# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

| Институт химии и энергетики                                         |
|---------------------------------------------------------------------|
| (наименование института полностью)                                  |
|                                                                     |
| Кафедра « <u>Электроснабжение и электротехника</u> » (наименование) |
| 13.03.02. Электроэнергетика и электротехника                        |
| (код и наименование направления подготовки, специальности)          |
| Электроснабжение                                                    |

### ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

| на тему _ Электроснабжение микрорайона города на 10000 жителей                |      |                    |                  |  |  |
|-------------------------------------------------------------------------------|------|--------------------|------------------|--|--|
| Обучаюш                                                                       | ийся | А.В. Пальщиков     |                  |  |  |
|                                                                               |      | (Инициалы Фамилия) | (личная подпись) |  |  |
| Руководитель                                                                  |      | к.т.н. Д.А. Крет   | ГОВ              |  |  |
| (ученая степень (при наличии), ученое звание (при наличии), Инициалы Фамилия) |      |                    |                  |  |  |

#### Аннотация

Выпускная квалифицированная работа 48 страниц, 4 рисунка, 9 таблиц, 20 источников.

Ключевые слова: микрорайон, электроснабжение, система электроснабжения, здание, нагрузка, подстанция, оборудование, релейная зашита, заземление.

Для ввода в эксплуатацию зданий и микрорайона города в целом в данной работе проводится разработка системы электроснабжения, при реализации предлагаемого проекта будет обеспечено качественное и надежное электроснабжение потребителей электроэнергии микрорайона. В состав электроприемников будут входить различные электроприводы санитарно-технических устройств, электронно-бытовая техника, освещение, оргтехника и другие потребители электроэнергии, требующие обязательного питания электроэнергией для своей работы. Определены расчетные электрические нагрузки, согласно которым выбрано электрооборудование системы электроснабжения. Рассчитаны рабочие и аварийные режимы электрической сети, выбранное оборудование проверено по допустимым параметрам.

Содержание ВКР включает вопросы: систематизация и анализ исходных данных по микрорайону и зданиям; определение электрических нагрузок по зданиям и микрорайону; выбор числа и номинальной мощности трансформаторов подстанций; расчет электрической сети, выбор кабелей; определение токов короткого замыкания; выбор аппаратов защиты линий; выбор и проверка электрооборудования подстанций; релейная защита и автоматика, расчет уставок защит; расчет заземляющих устройств подстанций, молниезащита подстанций.

### Содержание

| Введение                                                        | 4    |
|-----------------------------------------------------------------|------|
| 1 Исходные данные по микрорайону и зданиям                      | 7    |
| 2 Разработка системы электроснабжения микрорайона               | 10   |
| 2.1 Определение электрических нагрузок по зданиям и микрорайону | ر 10 |
| 2.2 Выбор числа и номинальной мощности трансформаторов          |      |
| подстанций                                                      | 14   |
| 2.3 Расчет электрической сети, выбор кабелей                    | 17   |
| 2.4 Расчет системы освещения территории                         | 22   |
| 2.5 Определение токов короткого замыкания                       | 23   |
| 2.6 Выбор аппаратов защиты линий                                | 29   |
| 2.7 Выбор и проверка электрооборудования подстанций             | 32   |
| 2.8 Релейная защита и автоматика, расчет уставок защит          | 37   |
| 2.9 Расчет заземляющего устройства подстанций, молниезащита     |      |
| подстанций                                                      | 41   |
| Заключение                                                      | 45   |
| Список используемых источников                                  | 47   |

#### Введение

Новые городские микрорайоны (МКР) представляют собой жилые комплексы, построенные в рамках крупного проекта по застройке городской территории, отличаются от традиционных жилых массивов тем, что они требований спроектированы учётом современных К комфорту, безопасности и экологии. В отличие от плотной застройки центральных районов, новые МКР создаются с учётом широких дворов, просторных детских площадок, парковых зон и удобных транспортных развязок. Такие жилые комплексы часто включают в себя не только многоквартирные дома, но и коммерческие объекты, такие как магазины, кафе, спортивные и развлекательные центры, что способствует созданию более насыщенной коммерческой социальной И инфраструктуры. Микрорайоны становятся местами притяжения для людей, желающих жить в комфортных и безопасных условиях, представляя собой перспективное направление в градостроительстве, которое позволяет создать более гармоничную и удобную среду для жизни, улучшая качество жизни горожан и способствуя устойчивому развитию городов.

Инфраструктура МКР, а также зданий в их составе включает разнообразных потребителей значительное число электроэнергии: «электроприводы санитарно-технических устройств (СТУ) – вентиляции, водоснабжения и канализации, осветительную нагрузку, электроприводы лифтов, многочисленные бытовые электроприборы и оргтехнику и т.д. Очевидно, что современные жилые микрорайоны и здания в их составе (многоквартирные жилые дома, различные коммерческие, общественные и административные объекты) нуждаются в качественном обеспечении электрической энергией в обязательном порядке. При разработке систем электроснабжения микрорайонов необходимо учитывать требования по обеспечению надежности питания электроэнергией в соответствии с указаниями Правил устройства электроустановок (ПУЭ)» [12]. Например,

электроснабжение особо ответственных объектов (больниц, госпиталей, систем пожаротушения, лифтов, важных административных зданий и т.д.) должно выполняться от двух взаиморезервируемых источников питания, предусматривается также резервный источник в виде, например, дизельной электростанции (ДЭС) или газопоршневой электростанции (ГПЭ).

электроснабжения Системы городских микрорайонов играют ключевую роль в обеспечении жизнедеятельности современных мегаполисов, обеспечивая освещение работу общественного улиц, транспорта, функционирование медицинских учреждений, торговых центров и других инфраструктурных объектов. Эти системы включают в себя не только традиционные электрические сети, но и инновационные технологии, такие как умные сети (smart grids), которые позволяют более эффективно распределять и управлять энергией. В больших городах электроснабжение осуществляется с помощью крупных подстанций и распределительных узлов, которые обеспечивают стабильное напряжение и минимизируют потери энергии. В последние годы активно внедряются системы интеллектуального управления сетями, что позволяет оперативно реагировать на изменения в потреблении энергии и предотвращать перегрузки, способствуя повышению надежности и безопасности электроснабжения, а также снижая затраты на эксплуатацию и обслуживание. СЭС микрорайонов являются неотъемлемой частью современного городского планирования и требуют комплексного подхода для обеспечения устойчивого и эффективного функционирования инфраструктур. Внедрение инновационных технологий совершенствование систем управления, при разработке СЭС, позволяет снизить затраты на эксплуатацию и обслуживание городских сетей.

Актуальность темы работы состоит в том, что в рамках развития общегородской инфраструктуры планируется постройка нового микрорайона с большим числом жилых, коммерческих, административных и общественных зданий со значительным числом электроприемников внутри них. В состав электроприемников будут входить различные электроприводы

санитарно-технических устройств, электронно-бытовая техника, освещение, оргтехника и другие потребители электроэнергии, требующие обязательного питания электроэнергией для своей работы. Для ввода в эксплуатацию зданий и МКР в целом в данной работе проводится разработка системы электроснабжения, при реализации предлагаемого проекта СЭС будет обеспечено качественное и надежное электроснабжение потребителей электроэнергии микрорайона. Предложенные технические решения возможно использовать при разработке новых СЭС микрорайонов и реконструкции действующих СЭС.

Цель работы: реализация качественного, надежного и безопасного в эксплуатации электроснабжения микрорайона.

### Задачи работы:

- согласно проектной документации по микрорайону систематизировать исходные данные по инфраструктуре и параметрам зданий, составить генеральный план микрорайона с расположением всех зданий;
- рассчитать электрические нагрузки по зданиям и микрорайону в целом;
- выбрать силовые трансформаторы на подстанциях и марки подстанций;
- выбрать кабели электрической сети, составить план электрических сетей микрорайона;
- рассчитать рабочие и аварийные режимы сети, выбрать и проверить
   электрооборудование подстанций;
- выбрать оборудования релейной защиты и автоматики (РЗА),
   определить уставки защит;
- выполнить расчет заземляющих устройств подстанций, рассмотреть молниезащиту подстанций.

### 1 Исходные данные по микрорайону и зданиям

В рамках развития инфраструктуры г. Владивосток планируется постройка нового микрорайона с большим числом жилых, коммерческих, административных и общественных зданий со значительным числом электроприемников внутри них.

В состав электроприемников будут входить различные электроприводы санитарно-технических устройств, электронно-бытовая техника, освещение, оргтехника и другие потребители электроэнергии, требующие обязательного питания электроэнергией для своей работы. Для ввода в эксплуатацию зданий и МКР в целом в данной работе проводится разработка системы электроснабжения, при реализации предлагаемого проекта СЭС будет обеспечено качественное и надежное электроснабжение потребителей электроэнергии микрорайона.

Генеральный план микрорайона приведен на листе 1 графической части.

Рассматриваемый жилой микрорайон города — это организованная территория, включающая жилые дома, объекты социальной инфраструктуры и благоустройства, он будет являться важной составляющей городской среды, обеспечивая комфортное проживание жителей. Его постройка позволит удовлетворить потребности различных слоёв населения в современном жилье и создать комфортную среду для всех жителей. МКР будет интегрирован в общую структуру города, будет иметь удобные связи с другими районами и объектами инфраструктуры, это обеспечит жителям удобство и комфорт проживания. Надежное электроснабжение жилого микрорайона города является неотъемлемой частью его инфраструктуры, обеспечивающей не только комфорт, но и безопасность его жителей. Этот аспект не только влияет на повседневную жизнь людей, но и напрямую влияет на экономическое развитие региона.

Перечень зданий и их основные параметры приведены в таблице 1.

Таблица 1 – Перечень зданий и их основные параметры

|                          | 11                   | Число квартир/      | Число   |
|--------------------------|----------------------|---------------------|---------|
| Здание                   | Номер на<br>генплане | площадь/ число      | этажей, |
|                          | Генплане             | мест                | ШТ      |
| Жилой дом (ЖД)           | 1                    | 129                 | 16      |
| жд                       | 1A                   | 129                 | 16      |
| Кафе                     | 1Б                   | 72 м <sup>2</sup>   | 3       |
| жд                       | 2                    | 129                 | 16      |
| Магазин                  | 2/1                  | 125 м <sup>2</sup>  | 3       |
|                          | 3                    | 129                 | 16      |
|                          | 3A                   | 129                 | 16      |
| жд                       | 3Б                   | 72                  | 9       |
|                          | 3B                   | 129                 | 16      |
|                          | 3Γ                   | 72                  | 9       |
| Офисное здание           | 4                    | 985 м <sup>2</sup>  | 2       |
| -                        | 4/1                  | 129                 | 16      |
| жд                       | 5                    | 129                 | 16      |
| Супермаркет              | 5/1                  | 122 m <sup>2</sup>  | 2       |
| Хозтовары                | 5/2                  | 105 м <sup>2</sup>  | 2       |
| жд                       | 5/3                  | 129                 | 16      |
| Детсад                   | 6                    | 395                 | 3       |
| Магазин                  | 6Б                   | 247 m <sup>2</sup>  | 2       |
|                          | 7                    | 129                 | 16      |
| жд                       | 7A                   | 129                 | 16      |
|                          | 7Б                   | 72                  | 9       |
| Офисное здание           | 8                    | 907 m <sup>2</sup>  | 2       |
| Торговый павильон        | 8A                   | $71 \text{ m}^2$    | 2       |
| Административное здание  | 8Б                   | 288 m <sup>2</sup>  | 2       |
| Супермаркет              | 9                    | $377 \text{ m}^2$   | 3       |
|                          | 9A                   | 72                  | 9       |
| ЖД                       | 7/1                  | 129                 | 16      |
| Офисное здание           | 10                   | 1782 m <sup>2</sup> | 3       |
| Котельная                | 10A                  | 256 m <sup>2</sup>  | 1       |
| Школа                    | 12                   | 208 мест            | 3       |
|                          | 12A                  | 129                 | 16      |
| жд                       | 14                   | 72                  | 9       |
| Супермаркет              | 17                   | $377 \text{ m}^2$   | 2       |
|                          | 22                   | $370 \text{ m}^2$   | 1       |
| Котельная                | 22A                  | $438 \text{ m}^2$   | 1       |
| Школа                    | 24                   | 1205 мест           | 3       |
|                          | 37                   | 72                  | 9       |
| жд                       | 39A                  | 72                  | 9       |
| Школа                    | 43                   | 295 мест            | 2       |
| ЖД                       | 43/1                 | 129                 | 16      |
| Оздоровительный комплекс | 45/1                 | 242 m <sup>2</sup>  | 10      |
| Оздоровительный комплекс | 47                   | 129                 | 16      |
| Ψπ                       | 47A                  | 129                 | 16      |
| жд                       |                      |                     |         |
|                          | 49                   | 129                 | 16      |

В инфраструктура MKP основном, включает современные многоэтажные жилые дома (ЖД) из кирпича, с газовыми плитами. В каждом подъезде предусмотрены пассажирские лифты. Также имеются различные социально-общественные И торгово-административные здания (кафе, магазины, офисные здания, супермаркеты, детсад, школы, котельные, оздоровительный комплекс). Основная часть зданий относится к первой категории надежности электроснабжения – жилые дома ввиду наличия лифтов, детсад, школы и оздоровительный комплекс ввиду пожаротушения, котельные ввиду важности обеспечения их бесперебойной работы для отопления МКР. Остальные здания относятся ко второй категории надежности электроснабжения.

Источником питания МКР является подстанция (ПС) 110/10/6 кВ энергосистемы, расположенная на расстоянии 1,21 км.

Электроснабжение жилого микрорайона должно быть организовано с учетом его специфики и потребностей жителей. Оно обеспечивает комфорт и безопасность жизни горожан, поддерживает функционирование всех сфер деятельности – от бытовых нужд до промышленных процессов. Важно, чтобы система была надежной, безопасной и эффективной. Для этого необходимо провести тщательное проектирование, которое включает в себя анализ потребления электроэнергии, выбор оптимальных источников и электричества. Необходимо маршрутов распределения предусмотреть защитные меры, которые предотвратят аварийные ситуации и обеспечат бесперебойное электроснабжение. Это включает в себя регулярное техническое обслуживание оборудования, установку автоматизированных систем мониторинга и реагирования на аварии.

Вывод по разделу.

Систематизированы исходные данные по микрорайону, зданиям и источнику питания. Приведены основные параметры зданий, рассмотрены категории по обеспечению надежности электроснабжения. Приведены основные требования к системе электроснабжения микрорайона.

### 2 Разработка системы электроснабжения микрорайона

## 2.1 Определение электрических нагрузок по зданиям и микрорайону

микрорайона Электрические нагрузки - это важный аспект проектирования и эксплуатации электрических сетей, который напрямую влияет на надежность и эффективность энергоснабжения, их правильный избежать расчет позволяет перегрузок, обеспечить стабильное электроснабжение И оптимизировать расходы электроэнергию. на Электрическая нагрузка – это потребление электроэнергии различными устройствами и системами, которые функционируют в заданной зоне, в микрорайоне «нагрузки могут быть как постоянными, так и переменными, в зависимости от времени суток, сезона и других факторов» [12]. Основные категории нагрузок включают жилые, коммерческие и производственные [1]. Для каждого типа здания рассчитывается расчетная нагрузка, это может быть сделано с использованием стандартных норм и коэффициентов, которые учитывают среднее потребление электроэнергии на квадратный метр или на человека.

«Активная нагрузка квартир МЖД:

$$P = P_{y\partial . \kappa g} \cdot n, \tag{1}$$

где  $P_{y\partial,\kappa\theta}$  — удельная нагрузка, кВт/кв;

n — число квартир, шт.

Полная нагрузка МЖД состоит из нагрузки квартир и силовых электроприемников (ЭП) (лифтов, насосов и др.):

$$P_C = P_{P.JI} + k_{C.JB} \cdot \sum_{i=1}^{n} P_{JB.H} \cdot N_{\mathcal{I}}, \qquad (2)$$

$$Q_C = P_C \cdot tg\varphi_C, \tag{3}$$

$$P_{II} = k_{C.II.} \cdot \sum_{1}^{n_I} P_{n.i}, \tag{4}$$

$$Q_{\pi} = P_{\pi} \cdot tg\varphi_{\pi}, \tag{5}$$

$$P_p = P + (P_{\mathcal{I}} + P_{\mathcal{C}}) \cdot K_{\mathcal{V}}, \tag{6}$$

$$Q_p = Q + (Q_{II} + Q_C) \cdot K_{v}, \tag{7}$$

где  $P_{\mathit{ДВ.H}}$  – номинальные мощности электродвигателей (ЭД) силовых ЭП, кВт/этаж;

n – число ЭД, шт.;

 $k_{\it C.\it ДB}$ ,  $k_{\it C.\it Л.}$ — коэффициенты спроса нагрузки ЭД силовых ЭП и лифтов;

 $P_{n.i}$  — установленная мощность ЭД i- го лифта, кВт;

 $P_{\scriptscriptstyle C}$  – нагрузка силовых ЭП, кВт;

 $N_{\ni},\ N_{\varPi}$  — число этажей и подъездов, шт.;

 $tg\phi_{C}$ ,  $tg\phi_{\Pi}$  — тангенс, соответствующие нормативному  $\cos \phi$  ЭД силовых ЭП и лифтов.

 $K_y$  – коэффициент участия силовых ЭП в максимуме нагрузок.

Полная нагрузка МЖД:

$$S_{p} = \sqrt{P_{p}^{2} + Q_{p}^{2}},$$
 (8)

где  $tg\varphi$  – тангенс, соответствующий нормативному  $\cos\varphi$ » [12].

1) Расчет для ЖД № 1.

Для 129 квартир,  $P_{y\partial} = 0.82$  кВт/кв [15].

$$P = 0.82 \cdot 129 = 105.78$$
 KBT.

 $\Pi$ o (2-8):

$$P_{\pi} = 0,7 \cdot 4 \cdot 2 \cdot 4,5 = 25,2 \text{ кВт,}$$
 
$$Q_{\pi} = 25,2 \cdot 1,17 = 29,48 \text{ квар,}$$
 
$$P_{C} = 0,65 \cdot 1,5 \cdot 16 = 15,6 \text{ кВт,}$$
 
$$Q_{C} = 15,6 \cdot 0,75 = 11,7 \text{ квар,}$$
 
$$P_{p} = 105,78 + (25,2 + 15,6) \cdot 0,9 = 142,5 \text{ кВт,}$$
 
$$Q_{p} = 54,19 + (29,48 + 11,7) \cdot 0,9 = 91,26 \text{ квар,}$$
 
$$S_{p} = \sqrt{142,5^{2} + 91,26^{2}} = 169,22 \text{ кВА.}$$

2) Расчет по вместимости. Для детского сада, здание №6:  $P_{_{v\partial_{-}}} = 0,26 \text{ кВт/место [15]}.$ 

$$P_p = 0,26 \cdot 395 = 102,7 \text{ кВт,}$$
 
$$Q_p = 102,7 \cdot 0,54 = 55,43 \text{ квар,}$$
 
$$S_p = \sqrt{102,7^2 + 55,43^2} = 116,7 \text{ кВА.}$$

3) Расчет по удельной мощности и площади. Для кафе, здание №1Б:  $P_{vol.} = 0,48~\mathrm{кBt/m^2}~[15].$ 

$$P_p = 0,48 \cdot 72 = 34,56 \text{ кВт,}$$
 
$$Q_p = 34,56 \cdot 0,4 = 13,66 \text{ квар,}$$
 
$$S_p = \sqrt{34,56^2 + 13,66^2} = 37,16 \text{ кВА.}$$

Результаты расчета нагрузок сведены в таблице 2.

Таблица 2 – Результаты расчета электрических нагрузок

| Здания                   | Руд, кВт/кв (кв.м, чел)  | tgφ  | Рр, кВт | Qp, квар | Ѕр, кВА |
|--------------------------|--------------------------|------|---------|----------|---------|
| жд                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| жд                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| Кафе                     | 0,48                     | 0,40 | 34,56   | 13,66    | 37,16   |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| Магазин                  | 0,22                     | 0,75 | 27,50   | 20,63    | 34,38   |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| ЖД                       | 0,98                     | 0,51 | 96,08   | 62,43    | 114,58  |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| ЖД                       | 0,98                     | 0,51 | 96,08   | 62,43    | 114,58  |
| Офисное здание           | 0,16                     | 0,54 | 157,60  | 85,06    | 179,09  |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| Супермаркет              | 0,22                     | 0,75 | 26,84   | 20,13    | 33,55   |
| Хозтовары                | 0,22                     | 0,75 | 23,10   | 17,33    | 28,88   |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| Детсад                   | 0,26                     | 0,54 | 102,70  | 55,43    | 116,70  |
| Магазин                  | 0,22                     | 0,75 | 54,34   | 40,76    | 67,93   |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| ЖД                       | 0,98                     | 0,51 | 96,08   | 62,43    | 114,58  |
| Офисное здание           | 0,16                     | 0,54 | 145,12  | 78,33    | 164,91  |
| Торговый павильон        | 0,16                     | 0,54 | 11,36   | 6,13     | 12,91   |
| Административное здание  | 0,16                     | 0,54 | 46,08   | 24,87    | 52,36   |
| Супермаркет              | 0,14                     | 0,48 | 52,78   | 25,56    | 58,64   |
| ЖД                       | 0,98                     | 0,51 | 96,08   | 62,43    | 114,58  |
| ЖД                       | 0,82                     | 0,51 | 143,58  | 92,07    | 170,56  |
| Офисное здание           | 0,16                     | 0,59 | 285,12  | 169,18   | 331,53  |
| Котельная                | 0,25                     | 0,62 | 64,00   | 39,66    | 75,29   |
| Школа                    | 0,22                     | 0,65 | 45,76   | 29,56    | 54,48   |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| жд                       | 0,98                     | 0,51 | 96,08   | 62,43    | 114,58  |
| Супермаркет              | 0,14                     | 0,48 | 52,78   | 25,56    | 58,64   |
| Котельная                | 0,25                     | 0,62 | 92,50   | 57,33    | 108,82  |
| Котельная                | 0,25                     | 0,62 | 109,50  | 67,86    | 128,82  |
| Школа                    | 0,18                     | 0,65 | 216,90  | 140,10   | 258,21  |
| жд                       | 0,98                     | 0,51 | 96,08   | 62,43    | 114,58  |
| жд                       | 0,98                     | 0,51 | 84,74   | 49,16    | 97,96   |
| Школа                    | 0,25                     | 0,65 | 73,75   | 47,64    | 87,80   |
| жд                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| Оздоровительный комплекс | 0,14                     | 0,59 | 33,88   | 20,10    | 39,40   |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| ЖД                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| жд                       | 0,82                     | 0,51 | 142,50  | 91,26    | 169,22  |
| Территория, освещение    | $0.1 \; \mathrm{BT/m}^2$ | 0,33 | 11,99   | 3,94     | 12,62   |
| Итого                    | -                        | 0,63 | 4752,93 | 2964,76  | 5605,59 |

Силовые трансформаторы и прочее оборудование ТП выбираются с учетом данных нагрузок согласно зонам охвата по нагрузкам питаемых зданий.

## 2.2 Выбор числа и номинальной мощности трансформаторов подстанций

Выбор силовых трансформаторов подстанций играет важную роль в системах электроснабжения, ОН категории надёжности зависит otпотребителей, электроснабжения компенсации реактивных нагрузок, перегрузочной способности трансформаторов и экономических режимов работы. Обычно подстанции на устанавливают один ИЛИ два трансформатора, однотрансформаторные ТП применяют для электроприёмников III категории или через замкнутые сети, подключённые к нескольким подстанциям. Два трансформатора устанавливают на ТП, питающих электроприёмники I и II категории [14]. Номинальная мощность трансформатора определяется исходя ИЗ допустимой относительной аварийной нагрузки. Правильный выбор числа и номинальной мощности трансформаторов обеспечивает надёжное и эффективное функционирование подстанции и системы электроснабжения в целом. Таким образом, выбор трансформаторов ТΠ процессом, силовых является многогранным требующим учета множества факторов, включая технические характеристики оборудования, «условия эксплуатации и требования к надежности и безопасности энергосистемы» [12].

«Оптимальная мощность силовых трансформаторов:

$$S_0 = \frac{S_p}{\beta \cdot N},\tag{9}$$

где  $\beta$  – нормативный коэффициент загрузки;

N – количество трансформаторов, шт;

 $S_p$  — расчетная нагрузка, кВА.

Допустимая к передаче в сеть 0,4 кВ величина реактивной мощности (PM):

$$Q_{\rm l} = \sqrt{\left(N \cdot \beta \cdot S_{\scriptscriptstyle H.m.}\right)^2 - P_p^2},\tag{10}$$

где  $S_{_{\!\scriptscriptstyle H.m.}}$  — номинальная мощность трансформатора, кВА;

 $P_{p}$  – расчетная активная нагрузка, кВт.

Требуемая для компенсации со стороны 0,4 кВ РМ:

$$Q_{0,4} = Q_p - Q_1 \tag{11}$$

При полученном отрицательном значении  $Q_{0.4}$ , либо менее 50 квар, компенсация реактивной мощности (КРМ) не требуется. Далее, в случае выбора установок КРМ, рассчитывается остаточное значение РМ согласно выражению» [9]:

$$Q_{HH} = Q_p - Q_{EK} \tag{12}$$

Для ТП-1 нагрузки, с учетом зоны охвата: 840,1 кВт; 514,5 квар; 985,14 кВА. Проводятся расчеты по (9-12).

$$S_o = \frac{985,14}{0.7 \cdot 2} = 703,7 \text{ kBA}$$

Будет установлена КТПН с энергоэффективными трансформаторами ТМГ12-1000/10 [16].

$$Q_1 = \sqrt{(2 \cdot 0, 7 \cdot 1000)^2 - 840, 1^2} = 1119,9$$
 квар,

$$Q_{0,4} = 514,5 - 1119,9 = -605,4$$
 квар  $< 0$ .

КРМ не требуется.

«Коэффициент загрузки трансформатора в послеаварийном режиме:

$$K_n = \frac{S_{p.\text{KOMN}}}{S_{\text{H.m.}}},$$

$$K_n = \frac{985,14}{1000} = 0,99 \le 1,4.$$
(13)

Послеаварийный режим работы является допустимым» [8]. Для всех ТП расчеты – в таблице 3.

Таблица 3 – Выбор трансформаторов

| Подстанции | Sp.т, кВА | S.т, кВА | Qк, квар | Кп   |
|------------|-----------|----------|----------|------|
| ТП-1       | 703,7     | 1000     | -605,4   | 0,99 |
| ТП-2       | 1336,1    | 1600     | -585,6   | 1,17 |
| ТП-3       | 705,6     | 1000     | -616,9   | 0,99 |
| ТП-4       | 1153,9    | 1250     | -230,7   | 1,29 |

«Активные и реактивные потери мощности в трансформаторах:

$$\Delta P_m = \Delta P_{\kappa} / n \cdot [(P_p^2 + Q_p^2) / S_m] + n \cdot \Delta P_{xx}, \tag{14}$$

где  $\Delta P_{\kappa}$  – потери К3, кВт;

n – число трансформаторов, шт;

 $S_m$  – номинальная мощность, кВА;

 $\Delta P_{xx}$  – потери XX, кВт.

$$\Delta Q_m = (U_{\kappa} / n \cdot 100) \cdot [(P_p^2 + Q_p^2) / S_m] + (n \cdot I_{xx} \cdot S_m] / 100, \tag{15}$$

где  $U_{\scriptscriptstyle \kappa}-$  напряжение КЗ, %;

$$I_{xx}$$
 – ток XX, %» [4].

Для ТП-1:

$$\Delta P_{\scriptscriptstyle m} = 10,5 \, / \, 2 \cdot [(840,1^2 + 514,5^2) \, / \, 1,0^2] + 2 \cdot 1,1 = 3,47 \ \, \text{кВт},$$
 
$$\Delta Q_{\scriptscriptstyle m} = (5,5 \, / \, 2 \cdot 100) \cdot [(840,1^2 + 514,5^2) \, / \, 1,0] + (2 \cdot 0,6 \cdot 1,0) \, / \, 100 = 38,69 \ \, \text{квар}.$$

Расчеты сведены в таблице 4.

Таблица 4 – Потери мощности в ТП и итоговые нагрузки района

| Подстанции | ΔΡ, κΒτ | ΔQ, квар | Рр+ΔР, кВт | Qр+ΔQ, квар | S'p, κBA |
|------------|---------|----------|------------|-------------|----------|
| ТП-1       | 3,47    | 38,69    | 843,58     | 553,21      | 1008,79  |
| ТП-2       | 6,13    | 81,61    | 1584,60    | 1085,35     | 1920,66  |
| ТП-3       | 3,48    | 38,83    | 861,56     | 528,15      | 1010,56  |
| ТП-4       | 5,52    | 75,13    | 1369,29    | 941,05      | 1661,49  |
| Σ          | 18,6    | 234,26   | 4659,03    | 3107,76     | 5600,4   |

Далее выбираются кабели электрической сети.

### 2.3 Расчет электрической сети, выбор кабелей

Необходимо обеспечить возможность индивидуального отключения и вывода в ремонт всех участков электрической сети по отдельным потребителям, ввиду этого принимается радиальная схема питания зданий от ТП и кольцевая схема питания ТП [18].

План прокладки кабельных линий (КЛ) приведен на листе 2 графической части.

Радиальная схема электроснабжения микрорайона представляет собой систему распределения электрической энергии, в которой потребители подключены к источнику питания через отдельные линии. Эта схема применяется для обеспечения надёжного и безопасного электроснабжения, особенно MKP c плотной застройкой и большим количеством потребителей. «Основным преимуществом данной схемы является её высокая надёжность, в случае аварии на одной из линий, питание остальных потребителей не нарушается, так как они подключены к разным источникам, это снижает риск длительных отключений и перебоев в электроснабжении» [12]. Кроме того, радиальная схема позволяет легко модернизировать и расширять систему электроснабжения, добавление новых потребителей или изменение схемы подключения не требует значительных затрат и времени, так как линии питания уже разделены и независимы друг от друга. Радиальная схема электроснабжения микрорайона является одним из наиболее надёжных и эффективных способов обеспечения электрической энергией жилых и общественных зданий, она обеспечивает стабильность и безопасность электроснабжения, а также позволяет легко модернизировать и расширять систему в будущем.

«Выбор кабелей сети 10 кВ.

Для сети 10 кВ применяется кольцевая схема с двухсторонним питанием, поэтому параметры работы линий и выбора кабелей одинаковы для всей сети 10 кВ.

Расчетный рабочий ток линий:

$$I_p = S_p / (\sqrt{3} \cdot U_{_H} \cdot n), \tag{16}$$

где n — число цепей, шт.

$$I_p = 5600, 4 / (\sqrt{3} \cdot 10 \cdot 2) = 161,7 \text{ A}$$

Аварийный ток:

$$I_{aa} = 5600, 4/(\sqrt{3} \cdot 10 \cdot 1) = 323,3 \text{ A}$$

Экономическое сечение жил:

$$F_{\gamma\kappa} = I_p / j_{\gamma\kappa}, \tag{17}$$

где  $j_{3\kappa}$  – экономическая плотность тока, А/мм<sup>2</sup>» [13].

$$F_{_{9K}} = 161,7/1,4 = 115,5 \text{ mm}^2$$

По аварийному току выбирается кабель АПвБП-3·185,  $I_{oon} = 360\,$  A [20].

$$I_{as} = 323,3 \text{ A} < I_{don} = 360 \text{ A}$$

«Потери напряжения в линии:

$$\Delta U_{_{I}} = \frac{\sqrt{3} \cdot I_{_{p}} \cdot L \cdot 100}{U_{_{u}}} (r_{_{0}} \cdot \cos \varphi + x_{_{0}} \cdot \sin \varphi), \tag{18}$$

где  $I_p$  – расчетный ток линии, A;

L — длина линии, км;

 $r_0$  и  $x_0$  — удельные активное и индуктивное сопротивления, Ом/км;  $\cos \varphi$  — средневзвешенный коэффициент мощности нагрузки» [19].

Наибольшие потери напряжения в КЛ в наиболее протяженной линии до ТП-1:

$$\Delta U_{_{I}} = \frac{\sqrt{3} \cdot 323, 3 \cdot 1, 21 \cdot 100}{10000} (0, 167 \cdot 0, 832 + 0, 077 \cdot 0, 555) = 1, 2 \% \le 5 \%$$

Потери не превышают допустимые 5%.

Выбор кабелей сети 0,4 кВ.

Расчет для участка ТП-1-здание 7/1.

Расчетный ток КЛ, по (16):

$$I_{\text{max}} = 170.6 / (\sqrt{3} \cdot 0.4 \cdot 1) = 246.2 \text{ A}$$

Принимается кабель АВБШв  $4\times120$ ,  $I_{oon} = 270$  A [20]. «Индуктивным сопротивлением для сети 0,4 кВ можно пренебречь» [3].

Потери напряжения в КЛ, по (18):

$$\Delta U_{_{I}} = \frac{\sqrt{3} \cdot 246, 2 \cdot 0, 106 \cdot 100}{400} (0, 258 \cdot 0, 89 + 0 \cdot 0, 272) = 1,23 \% < 5 \%$$

Выбранные кабели с изоляцией из сшитого полиэтилена (СПЭ) являются одним из наиболее современных и перспективных решений в области передачи электроэнергии, они обладают рядом уникальных свойств, которые делают их незаменимыми в различных сферах, от строительства крупных энергетических объектов до бытового использования. Одним из ключевых преимуществ СПЭ-кабелей является их высокая изоляционная способность. В отличие от традиционных кабелей с бумажной или резиновой изоляцией, СПЭ-изоляция устойчива к механическим повреждениям и химическим воздействиям, что значительно увеличивает срок службы кабеля и снижает риск коротких замыканий. Также изоляция из сшитого полиэтилена обладает высокой термостойкостью, что позволяет использовать её при температурах до 90°С. Ещё одним важным преимуществом СПЭ-кабелей является их высокая гибкость и эластичность. Это делает их удобными для прокладки в труднодоступных местах, таких как подземные тоннели или траншеи. Выбор кабелей 0,4 кВ сведен в таблице 5.

Таблица 5 — Выбор кабелей 0,4 кВ

| Участок  | Ip, A | Сечение жил кабеля<br>АВБШв, мм <sup>2</sup> | Ідоп.кл, А | ΔU,% |
|----------|-------|----------------------------------------------|------------|------|
| ТП1-7/1  | 246,2 | 120                                          | 270        | 1,23 |
| ТП1–9    | 84,6  | 16                                           | 90         | 1,11 |
| ТП1–9А   | 165,4 | 70                                           | 200        | 0,22 |
| ТП1–10А  | 108,7 | 25                                           | 115        | 1,05 |
| ТП1–17   | 84,6  | 16                                           | 90         | 1,04 |
| ТП1–22   | 157,1 | 50                                           | 165        | 0,42 |
| ТП1–22А  | 185,9 | 70                                           | 200        | 0,49 |
| ТП1-24   | 372,7 | 240                                          | 440        | 0,41 |
| ТП2–1    | 244,2 | 120                                          | 270        | 1,70 |
| ТП2-3    | 244,2 | 120                                          | 270        | 1,20 |
| ТП2-5    | 244,2 | 120                                          | 270        | 1,41 |
| ТП2-5/1  | 48,4  | 16                                           | 90         | 1,19 |
| ТП2-5/2  | 41,7  | 16                                           | 90         | 1,26 |
| ТП2-5/3  | 244,2 | 120                                          | 270        | 1,52 |
| ТП2-7    | 244,2 | 120                                          | 270        | 1,17 |
| ТП2–7А   | 244,2 | 120                                          | 270        | 1,03 |
| ТП2-7Б   | 165,4 | 70                                           | 200        | 0,49 |
| ТП2–12А  | 244,2 | 120                                          | 270        | 1,97 |
| ТП2–14   | 165,4 | 70                                           | 200        | 1,81 |
| ТП2-45   | 56,9  | 16                                           | 90         | 0,84 |
| ТП2–47   | 244,2 | 120                                          | 270        | 1,30 |
| ТП2–47А  | 244,2 | 120                                          | 270        | 0,49 |
| ТП2–49   | 244,2 | 120                                          | 270        | 1,97 |
| ТП3-4    | 258,5 | 120                                          | 270        | 0,82 |
| ТП3-6    | 168,4 | 70                                           | 200        | 0,64 |
| ТП3-6Б   | 98,0  | 25                                           | 115        | 0,86 |
| ТП3-8    | 238,0 | 120                                          | 270        | 0,67 |
| ТП3-8А   | 18,6  | 16                                           | 90         | 0,66 |
| ТП3-8Б   | 75,6  | 16                                           | 90         | 1,66 |
| ТП3-10   | 478,5 | 2.95                                         | 480        | 1,39 |
| ТП3-12   | 78,6  | 16                                           | 90         | 1,16 |
| ТП4–1А   | 244,2 | 120                                          | 270        | 1,00 |
| ТП4–1Б   | 53,6  | 16                                           | 90         | 1,37 |
| ТП4-2    | 244,2 | 120                                          | 270        | 0,91 |
| ТП4-2/1  | 49,6  | 16                                           | 90         | 1,84 |
| ТП4–3А   | 244,2 | 120                                          | 270        | 0,94 |
| ТП4–3Б   | 165,4 | 70                                           | 200        | 0,29 |
| ТП4–3В   | 244,2 | 120                                          | 270        | 1,50 |
| ΤΠ4–3Γ   | 165,4 | 70                                           | 200        | 0,22 |
| TΠ4-4/1  | 244,2 | 120                                          | 270        | 1,08 |
| ТП4-37   | 165,4 | 70                                           | 200        | 1,44 |
| ТП4–39А  | 141,4 | 50                                           | 165        | 1,81 |
| ТП4-43   | 126,7 | 35                                           | 135        | 0,29 |
| ТП4-43/1 | 244,2 | 120                                          | 270        | 1,34 |
| TΠ1-7/1  | 246,2 | 120                                          | 270        | 1,23 |

### 2.4 Расчет системы освещения территории

Светодиодное освещение, или LED, представляет собой одну из самых перспективных технологий В области светотехники, отличие ОТ традиционных источников света, таких как лампы накаливания обладают люминесцентные светодиоды лампы, рядом неоспоримых преимуществ, которые делают их использование выгодным и экологически безопасным [5]. Светодиоды обладают высокой энергоэффективностью, они потребляют в несколько раз меньше энергии по сравнению с лампами накаливания и люминесцентными лампами, что позволяет значительно снизить затраты на электроэнергию [17]. Это особенно важно в условиях постоянного роста тарифов на электроэнергию и необходимости сокращения углеродного следа. Также светодиоды долговечны и надежны, срок службы светодиодных ламп может достигать 100,000 часов, что в десятки раз превышает срок службы ламп накаливания и люминесцентных ламп. Это означает, что светодиодное освещение требует минимальных затрат на обслуживание и замену, что способствует снижению эксплуатационных обеспечивают расходов. Наконец, светодиоды высокую яркость равномерность светового потока, обеспечивая комфортное и безопасное освещение, что особенно важно при высокой интенсивности движения.

«В системе освещения территории используются светодиодные модули уличного освещения 3xSVT-96W.

Требуемое число светильников для освещения территории определяется исходя из расчетной активной мощности системы внешнего освещения:

$$N = \frac{P_{po}}{P_{co}},\tag{19}$$

где  $P_{cs}$  – паспортная активная мощность одного светильника, кВт.

$$N = \frac{11,99}{0.288} \approx 42$$
 IIIT.

Светильники устанавливаются на опорах ОГКл-9 вдоль автомобильных дорог и ОГКл-6 в отдалении от дорог» [12]. План системы освещения территории микрорайона приведен на листе 3 графической части.

### 2.5 Определение токов короткого замыкания

«Расчет токов короткого замыкания (КЗ) в ключевых точках электрической сети необходим для выбора и проверки электрооборудования по допустимым параметрам. Составляется схема замещения, куда вносятся элементы сети, значимо влияющие на величину токов КЗ, наносятся точки КЗ» [12]. Схема замещения сети показана на рисунке 1.

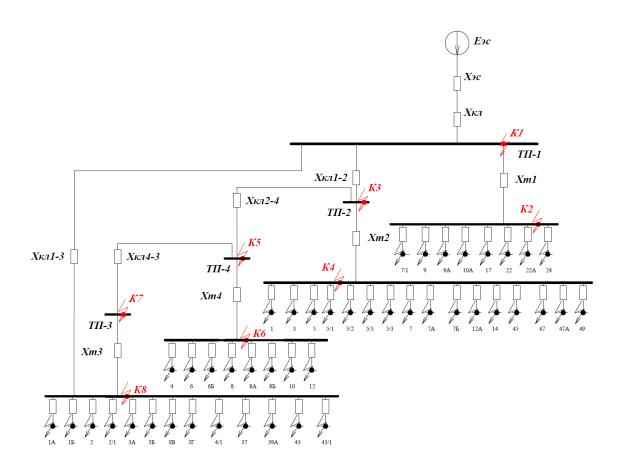



Рисунок 1 – Схема замещения сети

«Полное сопротивление цепи:

$$z = \sqrt{\Sigma r^2 + \Sigma x^2},\tag{20}$$

где  $\Sigma r$ ,  $\Sigma x$  – активное и индуктивное сопротивления цепи, Ом

Приведенное сопротивление участков:

$$\stackrel{\circ}{x} = x \cdot \left(\frac{U_{\delta}}{U_{H}}\right)^{2},\tag{21}$$

где x — действительное сопротивление участка, Ом;

 $U_{\delta}$  – базисное напряжение, кВ;

 $U_{_{\scriptscriptstyle H}}$  – напряжение участка, кВ.

Сопротивление трансформаторов:

$$x_{m}^{o} = \frac{U_{\kappa}\%}{100} \cdot \frac{U_{\delta}^{2}}{S_{mm}},$$
(22)

Приведенное сопротивление линий:

$$x_{_{\Pi}}^{o} = x_{0} \cdot l \cdot \left(\frac{U_{_{6}}}{U_{_{H\Pi}}}\right)^{2}, \tag{23}$$

где  $x_0$  – удельное сопротивление, Ом/км;

l — длина линии, км;

 $U_{_{\scriptscriptstyle H\!\scriptscriptstyle J}}$  – номинальное напряжение участка, кВ.

Трехфазный, двухфазный и однофазный токи КЗ:

$$I_{\kappa_3}^{(3)} = \frac{U_6}{\sqrt{3}z},\tag{24}$$

$$I_{\kappa_3}^{(2)} = I_{\kappa_3}^{(3)} \cdot \sqrt{3} / 2, \tag{25}$$

$$I_{\kappa_3}^{(1)} = 0,55 \cdot I_{\kappa_3}^{(3)},\tag{26}$$

Ударный ток КЗ:

$$I_{y} = I_{\kappa_{3}}^{(3)} \cdot \sqrt{1 + 2 \cdot (\kappa_{y} - 1)^{2}},$$
 (27)

где  $\kappa_{\scriptscriptstyle y}$  – ударный коэффициент;

 $T_a$  — постоянная затухания апериодической слагающей, с» [18].

$$\kappa_{y} = 1 + e^{\frac{-0.01}{T_{a}}},$$
(28)

$$T_a = \sum R / 314 \cdot \sum X. \tag{29}$$

«Переходное сопротивление в местах присоединения низковольтных проводов учитывается добавкой активного сопротивления 15 мОм и индуктивного 5 мОм» [18]. Сопротивления КЛ приведены в таблице 6.

Таблица 6 – Сопротивления линий

| Участок | R' <sub>(0,4)</sub> , мОм | Х' <sub>(0,4)</sub> , мОм |
|---------|---------------------------|---------------------------|
| ТП1-7/1 | 27,34                     | 6,83                      |
| ТП1–9   | 143,23                    | 35,81                     |
| ТП1–9А  | 3,50                      | 0,87                      |
| ТП1-10А | 105,96                    | 26,49                     |
| ТП1–17  | 135,27                    | 33,82                     |
| ТП1-22  | 7,63                      | 1,91                      |
| ТП1–22А | 7,27                      | 1,82                      |
| ТП1-24  | 3,00                      | 0,75                      |
| ТП2-1   | 19,22                     | 4,81                      |
| ТП2-3   | 33,69                     | 8,42                      |

## Продолжение таблицы 6

| Участок    | R' <sub>(0,4)</sub> , мОм | Х' <sub>(0,4)</sub> , мОм |
|------------|---------------------------|---------------------------|
| ТП2-5      | 39,68                     | 9,92                      |
| ТП2-5/1    | 347,47                    | 86,87                     |
| ТП2-5/2    | 265,24                    | 66,31                     |
| ТП2-5/3    | 17,11                     | 4,28                      |
| ТП2-7      | 20,81                     | 5,20                      |
| ТП2-7А     | 12,17                     | 3,04                      |
| ТП2–7Б     | 8,18                      | 2,04                      |
| ТП2–12А    | 33,86                     | 8,47                      |
| ТП2–14     | 43,00                     | 10,75                     |
| ТП2-45     | 115,38                    | 28,85                     |
| ТП2-47     | 14,64                     | 3,66                      |
| ТП2-47А    | 5,47                      | 1,37                      |
| ТП2-49     | 22,22                     | 5,56                      |
| ТП3-4      | 16,58                     | 4,14                      |
| ТП3-6      | 9,99                      | 2,50                      |
| ТП3-6Б     | 169,83                    | 42,46                     |
| ТП3-8      | 21,69                     | 5,42                      |
| ТП3-8А     | 98,14                     | 24,54                     |
| ТП3-8Б     | 222,81                    | 55,70                     |
| ТП3–10     | 7,80                      | 1,95                      |
| ТП3–12     | 216,17                    | 54,04                     |
| ТП4–1А     | 16,93                     | 4,23                      |
| ТП4—1Б     | 140,58                    | 35,14                     |
| ТП4-2      | 25,57                     | 6,39                      |
| ТП4-2/1    | 257,29                    | 64,32                     |
| ТП4-3А     | 10,41                     | 2,60                      |
| ТП4—3Б     | 4,85                      | 1,21                      |
| ТП4-3В     | 16,93                     | 4,23                      |
| ТП4—3Γ     | 3,63                      | 0,91                      |
| ТП4-4/1    | 29,63                     | 7,41                      |
| ТП4-37     | 23,92                     | 5,98                      |
| ТП4-39А    | 35,18                     | 8,79                      |
| ТП4-43     | 6,08                      | 1,52                      |
| ТП4-43/1   | 14,99                     | 3,75                      |
| ТП1-ТП-2   | 1,81                      | 0,45                      |
| ТП2-ТП-4   | 0,55                      | 0,14                      |
| ТП3-ТП-4   | 1,32                      | 0,33                      |
| ТП1-ТП-3   | 1,28                      | 0,32                      |
| КЛ до ТП-1 | 4,04                      | 1,01                      |

Сопротивления трансформаторов (приведенные к ступени 0,4 кВ) сведены в таблице 7.

Таблица 7 – Сопротивления трансформаторов

| Подстанции | Марка         | R' <sub>(0,4)</sub> ,мОм | $X'_{(0,4)}$ , $MOM$ |
|------------|---------------|--------------------------|----------------------|
| ТП-1       | TMΓ12-1000/10 | 1,68                     | 8,80                 |
| ТП-2       | TMΓ12-1600/10 | 1,60                     | 6,00                 |
| ТП-3       | ТМГ12-1000/10 | 1,68                     | 8,80                 |
| ТП-4       | TMΓ12-1250/10 | 1,73                     | 7,68                 |

Расчет для участка ТП-1—здание №7/1 (КЗ на вводе РП здания №7/1). «Сопротивления КЛ 0,4 кВ с учетом сопротивлений контактов:

$$R_{K/10,4} = 27,34 + 15 = 42,34$$
 мОм, 
$$X_{K/10,4} = 6,83 + 5 = 11,83$$
 мОм.

С учетом сопротивлений трансформатора, КЛ 10 кВ и энергосистемы, сопротивления цепи» [12]:

$$R_{\Sigma} = 42,34 + 1,68 + 23,57 = 67,59 \text{ MOM},$$
 
$$X_{\Sigma} = 11,83 + 8,8 + 70,36 = 90,99 \text{ MOM},$$
 
$$z = \sqrt{67,59^2 + 90,99^2} = 113,35 \text{ MOM}$$

По формулам (24-29):

$$I_{\kappa_3}^{(3)} = \frac{0.4 \cdot 1000}{\sqrt{3} \cdot 113,35} = 2,037 \text{ KA},$$

$$T_a = 67,59 / (314 \cdot 90,99) = 0,0237,$$

$$\kappa_v = 1 + e^{\frac{0.01}{0.0237}} = 1,53,$$

$$I_y = 2,037 \cdot \sqrt{1 + 2 \cdot (1,53 - 1)^2} = 3,604 \text{ kA},$$
 
$$I_{\kappa_3}^{(2)} = 2,037 \cdot \sqrt{3} / 2 = 1,764 \text{ kA},$$
 
$$I_{\kappa_3}^{(1)} = 0,55 \cdot 2,037 = 1,121 \text{ kA}.$$

Расчет токов КЗ сведен в таблице 8.

Таблица 8 – Расчет токов КЗ, результаты

| Участок / точка КЗ | I <sup>(3)</sup> кз, кА | Іу, кА | I <sup>(2)</sup> кз, кА | I <sup>(1)</sup> кз, кА |
|--------------------|-------------------------|--------|-------------------------|-------------------------|
| K1                 | 2,869                   | 3,359  | 2,485                   | -                       |
| К2                 | 2,585                   | 2,991  | 2,239                   | 1,422                   |
| К3                 | 2,832                   | 3,358  | 2,452                   | -                       |
| К4                 | 2,555                   | 2,992  | 2,213                   | 1,405                   |
| К5                 | 1,121                   | 1,712  | 0,971                   | -                       |
| К6                 | 1,096                   | 1,666  | 0,949                   | 0,603                   |
| K7                 | 1,114                   | 1,703  | 0,965                   | -                       |
| K8                 | 1,084                   | 1,646  | 0,939                   | 0,596                   |
| ΤΠ1-7/1            | 2,037                   | 2,538  | 1,764                   | 1,121                   |
| ТП1–9              | 1,037                   | 1,574  | 0,898                   | 0,570                   |
| ТП1–9А             | 2,295                   | 2,866  | 1,987                   | 1,262                   |
| ТП1–10А            | 1,234                   | 1,838  | 1,069                   | 0,679                   |
| ΤΠ1–17             | 1,074                   | 1,625  | 0,930                   | 0,591                   |
| ТП1–22             | 2,233                   | 2,837  | 1,934                   | 1,228                   |
| ТП1–22А            | 2,238                   | 2,840  | 1,938                   | 1,231                   |
| ТП1-24             | 2,302                   | 2,869  | 1,994                   | 1,266                   |
| ТП2–1              | 2,066                   | 2,732  | 1,789                   | 1,136                   |
| ТП2-3              | 2,815                   | 3,858  | 2,438                   | 1,548                   |
| ТП2-5              | 2,707                   | 3,755  | 2,345                   | 1,489                   |
| ТП2-5/1            | 0,541                   | 0,857  | 0,469                   | 0,298                   |
| ТП2-5/2            | 1,008                   | 1,579  | 0,873                   | 0,555                   |
| ТП2-5/3            | 2,095                   | 2,753  | 1,814                   | 1,152                   |
| ТП2–7              | 3,066                   | 4,073  | 2,655                   | 1,686                   |
| ТП2–7А             | 2,166                   | 2,800  | 1,876                   | 1,191                   |
| ТП2–7Б             | 2,225                   | 2,833  | 1,926                   | 1,223                   |
| ТП2–12А            | 1,875                   | 2,570  | 1,623                   | 1,031                   |
| ТП2–14             | 1,767                   | 2,465  | 1,530                   | 0,972                   |
| ТП2–45             | 1,178                   | 1,765  | 1,020                   | 0,648                   |
| ТП2–47             | 2,130                   | 2,777  | 1,845                   | 1,172                   |
| ТП2–47А            | 2,265                   | 2,853  | 1,962                   | 1,246                   |
| ТП2–49             | 3,037                   | 3,168  | 2,630                   | 1,670                   |
| ТП3-4              | 2,103                   | 2,758  | 1,821                   | 1,156                   |
| ТП3-6              | 2,198                   | 2,818  | 1,903                   | 1,209                   |
| ТП3–6Б             | 1,393                   | 2,136  | 1,206                   | 0,766                   |

Продолжение таблицы 8

| Участок / точка КЗ | I <sup>(3)</sup> кз, кА | Іу, кА | I <sup>(2)</sup> кз, кА | I <sup>(1)</sup> кз, кА |
|--------------------|-------------------------|--------|-------------------------|-------------------------|
| ТП3-8              | 2,032                   | 2,706  | 1,760                   | 1,118                   |
| ТП3-8А             | 1,284                   | 1,903  | 1,112                   | 0,706                   |
| ТП3-8Б             | 1,151                   | 1,788  | 0,996                   | 0,633                   |
| ТП3-10             | 2,230                   | 2,836  | 1,931                   | 1,227                   |
| ТП3-12             | 0,784                   | 1,217  | 0,679                   | 0,431                   |
| ТП4–1А             | 2,098                   | 2,755  | 1,817                   | 1,154                   |
| ТП4–1Б             | 1,049                   | 1,591  | 0,908                   | 0,577                   |
| ТП4–2              | 2,970                   | 3,996  | 2,572                   | 1,633                   |
| ΤΠ4-2/1            | 0,688                   | 1,077  | 0,596                   | 0,379                   |
| ТП4–3А             | 2,192                   | 2,815  | 1,898                   | 1,205                   |
| ТП4–3Б             | 2,274                   | 2,857  | 1,970                   | 1,251                   |
| ТП4–3В             | 2,098                   | 2,755  | 1,817                   | 1,154                   |
| ТП4–3Γ             | 2,293                   | 2,865  | 1,986                   | 1,261                   |
| TΠ4-4/1            | 2,891                   | 3,928  | 2,504                   | 1,590                   |
| ТП4-37             | 2,002                   | 2,682  | 1,734                   | 1,101                   |
| ТП4–39А            | 1,858                   | 2,555  | 1,609                   | 1,022                   |
| ТП4-43             | 2,256                   | 2,849  | 1,954                   | 1,241                   |
| ТП4-43/1           | 2,125                   | 2,774  | 1,840                   | 1,169                   |

Результаты расчетов будут использоваться для расчета уставок РЗА и выбор ЭО подстанций.

### 2.6 Выбор аппаратов защиты линий

Автоматические выключатели (АВ) являются неотъемлемой частью современных электрических систем, обеспечивая безопасность и надежность в эксплуатации электрических установок, эти устройства предназначены для защиты электрических цепей от перегрузок и коротких замыканий, что делает их важным элементом как в бытовых, так и в промышленных условиях. АВ работают на основе электромеханических или электронных принципов, в случае перегрузки или короткого замыкания, ток в цепи превышает установленный предел, что приводит к срабатыванию устройства. В традиционных автоматах используется биметаллическая пластина, которая при нагревании изгибается и размыкает цепь, в более современных моделях

применяются электронные схемы, которые обеспечивают более точное и быстрое срабатывание. Одним из главных преимуществ автоматических выключателей является их способность автоматически отключать электрическую цепь в случае аварийной ситуации, что предотвращает повреждение оборудования и минимизирует риск возникновения пожара. Кроме того, АВ легко восстанавливаются после срабатывания – достаточно вернуть рычаг в исходное положение, что делает их удобными в эксплуатации.

«Условия выбора AB:

- по напряжению:

$$U_{\mu\nu} \ge U_c,$$
 (30)

- по номинальному току:

$$I_{\text{\tiny HOM}} > 1, 1 \cdot I_{p}, \tag{31}$$

- по числу полюсов и виду тока (постоянный или переменный)» [1].

АВ для защиты КЛ к зданию № 16 выбираем марки ВА-52-39/320. Проверка по (30,31):

$$U_{HOM} = 400 \ge 400 \text{ B},$$
  
 $1,1 \cdot 246, 2 = 270, 8 \text{ A},$   
 $I_{HOM} = 320 > 270, 8 \text{ A}.$ 

Выбор АВ сведен в таблице 9.

Таблица 9 — Выбор аппаратов защиты линий 0,4 кВ

| Участок  | Ip, A | 1,1·Ip, A | Марка авт.<br>выкл. | Іном, А |
|----------|-------|-----------|---------------------|---------|
| ТП1-7/1  | 246,2 | 270,8     | BA-52-39            | 320     |
| ТП1–9    | 84,6  | 93,1      | BA-51-35            | 100     |
| ТП1–9А   | 165,4 | 181,9     | BA-52-39            | 250     |
| ТП1–10А  | 108,7 | 119,5     | BA-51-35            | 125     |
| ТП1–17   | 84,6  | 93,1      | BA-51-35            | 100     |
| ТП1–22   | 157,1 | 172,8     | BA-52-39            | 250     |
| ТП1–22А  | 185,9 | 204,5     | BA-52-39            | 250     |
| ТП1–24   | 372,7 | 410,0     | BA-52-39            | 500     |
| ТП2–1    | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2-3    | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2-5    | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2-5/1  | 48,4  | 53,3      | BA-51-35            | 63      |
| ТП2-5/2  | 41,7  | 45,8      | BA-51-35            | 50      |
| ТП2-5/3  | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2–7    | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2–7А   | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2–7Б   | 165,4 | 181,9     | BA-52-39            | 250     |
| ТП2–12А  | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2–14   | 165,4 | 181,9     | BA-52-39            | 250     |
| ТП2–45   | 56,9  | 62,5      | BA-51-35            | 63      |
| ТП2–47   | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2–47А  | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП2–49   | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП3–4    | 258,5 | 284,3     | BA-52-39            | 320     |
| ТП3-6    | 168,4 | 185,3     | BA-52-39            | 250     |
| ТП3–6Б   | 98,0  | 107,8     | BA-51-35            | 125     |
| ТП3-8    | 238,0 | 261,8     | BA-52-39            | 320     |
| ТП3-8А   | 18,6  | 20,5      | BA-51-35            | 25      |
| ТП3–8Б   | 75,6  | 83,1      | BA-51-35            | 100     |
| ТП3-10   | 478,5 | 526,4     | BA-52-39            | 630     |
| ТП3–12   | 78,6  | 86,5      | BA-51-35            | 100     |
| ТП4–1А   | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП4—1Б   | 53,6  | 59,0      | BA-51-35            | 63      |
| ТП4–2    | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП4-2/1  | 49,6  | 54,6      | BA-51-35            | 63      |
| ТП4–3А   | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП4–3Б   | 165,4 | 181,9     | BA-52-39            | 250     |
| ТП4–3В   | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП4–3Γ   | 165,4 | 181,9     | BA-52-39            | 250     |
| ТП4-4/1  | 244,2 | 268,7     | BA-52-39            | 320     |
| ТП4–37   | 165,4 | 181,9     | BA-52-39            | 250     |
| ТП4–39А  | 141,4 | 155,5     | BA-51-35            | 160     |
| ТП4–43   | 126,7 | 139,4     | BA-51-35            | 160     |
| ТП4-43/1 | 244,2 | 268,7     | BA-52-39            | 320     |

Далее выбирается основное ЭО для подстанций.

### 2.7 Выбор и проверка электрооборудования подстанций

Будут установлены современные комплектные ТП марки 2КТПН-ПК.

Комплектные трансформаторные подстанции (КТП) представляют собой важный элемент электрических сетей, «обеспечивающий преобразование и распределение электрической энергии, они играют надежности ключевую роль В обеспечении И эффективности электроснабжения. КТП состоят из нескольких основных компонентов: трансформаторов, распределительных устройств, защитного оборудования и систем управления» [16]. Основная функция заключается в преобразовании высоковольтного поступающего ИЗ электрических сетей, тока, низковольтный, который может быть использован для питания потребителей. КТП могут быть установлены как на открытых площадках, так и в закрытых помещениях, что позволяет адаптировать их под различные условия эксплуатации. Они обеспечивают не только трансформацию напряжения, но и распределение электроэнергии между различными потребителями, что делает их незаменимыми в современных энергетических системах. Одним из главных преимуществ КТП является их компактность, в отличие от традиционных подстанций, которые требуют значительных площадей для установки, КТП занимают гораздо меньше места, что особенно важно в условиях городской застройки.

Выбор и проверка электрооборудования на подстанции ТП-1. «Критерии выбора выключателей нагрузки (ВН):

$$U_{\scriptscriptstyle HOM} \ge U_{\scriptscriptstyle pab}, \text{ kB},$$
 (32)

$$I_{\text{\tiny HOM}} \ge I_{\text{\tiny pa6}}, \text{ kB},$$
 (33)

$$i_{np,c} \ge i_{v}, \text{ KA},$$
 (34)

где  $i_{np.c}$  — предельный сквозной ток, к ${\bf A}$ .

$$I_m^2 \cdot t_m \ge B_{\kappa}, \ \kappa A^2 \cdot c, \tag{35}$$

где  $I_{\scriptscriptstyle m}$  – ток термической стойкости, кА;

 $t_m$  — время протекания тока, с;

 $B_{\kappa}$  – тепловой импульс, к $A^2$ ·с.

$$B_{\kappa} = I_{\kappa}^{2} \cdot (t_{om\kappa\pi} + T_{a}), \ \kappa A^{2} \cdot c, \tag{36}$$

где  $t_{om\kappa\pi}$  – время КЗ, с.

$$t_{om\kappa_{\Lambda}} = t_{p,3} + t_{om\kappa_{\Lambda},B}, c, \tag{37}$$

где  $t_{{\scriptscriptstyle p.3.}}$  – время срабатывания защиты, с;

 $t_{om\kappa_{1}.B}$  — время отключения выключателя, с» [11].

$$t_{om\kappa n} = 0.025 + 0.1 = 0.125 \text{ c},$$
  
 $B_{\kappa} = 2.869^{2} \cdot (0.125 + 0.07) = 8.4 \text{ KA}^{2} \cdot \text{c}.$ 

«Наибольший ток на РУ 10 кВ подстанции, при перегрузке трансформатора 40 %:

$$I_{\text{MAKC}} = \frac{S_{\text{H.m.}} \cdot 1, 4}{\sqrt{3} \cdot U_{\text{H}}},$$

$$I_{\text{MAKC}} = \frac{1000 \cdot 1, 4}{\sqrt{3} \cdot 10.5} = 77 \text{ A.}$$
(38)

Выбираются выключатели нагрузки ВНРп-10/400-10з, внешний вид показан на рисунке 2.

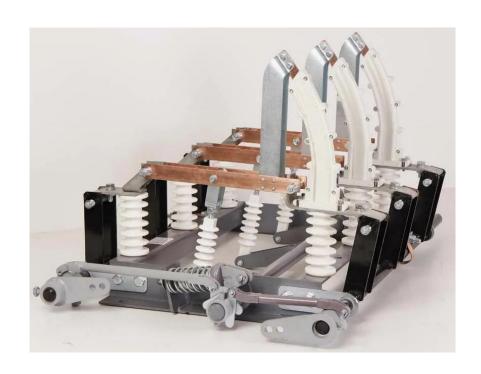



Рисунок 2 — Выключатель нагрузки ВНР $\pi$ -10/400-103

Проверка ВН по условиям выбора (32-35):

$$U_{_{HOM}}=10~~\mathrm{kB} \geq U_{_{pa\delta}}=10~~\mathrm{kB},$$
  $I_{_{HOM}}=400~~\mathrm{A} \geq I_{_{pa\delta}}=77~~\mathrm{A},$   $I_{_{HOM.OMKR}}=20~~\mathrm{kA} \geq I_{_{K}}=2,869~~\mathrm{kA},$   $i_{np.c}=31,5~~\mathrm{kA} \geq i_{_{Y}}=3,359~~\mathrm{kA},$   $I_{_{m}}^{2}\cdot 3=1200~~\mathrm{kA}^{2}\cdot \mathrm{c} \geq B_{_{K}}=8,4~~\mathrm{kA}^{2}\cdot \mathrm{c}.$ 

ВН подходят по всем условиям» [11].

Принимаются ТТ марки ТШЛ-0,66/2500.

«Условия выбора ТТ:

$$U_{H.ann.} \ge U_{H.ycm.},\tag{39}$$

$$I_{1H} \ge I_{pa6.\,\text{max.}},\tag{40}$$

$$Z_{H} \ge Z_{2\Sigma}. \tag{41}$$

Проверка на термическую и динамическую стойкость:

$$(\kappa_{mep.} \cdot I_{1H.})^2 \cdot t_{mep.} \ge B_{\kappa},$$
 (42)

$$i_{\partial uH} = \kappa_{\partial \partial} \cdot \sqrt{2} \cdot I_{1H} \ge i_{y}, \tag{43}$$

где  $\kappa_{mep.}$ ,  $\kappa_{\ni \partial}$  – кратности стойкости;

 $I_{_{1H}}$  — номинальный ток ТТ, кА» [11].

### Проверка выбранных ТТ:

$$U_{\text{н.апп.}} = 0,66 \text{ кB} \ge U_{\text{н.уст.}} = 0,4 \text{ кB},$$
 
$$I_{1\text{н.}} = 2500 \text{ A} \ge I_{\text{раб.max.}} = 2021 \text{ A},$$
 
$$(60 \cdot 2,5)^2 \cdot 3 = 67500 \text{ кA}^2 \cdot \text{c} > 3,1 \text{ кA}^2 \cdot \text{c},$$
 
$$65 \cdot \sqrt{2} \cdot 2,5 = 230 \text{ кA} > 2,991 \text{ кA}.$$

«Сопротивление нагрузки:

$$Z_{2\Sigma} = Z_{npu\delta.} + Z_{npos.} + Z_{\kappa o \mu m.}, \tag{44}$$

где  $Z_{npu6}$ ,  $Z_{npo8}$ ,  $Z_{конт}$  — сопротивление приборов, проводов и контактов, Ом.

$$Z_{npos.} = \frac{l_{npos.} \cdot \rho}{s_{nnos}}, \tag{45}$$

где  $l_{npos.}$ — длина проводов, м;

ho — удельное сопротивление,  ${\rm Om}\cdot{\rm mm}^2/{\rm m};$   $s_{npos.}$  — сечение,  ${\rm mm}^2.$ 

$$Z_{npu\delta.} = \frac{S_{npu\delta.}}{I_{u.npu\delta}^2}, \tag{46}$$

где  $S_{\it npu\'o.}$ ,  $I_{\it н.npu\'o}$  — мощность, B·A, и рабочий ток прибора, A.

$$S_{npu6.} = \frac{1}{5^2} = 0,04 \text{ Om},$$
 
$$Z_{npo6.} = \frac{25 \cdot 0,0175}{4} = 0,109 \text{ Om},$$
 
$$Z_{2\Sigma} = 0,04 + 0,109 + 0,1 = 0,249 \text{ Om}.$$

Погрешность ТТ составит менее 10%.

ТТ подходят, внешний вид ТТ показан на рисунке 3.



Рисунок 3 — Трансформаторы тока ТШЛ-0,66

Новые современные ТТ обеспечат высокую точность и надежность системы измерений» [11].

## 2.8 Релейная защита и автоматика, расчет уставок защит

Микропроцессорная релейная (MP3A)защита И автоматика представляют собой важный элемент современных электрических систем, обеспечивая безопасность эффективность надежность, И работы энергетических объектов. С развитием технологий и увеличением сложности электрических сетей необходимость в высокотехнологичных решениях становится все более актуальной. МРЗА основана на использовании микропроцессоров для обработки информации о состоянии электрической сети. В отличие от традиционных реле, которые работают на основе электромеханических принципов, МРЗА использует цифровые технологии для анализа параметров сети, таких как ток, напряжение, частота и другие, это позволяет значительно повысить точность и скорость срабатывания защитных устройств. Микропроцессорные терминалы способны выполнять множество функций, включая защиту от перегрузок, коротких замыканий, асимметрии фаз других аварийных ситуаций, они могут также И осуществлять мониторинг состояния оборудования, что позволяет заранее выявлять потенциальные проблемы и предотвращать аварии. В условиях растущих потребностей в электроэнергии и увеличения нагрузки на сети, автоматизация процессов защиты сетей становится необходимостью.

Защита питающей сети 10 кВ будет обеспечиваться терминалами марки Сириус-2МЛ-02, их ключевые преимущества:

- отечественное производство;
- надежный и проверенный производитель и поставщик;
- поставляемое производителем удобное и интуитивно понятно программное обеспечение (ПО);
- данные терминалы хорошо зарекомендовали себя в электрических сетях городов и предприятий;
- современная элементная база, высокое качество изготовления.

Внешний вид терминала показан на рисунке 4.



Рисунок 4 — Терминал Сириус-2МЛ-02

Определяются уставки защит.

«Токовая отсечка (TO):

$$I_{C3} \ge K_{omc} \cdot I_{HOM.JII}, \tag{47}$$

где  $K_{\mathit{omc}}$  – коэффициент отстройки;

 $I_{{\scriptscriptstyle HOM. ЛЭ\Pi}}$  — номинальный ток линии электропередачи, кА.

$$I_{C3} \ge 5 \cdot 0,1617 = 0,8085$$
 кА

MT3:

$$I_{C3} \ge \frac{K_H \cdot K_{C3}}{K_R} \cdot I_{p.\text{Make}},\tag{48}$$

где  $I_{_{p.\text{\tiny \it MAKC}}}$  – расчетный ток КЛ, A;

 $K_{\!\scriptscriptstyle H}$  ,  $K_{\!\scriptscriptstyle C3}$  ,  $K_{\!\scriptscriptstyle B}$  – коэффициенты надежности, самозапуска и возврата.

$$I_{C3} \ge \frac{1,1 \cdot 1,18}{0.935} \cdot 161,7 = 1,388 \cdot 161,7 = 224,48 \text{ A}$$

Ток срабатывания реле:

$$I_{CP} = I_{C3} \cdot \frac{k_{cx}}{n_T} , \qquad (49)$$

где  $k_{cx}$ ,  $n_T$  — коэффициенты схемы подключения и трансформации TT.

Коэффициент чувствительности защиты» [2]:

$$k_{u} = \frac{I_{K}^{(2)}}{I_{C3}},$$

$$I_{CP} = 224,48 \cdot \frac{1}{200/5} = 5,61 \text{ A},$$

$$k_{u} = \frac{2485}{224,48} = 11,1 \ge 1,5.$$
(50)

«Защита от замыканий на землю (ЗНЗ).

Ток срабатывания:

$$I_{C.3.} \ge k_{OTC} \cdot k_{\scriptscriptstyle B} \cdot I_{\scriptscriptstyle C},\tag{51}$$

где  $k_{\it OTC}$ ,  $k_{\it E}$  – коэффициенты отстройки и броска емкостного тока,

 $I_{\it C}$  – ёмкостный ток присоединения, А.

$$I_C = I_{CO} \cdot L, \tag{52}$$

где  $I_{CO}$  – удельный емкостный ток, А/км;

L— длина линии, км» [6].

$$I_C = 1,47 \cdot 1,21 = 1,779 \text{ A},$$
  
 $I_{C.3.} \ge 1,2 \cdot 2,5 \cdot 1,779 = 5,336 \text{ A}.$ 

«АВР на шинах 0,4 кВ подстанций выполняется на терминале Сириус-АВР.

Уставка АВР:

$$U_{CP} = 0.7 \cdot U_{HOM}, \tag{53}$$

где  $U_{{\scriptscriptstyle HOM}}$  — напряжение сети, В.

$$U_{CP0.4} = 0.7 \cdot 380 = 266 \text{ B}$$

Уставка реле контроля напряжения на резервном вводе:

$$U_{C.P} = (0,6 \div 0,65) \cdot U_{HOM},$$
 (54)  
 $U_{C.P0.4} = (0,6 \div 0,65) \cdot 380 = 228 \div 247 \text{ B.}$ 

Уставка реле времени:

$$t_{C.P.ABP} = t_1 + \Delta t, \tag{55}$$

где  $t_1$  – время срабатывания AB, c;

 $\Delta t$  – ступень селективности, с» [10].

$$t_{C.P.ABP} = 0.05 + 0.5 = 0.55 c.$$

Одним из главных преимуществ MP3A является высокая степень автоматизации, микропроцессорные реле могут быть интегрированы в системы управления, что позволяет осуществлять удаленный мониторинг и управление защитными функциями. Это значительно упрощает

эксплуатацию и «обслуживание электрических сетей, а также повышает их надежность. Кроме того, микропроцессорные реле обладают возможностью программирования и настройки под конкретные условия эксплуатации, это позволяет адаптировать защитные функции под требования конкретного объекта, что делает их универсальными и эффективными» [2]. Системы МРЗА могут быть интегрированы в более широкие системы управления, такие как SCADA (Supervisory Control and Data Acquisition), что позволяет осуществлять комплексный мониторинг и управление энергетическими объектами. Это способствует повышению уровня надежности И безопасности, а также снижению затрат на эксплуатацию и обслуживание.

## 2.9 Расчет заземляющего устройства подстанций, молниезащита подстанций

Эффективное заземляющее устройство подстанций необходимо для надежной и безопасной работы электрооборудования и обеспечения электробезопасности.

«Удельное сопротивление грунта для вертикальных (ВЭ) и горизонтальных (ГЭ) электродов:

$$\rho_p = \rho \cdot K_c, \tag{56}$$

где  $\rho$  – удельное сопротивление грунта, Ом · м;

 $K_c$  – коэффициент сезонности.

$$\rho_{p_6} = 500 \cdot 1, 1 = 550 \text{ Om} \cdot \text{M},$$

$$\rho_{pz} = 500 \cdot 1, 4 = 700 \text{ Om} \cdot \text{m}.$$

Для ВЭ используем угловую сталь 50x50 мм, для ГЭ используем полосовую сталь 50x5 мм. Сопротивление растеканию для одного ВЭ:

$$R_{o69} = \frac{\rho_{p8}}{2 \cdot \pi \cdot l} \left[ \ln \left( \frac{2 \cdot l}{d} \right) + 0.5 \cdot \ln \left( \frac{4 \cdot t + l}{4 \cdot t - l} \right) \right], \tag{57}$$

где l – длина ВЭ, м;

d – приведенный диаметр, м;

t – расстояние от поверхности до центра ВЭ, м.

$$d = 0.95 \cdot b,\tag{58}$$

где b – ширина уголка, м.

$$d = 0.95 \cdot 0.05 = 0.0475 \text{ M},$$

$$t = 3/2 + 0.8 = 2.3 \text{ M},$$

$$R_{069} = \frac{550}{2 \cdot 3.14 \cdot 3} \left[ \ln \left( \frac{2 \cdot 3}{0.0475} \right) + 0.5 \cdot \ln \left( \frac{4 \cdot 2.3 + 3}{4 \cdot 2.3 - 3} \right) \right] = 62.195 \text{ Om}.$$

Расчетное число ВЭ:

$$n' = R_{obs} / R_{\mu}, \tag{59}$$

где  $R_{H}$  – наибольшее допустимое сопротивление ЗУ, Ом» [7].

$$n' = 62,195/4 \approx 16$$
 IIIT.

«Длина ГЭ:

$$l_2 = 1,05 \cdot a \cdot n',\tag{60}$$

где a – расстояние между ВЭ, м.

$$a = l_{nep} / n', \tag{61}$$

где  $l_{\it nep}$  — периметр здания ТП, м.

$$l_{nep} = 2 \cdot (9,3+7) = 32,6 \text{ M},$$
  
 $a = 32,6/16 = 2,04 \text{ M},$   
 $l_{z} = 1,05 \cdot 2,04 \cdot 16 = 34,27 \text{ M}.$ 

Сопротивление растеканию ГЭ:

$$R_{29} = \frac{\rho_{pz}}{2 \cdot \pi \cdot l} \cdot \ln\left(\frac{l^2}{d \cdot t}\right),\tag{62}$$

$$d = 0, 5 \cdot b, \tag{63}$$

где b – ширина полосы, м.

$$d = 0.5 \cdot 0.05 = 0.025 \text{ M},$$

$$t = 0.05 / 2 + 0.8 = 0.825 \text{ M},$$

$$R_{29} = \frac{700}{2 \cdot 3.14 \cdot 34.27} \cdot \ln \left( \frac{34.27^2}{0.025 \cdot 0.825} \right) = 2.624 \text{ Om}.$$

Эквивалентное сопротивление ЗУ:

$$R_{zp} = \frac{R_{oe3} \cdot R_{z9}}{R_{oe3} \cdot \eta_{s} \cdot n + R_{z3} \cdot \eta_{s}},$$
(64)

где  $\eta_{\scriptscriptstyle g}$  ,  $\eta_{\scriptscriptstyle c}$  – коэффициенты использования ВЭ и ГЭ.

$$R_{zp} = \frac{62,195 \cdot 2,625}{62,195 \cdot 0,51 \cdot 16 + 2,624 \cdot 0,3} = 3,805 \text{ Om} < 4 \text{ Om}.$$

Расчетное сопротивление ЗУ менее предельно допустимого, надежная защита людей и оборудования будет обеспечиваться» [7].

Заземляющие электроды устанавливаются в грунт на определенной глубине и расстоянии друг от друга, важно обеспечить хороший контакт с

чтобы снизить сопротивление заземления. После установки землей, электродов производится соединение заземляющих проводников оборудованием подстанции, все соединения должны быть надежными и защищенными от коррозии. После завершения монтажа необходимо тестирование системы заземления, чтобы убедиться в эффективности. Измеряется сопротивление заземления, и при необходимости вносятся коррективы. При монтаже системы заземления необходимо соблюдать требования И нормы, установленные национальными международными стандартами. Это включает В себя правила ПО минимальному сопротивлению заземления, выбор материалов, а также требования к безопасности и надежности. Эффективная система заземления безопасность сетей, обеспечивает работы электрических оборудование и персонал от аварийных ситуаций, а также способствует стабильной работе энергетических систем.

«Молниезащита ТП является важным аспектом обеспечения безопасности работы СЭС. Она включает в себя комплекс мер, направленных на предотвращение воздействия молнии на оборудование и снижение риска аварийных ситуаций. В данном случае выбраны комплектные ТП в цельнометаллическом корпусе, соединенном с ЗУ, в этом случае, согласно ПУЭ, дополнительные меры по молниезащите не требуются» [16].

Вывод по разделу.

Выполнена разработка системы электроснабжения микрорайона. Определены электрические нагрузок по зданиям и микрорайону в целом, согласно которым выбраны силовые трансформаторы на подстанциях и кабели электрической сети. Рассчитаны рабочие и аварийные режимы сети, выбрано электрооборудование подстанций, оборудование и уставки микропроцессорной релейной защиты и автоматики. Проведен расчет заземляющего устройства подстанций, эквивалентное сопротивление будет менее предельно допустимого.

## Заключение

В рамках развития инфраструктуры г. Владивосток планируется постройка нового микрорайона с большим числом жилых, коммерческих, административных и общественных зданий со значительным числом электроприемников внутри них. В состав электроприемников будут входить различные электроприводы санитарно-технических устройств, электроннобытовая техника, освещение, оргтехника потребители И другие электроэнергии, требующие обязательного питания электроэнергией для своей работы. Для ввода в эксплуатацию зданий и микрорайона в целом в данной работе проведена разработка системы электроснабжения, при реализации предлагаемого проекта СЭС будет обеспечено качественное и надежное электроснабжение потребителей электроэнергии микрорайона. Рассматриваемый жилой микрорайон города – это организованная территория, включающая жилые дома, объекты социальной инфраструктуры и благоустройства, он будет являться важной составляющей городской среды, обеспечивая комфортное проживание жителей. Его постройка позволит удовлетворить потребности различных слоёв населения современном жилье и создать комфортную среду для всех жителей. Надежное электроснабжение микрорайона является неотъемлемой частью его инфраструктуры, обеспечивающей не только комфорт, но и безопасность его жителей. Этот аспект не только влияет на повседневную жизнь людей, но и напрямую влияет на экономическое развитие региона. В основном, инфраструктура МКР включает современные многоэтажные жилые дома из кирпича, с газовыми плитами. В каждом подъезде предусмотрены пассажирские лифты. Также имеются различные социально-общественные и торгово-административные здания (кафе, магазины, офисные супермаркеты, детсад, школы, котельные, оздоровительный комплекс). зданий относится к первой категории надежности Основная часть электроснабжения – жилые дома ввиду наличия лифтов, детсад, школы и

оздоровительный комплекс ввиду систем пожаротушения, котельные ввиду важности обеспечения их бесперебойной работы для отопления микрорайона. Остальные здания относятся ко второй категории надежности электроснабжения.

Определены электрические нагрузки по зданиям и микрорайону в выбраны энергоэффективные целом, согласно которым силовые трансформаторы серии ТМГ12 на подстанциях и кабели электрической сети марок АПвБП АВБШв. Необходимо обеспечить возможность индивидуального отключения И вывода В ремонт всех участков электрической сети по отдельным потребителям, ввиду этого принимается радиальная схема питания зданий от ТП и кольцевая схема питания ТП. «Основным преимуществом данной схемы является её высокая надёжность, в случае аварии на одной из линий, питание остальных потребителей не нарушается, это снижает риск длительных отключений и перебоев в электроснабжении» [12]. Кроме того, радиальная схема позволяет легко модернизировать и расширять систему электроснабжения, добавление новых потребителей или изменение схемы подключения не потребует значительных затрат и времени, так как линии питания уже разделены и независимы друг от друга. Одним из ключевых преимуществ выбранных кабелей является их высокая изоляционная способность. В отличие от традиционных кабелей с бумажной изоляцией, СПЭ-изоляция или резиновой устойчива механическим повреждениям и химическим воздействиям, что значительно увеличивает срок службы кабеля и снижает риск коротких замыканий.

Рассчитаны рабочие аварийные выбрано И режимы сети, электрооборудование подстанций, оборудование и уставки РЗА. Проведен расчет заземляющего устройства подстанций, эквивалентное сопротивление будет менее предельно допустимого. Реализация электроснабжения микрорайона согласно предложенному проекту обеспечит надежное и эффективное питание электрической энергией всех потребителей и позволит ввести данный микрорайон в эксплуатацию.

## Список используемых источников

- 1. Анчарова Т.В. Электроснабжение и электрооборудование зданий и сооружений : учебник. 2-е изд., перераб. и доп. М. : ФОРУМ : ИНФРА-М, 2023. 415 с.
- 2. Бирюлин В. И. Релейная защита и автоматизация электроэнергетических систем : учебное пособие. М. : Инфра-Инженерия, 2022. 164 с.
- 3. Бирюлин В.И. Электроснабжение промышленных и гражданских объектов: учебное пособие. М.: Инфра-Инженерия, 2022. 204 с.
- 4. Галишников Ю. П. Трансформаторы и электрические машины : курс лекций. М. : Инфра-Инженерия, 2021. 216 с.
- 5. Головатый С. Е. Охрана окружающей среды и энергосбережение : учебное пособие. Минск : РИПО, 2021. 304 с.
- 6. Горемыкин С. А. Релейная защита и автоматизация электроэнергетических систем : учебное пособие. М. : ИНФРА-М, 2023. 191 с.
- 7. Грунтович Н. В. Монтаж, наладка и эксплуатация электрооборудования : учебное пособие. М. : ИНФРА-М, 2023. 271 с.
- 8. Иванов С.Н. Надежность электроснабжения : учебное пособие. М. : Инфра-Инженерия, 2022. 164 с.
- 9. Кобозев В.А. Качество электроэнергии и энергоэффективность систем электроснабжения потребителей : учебное пособие. М. : Инфра-Инженерия, 2022. 356 с.
- 10. Куксин А. В. Релейная защита электроэнергетических систем : учебное пособие. М.: Инфра-Инженерия, 2021. 200 с.
- 11. Немировский А. Е. Электрооборудование электрических сетей, станций и подстанций: учебное пособие. М.: Инфра-Инженерия, 2023. 176 с.
- 12. Ополева Г.Н. Электроснабжение промышленных предприятий и городов: Учебное пособие. М.: Форум, 2022. 416 с.

- 13. Петухов Р.А. Электроснабжение : учебное пособие. Красноярск : Сибирский федеральный университет, 2022. 328 с.
- 14. Правила устройства электроустановок: действующие разделы 6-го и 7-го изданий. М.: ИНФРА-М, 2023. 832 с.
- 15. РД 34.20.185-94. Инструкция по проектированию городских электрических сетей. [Электронный ресурс]. URL: https://www.elec.ru/viewer? url=/library/rd/rd\_34\_20\_185-94.pdf (дата обращения 07.05.2024).
- 16. Сибикин Ю. Д. Современные электрические подстанции : учебное пособие. 2-е изд., доп. М. : ИНФРА-М, 2023. 417 с.
- 17. Сибикин Ю. Д. Технология энергосбережения : учебник. 4-е изд., перераб. и доп. М. : ИНФРА-М, 2023. 336 с.
- 18. Сибикин Ю.Д. Электроснабжение : учебное пособие. 2-е изд., стер. М. : ИНФРА-М, 2023. 328 с.
- 19. Шеховцов В.П. Расчет и проектирование схем электроснабжения. Методическое пособие для курсового проектирования: учебное пособие. 3-е изд., испр. М.: ИНФРА-М, 2023. 214 с.
- 20. Шеховцов В.П. Справочное пособие по электрооборудованию и электроснабжению : учебное пособие. 3-е изд. М. : ИНФРА-М, 2023. 136 с.