063 1,2991 0,007
2602,441 1,2882 7,9391 0,00466 5,71349 1,0601 1,0599 0,988721 36 21 2610,2072609,504 0,13247 0,0853 1,4051 0,00233 2585,811 1,2884 7,9345 0,00291 5,52909 1,0604 1,0602 0,993382 37 22 2594,6762593,985 0,13612 0,0934 1,4438 0,00146 2567,389 1,2886 7,9294 0,00173 5,34313 1,0606 1,0605 0,998024 38 23 2576,9472576,269 0,13993 0,1019 1,4842 0,00087 2547,865 1,2889 7,9239 0,00098 5,15825 1,0607 1,0606 0,998024 39 24 2557,8312557,166 0,14389 0,1108 1,5262 0,00049	2626,269	1,2879	7,9458	0,01039	6,06231	1,059	1,0586	0,971215	34	19	2630,0782629,357 0,12565 0,07 1,3327 0,005
2585,811 1,2884 7,9345 0,00291 5,52909 1,0604 1,0602 0,993382 37 22 2594,6762593,985 0,13612 0,0934 1,4438 0,00146 2567,389 1,2886 7,9294 0,00173 5,34313 1,0606 1,0605 0,996294 38 23 2576,9472576,269 0,13993 0,1019 1,4842 0,00087 2547,865 1,2889 7,9239 0,00098 5,15825 1,0607 1,0606 0,998024 39 24 2557,8312557,166 0,14389 0,1108 1,5262 0,00049	2616,333	1,2881	7,943	0,00712	5,89277	1,0597	1,0594	0,981604	35	20	2622,4592621,746 0,12898 0,0775 1,3681 0,003
2567,389 1,2886 7,9294 0,00173 5,34313 1,0606 1,0605 0,996294 38 23 2576,9472576,269 0,13993 0,1019 1,4842 0,00087 2547,865 1,2889 7,9239 0,00098 5,15825 1,0607 1,0606 0,998024 39 24 2557,8312557,166 0,14389 0,1108 1,5262 0,00049	2602,441	1,2882	7,9391	0,00466	5,71349	1,0601	1,0599	0,988721	36	21	2610,2072609,504 0,13247 0,0853 1,4051 0,002
2547,865 1,2889 7,9239 0,00098 5,15825 1,0607 1,0606 0,998024 39 24 2557,8312557,166 0,14389 0,1108 1,5262 0,00049	2585,811	1,2884	7,9345	0,00291	5,52909	1,0604	1,0602	0,993382	37	22	2594,6762593,985 0,13612 0,0934 1,4438 0,001
	2567,389	1,2886	7,9294	0,00173	5,34313	1,0606	1,0605	0,996294	38	23	2576,9472576,269 0,13993 0,1019 1,4842 0,000
2527,718 1,2891 7,9182 0,00052 4,97627 1,0607 1,0607 0,999 40 25 2537,9 2537,249 0,148 0,12 1,5698 0,00026	2547,865	1,2889	7,9239	0,00098	5,15825	1,0607	1,0606	0,998024	39	24	2557,8312557,166 0,14389 0,1108 1,5262 0,000
	2527,718	1,2891	7,9182	0,00052	4,97627	1,0607	1,0607	0,999	40	25	2537,9 2537,249 0,148 0,12 1,5698 0,000

Таблица A8 - Результаты теплового расчета базового двигателя при ${\rm n}=2600~{\rm мин}^{\text{-}1}$

					Коэффи-										Доля
Сред-няя					циент мо-					Темпе-	Темпе-				выдели-
на участ-					ле-		Характе-	Угол		ратура	ратура				вшегося
ке тем- пре-					кулярного изменения		ристика тепловы-	ПКВ от начала	Текущий	предпо- логае-	дейст- витель-	Удельный			на участке
ратура, К	k1-2	K1-2	D X1-2	Давление	смеси	m_{1-2}	деления		угол ПКВ	мая/, К	ная	объем	s	y(f1)	тепла
722,1109			0,00000	1,46976	1	1	C	C	-20	718,6469	718,6469	0,13406	0,07749	1,36807	0,00000
729,0405	1,36522	6,47621	0,00001	1,52332	1	1	6E-07	1	-19	725,5749	725,5847	0,13060	0,07005	1,33271	0,00001
736,0423	1,36421	6,49140	0,00005	1,57772	1	1	1E-05	2	-18	732,5061	732,5258	0,12730	0,06296	1,29907	0,00002
743,2928	1,36320	6,50656	0,00014	1,63311	1	1	6E-05	3	-17	739,5785	739,6082	0,12417	0,05624	1,26715	0,00007
751,0474	1,36218	6,52207	0,00031	1,68979	1	1	0,0002	4	-16	747,0071	747,0473	0,12122	0,04989	1,23696	0,00016
759,6431	1,36111	6,53845	0,00059	1,74830	1	1	0,0005	5	-15	755,0877	755,1393	0,11843	0,04390	1,20853	0,00030
769,499	1,35995	6,55636	0,00101	1,80938	1,0001	1	0,0011	6	-14	764,1985	764,2629	0,11582	0,03829	1,18187	0,00051
781,1137	1,35864	6,57659	0,00159	1,87404	1,0001	1,0001	0,0021	7	-13	774,7994	774,8784	0,11338	0,03305	1,15699	0,00080
795,0603	1,35714	6,59998	0,00237	1,94352	1,0002	1,0001	0,0037	8	-12	787,4279	787,524	0,11112	0,02819	1,13391	0,00119
811,9767	1,35540	6,62744	0,00337	2,01934	1,0003	1,0002	0,0061	9	-11	802,6926	802,8088	0,10903	0,02371	1,11263	0,00169
832,552	1,35337	6,65986	0,00463	2,10321	1,0005	1,0004	0,0095	10	-10	821,2609	821,4006	0,10712	0,01961	1,09316	0,00231
857,5073	1,35100	6,69802	0,00615	2,19699	1,0007	1,0006	0,0141	11	-9	843,8431	844,0101	0,10539	0,01590	1,07552	0,00308
887,5734	1,34828	6,74250	0,00797	2,30267	1,001	1,0009	0,0202	12	-8	871,1716	871,3699	0,10385	0,01257	1,05971	0,00399
923,463	1,34521	6,79363	0,01010	2,42223	1,0014	1,0012	0,0282	13	-7	903,9753	904,2085	0,10248	0,00963	1,04574	0,00505
965,8409	1,34180	6,85142	0,01255	2,55754	1,0019	1,0017	0,0383	14	-6	942,9507	943,2223	0,10129	0,00708	1,03363	0,00627
1015,292	1,33810	6,91548	0,01530	2,71023	1,0026	1,0023	0,0509	15	-5	988,731	989,0435	0,10028	0,00492	1,02336	0,00765
1072,288	1,33416	6,98507	0,01836	2,88159	1,0034	1,003	0,0662	16	-4	1041,853	1042,208	0,09946	0,00315	1,01496	0,00918
1137,158	1,33008	7,05913	0,02168	3,07241	1,0043	1,0038	0,0845	17	-3	1102,724	1103,122	0,09882	0,00177	1,00842	0,01084
1210,051	1,32593	7,13636	0,02522	3,28286	1,0054	1,0048	0,1062	18	-2	1171,591	1172,032	0,09836	0,00079	1,00374	0,01261
1290,914	1,32179	7,21532	0,02893	3,51238	1,0067	1,006	0,1314	19	-1	1248,511	1248,991	0,09809	0,00020	1,00094	0,01446
1379,464	1,31774	7,29454	0,03272	3,75961	1,0081	1,0074	0,1603	20	0	1333,318	1333,836	0,09799	0,00000	1,00000	0,01636
1475,165	1,31384	7,37262	0,03650	4,02231	1,0098	1,009	0,1931	21	1	1425,61	1426,161	0,09809	0,00020	1,00094	0,01825
1577,22	1,31016	7,44831	0,04016	4,29736	1,0116	1,0107	0,2296	22	2	1524,721	1525,302	0,09836	0,00079	1,00374	0,02008
1684,567	1,30672	7,52054	0,04357	4,58075	1,0137	1,0127	0,2697	23	3	1629,72	1630,326	0,09882	0,00177	1,00842	0,02179

											Прод	цолжение таолицы тто
1795,886	1,30356	7,58847	0,04661	4,86768	1,0159	1,0148	0,3133	24	4	1739,4131740,039	0,09946	0,003151,01496 0,02331
1909,629	1,30068	7,65148	0,04915	5,15269	1,0182	1,0171	0,3599	25	5	1852,3581852,999	0,10028	0,004921,02336 0,02457
2024,06	1,29810	7,70914	0,05105	5,42983	1,0207	1,0195	0,4091	26	6	1966,9 1967,552	0,10129	0,007081,03363 0,02553
2137,309	1,29581	7,76120	0,05222	5,69291	1,0233	1,022	0,4601	27	7	2081,22 2081,879	0,10248	0,009631,04574 0,02611
2247,449	1,29379	7,80759	0,05256	5,93576	1,026	1,0247	0,5123	28	8	2193,3992194,061	0,10385	0,012571,05971 0,02628
2352,577	1,29204	7,84833	0,05202	6,15259	1,0286	1,0273	0,5649	29	9	2301,5 2302,163	0,10539	0,015901,07552 0,02601
2450,904	1,29055	7,88358	0,05060	6,33821	1,0313	1,03	0,6169	30	10	2403,6552404,316	0,10712	0,019611,09316 0,02530
2540,841	1,28929	7,91358	0,04833	6,48841	1,0338	1,0326	0,6675	31	11	2498,1532498,811	0,10903	0,023711,11263 0,02416
2621,084	1,28824	7,93863	0,04528	6,60014	1,0363	1,0351	0,7159	32	12	2583,5292584,183	0,11112	0,028191,13391 0,02264
2690,677	1,28739	7,95908	0,04158	6,67170	1,0386	1,0374	0,7611	33	13	2658,6392659,288	0,11338	0,033051,15699 0,02079
2749,054	1,28672	7,97533	0,03739	6,70281	1,0407	1,0396	0,8027	34	14	2722,7152723,357	0,11582	0,038291,18187 0,01870
2796,058	1,28621	7,98779	0,03289	6,69459	1,0426	1,0416	0,8401	35	15	2775,394 2776,03	0,11843	0,043901,20853 0,01644
2831,929	1,28584	7,99689	0,02826	6,64944	1,0443	1,0434	0,873	36	16	2816,7232817,353	0,12122	0,049891,23696 0,01413
2857,262	1,28559	8,00307	0,02370	6,57085	1,0457	1,045	0,9013	37	17	2847,1352847,759	0,12417	0,056241,26715 0,01185
2872,948	1,28544	8,00675	0,01937	6,46310	1,0469	1,0463	0,9249	38	18	2867,39 2868,008	0,12730	0,062961,29907 0,00968
2880,089	1,28538	8,00832	0,01541	6,33093	1,0479	1,0474	0,9443	39	19	2878,5062879,119	0,13060	0,070051,33271 0,00771
2879,911	1,28538	8,00815	0,01192	6,17930	1,0487	1,0483	0,9597	40	20	2881,6712882,279	0,13406	0,077491,36807 0,00596
2873,679	1,285446	8,00659	0,00895	6,01301	1,0493	1,049	0,9716	41	21	2878,1512878,754	0,13769	0,085291,40511 0,00448
2862,615	1,285554	8,00392	0,00652	5,83653	1,0497	1,0495	0,9806	42	22	2869,2072869,805	0,14149	0,093441,44382 0,00326
2847,836	1,285698	8,00041	0,00459	5,65380	1,05	1,0499	0,9871	43	23	2856,0222856,616	0,14544	0,101941,48419 0,00230
2830,318	1,285867	7,99625	0,00313	5,46816	1,0503	1,0502	0,9917	44	24	2839,65 2840,239	0,14956	0,110781,52619 0,00156
2810,868	1,286056	7,99163	0,00206	5,28228	1,0504	1,0504	0,9948	45	25	2820,986 2821,57	0,15383	0,119961,56981 0,00103
2790,129	1,28626	7,98666	0,00130	5,09824	1,0505	1,0505	0,9969	46	26	2800,7512801,332	0,15826	0,129481,61501 0,00065
2768,589	1,286473	7,98146	0,00079	4,91755	1,0506	1,0506	0,9982	47	27	2779,5082780,084	0,16285	0,139321,66178 0,00040
2746,603	1,286694	7,97608	0,00046	4,74130	1,0506	1,0506	0,999	48	28	2757,67 2758,243	0,16758	0,149501,71010 0,00023

Таблица A9 - Результаты теплового расчета базового двигателя при $n=3700~\text{мин}^{\text{-}1}$

	1				Коэффи-			I	1				l		Доля
Сред-няя					циент мо-					Темпе-	Темпе-				выдели-
на участ-					ле-		Характе-	Угол		ратура	ратура				вшегося
ке тем-					кулярного		ристика		Текущий	предпо-	дейст-	V=0=1.11.19			на
пре- ратура, К	k1-2	K1-2	DX1-2	Давление	изменения смеси	m_{1-2}	тепловы- деления	начала горения	угол ПКВ	логае- мая/, К	витель- ная	Удельный объем	s	y(f1)	участке тепла
694,9687			2,27E-07		1	1	C	, (691,4311	691,4311		0,1019		
702,0472	1,36936	6,4147	4,24E-06	1,31659	1	1	2,27E-07	1		1	698,5257	0,1455	0,0934	1,4438	2,1E-06
709,1644	1,36825	6,43107	2,11E-05	1,36662	1	1	4,47E-06	2	-21	705,5881	705,6267	0,1416	0,0853	1,4051	1,1E-05
716,4066	1,36715	6,4473	6,25E-05	1,41789	1	1	2,56E-05	3	-20	712,7407	712,7989	0,1378	0,0775	1,3681	3,1E-05
723,9055	1,36606	6,4636	0,000142	1,47051	1	1	8,8E-05	4	-19	720,0724	720,1507	0,1343	0,07	1,3327	7,1E-05
731,8414	1,36495	6,48024	0,000273	1,52471	1,00001	1,00001	0,00023	5	-18	727,73 85	727 <i>,</i> 8378	0,1309	0,063	1,2991	0,00014
740,4453	1,36379	6,49761	0,000473	1,58081	1,00003	1,00002	0,000503	6	-17	735,9443	736,0659	0,1277	0,0562	1,2671	0,00024
749,9997	1,36257	6,51616	0,000757	1,63927	1,00005	1,00004	0,000976	7	-16	744,9463	745,0922	0,1246	0,0499	1,237	0,00038
760,8391	1,36124	6,53644	0,001141	1,70071	1,00009	1,00007	0,001733	8	-15	755,0532	755 <i>,</i> 2261	0,1218	0,0439	1,2085	0,00057
773,3472	1,35978	6,55902	0,001643	1,76587	1,00015	1,00012	0,002873	9	-14	766,6249	766,828	0,1191	0,0383	1,1819	0,00082
787,9543	1,35813	6,58453	0,00228	1,83568	1,00023	1,00019	0,004517	10	-13	780,0695	780,307	0,1166	0,0331	1,157	0,00114
805,1311	1,35628	6,6136	0,003069	1,9112	1,00035	1,00029	0,006797	11	-12	795,8392	796,1157	0,1142	0,0282	1,1339	0,00153
825,3803	1,35418	6,64683	0,004025	1,9936	1,0005	1,00042	0,009866	12	-11	814,4229	814,7436	0,1121	0,0237	1,1126	0,00201
849,2271	1,35182	6,68472	0,005163	2,08418	1,00071	1,0006	0,01389	13	-10	836,3377	836 <i>,</i> 7082	0,1101	0,0196	1,0932	0,00258
877,2058	1,34918	6,72765	0,006496	2,18428	1,00097	1,00084	0,019053	14	-9	862,1166	862,5423	0,1084	0,0159	1,0755	0,00325
909,8453	1,34627	6,77583	0,008033	2,29526	1,0013	1,00113	0,025549	15	-8	892,295	892 <i>,</i> 7811	0,1068	0,0126	1,0597	0,00402
947,6527	1,3431	6,82924	0,009782	2,41842	1,00171	1,0015	0,033582	16	-7	927,3955	927,9463	0,1054	0,0096	1,0457	0,00489
991,0964	1,33969	6,88765	0,011744	2,55494	1,00221	1,00196	0,043364	17	-6	967,91	968,529	0,1041	0,0071	1,0336	0,00587
1040,587	1,3361	6,95059	0,013915	2,70578	1,0028	1,00251	0,055108	18	-5	1014,283	1014,972	0,1031	0,0049	1,0234	0,00696
1096,46	1,33237	7,01737	0,016287	2,87166	1,00351	1,00316	0,069023	19	-4	1066,891	1067,65	0,1023	0,0031	1,015	0,00814
1158,956	1,32856	7,08713	0,018842	3,0529	1,00434	1,00393	0,08531	20	-3	1126,029	1126,856	0,1016	0,0018	1,0084	0,00942
1228,203	1,32473	7,1589	0,021556	3,24943	1,0053	1,00482	0,104153	21	-2	1191,883	1192,775	0,1011	0,0008	1,0037	0,01078
1304,201	1,32094	7,23164	0,024393	3,46068	1,0064	1,00585	0,125709	22	-1	1264,523	1265,475	0,1008	0,0002	1,0009	0,0122
1386,803	1,31724	7,30432	0,02731	3,68556	1,00764	1,00702	0,150101	23	0	1343,879	1344,884	0,1008	0	1	0,01366

											трод	OJIMOII	110 1403	пцыту
1475,703	1,31368	7,37596	0,030256	3,9224	1,00903	1,00833	0,177412	24	1	1429,7271430,778	0,1008	0,0002	1,0009	0,01513
1570,424	1,31029	7,44568	0,033167	4,16896	1,01057	1,0098	0,207668	25	2	1521,6791522,767	0,1011	0,0008	1,0037	0,01658
1670,315	1,30709	7,51271	0,035975	4,42244	1,01226	1,01141	0,240835	26	3	1619,17 1620,287	0,1016	0,0018	1,0084	0,01799
1774,544	1,30412	7,57644	0,038604	4,67951	1,01409	1,01317	0,27681	27	4	1721,46 1722,597	0,1023	0,0031	1,015	0,0193
1882,111	1,30137	7,63639	0,040974	4,93638	1,01605	1,01507	0,315414	28	5	1827,6291828,778	0,1031	0,0049	1,0234	0,02049
1991,855	1,29886	7,69219	0,043006	5,18891	1,01814	1,01709	0,356389	29	6	1936,5921937,747	0,1041	0,0071	1,0336	0,0215
2102,485	1,29658	7,74362	0,04462	5,4327	1,02032	1,01923	0,399394	30	7	2047,1182048,271	0,1054	0,0096	1,0457	0,02231
2212,605	1,29453	7,79056	0,045748	5,66328	1,0226	1,02146	0,444015	31	8	2157,8532158,999	0,1068	0,0126	1,0597	0,02287
2320,757	1,2927	7,83297	0,046331	5,87623	1,02492	1,02376	0,489763	32	9	2267,3582268,493	0,1084	0,0159	1,0755	0,02317
2425,466	1,29108	7,8709	0,046325	6,0674	1,02728	1,0261	0,536094	33	10	2374,1552375,275	0,1101	0,0196	1,0932	0,02316
2525,297	1,28967	7,90444	0,045708	6,23304	1,02964	1,02846	0,582419	34	11	2476,7772477,879	0,1121	0,0237	1,1126	0,02285
2618,903	1,28844	7,93376	0,044479	6,37	1,03196	1,0308	0,628127	35	12	2573,8172574,901	0,1142	0,0282	1,1339	0,02224
2705,085	1,2874	7,95904	0,042662	6,47586	1,03423	1,0331	0,672606	36	13	2663,99 2665,054	0,1166	0,0331	1,157	0,02133
2782,834	1,28651	7,98051	0,040307	6,54902	1,0364	1,03531	0,715267	37	14	2746,18 2747,225	0,1191	0,0383	1,1819	0,02015
2851,379	1,28578	7,99842	0,037486	6,58881	1,03845	1,03742	0,755574	38	15	2819,4892820,514	0,1218	0,0439	1,2085	0,01874
2910,209	1,28518	8,01305	0,034294	6,59547	1,04036	1,0394	0,79306	39	16	2883,2692884,276	0,1246	0,0499	1,237	0,01715
2959,095	1,28471	8,02466	0,030837	6,57013	1,0421	1,04123	0,827354	40	17	2937,1492938,138	0,1277	0,0562	1,2671	0,01542
2998,087	1,28435	8,03356	0,027234	6,51473	1,04367	1,04289	0,858191	41	18	2981,0412982,015	0,1309	0,063	1,2991	0,01362
3027,5	1,28409	8,04003	0,023604	6,43193	1,04506	1,04436	0,885426	42	19	3015,1343016,094	0,1343	0,07	1,3327	0,0118
3047,883	1,28392	8,04436	0,020058	6,3249	1,04626	1,04566	0,909029	43	20	3039,8673040,814	0,1378	0,0775	1,3681	0,01003
3059,974	1,28382	8,04682	0,016697	6,19718	1,04728	1,04677	0,929087	44	21	3055,8983056,834	0,1416	0,0853	1,4051	0,00835
3064,657	1,28378	8,04768	0,013604	6,05248	1,04813	1,0477	0,945784	45	22	3064,0513064,977	0,1455	0,0934	1,4438	0,0068
3062,899	1,2838	8,0472	0,010837	5,89451	1,04882	1,04848	0,959388	46	23	3065,2643066,182	0,1495	0,1019	1,4842	0,00542
3055,698	1,28387	8,04559	0,008433	5,72683	1,04937	1,0491	0,970225	47	24	3060,5343061,444	0,1538	0,1108	1,5262	0,00422
3044,035	1,28397	8,04308	0,006403	5,55272	1,0498	1,04959	0,978658	48	25	3050,8623051,766	0,1582	0,12	1,5698	0,0032
3028,828	1,2841	8,03983	0,004738	5,37507	1,05013	1,04996	0,98506	49	26	3037,2073038,106	0,1627	0,1295	1,615	0,00237
3010,906	1,28425	8,03601	0,003415	5,19636	1,05037	1,05025	0,989799	50	27	3020,4493021,343	0,1674	0,1393	1,6618	0,00171
2990,985	1,28442	8,03175	0,002393	5,01862	1,05054	1,05046	0,993213	51	28	3001,3633002,253	0,1723	0,1495	1,7101	0,0012
2969,662	1,28461	8,02717	0,001629	4,84344	1,05066	1,0506	0,995606	52	29	2980,6072981,492	0,1773	0,16	1,7599	0,00081
										•				

2947,418	1,28481	8,02234	0,001076	4,67205	1,05075	1,05071	0,997235	53	30	2958,7182959,599	0,1825	0,1708	1,8113	0,00054
2924,626	1,28501	8,01734	0,000689	4,5053	1,0508	1,05077	0,998311	54	31	2936,1192936,997	0,1878	0,1819	1,8641	0,00034
2901,565	1,28522	8,01221	0,000427	4,34377	1,05084	1,05082	0,999	55	32	2913,1332914,007	0,1933	0,1933	1,9184	0,00021

Таблица A10 - Результаты теплового расчета базового двигателя при $n=5000~\mbox{mu}\mbox{H}^{-1}$

Сред-					Коэффи-										Доля
няя на					циент мо-					Темпе-	Темпе-				выдели-
участке					ле-		Характе-	Угол		ратура	ратура				вшегося
темпре-					кулярного		ристика	1	Текущий	предпо-	дейст-	.,			на
ратура,		144.0	-V4 0		изменения		тепловы-	начала	угол	логае-	витель-	Удельный		((()	участке
К	k1-2	K1-2	D X1-2	Давление	смеси	m ₁₋₂	деления	горения	ПКВ	мая/, К	ная	объем	S	y(f1)	тепла
674,414			1,2E-07	1,09876	1	1	C	0	-26	670,832	670,832	0,1674	0,1295	1,615	6E-08
681,596	1,37273	6,365839	2,42E-06	1,14244	1	1	1,2E-07	1	-25	677,996	677,978	0,1627	0,12	1,5698	1,2E-06
688,831	1,37153	6,383148	1,26E-05	1,18753	1	1	2,54E-06	2	-24	685,195	685,158	0,1582	0,1108	1,5262	6,3E-06
696,176	1,37035	6,400338	3,85E-05	1,23407	1	1	1,51E-05	3	-23	692,468	692,413	0,1538	0,1019	1,4842	1,9E-05
703,719	1,36917	6,417538	8,95E-05	1,28213	1	1,000002	5,36E-05	4	-22	699,885	699,811	0,1497	0,0934	1,4438	4,5E-05
711,582	1,36799	6,434948	0,000176	1,33185	1,00001	1,000005	0,000143	5	-21	707,552	707,459	0,1456	0,0853	1,4051	8,8E-05
719,93	1,36678	6,452837	0,00031	1,38347	1,00002	1,000012	0,000319	6	-20	715,613	715,498	0,1418	0,0775	1,3681	0,00015
728,964	1,36553	6,47154	0,000503	1,43728	1,00003	1,000024	0,000629	7	-19	724,248	724,111	0,1381	0,07	1,3327	0,00025
738,929	1,3642	6,491458	0,000768	1,4937	1,00006	1,000045	0,001131	8	-18	733,681	733,52	0,1347	0,063	1,2991	0,00038
750,11	1,36278	6,513046	0,001118	1,55324	1,0001	1,000077	0,001899	9	-17	744,177	743,991	0,1313	0,0562	1,2671	0,00056
762,834	1,36122	6,536803	0,001568	1,61653	1,00015	1,000125	0,003017	10	-16	756,044	755,828	0,1282	0,0499	1,237	0,00078
777,465	1,3595	6,563249	0,002132	1,68433	1,00023	1,000193	0,004586	11	-15	769,625	769,376	0,1253	0,0439	1,2085	0,00107
794,399	1,3576	6,592906	0,002822	1,75751	1,00034	1,000287	0,006717	12	-14	785,304	785,019	0,1225	0,0383	1,1819	0,00141
814,063	1,35548	6,626265	0,003653	1,83704	1,00048	1,000413	0,00954	13	-13	803,494	803,167	0,1199	0,0331	1,157	0,00183
836,904	1,35312	6,663748	0,004638	1,92398	1,00067	1,000577	0,013193	14	-12	824,633	824,259	0,1175	0,0282	1,1339	0,00232
863,378	1,35053	6,70568	0,005786	2,01946	1,00091	1,000787	0,017831	15	-11	849,175	848,75	0,1153	0,0237	1,1126	0,00289
893,945	1,34769	6,752246	0,007108	2,12464	1,0012	1,001052	0,023617	16	-10	877,582	877,099	0,1133	0,0196	1,0932	0,00355
929,05	1,34462	6,803468	0,008611	2,24064	1,00156	1,001379	0,030725	17	-9	910,308	909,764	0,1115	0,0159	1,0755	0,00431
969,116	1,34134	6,859184	0,010298	2,36854	1,002	1,001778	0,039335	18	-8	947,792	947,181	0,1098	0,0126	1,0597	0,00515

												ттродо.	JIMCIIII	C Taomi	щытто
1014,53	1,33789	6,919043	0,012171	2,50927	1,00252	1,002258	0,049634	19	-7	990,44	989,758	0,1084	0,0096	1,0457	0,00609
1065,61	1,33431	6,982519	0,014224	2,66356	1,00314	1,002828	0,061805	20	-6	1038,61	1037,85	0,1071	0,0071	1,0336	0,00711
1122,63	1,33064	7,048932	0,016447	2,83193	1,00386	1,003498	0,076029	21	-5	1092,61	1091,77	0,1061	0,0049	1,0234	0,00822
1185,76	1,32693	7,117488	0,018826	3,01454	1,00469	1,004277	0,092476	22	-4	1152,65	1151,73	0,1052	0,0031	1,015	0,00941
1255,09	1,32324	7,187322	0,021336	3,2112	1,00565	1,005172	0,111301	23	-3	1218,87	1217,88	0,1045	0,0018	1,0084	0,01067
1330,58	1,31961	7,257548	0,023948	3,42129	1,00673	1,006191	0,132637	24	-2	1291,31	1290,23	0,104	0,0008	1,0037	0,01197
1412,09	1,31609	7,327297	0,026624	3,64372	1,00795	1,00734	0,156585	25	-1	1369,86	1368,71	0,1037	0,0002	1,0009	0,01331
1499,32	1,31271	7,395763	0,02932	3,8769	1,0093	1,008624	0,18321	26	0	1454,32	1453,09	0,1037	0	1	0,01466
1591,84	1,30949	7,46222	0,031982	4,11877	1,01079	1,010044	0,21253	27	1	1544,33	1543,01	0,1037	0,0002	1,0009	0,01599
1689,06	1,30646	7,526051	0,034552	4,36675	1,01241	1,011599	0,244512	28	2	1639,36	1637,98	0,104	0,0008	1,0037	0,01728
1790,25	1,30364	7,586747	0,036966	4,6178	1,01417	1,013288	0,279064	29	3	1738,77	1737,31	0,1045	0,0018	1,0084	0,01848
1894,52	1,30103	7,643913	0,039156	4,8685	1,01604	1,015103	0,31603	30	4	1841,73	1840,22	0,1052	0,0031	1,015	0,01958
2000,85	1,29863	7,69726	0,041054	5,11507	1,01803	1,017035	0,355186	31	5	1947,3	1945,72	0,1061	0,0049	1,0234	0,02053
2108,1	1,29645	7,746598	0,042593	5,35355	1,02011	1,019071	0,39624	32	6	2054,39	2052,76	0,1071	0,0071	1,0336	0,0213
2215,03	1,29447	7,791822	0,043713	5,57987	1,02227	1,021194	0,438833	33	7	2161,8	2160,12	0,1084	0,0096	1,0457	0,02186
2320,37	1,2927	7,832901	0,044359	5,79	1,02449	1,023384	0,482546	34	8	2268,27	2266,54	0,1098	0,0126	1,0597	0,02218
2422,77	1,29113	7,869865	0,044493	5,98011	1,02675	1,025619	0,526905	35	9	2372,47	2370,7	0,1115	0,0159	1,0755	0,02225
2520,95	1,28974	7,902798	0,044088	6,1467	1,029	1,027874	0,571399	36	10	2473,08	2471,28	0,1133	0,0196	1,0932	0,02204
2613,66	1,28852	7,931826	0,043138	6,28679	1,03124	1,030123	0,615487	37	11	2568,82	2567	0,1153	0,0237	1,1126	0,02157
2699,78	1,28748	7,957107	0,041655	6,39798	1,03343	1,032336	0,658625	38	12	2658,5	2656,66	0,1175	0,0282	1,1339	0,02083
2778,32	1,28658	7,978829	0,039673	6,4786	1,03555	1,034488	0,70028	39	13	2741,05	2739,19	0,1199	0,0331	1,157	0,01984
2848,49	1,28583	7,997203	0,037246	6,52775	1,03756	1,036552	0,739953	40	14	2815,58	2813,71	0,1225	0,0383	1,1819	0,01862
2909,73	1,28521	8,012456	0,034445	6,54537	1,03945	1,038505	0,777199	41	15	2881,4	2879,53	0,1253	0,0439	1,2085	0,01722
2961,69	1,2847	8,024827	0,031359	6,53218	1,0412	1,040324	0,811644	42	16	2938,06	2936,18	0,1282	0,0499	1,237	0,01568
3004,3	1,28431	8,034565	0,028084	6,48965	1,04279	1,041994	0,843003	43	17	2985,33	2983,45	0,1313	0,0562	1,2671	0,01404
3037,68	1,28401	8,041921	0,024723	6,41995	1,04422	1,043503	0,871087	44	18	3023,26	3021,39	0,1347	0,063	1,2991	0,01236
3062,23	1,2838	8,047149	0,021377	6,32575	1,04547	1,044843	0,89581	45	19	3052,11	3050,24	0,1381	0,07	1,3327	0,01069
3078,5	1,28367	8,050497	0,01814	6,21015	1,04656	1,046013	0,917187	46	20	3072,35	3070,5	0,1418	0,0775	1,3681	0,00907
3087,22	1,2836	8,052206	0,015095	6,07649	1,04748	1,047016	0,935327	47	21	3084,65	3082,81	0,1456	0,0853	1,4051	0,00755

3089,2	1,28359	8,052505	0,012306	5,9282	1,04824	1,047859	0,950422	48	22	3089,78	3087,95	0,1497	0,0934	1,4438	0,00615
3085,35	1,28362	8,051611	0,00982	5,76865	1,04887	1,048555	0,962728	49	23	3088,62	3086,81	0,1538	0,1019	1,4842	0,00491
3076,58	1,2837	8,04972	0,007663	5,60105	1,04937	1,049116	0,972548	50	24	3082,08	3080,29	0,1582	0,1108	1,5262	0,00383
3063,77	1,28381	8,047014	0,005842	5,4283	1,04975	1,04956	0,980211	51	25	3071,07	3069,29	0,1627	0,12	1,5698	0,00292
3047,74	1,28394	8,04365	0,004347	5,25297	1,05005	1,049903	0,986053	52	26	3056,46	3054,69	0,1674	0,1295	1,615	0,00217
3029,25	1,2841	8,039768	0,003154	5,07726	1,05027	1,050161	0,9904	53	27	3039,02	3037,28	0,1722	0,1393	1,6618	0,00158
3008,93	1,28427	8,035484	0,002228	4,90296	1,05043	1,050352	0,993554	54	28	3019,47	3017,74	0,1773	0,1495	1,7101	0,00111
2987,33	1,28446	8,030896	0,001532	4,73147	1,05054	1,050488	0,995782	55	29	2998,39	2996,68	0,1824	0,16	1,7599	0,00077
2964,88	1,28465	8,026081	0,001023	4,56386	1,05062	1,050584	0,997314	56	30	2976,27	2974,58	0,1877	0,1708	1,8113	0,00051
2941,93	1,28486	8,021101	0,000663	4,40089	1,05067	1,050649	0,998337	57	31	2953,5	2951,83	0,1932	0,1819	1,8641	0,00033
2918,74	1,28506	8,016003	0,000417	4,2431	1,05071	1,050691	0,999	58	32	2930,37	2928,72	0,1988	0,1933	1,9184	0,00021

Таблица A11 - Результаты теплового расчета базового двигателя при $n=5600~\text{мин}^{\text{-1}}$

					Коэффи-										Доля
					циент мо-					Темпе-	Темпе-				выдели-
Сред-няя					ле-		Характе-	Угол		ратура	ратура				вшегося
на участке					кулярного		ристика	ПКВ от	Текущий	предпо-	дейст-				на
темпре-					изменения		тепловы-	начала	угол	логае-	витель-	Удельный			участке
ратура, К	k1-2	K1-2	D X1-2	Давление	смеси	m_{1-2}	деления	горения	ПКВ	мая/, К	ная	объем	S	y(f1)	тепла
671,6450			0,0000	0,9774	1,0000	1,0000	0,0000	0	-28	668,02	668,02	0,1874	0,1495	1,7103	0,0000
678,9099	1,3732	6,3591	0,0000	1,0167	1,0000	1,0000	0,0000	1	-27	675,27	675,21	0,1821	0,1394	1,6620	0,0000
686,2221	1,3720	6,3767	0,0000	1,0574	1,0000	1,0000	0,0000	2	-26	682,55	682,44	0,1770	0,1295	1,6152	0,0000
693,6016	1,3708	6,3942	0,0000	1,0994	1,0000	1,0000	0,0000	3	-25	689,89	689,73	0,1720	0,1200	1,5700	0,0000
701,0847	1,3696	6,4115	0,0001	1,1429	1,0000	1,0000	0,0000	4	-24	697,31	697,09	0,1672	0,1108	1,5263	0,0000
708,7255	1,3684	6,4289	0,0001	1,1879	1,0000	1,0000	0,0001	5	-23	704,86	704,58	0,1626	0,1020	1,4843	0,0001
716,5983	1,3672	6,4463	0,0002	1,2344	1,0000	1,0000	0,0002	6	-22	712,59	712,26	0,1582	0,0935	1,4440	0,0001
724,7990	1,3660	6,4641	0,0003	1,2826	1,0000	1,0000	0,0004	7	-21	720,60	720,21	0,1540	0,0853	1,4052	0,0002
733,4461	1,3648	6,4823	0,0005	1,3326	1,0000	1,0000	0,0007	8	-20	728,99	728,54	0,1499	0,0775	1,3682	0,0002
742,6817	1,3636	6,5012	0,0007	1,3846	1,0001	1,0000	0,0012	9	-19	737,90	737,37	0,1460	0,0701	1,3328	0,0004
752,6718	1,3623	6,5210	0,0010	1,4388	1,0001	1,0001	0,0019	10	-18	747,47	746,87	0,1423	0,0630	1,2992	0,0005

763,0605 1,3609 6,5421 0,0014 1,4955 1,0001 1,0002 0,0004 11 -17 755,88 757,20 0,1388 0,0564 1,2672 0,0007 775,6988 1,3578 6,5893 0,0024 1,6180 1,0003 0,0061 13 -15 782,06 781,22 0,1324 0,0439 1,2308 0,0012 804,3152 1,3561 6,6160 0,0031 1,6846 1,0004 1,0004 0,0085 14 -14 796,30 795,36 0,1295 0,0381 1,1819 0,0015 840,6112 1,3523 6,6773 0,0048 1,8313 1,0008 1,0009 0,0202 17 -11 850,82 849,52 0,1219 0,023 1,0024 862,3470 1,3523 6,7713 0,0059 1,9124 1,0010 1,0009 0,0221 17 -11 850,82 849,52 0,1219 0,023 1,0029 0,632 19 9 898,85 849,52 0,1219													продоз	IMCIIII	C Taomi	цылт
789,1837 1,3578 6,5893 0,0024 1,6180 1,0003 1,0003 0,0061 13 -15 782,06 781,22 0,1324 0,043\$ 1,2086 0,0012 804,3152 1,35543 6,6452 0,0039 1,7556 1,0006 1,0005 0,0116 15 -13 811,27 0,1282 0,0331 1,1570 0,0019 840,6112 1,3523 6,6773 0,0048 1,8313 1,0008 1,0007 0,1154 16 -12 830,40 829,23 0,1242 0,0282 1,3139 0,0024 862,3470 1,3501 6,7123 0,0059 1,9124 1,0010 1,0009 0,0202 17 -11 850,82 849,52 0,1219 0,0237 1,1127 0,0029 866,850 1,3478 6,7505 0,0071 1,9995 1,0013 1,0012 0,0261 18 -10 873,878 872,44 0,1198 0,0159 1,0755 0,0025 944,53393 1,3427 6,8865	763,6065	1,3609	6,5421	0,0014	1,4955	1,0001	1,0001	0,0029	11	-17	757,88	757,20	0,1388	0,0563	1,2672	0,0007
804,3152 1,3561 6,6160 0,0031 1,6846 1,0004 1,0004 0,0085 14 -14 796,30 795,36 0,1295 0,0383 1,1819 0,0015 821,3636 1,3543 6,6452 0,0039 1,7556 1,0006 1,0007 0,0154 16 -12 812,33 811,27 0,1242 0,0284 1,1352 6,6773 0,0048 1,8313 1,0007 0,0154 16 -12 830,40 829,23 0,1242 0,0282 1,3172 0,0024 862,3470 1,3551 6,7123 0,0059 1,9124 1,0010 1,0009 0,0201 14 850,805 1,3478 6,7505 0,0071 1,9995 1,0013 1,0012 0,0261 18 -10 873,87 872,44 0,1198 0,0155 1,0024 0,044 0,0515 21 -7 961,66 959,75 0,1146 0,0050 949,89 98,85 89,85 0,0152 1,0024 0,0152 1,0024 0,0515 21 <td>775,6988</td> <td>1,3594</td> <td>6,5647</td> <td>0,0018</td> <td>1,5551</td> <td>1,0002</td> <td>1,0002</td> <td>0,0043</td> <td>12</td> <td>-16</td> <td>769,34</td> <td>768,58</td> <td>0,1355</td> <td>0,0499</td> <td>1,2370</td> <td>0,0009</td>	775,6988	1,3594	6,5647	0,0018	1,5551	1,0002	1,0002	0,0043	12	-16	769,34	768,58	0,1355	0,0499	1,2370	0,0009
821,3636	789,1837	1,3578	6,5893	0,0024	1,6180	1,0003	1,0003	0,0061	13	-15	782,06	781,22	0,1324	0,0439	1,2086	0,0012
840,6112 1,3523 6,6773 0,0048 1,8313 1,0008 1,0007 0,0154 16 -12 830,40 829,23 0,1242 0,0282 1,1339 0,0024 862,3470 1,3501 6,7123 0,0059 1,9124 1,0010 1,0009 0,0202 17 -11 850,82 849,52 0,1219 0,0237 1,1127 0,0029 886,8605 1,3478 6,7505 0,0071 1,9995 1,0013 1,0015 0,0332 19 -9 899,85 898,26 0,1178 0,0159 1,0755 0,0042 945,3339 1,3427 6,8365 0,0099 2,1939 1,0021 1,0019 0,0416 20 -8 899,02 927,28 0,1161 0,0058 1,0026 1,0024 0,0515 21 -7 961,66 959,75 0,1146 0,0058 1,0039 1,0339 1,026 1,0041 1,0024 0,0515 21 -7 961,66 959,75 0,1142 0,0041 1,0049	804,3152	1,3561	6,6160	0,0031	1,6846	1,0004	1,0004	0,0085	14	-14	796,30	795,36	0,1295	0,0383	1,1819	0,0015
862,3470 1,3501 6,7123 0,0059 1,9124 1,0010 1,0009 0,0202 17 -11 850,82 849,52 0,1219 0,0237 1,1127 0,0029 886,8605 1,3478 6,7505 0,0071 1,9995 1,0013 1,0015 0,0261 18 -10 873,87 872,44 0,1198 0,0196 1,0932 0,0035 914,4350 1,3453 6,7919 0,0084 2,0932 1,0017 1,0019 0,0416 20 -8 929,02 927,28 0,1161 0,0126 1,0026 0,0024 0,0515 21 -7 961,66 959,75 0,1146 0,0096 1,0048 0,0058 1018,0905 1,3370 6,9347 0,0154 2,5422 1,0039 1,0035 0,0766 23 -5 1038,20 1035,94 0,1121 0,0049 1,0049 1,0049 1,0049 2,4 -4 1082,45 1,0049 1,0049 1,0049 1,0049 1,0049 1,0049 1,0049 1,	821,3636	1,3543	6,6452	0,0039	1,7556	1,0006	1,0005	0,0116	15	-13	812,33	811,27	0,1268	0,0331	1,1570	0,0019
886,8605 1,3478 6,7505 0,0071 1,9995 1,0013 1,0012 0,0261 18 -10 873,87 872,44 0,1198 0,0196 1,0932 0,0035 914,4350 1,3453 6,7919 0,0084 2,0932 1,0017 1,0015 0,0332 19 -9 899,85 898,26 0,1178 0,0159 1,0755 0,0042 945,3393 1,3427 6,8365 0,0099 2,1939 1,0021 1,0019 0,0416 20 -8 929,02 927,28 0,1161 0,0126 1,0059 0,067 979,8195 1,3399 6,8847 0,0114 2,5422 1,0029 0,0632 22 -6 997,98 995,90 0,1132 0,0071 1,0336 0,0067 1060,3261 1,3340 6,9877 0,0154 2,5422 1,0039 1,006 23 -5 1038,20 1035,94 0,1112 0,0041 1,0084 1,0077 1106,6503 1,3310 7,0428 0,0175 2,6742 <	840,6112	1,3523	6,6773	0,0048	1,8313	1,0008	1,0007	0,0154	16	-12	830,40	829,23	0,1242	0,0282	1,1339	0,0024
914,4350 1,3453 6,7919 0,0084 2,0932 1,0017 1,0015 0,0332 19 -9 899,85 898,26 0,1178 0,0159 1,0755 0,0042 945,3393 1,3427 6,8365 0,0099 2,1939 1,0021 1,0019 0,0416 20 -8 929,02 927,28 0,1161 0,0126 1,0597 0,0050 979,8195 1,3399 6,8842 0,0116 2,3021 1,0026 1,0024 0,0515 21 -7 961,66 959,75 0,1146 0,0096 1,0458 0,0058 1018,0905 1,3370 6,9347 0,0134 2,4181 1,0032 1,0029 0,0632 22 -6 997,98 995,90 0,1132 0,0071 1,0336 0,0067 1060,3261 1,3340 6,9877 0,0154 2,5422 1,0039 1,0035 0,0766 23 -5 1038,20 1035,94 0,1121 0,0049 1,0234 0,0077 1106,6503 1,3310 7,0428 0,0175 2,6742 1,0046 1,0043 0,0902 24 -4 1082,45 1080,02 0,1112 0,0031 1,0150 0,0087 1157,1279 1,3279 7,0994 0,0197 2,8141 1,0055 1,0051 0,1095 25 -3 1130,85 1128,23 0,1105 0,0018 1,0084 0,0099 1211,7558 1,3248 7,1571 0,0220 2,9612 1,0065 1,0060 0,1292 26 -2 1183,41 1180,61 0,1100 0,0008 1,0037 0,0110 1270,4551 1,3218 7,2152 0,0244 3,1149 1,0076 1,0071 0,1512 27 -1 1240,10 1237,13 0,1097 0,0002 1,0009 0,0122 1333,0635 1,3188 7,2732 0,0268 3,2742 1,0089 1,0083 0,1756 28 0 1300,81 1297,67 0,1096 0,0004 1,0009 0,0146 1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,0008 1,0037 0,0158 1541,3645 1,3105 7,4409 0,0338 3,7712 1,0133 1,0125 0,2631 31 3 1504,48 1500,89 0,1105 0,0018 1,0084 0,0169 1616,1622 1,3080 7,4932 0,0358 3,9371 1,0150 1,0141 0,2968 32 4 1578,25 1574,54 0,1112 0,0031 1,0150 0,0179 1692,6817 1,3057 7,5429 0,0377 4,0996 1,0168 1,0159 0,3327 33 5 1654,07 1650,25 0,1121 0,0049 1,0030 0,0197 1848,0098 1,3015 7,6339 0,0406 4,4048 1,0207 1,0197 0,4097 3 5 7 1809,15 140,16 0,0006 1,0010 0,0008 1,0037 0,0159 1092,5240 1,2996 7,6747 0,0415 4,5426 1,0227 1,0217 0,4097 3 7 1809,15 1805,14 0,1146 0,0096 1,0050 0,0010 1,0000 0,0018 1,0020 1,0020 0,0019	862,3470	1,3501	6,7123	0,0059	1,9124	1,0010	1,0009	0,0202	17	-11	850,82	849,52	0,1219	0,0237	1,1127	0,0029
945,3393 1,3427 6,8365 0,0099 2,1939 1,0021 1,0019 0,0416 20 -8 929,02 927,28 0,1161 0,0126 1,0597 0,0050 979,8195 1,3399 6,8842 0,0116 2,3021 1,0026 1,0024 0,0515 21 -7 961,66 959,75 0,1146 0,0096 1,0458 0,0058 1018,0905 1,3370 6,9347 0,0134 2,4181 1,0032 1,0029 0,632 22 -6 997,98 995,90 0,1132 0,0071 1,0336 0,0067 1060,3261 1,3340 6,9877 0,0154 2,5422 1,0036 1,0076 23 -5 1038,20 1035,94 0,1121 0,0049 1,0234 0,0077 1106,6503 1,3310 7,0428 0,0175 2,6742 1,0046 1,0043 0,0920 24 -4 1082,45 1080,02 0,1112 0,0031 1,0150 0,0087 1157,1279 1,32218 7,25	886,8605	1,3478	6,7505	0,0071	1,9995	1,0013	1,0012	0,0261	18	-10	873,87	872,44	0,1198	0,0196	1,0932	0,0035
979,8195	914,4350	1,3453	6,7919	0,0084	2,0932	1,0017	1,0015	0,0332	19	-9	899,85	898,26	0,1178	0,0159	1,0755	0,0042
1018,0905 1,3370 6,9347 0,0134 2,4181 1,0032 1,0029 0,0632 22 -6 997,98 995,90 0,1132 0,0071 1,0336 0,0067 1060,3261 1,3340 6,9877 0,0154 2,5422 1,0039 1,0035 0,0766 23 -5 1038,20 1035,94 0,1121 0,0049 1,0234 0,0077 1106,6503 1,3310 7,0428 0,0175 2,6742 1,0046 1,0043 0,0920 24 -4 1082,45 1080,02 0,1112 0,0031 1,0150 0,0087 1157,1279 1,3279 7,0994 0,0197 2,8141 1,0055 1,0061 0,1095 25 -3 1130,85 1128,23 0,1105 0,0081 1,0084 0,0099 1211,7558 1,3248 7,1571 0,0220 2,9612 1,0065 1,0060 0,1292 26 -2 1183,41 1180,61 0,1100 0,0081 1,0037 0,0110 1270,4551 1,3218	945,3393	1,3427	6,8365	0,0099	2,1939	1,0021	1,0019	0,0416	20	-8	929,02	927,28	0,1161	0,0126	1,0597	0,0050
1060,3261 1,3340 6,9877 0,0154 2,5422 1,0039 1,0035 0,0766 23 -5 1038,20 1035,94 0,1121 0,0049 1,0234 0,0077 1106,6503 1,3310 7,0428 0,0175 2,6742 1,0046 1,0043 0,0920 24 -4 1082,45 1080,02 0,1112 0,0031 1,0150 0,0087 1157,1279 1,3279 7,0994 0,0197 2,8141 1,0055 1,0051 0,1095 25 -3 1130,85 1128,23 0,1105 0,0018 1,0084 0,0099 1211,7558 1,3248 7,1571 0,0220 2,9612 1,0065 1,0060 0,1292 26 -2 1183,41 1180,61 0,1100 0,0008 1,0037 0,0110 1270,4551 1,3218 7,2152 0,0244 3,1149 1,0076 1,0071 0,1512 27 -1 1240,10 1237,13 0,1097 0,0002 1,0009 0,0122 1333,0635 1,3188 7,2732 0,0268 3,2742 1,0089 1,0083 0,1756 28 0 1300,81 1297,67 0,1096 0,0000 1,0000 0,0134 1399,3297 1,3159 7,3305 0,0292 3,4378 1,0102 1,0095 0,2024 29 1 1365,32 1362,02 0,1097 0,0002 1,0009 0,0146 1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,0008 1,0037 0,0158 1541,3645 1,3105 7,4409 0,0338 3,7712 1,0133 1,0125 0,2631 31 3 1504,48 1500,89 0,1105 0,0018 1,0084 0,0169 1616,1622 1,3080 7,4932 0,0358 3,9371 1,0150 1,0141 0,2968 32 4 1578,25 1574,54 0,1112 0,0031 1,0150 0,0179 1692,6817 1,3057 7,5429 0,0377 4,0996 1,0168 1,0159 0,3327 33 5 1654,07 1650,25 0,1121 0,0049 1,0234 0,0189 1770,2211 1,3035 7,5899 0,0393 4,2563 1,0187 1,0178 0,3704 34 6 1731,29 1727,36 0,1132 0,0071 1,0336 0,0197 1848,0098 1,3015 7,6339 0,0406 4,4048 1,0207 1,0197 0,4097 35 7 1809,15 1805,14 0,1146 0,0096 1,0458 0,0203 1925,2240 1,2996 7,6747 0,0415 4,5426 1,0227 1,0217 0,4503 36 8 1886,87 1882,78 0,1161 0,0126 1,0597 0,0208 2001,0071 1,2980 7,7122 0,0420 4,6675 1,0248 1,0238 0,4918 37 9 1963,58 1959,43 0,1198 0,0196 1,0932 0,0210 2074,4916 1,2965 7,7464 0,0421 4,7773 1,0270 1,0259 0,5338 38 10 2038,43 2034,23 0,1198 0,0196 1,0932 0,0210 2074,4916 1,2965 7,7464 0,0421 4,7773 1,0270 1,0259 0,5338 38 10 2038,43 2034,23 0,1198 0,0196 1,0932 0,0210	979,8195	1,3399	6,8842	0,0116	2,3021	1,0026	1,0024	0,0515	21	-7	961,66	959,75	0,1146	0,0096	1,0458	0,0058
1106,6503 1,3310 7,0428 0,0175 2,6742 1,0046 1,0043 0,0920 24 -4 1082,45 1080,02 0,1112 0,0031 1,0150 0,0087 1157,1279 1,3279 7,0994 0,0197 2,8141 1,0055 1,0060 0,1292 26 -2 1183,41 1180,61 0,1100 0,0008 1,0037 0,0110 1270,4551 1,3218 7,2152 0,0244 3,1149 1,0076 1,0071 0,1512 27 -1 1240,10 1237,13 0,1097 0,0002 1,0099 0,0122 1333,0635 1,3188 7,2732 0,0268 3,2742 1,0089 1,0083 0,1756 28 0 1300,81 1297,67 0,1096 0,0000 1,0014 1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,008 1,0018 1541,3645 1,3105 7,4409 <td< td=""><td>1018,0905</td><td>1,3370</td><td>6,9347</td><td>0,0134</td><td>2,4181</td><td>1,0032</td><td>1,0029</td><td>0,0632</td><td>22</td><td>-6</td><td>997,98</td><td>995,90</td><td>0,1132</td><td>0,0071</td><td>1,0336</td><td>0,0067</td></td<>	1018,0905	1,3370	6,9347	0,0134	2,4181	1,0032	1,0029	0,0632	22	-6	997,98	995,90	0,1132	0,0071	1,0336	0,0067
1157,1279 1,3279 7,0994 0,0197 2,8141 1,0055 1,0051 0,1095 25 -3 1130,85 1128,23 0,1105 0,0018 1,0084 0,0099 1211,7558 1,3248 7,1571 0,0220 2,9612 1,0065 1,0060 0,1292 26 -2 1183,41 1180,61 0,1100 0,0008 1,0037 0,0110 1270,4551 1,3218 7,2152 0,0244 3,1149 1,0076 1,0071 0,1512 27 -1 1240,10 1237,13 0,1097 0,0002 1,0009 0,0122 1333,0635 1,3188 7,2732 0,0268 3,2742 1,0089 1,0085 0,2024 29 1 1365,32 1362,02 0,1097 0,0002 1,0009 0,0146 1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,0008 1,0037 1,0158 1,0159 0,2631	1060,3261	1,3340	6,9877	0,0154	2,5422	1,0039	1,0035	0,0766	23	-5	1038,20	1035,94	0,1121	0,0049	1,0234	0,0077
1211,7558 1,3248 7,1571 0,0220 2,9612 1,0065 1,0060 0,1292 26 -2 1183,41 1180,61 0,1100 0,0008 1,0037 0,0110 1270,4551 1,3218 7,2152 0,0244 3,1149 1,0076 1,0071 0,1512 27 -1 1240,10 1237,13 0,1097 0,0002 1,0009 0,0122 1333,0635 1,3188 7,2732 0,0268 3,2742 1,0089 1,0085 0,2024 29 1 1365,32 1362,02 0,1097 0,0002 1,0009 0,0146 1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,0008 1,0018 1541,3645 1,3105 7,4409 0,0338 3,7712 1,0133 1,0125 0,2631 31 3 1504,48 1500,89 0,1105 0,0018 1,0019 1616,1622 1,3080 7,4932 <td< td=""><td>1106,6503</td><td>1,3310</td><td>7,0428</td><td>0,0175</td><td>2,6742</td><td>1,0046</td><td>1,0043</td><td>0,0920</td><td>24</td><td>-4</td><td>1082,45</td><td>1080,02</td><td>0,1112</td><td>0,0031</td><td>1,0150</td><td>0,0087</td></td<>	1106,6503	1,3310	7,0428	0,0175	2,6742	1,0046	1,0043	0,0920	24	-4	1082,45	1080,02	0,1112	0,0031	1,0150	0,0087
1270,4551 1,3218 7,2152 0,0244 3,1149 1,0076 1,0071 0,1512 27 -1 1240,10 1237,13 0,1097 0,0002 1,0009 0,0122 1333,0635 1,3188 7,2732 0,0268 3,2742 1,0089 1,0083 0,1756 28 0 1300,81 1297,67 0,1096 0,0000 1,0000 0,0134 1399,3297 1,3159 7,3305 0,0292 3,4378 1,0102 1,0095 0,2024 29 1 1365,32 1362,02 0,1097 0,0002 1,0009 0,0146 1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,0008 1,0018 1541,3645 1,3105 7,4409 0,0338 3,7712 1,0133 1,0125 0,2631 31 3 1504,48 1500,89 0,1105 0,0018 1,0049 1616,1622 1,3080 7,4932	1157,1279	1,3279	7,0994	0,0197	2,8141	1,0055	1,0051	0,1095	25	-3	1130,85	1128,23	0,1105	0,0018	1,0084	0,0099
1333,0635 1,3188 7,2732 0,0268 3,2742 1,0089 1,0083 0,1756 28 0 1300,81 1297,67 0,1096 0,0000 1,0000 0,0134 1399,3297 1,3159 7,3305 0,0292 3,4378 1,0102 1,0095 0,2024 29 1 1365,32 1362,02 0,1097 0,0002 1,0009 0,0146 1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,0008 1,0037 0,0158 1541,3645 1,3105 7,4409 0,0338 3,7712 1,0133 1,0125 0,2631 31 3 1504,48 1500,89 0,1105 0,0018 1,0084 0,0169 1616,1622 1,3080 7,4932 0,0358 3,9371 1,0150 1,0141 0,2968 32 4 1578,25 1574,54 0,1112 0,0031 1,0150 0,0179 1692,6817 1	1211,7558	1,3248	7,1571	0,0220	2,9612	1,0065	1,0060	0,1292	26	-2	1183,41	1180,61	0,1100	0,0008	1,0037	0,0110
1399,3297 1,3159 7,3305 0,0292 3,4378 1,0102 1,0095 0,2024 29 1 1365,32 1362,02 0,1097 0,0002 1,0009 0,0146 1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,0008 1,0037 0,0158 1541,3645 1,3105 7,4409 0,0338 3,7712 1,0133 1,0125 0,2631 31 3 1504,48 1500,89 0,1105 0,0018 1,0084 0,0169 1616,1622 1,3080 7,4932 0,0358 3,9371 1,0150 1,0141 0,2968 32 4 1578,25 1574,54 0,1112 0,0031 1,0150 0,0179 1692,6817 1,3057 7,5429 0,0377 4,0996 1,0168 1,0159 0,3327 33 5 1654,07 1650,25 0,1121 0,0049 1,0234 0,0189 1770,2211 1,3035 7,5899 0,0393 4,2563 1,0187 1,0178 0,3704 3	1270,4551	1,3218	7,2152	0,0244	3,1149	1,0076	1,0071	0,1512	27	-1	1240,10	1237,13	0,1097	0,0002	1,0009	0,0122
1468,9096 1,3132 7,3866 0,0315 3,6040 1,0117 1,0110 0,2316 30 2 1433,34 1429,89 0,1100 0,0008 1,0037 0,0158 1541,3645 1,3105 7,4409 0,0338 3,7712 1,0133 1,0125 0,2631 31 3 1504,48 1500,89 0,1105 0,0018 1,0084 0,0169 1616,1622 1,3080 7,4932 0,0358 3,9371 1,0150 1,0141 0,2968 32 4 1578,25 1574,54 0,1112 0,0031 1,0150 0,0179 1692,6817 1,3057 7,5429 0,0377 4,0996 1,0168 1,0159 0,3327 33 5 1654,07 1650,25 0,1121 0,0049 1,0234 0,0189 1770,2211 1,3035 7,5899 0,0393 4,2563 1,0187 1,0178 0,3704 34 6 1731,29 1727,36 0,1132 0,0071 1,0336 0,0197 1848,0098 1	1333,0635	1,3188	7,2732	0,0268	3,2742	1,0089	1,0083	0,1756	28	0	1300,81	1297,67	0,1096	0,0000	1,0000	0,0134
1541,3645 1,3105 7,4409 0,0338 3,7712 1,0133 1,0125 0,2631 31 3 1504,48 1500,89 0,1105 0,0018 1,0084 0,0169 1616,1622 1,3080 7,4932 0,0358 3,9371 1,0150 1,0141 0,2968 32 4 1578,25 1574,54 0,1112 0,0031 1,0150 0,0179 1692,6817 1,3057 7,5429 0,0377 4,0996 1,0168 1,0159 0,3327 33 5 1654,07 1650,25 0,1121 0,0049 1,0234 0,0189 1770,2211 1,3035 7,5899 0,0393 4,2563 1,0187 1,0178 0,3704 34 6 1731,29 1727,36 0,1132 0,0071 1,0336 0,0197 1848,0098 1,3015 7,6339 0,0406 4,4048 1,0207 1,0197 0,4097 35 7 1809,15 1805,14 0,1146 0,0096 1,0458 0,0203 1925,2240 1	1399,3297	1,3159	7,3305	0,0292	3,4378	1,0102	1,0095	0,2024	29	1	1365,32	1362,02	0,1097	0,0002	1,0009	0,0146
1616,1622 1,3080 7,4932 0,0358 3,9371 1,0150 1,0141 0,2968 32 4 1578,25 1574,54 0,1112 0,0031 1,0150 0,0179 1692,6817 1,3057 7,5429 0,0377 4,0996 1,0168 1,0159 0,3327 33 5 1654,07 1650,25 0,1121 0,0049 1,0234 0,0189 1770,2211 1,3035 7,5899 0,0393 4,2563 1,0187 1,0178 0,3704 34 6 1731,29 1727,36 0,1132 0,0071 1,0336 0,0197 1848,0098 1,3015 7,6339 0,0406 4,4048 1,0207 1,0197 0,4097 35 7 1809,15 1805,14 0,1146 0,0096 1,0458 0,0203 1925,2240 1,2996 7,6747 0,0415 4,5426 1,0227 1,0217 0,4503 36 8 1886,87 1882,78 0,1161 0,0159 1,0755 0,0210 2074,4916 1	1468,9096	1,3132	7,3866	0,0315	3,6040	1,0117	1,0110	0,2316	30	2	1433,34	1429,89	0,1100	0,0008	1,0037	0,0158
1692,6817 1,3057 7,5429 0,0377 4,0996 1,0168 1,0159 0,3327 33 5 1654,07 1650,25 0,1121 0,0049 1,0234 0,0189 1770,2211 1,3035 7,5899 0,0393 4,2563 1,0187 1,0178 0,3704 34 6 1731,29 1727,36 0,1132 0,0071 1,0336 0,0197 1848,0098 1,3015 7,6339 0,0406 4,4048 1,0207 1,0197 0,4097 35 7 1809,15 1805,14 0,1146 0,0096 1,0458 0,0203 1925,2240 1,2996 7,6747 0,0415 4,5426 1,0227 1,0217 0,4503 36 8 1886,87 1882,78 0,1161 0,0126 1,0597 0,0208 2001,0071 1,2980 7,7122 0,0420 4,6675 1,0248 1,0238 0,4918 37 9 1963,58 1959,43 0,1178 0,0159 1,0755 0,0210 2074,4916 1,2965 7,7464 0,0421 4,7773 1,0270 1,0259 0,5338 3	1541,3645	1,3105	7,4409	0,0338	3,7712	1,0133	1,0125	0,2631	31	3	1504,48	1500,89	0,1105	0,0018	1,0084	0,0169
1770,2211 1,3035 7,5899 0,0393 4,2563 1,0187 1,0178 0,3704 34 6 1731,29 1727,36 0,1132 0,0071 1,0336 0,0197 1848,0098 1,3015 7,6339 0,0406 4,4048 1,0207 1,0197 0,4097 35 7 1809,15 1805,14 0,1146 0,0096 1,0458 0,0203 1925,2240 1,2996 7,6747 0,0415 4,5426 1,0227 1,0217 0,4503 36 8 1886,87 1882,78 0,1161 0,0126 1,0597 0,0208 2001,0071 1,2980 7,7122 0,0420 4,6675 1,0248 1,0238 0,4918 37 9 1963,58 1959,43 0,1178 0,0159 1,0755 0,0210 2074,4916 1,2965 7,7464 0,0421 4,7773 1,0270 1,0259 0,5338 38 10 2038,43 2034,23 0,1198 0,0196 1,0932 0,0210	1616,1622	1,3080	7,4932	0,0358	3,9371	1,0150	1,0141	0,2968	32	4	1578,25	1574,54	0,1112	0,0031	1,0150	0,0179
1848,0098 1,3015 7,6339 0,0406 4,4048 1,0207 1,0197 0,4097 35 7 1809,15 1805,14 0,1146 0,0096 1,0458 0,0203 1925,2240 1,2996 7,6747 0,0415 4,5426 1,0227 1,0217 0,4503 36 8 1886,87 1882,78 0,1161 0,0126 1,0597 0,0208 2001,0071 1,2980 7,7122 0,0420 4,6675 1,0248 1,0238 0,4918 37 9 1963,58 1959,43 0,1178 0,0159 1,0755 0,0210 2074,4916 1,2965 7,7464 0,0421 4,7773 1,0270 1,0259 0,5338 38 10 2038,43 2034,23 0,1198 0,0196 1,0932 0,0210	1692,6817	1,3057	7,5429	0,0377	4,0996	1,0168	1,0159	0,3327	33	5	1654,07	1650,25	0,1121	0,0049	1,0234	0,0189
1925,2240 1,2996 7,6747 0,0415 4,5426 1,0227 1,0217 0,4503 36 8 1886,87 1882,78 0,1161 0,0126 1,0597 0,0208 2001,0071 1,2980 7,7122 0,0420 4,6675 1,0248 1,0238 0,4918 37 9 1963,58 1959,43 0,1178 0,0159 1,0755 0,0210 2074,4916 1,2965 7,7464 0,0421 4,7773 1,0270 1,0259 0,5338 38 10 2038,43 2034,23 0,1198 0,0196 1,0932 0,0210	1770,2211	1,3035	7,5899	0,0393	4,2563	1,0187	1,0178	0,3704	34	6	1731,29	1727,36	0,1132	0,0071	1,0336	0,0197
2001,0071 1,2980 7,7122 0,0420 4,6675 1,0248 1,0238 0,4918 37 9 1963,58 1959,43 0,1178 0,0159 1,0755 0,0210 2074,4916 1,2965 7,7464 0,0421 4,7773 1,0270 1,0259 0,5338 38 10 2038,43 2034,23 0,1198 0,0196 1,0932 0,0210	1848,0098	1,3015	7,6339	0,0406	4,4048	1,0207	1,0197	0,4097	35	7	1809,15	1805,14	0,1146	0,0096	1,0458	0,0203
2074,4916 1,2965 7,7464 0,0421 4,7773 1,0270 1,0259 0,5338 38 10 2038,43 2034,23 0,1198 0,0196 1,0932 0,0210	1925,2240	1,2996	7,6747	0,0415	4,5426	1,0227	1,0217	0,4503	36	8	1886,87	1882,78	0,1161	0,0126	1,0597	0,0208
	2001,0071	1,2980	7,7122	0,0420	4,6675	1,0248	1,0238	0,4918	37	9	1963,58	1959,43	0,1178	0,0159	1,0755	0,0210
2144,8251 1,2951 7,7773 0,0417 4,8701 1,0291 1,0280 0,5759 39 11 2110,55 2106,31 0,1219 0,0237 1,1127 0,0209	2074,4916	1,2965	7,7464	0,0421	4,7773	1,0270	1,0259	0,5338	38	10	2038,43	2034,23	0,1198	0,0196	1,0932	0,0210
	2144,8251	1,2951	7,7773	0,0417	4,8701	1,0291	1,0280	0,5759	39	11	2110,55	2106,31	0,1219	0,0237	1,1127	0,0209

											P		· idoliii	
2211,1968	1,2939	7,8048	0,0409	4,9443	1,0312	1,0301	0,6176	40	12	2179,10 2174	1,83 0,1242	0,0282	1,1339	0,0204
2272,8640	1,2929	7,8292	0,0395	4,9987	1,0332	1,0322	0,6585	41	13	2243,29 2239	0,1268	0,0331	1,1570	0,0198
2329,1783	1,2920	7,8503	0,0378	5,0325	1,0352	1,0342	0,6980	42	14	2302,43 2298	3,14 0,1295	0,0383	1,1819	0,0189
2379,6076	1,2912	7,8685	0,0357	5,0455	1,0372	1,0362	0,7358	43	15	2355,92 2351	0,1324	0,0439	1,2086	0,0178
2423,7553	1,2905	7,8838	0,0332	5,0379	1,0390	1,0381	0,7715	44	16	2403,29 2399	0,1355	0,0499	1,2370	0,0166
2461,3727	1,2900	7,8964	0,0305	5,0101	1,0406	1,0398	0,8047	45	17	2444,22 2439	0,1388	0,0563	1,2672	0,0152
2492,3656	1,2896	7,9064	0,0276	4,9634	1,0422	1,0414	0,8352	46	18	2478,53 2474	0,1423	0,0630	1,2992	0,0138
2516,7936	1,2893	7,9142	0,0246	4,8991	1,0436	1,0429	0,8628	47	19	2506,20 2501	0,1460	0,0701	1,3328	0,0123
2534,8619	1,2890	7,9198	0,0215	4,8190	1,0448	1,0442	0,8874	48	20	2527,38 2523	3,17 0,1499	0,0775	1,3682	0,0108
2546,9063	1,2889	7,9235	0,0186	4,7251	1,0459	1,0454	0,9089	49	21	2542,34 2538	3,16 0,1540	0,0853	1,4052	0,0093
2553,3724	1,2888	7,9255	0,0157	4,6194	1,0468	1,0464	0,9275	50	22	2551,47 2547	7,32 0,1582	0,0935	1,4440	0,0079
2554,7906	1,2888	7,9260	0,0131	4,5043	1,0476	1,0472	0,9432	51	23	2555,27 2551	0,1626	0,1020	1,4843	0,0065
2551,7477	1,2888	7,9252	0,0107	4,3817	1,0483	1,0480	0,9563	52	24	2554,31 2550	0,1672	0,1108	1,5263	0,0053
2544,8584	1,2889	7,9233	0,0085	4,2539	1,0488	1,0486	0,9670	53	25	2549,19 2545	5,14 0,1720	0,1200	1,5700	0,0043
2534,7385	1,2890	7,9204	0,0067	4,1227	1,0493	1,0490	0,9755	54	26	2540,53 2536	5,52 0,1770	0,1295	1,6152	0,0033
2521,9803	1,2892	7,9168	0,0051	3,9899	1,0496	1,0494	0,9822	55	27	2528,95 2524	1,98 0,1821	0,1394	1,6620	0,0026
2507,1333	1,2893	7,9125	0,0038	3,8569	1,0499	1,0497	0,9873	56	28	2515,01 2511	,08 0,1874	0,1495	1,7103	0,0019
2490,6901	1,2895	7,9077	0,0028	3,7250	1,0501	1,0500	0,9912	57	29	2499,25 2495	5,36 0,1929	0,1600	1,7602	0,0014
2473,0780	1,2898	7,9024	0,0020	3,5952	1,0502	1,0501	0,9940	58	30	2482,13 2478	3,28 0,1985	0,1708	1,8115	0,0010
2454,6557	1,2900	7,8969	0,0014	3,4682	1,0503	1,0502	0,9960	59	31	2464,03 2460	0,2043	0,1820	1,8644	0,0007
2435,7150	1,2902	7,8912	0,0010	3,3448	1,0504	1,0503	0,9974	60	32	2445,28 2441	,51 0,2102	0,1934	1,9186	0,0005
2416,4864	1,2905	7,8852	0,0006	3,2252	1,0504	1,0504	0,9984	61	33	2426,148 2422	2,41 0,2163	0,2051	1,9743	0,0003
2397,1461	1,2907	7,8792	0,0004	3,1097	1,0504	1,0504	0,9990	62	34	2406,83 2403	3,13 0,2226	0,2171	2,0314	0,0002

ПРИЛОЖЕНИЕ Б

(обязательное)

Таблица Б1 - расчетные значения перемещения, скорости и ускорения поршня при $n=5000~{\rm Muh}^{-1}$ с шагом в 10 градусов ПКВ

и п – 3000	омин сш	arom Bror	радусов п	KD		
j _{кв} , рад	j _{кв} , град	S _X , мм	V _X , м/с	W_X , M/c^2	W_{X2} , M/C^2	W_{X1} , M/c^2
0	0	0,000	-0,230	12587,94	3491,4184	16731,6
0,1745	10	0,620	3,933	12268,24	3280,8601	16319,9
0,3491	20	2,600	7,894	11333,69	2674,5816	15116,3
0,5236	30	5,838	11,456	9857,42	1745,7092	13212
0,6981	40	10,174	14,457	7952,85	606,27844	10748,8
0,8727	50	15,400	16,776	5761,95	-606,2784	7904,35
1,0472	60	21,275	18,344	3440,76	-1745,709	4874,38
1,2217	70	27,543	19,141	1143,92	-2674,582	1853,83
1,3963	80	33,953	19,198	-990,23	-3280,86	-981,726
1,5708	90	40,268	18,588	-2852,10	-3491,418	-3491,42
1,7453	100	46,282	17,413	-4369,57	-3280,86	-5579,99
1,9199	110	51,827	15,793	-5512,05	-2674,582	-7202,99
2,0944	120	56,775	13,851	-6289,56	-1745,709	-8365,8
2,2689	130	61,038	11,702	-6747,01	-606,2784	-9116,9
2,4435	140	64,563	9,439	-6954,57	606,27844	-9536,29
2,618	150	67,326	7,132	-6995,40	1745,7092	-9720,63
2,7925	160	69,318	4,821	-6952,33	2674,5816	-9767,12
2,9671	170	70,541	2,522	-6895,21	3280,8601	-9758,18
3,1416	180	71,000	0,230	-6870,50	3491,4184	-9748,77
3,3161	190	70,694	-2,068	-6894,48	3280,8601	-9758,18
3,4907	200	69,619	-4,388	-6950,87	2674,5816	-9767,12
3,6652	210	67,766	-6,733	-6993,20	1745,7092	-9720,63
3,8397	220	65,129	-9,086	-6951,63	606,27844	-9536,29
4,0143	230	61,712	-11,406	-6743,34	-606,2784	-9116,9
4,1888	240	57,537	-13,621	-6285,16	-1745,709	-8365,8
4,3633	250	52,654	-15,635	-5506,91	-2674,582	-7202,99
4,5379	260	47,149	-17,333	-4363,70	-3280,86	-5579,99
4,7124	270	41,148	-18,588	-2845,50	-3491,418	-3491,42
4,8869	280	34,820	-19,278	-982,89	-3280,86	-981,726
5,0615	290	28,370	-19,298	1151,99	-2674,582	1853,83
5,236	300	22,037	-18,574	3449,57	-1745,709	4874,38
5,4105	310	16,074	-17,072	5771,49	-606,2784	7904,35
5,5851	320	10,740	-14,810	7963,13	606,27844	10748,8
5,7596	330	6,278	-11,855	9868,43	1745,7092	13212
5,9341	340	2,901	-8,327	11345,43	2674,5816	15116,3
6,1087	350	0,773	-4,387	12280,71	3280,8601	16319,9
6,2832	360	0,000	-0,230	12601,14	3491,4184	16731,6
6,4577	370	0,620	3,933	12281,45	3280,8601	16319,9
6,6323	380	2,600	7,894	11346,89	2674,5816	15116,3
		5,838	*	ł		13212
6,8068	390	· ·	11,456	9870,62	1745,7092	
6,9813	400	10,174	14,457	7966,05	606,27844	10748,8
7,1558	410	15,400	16,776	5775,14	-606,2784	7904,35
7,3304	420	21,275	18,344	3453,95	-1745,709	4874,38
7,5049	430	27,543	19,141	1157,11	-2674,582	1853,83
	4.40	33,953	19,198	-977,05	-3280,86	-981,726
7,6794	440	55,555	13,130	377,00	3200,00	, 0 = , . = 0
7,6794 7,854	450	40,268	18,588	-2838,92	-3491,418	-3491,42

				p A		
8,203	470	51,827	15,793	-5498,88	-2674,582	-7202,99
8,3776	480	56,775	13,851	-6276,39	-1745,709	-8365,8
8,5521	490	61,038	11,702	-6733,84	-606,2784	-9116,9
8,7266	500	64,563	9,439	-6941,41	606,27844	-9536,29
8,9012	510	67,326	7,132	-6982,24	1745,7092	-9720,63
9,0757	520	69,318	4,821	-6939,18	2674,5816	-9767,12
9,2502	530	70,541	2,522	-6882,06	3280,8601	-9758,18
9,4248	540	71,000	0,230	-6857,36	3491,4184	-9748,77
9,5993	550	70,694	-2,068	-6881,34	3280,8601	-9758,18
9,7738	560	69,619	-4,388	-6937,73	2674,5816	-9767,12
9,9484	570	67,766	-6,733	-6980,07	1745,7092	-9720,63
10,123	580	65,129	-9,086	-6938,51	606,27844	-9536,29
10,297	590	61,712	-11,406	-6730,22	-606,2784	-9116,9
10,472	600	57,537	-13,621	-6272,04	-1745,709	-8365,8
10,647	610	52,654	-15,635	-5493,80	-2674,582	-7202,99
10,821	620	47,149	-17,333	-4350,59	-3280,86	-5579,99
10,996	630	41,148	-18,588	-2832,40	-3491,418	-3491,42
11,17	640	34,820	-19,278	-969,80	-3280,86	-981,726
11,345	650	28,370	-19,298	1165,08	-2674,582	1853,83
11,519	660	22,037	-18,574	3462,65	-1745,709	4874,38
11,694	670	16,074	-17,072	5784,56	-606,2784	7904,35
11,868	680	10,740	-14,810	7976,20	606,27844	10748,8
12,043	690	6,278	-11,855	9881,49	1745,7092	13212
12,217	700	2,901	-8,327	11358,49	2674,5816	15116,3
12,392	710	0,773	-4,387	12293,77	3280,8601	16319,9
12,566	720	0,000	-0,230	12614,19	3491,4184	16731,6

ПРИЛОЖЕНИЕ В (обязательное)

Таблица В1 - Сводная таблица динамического расчета двигателя с шагом в 10 градусов ПКВ

									і (2)		m 11	
рј, МПа	Δр _г , Мпа	р, Мпа	tgβ	р _N , МПа	1/cosβ	рѕ, Мпа	cos(β+φ)/cosβ	рк, Мпа	$\sin(\beta+\phi)/\cos\beta$	рт, Мпа	Т, кН	Мкр.ц, Нм
-1,741	0,005	-1,736	0,000	0,000	1,000	-1,736	1,000	-1,736	0,000	0,000	0,000	0,000
-1,697	0,002	-1,695	0,051	-0,086	1,001	-1,697	0,976	-1,654	0,224	-0,379	-2,004	-71,137
-1,567	-0,001	-1,569	0,101	-0,158	1,005	-1,577	0,905	-1,420	0,437	-0,685	-3,618	-128,445
-1,363	-0,004	-1,367	0,148	-0,203	1,011	-1,382	0,792	-1,083	0,628	-0,859	-4,538	-161,092
-1,100	-0,007	-1,107	0,192	-0,213	1,018	-1,127	0,643	-0,711	0,790	-0,874	-4,617	-163,905
-0,797	-0,010	-0,807	0,231	-0,186	1,026	-0,828	0,466	-0,376	0,914	-0,738	-3,895	-138,283
-0,476	-0,013	-0,489	0,263	-0,128	1,033	-0,505	0,272	-0,133	0,997	-0,487	-2,574	-91,383
-0,158	-0,018	-0,176	0,287	-0,050	1,040	-0,183	0,072	-0,013	1,037	-0,182	-0,963	-34,197
0,137	-0,018	0,119	0,302	0,036	1,044	0,124	-0,123	-0,015	1,036	0,124	0,653	23,166
0,394	-0,018	0,377	0,307	0,116	1,045	0,394	-0,307	-0,116	0,999	0,376	1,988	70,558
0,604	-0,018	0,587	0,302	0,177	1,044	0,612	-0,470	-0,276	0,932	0,546	2,886	102,442
0,762	-0,018	0,745	0,287	0,213	1,040	0,774	-0,611	-0,455	0,841	0,626	3,307	117,391
0,870	-0,018	0,852	0,263	0,224	1,033	0,881	-0,727	-0,620	0,734	0,626	3,304	117,302
0,933	-0,018	0,915	0,231	0,211	1,026	0,939	-0,819	-0,750	0,618	0,565	2,985	105,985
0,962	-0,018	0,944	0,192	0,181	1,018	0,961	-0,889	-0,840	0,496	0,468	2,471	87,719
0,967	-0,018	0,950	0,148	0,141	1,011	0,960	-0,940	-0,893	0,372	0,353	1,864	66,156
0,961	-0,018	0,944	0,101	0,095	1,005	0,949	-0,974	-0,919	0,247	0,233	1,232	43,747
0,954	-0,016	0,938	0,051	0,048	1,001	0,939	-0,994	-0,932	0,123	0,116	0,611	21,699
0,950	-0,014	0,936	0,000	0,000	1,000	0,936	-1,000	-0,936	0,000	0,000	0,000	0,000
0,953	-0,012	0,942	-0,051	-0,048	1,001	0,943	-0,994	-0,936	-0,123	-0,116	-0,614	-21,790
0,961	-0,009	0,952	-0,101	-0,096	1,005	0,957	-0,974	-0,928	-0,247	-0,235	-1,243	-44,132
0,967	-0,007	0,960	-0,148	-0,142	1,011	0,971	-0,940	-0,903	-0,372	-0,357	-1,885	-66,901
0,961	-0,004	0,957	-0,192	-0,184	1,018	0,975	-0,889	-0,851	-0,496	-0,474	-2,505	-88,936
0,933	-0,002	0,931	-0,231	-0,215	1,026	0,955	-0,819	-0,763	-0,618	-0,575	-3,037	-107,797
0,869	0,007	0,877	-0,263	-0,230	1,033	0,906	-0,727	-0,637	-0,734	-0,644	-3,399	-120,665
0,762	0,020	0,781	-0,287	-0,224	1,040	0,812	-0,611	-0,477	-0,841	-0,657	-3,469	-123,160

									-	тродолже	11110 140	лицы Бт
0,603	0,037	0,640	-0,302	-0,193	1,044	0,668	-0,470	-0,301	-0,932	-0,596	-3,149	-111,782
0,394	0,060	0,454	-0,307	-0,139	1,045	0,474	-0,307	-0,139	-0,999	-0,454	-2,395	-85,027
0,136	0,095	0,231	-0,302	-0,070	1,044	0,241	-0,123	-0,028	-1,036	-0,239	-1,262	-44,798
-0,159	0,145	-0,014	-0,287	0,004	1,040	-0,015	0,072	-0,001	-1,037	0,015	0,079	2,809
-0,477	0,221	-0,256	-0,263	0,067	1,033	-0,265	0,272	-0,070	-0,997	0,256	1,350	47,910
-0,798	0,339	-0,460	-0,231	0,106	1,026	-0,471	0,466	-0,214	-0,914	0,420	2,218	78,749
-1,101	0,526	-0,575	-0,192	0,110	1,018	-0,586	0,643	-0,370	-0,790	0,454	2,399	85,174
-1,365	0,823	-0,542	-0,148	0,080	1,011	-0,548	0,792	-0,429	-0,628	0,341	1,799	63,869
-1,569	1,162	-0,407	-0,101	0,041	1,005	-0,409	0,905	-0,368	-0,437	0,178	0,939	33,331
-1,698	1,971	0,272	-0,051	-0,014	1,001	0,273	0,976	0,266	-0,224	-0,061	-0,322	-11,425
-1,743	4,210	2,467	0,000	0,000	1,000	2,467	1,000	2,467	0,000	0,000	0,000	0,000
-1,698	6,837	5,138	0,051	0,262	1,001	5,145	0,976	5,015	0,224	1,150	6,075	215,666
-1,569	6,628	5,059	0,101	0,510	1,005	5,085	0,905	4,579	0,437	2,210	11,669	414,267
-1,365	4,789	3,424	0,148	0,508	1,011	3,461	0,792	2,711	0,628	2,152	11,362	403,360
-1,102	3,168	2,066	0,192	0,397	1,018	2,103	0,643	1,327	0,790	1,632	8,617	305,890
-0,799	2,309	1,510	0,231	0,348	1,026	1,549	0,466	0,704	0,914	1,380	7,289	258,754
-0,478	1,742	1,264	0,263	0,332	1,033	1,306	0,272	0,344	0,997	1,260	6,655	236,238
-0,160	1,362	1,202	0,287	0,344	1,040	1,249	0,072	0,087	1,037	1,246	6,580	233,588
0,135	1,101	1,236	0,302	0,373	1,044	1,290	-0,123	-0,153	1,036	1,281	6,762	240,065
0,393	0,917	1,310	0,307	0,402	1,045	1,369	-0,307	-0,402	0,999	1,309	6,911	245,347
0,602	0,786	1,389	0,302	0,419	1,044	1,449	-0,470	-0,653	0,932	1,294	6,831	242,512
0,760	0,691	1,451	0,287	0,416	1,040	1,509	-0,611	-0,887	0,841	1,220	6,445	228,804
0,868	0,621	1,489	0,263	0,391	1,033	1,538	-0,727	-1,083	0,734	1,093	5,773	204,946
0,931	0,569	1,501	0,231	0,346	1,026	1,540	-0,819	-1,229	0,618	0,927	4,894	173,744
0,960	0,532	1,492	0,192	0,286	1,018	1,519	-0,889	-1,327	0,496	0,739	3,905	138,611
0,966	0,432	1,397	0,148	0,207	1,011	1,413	-0,940	-1,314	0,372	0,519	2,742	97,343
0,960	0,332	1,292	0,101	0,130	1,005	1,298	-0,974	-1,258	0,247	0,319	1,686	59,865
0,952	0,232	1,184	0,051	0,060	1,001	1,185	-0,994	-1,176	0,123	0,146	0,771	27,385
0,948	0,132	1,080	0,000	0,000	1,000	1,080	-1,000	-1,080	0,000	0,000	0,000	0,000
0,952	0,032	0,984	-0,051	-0,050	1,001	0,985	-0,994	-0,977	-0,123	-0,121	-0,641	-22,755

		-							-la-Uaranananananananananananananananananana			
0,959	0,022	0,981	-0,101	-0,099	1,005	0,986	-0,974	-0,956	-0,247	-0,243	-1,281	-45,487
0,965	0,020	0,985	-0,148	-0,146	1,011	0,996	-0,940	-0,926	-0,372	-0,366	-1,933	-68,624
0,960	0,019	0,978	-0,192	-0,188	1,018	0,996	-0,889	-0,870	-0,496	-0,485	-2,561	-90,909
0,931	0,018	0,949	-0,231	-0,219	1,026	0,973	-0,819	-0,777	-0,618	-0,586	-3,094	-109,833
0,867	0,017	0,884	-0,263	-0,232	1,033	0,914	-0,727	-0,643	-0,734	-0,649	-3,429	-121,725
0,760	0,016	0,776	-0,287	-0,222	1,040	0,806	-0,611	-0,474	-0,841	-0,652	-3,445	-122,283
0,602	0,015	0,617	-0,302	-0,186	1,044	0,643	-0,470	-0,290	-0,932	-0,574	-3,033	-107,669
0,392	0,014	0,406	-0,307	-0,124	1,045	0,424	-0,307	-0,124	-0,999	-0,405	-2,140	-75,957
0,134	0,013	0,147	-0,302	-0,044	1,044	0,153	-0,123	-0,018	-1,036	-0,152	-0,804	-28,553
-0,161	0,012	-0,149	-0,287	0,043	1,040	-0,155	0,072	-0,011	-1,037	0,155	0,817	29,020
-0,479	0,011	-0,468	-0,263	0,123	1,033	-0,484	0,272	-0,127	-0,997	0,467	2,464	87,464
-0,800	0,010	-0,790	-0,231	0,182	1,026	-0,811	0,466	-0,368	-0,914	0,722	3,814	135,391
-1,103	0,009	-1,094	-0,192	0,210	1,018	-1,114	0,643	-0,703	-0,790	0,864	4,564	162,014
-1,367	0,008	-1,359	-0,148	0,201	1,011	-1,374	0,792	-1,076	-0,628	0,854	4,509	160,070
-1,571	0,007	-1,564	-0,101	0,158	1,005	-1,572	0,905	-1,416	-0,437	0,683	3,608	128,071
-1,700	0,006	-1,694	-0,051	0,086	1,001	-1,697	0,976	-1,654	-0,224	0,379	2,003	71,117
-1,745	0,005	-1,740	0,000	0,000	1,000	-1,740	1,000	-1,740	0,000	0,000	0,000	0,000

Таблица B2 - Таблица крутящего момента двигателя с шагом в 10 градусов ПКВ

Суммарный крутящий мо-									
мент двигателя	1-ř	ĺ	2-i	Ĭ	3-i	Ĭ	4-й		
	М _{кр.ц} ,		$M_{\kappa p. u}$,		М _{кр.ц} ,		$M_{\kappa p. \mu}$,		
$M_{\text{кр.}}$, Нм	Нм	ф° _{кривош}	Нм	$\phi^\circ_{ ext{кривош}}$	Нм	ϕ° кривош	Нм	ф° _{кривош}	
-22,755	0,000	0,0	0,000	180,0	0,000	360,0	-22,755	540,0	
109,984	-71,137	10,0	-21,790	190,0	215,666	370,0	-12,755	550,0	
238,935	-128,445	20,0	-44,132	200,0	414,267	380,0	-2,755	560,0	
182,613	-161,092	30,0	-66,901	210,0	403,360	390,0	7,245	570,0	
70,294	-163,905	40,0	-88,936	220,0	305,890	400,0	17,245	580,0	
39,919	-138,283	50,0	-107,797	230,0	258,754	410,0	27,245	590,0	
61,434	-91,383	60,0	-120,665	240,0	236,238	420,0	37,245	600,0	
123,476	-34,197	70,0	-123,160	250,0	233,588	430,0	47,245	610,0	
208,694	23,166	80,0	-111,782	260,0	240,065	440,0	57,245	620,0	
298,123	70,558	90,0	-85,027	270,0	245,347	450,0	67,245	630,0	
377,401	102,442	100,0	-44,798	280,0	242,512	460,0	77,245	640,0	
436,248	117,391	110,0	2,809	290,0	228,804	470,0	87,245	650,0	
467,402	117,302	120,0	47,910	300,0	204,946	480,0	97,245	660,0	
465,723	105,985	130,0	78,749	310,0	173,744	490,0	107,245	670,0	
428,748	87,719	140,0	85,174	320,0	138,611	500,0	117,245	680,0	
354,612	66,156	150,0	63,869	330,0	97,343	510,0	127,245	690,0	
274,188	43,747	160,0	33,331	340,0	59,865	520,0	137,245	700,0	
184,904	21,699	170,0	-11,425	350,0	27,385	530,0	147,245	710,0	
157,245	0,000	180,0	0,000	360,0	0,000	540,0	157,245	720,0	

Таблица ВЗ - Таблица сил, действующих на шатунную шейку КВ с шагом в 10 градусов ПКВ

R_k	Т	K	P_k	R _{ш.ш.}	K_pk
25,85829	0	-9,16796	-14,9614	14,9614	-25,8583
25,50422	-2,003847	-8,73505	-14,5285	14,6661	-25,4254
24,45765	-3,618165	-7,49821	-13,2917	13,7754	-24,1885
22,86318	-4,53779	-5,718	-11,5115	12,3736	-22,4083
20,96128	-4,617037	-3,75614	-9,54963	10,6072	-20,4465
19,07799	-3,895284	-1,98577	-7,77925	8,7000	-18,6761
17,58307	-2,574176	-0,70329	-6,49678	6,9882	-17,3936
16,7853	-0,963283	-0,0673	-5,86079	5,9394	-16,7576
16,78077	0,652561	-0,07774	-5,87123	5,9074	-16,7681
17,41409	1,987548	-0,60997	-6,40345	6,7048	-17,3003
18,37561	2,885687	-1,45728	-7,25077	7,8039	-18,1476
19,3774	3,306791	-2,40283	-8,19632	8,8382	-19,0932
20,23399	3,304271	-3,27204	-9,06553	9,6489	-19,9624
20,86521	2,9855	-3,96018	-9,75367	10,2004	-20,6505
21,2684	2,470966	-4,43404	-10,2275	10,5218	-21,1244
21,48657	1,863541	-4,71528	-10,5088	10,6727	-21,4056
21,58099	1,232311	-4,85544	-10,6489	10,7200	-21,5458
21,62061	0,611253	-4,92163	-10,7151	10,7325	-21,612
21,63585	6,06E-16	-4,94552	-10,739	10,7390	-21,6359
21,64113	-0,613794	-4,94209	-10,7356	10,7531	-21,6324
21,62422	-1,243145	-4,89813	-10,6916	10,7636	-21,5885
21,5413	-1,884527	-4,76838	-10,5619	10,7287	-21,4587

		1.	родолже	ние таол	іицы ВЗ
21,33348	-2,505236	-4,49554	-10,289	10,5896	-21,1859
20,93956	-3,036542	-4,02789	-9,82137	10,2801	-20,7182
20,34218	-3,399021	-3,36587	-9,15935	9,7697	-20,0562
19,52198	-3,46929	-2,5209	-8,31439	9,0092	-19,2112
18,54969	-3,148789	-1,59015	-7,38364	8,0270	-18,2805
17,58922	-2,395124	-0,73505	-6,52854	6,9540	-17,4254
16,88788	-1,261914	-0,15034	-5,94383	6,0763	-16,8407
16,69605	0,079115	-0,00553	-5,79902	5,7996	-16,6959
17,11235	1,349578	-0,36872	-6,16221	6,3083	-17,059
17,95872	2,218289	-1,13086	-6,92434	7,2710	-17,8212
18,79598	2,399255	-1,95189	-7,74538	8,1085	-18,6422
19,04255	1,799115	-2,26704	-8,06053	8,2589	-18,9574
18,65974	0,938905	-1,94577	-7,73926	7,7960	-18,6361
15,29085	-0,321822	1,402866	-4,39062	4,4024	-15,2875
3,660282	-3,19E-15	13,03005	7,236561	7,2366	-3,66028
11,52331	6,07509	26,48217	20,68868	21,5622	9,791835
13,86819	11,6695	24,18364	18,39015	21,7801	7,493306
11,60739	11,36226	14,31742	8,523929	14,2042	-2,37291
12,95978	8,616625	7,00996	1,216472	8,7021	-9,68037
14,88176	7,28884	3,715757	-2,07773	7,5792	-12,9746
16,29316	6,654585	1,818094	-3,97539	7,7516	-14,8722
17,51366	6,579934	0,459718	-5,33377	8,4702	-16,2306
18,75738	6,7624	-0,80565	-6,59914	9,4487	-17,496
20,04073	6,911195	-2,121	-7,91449	10,5073	-18,8113
21,26721	6,831337	-3,44986	-9,24334	11,4938	-20,1402
22,32425	6,445181	-4,68329	-10,4768	12,3005	-21,3736
23,13891	5,773131	-5,71682	-11,5103	12,8770	-22,4071
23,69332	4,894189	-6,492	-12,2855	13,2245	-23,1823
24,01636	3,904532	-7,00651	-12,8	13,3823	-23,6968
23,78708	2,742059	-6,93817	-12,7317	13,0236	-23,6285
23,39559	1,68635	-6,6444	-12,4379	12,5517	-23,3347
22,91446	0,771406	-6,21114	-12,0046	12,0294	-22,9015
22,39492	2,1E-15	-5,70459	-11,4981	11,4981	-22,3949
21,86083	-0,640995	-5,1611	-10,9546	10,9733	-21,8514
21,7766	-1,28132	-5,04854	-10,842	10,9175	-21,7389
21,66793	-1,933066	-4,89119	-10,6847	10,8581	-21,5815
21,43911	-2,560823	-4,59528	-10,3888	10,6997	-21,2856
21,02318	-3,093883	-4,10395	-9,89743	10,3697	-20,7943
20,37632	-3,428863	-3,39542	-9,1889	9,8078	-20,0857
19,49994	-3,444596	-2,50296	-8,29645	8,9831	-19,1933
18,47265	-3,032919	-1,53164	-7,32513	7,9282	-18,222
17,47843	-2,139638	-0,65664	-6,45013	6,7958	-17,347
16,80541	-0,804298	-0,09582	-5,88931	5,9440	-16,7862
16,76738	0,817465	-0,05711	-5,8506	5,9074	-16,7474
17,53738	2,46377	-0,67312	-6,46661	6,9201	-17,3635
19,02086	3,813844	-1,94425	-7,73774	8,6266	-18,6346
20,90732	4,563769	-3,7128	-9,50629	10,5450	-20,4031
22,82194	4,509014	-5,68175	-11,4752	12,3293	-22,3721
24,43449	3,607622	-7,47636	-13,2699	13,7515	-24,1667
25,50176	2,003291	-8,73263	-14,5261	14,6636	-25,423
25,87746	4,5E-15	-8,73203 -9,18713	-14,9806	14,0030	-25,423
25,01140	+,∪⊑-10	- 8 , 10 <i>1</i> 13	- 17,3000	17,5000	-23,0113

Таблица В4 - Таблица сил, действующие на коренные шейки с шагом в 10 градусов ПКВ

	<u>1-й кр</u>	оивошиг		2-я коренная шейка				-й кривс			коренная	шейка	3-й кривошип		
	Rк.1,	T1,		Тк2,	-	Rк.ш2,		T2,		Тκ3,	-	Rк.ш3,		T3,	
φ° ₁	кН	кН	Крк1,кН	кН	Кк2,кН	кН	ϕ°_{2}	кН	Крк2,кН	кН	Кк3,кН	кН	ϕ°_{3}	кН	Крк3,кН
0	25,858	0,000	-25,858	0,000	2,111	2,111	180	0,000	-21,636	-0,320	-21,744	21,746	540	-0,641	-21,851
10	25,504	-2,004	-25,425	0,695	1,896	2,020	190	-0,614	-21,632	-0,948	-21,686	21,706	550	-1,281	-21,739
20	24,458	-3,618	-24,189	1,188	1,300	1,761	200	-1,243	-21,588	-1,588	-21,585	21,643	560	-1,933	-21,582
30	22,863	-4,538	-22,408	1,327	0,475	1,409	210	-1,885	-21,459	-2,223	-21,372	21,487	570	-2,561	-21,286
40	20,961	-4,617	-20,446	1,056	-0,370	1,119	220	-2,505	-21,186	-2,800	-20,990	21,176	580	-3,094	-20,794
50	19,078	-3,895	-18,676	0,429	-1,021	1,108	230	-3,037	-20,718	-3,233	-20,402	20,657	590	-3,429	-20,086
60	17,583	-2,574	-17,394	-0,412	-1,331	1,394	240	-3,399	-20,056	-3,422	-19,625	19,921	600	-3,445	-19,193
70	16,785	-0,963	-16,758	-1,253	-1,227	1,754	250	-3,469	-19,211	-3,251	-18,717	18,997	610	-3,033	-18,222
80	16,781	0,653	-16,768	-1,901	-0,756	2,046	260	-3,149	-18,280	-2,644	-17,814	18,009	620	-2,140	-17,347
90	17,414	1,988	-17,300	-2,191	-0,063	2,192	270	-2,395	-17,425	-1,600	-17,106	17,180	630	-0,804	-16,786
100	18,376	2,886	-18,148	-2,074	0,653	2,174	280	-1,262	-16,841	-0,222	-16,794	16,796	640	0,817	-16,747
110	19,377	3,307	-19,093	-1,614	1,199	2,010	290	0,079	-16,696	1,271	-17,030	17,077	650	2,464	-17,363
120	20,234	3,304	-19,962	-0,977	1,452	1,750	300	1,350	-17,059	2,582	-17,847	18,033	660	3,814	-18,635
130	20,865	2,985	-20,651	-0,384	1,415	1,466	310	2,218	-17,821	3,391	-19,112	19,411	670	4,564	-20,403
140	21,268	2,471	-21,124	-0,036	1,241	1,242	320	2,399	-18,642	3,454	-20,507	20,796	680	4,509	-22,372
150	21,487	1,864	-21,406	-0,032	1,224	1,225	330	1,799	-18,957	2,703	-21,562	21,731	690	3,608	-24,167
160	21,581	1,232	-21,546	-0,147	1,455	1,462	340	0,939	-18,636	1,471	-22,030	22,079	700	2,003	-25,423
170	21,621	0,611	-21,612	-0,467	3,162	3,196	350	-0,322	-15,287	-0,161	-20,582	20,583	710	0,000	-25,877
180	21,636	0,000	-21,636	0,000	8,988	8,988	360	0,000	-3,660	0,000	-10,175	10,175	720	0,000	-16,690
190	21,641	-0,614	-21,632	6,142	14,563	15,805	370	11,669	7,493	4,833	-8,966	10,186	10	-2,004	-25,425
200	21,624	-1,243	-21,588	6,303	9,608	11,491	380	11,362	-2,373	3,872	-13,281	13,834	20	-3,618	-24,189
210	21,541	-1,885	-21,459	5,251	5,889	7,890	390	8,617	-9,680	2,039	-16,044	16,173	30	-4,538	-22,408
220	21,333	-2,505	-21,186	4,897	4,106	6,390	400	7,289	-12,975	1,336	-16,711	16,764	40	-4,617	-20,446
230	20,940	-3,037	-20,718	4,846	2,923	5,659	410	6,655	-14,872	1,380	-16,774	16,831	50	-3,895	-18,676
240	20,342	-3,399	-20,056	4,989	1,913	5,344	420	6,580	-16,231	2,003	-16,812	16,931	60	-2,574	-17,394
250	19,522	-3,469	-19,211	5,116	0,858	5,187	430	6,762	-17,496	2,900	-17,127	17,371	70	-0,963	-16,758
260	18,550	-3,149	-18,280	5,030	-0,265	5,037	440	6,911	-18,811	3,782	-17,790	18,187	80	0,653	-16,768
270	17,589	-2,395	-17,425	4,613	-1,357	4,809	450	6,831	-20,140	4,409	-18,720	19,233	90	1,988	-17,300

												прод	OJIMCI	тис табл	ицы Б4
280	16,888	-1,262	-16,841	3,854	-2,266	4,471	460	6,445	-21,374	4,665	-19,761	20,304	100	2,886	-18,148
290	16,696	0,079	-16,696	2,847	-2,856	4,032	470	5,773	-22,407	4,540	-20,750	21,241	110	3,307	-19,093
300	17,112	1,350	-17,059	1,772	-3,062	3,538	480	4,894	-23,182	4,099	-21,572	21,958	120	3,304	-19,962
310	17,959	2,218	-17,821	0,843	-2,938	3,056	490	3,905	-23,697	3,445	-22,174	22,440	130	2,985	-20,651
320	18,796	2,399	-18,642	0,171	-2,493	2,499	500	2,742	-23,629	2,607	-22,376	22,528	140	2,471	-21,124
330	19,043	1,799	-18,957	-0,056	-2,189	2,189	510	1,686	-23,335	1,775	-22,370	22,440	150	1,864	-21,406
340	18,660	0,939	-18,636	-0,084	-2,133	2,134	520	0,771	-22,901	1,002	-22,224	22,246	160	1,232	-21,546
350	15,291	-0,322	-15,287	0,161	-3,554	3,557	530	0,000	-22,395	0,306	-22,003	22,006	170	0,611	-21,612
360	3,660	0,000	-3,660	-0,320	-9,096	9,101	540	-0,641	-21,851	-0,320	-21,744	21,746	180	0,000	-21,636
370	13,868	11,669	7,493	-6,475	-14,616	15,986	550	-1,281	-21,739	-0,948	-21,686	21,706	190	-0,614	-21,632
380	11,607	11,362	-2,373	-6,648	-9,604	11,680	560	-1,933	-21,582	-1,588	-21,585	21,643	200	-1,243	-21,588
390	12,960	8,617	-9,680	-5,589	-5,803	8,056	570	-2,561	-21,286	-2,223	-21,372	21,487	210	-1,885	-21,459
400	14,882	7,289	-12,975	-5,191	-3,910	6,499	580	-3,094	-20,794	-2,800	-20,990	21,176	220	-2,505	-21,186
410	16,293	6,655	-14,872	-5,042	-2,607	5,676	590	-3,429	-20,086	-3,233	-20,402	20,657	230	-3,037	-20,718
420	17,514	6,580	-16,231	-5,012	-1,481	5,227	600	-3,445	-19,193	-3,422	-19,625	19,921	240	-3,399	-20,056
430	18,757	6,762	-17,496	-4,898	-0,363	4,911	610	-3,033	-18,222	-3,251	-18,717	18,997	250	-3,469	-19,211
440	20,041	6,911	-18,811	-4,525	0,732	4,584	620	-2,140	-17,347	-2,644	-17,814	18,009	260	-3,149	-18,280
450	21,267	6,831	-20,140	-3,818	1,677	4,170	630	-0,804	-16,786	-1,600	-17,106	17,180	270	-2,395	-17,425
460	22,324	6,445	-21,374	-2,814	2,313	3,643	640	0,817	-16,747	-0,222	-16,794	16,796	280	-1,262	-16,841
470	23,139	5,773	-22,407	-1,655	2,522	3,016	650	2,464	-17,363	1,271	-17,030	17,077	290	0,079	-16,696
480	23,693	4,894	-23,182	-0,540	2,274	2,337	660	3,814	-18,635	2,582	-17,847	18,033	300	1,350	-17,059
490	24,016	3,905	-23,697	0,330	1,647	1,680	670	4,564	-20,403	3,391	-19,112	19,411	310	2,218	-17,821
500	23,787	2,742	-23,629	0,883	0,628	1,084	680	4,509	-22,372	3,454	-20,507	20,796	320	2,399	-18,642
510	23,396	1,686	-23,335	0,961	-0,416	1,047	690	3,608	-24,167	2,703	-21,562	21,731	330	1,799	-18,957
520	22,914	0,771	-22,901	0,616	-1,261	1,403	700	2,003	-25,423	1,471	-22,030	22,079	340	0,939	-18,636
530	22,395	0,000	-22,395	0,000	-1,741	1,741	710	0,000	-25,877	-0,161	-20,582	20,583	350	-0,322	-15,287
540	21,861	-0,641	-21,851	0,320	2,581	2,600	720	0,000	-16,690	0,000	-10,175	10,175	360	0,000	-3,660
550	21,777	-1,281	-21,739	-0,361	-1,843	1,878	10	-2,004	-25,425	4,833	-8,966	10,186	370	11,669	7,493
560	21,668	-1,933	-21,582	-0,843	-1,304	1,552	20	-3,618	-24,189	3,872	-13,281	13,834	380	11,362	-2,373
570	21,439	-2,561	-21,286	-0,988	-0,561	1,137	30	-4,538	-22,408	2,039	-16,044	16,173	390	8,617	-9,680
580	21,023	-3,094	-20,794	-0,762	0,174	0,781	40	-4,617	-20,446	1,336	-16,711	16,764	400	7,289	-12,975

590	20,376	-3,429	-20,086	-0,233	0,705	0,742	50	-3,895	-18,676	1,380	-16,774	16,831	410	6,655	-14,872
600	19,500	-3,445	-19,193	0,435	0,900	1,000	60	-2,574	-17,394	2,003	-16,812	16,931	420	6,580	-16,231
610	18,473	-3,033	-18,222	1,035	0,732	1,268	70	-0,963	-16,758	2,900	-17,127	17,371	430	6,762	-17,496
620	17,478	-2,140	-17,347	1,396	0,289	1,426	80	0,653	-16,768	3,782	-17,790	18,187	440	6,911	-18,811
630	16,805	-0,804	-16,786	1,396	-0,257	1,419	90	1,988	-17,300	4,409	-18,720	19,233	450	6,831	-20,140
640	16,767	0,817	-16,747	1,034	-0,700	1,249	100	2,886	-18,148	4,665	-19,761	20,304	460	6,445	-21,374
650	17,537	2,464	-17,363	0,422	-0,865	0,962	110	3,307	-19,093	4,540	-20,750	21,241	470	5,773	-22,407
660	19,021	3,814	-18,635	-0,255	-0,664	0,711	120	3,304	-19,962	4,099	-21,572	21,958	480	4,894	-23,182
670	20,907	4,564	-20,403	-0,789	-0,124	0,799	130	2,985	-20,651	3,445	-22,174	22,440	490	3,905	-23,697
680	22,822	4,509	-22,372	-1,019	0,624	1,195	140	2,471	-21,124	2,607	-22,376	22,528	500	2,742	-23,629
690	24,434	3,608	-24,167	-0,872	1,381	1,633	150	1,864	-21,406	1,775	-22,370	22,440	510	1,686	-23,335
700	25,502	2,003	-25,423	-0,385	1,939	1,977	160	1,232	-21,546	1,002	-22,224	22,246	520	0,771	-22,901
710	25,877	0,000	-25,877	0,306	2,133	2,155	170	0,611	-21,612	0,306	-22,003	22,006	530	0,000	-22,395
720	16,690	0,000	-16,690	0,000	-2,473	2,473	180	0,000	-21,636	-0,320	-21,744	21,746	540	-0,641	-21,851