МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ МАШИНОСТРОЕНИЯ

(наименование института полностью)

Кафедра <u>«Энергетические машины и системы управления»</u> (наименование)

13.03.03 Энергетическое машиностроение (код и наименование направления подготовки)

«Альтернативные источники энергии транспортных средств» (направленность (профиль))

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Перспективы применения биогаза в автомобильных ДВС

Обучающийся

У.М. Махмадшоев (Инициалы Фамилия)

(личная подпись)

Руководитель

к.т.н., Н.М. Смоленская

(ученая степень, ученое звание, Инициалы Фамилия)

Тольятти 2024

Аннотация

Использование технологий, основанных на биогазе, предоставляет ощутимые преимущества, как напрямую, так и опосредованно. Это включает в себя продуктивную переработку и повторное применение широкого спектра отходов – от биологических отходов человека и продуктов животноводства органических жизнедеятельности до отходов агропромышленного комплекса, перерабатывающей промышленности и муниципальных отходов. Процесс производства биогаза способствует повышению здоровья благополучия уровня И населения за счет предоставления доступа к возобновляемому энергетическому ресурсу, который минимизирует воздействие на окружающую среду. В странах, находящихся на пути экономического развития, применение биогазовых технологий часто связано с установкой малых анаэробных реакторов для обработки экскрементов сельскохозяйственных животных, включая крупный рогатый скот, свиней и птиц. На свалках и в системах очистки сточных вод анаэробное разложение естественным образом приводит к образованию биогаза. Во многих случаях этот газ высвобождается в атмосферу без надлежащего утилизирования, тогда как его можно было бы использовать в бытовых и промышленных целях для кулинарии, отопления, освещения и выработки электроэнергии.

Задачей дипломной работы бакалавра стоит анализ потенциала использования биогаза как топлива для поршневых ДВС с точки зрения его эффективности.

В ВКР бакалавра изложены результаты проектирования бензинового двигателя с увеличенной компрессией, адаптированного к использованию биогаза с разной химической концентрацией. Пояснительная записка состоит из аннотации, введения, 4 разделов, заключения с основными результатами и выводами, содержит 26 рисунков, 27 таблиц, списка использованных источников (61 источников). Основной текст изложен на 69 страницах.

Abstract

The use of biogas-based technologies provides tangible benefits, both directly and indirectly. This includes the productive processing and reuse of a wide range of waste - from human biological waste and livestock products to organic waste from agribusiness, processing industry and municipal waste. The biogas production process improves the health and well-being of communities by providing access to a renewable energy resource that minimizes environmental impact. In countries undergoing economic development, the use of biogas technologies often involves the installation of small anaerobic digesters to treat excreta from livestock animals, including cattle, pigs and poultry. In landfills and wastewater treatment systems, anaerobic decomposition naturally produces biogas. In many cases, this gas is released into the atmosphere without proper disposal when it could be used for domestic and industrial purposes for cooking, heating, lighting and power generation.

The objective of the bachelor's thesis is to analyze the potential of using biogas as fuel for piston internal combustion engines from the point of view of its efficiency.

The bachelor's thesis outlines the results of designing a gasoline engine with increased compression, adapted to the use of biogas with different chemical concentrations. The explanatory note consists of an abstract, an introduction, 4 sections, a conclusion with the main results and conclusions, contains 26 figures, 27 tables, a list of sources used (61 sources). The main text is presented on 69 pages.

Содержание

Введение	6
1 Биогаз: характеристики и будущее использование	7
1.1 Возможности использования биогаза как топлива для	
автомобильных ДВС	7
1.2 Характеристики горючего при эксплуатации при повышенном	
компрессионном давлении	11
1.2.1 Термодинамическая температура пламени	13
1.2.2 Скорость ламинарного горения	14
1.2.3 Время задержки воспламенения и температура	
самовоспламенения	15
1.2.4 Предел гашения и пороговая энергия инициирования	
воспламенения	18
1.2.5 Толщина фронта пламени	20
2 Тепловой расчет проектируемого двигателя	22
2.1 Тепловой расчет при работе на бензине	22
2.2 Тепловой расчет при работе на биогазе (биометан)	
стехиометрического состава при подаче во впускной коллектор	25
2.3 Тепловой расчет при работе на биогазе (биометан)	
стехиометрического состава при подаче непосредственно в цилиндр (в	
форкамеру)	27
2.4 Тепловой расчет при работе на биогазе (биометан) бедного состава	
(а = 2) при подаче непосредственно в цилиндр (в форкамеру)	29
3 Кинематический и динамический расчет кривошипно-шатунного	
механизма двигателя	32
3.1 Кинематический расчет кривошипно-шатунного механизма	
двигателя	32
3.2 Динамический расчет кривошипно-шатунного механизма двигателя	33

4 Моделирование токсичности при работе на бензине и при работе на	
биогазе (биометан) при впрыске на клапан двигателя и при подаче	
непосредственно в форкамеру	39
4.1 Моделирование основных характеристик работы при работе на	
бензине и впрыске на клапан	39
4.2 Моделирование основных характеристик работы при работе на	
биогазе (биометан) при подаче во впускной коллектор двигателя	46
4.3 Анализ результатов моделирования при работе на биогазе	
(биометане) при непосредственном впрыске в цилиндр двигателя	53
Заключение	61
Список используемых источников	63

Введение

При эксплуатации поршневых двигателей внутреннего сгорания, применение биогаза в качестве топлива для генерации электроэнергии сталкивается с ограничениями, связанными с его сравнительно низкой энергоёмкостью и теплоотдачей. Это вызвано, в частности, уменьшенной теплотворной способностью и энергетической плотностью биогаза, которые значительно ниже, чем у природного газа, бензина и дизельного топлива. Такие характеристики сказываются на показателе Воббе, что напрямую влияет на эффективность сгорания. Дополнительной проблемой является скорость горения, обусловленная замедленная ламинарная высоким содержанием инертных газов в биогазе, что приводит к недостаточной стабильности и снижению эффективности производственного цикла. В отрасли ведется активная научно-исследовательская работа и разработка специализированных технологий для двигателей внутреннего сгорания, предназначенных специально для работы на газообразном топливе, получаемом из возобновляемых источников. Основное внимание уделяется выявленных недостатков, связанных стабильностью преодолению co эмиссией загрязняющих веществ и обеспечением высокой горения. мощности по сравнению с их работой на традиционных видах топлива.

Этот проект стремится разработать новаторский метод применения биогаза в двигателях внутреннего сгорания, акцентируя внимание на специфических характеристиках его сгорания.

1 Биогаз: характеристики и будущее использование

1.1 Возможности использования биогаза как топлива для автомобильных ДВС

Одним перспективных направлений, которое обещает ИЗ эффективность при работе на средних и низких уровнях мощности, является применение дизельных двигателей, благодаря их высокому коэффициенту сжатия и, следовательно, улучшенным характеристикам выработки энергии, что также способствует снижению отрицательного воздействия на среду, вызванного биогазом с его особенностями горения. Дизельные двигатели, работе с искровым зажиганием, обеспечивают адаптированные К возможность отказа от дизельного топлива в пользу гибкости выбора топлива. В обзорной таблице 1 представлены характеристики четырех различных режимов работы: совместное использование дизельного и газового топлива, а также двигателей на искровом зажигании, работающих альтернативных газах. Основной задачей является максимальное на уменьшение выбросов CO_2 , CO и несгоревших углеводородов, происходящих при сгорании ископаемого топлива, в частности, дизельного, за счет биогаза. Поэтому для использования данного проекта оптимальным вариантом выбран дизельный двигатель с искровым зажиганием. В таком двигателе возможно два способа подачи газа: смешивание воздуха и топлива перед дроссельной заслонкой через вентуриевскую трубку или впрыск топлива под высоким давлением за дроссельной заслонкой. В обеих ситуациях смесь сжимается в цилиндрах перед воспламенением, которое дизельных зажигания форсунок, инициируется свечами вместо С момента зажигания возможностью регулировки для предотвращения детонации и оптимизации процесса сгорания для повышения эффективности [4, 7, 9-11].

Таблица 1 – Режимы эксплуатации дизельных двигателей с использованием альтернативного газообразного топлива (АГТ)

Режим	Способ	Ход	Режим	Характеристи	Преимущество	Недостаток
	подачи АГТ	сжатия	зажигания	ки горения		
Двойной дизель + АГТ Двойной дизель + АГТ	Через впускное отверстие смешивает ся с воздухом. Впрыск АГТ непосредст венно в	Воздух и АГТ Воздух	Самовоспл аменение пилотного дизеля. Самовоспл аменение пилотного лизеля.	Характеристи ки, общие для сжигания с предварительн ым смешиванием и без него. Сгорание без предварительн ого смешивания.	 - Высокий уровень эффективного теплового КПД при полной нагрузке - Высокий уровень эффективного теплового КПД при полной нагрузке 	-Зависимость от дизельного топлива в качестве пилотного впрыска -Высокие выбросы NOx, несгоревших углеводородов и твердых частиц. -Низкий тепловой КПД и повышенная циклическая дисперсия при частичной нагрузке - Возможность пропуска зажигания -Зависимость от дизельного топлива в качестве пилота -Высокие выбросы NOx, несгоревших углеводородов
	цилиндр и впрыск дизельного топлива.			аналогично обычному дизельному двигателю.	Впрыск топлива под высоким давлением	и твердых частиц. -Низкий тепловой КПД и повышенная циклическая дисперсия при частичной нагрузке - Высокая стоимость системы двойного впрыска. - Возможность пропуска зажигания
Дизель в SI со 100% АГТ	АГТ через впускное отверстие смешивает ся с воздухом на входе в трубку Вентури.	АГТ + воздух	Иницииров ано искрой.	Сферический фронт пламени, турбулентное горение предварительн о смешанной смеси	 -100% замена дизеля -Наличие инертных газов обеспечивает высокую степень сжатия. -Снижение выбросов загрязняющих веществ -Может быть достигнута эффективность генерации, аналогичная двойному дизельному двигателю. 	 Возможность детонации. Дроссель необходим для управления нагрузкой. Снижение мощности из-за меньшей плотности энергии и дросселирования заряда. Высокая циклическая дисперсия в бедных смесях.
Дизель в SI со 100% АГТ	Впрыск АГТ во впускной канал.	АГТ +воздух	Иницииров ано искрой.	Сферический фронт пламени, турбулентное горение предварительн о смешанной смеси	 -100% замена дизеля. -Наличие инертных газов обеспечивает высокую степень сжатия. -Снижение выбросов загрязняющих веществ -Может быть достигнута эффективность генерации, аналогичная двойному дизельному двигателю. - Более высокая выходная мощность 	 Возможность детонации. Дроссельный клапан необходим для управления нагрузкой. Снижение мощности из-за меньшей плотности энергии и дросселирования заряда. Высокая циклическая дисперсия в бедных смесях Топливо требуется под высоким давлением.

Конфигурация сжатия (CI) воспламенения OT предоставляет значительное преимущество, поскольку она не привязана к определенному качеству ИЛИ составу дизельного топлива. Это обеспечивает ей независимость в эксплуатации, улучшенную устойчивость процесса сгорания при различных уровнях загрузки, благодаря точному контролю за балансом воздуха и топлива, что в свою очередь способствует повышению топливной эффективности двигателя. Тем не менее, глубокий анализ сравнительных достоинств такой конфигурации еще предстоит провести; научные публикации на эту тему ограничены, и на рынке отсутствуют готовые коммерческие решения, основанные на данной технологии. С учетом сказанного, актуализируется практическая реализация И адаптация дизельных двигателей под режим работы с воспламенением от сжатия.

Энергетическая плотность биогаза и его индекс Воббе уступают природному газу, так как биогаз на 66% состоит из метана и на 33% из CO₂, тогда как у природного газа содержание метана может достигать до 95%. Высокий уровень СО₂, являющегося инертным газом, приводит к низкой скорости горения биогаза и понижению адиабатической температуры его пламени. Однако, это же увеличивает температуру самовоспламенения и продлевает временной промежуток до начала горения по сравнению с природным газом, позволяя достигать более высокого давления в конце цикла сжатия. Применение биогаза в двигателях с искровым зажиганием (ИЗ) и с высокой степенью сжатия усиливает его устойчивость к детонации благодаря наивысшему в своем классе метановому числу (МЧ), аналог октанового числа для газообразных топлив, что способствует повышению эффективности генерации, несмотря на исходную низкую плотность энергии и уменьшенную мощность. Изменения в химическом составе газовых топлив существенно влияют на динамику работы двигателя как при искровом зажигании, так и при воспламенении от сжатия. Модификация биогаза путем смешивания с метаном, пропаном или добавлением водорода приводит к формированию топливной смеси с улучшенной энергетической плотностью,

выше адиабатической температурой горения и ускорением распространения пламени, что влияет на увеличение мощности и эффективности работы двигателя.

Эти добавки снижают октановое число конечного топлива. При повышенной степени сжатия интервал рабочих значений коэффициента избытка воздуха, при котором не возникает детонация, сужается, проявляя риск детонации с одной стороны и не воспламенения с другой [4, 17, 31-33].

Оптимизация геометрии камеры сгорания для повышения турбулентности воздушно-топливной смеси способствует ускорению процесса горения за счет увеличения турбулентного переноса пламени. Это, в свою очередь, сокращает время, необходимое пламени для достижения стенок цилиндра, уменьшая общую продолжительность фазы горения и повышая термическую эффективность двигателя внутреннего сгорания, что важно для улучшения его экологических и экономических характеристик.

Для предотвращения образования зон самовоспламенения, время проникновения пламени к дальним участкам от источника зажигания должно быть короче, чем период задержки воспламенения уходящих газов, которые сжимаются волнами пламени и движением поршня. Важно проанализировать все варианты смесеобразования и соотношения воздуха к топливу для выявления идеальных значений угла опережения зажигания (УОЗ) и времени горения, которые гарантируют максимальную эффективность генерации мощности при одновременном избежании детонации. Топлива с высоким содержанием инертных компонентов обладают уменьшенной скоростью горения, что требует более раннего УОЗ. Это обусловлено необходимостью запуска процесса горения до завершения такта сжатия, что может привести к обратного следствие, созданию давления И, как К падению производительности. Введение водорода способствует повышению скорости УОЗ. И позволяет снизить необходимый пламени для достижения оптимальной работы. Однако, слишком маленький УОЗ может вызвать

всплеск давления на этапе, когда такт расширения ещё не достиг своей полной мощности, уменьшая тем самым эффективность работы двигателя.

1.2 Характеристики горючего при эксплуатации при повышенном компрессионном давлении

В исследовательской работе [22] на тему "Анализ теоретических и практических аспектов конверсии дизельных двигателей для работы на газообразном топливе: биогазе и природном газе", были изучены методики модификации дизельных двигателей для их функционирования на основе биогаза с системой искрового воспламенения. Из результатов данного научного труда выяснилось, что оптимальной топливной смесью для мотора с параметром сжатия 15,5:1 является комбинация в равных долях биогаза и природного газа при коэффициенте избытка воздуха в 0,9. Эта настройка обеспечила пиковую мощность в 7 кВт при скорости вращения коленчатого вала 1800 оборотов в минуту, особенно в контексте производства наивысшей эффективности генерации электроэнергии, достигая при различных нагрузках и исключая риск детонации. Используемая комбинация топлива эквивалентна смеси, содержащей 80% метана и 20% углекислого напоминает состав очищенного биогаза. газа. ЧТО Данный уровень углекислого газа позволяет применять топливо в двигателях с увеличенным сжатия. Следовательно, параметром топливные смеси для данного исследования были выбраны с учетом их сходства с указанным типом биогаза.

Представлены дополнительные пять составов, обладающих тремя свойствами, сходными с очищенным биогазом:

- Повышенное наличие углекислого газа. Углекислый газ, будучи инертным, увеличивает устойчивость композиций перед взрывом.
- Аналог LWI это индекс Воббе, часто применяемый для гарантии взаимозаменяемости газа.

 Такая же удельная энерговооруженность. Признана оптимальной для использования в ДВС благодаря свойствам взаимозаменяемости.

Задачей исследования является анализ эффективности биогаза в сочетании с природным газом или пропаном и дополнительного введения водорода для выявления оптимальных условий их использования. В документации приведены данные о химическом составе, индексе Воббе и энергетической удельной плотности исследуемых газовых смесей. отраженные в таблице 2. Индекс Воббе, являющийся критерием сравнения газообразного качества топлива, определяется через его низшую теплотворную способность и плотность по отношению к воздуху. Удельная энергетическая плотность газов прямо связана с низшей теплотворной способностью и обеспечивает величину стехиометрического соотношения газ-воздух. Для вычисления ключевых характеристик горючих смесей применялась программа «Расчет свойств сгорания горючих газов». разработанная командой GASURE. В таблице 3 представлены основные характеристики топлива: плотность относительно воздуха, молекулярный вес, низшая теплотворная способность и отношение компонентов газ-воздух.

		Плотность энергии	CH4 (%	CO ₂ (%		C ₃ H ₈ (%
Обозначение	Ни (МДж/м ³)	смеси (МДж/м ³)	об.)	об.)	Н2 (% об.)	об.)
100GN	33.43	3.57	100			
100B	20.99	3.44	60	40		
50B50M	31.40	3.57	80	20		
57B38M5H	29.01	3.58	72	23	5	
54B36M10H	28.80	3.59	68	22	10	
83B17P	31.38	3.64	50	33		17
79B16P5H	31.04	3.65	47	32	5	16
75B15P10H	30.71	3.77	45	30	10	15
C3H8	16.66	3.56				100

Таблица 2 – Объемный состав смесей с низким индексом Воббе и энергетической плотностью.

	Относительная	Молекулярная	Низкая теплота	Соотношение
	плотность	масса (кг/кмоль)	сгорания (МДж/кг)	воздух-топливо
Обозначение				$(M^{3}_{BO3} M^{3}_{TOПЛИВA})$
100B	0,94	27,23	23,46	5,71
50B50M	0,75	21,63	33,30	7,61
57B38M5H	0,75	21,71	31,36	6,99
54B36M10H	0,71	20,68	31,81	6,75
83B17P	1,04	30,10	29,16	8,79
79B16P5H	0,99	28,70	29,50	8,48
75B15P10H	0,94	27,29	29,82	8,14

Таблица 3 – Основные свойства топлива

1.2.1 Термодинамическая температура пламени

Адиабатическая температура горения важна для анализа склонности к детонации и объяснения экспериментальных данных. Для вычисления этого параметра применялись Chemkin и его компонента EQUIL, позволяющие определить адиабатическую температуру для различных эквивалентных отношений исследуемых топливных смесей.

Значения коэффициентов эквивалентности колеблются в интервале между 0,6 и 1. Для вычисления адиабатической температуры горения применялась кинетическая модель реакции Grimech версии 3.0. На демонстрационном графике (рисунок 1) представлены исследования адиабатической температуры горения при экспериментальных условиях: под давлением в 35 бар и при начальной температуре в 850 К. Эти параметры аналогичны тем, что достигаются в момент завершения такта сжатия в двигателе внутреннего сгорания. Согласно результатам, минимальная адиабатическая температура горения среди всех исследованных соотношений эквивалентности зафиксирована для биогаза, что объясняется его высоким содержанием углекислого газа СО2.

Биогазово-пропановые смеси выделяются более высокими адиабатическими температурами горения по сравнению с биогазовометановыми из-за повышенной теплотворной способности пропана. Внедрение водорода в биогазовые смеси, содержащие природный газ и

пропан, способствует дальнейшему увеличению адиабатической температуры пламени благодаря его собственным высоким показателям адиабатической температуры горения.

Рисунок 1 – Адиабатическая температура горения при давлении в 35 бар и начальной температуре в 850 К.

1.2.2 Скорость ламинарного горения

В исследовании ламинарной скорости горения для оценки использовалась программа Chemkin, дополненная модулем для анализа процессов предварительного смешивания, и применялся кинетический механизм Grimech 3.0. Данные, полученные в ходе расчетов, отображены на рисунке 2, где показаны изменения скорости ламинарного пламени при условиях давления в 35 бар и температуры в 850 К. Обнаружено, что в биогазе наблюдается минимальная скорость ламинарного горения, что объясняется его высоким содержанием углекислого газа (СО2). В то время как газовая смесь на основе 50% биометана и 50% метана (обозначаемая как 50B50M) увеличение ламинарной показывает скорости пламени по сравнению с чистым биогазом за счет уменьшения концентрации CO2 на 20%.

Рисунок 2 – Скорость ламинарного распространения пламени при давлении в 35 бар и при температуре 850 К

Добавление пропана к биогазу приводит к повышению скорости ламинарного горения на 7–13%, обгоняя тем самым скорость, достигаемую при смешении биогаза с метаном, благодаря более высокой теплотворной способности пропана. Внедрение водорода в смеси биогаза, будь то с метаном или пропаном, повышает скорость ламинарного пламени за счет исключительно высокой реактивности водородного пламени. Для любой из рассматриваемых смесей максимальная скорость ламинарного горения достигается при значении коэффициента эквивалентности, равном единице, в условиях проведенных моделирований.

1.2.3 Время задержки воспламенения и температура самовоспламенения

Период задержки воспламенения определяется как промежуток времени, за который смесь воздуха и топлива при исходных условиях давления и температуры запускает процесс сгорания. Этот процесс сопровождается интенсивным расходованием реактивных компонентов и формированием промежуточных продуктов, таких как гидроксильные радикалы (OH), метильные радикалы (CH3) и пероксид водорода (H2O2).

Для оценки времени задержки воспламенения t используется формула, основанная на уравнении Аррениуса.

$$t = A P^{tn} exp(E/RT) \tag{1}$$

где Р – обозначает давление,

Т – температуру,

Е – энергию активации реакции,

R – универсальную газовую постоянную,

А и n – константы отражают специфические характеристики реакции горения для каждого отдельного случая.

Точка самовоспламенения указывает минимальную температуру, необходимую для нагревания комбинации топлива и окислителя до начала горения без внешнего источника самостоятельного зажигания. Эта характеристика изменчива и подвержена влиянию факторов таких как содержание топлива, исходное давление, а также размеры и форма сосуда. Для расчета данных параметров было применено программное решение Chemkin, основанное на моделировании в гомогенной реакционной среде без размерности (0-D). Для использовалась разработанная анализа Университетом Сан-Диего детализированная схема химических реакций. На графике 3 показаны результаты численного анализа задержки воспламенения и критической температуры самовоспламенения при условиях 35 бар давления и эквивалентности в 0,9. Обнаружено, что смеси биогаза и пропана более подвержены самовоспламенению, причём внесение водорода слегка повышает пороговую температуру. Включение водорода в состав биогаза и способствует увеличению температуры метана самовоспламенения. Присутствие углекислого газа в составе биогаза повышает температурный порог самовоспламенения по сравнению с другими газовыми смесями.

Рисунок 3 – Задержка воспламенения и температура самовозгорания при давлении в 35 бар и стехиометрическом коэффициенте 0,9

На рисунке 4 демонстрируются данные, полученные в ходе симуляции временного интервала до момента самовоспламенения и значения температур, при которых происходит самовоспламенение, при условиях давления в 35 бар и значении коэффициента эквивалентности равном 0,6. Эти результаты схожи с теми, что представлены на иллюстрации три, однако отличительной особенностью является тот факт, что на представленном графике фиксируется рост температуры самовоспламенения для всех типов горючих смесей, что обусловлено повышенным содержанием азота в атмосфере.

Рисунок 4 – Интервал задержки воспламенения и температура начала самовоспламенения при условии давления в 35 бар и значения коэффициента эквивалентности, равного 0,6

1.2.4 Предел гашения и пороговая энергия инициирования воспламенения

Модель, применяемая для определения наименьшей энергии зажигания и дистанции прекращения горения, адаптирована к среде с малой турбулентностью (u'), при этом предполагается, что u' значительно меньше двойного значения скорости ламинарного пламени, u'<<2S_L [35].

На рисунке 5 демонстрируются результаты вычислений протяженности зоны гашения пламени при заданных параметрах: давлении 35 бар и температуре 850 Кельвинов. Визуализировано сопоставление эффективности закалки огня между биогазом и его смесями с другими газами. Биогаз, обогащенный углекислым газом, который вступает в роли инертного компонента, отрицательно влияя на скорость химических реакций, зафиксирован как обладающий наибольшей длиной зоны гашения в сравнении с комбинациями биогаза с такими газами, как метан, пропан и водород.

Рисунок 5 – Длина зоны закалки при давлении в 35 бар и температурном режиме 850 К

При увеличении коэффициента эквивалентности и, следовательно, увеличении концентрации азота в углеводородных смесях, наблюдается сокращение расстояния тушения пламени, что характерно ДЛЯ углеводородных соединений. К примеру, смеси, содержащие биогаз и пропан, показывают на 3–10% более низкие показатели расстояния тушения по сравнению с аналогичными смесями биогаза и метана. Внесение водорода в состав этих смесей дополнительно снижает необходимое расстояние для эффективного тушения пламени. Различия в расстояниях тушения становятся более выраженными при условиях, повышенных eшë давления и температуры, где расстояние тушения может уменьшаться в 2,6–4,4 раза по сравнению с параметрами при низких давлении и температуре, сохраняя при этом аналогичную зависимость показателей. В частности, смеси биогаза с метаном проявляют на 38% до 41% большее расстояние тушения по сравнению с смесями биогаза и пропана при любом коэффициенте эквивалентности.

На рисунке 6 представлены вычисленные значения минимальной энергии инициирования воспламенения при условии давления в 35 бар и температуры в 850К. Биогазу необходимо наибольшее количество энергии

для воспламенения среди прочих газов, что обусловлено значительным содержанием углекислого газа.

Рисунок 6 – Низший порог энергии зажигания при условиях давления в 35 бар и температуры в 850 К

Во всех смесях с ростом коэффициента избытка наблюдается снижение минимальной энергии воспламенения, что связано с уменьшением концентрации азота. Включение водорода последовательно уменьшает необходимую минимальную энергию для воспламенения.

1.2.5 Толщина фронта пламени

Определение толщины фронта пламени проводится через численные расчеты ламинарной скорости горения, что представляет основной фактор, влияющий на гидродинамическую стабильность. При минимальной толщине фронта пламени риск гидродинамической нестабильности возрастает. Этот параметр служит критической мерой для анализа гидродинамических нестабильностей и для определения критического значения числа Пекле, что помогает предсказывать начало клеточных нестабильностей в процессе горения.

На рисунке 7 демонстрируются вычисления толщины фронта горения при условиях под давлением 35 атмосфер и при температуре 850 Кельвин. В

каждом рассмотренном случае, с приближением значения коэффициента эквивалентности к стехиометрическому коэффициенту, наблюдается уменьшение толщины зоны горения. При этом, для каждого изученного коэффициента эквивалентности, толщина фронта горения при использовании биогаза оказывается выше. Интеграция водорода, благодаря его меньшей плотности, во всех рассмотренных обстоятельствах способствует снижению толщины фронта горения, что в свою очередь приводит к повышению гидродинамической нестабильности системы.

Рисунок 7 – Толщина фронтальной зоны горения при условиях давления в 35 бар и температуры в 850 К

2 Тепловой расчет проектируемого двигателя

Тепловой расчет производиться по методике И.И. Вибе, с учетом рекомендаций по расчету основных параметров, предложенных в учебниках [1,2,3,4,5]. Результаты расчета представлены в виде таблиц и графиков, вынесенных на плакаты.

Для расчета брался очищенный биогаз до состояния биометана, из биогаза удалялось повышенное содержание оксидов углерода. Состав и физико-технические характеристики топлив, для которых проводился тепловой расчет приведены в таблице 4.

Характеристика топлива	Бензин Аи-95	Биогаз
		(Биометан)
ОЧ по исследовательскому методу	95	110
μ_{T} , кг/моль	115	18,14323
ρ, κγ/m ³	760	0,810885
Ни, МДж/кг	43929,5	42,73807
Массовый элементарный состав, %		
– Углерод	85,5	62,8461
– Водород	14,5	20,879
– Кислород	0	0,7219
– Азот	0	15,5326

Таблица 4 – Физико-технические характеристики исследуемых топлив

2.1 Тепловой расчет при работе на бензине

В таблице 5 представлены регулировочные параметры работы, а в таблице 6 представлены термохимические характеристики используемых топлив. В работе рассматриваем два способа подачи топлива, это первый подача топлива во впускной коллектор, но из-за объемного вытеснения воздуха газом, наполнение значительно снижается и для двигателей, работающих на биогазе, рекомендуют применять второй способ подачи топлива, а именно непосредственный впрыск в цилиндр двигателя. Таблица 5 – Регулировочные характеристики двигателя при работе на бензине подаваемого на впускной клапан

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
Θ , ⁰ ПКВ	20	24	28	32	35		
α	1	1	1	1	1		
$\Delta T_{\rm N}$, °C	5	5	5	5	5		
3	11,5	11,5	11,5	11,5	11,5		
Р ₀ , МПа	0,1	0,1	0,1	0,1	0,1		
T_0, K^o	293,15	293,15	293,15	293,15	293,15		
n _p	1,3751	1,3752	1,3754	1,3755	1,3754		
nд	1,3750	1,3752	1,3753	1,3754	1,3753		
Т _г , К	1070	1080	1100	1120	1130		
ф _г , ^о ПКВ	50	56	62	68	75		
m	3	3	3	3	3		
σ	1	1	1	1	1		
δί	0,86	0,88	0,9	0,88	0,85		
ξ	0,86	0,88	0,9	0,88	0,85		

Таблица 6 – Термохимические характеристики при работе на бензине подаваемого на впускной клапан и при работе на биогазе (биометане)

Параметр		Значение характеристики				
		Биогаз	Биогаз	Биогаз		
		(биометан) α=1	(биометан)	(биометан) α=2		
Топливо	Банани при а-1	при подаче во	α=1 при	при подаче в		
Топливо	Densin upn u 1	впускной	подаче в	цилиндр		
		коллектор	цилиндр	двигателя		
			двигателя			
Н	0,145	0,20879	0,20879	0,20879		
С	0,855	0,628461	0,628461	0,628461		
0	0	0,007218602	0,007218602	0,007218602		
S	0	0	0	0		
N	0	0,15532603	0,15532603	0,15532603		
$m_{\scriptscriptstyle T}$, кг/моль	115	18,14323	18,14323	18,14323		
H_{u}	43929,500	42739,960	42739,960	42739,960		
Lo, кмоль возд./кг топлива	0,517	0,502	0,502	0,502		
Lo, кг возд./кг топлива	14,957	14,517	14,517	14,517		
Мс СО, кмоль СО/кг топлива	0,0713	0,0524	0,0524	0,0524		
MH ₂ O, кмоль H ₂ O/кг топлива	0,0725	0,1044	0,1044	0,1044		
MN ₂ , кмоль N ₂ /кг топлива	0,4093	0,3987	0,3987	0,7997		
MO ₂ , кмоль O ₂ /кг топлива	0	0	0	0		
М ₂ кмоль пр. сг./кг	0.5521	0.5554	0.5554	1.0.00		
топлива	0,5531	0,5554	0,3334	1,0608		
μ ₀	1,0524	0,9976	0,9976	1,0023		

Для удобства расчетов цикла для двигателя при работе на бензине подаваемого на впускной клапан представим данные в виде таблицы 7, индикаторные параметры в таблице 8, а эффективные параметры в таблице 9.

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
Pr, MПa	0,1038	0,1051	0,1076	0,1136	0,1180		
$P_{\rm B}$, КГ/ M^3	1,1882	1,1882	1,1882	1,1882	1,1882		
ω _{вп} , м/с	16,2472	38,6837	61,8940	96,7094	116,0512		
Ра, МПа	0,0996	0,0979	0,0945	0,0867	0,0808		
γ_{r}	0,0307	0,0309	0,0307	0,0339	0,0378		
η_V	0,8461	0,8537	0,8641	0,8045	0,7509		
Ta, K	330,0983	328,4959	327,1838	327,8311	329,5593		
Va, м ³ /кг	0,9085	0,9203	0,9489	1,0372	1,1183		
Р _с , МПа	2,8630	2,8139	2,7188	2,4930	2,3237		
T _c , K	824,9070	821,3037	818,2231	820,0422	824,1636		
n ₂	1,1848	1,1843	1,1837	1,1855	0,3215		
Vy, м ³ /кг	0,1110	0,1263	0,1470	0,1813	0,2138		
Ру, МПа	1,7942	1,5019	1,2293	0,9543	0,7865		
Ty, K	726,2010	692,0031	658,8780	630,9793	613,2277		
q _z , кДж/кг	2297,0654	2350,1442	2403,9616	2343,2032	2254,8306		
Е2, МПа	58,1539	58,7334	58,2678	51,9625	46,3731		

Таблица 7 – Расчет действительного цикла двигателя при работе на бензине подаваемого на впускной клапан

Таблица 8 – Индикаторные показатели действительного цикла двигателя при работе на бензине подаваемого на впускной клапан

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
δ	6,0775	5,7213	5,3887	5,0791	4,5250		
Р _z , МПа	5,2156	4,8454	4,4289	3,6963	2,8924		
T _z , K	2706,0758	2705,2585	2706,8903	2620,1576	2482,0190		
Рь, МПа	0,6148	0,6141	0,6032	0,5384	0,4813		
T _b , K	1938,7474	1961,4764	1986,6389	1938,2883	1868,8021		
L _т , кДж	1,3027	1,3211	1,3306	1,2996	1,2545		
РіТ, МПа	1,5705	1,5722	1,5358	1,3723	1,2285		
ηi	0,5412	0,5370	0,5182	0,4974	0,4770		
g _i , г/кВт*ч	151,4235	152,6100	158,1352	164,7689	171,7909		

Таблица 9 – Эффективные показатели действительного цикла двигателя при работе на бензине подаваемого на впускной клапан

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
Р _м , МПа	0,0607	0,0976	0,1357	0,1930	0,2247		
Сп, м/с	2,3632	5,6267	9,0027	14,0667	16,8800		
Ре, МПа	1,5098	1,4746	1,4001	1,1794	1,0038		
ηм	0,9613	0,9379	0,9116	0,8594	0,8171		
ηe	0,5203	0,5037	0,4724	0,4274	0,3898		
g _e , г/кВт*ч	157,5118	162,7088	173,4657	191,7258	210,2542		
N _e , кВт	17,9343	41,7066	63,3563	83,3910	85,1696		
G _т , кг/ч	2,8249	6,7860	10,9901	15,9882	17,9073		
Ме, Н*м	203,8814	199,1345	189,0650	159,2651	135,5516		

2.2 Тепловой расчет при работе на биогазе (биометан) стехиометрического состава при подаче во впускной коллектор

В таблице 10 представлены регулировочные параметры работы при работе на биогазе (биометан) стехиометрического состава при подаче во впускной коллектор.

Таблица 10 – Регулировочные характеристики двигателя при работе на биогазе (биометан) стехиометрического состава при подаче во впускной коллектор

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
⊖ , ^⁰ ПКВ	20	24	28	32	35		
α	1	1	1	1	1		
$\Delta T_{\rm N}$, ^o C	3	3	3	3	3		
3	11,5	11,5	11,5	11,5	11,5		
Р ₀ , МПа	0,1	0,1	0,1	0,1	0,1		
T_0, K^o	293,15	293,15	293,15	293,15	293,15		
n _p	1,3758	1,3758	1,3759	1,3758	1,3756		
n _д	1,3755	1,3758	1,3758	1,3756	1,3755		
Т _г , К	1080	1090	1100	1115	1140		
ф _г , ^о ПКВ	50	56	62	68	75		
m	3	3	3	3	3		
σ	1	1	1	1	1		
δί	0,9	0,9	0,9	0,9	0,9		
٤	0,9	0,9	0,9	0,9	0,9		

Результаты расчетов цикла для двигателя при работе на биогазе (биометан) стехиометрического состава при подаче во впускной коллектор представим данные в виде таблицы 11, индикаторные параметры в таблице 12, а эффективные параметры в таблице 13.

Таблица 11 – Расчет действительного цикла двигателя при работе на биогазе (биометан) стехиометрического состава при подаче во впускной коллектор

Параметр		Значе	ение характер	истики	
n, мин ⁻¹	840	2000	3200	5000	6000
Pr, MПa	0,1038	0,1038 0,1051		0,1136	0,1180
$P_{\rm B}$, КГ/ M^3	1,1882	1,1882	1,1882	1,1882	1,1882
ω _{вп} , м/с	16,2472	38,6837	61,8940	96,7094	116,0512
Ра, МПа	0,0996	0,0979	0,0945	0,0867	0,0808
γ_r	0,0283	0,0289	0,0303	0,0341	0,0371
η_V	0,9642	0,9482	0,9142	0,8295	0,7647
Ta, K	322,5841	322,0693	322,2556	324,3754	327,0832
Va, м ³ /кг	1,0209	1,0376	1,0747	1,1801	1,2763
Р _с , МПа	2,8665	2,8180	2,7222	2,4942	2,3248
T _c , K	807,1143	806,4167	806,8833	811,7942	818,3710
n ₂	1,1862	1,1872	1,1883	0,3652	0,3215
Vy, м ³ /кг	0,1247	0,1424	0,1664	0,2063	0,2440
Ру, МПа	1,7961	1,5036	1,2305	0,9547	0,7867
Ty, K	710,4165	679,2737	649,5590	624,5458	608,8218
q _z , кДж/кг	2410,5569	2409,2103	2406,0109	2397,0852	2390,1301
Е2, МПа	54,3078	53,4053	51,4907	46,7202	43,0712

Таблица 12 – Индикаторные показатели действительного цикла двигателя при работе на биогазе (биометан) стехиометрического состава при подаче во впускной коллектор

Параметр	Значение характеристики					
n, мин ⁻¹	840	2000	3200	5000	6000	
δ	6,0775	5,7213	5,3887	5,0791	4,5250	
P _z , MПа	4,9596	4,5180	4,0423	3,4152	2,7360	
T _z , K	2648,5028	2648,5028 2604,7654 25		2522,4808	2453,2765	
Рь, МПа	0,5832	0,5697	0,5463	0,4943	0,4528	
T _b , K	1892,8164	1879,1387 1866,4562		1854,4318	1837,3718	
L _т , кДж	1,3912	1,3770	1,3597	1,3374	1,3314	
РіТ, МПа	1,4925	1,4925 1,4536		1,2413	1,1425	
ηί	0,4915	0,4867	0,4812	0,4751	0,4743	
g _i , г/кВт*ч	171,3901	173,0571	175,0265	177,2908	177,5779	

Таблица 13 – Эффективные показатели действительного цикла двигателя при работе на биогазе (биометан) стехиометрического состава при подаче во впускной коллектор

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
Р _м , МПа	0,0607	0,0976	0,1357	0,1930	0,2247		
Сп, м/с	2,3632	5,6267	9,0027	14,0667	16,8800		
Ре, МПа	1,4318	1,3560	1,2500	1,0483	0,9177		
ηм	0,9593	0,9329	0,9020	0,8445	0,8033		
ηe	0,4715	,4715 0,4540		0,4012	0,3810		
g _e , г/кВт*ч	178,6565	185,5108	194,0322	209,9235	221,0659		
N _e , кВт	17,0081	38,3512	56,5638	74,1220	77,8664		
G _т , кг/ч	3,0386	7,1146	10,9752	15,5599	17,2136		
Ме, Н*м	193,3517	183,1133	168,7951	141,5626	123,9282		

2.3 Тепловой расчет при работе на биогазе (биометан) стехиометрического состава при подаче непосредственно в цилиндр (в форкамеру)

В таблице 14 представлены регулировочные параметры работы на биогазе (биометан) стехиометрического состава при подаче непосредственно в цилиндр (в форкамеру).

Таблица 14 – Регулировочные характеристики двигателя при работе на биогазе (биометан) стехиометрического состава при подаче непосредственно в цилиндр (в форкамеру)

Параметр		Значе	ние характери	стики	
n, мин ⁻¹	840	2000	3200	5000	6000
Θ, ^о ПКВ	22	25	30	33	35
α	1	1 1		1	1
$\Delta T_{\rm N}$, °C	4	4	4	4	4
3	11,5	11,5	11,5	11,5	11,5
Р ₀ , МПа	a 0,1		0,1	0,1	0,1
T_0, K^o	₀ , K ^o 293,15		293,15	293,15	293,15
n _p	1,3757	1,3758	1,3759	1,3760	1,3759
nд	1,3748	1,3747	1,3747	1,3744	1,3742
Τ _Γ , Κ	1120	1130	1150	1180	1200
ф _г , ^о ПКВ	52	58	64	68	70
m	3	3	3	3	3
σ	1	1	1	1	1
δί	0,94	0,94	0,94	0,94	0,94
ک	0,94	0,94	0,94	0,94	0,94

Для удобства расчетов цикла для двигателя при работе на биогазе (биометан) стехиометрического состава при подаче непосредственно в цилиндр (в форкамеру) представим данные в виде таблицы 15, индикаторные параметры в таблице 16, а эффективные параметры в таблице 17.

Таблица 15 – Расчет действительного цикла двигателя при работе на биогазе (биометан) стехиометрического состава при подаче непосредственно в цилиндр (в форкамеру)

Параметр		Значе	ение характер	истики	
n, мин ⁻¹	840	2000	3200	5000	6000
Pr, MПa	0,1038	0,1038 0,1051		0,1136	0,1180
Р _В , КГ/М ³	1,1882	1,1882	1,1882	1,1882	1,1882
ω _{вп} , м/с	16,2472	38,6837	61,8940	96,7094	116,0512
Ра, МПа	0,0996	0,0979	0,0945	0,0867	0,0808
γ_r	0,0283	0,0286	0,0294	0,0325	0,0364
η_V	0,9132	,9132 0,9095		0,8257	0,7534
Ta, K	326,9874	325,8274	325,4133	326,3575	328,8923
Va, м ³ /кг	0,9803	0,9944	1,0281	1,1247	1,2158
Р _с , МПа	2,8616	2,8104	2,7202	2,4869	2,3174
T _c , K	816,7339	813,6378	814,1928	814,3645	820,2889
n ₂	1,1813	1,1820	1,1828	1,1831	1,1837
Vy, м ³ /кг	0,1268	0,1406	0,1692	0,2026	0,2324
Ру, МПа	1,6569	1,4399	1,1314	0,9142	0,7850
Ty, K	703,6932	678,0529	640,8027	620,0393	610,8739
q _z , кДж/кг	2517,7413	2517,1903	2515,0636	2507,4715	2498,0424
Е2, МПа	59,0709	58,2229	56,2667	51,2764	47,2581

Таблица 16 – Индикаторные показатели при работе на биогазе (биометан) стехиометрического состава при подаче непосредственно в цилиндр (в форкамеру)

Параметр	Значение характеристики					
n, мин ⁻¹	840	2000	3200	5000	6000	
δ	6,0775	6,0775 5,5521		5,2311	5,2311	
Р _z , МПа	5,2666	4,6354	4,3132	3,7926	3,4622	
T _z , K	2844,9447	2780,2470	2755,7627	2730,8443	2694,7363	
Рь, МПа	0,6248	0,6112	0,5883	0,5355	0,4884	
T _b , K	2051,2681	2035,2739	2025,5485	2017,1605	1988,5652	
L _т , кДж	1,4012	1,3874	1,3764	1,3701	1,3336	
РіТ, МПа	1,5655	1,5655 1,5281		1,3342	1,2014	
ηί	0,5443	0,5335	0,5243	0,5130	0,5063	
g _i , г/кВт*ч	154,7547	157,8903	160,6593	164,1957	166,3661	

Таблица 17 – Эффективные показатели действительного цикла двигателя при работе на биогазе (биометан) стехиометрического состава при подаче непосредственно в цилиндр (в форкамеру)

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
Р _м , МПа	0,1169	0,1554	0,1952	0,2550	0,2882		
Сп, м/с	2,3632	5,6267	9,0027	14,0667	16,8800		
Ре, МПа	1,4486 1,3727		1,2711	1,0792	0,9132		
ηм	0,9253	,9253 0,8983		0,8089	0,7601		
ηe	0,5036	0,5036 0,4792		0,4149	0,3849		
g _e , г/кВт*ч	167,2415	175,7636	185,3360	202,9919	218,8649		
N _e , кВт	17,2077	38,8247	57,5188	76,3046	77,4869		
G _т , кг/ч	2,8778	6,8240	10,6603	15,4892	16,9592		
М _е , Н*м	195,6204	185,3743	171,6449	145,7311	123,3242		

2.4 Тепловой расчет при работе на биогазе (биометан) бедного состава (α = 2) при подаче непосредственно в цилиндр (в форкамеру)

В таблице 18 представлены регулировочные параметры работы на биогазе (биометан) бедного состава (α = 2) при подаче непосредственно в цилиндр (в форкамеру).

Таблица 18 – Регулировочные характеристики двигателя при работе на биогазе (биометан) стехиометрического состава при подаче непосредственно в цилиндр (в форкамеру)

Параметр		Значе	ние характери	стики	
n, мин ⁻¹	840	2000	3200	5000	6000
Θ, ^о ПКВ	16	20	25	27	29
α	2	2	2	2	2
$\Delta T_{\rm N}$, °C	4	4	4	4	4
3	11,5	11,5	11,5	11,5	11,5
Р ₀ , МПа	0,1	0,1	0,1	0,1	0,1
T_0, K^o	293,15	293,15	293,15	293,15	293,15
n _p	1,3757	1,3758	1,3759	1,3760	1,3759
n _д	1,3748	1,3747	1,3747	1,3744	1,3742
Τ _Γ , Κ	840	840	850	865	890
ф _г , ^о ПКВ	44	50	55	61	66
m	3	3	3	3	3
σ	2,40793078	2,40793078	2,40793078	2,40793078	2,40793078
δί	1	1	1	1	1
ىخ	1	1	1	1	1

Для удобства расчетов цикла для двигателя при работе на биогазе (биометан) бедного состава ($\alpha = 2$) при подаче непосредственно в цилиндр (в форкамеру) представим данные в виде таблицы 19, индикаторные параметры в таблице 20, а эффективные параметры в таблице 21.

Таблица 19 – Расчет действительного цикла двигателя при работе на биогазе (биометан) бедного состава ($\alpha = 2$) при подаче непосредственно в цилиндр (в форкамеру).

Параметр		Знач	ение характер	истики	
n, мин ⁻¹	840	2000	3200	3200 5000	
Pr, MПa	0,1038 0,1051		0,1076	0,1136	0,1180
Р _В , КГ/М ³	1,1882	1,1882	1,1882	1,1882	1,1882
ω _{вп} , м/с	16,2472	38,6837	61,8940	96,7094	116,0512
Ра, МПа	0,0998	0,0987	0,0966	0,0916	0,0879
γ_r	0,0377	0,0381	0,0389	0,0417	0,0446
η_V	0,9146	0,9176	0,9090	0,8786	0,8291
Ta, K	323,9831	322,5654	321,6950	321,2639	322,4863
Va, м ³ /кг	0,9472	0,9537	0,9718	1,0232	1,0703
Р _с , МПа	2,8656	2,8330	2,7727	2,6280	2,5205
T _c , K	809,2299	805,4922	803,3187	801,6544	804,3117
n ₂	1,1980	1,1986	1,1993	1,2003	1,2010
Vy, м ³ /кг	0,1038	0,1164	0,1374	0,1536	0,1708
Ру, МПа	2,0851	1,7765	1,4215	1,2404	1,0947
Ty, K	742,0352	709,2815	669,5782	653,3719	640,9151
q _z , кДж/кг	1374,4669	1373,9909	1372,9145	1369,1813	1365,3500
Е2, МПа	33,3752	33,1376	32,4940	30,7785	29,3393

Таблица 20 – Индикаторные показатели при работе на биогазе (биометан) бедного состава ($\alpha = 2$) при подаче непосредственно в цилиндр (в форкамеру).

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
δ	6,4610	6,4610 6,0812		5,3924	4,9362		
Р _z , МПа	3,8834	3,5619	3,4835	2,8383	2,4264		
T _z , K	1938,5607	1938,5607 1902,0166		1833,8244	1791,6009		
Рь, МПа	0,4154	0,4092	0,3997	0,3756	0,3566		
T _b , K	1339,7368	339,7368 1328,8957		1308,5330	1299,8273		
L _т , кДж	0,8046	0,8006	0,7952	0,7907	0,7592		
РіТ, МПа	0,9304	0,9304 0,9195		0,8464	0,7768		
ηί	0,6090	0,6000	0,5903	0,5767	0,5609		
<u>g</u> i, г/кВт*ч	128,6119	130,5545	132,6974	135,8085	139,6390		

Таблица 21 – Эффективные показатели действительного цикла двигателя при работе на биогазе (биометан) бедного состава ($\alpha = 2$) при подаче непосредственно в цилиндр (в форкамеру).

Параметр	Значение характеристики						
n, мин ⁻¹	840	2000	3200	5000	6000		
Р _м , МПа	0,1152	0,1152 0,1515		0,2452	0,2764		
Сп, м/с	2,2232	5,2933	8,4693	13,2333	15,8800		
Ре, МПа	Pe, MПa 0,8152 0,7680 0,		0,7073	0,6012	0,5005		
ηм	0,8761	0,8761 0,8353		0,7104	0,6442		
ηe	0,5336	0,5336 0,5011		0,4097	0,3614		
g _e , г/кВт*ч	146,7928	156,3002	168,1445	191,1829	216,7559		
N _e , кВт	9,1095	20,4356	30,1107	39,9939	39,9475		
G _т , кг/ч	1,3372	3,1941	5,0630	7,6462	8,6589		
Ме, Н*м	103,5586	97,5729	89,8551	76,3828	63,5785		

Выводы по 2-му разделу бакалаврской работы

Тепловой расчет показал значительное влияние вида топлива на мощностные и экономические характеристики работы. Получено, что для эффективного использования биогаза требуется применение непосредственного повышением степени Для впрыска, С сжатия. впрыска биогаза в цилиндр двигателя непосредственного возможно применение степени сжатия до 19, но в таком случае сложно будет организовать бездетонационную работу на режиме подачи бензина на впускной клапан.

3 Кинематический и динамический расчет кривошипно-шатунного механизма двигателя

3.1 Кинематический расчет кривошипно-шатунного механизма двигателя

Кинематический расчет для центрального кривошипно-шатунного механизма проектируемого двигателя (радиус кривошипа 42,2 мм, а длина шатуна 147,4 мм) проводился по известным методикам приведенным в [1,2], при частоте вращения коленчатого вала 6000 мин⁻¹.

Результаты расчета перемещения, скорости и ускорения поршня приведены в таблице 22.

ф _{кв} , град	S _x , MM	V _x , м/с	W _{X1} , m/c ²	W _{x2} , м/с ²	W _x , m/c ²	ф _{кв} , град	S _x , mm	V _x , м/с	W _{X1} , M/C ²	W _{x2} , м/с ²	W _х , м/с ²
0	0	0	16659,9	4769,657	21429,5	180	84,4	2E-15	-16659,9	4769,657	-11890
10	0,823	5,902	16406,8	4482,012	20888,8	190	83,94	-3,31	-16406,8	4482,012	-11925
20	3,252	11,51	15655,2	3653,769	19308,9	200	82,56	-6,63	-15655,2	3653,769	-12001
30	7,164	16,54	14427,9	2384,829	16812,7	210	80,26	-9,97	-14427,9	2384,829	-12043
40	12,37	20,78	12762,2	828,2423	13590,5	220	77,02	-13,3	-12762,2	828,2423	-11934
50	18,62	24,05	10708,8	-828,242	9880,53	230	72,87	-16,6	-10708,8	-828,242	-11537
60	25,63	26,25	8329,95	-2384,83	5945,12	240	67,83	-19,7	-8329,95	-2384,83	-10715
70	33,1	27,36	5698,02	-3653,77	2044,25	250	61,97	-22,5	-5698,02	-3653,77	-9351,8
80	40,73	27,41	2892,96	-4482,01	-1589,1	260	55,39	-24,8	-2892,96	-4482,01	-7375
90	48,24	26,52	1E-12	-4769,66	-4769,7	270	48,24	-26,5	-3,1E-12	-4769,66	-4769,7
100	55,39	24,81	-2892,96	-4482,01	-7375	280	40,73	-27,4	2892,96	-4482,01	-1589,1
110	61,97	22,48	-5698,02	-3653,77	-9351,8	290	33,1	-27,4	5698,02	-3653,77	2044,25
120	67,83	19,68	-8329,95	-2384,83	-10715	300	25,63	-26,2	8329,95	-2384,83	5945,12
130	72,87	16,57	-10708,8	-828,242	-11537	310	18,62	-24	10708,8	-828,242	9880,53
140	77,02	13,31	-12762,2	828,2423	-11934	320	12,37	-20,8	12762,2	828,2423	13590,5
150	80,26	9,97	-14427,9	2384,829	-12043	330	7,164	-16,5	14427,9	2384,829	16812,7
160	82,56	6,629	-15655,2	3653,769	-12001	340	3,252	-11,5	15655,2	3653,769	19308,9
170	83,94	3,306	-16406,8	4482,012	-11925	350	0,823	-5,9	16406,8	4482,012	20888,8
180	84,4	2E-15	-16659,9	4769,657	-11890	360	4E-31	-0	16659,9	4769,657	21429,5

Таблица 22 – Результаты кинематического расчета

По результатам кинематического расчета мы можем определить инерционные силы в динамическом расчете.

3.2 Динамический расчет кривошипно-шатунного механизма двигателя

Динамический расчет кривошипно-шатунного механизма проектируемого двигателя проводился по известным методикам приведенным в [1,2], при частоте вращения коленчатого вала 6000 мин⁻¹, для условий работы двигателя на биогазе (биометана) при работе на стехиометрическом составе при подаче во впускной коллектор и при непосредственной подаче в цилиндр двигателя.

Результаты расчета приведены в виде графиков. На рисунке 8 приведены силы инерции возвратно-поступательного движения.

Проведем сравнение результатов динамического расчета в таблицах 23 и 24.

Рисунок 8 – Силы инерции возвратно-поступательного движения поршня и шатуна

Таблица 23 – Суммарные силы, действующие на поршневой палец и крутящий момент двигателя в сравнении при работе на биогазе при впрыске в коллектор и при работе на биогазе при впрыске непосредственно в цилиндр двигателя

	N, H		К, Н		Z, H		Т, Н		Мкр.ц1		
$\phi_{\kappa B}$	В коллектор	В цилиндр	В коллектор	В цилиндр	В коллекто	В цилиндр	В коллектор	В цилиндр	В коллектор	В цилиндр	
0	0	0	-19233	-19210	-19232,7	-19210,4	0	0	0	0	
10	-940,4	-940,4	-18916	-18916	-18442,4	-18442,4	-4206,8	-4206,8	-177,5	-177,5	
20	-1719	-1719	-17557	-17557	-15831,3	-15831,3	-7591,7	-7591,7	-320,4	-320,4	
30	-2203	-2203	-15388	-15388	-12088,1	-12088,1	-9522,7	-9522,7	-401,9	-401,9	
40	-2309	-2309	-12549	-12549	-7964,34	-7964,34	-9697,5	-9697,5	-409,2	-409,2	
50	-2023	-2023	-9225	-9225	-4235,66	-4235,66	-8195,5	-8195,5	-345,8	-345,8	
60	-1399	-1399	-5641	-5641	-1521,06	-1521,06	-5431,6	-5431,6	-229,2	-229,2	
70	-547,2	-547,2	-2034	-2034	-155,822	-155,822	-2028,1	-2028,1	-85,59	-85,59	
80	383,7	383,7	1361	1361	-151,148	-151,148	1352,5	1352,5	57,08	57,08	
90	1244	1244	4345,7	4345,7	-1244,16	-1244,16	4163,8	4163,8	175,7	175,7	
100	1912	1912	6780	6780	-3012,13	-3012,13	6074,2	6074,2	256,3	256,3	
110	2313	2313	8598,3	8598,3	-5006,07	-5006,07	6990,7	6990,7	295	295	
120	2433	2433	9812,5	9812,5	-6859,98	-6859,98	7016	7016	296,1	296,1	
130	2303	2303	10501	10501	-8349,46	-8349,46	6367,8	6367,8	268,7	268,7	
140	1985	1985	10786	10786	-9397,19	-9397,19	5294,1	5294,1	223,4	223,4	
150	1548	1548	10811	10811	-10040	-10040	4009,6	4009,6	169,2	169,2	
160	1049	1049	10714	10714	-10378	-10378	2660,9	2660,9	112,3	112,3	
170	527,3	527,3	10606	10606	-10524	-10524	1320,2	1320,2	55,71	55,71	
180	4E-13	4E-13	10562	10562	-10562,3	-10562,3	1E-12	1E-12	5E-14	5E-14	
190	-527,5	-527,5	10610	10610	-10527,5	-10527,5	-1320,7	-1320,7	-55,73	-55,73	
200	-1050	-1050	10728	10728	-10392	-10392	-2664,5	-2664,5	-112,4	-112,4	
210	-1552	-1552	10845	10845	-10071,3	-10071,3	-4022,1	-4022,1	-169,7	-169,7	
220	-1997	-1997	10849	10849	-9452,23	-9452,17	-5325,1	-5325,1	-224,7	-224,7	
230	-2326	-2326	10606	10606	-8433,34	-8433,25	-6431,7	-6431,7	-271,4	-271,4	
240	-2474	-2474	9977,2	9977	-6975,16	-6975,03	-7133,8	-7133,7	-301	-301	
250	-2380	-2380	8845,3	8845	-5149,88	-5149,72	-7191,5	-7191,3	-303,5	-303,5	
260	-2013	-2013	7141,4	7140,9	-3172,66	-3172,47	-6397,9	-6397,5	-270	-270	
270	-1394	-1393	4867,5	4866,9	-1393,56	-1393,36	-4663,8	-4663,1	-196,8	-196,8	
280	-595,4	-595,1	2111,9	2110,8	-234,545	-234,426	-2098,8	-2097,8	-88,57	-88,53	
290	255	255,5	-948	-949,7	-72,6223	-72,7525	945,23	946,92	39,89	39,96	
300	1004	1005	-4049	-4052	-1091,83	-1092,58	3898,8	3901,5	164,5	164,6	
310	1501	1502	-6845	-6849	-3142,63	-3144,78	6080,6	6084,8	256,6	256,8	
320	1638	1639	-8901	-8909	-5648,94	-5654,13	6878,2	6884,5	290,3	290,5	
330	1385	1390	-9678	-9707	-7602,09	-7624,97	5988,7	6006,7	252,7	253,5	
340	806,5	1048	-8237	-10702	-7427	-9649,83	3561,5	4627,4	150,3	195,3	
350	113,8	339,6	-2290	-6831	-2232,21	-6660,23	509,18	1519,2	21,49	64,11	
360	-6E-13	-3E-13	8841,5	4078,5	8841,482	4078,531	-2E-12	-1E-12	-9E-14	-4E-14	
370	866	940,1	17419	18910	16982,85	18436,07	3873,9	4205,4	163,5	177,5	
380	1570	2347	16036	23967	14459,46	21611,15	6933,8	10363	292,6	437,3	
390	1357	2506	9478,4	17504	7445,604	13749,68	5865,4	10832	247,5	457,1	
400	853,2	1068	4636,1	5802,4	2942,411	3682,591	3582,7	4484	151,2	189,2	
410	705	090,0 1000	3214,4	4097,4	14/0,839	1001,205	2800,0	3040	120,5	153,6	
420	919,9	1092	3/10,2	4402,5	1000,507	1187,195	35/2,/	4239,4	150,8	178,9	
430	1414	1565	5257,5	5819	402,7526	445,7613	5242,1	5801,9	221,2	244,8	
440	2041	2173	7238,9	7708,3	-803,954	-856,078	7194,2	7660,6	303,6	323,3	
450	2641	2756	9225,3	9628,1	-2641,15	-2756,48	8839,1	9225,1	3/3	389,3	
460	3084	3183	10937	11291	-4858,99	-5016,16	9798,5	10115	413,5	426,9	
470	3288	33/4 2205	12223	12040	-/116,45	-1300,97	9937,8	0520.7	419,4	430,2	
480	3233 2046	3305	13040	13329	-9116,7	10202 4	9324,1	9030,7	393,5	402,2	
490	2940	3005	13432	12750	-10080,5	11070 7	0140,0	6740	343,1 270 c	300,0	
500	2404	2030	10498	13/30	10262 5	12507 /	4027.5	0/49 5007	219,0	∠04,ŏ	
510	1900	1940	10010	10000	12160 4	12404 2	4937,5	2170 7	200,4	124.0	
520	597.0	1Z04	12003	12002	11700	11057 4	3120,1	1500	131,7 62.0F	134,Z	
530	1 = 12	1 = 10	11012	112001	11120 1	11260 7	1470,3	1500	02,00 2E 12	00,0 2E 12	
540	525	525 0	10761	10777	10677.0	10602 4	4E-12	45-12	ZE-13 56.52	20-13	
550	-000	-000,0	10/01	10225	-10529 1	-10093,1	-1008,0	-1341,4	-00,02	-30,01	
000	-1004	-1000	10009	10000	-10020,1	-10040,7	-2033,4	-2103,4	-113,9	-114,1	

Продолжение таблицы 23

570	-1570	-1572	10967	10983	-10184,7	-10199,6	-4067,4	-4073,4	-171,6	-171,9
580	-2014	-2017	10943	10959	-9533,88	-9548,03	-5371,1	-5379,1	-226,7	-227
590	-2338	-2341	10659	10675	-8475,15	-8488,15	-6463,6	-6473,5	-272,8	-273,2
600	-2472	-2476	9971,6	9988,1	-6971,27	-6982,79	-7129,9	-7141,6	-300,9	-301,4
610	-2356	-2361	8758,4	8775	-5099,29	-5108,94	-7120,9	-7134,4	-300,5	-301,1
620	-1957	-1962	6940,7	6957,4	-3083,54	-3090,93	-6218,2	-6233,1	-262,4	-263
630	-1290	-1295	4506,7	4523,3	-1290,25	-1295,01	-4318	-4334	-182,2	-182,9
640	-429	-433,7	1521,7	1538,3	-169	-170,847	-1512,3	-1528,8	-63,82	-64,52
650	504,2	499,7	-1874	-1857	-143,556	-142,287	1868,5	1852	78,85	78,15
660	1359	1355	-5481	-5465	-1478,13	-1473,69	5278,3	5262,4	222,7	222,1
670	1989	1985	-9067	-9051	-4163,09	-4155,58	8055,1	8040,5	339,9	339,3
680	2280	2277	-12392	-12376	-7864,77	-7854,46	9576,2	9563,7	404,1	403,6
690	2181	2178	-15233	-15217	-11965,7	-11953,1	9426,3	9416,3	397,8	397,4
700	1704	1702	-17402	-17386	-15691,6	-15677,1	7524,7	7517,7	317,5	317,2
710	932,7	931,9	-18762	-18746	-18291,8	-18276,3	4172,5	4168,9	176,1	175,9
720	3E-12	3E-12	-19233	-19210	-19232,7	-19210,4	9E-12	9E-12	4E-13	4E-13

В таблице 24 приведены силы, действующие на поршневой палец и крутящий момент двигателя в сравнении при работе на биогазе при впрыске в коллектор и при работе на биогазе при впрыске непосредственно в цилиндр двигателя

Таблица 24 – Силы, действующие на шатунную и коренные шейки коленчатого двигателя, в сравнении при работе на биогазе при впрыске в коллектор и при работе на биогазе при впрыске непосредственно в цилиндр двигателя

(0	Rш.ш., Н		Rк.ш1(5),	Н	Rк.ш2(4),	Н	Кк.ш3 , Н		
Ψкв	В коллектор	В цилиндр	В коллектор	В цилиндр	В коллектор	В цилиндр	В коллектор	В цилиндр	
0	30758,61	30736,36	22798,3	22787,2	14186,7	14167,8	35168,1	35167,6	
10	30262,15	30262,15	22501,7	22501,7	13674,0	13674,1	35081,2	35081,2	
20	28391,05	28391,05	21436,4	21436,4	11685,3	11685,3	34992,7	34993,1	
30	25461,84	25461,84	19806,8	19806,8	9154,8	9155,3	34902,7	34903,6	
40	21769,53	21769,53	17835,9	17835,9	7409,9	7412,1	34811,3	34812,5	
50	17764,97	17764,97	15839,0	15839,0	7437,7	7442,3	34718,5	34720,1	
60	14132,45	14132,45	14204,5	14204,5	8415,6	8422,0	34624,4	34626,4	
70	11856,51	11856,51	13298,6	13298,6	9067,7	9074,1	34529,6	34531,6	
80	11755,16	11755,16	13274,8	13274,8	8936,7	8943,2	34433,7	34435,7	
90	13431,79	13431,79	13960,2	13960,2	8207,1	8213,5	34336,9	34338,8	
100	15755,98	15755,98	14998,7	14998,7	7401,5	7407,6	34239,3	34241,2	
110	17949,30	17949,30	16069,7	16069,7	7058,2	7063,5	34141,0	34142,8	
120	19679,10	19679,10	16978,3	16978,3	7330,3	7334,4	34042,1	34043,9	
130	20870,56	20870,56	17646,3	17646,3	7939,1	7942,1	33942,8	33944,5	
140	21582,51	21582,51	18075,4	18075,4	8556,7	8559,0	33843,2	33844,9	
150	21935,47	21935,47	18312,0	18312,0	9023,5	9025,4	33743,5	33745,1	
160	22064,99	22064,99	18419,1	18419,1	9321,3	9323,0	33643,8	33645,2	
170	22089,43	22089,43	18455,8	18455,8	9494,5	9496,2	33544,3	33545,7	
180	22088,27	22088,27	18463,1	18463,1	9591,2	9592,7	33445,1	33446,4	
190	22092,95	22092,95	18457,5	18457,5	9631,3	9632,9	33346,4	33347,6	
200	22079,33	22079,31	18426,2	18426,2	9591,0	9592,5	33248,3	33249,5	
210	21968,58	21968,54	18328,3	18328,3	9402,2	9403,8	33151,1	33152,2	
220	21643,48	21643,42	18104,9	18104,9	8978,0	8979,8	33054,8	33055,9	
230	20969,98	20969,87	17693,3	17693,3	8255,6	8257,8	32959,7	32960,7	
240	19828,83	19828,66	17046,9	17046,8	7258,8	7261,8	32865,9	32866,8	

Продолжение таблицы 24

250	18160,43	18160,19	16162,0	16161,9	6166,8	6170,8	32773,5	32774,4
260	16030,66	16030,33	15110,8	15110,7	5321,5	5326,9	32682,8	32683,6
270	13735,52	13735,11	14073,3	14073,1	4987,2	4993,4	32593,9	32594,7
280	11946,30	11946,00	13340,6	13340,5	4950,7	4957,2	32507,0	32507,7
290	11637,01	11637,28	13226,7	13226,8	4734,9	4741,3	32422,3	32422,9
300	13206,40	13207,90	13865,6	13866,2	4303,0	4309,3	32339,8	32340,4
310	15878,94	15882,53	15063,3	15064,8	4525,1	4530,9	32259,8	32260,3
320	18500,99	18508,16	16371,7	16374,9	6012,0	6018,8	32182,4	32182,9
330	20043,61	20070,83	17245,0	17257,8	7617,7	7639,6	32107,8	32108,2
340	19284,67	21675,48	16989,1	18154,9	7452,5	9500,8	32036,0	32036,5
350	13767,57	18249,52	14300,3	16529,5	3403,5	6749,4	31967,3	31967,7
360	2684.46	7447.41	8761.2	11142.7	9729.8	5326.9	31901.8	31902.2
370	6692.15	8089.19	5074.7	4487.1	17554.0	18996.4	31839.6	31839.9
380	7528.83	14460.62	6888.3	5700.6	14924.6	22029.1	31780.7	31781.1
390	7145.10	11057.53	9903.4	8313.3	7890.5	14102.9	31725.4	31725.7
400	9301.23	9034.60	11847.0	11560.2	3448.7	4131.5	31673.7	31674.0
410	10447 91	10308 71	125257	12375.9	1971.6	2313.9	31625.6	31626.0
420	11115.26	11174.16	12806.9	12765.6	1359.9	1514.4	31581.4	31581.7
430	12296 53	12507.28	13242.6	13279.8	673 5	706.9	31541.0	31541 3
440	14275.23	14560.18	14052.1	14138.7	817.8	869.8	31504.5	31504.9
450	16698 38	17002 64	15161.0	15273.3	2648.6	2763 3	31471.9	31472 3
460	19091.27	19389.77	16362.2	16485.1	4884.2	5040.0	31443.4	31443.8
470	21125.76	21410.26	17462.1	17587.4	7150.0	7332.6	31418.8	31419.3
480	22650.78	22920.20	18342.7	18466.8	9148.7	9348.5	31398.3	31398.9
490	23653.25	23909.20	18964.7	19086.2	10703.1	10913.3	31381.8	31382.4
500	24210.41	24455.36	19347.8	19466.5	11767.7	11983.8	31369.4	31370.1
510	24394.39	24631.79	19520.5	19637.2	12352.6	12572.3	31361.0	31361.7
520	23899.53	24137.59	19329.5	19447.7	12148.2	12374.6	31356.5	31357.4
530	23292.41	23530.87	19056.2	19175.2	11696.7	11925.5	31356.1	31357.0
540	22656.00	22894.61	18747.0	18866.3	11115.7	11343.0	31359.5	31360.5
550	22243.51	22259.45	18532.7	18540.6	10675.7	10689.5	31366.8	31367.9
560	22218.66	22234.55	18495.3	18503.2	10527.7	10540.8	31377.9	31379.2
570	22088.33	22104.14	18387.1	18394.9	10206.0	10218.1	31392.7	31394.1
580	21733.96	21749.63	18148.7	18156.3	9625.7	9636.4	31411.2	31412.7
590	21019.56	21034.99	17716.8	17724.1	8741.9	8750.4	31433.2	31434.8
600	19823.77	19838.75	17044.6	17051.4	7627.5	7632.8	31458.7	31460.5
610	18086.06	18100.23	16129.5	16135.7	6566.4	6567.1	31487.6	31489.5
620	15877.74	15890.37	15048.4	15053.6	6038.2	6034.0	31519.7	31521.8
630	13524.06	13533.67	13994.6	13998.2	6287.3	6280.4	31555.1	31557.3
640	11792.31	11796.27	13288.0	13289.4	6895.0	6888.0	31593.5	31595.9
650	11818.14	11814.28	13286.6	13285.4	7260.8	7254.8	31634.8	31637.5
660	14034.46	14024.39	14169.0	14165,3	7232,5	7227,2	31679.1	31681.9
670	17636.04	17622.72	15785.9	15780,5	7404,4	7398,0	, 31726.2	31729.1
680	21626.46	21611.67	17771.5	17764.9	8745.6	8736.8	31776.0	31778.9
690	25312.30	25296.83	19735.9	19728.5	11286.2	11275.1	31828.3	31831.3
700	28238.51	28222.73	21361.7	21354.0	14066.4	14053.7	31883.0	31886.1
710	30108.30	30092.38	22425.1	22417.2	16087.2	16073.5	31940.2	31943.3
720	30758.61	30736.36	22798.3	22787.2	16705.3	16686.0	31999.5	32002.7
			/-	- /-	/ -		· · · · · / -	/ .

На рисунке 9 приведено сравнение суммарной силы, действующую на шатунную шейку в полярных координатах. На рисунке 10 приведено сравнение суммарных сил, действующих на 1-ю коренную шейку в полярных координатах.

Рисунок 9 – Суммарная сила, действующая на шатунную шейку в полярных координатах:

(а) при работе на биогазе при впрыске на клапан; (б) при работе на биогазе при впрыске непосредственно в цилиндр двигателя

Рисунок 10 – Суммарные силы, действующие на 1-ю коренную шейку в полярных координатах:

(а) при работе на биогазе при впрыске на клапан; (б) при работе на биогазе при впрыске непосредственно в цилиндр двигателя

Выводы по 3-му разделу

При переходе с рабочего процесса с впрыском бензина на клапан на рабочий процесс с подачей биогаза (биометана) непосредственно в цилиндр двигателя, нагрузки практически не изменились, это связано с тем, что биогаз (биометан) даже при непосредственном впрыске горит несколько дольше бензина, и также при работе на бензине за счет испарения во впускном трубопроводе удается немного снизить температуру воздуха на впуске, что приводит к увеличению наполнения. Таким образом принципиально если не увеличивать степень сжатия нагрузки не изменятся и можно использовать штатную конструкцию КШМ. 4 Моделирование токсичности при работе на бензине и при работе на биогазе (биометан) при впрыске на клапан двигателя и при подаче непосредственно в форкамеру

Исследование работы двигателя, при работе на бензине и при работе на биогазе (биометан) при впрыске на клапан двигателя и при подаче непосредственно в форкамеру, осуществлялось в среде программного обеспечения Ricardo Wave версии 19.1. Визуальное представление архитектуры модели демонстрируется на рисунке 11.

Рисунок 11 – Модель атмосферного двигателя на жидких топливах и газообразном топливе

4.1 Моделирование основных характеристик работы при работе на бензине и впрыске на клапан

Результаты моделирования четырехцилиндрового атмосферного двигателя на жидком топливе при работе на бензине в форме таблицы из программы WAVE Ricardo 19.1 представлены в таблице 25. На рисунках ниже будут приведены скоростные характеристики по основным параметрам работы двигателя.

Engine speed	rpm	6500	5999	5499	5000	4499	4000	3500	3000	2500	2000	1499	999
Stoichiometric A/F	-	14.5569	14.5569	14.5569	14.5569	14.5569	14.5569	14.5569	14.5569	14.5569	14.5569	14.5569	14.5569
Trapped A/F	-	13	13	13	13	13	13	13	13	13	13	13	13
Mass Airflow	kg/hr	303.363	302.13	287.655	261.951	233.962	208.909	177.663	150.364	123.124	97.8727	71.9788	47.0609
Pseudo-volumetric	kg/hr/rpm	0.0466712	0.0503551	0.052301	0.0523903	0.0519915	0.0522271	0.0507606	0.0501214	0.0492496	0.0489363	0.0479859	0.0470619
efficiency													
BMEP	bar	9.6082	10.6601	11.3883	11.7076	11.8387	12.0083	11.7598	11.6498	11.72	11.02	10.56	10.96
Brake Power	kW	83.4387	85.4522	83.6825	78.2076	71.1753	64.1734	54.9896	46.6929	38.0005	29.9542	21.6947	13.6533
BSFC	kg/kW/hr	0.279674	0.271974	0.26442	0.257649	0.252855	0.250414	0.248526	0.247714	0.249236	0.25134	0.255216	0.265143
Brake specific	g/kW/hr	0.133958	0.131021	0.127655	0.124399	0.121559	0.119977	0.119241	0.134408	0.118183	0.127579	0.129036	0.206208
unburned fuel													
emissions													
Charging efficiency	-	0.996877	1.0766	1.11053	1.10432	1.09192	1.09296	1.05426	1.03506	1.02077	1.01388	0.998765	0.989147
Delivered	-	0.996856	1.07658	1.11051	1.1043	1.0919	1.09293	1.05424	1.0351	1.02075	1.01389	0.998771	0.989423
efficiency													
Total delivered	-	0.996856	1.07658	1.11051	1.1043	1.0919	1.09293	1.05424	1.0351	1.02075	1.01389	0.998771	0.989423
efficiency													
Combined	m^3	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322
Displacement													
Brake thermal	%	29.8104	30.6544	31.5301	32.3587	32.9722	33.2936	33.5465	33.6565	33.451	33.171	32.6672	31.4441
engine efficiency													
EGR	-	5.54385e-09	2.66991e-08	1.96488e-08	-1.5414e-08	5.67302e-09	-1.76585e-08	-1.99873e-09	2.11253e-08	-3.89775e-09	-2.02717e-07	-2.84701e-08	2.34938e-07
FMEP	bar	1.41725	1.32009	1.22447	1.1312	1.04209	0.958835	0.877232	0.801653	0.730322	0.664379	0.604093	0.548416
Friction Energy	%	4.39716	3.79609	3.39009	3.12654	2.90233	2.65842	2.50243	2.316	2.14727	1.96589	1.82291	1.68739
Loss													
Friction torque	N*m	18.0814	16.8418	15.6218	14.4319	13.295	12.2329	11.1918	10.2275	9.75	8.47619	7.70705	6.99673
Fuel mass flow	kg/hr	23.3356	23.2408	22.1273	20.1501	17.9971	16.0699	13.6664	11.5665	9.11	7.52867	5.53683	3.62007
Fuel volume flow	L/hr	34.1289	33.9902	32.3617	29.47	26.3211	23.5026	19.9874	16.9163	13.8517	11.0109	8.09774	5.29444
GMEP	bar	12.2423	13.1871	13.6787	13.6988	13.5656	13.5559	13.0828	12.8081	12.02	12.0395	11.25	10.33
GMEP from	bar	11.9513	12.8906	13.4151	13.4709	13.376	13.4032	12.9643	12.7061	12.45	12.0012	11.34	10.99
crossing point													
Engine out	g/s	0.0031048	0.00311001	0.00296735	0.00270248	0.00240333	0.00213871	0.00182139	0.0017433	0.00124751	0.00106153	0.00077761	0.000782062
unburned fuel flow													
Heat Transfer Rate	W	35020.4	34845.5	33338.4	30905.3	28448	26442.7	23519.5	21096.6	18444.4	16003.9	13543.4	10957.7
Heat Transfer Loss	%	12.5118	12.5002	12.5613	12.7872	13.1786	13.7187	14.3481	15.2065	16.2362	17.7226	20.3933	25.236
Indicated Power	hp	128.398	128.784	124.286	115.011	103.849	92.9294	79.2431	66.925	54.2307	42.5499	30.7165	19.2919

Таблица 25 – Результаты моделирования при работе на бензине

Продолжение таблицы 25

IMEP	bar	11.0254	11.9802	12.6128	12.8388	12.8808	12.9671	12.637	12.4514	12.1076	ноя.46	ноя.97	10.768
ISAC	kg/kW/hr	3.16841	3.14607	3.10375	3.05432	3.02118	3.01467	3.00656	3.01295	3.04463	3.0846	3.14245	3.27131
ISFC	kg/kW/hr	0.243724	0.242005	0.23875	0.234948	0.232399	0.231898	0.231274	0.231766	0.234202	0.237277	0.241727	0.251639
Indicated Torque	N*m	140.663	152.844	160.915	163.798	164.335	165.436	161.224	158.856	154.469	151.497	145.82	137.379
Lambda	-	0.893049	0.893049	0.893049	0.893049	0.89305	0.893048	0.893049	0.893049	0.893049	0.893049	0.89305	0.893049
Lower Heating	J/kg	4.318e+07											
Value													
Exhaust port	bar	1.41009	1.40922	1.38476	1.34798	1.30551	1.26806	1.22421	1.18686	1.14937	1.11623	1.08369	1.0544
pressure													
Trapped	-	1.11976	1.11976	1.11976	1.11976	1.11976	1.11976	1.11976	1.11976	1.11976	1.11976	1.11976	1.11976
equivalence ratio													
Intake port pressure	bar	0.936491	0.930074	0.935852	0.946996	0.958372	0.967168	0.975368	0.981351	0.985333	0.99141	0.994497	0.995306
PMEP	bar	-1.21686	-1.20695	-1.06592	-0.86008	-0.684757	-0.588781	-0.445819	-0.356711	-0.242666	-0.164901	-0.102895	-0.0752768
HC	ppm	69.3108	69.7106	69.8593	69.867	69.5664	69.3308	69.4283	78.5165	68.6168	73.4516	73.1625	112.543
Pumping torque	N*m	-15.5248	-15.3983	-13.5991	-10.9729	-8.73617	-7.5117	-5.68779	-4.55094	-3.09595	-2.10382	-1.31274	-0.960386
Plenum volumetric	-	0.907575	0.979876	1.01073	1.0037	0.988365	0.98748	0.953132	0.937687	0.919843	0.910474	0.892347	0.879876
efficiency													
Residual gas	%	4.20898	3.6562	3.45073	3.44005	3.85526	4.18125	4.04637	3.89263	5.16793	5.19359	6.24027	6.98
fraction													
Scavenging	-	0.95791	0.963438	0.965493	0.965599	0.961447	0.958187	0.959536	0.961074	0.948321	0.948064	0.937597	0.931502
efficiency													
Scavenging ratio	-	0.957889	0.96342	0.965476	0.965582	0.961429	0.958166	0.959517	0.961114	0.948296	0.948071	0.937603	0.931762
Ambient reference	K	298	298	298	298	298	298	298	298	298	298	298	298
temperature													
Exhaust gas	K	1302.14	1293.61	1279.14	1264.53	1249.18	1236.65	1221.89	1206.25	1185.5	1166.87	1132.96	1075.87
temperature													
Intake port gas	K	309.981	308.156	307.941	309.337	311.913	313.652	313.929	314.075	316.481	318.319	320.778	324.279
temperature													
Brake Torque	N*m	122.582	136.002	145.293	149.366	151.04	153.203	150.032	148.629	145.152	143.021	138.113	130.383
Trapping ratio	-	1.00002	1.00002	1.00002	1.00002	1.00002	1.00002	1.00002	0.999958	1.00003	0.999993	0.999994	0.999721
Total volumetric	-	0.833359	0.899136	0.933883	0.935477	0.928357	0.932563	0.906378	0.894964	0.879398	0.873803	0.856833	0.840334
efficiency													

На рисунке 12 представлены эффективные параметры двигателя.

Рисунок 12 – Основные эффективные параметры двигателя: а) эффективная мощность; б) эффективный КПД; в) крутящий момент; г) насосные потери крутящего момента

На рисунке 13 представлены осредненные эффективны параметры, характеризующие рабочий процесс двигателя.

Рисунок 13 – Основные эффективные параметры двигателя: а) среднее эффективное давление в цилиндре; б) удельный эффективный расход топлива; в) часовой расход топлива; г) средние потери давления на трение

На рисунке 14 представлены индикаторные параметры двигателя, характеризующие рабочий процесс двигателя.

Рисунок 14 – Основные индикаторные параметры двигателя: а) среднее индикаторное давление; б) доля потерь тепла в стенку в %; в) индикаторная мощность; г) индикаторный крутящий момент

На рисунке 15 представлены основные параметры двигателя, характеризующие рабочий процесс двигателя.

Рисунок 15 – Основные параметры двигателя: а) температура воздуха на впуске; б) коэффициент перепуска отработавших газов; в) коэффициент остаточных газов; г) температура остаточных газов

На рисунке 16 представлены основные параметры токсичности по несгоревшим углеводородам, характеризующие рабочий процесс двигателя и полноту сгорания топлива.

Рисунок 16 – Токсичность по несгоревшим углеводородам: а) в грамм на кВт час; б) в грамм на секунду; в) в ppm (частиц на миллион); г) массовое отношение воздуха к топливу

4.2 Моделирование основных характеристик работы при работе на биогазе (биометан) при подаче во впускной коллектор двигателя

Результаты моделирования четырехцилиндрового атмосферного двигателя на жидком топливе при работе на биогазе (биометан) при подаче во впускной коллектор двигателя в форме таблицы из программы WAVE Ricardo 19.1 представлены в таблице 26. На рисунках ниже будут приведены скоростные характеристики по основным параметрам работы двигателя.

Engine speed	rpm	6500	6000	5500	5000	4499	3999	3500	2999	2499	2000	1499	1000
Stoichiometric A/F	-	6.43133	6.43133	6.43133	6.43133	6.43133	6.43133	6.43133	6.43133	6.43133	6.43133	6.43133	6.43133
Trapped A/F	-	13	13	13	13	13	13	13	13	13	13	13	13
Mass Airflow	kg/hr	319.787	323.588	313.734	291.784	261.407	236.816	199.586	167.208	138.806	107.964	78.3471	50.4164
Pseudo-volumetric	kg/hr/rpm	0.0491979	0.0539314	0.0570424	0.0583567	0.0580904	0.0592041	0.0570245	0.0557362	0.0555225	0.0539821	0.0522315	0.0504161
efficiency													
BMEP	bar	5.32874	6.19067	6.88458	7.36076	7.58007	7.90049	7.71597	7.61859	7.64172	7.43327	7.05087	6.50227
Brake Power	kW	46.2754	49.625	50.5886	49.1705	45.5719	42.2207	36.0803	30.5356	25.5236	19.8619	14.1301	8.68719
BSFC	kg/kW/hr	0.531578	0.50159	0.477052	0.456471	0.441242	0.431462	0.425516	0.421219	0.418334	0.418134	0.426516	0.446425
Brake specific	g/kW/hr	0.249765	0.238315	0.22752	0.218237	0.210719	0.205735	0.201447	0.199536	0.197548	0.196884	0.198907	0.249893
unburned fuel													
emissions													
Charging efficiency	-	0.996216	1.09362	1.15009	1.168	1.15492	1.17184	1.11843	1.08688	1.08341	1.05272	1.02333	0.999389
Delivered	-	0.996186	1.0936	1.15006	1.16797	1.1549	1.17181	1.1184	1.08686	1.08338	1.05269	1.0233	0.999448
efficiency													
Total delivered	-	0.996186	1.0936	1.15006	1.16797	1.1549	1.17181	1.1184	1.08686	1.08338	1.05269	1.0233	0.999448
efficiency													
Combined	m^3	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322
Displacement													
Brake thermal	%	33.6762	35.6896	37.5254	39.2173	40.5708	41.4904	42.0702	42.4994	42.7925	42.813	41.9715	40.0997
engine efficiency													
EGR	-	-8.63908e-	1.72021e-08	1.90419e-08	4.4874e-09	-4.08777e-	2.26397e-08	6.38373e-08	1.16059e-08	9.11387e-09	-1.01344e-	-7.48122e-09	-4.32956e-
		10				09					08		08
FMEP	bar	1.40261	1.30486	1.20967	1.11739	1.02827	0.945641	0.864428	0.788603	0.718301	0.651819	0.590986	0.534887
Friction Energy	%	8.86415	7.52262	6.59347	5.95334	5.5036	4.96615	4.71316	4.39913	4.02238	3.75424	3.51795	3.29867
Loss													
Friction torque	N*m	17.8946	16.6475	15.4331	14.2558	13.1187	12.0646	11.0284	10.0611	9.16413	8.31595	7.53984	6.82412
Fuel mass flow	kg/hr	24.599	24.8914	24.1334	22.4449	20.1082	18.2166	15.3528	12.8622	10.6774	8.30495	6.02671	3.87818
Fuel volume flow	L/hr	31.0872	31.4568	30.4988	28.365	25.4119	23.0215	19.4022	16.2547	13.4936	10.4955	7.61631	4.90109
GMEP	bar	7.89826	8.67008	9.16923	9.38252	9.32928	9.46673	9.05668	8.78087	8.62888	8.26597	7.7555	7.11668
Engine out	g/s	0.00321055	0.00328511	0.0031972	0.00298079	0.00266746	0.00241286	0.00201896	0.00169248	0.00140059	0.00108625	0.000780713	0.000603019
unburned fuel flow													
Heat Transfer Rate	W	18404.9	18398.1	17684	16388.4	14838.3	13819.8	12186.3	10740.7	9480.03	8112	6719.47	5277.77
Heat Transfer Loss	%	13.3939	13.2316	13.1175	13.071	13.2099	13.5808	14.2094	14.9488	15.8941	17.4856	19.9593	24.362
Indicated Power	hp	78.3906	80.5752	79.7605	75.9485	69.4031	63.3958	53.805	45.1875	37.445	28.9709	20.537	12.608
IMEP	bar	6.73136	7.49553	8.09425	8.47815	8.60833	8.84613	8.58039	8.40719	8.36002	8.08509	7.64185	7.03716

Таблица 26 – Результаты моделирования при работе на биогазе (биометан) при подаче во впускной коллектор двигателя

Продолжение таблицы 26

ISAC	kg/kW/hr	5.47056	5.38551	5.27484	5.15202	5.05095	5.00941	4.97442	4.9622	4.97107	4.99751	5.1159	5.36241
ISFC	kg/kW/hr	0.420813	0.41427	0.405757	0.39631	0.388535	0.38534	0.382648	0.381708	0.38239	0.384424	0.393531	0.412493
Indicated Torque	N*m	85.8791	95.6285	103.267	108.165	109.826	112.859	109.469	107.259	106.658	103.15	97.4953	89.7805
Lambda	-	2.02135	2.02135	2.02135	2.02135	2.02135	2.02135	2.02135	2.02135	2.02135	2.02135	2.02135	2.02135
Lower Heating	J/kg	2.011e+07											
Value													
Exhaust port	bar	1.42182	1.42929	1.41641	1.38478	1.33934	1.30333	1.24998	1.20618	1.16789	1.12775	1.09076	1.05754
pressure													
Trapped	-	0.494718	0.494718	0.494718	0.494718	0.494719	0.494718	0.494718	0.494719	0.494718	0.494718	0.494719	0.494718
equivalence ratio													
Intake port pressure	bar	0.929171	0.920997	0.924496	0.934929	0.948321	0.958829	0.96926	0.977316	0.982745	0.99005	0.993884	0.994957
PMEP	bar	-1.16691	-1.17455	-1.07497	-0.904369	-0.720951	-0.620596	-0.476285	-0.373674	-0.268858	-0.180883	-0.113644	-0.0795229
HC	ppm	29.481	29.8114	29.9254	29.9983	29.9645	29.9189	29.7046	29.723	29.63	29.5446	29.2614	35.1227
Pumping torque	N*m	-14.8875	-14.985	-13.7146	-11.538	-9.19794	-7.91761	-6.07647	-4.76736	-3.43011	-2.30772	-1.44988	-1.01456
Plenum volumetric	-	0.962695	1.0579	1.11274	1.12876	1.11273	1.12684	1.07542	1.04558	1.03866	1.00499	0.97131	0.941947
efficiency													
Residual gas	%	6.03393	4.98067	4.61748	4.38572	4.49354	4.63869	5.32168	5.2631	5.55961	5.83156	6.73423	7.59854
fraction													
Scavenging	-	0.939661	0.950193	0.953825	0.956143	0.955065	0.953613	0.946783	0.947369	0.944404	0.941684	0.932658	0.924015
efficiency													
Scavenging ratio	-	0.939632	0.950169	0.953803	0.956122	0.955043	0.953592	0.946758	0.947344	0.944378	0.941657	0.932626	0.92407
Ambient reference	K	298	298	298	298	298	298	298	298	298	298	298	298
temperature													
Exhaust gas	K	873.751	868.303	857.192	844.9	833.831	823.937	813.332	802.692	795.123	787.34	768.348	737.008
temperature													
Intake port gas	K	291.567	289.416	288.854	289.981	292.175	294.101	294.595	295.338	297.169	299.197	301.756	305.664
temperature													
Brake Torque	N*m	67.9844	78.981	87.834	93.9091	96.707	100.795	98.4408	97.1985	97.4936	94.8341	89.9554	82.9564
Trapping ratio	-	1.00003	1.00003	1.00002	1.00002	1.00002	1.00002	1.00003	1.00003	1.00003	1.00003	1.00003	0.999941
Trapping ratio (air-	-	1.00003	1.00003	1.00002	1.00002	1.00002	1.00002	1.00003	1.00003	1.00003	1.00003	1.00003	0.999941
only)													
Trapped air	-	0.878501	0.963019	1.01857	1.04204	1.03728	1.05717	1.01825	0.995248	0.991434	0.963929	0.932674	0.900173
volumetric													
efficiency													
Total volumetric	-	0.878474	0.962995	1.01855	1.04201	1.03726	1.05714	1.01823	0.995222	0.991406	0.963902	0.932642	0.900226
efficiency													

На рисунке 17 представлены эффективные параметры двигателя.

Рисунок 17 – Основные эффективные параметры двигателя: а) эффективная мощность; б) эффективный КПД; в) крутящий момент; г) насосные потери крутящего момента

На рисунке 18 представлены осредненные эффективны параметры, характеризующие рабочий процесс двигателя.

Рисунок 18 – Основные эффективные параметры двигателя: а) среднее эффективное давление в цилиндре; б) удельный эффективный расход топлива; в) часовой расход топлива; г) средние потери давления на трение

На рисунке 19 представлены индикаторные параметры двигателя, характеризующие рабочий процесс двигателя.

Рисунок 19 – Основные индикаторные параметры двигателя: а) среднее индикаторное давление; б) доля потерь тепла в стенку в %; в) индикаторная мощность; г) индикаторный крутящий момент

На рисунке 20 представлены основные параметры двигателя, характеризующие рабочий процесс двигателя.

Рисунок 20 – Основные параметры двигателя: а) температура воздуха на впуске; б) коэффициент перепуска отработавших газов; в) коэффициент остаточных газов; г) температура остаточных газов

На рисунке 21 представлены основные параметры токсичности по несгоревшим углеводородам, характеризующие рабочий процесс двигателя и полноту сгорания топлива.

Рисунок 21 – Токсичность по несгоревшим углеводородам: а) в грамм на кВт час; б) в грамм на секунду; в) в ppm (частиц на миллион); г) массовое отношение воздуха к топливу

4.3 Анализ результатов моделирования при работе на биогазе (биометане) при непосредственном впрыске в цилиндр двигателя

Результаты моделирования четырехцилиндрового атмосферного двигателя на биогазе (биометане) при непосредственном впрыске в цилиндр двигателя в форме таблицы 27 из программы WAVE Ricardo 19.1 представлены в таблице. На рисунках ниже будут приведены скоростные характеристики по основным параметрам работы двигателя.

Таблица 27 – Результаты моделирования при работе на биогазе (биометане) при непосредственном впрыске в цилиндр двигателя

Engine speed	rpm	6500	5999	5500	5000	4500	4000	3500	3000	2499	1999	1500	999
Stoichiometric A/F	-	9.78789	9.78789	9.78789	9.78789	9.78789	9.78789	9.78789	9.78789	9.78789	9.78789	9.78789	9.78789
Trapped A/F	-	13	13	13	13	13	13	13	13	13	13	13	13
Mass Airflow	kg/hr	313.558	315.3	303.783	279.699	249.441	224.084	189.451	160.289	130.758	103.689	75.4291	48.7263
Pseudo-volumetric	kg/hr/rpm	0.0482397	0.05255	0.0552333	0.0559397	0.0554314	0.0560209	0.0541288	0.0534297	0.0523036	0.0518445	0.0502861	0.0487273
efficiency													
BMEP	bar	7.81665	8.85367	9.63722	10.0536	10.1889	10.4435	10.2159	10.1478	9.92003	9.72776	9.30781	8.69178
Brake Power	kW	67.8807	70.9719	70.8152	67.159	61.2567	55.8108	47.7701	40.6729	33.1331	25.9928	18.6531	11.6121
BSFC	kg/kW/hr	0.355327	0.341739	0.329985	0.320364	0.313236	0.308851	0.305069	0.303148	0.303573	0.306857	0.311061	0.322782
Brake specific	g/kW/hr	0.169079	0.163898	0.158696	0.154243	0.150357	0.147738	0.145627	0.148139	0.143654	0.149437	0.162666	0.27222
unburned fuel													
emissions													
Charging efficiency	-	1	1.09064	1.13931	1.14516	1.12815	1.13564	1.08809	1.06798	1.04748	1.03744	1.01115	0.990628
Delivered	-	0.999976	1.09062	1.13929	1.14514	1.12813	1.13562	1.08807	1.06797	1.04745	1.03742	1.01117	0.990969
efficiency													
Combined	m^3	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322	0.00160322
Displacement													
Brake thermal	%	34.5992	35.9749	37.2564	38.3753	39.2485	39.8057	40.2992	40.5545	40.4977	40.0644	39.5229	38.0877
engine efficiency													
EGR	-	-1.85815e-	-2.27317e-	-2.75203e-	-3.05932e-	-1.50509e-	4.30731e-09	-2.35476e-	2.18732e-08	1.00818e-08	-1.18517e-07	-4.1522e-08	1.53024e-07
		09	08	08	09	09		08					
FMEP	bar	1.41087	1.31374	1.21865	1.12595	1.0366	0.953687	0.872208	0.796667	0.725387	0.65923	0.598438	0.542479
Friction Energy	%	6.24498	5.33808	4.71117	4.29784	3.99303	3.635	3.44065	3.18378	2.96133	2.71508	2.54109	2.37717
Loss													
Friction torque	N*m	17.9999	16.7607	15.5477	14.365	13.225	12.1672	11.1277	10.1639	9.25453	8.4105	7.63491	6.92098
Fuel mass flow	kg/hr	24.1199	24.2539	23.368	21.5153	19.1878	17.2372	14.5732	12.3299	10.0583	7.97607	5.80224	3.74818
Fuel volume flow	L/hr	31.1817	31.3549	30.2096	27.8146	24.8056	22.2839	18.8399	15.9399	13.0032	10.3113	7.50102	4.84557
GMEP	bar	10.4343	11.3741	11.9443	12.0801	11.9389	12.0099	11.5549	11.3161	10.9018	10.5612	10.0144	9.31166
Engine out	g/s	0.00318811	0.00323116	0.00312169	0.00287746	0.00255844	0.00229038	0.00193239	0.00167368	0.00132214	0.00107897	0.000842841	0.000878068
unburned fuel flow													
Heat Transfer Rate	W	27413.2	27414.3	26371.5	24476	22335.2	20807.6	18471.2	16498	14430.7	12387.7	10402.3	8320.24
Heat Transfer Loss	%	13.9727	13.896	13.8742	13.9858	14.3106	14.8405	15.5824	16.4499	17.6383	19.0939	22.041	27.2904
Indicated Power	hp	107.46	109.297	106.973	100.148	90.504	81.678	69.5301	58.8253	47.6813	37.2192	26.6224	16.544
IMEP	bar	9.22752	10.1674	10.8559	11.1796	11.2255	11.3972	11.0881	10.9445	10.6454	10.387	9.90625	9.23426
ISAC	kg/kW/hr	3.91298	3.86857	3.80824	3.74527	3.69604	3.6791	3.65393	3.65406	3.67753	3.73595	3.7995	3.94965

Продолжение таблицы 27

ISFC	kg/kW/hr	0.300999	0.297583	0.292942	0.288098	0.284311	0.283008	0.281072	0.281082	0.282887	0.287381	0.292269	0.30382
Indicated Torque	N*m	117.725	129.717	138.5	142.63	143.216	145.406	141.463	139.63	135.815	132.518	126.385	117.811
Lambda	-	1.32817	1.32817	1.32817	1.32817	1.32817	1.32817	1.32817	1.32817	1.32817	1.32817	1.32817	1.32817
Exhaust port	bar	1.41808	1.42263	1.40569	1.36774	1.32405	1.28668	1.23809	1.1977	1.1576	1.12247	1.08715	1.0558
pressure													
Trapped	-	0.752915	0.752914	0.752915	0.752915	0.752915	0.752914	0.752916	0.752916	0.752916	0.752915	0.752914	0.752914
equivalence ratio													
Intake port pressure	bar	0.932034	0.924674	0.929023	0.940057	0.952859	0.962695	0.972182	0.979222	0.984048	0.99071	0.994194	0.995109
PMEP	bar	-1.20676	-1.20673	-1.08841	-0.900504	-0.713405	-0.61271	-0.466766	-0.3716	-0.256358	-0.174183	-0.108125	-0.0774054
PMEP from	bar	-0.9341	-0.929594	-0.843196	-0.688002	-0.537087	-0.47038	-0.35767	-0.278078	-0.205571	-0.139684	-	-0.0659588
crossing point												0.0913137	
HC	ppm	46.0453	46.4095	46.537	46.59	46.4495	46.2886	46.1925	47.287	45.7913	47.1253	50.6038	81.612
Pumping torque	N*m	-15.3959	-15.3955	-13.886	-11.4887	-9.10167	-7.81699	-5.95503	-4.7409	-3.27063	-2.22224	-1.37947	-0.987543
Plenum volumetric	-	0.941635	1.02746	1.07345	1.07763	1.05814	1.06292	1.01867	1.00106	0.977643	0.964869	0.9351	0.910777
efficiency													
Plenum volumetric	-	0.920395	1.00429	1.04923	1.05333	1.03427	1.03894	0.995698	0.978475	0.955591	0.943105	0.914008	0.890233
efficiency (air-only)													
Residual gas	%	4.83742	4.08479	3.82126	3.71169	4.00202	4.33456	4.53325	4.18283	5.37729	5.16976	6.22899	7.08888
fraction													
Scavenging	-	0.951626	0.959152	0.961787	0.962883	0.95998	0.956654	0.954667	0.958171	0.946227	0.948302	0.93771	0.929111
efficiency													
Scavenging ratio	-	0.951603	0.959132	0.961769	0.962865	0.959961	0.956633	0.954646	0.958161	0.946202	0.948289	0.937731	0.929431
Ambient reference	K	298	298	298	298	298	298	298	298	298	298	298	298
temperature													
Exhaust gas	K	1115.32	1109.65	1097.53	1082.98	1069.28	1057.96	1047.16	1034.87	1021.12	1004.07	980.545	936.482
temperature													
Intake port gas	K	299.41	297.397	296.967	298.224	300.524	302.426	302.847	303.324	305.4	307.219	309.812	313.622
temperature													
Brake Torque	N*m	99.7254	112.956	122.952	128.265	129.991	133.239	130.335	129.466	126.56	124.107	118.75	110.89
Trapping ratio	-	1.00002	1.00002	1.00002	1.00002	1.00002	1.00002	1.00002	1.00001	1.00003	1.00001	0.999978	0.999656
Total volumetric	-	0.861365	0.93833	0.986242	0.998855	0.98978	1.00031	0.96652	0.954037	0.933929	0.925733	0.897905	0.870072
efficiency													

На рисунке 22 представлены эффективные параметры двигателя.

Рисунок 22 – Основные эффективные параметры двигателя: а) эффективная мощность; б) эффективный КПД; в) крутящий момент; г) насосные потери крутящего момента

На рисунке 23 представлены осредненные эффективны параметры, характеризующие рабочий процесс двигателя.

Рисунок 23 – Основные эффективные параметры двигателя: а) среднее эффективное давление в цилиндре; б) удельный эффективный расход топлива; в) часовой расход топлива; г) средние потери давления на трение

На рисунке 24 представлены индикаторные параметры двигателя, характеризующие рабочий процесс двигателя.

Рисунок 24 – Основные индикаторные параметры двигателя: а) среднее индикаторное давление; б) доля потерь тепла в стенку в %; в) индикаторная мощность; г) индикаторный крутящий момент

На рисунке 25 представлены основные параметры двигателя, характеризующие рабочий процесс двигателя.

Рисунок 25 – Основные параметры двигателя: а) температура воздуха на впуске; б) коэффициент перепуска отработавших газов; в) коэффициент остаточных газов; г) температура остаточных газов

На рисунке 26 представлены основные параметры токсичности по несгоревшим углеводородам, характеризующие рабочий процесс двигателя и полноту сгорания топлива.

Рисунок 26 – Токсичность по несгоревшим углеводородам: а) в грамм на кВт час; б) в грамм на секунду; в) в ppm (частиц на миллион); г) массовое отношение воздуха к топливу

Выводы по 4-му разделу

Проведенный анализ показал, что для эффективной работы двигателя на биогазе (биометане) необходимо оценить оптимальные углы опережения зажигания, как с вопросов максимальной эффективности, так и с вопросов снижения токсичности отработавших газов. Видим, что так как и при моделировании по методике Вибе во 2-ом разделе максимальная мощность соответствует работе на бензине, а падение мощности почти на 40% соответствует режиму подачи биогаза во впускной коллектор. При подаче биогаза в форкамеру потери мощности составляют менее 10%.

Заключение

В бакалаврской работе проведена анализ перспективности применения биогаза (биометана) в цилиндр двигателя с искровым зажиганием, выполнены все необходимые расчеты и проведено конструирование предложенного объекта. Получены основные выводы по работе:

- 1. Показана возможность и перспективность таких разработок.
- Максимальная мощность соответствует работе на бензине, а падение мощности почти на 40% соответствует режиму подачи биогаза во впускной коллектор. При подаче биогаза в форкамеру потери мощности составляют менее 10%.
- Для повышения эффективности работы на биогазе следует поднимать степень сжатия до 14 – 17 единиц при непосредственном впрыске топлива в цилиндр, что позволит улучшить эффективные показатели двигателя.

Основные выводы по разделам

Выводы по 2-му разделу бакалаврской работы

Тепловой расчет показал значительное влияние вида топлива на мощностные и экономические характеристики работы. Получено, что для эффективного биогаза требуется использования применение непосредственного повышением степени сжатия. Для впрыска, С впрыска биогаза в цилиндр двигателя непосредственного возможно применение степени сжатия до 19, но в таком случае сложно будет организовать бездетонационную работу на режиме подачи бензина на впускной клапан.

Выводы по 3-му разделу

При переходе с рабочего процесса с впрыском бензина на клапан на рабочий процесс с подачей биогаза (биометана) непосредственно в цилиндр двигателя, нагрузки практически не изменились, это связано с тем, что биогаз (биометан) даже при непосредственном впрыске горит несколько

дольше бензина, и также при работе на бензине за счет испарения во впускном трубопроводе удается немного снизить температуру воздуха на впуске, что приводит к увеличению наполнения. Таким образом принципиально если не увеличивать степень сжатия нагрузки не изменятся и можно использовать штатную конструкцию КШМ.

Выводы по 4-му разделу

Проведенный анализ показал, что для эффективной работы двигателя на биогазе (биометане) необходимо оценить оптимальные углы опережения зажигания, как с вопросов максимальной эффективности, так и с вопросов снижения токсичности отработавших газов. Видим, что так как и при моделировании по методике Вибе во 2-ом разделе максимальная мощность соответствует работе на бензине, а падение мощности почти на 40% соответствует режиму подачи биогаза во впускной коллектор. При подаче биогаза в форкамеру потери мощности составляют менее 10%.

Список используемых источников

- 1. Вибе, И.И. Уточненный тепловой расчет двигателя / И.И. Вибе// М. Машиностроение, 1971. с.282
- Колчин, А.И. Расчет автомобильных и тракторных двигателей / А.И. Колчин, В.П. Демидов // Учебное пособие для вузов – 2-е изд., перераб. и доп. – М: Высшая школа 1980. - с.496.
- Орлин А.С., Круглов М.Г. Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей. – М.: «Машиностроение», 1983.
- Смоленский, В.В. Автомобильные двигатели: курс лекций / В.В. Смоленский. – Тольятти: ТГУ, 2009. – 183 с.
- Muhammad Imran Khan, Tabassum Yasmin, and Abdul Shakoor. Technical overview of compressed natural gas (cng) as a transportation fuel. Renewable and Sustainable Energy Reviews, 51:785 – 797, 2015.
- Sonia Yeh. An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles. Energy Policy, 35(11):5865 5875, 2007.
- Uwe Thien, Alexander Schaerfl, Markus Rudolf, Friedrich Quissek, Helmut Eichlseder, and Axel Bernt. Engine and new fuel management system for cng powered vehicles. 01 2007.
- PM Darade and RS Dalu. Investigation of performance and emissions of cng fuelled vcr engine. Int J Emerg Technol Adv Eng, 3(1):77–83, 2013.
- R Ebrahimi and M Mercier. Experimental study of performance of spark igni- tion engine with gasoline and natural gas. International Journal of Engineering, 24(2010):65–74, 2010.
- Rosli Abu Bakar Semin. A technical review of compressed natural gas as an alter- native fuel for internal combustion engines. Am. J. Eng. Appl. Sci, 1(4):302–311, 2008.

- 11. Amir Hossein Shamekh, Nima Khatibzadeh, and Abazar Shamekhi. A compre- hensive comparative investigation of compressed natural gas as an alternative fuel in a bi-fuel spark ignition engine. Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 27(1):73–83, 2008.
- CK Samantaray, BB; Mohanta. Analysis of industrial flame characteristics and constancy study using image processing technique. Journal of Mechanical Engineering and Sciences (JMES), 9(1):1604–1613, 2015.
- Kasianantham Nanthagopal, Rayapati Subbarao, Thangavelu Elango, Ponnusamy Baskar, and Kandasamy Annamalai. Hydrogen enriched compressed natural gas- a futuristic fuel for internal combustion engines. Thermal Science, 15(4):1145–1154, 2011.
- 14. Mirko Baratta and Daniela Misul. Development of a method for the estimation of the behavior of a cng engine over the nedc cycle and its application to quantify for the effect of hydrogen addition to methane operations. Fuel, 140:237–249, 2015.
- MA Kalam, SN Kazi, and MH Jayed. Power boosting of a modified natural gas engine. International Journal of Physical Sciences, 6(28):6548–6557, 2011.
- 16. Saad Aljamali, Wan Mohd Faizal Wan Mahmood, Shahrir Abdullah, and Yusoff Ali. Comparison of performance and emission of a gasoline engine fuelled by gasoline and cng under various throttle positions. Journal of Applied Sciences, 14(4):386, 2014.
- Nils-Olof Nylund and Alex Lawson. Exhaust emissions from natural gas vehicles. IANGV Emission Report, pages 31–40, 2000.
- M Mansha, AR Saleemi, SH Javed, and Badar M Ghauri. Prediction and measure- ment of pollutant emissions in cng fired internal combustion engine. Journal of Natural Gas Chemistry, 19(5):539–547, 2010.
- Muhammad Imran Khan, Tabassum Yasmin, and Abdul Shakoor. International ex- perience with compressed natural gas (cng) as environmental friendly fuel. Energy Systems, 6(4):507–531, 2015.

- Xiaoyan Huang, Yang Wang, Zhenyu Xing, and Ke Du. Emission factors of air pollutants from cng-gasoline bi-fuel vehicles: Part ii. co, hc and no x. Science of The Total Environment, 565:698–705, 2016.
- Patrik Einewall, Per Tunestål, and Bengt Johansson. Lean burn natural gas oper- ation vs. stoichiometric operation with egr and a three way catalyst. SAE Special Publications, 2005(SP-1972):343–362, 2005.
- Fan Zeng and Keith L Hohn. Modeling of three-way catalytic converter perfor- mance with exhaust mixture from natural gas-fueled engines. Applied Catalysis B: Environmental, 182:570–579, 2016.
- Richard Tilagone and Stephane Venturi. Development of natural gas demonstrator based on an urban vehicle with a down-sized turbocharged engine. Oil & gas science and technology, 59(6):581–591, 2004.
- 24. Lei Zhu, Zhuoyao He, Zhen Xu, Xingcai Lu, Junhua Fang, Wugao Zhang, and Zhen Huang. In-cylinder thermochemical fuel reforming (tfr) in a sparkignition natural gas engine. Proceedings of the Combustion Institute, 2016.
- MA Kalam and HH Masjuki. An experimental investigation of high performance natural gas engine with direct injection. Energy, 36(5):3563– 3571, 2011.
- 26. Sukrut S Thipse, Shailesh B Sonawane, Ashwin FD'Souza, SD Rairikar, Kishor Ku- mar Kavathekar, and Neelkanth V Marathe. Injection strategies, optimization and simulation techniques on di cng technology. Technical report, SAE Technical Paper, 2015.
- Mingi Choi, Sanghoon Lee, and Sungwook Park. Numerical and experimental study of gaseous fuel injection for cng direct injection. Fuel, 140:693–700, 2015.
- Mingi Choi, Jingeun Song, and Sungwook Park. Modeling of the fuel injection and combustion process in a cng direct injection engine. Fuel, 179:168–178, 2016.
- 29. Mirko Baratta, Andrea E Catania, Ezio Spessa, Lothar Herrmann, and Klaus Roessler. Multi-dimensional modeling of direct natural-gas injection and

mixture formation in a stratified-charge si engine with centrally mounted injector. SAE International Journal of Engines, 1(2008-01-0975):607–626, 2008.

- Jianjun Zheng, Zuohua Huang, Jinhua Wang, Bin Wang, Dezhong Ning, and Yingjia Zhang. Effect of compression ratio on cycle-by-cycle variations in a natural gas direct injection engine. Energy & Fuels, 23(11):5357–5366, 2009.
- 31. Shaobo Ji, Xin Lan, Yong Cheng, Xiuliang Zhao, Xinhai Li, and Fengjuan Wang. Cyclic variation of large-bore multi point injection engine fuelled by natural gas with different types of injection systems. Applied Thermal Engineering, 102:1241–1249, 2016.
- 32. How Heoy Geok, Taib Iskandar Mohamad, Shahrir Abdullah, Yusoff Ali, Azhari Shamsudeen, and Elvis Adril. Experimental investigation of performance and emission of a sequential port injection natural gas engine. European Journal of Scientific Research, 30(2):204–214, 2009.
- M Patel Nimit and AD Patel. Conversion of diesel engine to port injection cng engine using gaseous injector nozzle multi holes geometries improvement: A review. International Journal of Automotive Engineering, 6(3):2220–2235, 2016.
- 34. VS Midhun, S Karthikeyan, S Krishnan, SD Rairikar, KP Kavathekar, SS Thipse, NV Marathe, et al. Development of cng injection engine to meet future euro-v emission norms for lcv applications. Technical report, SAE Technical Paper, 2011.
- Paolo Lino, Bruno Maione, and Claudio Amorese. Modelling and predictive control of a new injection system for compressed natural gas engines. Control Engineering Practice, 16(10):1216–1230, 2008.
- Lindfeldt, E.G., et al., (2010), "Strategies for a road transport system based on renewable resources – The case of an import-independent Sweden in 2025", Appl.Energy, Vol.87 (6), pp. 1836-1845.

- 37. Y. Saboohi, H. Farzaneh, Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption, Applied Energy, Volume 86, Issue 10, October 2009, Pages 1925-1932, ISSN 0306-2619, DOI: 10.1016/j.apenergy.2008.12.017.)
- Brian Vad Mathiesen, Henrik Lund, Kenneth Karlsson, 100% Renewable energy systems, climate mitigation and economic growth, Applied Energy, In Press, Corrected Proof, Available online 31 March 2010, ISSN 0306-2619, DOI: 10.1016/j.apenergy.2010.03.001.
- Smit, R., et al., (2010), "Validation of road vehicle and traffic emission models - A review and meta-analysis", Atmos.Environ, Vol.44 (25), pp. 2943-2953.
- 40. Sharad, G. (2012), "Impacts of traffic-flows on vehicular-exhaust emissions at traffic junctions", Transportation Research Part D: Transport and Environment, Vol.17 (1), pp. 21-27.
- 41. Rabl, A.and de Nazelle, A., (2012), "Benefits of shift from car to active transport", Transp.Policy, Vol.19 (1), pp. 121-131.
- Su, J., et al., (2011), "Non-methane volatile organic compound emission inventories in Beijing during Olympic Games 2008", Atmos.Environ., Vol.45 (39), pp. 7046-7052.
- Wang, H., et al., (2010), "Trends in vehicular emissions in China's mega cities from 1995 to 2005", Environmental Pollution, Vol.158 (2), pp. 394-400.
- Haydar, F. and Pediaditi, K. 2010. Evaluation of the environmental impact assessment system in Syria. Environmental Impact Assessment Review, 30(6), pp.363-370.
- 45. Ou, X., Yan, X., Zhang, X. and Liu, Z. 2012. Life-cycle analysis on energy consumption and GHG emission intensities of alternative vehicle fuels in China. Applied Energy, 90(1), pp.218-224.
- Heywood, John B., Internal combustion Engine Fundamentals, McGraw-Hill International Editions -1988

- McGahan, Paul., PM, Estimation of On-Road Vehicle Fuel Consumption and Emissions using Analysis of OBD Signals, 4th Year Mechanical Engineering Project, BEng, 07/04/2006.
- 48. Directive 98/69/EC of The European Parliament and of the council of 13 October 1998, Relating to measures to be taken against pollution by emission from motor vehicles and amending Council Directive 70/220/EEC
- Barone, Stefano. Statistics-Driven Development of OBD Systems; An Overview, Quality and Reliability Engineering International, 2006, vol 22, 615-628
- Sturm et al. Determinaton of Traffic emissions intercomparison of different calculation methods, the science of the total environment, 189/190 (1996) 187-196
- 51. Council directive of 20 March 1970 on the approximation of the laws of the Member States on measures to be taken against air pollution by emissions from motor vehicles (2004), European Union.
- 52. Ludykar et al., Cold start emissions at + 22, -7 and -20 C ambient temperatures from a three-way catalyst (TWC) car: regulated and unregulated exhaust components, the Science of the Total Environment 235 (1999) 65-69
- Abdel- Rahman, A.A., On the emissions from internal combustion engines: A review. International Journal of Energy Research volume 22 (1998), 483-513
- Pierson et al. C, Comparison of the SCAQS tunnel study with other on-road emissions data. Journal of Air Waste Management Association 40, 1495-1504
- 55. Wang, Q., H. Huo, K. He, Z. Yao and Q. Zhang, "Characterization of vehicle driving patterns and development of driving cycles in Chinese cities", Transportation Research Part D: Transport and Environment, 13, 289-297, 2008.

- Hao Cai, Shaodong Xie, "Estimation of vehicular emission inventories in China from 1980 to 2005", Atmospheric Environment, Volume 41, Issue 39, December 2007, Pages 8963-8979
- 57. Ludykar et al., Cold start emissions at + 22, -7 and -20 C ambient temperatures from a three-way catalyst (TWC) car: regulated and unregulated exhaust components, the Science of the Total Environment 235 (1999) 65-69
- Saerens, J. Vandersteen, T. Persoons, J. Swevers, M. Diehl, E. Van den Bulck, Minimization of the fuel consumption of a gasoline engine using dynamic optimization, Applied Energy, Volume 86, Issue 9, September 2009, Pages 1582- 1588, ISSN 0306-2619, DOI: 10.1016/j.apenergy.2008.12.022.
- Wenzel, T. 2003; Use of Remote Sensing measurements to evaluate vehicle emission monitoring programs: results from Phoenix, Arizona. Environmental Science and Policy Volume 6, Issue 2: pp 153-166.
- 60. Wielenmann et al., Regulated and unregulated diesel and cold start emissions at different temperatures, Atmospheric Environment, vol 39 (2005), 2433-2441)
- Myung et al. Experimental investigation of the effect of thin- wall substrates and spark timing on total hydrocarbon emissions during cold-start for superultra low-emission application, Journal of Automobile Engineering, Vol 218, Part D (2004)