МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ МАШИНОСТРОЕНИЯ

(наименование института полностью)

Кафедра «Энергетические машины и системы управления»

13.03.03 Энергетическое машиностроение

(код и наименование направления подготовки)

«Альтернативные источники энергии транспортных средств»

(направленность (профиль))

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Проектирование двухцилиндрового дизельного двигателя

Студент	И.С. Тарасенко				
_	(И.О. Фамилия)	(личная подпись)			
Руководитель	к.т.н., доцент, В.В. Смоленский				

(ученая степень, звание, И.О. Фамилия)

АННОТАЦИЯ

Выпускная квалификационная работа посвящена вопросу проектирования двухцилиндрового дизельного двигателя на альтернативных жидких топливах для гибридных или малолитражных автомобилей.

Целью бакалаврского проекта исследования перспектив использования жидких кислородосодержащих спиртовых альтернативных топлив в малолитражных дизельных двигателях.

Поэтому в данном бакалаврской работе представлены результаты проектирования двухцилиндрового дизельного двигателя с анализом процесса сгорания на жидких альтернативных топливах (дизельное топливо, спирты), также выполнено имитационное моделирование в программе WAVE Ricardo 17.1. Бакалаврская работа состоит из пояснительной записки и графической части.

Пояснительная записка состоит из аннотации, введения, 4 разделов, заключения с основными результатами и выводами, содержит 25 рисунок, 15 таблиц, списка использованных источников (65 источник). Основной текст изложен на 64 страницах.

Графическая часть работы содержит 8 листов формата A1 иллюстрирующих материал, представленный в пояснительной записке.

ABSTRACT

Topic of the bachelor thesis: "Improving the efficiency of the fuel system for VAZ engines".

The fuel delivery system plays a crucial role in internal combustion engines. This thesis examines the shortcomings of the existing fuel delivery system and proposes a solution to address the high amplitude fuel pressure fluctuations.

This bachelor's thesis aims to improve the fuel delivery system for the VAZ 21129 gasoline engine. It consists of an explanatory note of 63 pages and a graphical part. The explanatory note covers the following topics:

- Analysis of the existing fuel delivery system;
- Thermal balance and thermal calculation of the engine;
- Kinematic and dynamic calculations were performed;
- Design of an external damper.

The graphic section contains six A1-sized sheets. They show longitudinal and transverse sections of the engine, three diagram sheets, and detailed drawings of the proposed fuel delivery system.

СОДЕРЖАНИЕ

Bı	ведение	4
1	Исследования перспектив использования жидких	
ΚV	ислородосодержащих спиртовых альтернативных топлив в	
Ma	алолитражных дизельных двигателях	6
	1.1 Дизельное топливо	6
	1.2 Характеристики сгорания кислородосодержащих альтернативных	
-	гоплив для двигателей с воспламенением от сжатия	8
	1.3 Спирты как топливо для дизельных двигателей	17
2	Тепловой расчет проектируемого двигателя	23
	2.1 Тепловой расчет двухцилиндрового двигателя при работе на	
	дизельном топливе	23
	2.2 Тепловой расчет двухцилиндрового дизельного двигателя на	
	метаноле	28
3	Кинематический и динамический расчет кривошипно-шатунного	
M	еханизма двигателя	34
	3.1 Кинематический расчет кривошипно-шатунного механизма	
	двигателя	34
	3.2 Динамический расчет кривошипно-шатунного механизма	
	двигателя	36
4	Анализ токсичности отработавших газов при работе	
ДЕ	вухцилиндрового двигателя на дизельном топливе и на метаноле	42
	аключение	56
	писок используемых источников	58

ВВЕДЕНИЕ

Дизельные двигатели использовались в качестве основных энергосистем как для мобильных, так и для стационарных приложений. Успех дизельных двигателей можно объяснить исключительной топливной экономичностью, механической прочностью и надежностью [1]. Высокий тепловой КПД дизельных двигателей в основном объясняется обычно высокой степенью расширения двигателя и общей работой на обедненной топливной смеси. Кроме того, отсутствие дросселирования на впуске также способствует экономии топлива при частичных нагрузках двигателя. Однако вредные выбросы дизельных двигателей создают серьезные экологические проблемы. Основное внимание при разработке современных дизельных двигателей уделяется сокращению выбросов этих загрязняющих веществ без ущерба для высокой эффективности использования топлива.

За последние десятилетия в дизельных двигателях были достигнуты огромные технические достижения в области более чистого сгорания и лучшей экономии топлива, такие как рециркуляция отработавших газов (EGR), наддув воздуха на впуске, впрыск топлива Common Rail и доочистка себя отработавших газов. Применение EGR зарекомендовало как эффективный метод подавления образования оксидов азота при сгорании дизельного топлива [2]. Наддув воздуха на впуске может значительно увеличить удельную мощность двигателя и компенсировать вытеснение кислорода, вызванное применением EGR. Система впрыска топлива Common Rail может обеспечить стабильное давление впрыска топлива и облегчить гибкое планирование впрыска топлива. Методы последующей обработки могут еще больше снизить выбросы при выключенном двигателе, чтобы соответствовать все более строгим нормам выбросов.

Обычный рабочий процесс современного четырехтактного дизельного двигателя состоит из трех основных элементов для инициирования сгорания — это: дизельное топливо, всасываемый воздух и энергию для воспламенения.

Традиционно во время такта впуска в камеру сгорания всасывается только свежий воздух. Затем дизельное топливо впрыскивается в камеру сгорания по завершении сжатия цилиндра, когда температура заряда в цилиндре выше, чем Степень температура самовоспламенения дизельного топлива. двигателя выше, чем у бензиновых двигателей, можно использовать без ограничения преждевременного сгорания. Регулирование нагрузки дизельного двигателя обычно осуществляется за счет регулирования количества топлива, подаваемого в камеру сгорания. Количество всасываемого воздуха превышает требуется для стехиометрического сгорания. Следовательно, TO, дизельный двигатель обычно работает в условиях обеднения топливом, при этом в потоке выхлопных газов остается избыток кислорода.

Сокращение выбросов NOx является сложной задачей для дизельных двигателей. Применение EGR снижает образование NOx за счет снижения всасываемого кислорода. Однако интенсивная уровня рециркуляция отработавших газов может также снизить эффективность сгорания из-за увеличения выбросов частично окисленных продуктов, таких как твердые частицы (ТЧ), общее количество углеводородов и окись углерода. Методы доочистки, такие как селективное каталитическое восстановление (SCR) и улавливание обедненных NOx (LNT), способны подавить выбросы NOx в выхлопных газах. Тем не менее, восстановитель часто требуется в обоих методах конверсии NOx. Кроме того, для реализации этих методов доочистки также необходимы дополнительные системы подачи восстановителя.

В связи с этим в настоящее время осталось всего два новых направления развития дизельных двигателей это поиск новых более чистых и доступных топлив и исследование новых способов организации рабочего процесса, так называемые циклы с автоматической регулировкой процесса сгорания (САІ) которые включают в себя различные новые цикл (НССІ, РССІ и тд.).

Поэтому мы будем исследовать новые виды альтернативных топлив для дизельного двигателя.

1 Исследования перспектив использования жидких кислородосодержащих спиртовых альтернативных топлив в малолитражных дизельных двигателях

1.1 Дизельное топливо

Дизельное топливо представляет собой сложную смесь парафиновых, нафтеновых и ароматических углеводородов [4]. Общие свойства дизельного топлива определяются характеристиками отдельных углеводородов. Специфические свойства дизельного топлива могут варьироваться в широком диапазоне из-за различий в источниках сырой нефти и процессах нефтепереработки. В коммерческое дизельное топливо также добавляют различные присадки для улучшения качества топлива, такие как присадки, улучшающие смазывающую способность, и стабилизаторы топлива.

Выбранные стандарты топлива из ASTM D975 для американского дизельного топлива № 2 со сверхнизким содержанием серы (ULSD) [5] перечислены в Таблице 1-1. Критические свойства топлива, которые часто влияют на сгорание и работу двигателя, включают цетановое число, летучесть, вязкость и смазывающую способность. Цетановое число является мерой реакции топлива на воспламенение от сжатия. Топливо с более высоким цетановым числом обычно имеет более короткую задержку воспламенения при различных условиях работы двигателя. Следовательно, сгорание топлива с высоким цетановым числом, как правило, тесно связано с впрыском топлива. Отделение процесса сгорания от процесса впрыска, которое часто требуется для улучшения смешивания заряда в цилиндре и снижения выбросов, становится сложной задачей в дизельных двигателях.

Летучесть топлива часто оценивают с помощью Т90 (температура перегонки 90% топлива по объему), если топливо представляет собой смесь, а не чистое вещество. Минимальная требуемая температура Т90 для ULSD № 2 выше, чем типичная температура на впуске двигателя. Таким образом, прямое использование дизельного впрыска во впускной коллектор без

дополнительного подогрева на впуске затруднительно. Кроме того, впрыск дизельного топлива в начале такта сжатия может потенциально привести к удару о стенку и разжижению смазочного масла.

Таблица 1 – Стандарты топлива для US № 2 ULSD [5]

Свойство топлива	ASTM D975	Влияние свойства на производительность
Цетановое число [-], мин.	40	Мера качества зажигания - влияет на холодный пуск, сгорание и выбросы.
Температура вспышки [°С], не менее	52	Безопасность в обращении и использовании - не имеет прямого отношения к работе двигателя
Т90 [°С], не менее	282	Мера летучести топлива - влияет на испарение
T90 [°C], не более	338	при распылении, дым и сгорание.
KV^1 [mm ² /s], не менее	1.9	Влияет на распыление топлива, а также на
KV [mm ² /s], не более	4.1	утечку и смазку топливной системы.
WSD ² @ 40 °C [pm], не более	520	Влияет на износ системы впрыска топлива (т.е. насоса и форсунки)

^{1.} KV: кинематическая вязкость при 40 °C.

Вязкость топлива является мерой сопротивления сдвиговому течению. Это свойство влияет на толщину пленки жидкости в дизельных топливных системах. В топливной системе Common Rail дизельное топливо является рабочей жидкостью, а также охлаждающей жидкостью и смазкой. Более толстая пленка жидкости часто обеспечивает лучшую теплопередачу и лучшую защиту между движущимися металлическими компонентами. Кроме того, вязкость также влияет на скорость жидкости через узкие зазоры и отверстия. Топливо с более высокой вязкостью часто течет медленнее при фиксированном перепаде давления. Топливная струя также имеет меньшую тенденцию распадаться на мелкие капли. Таким образом, требуемая вязкость ULSD находится в диапазоне от 1,9 до 4,1: минимальный порог в первую очередь необходим для достаточного охлаждения и смазки, а максимальный важен для характеристик потока и распыления топлива.

Смазывающая способность топлива является прямым показателем эффективности смазки. Распространенным способом оценки смазывающей способности является использование высокочастотной поршневой установки

^{2.} WSD: диаметр следа износа, полученный в ходе испытаний на высокочастотном возвратно-поступательном стенде.

(HFRR). В ходе эксперимента стальной шарик в течение 75 минут трется о стальную пластину, погруженную в тестовое топливо. Диаметр следа износа на стальной пластине используется для оценки смазывающей способности топлива. Меньший диаметр указывает на лучшую смазывающую способность топлива.

1.2 Характеристики сгорания кислородосодержащих альтернативных топлив для двигателей с воспламенением от сжатия

Биодизельное топливо классифицируется на основе пропорций ненасыщенных и насыщенных метиловых эфиров, измеряемых йодным числом (IV). Йодное число соевого биодизеля составляет 130 и уменьшается с увеличением степени насыщения [12]. Йодное число увеличивается с увеличением числа двойных связей. Длина цепи становится короче по мере увеличения числа двойных связей. Вязкость увеличивается с увеличением длины цепи. Биодизель, полученный из растительных масел, содержит больше эфиров ненасыщенных жирных кислот, а биодизель из животных жиров — больше эфиров насыщенных жирных кислот [13, 14].

Предыдущие исследования Lapuerta et al. [32] показали, что ненасыщенные эфиры имеют более высокую сложные адиабатического пламени, что способствует более высокой скорости окисления сажи и более высокому образованию NOx. С другой стороны, насыщенное биодизельное топливо имеет более низкие выбросы NOx, чем обычное биодизельное топливо, полученное из сои, но практически с таким же уровнем выбросов твердых частиц (ТЧ) [12] из-за более высокого цетанового числа и более короткой задержки воспламенения. Топливо с более высоким цетановым числом имеет более короткий период задержки воспламенения, что дает меньше времени для смешивания воздуха и топлива перед фазой горения предварительного смешения. Следовательно, более слабая смесь будет генерироваться И время фазы сжигаться BO

предварительного смешения, что приведет к относительно меньшему образованию NOx [34].

Область низких и промежуточных температур (600-1000 K) обычно включает воспламенение и начало горения до того, как температура в камере сгорания поднимется выше 1000 K за счет как такта сжатия, так и экзотермических реакций [53,59]. Общий радикальный цепной механизм углеводородов начинается с реакции инициирования (1), где молекула топлива (RH) атакуется радикалом (X•), который удаляет атом водорода из молекулы топлива с образованием алкильного радикала (R•).

При рассмотрении радикалов гидроксильный радикал (ОН•) является основным атакующим радикалом в Н-абстрагировании (1) при температурах ниже 700 К, поскольку он может образовывать воду с абстрагированным водородным радикалом в сильно экзотермической реакции. Следует отметить, что гидроксильный радикал менее селективен к положению атома Н при Н-абстракции по сравнению с другими видами радикалов. При более высоких температурах существенную роль играет гидропероксильный радикал (НО₂•) [53,58,60]. Дальнейшие реакции водородного радикала, образующегося при Н-абстракции, оказывают существенное влияние на продолжительность низкотемпературного горения: водородные радикалы могут участвовать в пероксидно-водородном (H_2O_2) механизме, и приводить основная реакция разветвления при температурах 800-1200K c образованием гидроксильных радикалов. В общем, более легкая Набстракция повышает качество воспламенения молекулы топлива [61].

Скорость и место отвода водорода (1) существенно зависят от молекулярной структуры топлива: отвод водорода будет происходить от самой слабой связи С-Н молекулы топлива. В случае алкана самая слабая связь С-Н находится на третичном атоме углерода (номер 3 в алкане на

рисунке 1), вторая по слабости на вторичном атоме углерода (2 в алкане на рисунке 1), а самые сильные связи С-Н на первичном атоме углерода (1 в алкане на рисунке 1) [58].

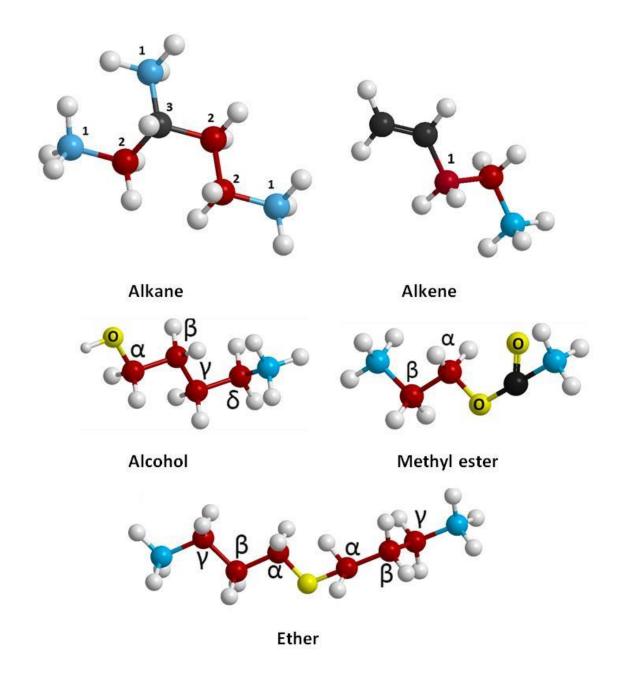


Рисунок 1 — Молекулярные структуры алкана, алкена, спирта, метилового эфира и простого эфира.

Эти различия в силе связи С-Н объяснялись, например, тем, что Кемниц и др. [62] различиями в стабильности образующегося топливного радикала: разветвление стабилизирует образующийся углеводородный радикал, позволяя большей делокализации электронов по большему числу

соседних атомов углерода. При рассмотрении длины углеродной цепи алкана можно сделать вывод, что более длинные углеродные цепи приводят к более быстрому воспламенению из-за более высокого относительного числа вторичных атомов углерода в молекуле. Увеличение длины углеродной цепи оказывает уменьшающееся влияние на задержку воспламенения, когда длина углеродной цепи становится большой из-за меньших относительных изменений в соотношении между вторичными и первичными атомами водорода [63]. В случае разветвления алканов отщепление Н от третичных атомов углерода легче, чем образование соответствующих вторичных атомов углерода алканов с прямой цепью. Однако разветвление также увеличивает количество первичных атомов углерода с более сложной абстракцией Н по сравнению с вторичными атомами углерода.

Прочность связи С-Н зависит от типа связи между атомами углерода, а также от того, какой другой тип атомов (например, атом кислорода) связан с атомом углерода. В нескольких исследованиях изучалось влияние уровня ненасыщенности на выделение Н-, поскольку и ископаемое дизельное топливо, и биодизельное топливо содержат молекулы с двойными связями: например, Вестбрук и др. [65] смоделировал горение биодизельного топлива, a Sun and Law [66] — горение изомеров бутена, a Mehl et al. [67] горение изомеров н-гексена. Они показали, что двойные связи между атомами углерода делают связи С-Н на атомах углерода с двойными связями сильнее, а связи С-Н на аллильных атомах углерода (1 в алкене на рисунке 3) слабее, чем связи на атомах углерода с одинарными связями. Легкость Н-отрыва от аллильных позиций объяснялась резонансно стабилизированной структурой образующихся аллильных радикалов. Следует отметить, что помимо Нотрыва от атомов углерода с двойной связью могут также происходить радикальные присоединения В основном гидроксильных И гидропероксирадикалов к двойной связи, как было показано в машине быстрого сжатия (RCM) Minetti et al. [68] и эксперименты со струйным перемешиванием, проведенные Battin-Leclerc et al. [49]. Однако, согласно экспериментам Prabhu et al. с проточным реактором. [50] и Mehl et al. [27], ожидается, что отщепление водорода будет преобладать для длинноцепочечных алкенов.

При Н-абстрагирования рассмотрении ИЗ оксигенированных альтернативных топлив несколько исследований показали, кислорода в молекулярной структуре топлива влияет на прочность близких к нему связей С-Н. Это объясняется более высокой электроотрицательностью атома кислорода по сравнению с атомами углерода и водорода. В случае спиртов эксперименты Heufer et al. с ударной трубкой и RCM. [21], измерения ударной трубки Black et al. [32], эксперименты RCM Weber et al. [33] и несколько экспериментов Sarathy et al. [34] показали, что Hабстрагирование от высших спиртов было самым легким из альфа-углерода (спирт на рисунке 1), затем следует Н-абстрагирование из гамма-, бета-, дельта- и т. д. атомов углерода и самое сложное из гидроксильной группы. Согласно Heufer et al. [31], изменения в силе связи С-H, вызванные гидроксильной группой в спирте, в целом достаточно значительны, чтобы вызвать более быстрое отщепление Н от альфа-положения спирта, чем от вторичного атома углерода спирта. алкан, Н-абстракция от бета- и гаммаатомов углерода спирта должна быть более сложной и медленной, чем от первичного атома углерода алкана, и Н-абстракция из дельта-положения должна быть такой же трудной, как и для первичного атома углерода алкана. Следовательно, общая Н-абстракция из спиртов сложнее, чем из алканов.

В случае карбонильных соединений теоретическое и кинетическое исследование Wang et al. [35], исследование моделирования Lin et al. [36] и теоретическое исследование Osmont et al. [37] пришли к выводу, что электроотрицательность карбонильной группы ослабляет связи С-Н на альфа-углероде (метиловый эфир на рисунке 1), делая отщепление Н от этого участка быстрее, чем отщепление от соответствующих вторичных атомов углерода алкана. Однако карбонильная группа усиливает связи СН на бета-атоме углерода (метиловый эфир на рисунке 1) по сравнению со вторичным

атомом углерода алкана. Было высказано предположение, что, как и в случае со спиртами, общая Н-абстракция из карбонильных соединений затруднена, чем из соответствующих алканов.

В отличие от спиртов и карбонильных соединений, простые эфиры имеют атом кислорода, связанный между двумя атомами углерода углеродной цепи. Исследование реактора с ламинарным потоком Cai et al. [38], ударно-волновые эксперименты Guan et al. [39], а также теоретические расчеты Ogura et al. [80] и Rashidi et al. [31] показали, что эфирная связь облегчает отщепление Н от двух альфа-атомов углерода, чем отщепление Н от вторичного атома углерода алкана (эфир на рисунке 1). Кроме того, эфирная связь облегчает выделение водорода из двух гамма-атомов углерода, чем из двух бета-атомов углерода (эфир на рисунке 1). Было высказано предположение, что общее выделение Н- из эфиров легче, чем из соответствующих алканов, в отличие от любых других рассмотренных здесь оксигенированных альтернативных топливных молекул. Интересно, что Кай и др. [48] на основании экспериментов с ДМЭ и бутанолом пришли к выводу, что спирты имеют более длительную задержку воспламенения, чем эфиры.

Топливный остающийся радикал, после выделения водорода (RH+X→R+XH), обычно взаимодействует с молекулярным кислородом посредством либо реакции (2), либо реакции (3). Переход низкотемпературным и среднетемпературным горением в значительной определяется конкуренцией степени между ЭТИМИ двумя распространяющимися реакциями. [58] Согласно Фаравелли и др. [53] реакция (2) предпочтительнее при температурах ниже 850 К. и ниже 650К по Гриффитсу и Барнарду [61], тогда как при более высоких температурах реакция (3) становится более значительной. Гидропероксильный радикал, образующийся в (3), далее реагирует по механизму H_2O_2 , но при низких температурах энергия активации этой реакции не достигается.

$$R^{\bullet} + O_2 \rightarrow RO_2^{\bullet} \tag{2}$$

$$R \cdot + O_2 \rightarrow$$
алкен $+ HO_2 \cdot$ (3)

При рассмотрении алкенов Mehl et al. [57] заметили, что аллильные радикалы, которые были предпочтительным продуктом Н-абстракции из алкенов, не могут связываться с молекулярным кислородом, чтобы изомеризации. Вместо подвергнуться ЭТОГО алкилпероксирадикалы с кислородом в аллильном центре легко разлагаются обратно на реагенты. Трудность связывания молекулярного кислорода с аллильным радикалом вызвана потерей резонансной стабильности. Это значительно снижает реакционную способность алкенов при низких температурах по сравнению с соответствующими алканами. В случае спиртов окисление после того, как произошло Н-отщепление от альфа-атома углерода, не приводит к образованию спиртового радикала. Вместо этого было показано, что окисление первичного спирта по реакции (2) приводит к образованию альдегида и гидропероксирадикала, а окисление вторичного спирта — к образованию кетона и гидропероксирадикала [58,61].

Образовавшийся в (2) алкилпероксирадикал (RO_{2} •) подвергается разветвлению посредством эндотермической реакции изомеризации (4), что приводит к множественным реакциям разветвления. Из-за относительно образования алкилпероксирадикала в реакции (2) быстрого (4) обычно изомеризации контролирует общую последовательность разветвления цепи и, следовательно, оказывает значительное влияние на скорость образования пула радикалов: большая способность изомеризация молекулы топлива приводит к более быстрому образованию радикалов и раннему воспламенению. Изомеризация происходит образования кольца в переходном состоянии, где предпочтение отдается кольцам из пяти и шести атомов углерода из-за их низкой энергии деформации кольца. Поэтому молекулы топлива с более чем пятью или шестью атомами углерода в виде прямой углеродной цепи имеют лучшую способность образовывать переходные кольца по сравнению с молекулами с

более короткими углеродными цепями и, следовательно, имеют значительно более быструю изомеризацию [58,61]. Также было высказано предположение, что большая способность молекул топлива с длинными углеродными цепями к изомеризации вызывает большую склонность этих молекул к детонации [58].

$$RO_2 \bullet \to QOOH \bullet$$
 (4)

Согласно Mehl et al. [47], алкены обычно имеют жесткое переходное состояние, обусловленное двойными связями, что еще больше увеличивает задержку воспламенения алкенов по сравнению с соответствующими алканами. Это еще больше снижает октановое число алкенов по сравнению с алканами и приводит к более длительным задержкам воспламенения алкенов в двигателях с воспламенением от сжатия, как это наблюдали Puhan et al. [42], Лапуэрта и соавт. [43] и Бенджумеа [44]. Кроме того, Battin-Leclerc et al. [49] и эксперименты с ударной трубой Wang et al. [45] показали, что перемещение двойной связи к центру молекулы снижает способность метилового эфира к дальнейшей изомеризации.

В случае спиртов Heufer et al. [21] и Sarathy et al. [24] предположили, что спирты могут подвергаться изомеризации в тех случаях, когда Н-отрыв не происходит от альфа-атома углерода. В случае Н-отрыва от альфауглеродного атома окисление спирта по реакции (2) не приводит к образованию стабильного пероксирадикала и основными разветвления спиртов при низких температурах являются Н-отрывы. Это увеличивает задержку воспламенения спиртов ПО сравнению соответствующими алканами. Было проведено лишь несколько исследований двигателей с воспламенением от сжатия на спиртах с более длинными цепями, чем у этанола. Однако было показано, что добавление бутанола [26,27] и пентанола [28,29] к дизельному топливу увеличивает задержку воспламенения.

При рассмотрении карбонильных соединений В нескольких исследованиях было предложено, чтобы карбонильная группа в сложных эфирах создавала дополнительную нагрузку на переходные кольца и, таким образом, снижала скорость реакции изомеризации и увеличивала задержку воспламенения карбонильных соединений по сравнению с алканами: об этом свидетельствуют исследования моделирования. Da Silva et al. [30], Lin et al. [36] и Osmont et al. [12], обзорная статья Tran et al. [21] и исследование двигателя с помощью газовой хроматографии-масс-спектрометрии (ГХ-МС), проведенное Zhang et al. [22]. Единственные доступные исследования двигателей, касающиеся карбонильных соединений, касались сжигания эфиров. Несколько исследований (например, сложных исследования биодизеля на растительном масле в Buyukkaya [23], Sahoo et al. [24] и Özener et al. [25], исследование биодизеля в рыбьем жире в Sakthivel [26], исследование биодизеля в животном жире в Awas et al. [27]) наблюдали, что биодизель имеет более короткую задержку воспламенения по сравнению с дизельным топливом в двигателе с воспламенением. Более короткая задержка воспламенения биодизеля по сравнению с дизельным топливом объясняется химическим разложением биодизельных метиловых эфиров жирных время впрыска, котором образуются кислот во при низкомолекулярные газы, сгорающие раньше. Эта более короткая задержка биодизеля воспламенения ПО сравнению cдизельным топливом противоречит эффекту затруднения воспламенения как сложноэфирной группы, так и более высокому уровню ненасыщенности, описанному в этом подразделе, если считается, что дизель состоит в основном из алифатических алканов. Следовательно, предполагается, что длинные углеродные цепи биодизельных метиловых эфиров жирных кислот являются причиной их более быстрого воспламенения по сравнению с дизельным топливом, потому что, хотя длины углеродных цепей молекул дизельного топлива аналогичны молекулам биодизельного топлива, дизельное топливо содержит более

высокие доли циклических структуры и ароматические соединения, препятствующие воспламенению.

1.3 Спирты как топливо для дизельных двигателей

1.3.1 Получение спиртового топлива

И этанол, и бутанол можно производить с помощью различных технологий и из разных источников. Биотопливо первого поколения получают из продовольственных культур, таких как зерновые, сахарные и масличные культуры. Они подверглись критике во всем мире из-за того, что вызывают нехватку продовольствия И создают конкуренцию использование земли [29]. Однако биотопливо второго поколения в основном получают из несъедобных энергетических культур, целлюлозных отходов, сельскохозяйственных и лесных отходов [30]. Сообщается, что этанол и бутанол потенциально могут быть получены из этой лигноцеллюлозной биомассы и древесного сырья [31]. Совсем недавно этанол и бутанол, полученные из микроводорослей и микробов, начали привлекать внимание. Эти так называемые биотоплива третьего и четвертого отличаются высокой эффективностью фотосинтеза и высокой скоростью роста по сравнению с наземными растениями [32]. Благодаря отработанному производственному процессу биотопливо первого поколения по-прежнему остается основным источником альтернативных видов топлива.

Смеси этанола и дизельного топлива первого поколения в настоящее время коммерчески доступны для двигателей с воспламенением, а производство спиртов второго поколения, как этанола, так и более тяжелых спиртов, находится в стадии разработки. По сравнению с ископаемым дизельным топливом спирты имеют значительно более низкую теплотворную способность и более низкое давление паров из-за содержания в них кислорода. Кроме того, полярность молекул спирта делает их более растворимыми в воде, чем углеводороды. Однако спирты обладают

хорошими свойствами воспламенения и поэтому являются привлекательными молекулами альтернативного топлива [27]. Например, CN 29,5 был измерен для гептанола с помощью метода ASTM D613. Высшие спирты обычно имеют более высокое числовое число по сравнению с более короткими спиртами, что делает спирты с более длинной цепью (> C5) более привлекательными в качестве биотоплива, чем спирты с более короткой цепью (< C5) [6].

Этанол первого поколения в основном производится путем микробной ферментации сахарного тростника и кукурузного крахмала. Перспективные методы производства биоспиртового топлива второго поколения используют лигноцеллюлозную биомассу в качестве сырья, а производство биоэтанола третьего поколения, которое находится на ранней стадии разработки, биомассу водорослей [27,28].Были описаны использует основные технологии производства биоэтанола. в обзорных статьях Vohra et al. [29] и Baeyens et al. [28], а методы производства биоэтанола из лигноцеллюлозной биомассы были недавно рассмотрены Mood et al. [30] и Канг и соавт. [31]. Спирты с более длинными углеродными цепями, чем у этанола, в целом могут быть получены теми же методами производства, что и этанол, но низкие выходы производства препятствуют использованию длинноцепочечных спиртов в промышленных масштабах [32]. Например, при ацетон-бутанол-этанольной ферментации выход этанола в 10-30 раз превышает выход бутанола [33]. В качестве дополнительных примеров методов производства н-бутанола Morone И Pandey [34] описали Jin et al. производство н-бутанола из лигноцеллюлозы, a [33] от микроорганизмов путем ферментации.

Помимо вышеупомянутых методов производства, спирты также можно производить с помощью метаболической инженерии. Выходы довольно низкие, что делает производство этанола непривлекательным, но производство спиртов с длинными углеродными цепями с помощью метаболической инженерии становится все более и более предметом

исследований. Можно использовать несколько штаммов, из которых Escherichia coli обычно считается хорошим потенциальным штаммом для производства молекул биотоплива в промышленных масштабах. Однако требуется дальнейшая разработка, прежде чем методы производства можно будет промышленных масштабах [35-37].Различные применять В возможные методы производства изопропанола и бутанола с помощью метаболической инженерии были рассмотрены Singh et al. [38]. Кроме того, и Cann, и Liao [32], и Zhang et al. [39] обсуждали получение изомеров пентанола микроорганизмами, a Youngquist et al. [40] продемонстрировали метаболический путь образования 1-додеканола и 1-тетрадеканола.

1.3.2 Свойства алкогольного топлива

Как правило, по мере увеличения числа атомов углерода в молекулах спирта молекулярная масса и отношение С/Н увеличиваются, а массовая доля кислорода уменьшается. Это также приводит к увеличению низшей (HTC) теплотворной способности реакционной способности. И Следовательно, спирты с четырьмя и более атомами углерода ближе к нефтяному топливу по LHV и выгодны для улучшения экономии топлива (на литр) [18]. Примечательно, что наличие гидроксильной группы в спиртах является причиной того, что они жидкие при комнатной температуре, что благоприятно для применения в транспорте [19]. Эта гидроксильная группа также придает дипольный момент неполярному углеводороду. Следовательно, спирты с короткой цепью (С1-С3) лучше растворимы в воде. Спирты, такие как метанол, этанол и бутанол, являются интересными альтернативными видами топлива для концепций низкотемпературного сгорания (LTC) из-за их высокого октанового числа, кислородсодержащей топливной структуры и жидкой природы. Применение метанола в двигателях внутреннего сгорания затруднено из-за его токсичности и низкой плотности энергии [20]. Также в настоящее время основное производство метанола осуществляется из природного газа или угля путем газификации с последующим синтезом метанола [19]. С точки зрения сокращения выбросов

парниковых газов этанол и бутанол, полученные из биомассы, являются более подходящими вариантами для применения в двигателе внутреннего сгорания. По сравнению с бензином и дизельным топливом спиртовые топлива имеют гораздо более высокую скрытую теплоту испарения, что снижает температуру заряда цилиндра, но также вызывает проблемы с холодным запуском.

Одной из проблем смешивания этанола с нефтью является разделение фаз из-за гидрофильной природы этанола. Чтобы избежать фазового разделения смесей этанол/бензин, необходимо применять либо безводный этанол, либо смешивающие агенты [21]. Этанол практически не смешивается с дизельным топливом, хотя его растворимость зависит от химического состава используемого дизельного топлива, температуры, при которой производится смесь, и процентного содержания этанола в смеси [22]. Требуется добавление либо эмульгатора для суспендирования мелких капель этанола в дизельном топливе, либо сорастворителя, который действует как посредник за счет молекулярной совместимости и связывания для получения гомогенной смеси [23].

Бутанол, с другой стороны, проявляет гораздо меньшее сродство к воде из-за более длинных углеводородных цепей. Благодаря своей гидрофобной бензином/дизелем природе его онжом смешивать различных соотношениях. Однако наиболее важным является то, бутанол ЧТО демонстрирует превосходные свойства с точки зрения содержания энергии, смазывающей способности, коррозионной активности по отношению к металлическим конструкционным материалам (резервуар, стенка цилиндра) и может обрабатываться существующей инфраструктурой [19, 25]. Кроме того, бутанол имеет четыре изомера: н-бутанол, втор-бутанол, изобутанол и третбутанол. Неразветвленные н-бутанол и втор-бутанол имеют такое же исследовательское октановое число (RON), что и бензин. В то время как изобутанол и трет-бутанол с разветвленной цепью обладают еще более высоким октановым числом. Различие в реакционной способности изомеров можно объяснить структурой молекулы. Как правило, самовоспламенение изомеров бутанола начинается с мономолекулярных реакций с последующим отрывом атома Н при температуре ниже 1000 К [26]. Энергия разрыва связи (ВDE) С-Н определяется расположением группы ОН, что приводит к разным скоростям отрыва атома Н для каждого изомера бутанола [27]. Из рисунка 2 видно, что н-бутанол показывает самый низкий уровень БДЭ, что указывает на самую высокую реакционную способность. Интересно, что в литературе существуют разногласия по реакционной способности, трет-бутанола и изобутанола на основе метода испытаний [24,28]. Результаты экспериментов с ударной трубкой, выполненных при 715-910К и высоком давлении, показали, что трет-бутанол имеет наибольшую задержку воспламенения [26]. Тем не менее, результаты экспериментов с машиной быстрого сжатия показывают, что изобутанол является наименее реакционноспособным изомером [28].

Рисунок 2 — Энергия диссоциации связи для различных изомеров бутанола (ккал/моль) [24]

Выводы по первому разделу

В приведенном выше обзоре литературы представлена молекулярная структура нескольких альтернативных видов топлива с воспламенением от сжатия, а затем рассмотрено влияние молекулярной структуры топлива на сгорания, физические процессы сгорания. В кинетику качестве альтернативных видов топлива рассматривались биодизель, спирты, простые эфиры и кетоны. Можно сделать вывод, что в настоящее время наиболее распространенными биотопливами являются биодизельное топливо и смеси этанола с дизельным топливом, хотя в центре внимания исследований все больше находятся более длинные спирты из-за их высокого CN, эфиры из-за их высокого CN и низкого уровня выбросов выхлопных газов, а также как на кетонах из-за их подходящего CN и улучшения технологий производства.

2 Тепловой расчет проектируемого двигателя

Основные параметры двигателя, выбранного для дальнейшей проработки, приведены в таблице 2.

Таблица 2 – Технические параметры двигателя, выбранного как прототип для дальнейшей проработки

Параметры двигателя	Базовый		
Тип	4-тактный дизельный		
Кол-во цилиндров, тип ГБЦ	2, DOHC		
Диаметр цилиндров, мм	86		
Ход поршня, мм	86		
Длина шатуна, мм	128.6		
Рабочий объем, л	0,9991		
Степень сжатия	24		

2.1 Тепловой расчет двухцилиндрового двигателя при работе на дизельном топливе

Тепловой расчет производиться по методике И.И. Вибе. Расчет проводился для двух видов топлива на дизельное топливо и МТБЭ. Результаты расчета представлены в виде таблиц и графиков. Исследование проводятся на пяти режимах работы при оборотах коленчатого вала 1000, 2000, 3000, 4000 и 4500 мин⁻¹.

Для удобства анализа регулировочных характеристик представим данные в виде таблицы 3. Коэффициент избытка воздуха принят равным 1,4, так как это максимально возможная величина, которая обеспечивает оптимальные условия работы системы нейтрализации отработавших газов.

Для удобства анализа термохимических характеристик дизельного представим их в виде таблицы 4. Массовое содержание элементов в дизельном топливе взято из [6 и 12].

Таблица 3 – Регулировочные характеристики двигателя на дизельном топливе

Название параметра, размерность	Условное обозначение	Значение характеристики				
Частота вращения, мин ⁻¹	n	1000	1000 2000 3000 4000 4			4500
Угол опережения впрыска топлива, ° ПКВ	Θ	10	12	15	18	20
Коэффициент избытка воздуха	α	1,4180	1,4180	1,4180	1,4180	1,4180
Температура подогрева заряда в цилиндре ДВС, °С	ΔΤΝ	5	5	5	5	5
Давление на впуске (атмосферное), МПа	Ро	0,1	0,1	0,1	0,1	0,1
Температура на впуске (окружающей среды), К	То	293,15	293,15	293,15	293,15	293,15
Расчетная политропа сжатия	n_p	1,3704	1,3704	1,3705	1,3706	1,3706
Действительная политропа сжатия	$n_{\scriptscriptstyle \mathcal{I}}$	1,3604	1,3604	1,3605	1,3606	1,3606
Предполагаемая температура остаточных газов, К	T_{r}	791	795	802	820	845
Продолжительность горения, ° ПКВ	Φ_{Γ}	50	56	62	68	75
Показатель характера сгорания	m	1	1	1	1	1
Коэффициент выделения теплоты	σ	1	1	1	1	1
Коэффициент использования теплоты	δi	0,86	0,86	0,86	0,86	0,86
Коэффициент эффективности сгорания топлива	ξ	0,86	0,86	0,86	0,86	0,86

Таблица 4 – Термохимические характеристики дизельного топлива

Название характеристики, размерность	Условное обозначение	Значение характеристики
Массовое содержание Н	Н	0,12017
Массовое содержание С	C	0,85743
Массовое содержание О	O	0,00381
Массовое содержание S	S	0,00333
Массовое содержание N	N	0,01526
Молекулярная масса топлива	m _т , кг/моль	206,21535
Низшая теплота сгорания, МДж/кг	H_{u}	41449,095
Теоретически необходимое количество	Lo, кмоль возд./кг топлива	0,487
воздуха для сгорания 1 кг топлива	Lo, кг возд./кг топлива	14,105
	Мс СО, кмоль СО/кг	0,0715
	топлива	0,0713
Количество компонента продуктов	$\mathrm{MH_2O}$, кмоль $\mathrm{H_2O}/\mathrm{kf}$	0,0601
сгорания	топлива	0,0001
	MN_2 , кмоль N_2 /кг топлива	0,5404
	MO_2 , кмоль O_2 /кг топлива	0
Общее количество продуктов сгорания	M_2 кмоль пр. сг./кг	0,7125
топлива,	топлива	0,7123
Коэффициент изменения гор. смеси	μ_0	1,0368

Для удобства расчетов цикла для двигателя на дизельном топливе представим данные в виде таблицы 5.

Таблица 5 – Расчет действительного цикла двигателя на дизельном топливе

Условное Условное							
Название параметра	обозначение	Значение характеристики					
Частота вращения	n, мин ⁻¹	1000	2000	3000	4000	4500	
Давление остаточных газов	Pr, MΠa	0,1042	0,1064	0,1099	0,1150	0,1180	
Температура подогрева	ΔT_{N} , K	9,0698	7,9070	6,7442	5,5814	5,0000	
Средняя скорость движения заряда	$\omega_{\text{BH}}, \text{ M/c}$	25,6510	51,3020	76,9530	102,6041	115,4296	
Давление в конце впуска	Ра, МПа	0,0992	0,0969	0,0930	0,0875	0,0158	
Коэффициент остаточных газов	$\gamma_{\rm r}$	0,0183	0,0187	0,0198	0,0207	0,0842	
Коэффициент наполнения	η_V	0,9201	0,9097	0,8826	0,8469	0,0221	
Температура в конце впуска	Ta, K	310,9803	310,1453	309,6419	309,6177	0,8045	
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	0,8648	0,8833	0,9190	0,9764	309,9869	
Давление в конце сжатия	Р _с , МПа	7,4832	7,3087	7,0152	6,6023	1,0161	
Температура в конце сжатия	T _c , K	977,2827	974,9733	973,5801	973,5131	974,5349	
Политропа расширения	n_2	1,2205	1,2216	1,2223	1,2229	0,5754	
Удельный объем рабочего тела в момент воспламенения	Vy, м ³ /кг	0,0444	0,0491	0,0582	0,0711	0,0813	
Давление рабочего тела в момент воспламенения	Ру, МПа	5,6296	4,9357	3,9655	3,0909	2,6161	
Температура рабочего тела в момент воспламенения	Ty, K	906,3170	878,6712	837,0144	796,1769	770,4726	
Общая удельная теплота сгорания топлива	q _z , кДж/кг	1667,0155	1666,2069	1664,4857	1662,9811	1660,6970	
Давление в процессе сгорания	Е2, МПа	92,5303	90,5423	86,9403	81,7548	78,4486	
Степень расширения	δ	5,3401	4,6438	4,2096	3,8367	3,3245	
Давление в конце процесса сгорания	Р _z , МПа	3,1806	2,6083	2,2110	1,8510	1,4881	
Гемпература в конце процесса сгорания	T _z , K	1802,5069	1736,3648	1689,2544	1648,5768	1591,9615	
Давление в конце процесса расширения	Рь, МПа	0,4116	0,3997	0,3816	0,3575	0,3417	
Гемпература в конце процесса расширения	T _b , K	1245,7175	1235,6398	1227,2166	1221,5684	1215,1298	
Теоретическая индикаторная работа цикла	L _т , кДж	1,0687	1,0573	1,0219	1,0109	1,0107	
Расчетное среднее индикаторное давление	РіТ, МПа	1,2895	1,2490	1,1604	1,0804	1,0380	
Индикаторный коэффициент полезного действия	ηi	0,5735	0,5619	0,5381	0,5221	0,5280	
Удельный индикаторный расход топлива	g _i , г/кВт*ч	151,4394	154,5839	161,4226	166,3637	164,4958	
Давление механических потерь	P _м , МПа	0,0664	0,0988	0,1312	0,1636	0,1798	
Средняя скорость поршня	С _п , м/с	2,8667	5,7333	8,6000	11,4667	12,9000	
Среднее эффективное давление	Ре, МПа	1,2231	1,1502	1,0292	0,9168	0,8582	
Механический КПД	ηм	0,9485	0,9209	0,8870	0,8486	0,8268	
Эффективный КПД	ηe	0,5440	0,5174	0,4772	0,4430	0,4366	
Удельный эффективный расход топлива	g _e , г/кВт*ч	159,6597	167,8601	181,9974	196,0462	198,9537	
Эффективная мощность	N _e , кВт	10,1838	19,1538	25,7070	30,5326	32,1536	
Часовой расход топлива	$G_{\scriptscriptstyle m T}$, кг/ч	1,6259	3,2152	4,6786	5,9858	6,3971	
Крутящий момент	Ме, Н*м	97,2478	91,4526	81,8280	72,8912	68,2320	

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 3) и внешнюю скоростную характеристику (рисунок 4) двигателя на дизельном топливе.

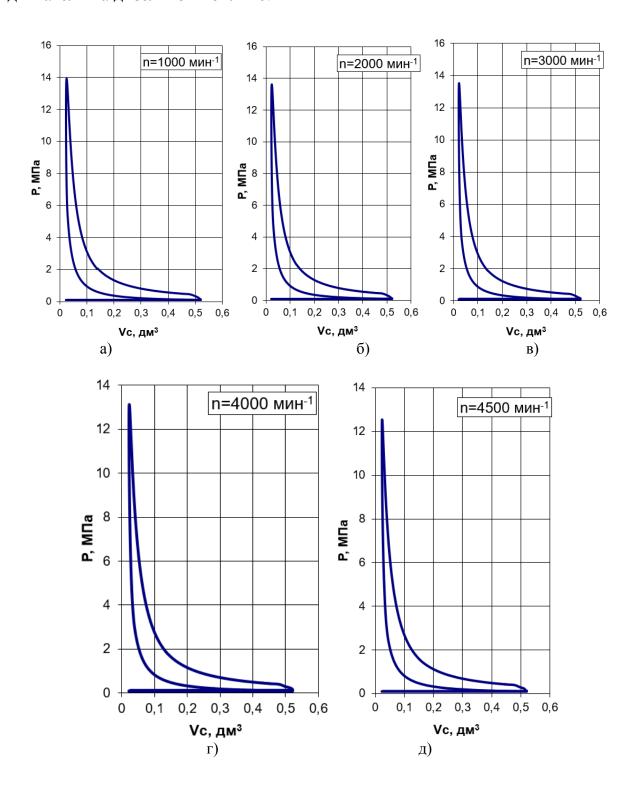


Рисунок 3 — Индикаторные диаграммы в P-V координатах двигателя на дизельном топливе: (a) 1000; (б) 2000; (в) 3000; (г) 4000 и (д) 4500 мин⁻¹.

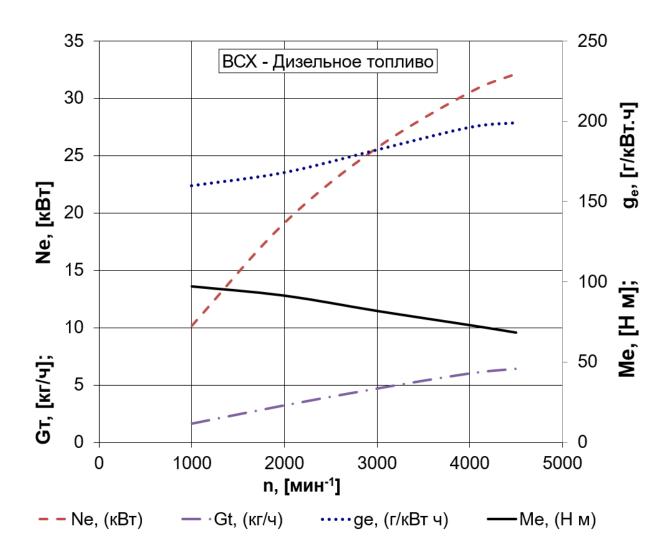


Рисунок 4 — Внешняя скоростная характеристика двигателя на дизельном топливе

Для удобства расчетов теплового баланса двигателя на дизельном топливе представим данные в виде графика на рисунке 5.

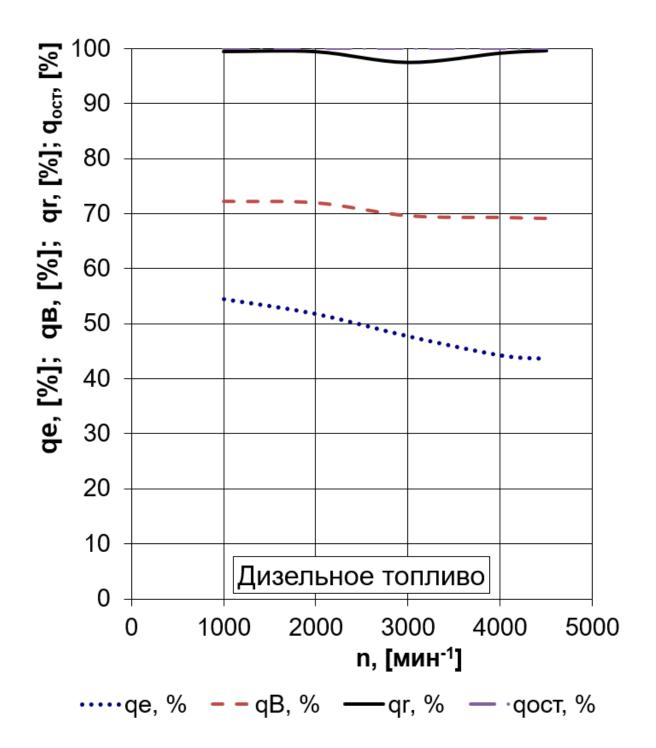


Рисунок 5 – Диаграмма внешнего теплового баланса двигателя на дизельном топливе

2.2 Тепловой расчет двухцилиндрового дизельного двигателя на метаноле

Для удобства анализа регулировочных характеристик двухцилиндрового дизельного двигателя на метаноле представим данные в

виде таблицы 6. Для удобства анализа термохимических характеристик топлива метаноле представим их в виде таблицы 7.

Таблица 6 – Регулировочные характеристики двухцилиндрового двигателя на метаноле

Название параметра, размерность	Условное обозначение	Значение характеристики				
Частота вращения, мин ⁻¹	n	1000	2000	3000	4000	4500
Угол опережения впрыска топлива, ° ПКВ	Θ	10	12	15	18	20
Температура подогрева заряда в цилиндре ДВС, °С	ΔΤΝ	1,3736	1,3736	1,5262	1,5262	1,5262
Действительная политропа сжатия	$n_{\scriptscriptstyle m J}$	1,3603	1,3604	1,3605	1,3606	1,3605
Предполагаемая температура остаточных газов, К	T_{r}	785	785	795	810	835
Продолжительность горения, ^о ПКВ	фг	48	55	60	65	70
Показатель характера сгорания	m	1	1	1	1	1
Коэффициент использования теплоты	δί	0,86	0,86	0,86	0,86	0,86
Коэффициент эффективности сгорания топлива	ξ	0,86	0,86	0,86	0,86	0,86

Таблица 7 – Термохимические характеристики топлива – метанол

Название характеристики, размерность	Условное обозначение	Значение характеристики
Массовое содержание Н	Н	0,126
Массовое содержание С	С	0,375
Массовое содержание О	O	0,499
Массовое содержание S	S	0
Массовое содержание N	N	0
Молекулярная масса топлива,	m _{т,} кг/моль	32,042
Низшая теплота сгорания, МДж/кг	$H_{\rm u}$	20235,947
Теоретически необходимое количество воздуха для сгорания 1 кг	Lo, кмоль воздуха/кг топлива	0,226
топлива	Lo, кг воздуха/кг топлива	6,552
	Мс СО, кмоль СО/кг топлива	0,0312
Количество компонента продуктов сгорания	$ m MH_2O$, кмоль $ m H_2O/кг$ топлива	0,0629
•	MN_2 , кмоль N_2 /кг топлива	0,2737
	MO_2 , кмоль O_2 /кг топлива	0
Общее количество продуктов сгорания топлива,	M_2 кмоль пр. сг./кг топлива	0,3926
Коэффициент изменения гор. смеси	μ_0	1,0421

Для удобства расчетов цикла двухцилиндрового дизельного двигателя на метаноле представим данные в виде таблицы 8.

Таблица 8 – Расчет цикла дизельного двигателя на метаноле

11	Условное	Условное Значание успандарист						
Название параметра	обозначение	Значение характеристики						
Частота вращения	n, мин ⁻¹	1000	2000	3000	4000	4500		
Давление остаточных газов	Pr, MΠa	0,1042	0,1064	0,1099	0,1150	0,1180		
Температура подогрева	ΔT_{N} , K	9,0698	7,9070	6,7442	5,5814	5,0000		
Средняя скорость движения заряда	$\omega_{_{B\Pi}},_{M}/c$	25,6510	51,3020	76,9530	102,6041	115,4296		
Давление в конце впуска	Ра, МПа	0,0992	0,0969	0,0930	0,0875	0,0158		
Коэффициент остаточных газов	$\gamma_{\rm r}$	0,0197	0,0201	0,0204	0,0218	0,0229		
Коэффициент наполнения	η_V	0,8599	0,8605	0,8636	0,8289	0,7872		
Температура в конце впуска	Ta, K	311,5368	310,5781	309,7976	309,6500	310,1587		
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	0,8944	0,9133	0,9501	1,0091	1,0506		
Давление в конце сжатия	Р _с , МПа	7,4816	7,3075	7,0147	0,0218	6,3502		
Температура в конце сжатия	T _c , K	978,8212	976,1705	974,0111	973,6025	975,0104		
Политропа расширения	n_2	1,2154	1,2167	1,2196	1,2201	1,2207		
Удельный объем рабочего тела в момент воспламенения	Vy, м ³ /кг	0,0459	0,0508	0,0602	0,0735	0,0840		
Давление рабочего тела в момент воспламенения	Ру, МПа	5,6285	4,9350	3,9653	3,0909	2,6160		
Температура рабочего тела в момент воспламенения	Ty, K	907,7566	879,7636	837,3915	796,2519	770,8590		
Общая удельная теплота сгорания топлива	q _z , кДж/кг	1706,7060	1706,0528	1550,4373	1548,2964	1546,6937		
Давление в процессе сгорания	Е2, МПа	91,5903	89,6670	78,3265	73,6490	70,6627		
Степень расширения	δ	5,7492	4,8042	4,4915	4,2096	3,8367		
Давление в конце процесса сгорания	Р _z , МПа	3,4629	2,7028	2,2382	1,9411	1,6605		
Гемпература в конце процесса сгорания	T _z , K	1809,1576	1725,3870	1594,9140	1567,5036	1531,8386		
Давление в конце процесса расширения	Рь, МПа	0,4133	0,4004	0,3583	0,3361	0,3217		
Гемпература в конце процесса расширения	T _b , K	1241,3068	1227,9943	1146,7393	1142,4312	1138,5662		
Теоретическая индикаторная работа цикла	L _т , кДж	1,1045	1,0918	0,9574	0,9454	0,9267		
Расчетное среднее индикаторное давление	РіТ, МПа	1,2886	1,2475	1,0515	0,9777	0,9203		
Индикаторный коэффициент полезного действия	ηi	0,6176	0,5975	0,5525	0,5352	0,5305		
Удельный индикаторный расход топлива	g _i , г/кВт*ч	288,0303	297,7512	321,9940	332,4062	335,3349		
Давление механических потерь	P _м , МПа	0,0664	0,0988	0,1312	0,1636	0,1798		
Средняя скорость поршня	С _п , м/с	2,8667	5,7333	8,6000	11,4667	12,9000		
Среднее эффективное давление	Ре, МПа	1,2222	1,1487	0,9203	0,8141	0,7406		
Механический КПД	ηм	0,9485	0,9208	0,8752	0,8327	0,8047		
Эффективный КПД	ηе	0,5858	0,5502	0,4836	0,4456	0,4269		
Удельный эффективный расход топлива	g _e , г/кВт*ч	303,6771	323,3582	367,8921	399,1966	416,7367		
Эффективная мощность	N _e , кВт	10,1758	19,1275	22,9867	27,1120	27,7465		
Часовой расход топлива	$G_{\scriptscriptstyle m T}$, кг/ч	3,0902	6,1850	8,4566	10,8230	11,5630		
Крутящий момент	Ме, Н*м	97,1722	91,3269	73,1689	64,7252	58,8799		

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 6) и внешнюю скоростную характеристику (рисунок 7) для двухцилиндрового дизельного двигателя на метаноле.

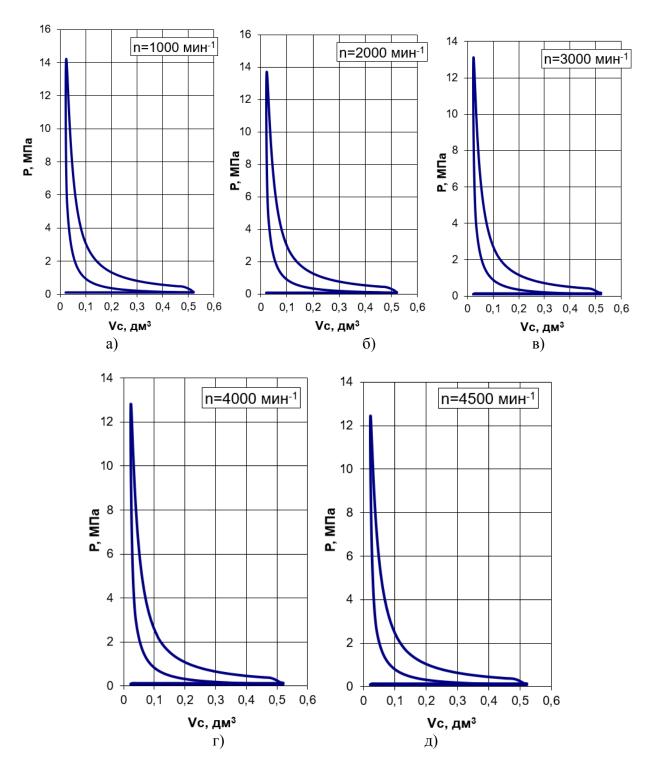


Рисунок 5 — Индикаторные диаграммы в P-V координатах, для двухцилиндрового дизельного двигателя на метаноле: (а) 1000; (б) 2000; (в) 3000; (г) 4000 и (д) 4500 мин⁻¹.

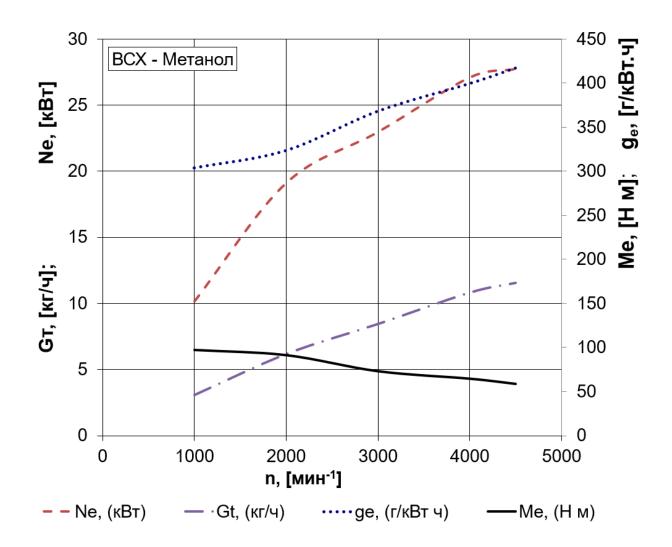


Рисунок 7 — Внешняя скоростная характеристика двухцилиндрового дизельного двигателя на метаноле

Для удобства расчетов теплового баланса двухцилиндрового дизельного двигателя на метаноле представим данные в виде графика (рисунок 8).

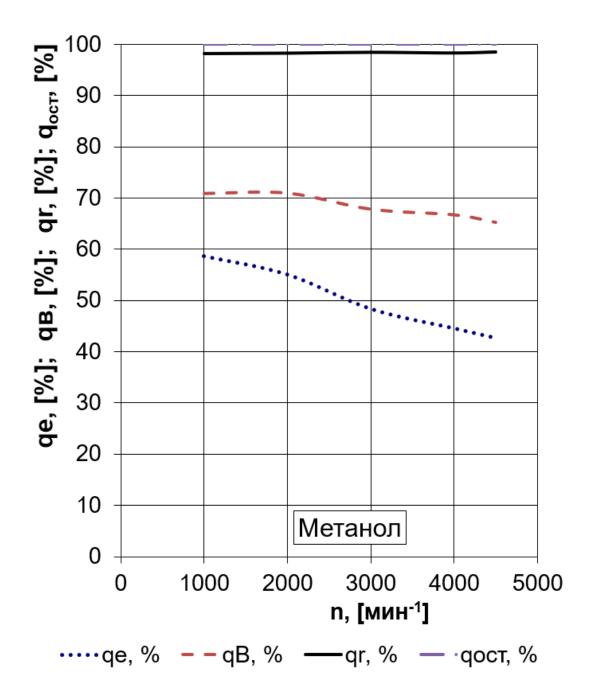


Рисунок 8 — Диаграмма внешнего теплового баланса двухцилиндрового дизельного двигателя на метаноле

Выводы по второму разделу

Проведенные расчеты показали некоторое снижение эффективных показателей работы двигателя при переходе с дизельного топлива на альтернативное топливо – метанол.

3 Кинематический и динамический расчет кривошипно-шатунного механизма двигателя

3.1 Кинематический расчет кривошипно-шатунного механизма двигателя

Кинематический расчет для центрального кривошипно-шатунного механизма проектируемого двигателя (радиус кривошипа 43 мм, а длина шатуна 128.6 мм) проводился по известным методикам приведенным в [1,2], при частоте вращения коленчатого вала 4500 мин⁻¹.

Результаты расчета перемещения, скорости и ускорения поршня приведены на рисунках 9, 10 и 11.

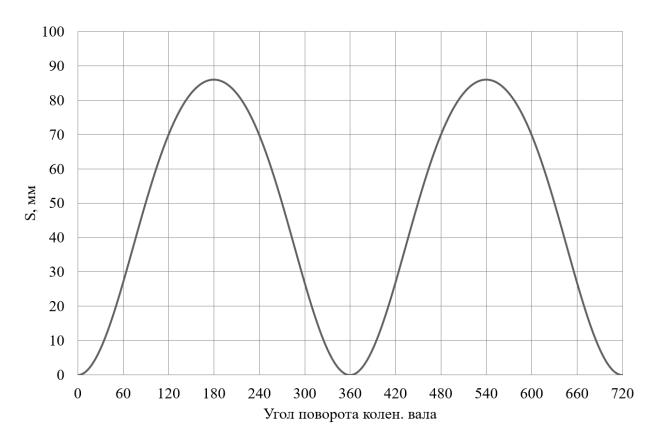


Рисунок 9 – Диаграмма изменения хода поршня

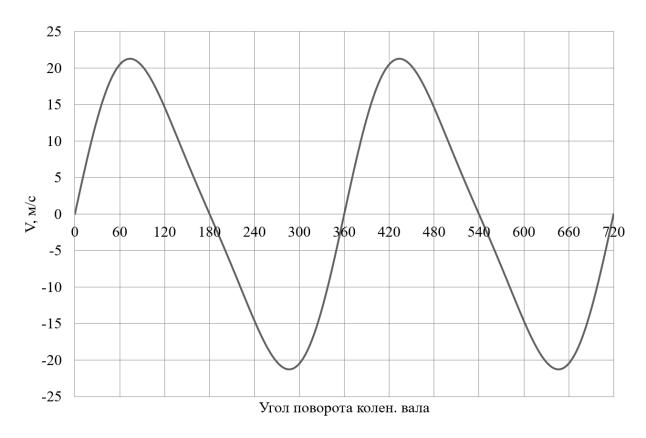


Рисунок 10 – Диаграмма изменения скорости поршня

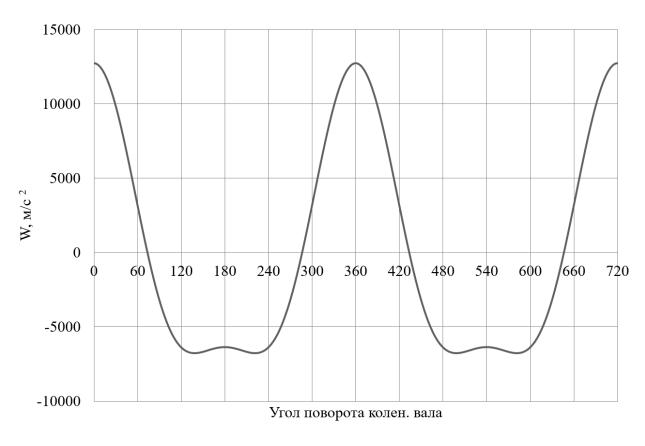


Рисунок 11 – Диаграмма изменения ускорения поршня

36

По результатам кинематического расчета мы можем определить инерционные силы в динамическом расчете.

3.2 Динамический расчет кривошипно-шатунного механизма двигателя

Динамический расчет кривошипно-шатунного механизма проектируемого двигателя проводился при частоте вращения коленчатого вала 4000 мин⁻¹, при работе на обоих рассматриваемых топливах – дизельном и метаноле, результаты приведение масс кривошипно-шатунного механизма по двух массовой схеме показаны в таблице 9.

Таблица 9 – Приведение масс кривошипно-шатунного механизма

Параметр	Величина
Площадь поршня, м ²	0,005809
Удельная масса поршня, кг/м ²	80
Масса поршневой группы, кг	0,4647
Удельная масса шатуна, кг/м ²	130
Масса шатуна, кг	0,7551446
Масса шатуна, сосредоточенная на оси поршневого	0,208
пальца, кг	
Масса шатуна, сосредоточенная на оси кривошипа, кг	0,547
Удельная масса одного колена вала, кг/м ²	140
Масса неуравновешенных частей одного колена вала,	0,8132
КГ	
Массы, совершающие возвратно-поступательное движение	0,67237
Массы, совершающие вращательное движение	1,36071
Центробежная сила инерции вращающихся масс	
шатуна, Н	-5227,8
Центробежная сила инерции вращающихся масс	
кривошипа, Н	-7765,431
Центробежная сила инерции вращающихся масс, Н	-12993,23

Результаты расчета приведены в виде графиков. На рисунке 12 приведены силы инерции возвратно-поступательного движения.

В таблице 10 приведены силы, действующие на поршневой палец и крутящий момент двухцилиндрового двигателя.

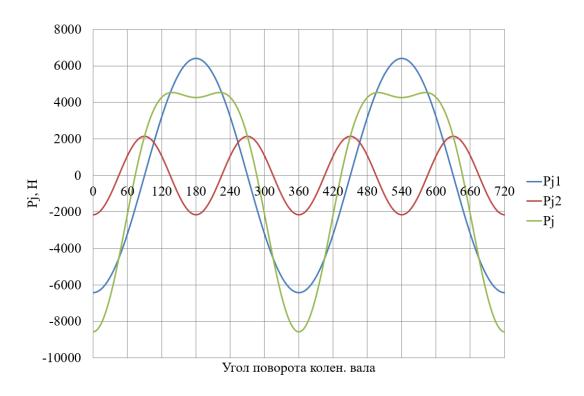


Рисунок 12 — Силы инерции возвратно-поступательного движения поршня и шатуна

Таблица 10 – Суммарные силы, действующие на поршневой палец и крутящий момент двухцилиндрового двигателя на дизельном топливе

$\phi_{\scriptscriptstyle KB}$	N, H	K, H	Z, H	T, H	Мкр.ц1	Фкв	N, H	К, Н	Z, H	T, H	Мкр.ц1
0	0	-8659,1	-8659	0	0	370	3354,4	57773	56217	13319	572,7
10	-490,4	-8446,3	-8219	-1947	-83,73	380	4046,1	35380	31644	15823	680,4
20	-894,4	-7820,9	-6995	-3498	-150,4	390	3159,2	18897	14555	12051	518,21
30	-1140	-6821,5	-5254	-4350	-187,1	400	2203,4	10252	6253,5	8123,7	349,32
40	-1185	-5511,8	-3362	-4368	-187,8	410	1609,7	6284,6	2671,7	5688,4	244,6
50	-1019	-3978,8	-1692	-3601	-154,9	420	1407,3	4859,9	1107,1	4732,1	203,48
60	-674,3	-2328,5	-530,4	-2267	-97,49	430	1474,6	4693	138,17	4690,9	201,71
70	-212,9	-677,64	-19,95	-677,3	-29,13	440	1662,9	5050	-809,6	4984,7	214,34
80	282,64	858,34	-137,6	847,23	36,431	450	1863,1	5572	-1863	5251,3	225,81
90	729,03	2180,3	-729	2054,8	88,357	460	1991,9	6049,1	-2953	5279,1	227
100	1060,2	3219,8	-1572	2809,9	120,83	470	2002,1	6372	-3950	4999,7	214,99
110	1240,6	3948,4	-2448	3098,1	133,22	480	1883,8	6505,3	-4745	4450,5	191,37
120	1268,1	4379,2	-3194	2996	128,83	490	1656,3	6466,5	-5287	3723,7	160,12
130	1168	4559,9	-3728	2625,8	112,91	500	1355,3	6306	-5589	2920,4	125,58
140	980,1	4560,1	-4042	2111,9	90,811	510	920,83	5507,8	-5163	1917,7	82,461
150	745,24	4457,6	-4179	1552	66,737	520	513,52	4490,3	-4367	1043,1	44,855
160	494,62	4325	-4207	1004,8	43,205	530	254,61	4385,1	-4355	509,44	21,906
170	245,06	4220,7	-4192	490,33	21,084	540	5E-13	4345,8	-4346	2E-12	7E-14
180	2E-13	4181,6	-4182	5E-13	2E-14	550	-254,6	4385,1	-4355	-509,4	-21,91
190	-245,3	4223,9	-4195	-490,7	-21,1	560	-513,5	4490,3	-4367	-1043	-44,86
200	-496,1	4338,4	-4220	-1008	-43,34	570	-773,1	4624,1	-4335	-1610	-69,23
210	-750,5	4488,9	-4208	-1563	-67,21	580	-1016	4728,2	-4191	-2190	-94,16
220	-992,8	4619,1	-4094	-2139	-91,98	590	-1211	4729,7	-3867	-2724	-117,1
230	-1193	4659	-3809	-2683	-115,4	600	-1318	4550,7	-3319	-3113	-133,9
240	-1313	4535,5	-3308	-3103	-133,4	610	-1295	4121,3	-2555	-3234	-139,1
250	-1315	4185,1	-2595	-3284	-141,2	620	-1118	3393,7	-1657	-2962	-127,4
260	-1176	3570	-1743	-3116	-134	630	-787,3	2354,5	-787,3	-2219	-95,42

Продолжение таблицы 10

1										
-900,4	2693	-900,4	-2538	-109,1	640	-339,9	1032,2	-165,5	-1019	-43,81
-529,7	1608,7	-257,9	-1588	-68,28	650	158,58	-504,72	-14,86	504,5	21,693
-136	432,7	12,74	-432,5	-18,6	660	624,61	-2157	-491,4	2100,3	90,312
187,41	-647,2	-147,4	630,18	27,098	670	975,65	-3809	-1619	3447,7	148,25
342,13	-1335,7	-567,8	1209	51,987	680	1148,5	-5343,7	-3260	4234,4	182,08
242,04	-1126,1	-686,9	892,37	38,372	690	1112,6	-6655	-5126	4244,2	182,5
-163,2	976,11	751,84	-622,5	-26,77	700	875,52	-7655,7	-6847	3423,9	147,23
-798,7	6983,9	6246,5	-3123	-134,3	710	480,87	-8281,9	-8059	1909,3	82,099
-1606	27662	26917	-6377	-274,2	720	1E-12	-8494,9	-8495	4E-12	2E-13
-5E-12	59207	59207	-1E-11	-6E-13	Мкр.	Мкр.ц.Суммарный Н*м				
	-900,4 -529,7 -136 187,41 342,13 242,04 -163,2 -798,7 -1606	-900,4 2693 -529,7 1608,7 -136 432,7 187,41 -647,2 342,13 -1335,7 242,04 -1126,1 -163,2 976,11 -798,7 6983,9 -1606 27662	-900,4 2693 -900,4 -529,7 1608,7 -257,9 -136 432,7 12,74 187,41 -647,2 -147,4 342,13 -1335,7 -567,8 242,04 -1126,1 -686,9 -163,2 976,11 751,84 -798,7 6983,9 6246,5 -1606 27662 26917	-900,4 2693 -900,4 -2538 -529,7 1608,7 -257,9 -1588 -136 432,7 12,74 -432,5 187,41 -647,2 -147,4 630,18 342,13 -1335,7 -567,8 1209 242,04 -1126,1 -686,9 892,37 -163,2 976,11 751,84 -622,5 -798,7 6983,9 6246,5 -3123 -1606 27662 26917 -6377	-900,4 2693 -900,4 -2538 -109,1 -529,7 1608,7 -257,9 -1588 -68,28 -136 432,7 12,74 -432,5 -18,6 187,41 -647,2 -147,4 630,18 27,098 342,13 -1335,7 -567,8 1209 51,987 242,04 -1126,1 -686,9 892,37 38,372 -163,2 976,11 751,84 -622,5 -26,77 -798,7 6983,9 6246,5 -3123 -134,3 -1606 27662 26917 -6377 -274,2	-900,4 2693 -900,4 -2538 -109,1 640 -529,7 1608,7 -257,9 -1588 -68,28 650 -136 432,7 12,74 -432,5 -18,6 660 187,41 -647,2 -147,4 630,18 27,098 670 342,13 -1335,7 -567,8 1209 51,987 680 242,04 -1126,1 -686,9 892,37 38,372 690 -163,2 976,11 751,84 -622,5 -26,77 700 -798,7 6983,9 6246,5 -3123 -134,3 710 -1606 27662 26917 -6377 -274,2 720	-900,4 2693 -900,4 -2538 -109,1 640 -339,9 -529,7 1608,7 -257,9 -1588 -68,28 650 158,58 -136 432,7 12,74 -432,5 -18,6 660 624,61 187,41 -647,2 -147,4 630,18 27,098 670 975,65 342,13 -1335,7 -567,8 1209 51,987 680 1148,5 242,04 -1126,1 -686,9 892,37 38,372 690 1112,6 -163,2 976,11 751,84 -622,5 -26,77 700 875,52 -798,7 6983,9 6246,5 -3123 -134,3 710 480,87 -1606 27662 26917 -6377 -274,2 720 1E-12	-900,4 2693 -900,4 -2538 -109,1 640 -339,9 1032,2 -529,7 1608,7 -257,9 -1588 -68,28 650 158,58 -504,72 -136 432,7 12,74 -432,5 -18,6 660 624,61 -2157 187,41 -647,2 -147,4 630,18 27,098 670 975,65 -3809 342,13 -1335,7 -567,8 1209 51,987 680 1148,5 -5343,7 242,04 -1126,1 -686,9 892,37 38,372 690 1112,6 -6655 -163,2 976,11 751,84 -622,5 -26,77 700 875,52 -7655,7 -798,7 6983,9 6246,5 -3123 -134,3 710 480,87 -8281,9 -1606 27662 26917 -6377 -274,2 720 1E-12 -8494,9	-900,4 2693 -900,4 -2538 -109,1 640 -339,9 1032,2 -165,5 -529,7 1608,7 -257,9 -1588 -68,28 650 158,58 -504,72 -14,86 -136 432,7 12,74 -432,5 -18,6 660 624,61 -2157 -491,4 187,41 -647,2 -147,4 630,18 27,098 670 975,65 -3809 -1619 342,13 -1335,7 -567,8 1209 51,987 680 1148,5 -5343,7 -3260 242,04 -1126,1 -686,9 892,37 38,372 690 1112,6 -6655 -5126 -163,2 976,11 751,84 -622,5 -26,77 700 875,52 -7655,7 -6847 -798,7 6983,9 6246,5 -3123 -134,3 710 480,87 -8281,9 -8059 -1606 27662 26917 -6377 -274,2 720 1E-12 -8494,9	-900,4 2693 -900,4 -2538 -109,1 640 -339,9 1032,2 -165,5 -1019 -529,7 1608,7 -257,9 -1588 -68,28 650 158,58 -504,72 -14,86 504,5 -136 432,7 12,74 -432,5 -18,6 660 624,61 -2157 -491,4 2100,3 187,41 -647,2 -147,4 630,18 27,098 670 975,65 -3809 -1619 3447,7 342,13 -1335,7 -567,8 1209 51,987 680 1148,5 -5343,7 -3260 4234,4 242,04 -1126,1 -686,9 892,37 38,372 690 1112,6 -6655 -5126 4244,2 -163,2 976,11 751,84 -622,5 -26,77 700 875,52 -7655,7 -6847 3423,9 -798,7 6983,9 6246,5 -3123 -134,3 710 480,87 -8281,9 -8059 1909,3

В таблице 11 приведены силы, действующие на поршневой палец и крутящий момент двигателя на метаноле.

Таблица 11 — Суммарные силы, действующие на поршневой палец и крутящий момент двухцилиндрового двигателя на метаноле

$\phi_{\scriptscriptstyle KB}$	N, H	K, H	Z, H	T, H	Мкр.ц1	$\phi_{\scriptscriptstyle KB}$	N, H	К, Н	Z, H	T, H	Мкр.ц1
0	0	-8659,1	-8659	0	0	370	3281,6	56519	54996	13030	560,27
10	-490,4	-8446,3	-8219	-1947	-83,73	380	3843,5	33608	30060	15031	646,34
20	-894,4	-7820,9	-6995	-3498	-150,4	390	2904,2	17371	13380	11079	476,38
30	-1140	-6821,5	-5254	-4350	-187,1	400	1963,6	9135,9	5572,8	7239,4	311,29
40	-1185	-5511,8	-3362	-4368	-187,8	410	1407,1	5493,6	2335,5	4972,4	213,82
50	-1019	-3978,8	-1692	-3601	-154,9	420	1267,4	4376,9	997,06	4261,8	183,26
60	-674,3	-2328,5	-530,4	-2267	-97,49	430	1360,2	4329	127,46	4327,1	186,07
70	-212,9	-677,64	-19,95	-677,3	-29,13	440	1568,2	4762,3	-763,5	4700,7	202,13
80	282,64	858,34	-137,6	847,23	36,431	450	1784	5335,4	-1784	5028,3	216,22
90	729,03	2180,3	-729	2054,8	88,357	460	1925,8	5848,3	-2855	5103,8	219,46
100	1060,2	3219,8	-1572	2809,9	120,83	470	1947,1	6196,9	-3842	4862,3	209,08
110	1240,6	3948,4	-2448	3098,1	133,22	480	1838,5	6349	-4631	4343,6	186,77
120	1268,1	4379,2	-3194	2996	128,83	490	1619,9	6324,1	-5170	3641,7	156,59
130	1168	4559,9	-3728	2625,8	112,91	500	1326,9	6173,8	-5472	2859,2	122,95
140	980,1	4560,1	-4042	2111,9	90,811	510	899,87	5382,5	-5046	1874,1	80,584
150	745,24	4457,6	-4179	1552	66,737	520	526,03	4599,7	-4474	1068,6	45,949
160	494,62	4325	-4207	1004,8	43,205	530	260,93	4494	-4464	522,08	22,45
170	245,06	4220,7	-4192	490,33	21,084	540	5E-13	4454,4	-4454	2E-12	7E-14
180	2E-13	4181,6	-4182	5E-13	2E-14	550	-260,9	4493,9	-4464	-522,1	-22,45
190	-245,3	4223,9	-4195	-490,7	-21,1	560	-526	4599,7	-4474	-1069	-45,95
200	-496,1	4338,4	-4220	-1008	-43,34	570	-791,5	4734,3	-4438	-1648	-70,88
210	-750,5	4488,9	-4208	-1563	-67,21	580	-1040	4839,4	-4289	-2241	-96,37
220	-992,8	4619,1	-4094	-2139	-91,98	590	-1240	4842,1	-3959	-2788	-119,9
230	-1193	4659	-3809	-2683	-115,4	600	-1351	4664,2	-3402	-3191	-137,2
240	-1313	4535,5	-3308	-3103	-133,4	610	-1331	4235,8	-2626	-3324	-142,9
250	-1315	4185,1	-2595	-3284	-141,2	620	-1155	3508,7	-1713	-3062	-131,7
260	-1176	3570	-1743	-3116	-134	630	-825,8	2469,8	-825,8	-2328	-100,1
270	-900,4	2693	-900,4	-2538	-109,1	640	-377,8	1147,3	-183,9	-1132	-48,69
280	-529,7	1608,7	-257,9	-1588	-68,28	650	122,63	-390,28	-11,49	390,11	16,775
290	-136	432,7	12,74	-432,5	-18,6	660	591,74	-2043,5	-465,5	1989,8	85,56
300	187,41	-647,2	-147,4	630,18	27,098	670	946,86	-3696,6	-1572	3345,9	143,87
310	342,13	-1335,7	-567,8	1209	51,987	680	1124,6	-5232,5	-3192	4146,3	178,29
320	242,04	-1126,1	-686,9	892,37	38,372	690	1094,2	-6544,8	-5041	4174	179,48
330	-163,2	976,11	751,84	-622,5	-26,77	700	863,01	-7546,3	-6750	3375	145,13
340	-798,6	6983,1	6245,8	-3123	-134,3	710	474,55	-8173,1	-7953	1884,2	81,02
350	-1618	27859	27109	-6423	-276,2	720	1E-12	-8659,1	-8659	4E-12	2E-13
360	-5E-12	59158	59158	-1E-11	-6E-13	Мкр.і	ц.Суммар	ный Н*м			79,26

В таблице 12 приведены силы, действующие на шатунную и коренные шейки коленчатого вала двухцилиндрового двигателя на дизельном топливе.

Таблица 12 – Силы, действующие на шатунную и коренные шейки коленчатого двухцилиндрового двигателя на дизельном топливе

$\phi_{\scriptscriptstyle KB}$	Rш.ш., H	Rк.ш1(3), H	Rк.ш2, Н	$\phi_{\scriptscriptstyle KB}$	Rш.ш., Н	Rк.ш1(3) , H	Rк.ш2, Н
0	13886,88	10826,154	17257	370	52699,49	22614,372	17276
10	13586,86	10650,612	17276	380	30792,65	12229,303	17317
20	12713,6	10146,067	17317	390	15239,2	6076,0702	17337
30	11348,99	9379,4553	17337	400	8188,232	5277,7429	17272
40	9636,565	8464,2568	17272	410	6236,271	5892,5957	17047
50	7800,432	7559,9517	17047	420	6274,805	6396,7439	16600
60	6188,526	6856,2034	16600	430	6921,646	6842,1009	15905
70	5291,284	6515,3986	15905	440	7829,312	7337,6887	15004
80	5431,891	6579,0727	15004	450	8823,675	7878,5653	14040
90	6301,275	6937,6266	14040	460	9736,639	8398,9056	13269
100	7357,578	7416,9351	13269	470	10451,6	8832,9292	12994
110	8277,291	7874,4008	12994	480	10920,51	9143,8622	13382
120	8938,836	8231,0793	13382	490	11154,45	9327,6978	14278
130	9332,756	8463,0511	14278	500	11204,09	9405,1493	15184
140	9506,928	8582,6172	15184	510	10566,49	9128,7194	15288
150	9533,639	8620,9427	15288	520	9651,785	8695,9952	13294
160	9487,869	8614,6352	13294	530	9596,745	8678,0614	4206
170	9432,636	8596,1534	4206	540	9573,582	8669,5062	12363
180	9409,414	8587,4224	12363	550	9596,745	8678,0614	12388
190	9435,886	8597,7756	12388	560	9651,785	8695,9952	6199
200	9501,115	8621,2098	6199	570	9697,139	8701,3088	9189
210	9564,38	8636,0527	9189	580	9669,577	8661,3818	11699
220	9563,962	8610,2356	11699	590	9493,669	8539,3034	12547
230	9426,686	8507,56	12547	600	9096,284	8303,3894	12765
240	9082,251	8296,944	12765	610	8427,924	7940,4994	13089
250	8483,637	7964,9507	13089	620	7494,756	7473,2778	13779
260	7635,408	7531,0148	13779	630	6411,317	6979,0074	14749
270	6632,996	7061,7894	14749	640	5488,677	6599,0502	15783
280	5710,919	6672,9759	15783	650	5266,877	6508,9344	16691
290	5232,964	6493,8467	16691	660	6092,619	6823,5884	17366
300	5412,046	6577,8817	17366	670	7666,108	7506,8735	17786
310	5920,401	6807,4297	17786	680	9485,069	8397,6966	17985
320	5981,671	6854,6187	17985	690	11189,93	9304,8355	17749
330	4519,041	6128,6039	17749	700	12551,21	10066,929	17311
340	3285,428	3717,3342	17311	710	13423,07	10569,213	17274
350	22607,61	7657,4952	17274	720	13722,71	10744,07	17257
360	53979	23106,785	17257				

В таблице 13 приведены силы, действующие на шатунную и коренные шейки коленчатого вала двухцилиндрового двигателя на метаноле.

Таблица 13 – Силы, действующие на шатунную и коренные шейки коленчатого двухцилиндрового двигателя на метаноле

Фкв	Rш.ш., Н	Rк.ш1(3), H	Rк.ш2, H	$\phi_{\scriptscriptstyle KB}$	Rш.ш., Н	Rк.ш1(3) , H	Rк.ш2, H
0	13886,88	10826,154	2102,33	370	51446,01	21988,88	30358,1
10	13586,86	10650,612	2008,31	380	29026,97	11371,051	18923,1
20	12713,6	10146,067	1750,62	390	13754,86	5542,6628	10830
30	11348,99	9379,4553	1411,32	400	7247,565	5183,4231	6734,25
40	9636,565	8464,2568	1159,84	410	5752,451	5880,3238	4908,13
50	7800,432	7559,9517	1204,29	420	6005,196	6365,3606	4265,34
60	6188,526	6856,2034	1508,18	430	6688,605	6786,9741	4041,49
70	5291,284	6515,3986	1857	440	7615,236	7268,8345	3938,67
80	5431,891	6579,0727	2107,42	450	8628,404	7804,6554	3808,85
90	6301,275	6937,6266	2191,75	460	9559,657	8325,0864	3589,08
100	7357,578	7416,9351	2089,8	470	10290,72	8761,5484	3274,6
110	8277,291	7874,4008	1821,32	480	10772,93	9075,6311	2910,7
120	8938,836	8231,0793	1454,06	490	11017,39	9262,5149	2602,92
130	9332,756	8463,0511	1136,75	500	11075,07	9342,5591	2586,69
140	9506,928	8582,6172	1102,39	510	10443,04	9068,0129	3156,12
150	9533,639	8620,9427	1380,07	520	9760,364	8749,8896	5755,05
160	9487,869	8614,6352	1738,11	530	9705,376	8732,2799	16163,6
170	9432,636	8596,1534	2005,4	540	9682,222	8723,8262	31806
180	9409,414	8587,4224	2238,73	550	9705,353	8732,2683	30492,4
190	9435,886	8597,7756	2139,5	560	9760,283	8749,8493	19051,1
200	9501,115	8621,2098	1864,35	570	9805,393	8754,5218	10948,3
210	9564,38	8636,0527	1488,69	580	9777,313	8713,5594	6839,94
220	9563,962	8610,2356	1172,75	590	9600,325	8589,8537	4996,14
230	9426,686	8507,56	1154,08	600	9200,753	8351,3815	4327,1
240	9082,251	8296,944	1450,25	610	8528,073	7984,4549	4065,53
250	8483,637	7964,9507	1831,79	620	7586,362	7510,8841	3910,3
260	7635,408	7531,0148	2137,82	630	6485,685	7006,8525	3709,04
270	6632,996	7061,7894	2297,99	640	5528,943	6612,8657	3392,16
280	5710,919	6672,9759	2295	650	5253,793	6505,285	2944,12
290	5232,964	6493,8467	2151,72	660	6030,995	6802,5135	2392,12
300	5412,046	6577,8817	1928,64	670	7578	7472,0717	1805,47
310	5920,401	6807,4297	1731,59	680	9385,125	8353,8229	1309,13
320	5981,671	6854,6187	1784,72	690	11084,8	9255,5359	1149,96
330	4519,041	6128,6039	2694,37	700	12443,78	10014,59	1620,06
340	3284,861	3717,5861	5619,05	710	13314,69	10515,353	1872,9
350	22804,2	7754,0529	16027,6	720	13886,88	10826,154	2102,33
360	53929,8	23082,185	31669,6				

На рисунке 13 приведено сравнение суммарной силы, действующую на шатунную шейку в полярных координатах. А на рисунке 14 приведено сравнение суммарных сил, действующих на 1-ю коренную шейку в полярных координатах.

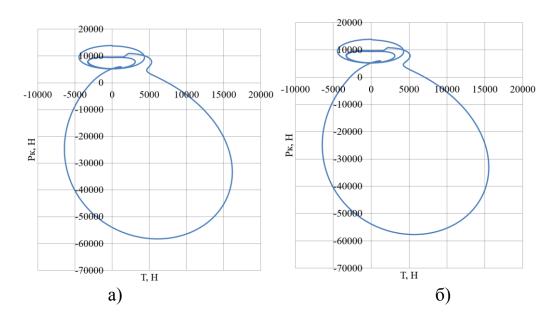


Рисунок 13 – Суммарная сила, действующая на шатунную шейку в полярных координатах: (a) на дизельном топливе; (б) на метаноле

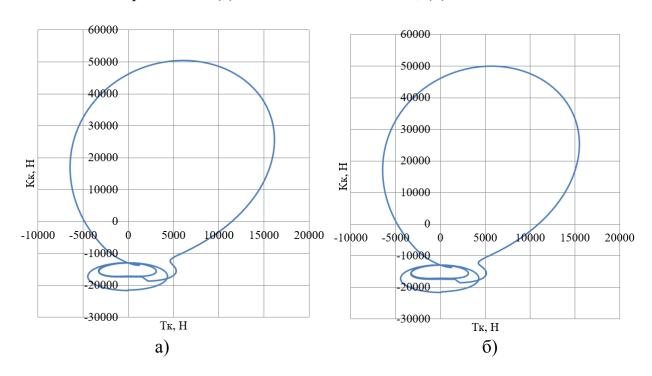


Рисунок 14 — Суммарные силы, действующие на 1-ю коренную шейку в полярных координатах: (а) на дизельном топливе; (б) на метаноле

Выводы по 3-му разделу

Переход на альтернативное топливо — метанол позволяет незначительно снизить нагрузки на кривошипно-шатунный механизм.

4 Анализ токсичности отработавших газов при работе двухцилиндрового двигателя на дизельном топливе и на метаноле

Анализ токсичности отработавших газов при работе двухцилиндрового двигателя на дизельном топливе и на метаноле проводился по модели, представленной на рисунке 15, выполненной с использованием ведущего на рынке программного обеспечения для моделирования двигателей WAVE Ricardo 17.1. Реализована прогнозирующая модель горения, использующая квазиразмерный процесс распространения пламени. Трехмерная модель формы камеры сгорания используется для расчета площади распространения пламени. Особое внимание при проверке модели уделялось давлению в цилиндре во время газообмена и сгорания для оценки производительности впускной и выпускной систем, а также прогнозирующей модели сгорания.

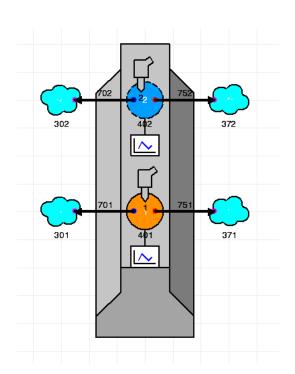


Рисунок 15 — Структура модели виртуального двухцилиндрового двигателя на дизельном топливе и на метаноле

Таже проведен расчет скоростных характеристики двигателя при работе на дизельном топливе и на метаноле, представлены в таблицах 14 и 15.

Таблица 14 – Скоростные характеристики двухцилиндрового двигателя при работе на дизельном топливе

Скорость двигателя	rpm	4499	3999	2999	2000	999
Воздухо топливное соотношение А/F	•	20.0225	19.9959	19.9575	18.982	17.9942
Массовый расход воздуха	kg/hr	109.827	114.652	75.9007	23.345	8.71644
Обратный поток (закрытие)	%	9.09941	14.1908	11.0684	13.5893	17.6322
Обратный поток (перекрытие)	%	2.22054e-05	5.76822e-05	3.37372e-05	0.000123139	3.72807e-05
Начало горения	deg	-7.01484	-3.75123	-0.199166	-15.631	-19.0785
Максимальная скорость повышения давления	bar/deg	7.44974	6.3503	3.54477	2.44468	4.70207
Массовый расход топлива	kg/hr	5.47673	5.72008	3.77779	1.22235	0.483807
GMEP	bar	24.5518	28.2828	24.5098	11.5413	8.23906
Скорость теплопередачи	W	6569.06	6493.94	5017.52	2569.65	1843.21
IMEP	bar	24.142	28.0438	24.7889	11.6586	8.24581
Перекрытие клапана	deg	51.25	51.25	51.25	51.25	51.25
Максимальное давление	bar	179.669	175.787	143.388	73.4345	72.062
PMEP	bar	-0.472703	-0.308421	0.254802	0.112428	0.00674409
Объемный коэффициент наполнения	-	0.904094	0.874829	0.869638	0.855534	0.792957
Объемный коэффициент наполнения (только воздух)	-	0.904094	0.874828	0.869638	0.855535	0.792957
Остаточная газовая фракция	%	1.91224	1.79381	1.36088	1.86044	4.09142
Продолжительность от 0% до 10% сжигания массы топлива	deg	4.85879	6.21797	5.58864	21.3634	19.5753
Продолжительность между от 0% до 2% сжигания массы топлива	deg	1.55071	2.37876	2.03489	15.5032	4.46697
Продолжительность между от 0% до 5% сжигания массы топлива	deg	2.95653	3.7346	3.56067	19.0734	7.79759
Продолжительность от 0% до 90% сжигания массы топлива	deg	40.8194	40.2216	36.4896	48.2336	42.7854
Время сжигания 1% массы топлива	deg	-6.06207	-1.89726	1.16982	-13.0538	-15.9699
Продолжительность сжигания от 10% до 90% массы топлива	deg	35.9607	34.0037	30.9009	26.8702	23.2101
Время сжигания 10% массы топлива	deg	-2.15605	2.46674	5.38948	5.73237	0.496868
Время сжигания 50% массы топлива	deg	10.8128	15.6015	16.803	14.5963	7.84686
Время сжигания 90% массы топлива	deg	33.8046	36.4704	36.2904	32.6026	23.707
Время сжигания 99% массы топлива	deg	58.8397	53.5484	55.2224	52.5272	45.5533
Время максимального давления	deg	8.10772	12.4087	15.4909	16.0282	9.98014
Объемный КПД	-	2.10964	2.4776	2.18693	1.00896	0.753443

Таблица 15 – Скоростные характеристики двухцилиндрового двигателя при работе на метаноле

Скорость двигателя	rpm	4499	3999	2999	2000	999
Воздухо топливное соотношение А/F	_	10.0112	9.9966	9.94841	8.98975	8.99725
Массовый расход воздуха	kg/hr	114.106	119.316	79.6934	25.4495	8.87407
Обратный поток (закрытие)	%	9.0049	13.9304	10.9664	13.6154	17.4581
Обратный поток (перекрытие)	%	0.000162596	0.000319141	0.000135527	1.43362e-05	0.000134008
Начало горения	deg	-7.01484	-3.75123	-0.199166	-15.631	-19.0785
Максимальная скорость повышения давления	bar/deg	7.17568	5.94367	3.58876	3.02363	4.80844
Массовый расход топлива	kg/hr	11.3812	11.9163	7.95951	2.80724	0.984879
GMEP	bar	24.627	28.4014	24.9283	12.8812	8.41006
Скорость теплопередачи	W	5809.01	5804.17	4509.46	2450.12	1583.84
IMEP	bar	24.15	28.0438	25.1667	13.0561	8.42185
Перекрытие клапана	deg	51.25	51.25	51.25	51.25	51.25
Максимальное давление	bar	178.455	174.902	144.597	78.7523	70.9062
PMEP	bar	-0.54898	-0.442185	0.20814	0.170232	0.0117775
Объемный коэффициент наполнения	1	0.909558	0.877336	0.872558	0.863362	0.799954
Объемный коэффициент наполнения (только воздух)	1	0.909558	0.877335	0.872511	0.863362	0.799954
Остаточная газовая фракция	%	2.05988	2.06486	1.48782	1.64979	3.98432
Продолжительность от 0% до 10% сжигания массы топлива	deg	4.85877	6.21648	5.58905	21.364	19.5752
Продолжительность между от 0% до 2% сжигания массы топлива	deg	1.5494	2.37958	2.03347	15.5049	4.46696
Продолжительность между от 0% до 5% сжигания массы топлива	deg	2.95615	3.73401	3.56069	19.0721	7.79759
Продолжительность от 0% до 90% сжигания массы топлива	deg	40.8195	40.2223	36.4895	48.2337	42.7854
Время сжигания 1% массы топлива	deg	-6.05766	-1.90436	1.17095	-13.0532	-15.9698
Продолжительность сжигания от 10% до 90% массы топлива	deg	35.9608	34.0058	30.9004	26.8697	23.2102
Время сжигания 10% массы топлива	deg	-2.15607	2.46525	5.38989	5.73302	0.496728
Время сжигания 50% массы топлива	deg	10.8127	15.6013	16.8029	14.5963	7.84684
Время сжигания 90% массы топлива	deg	33.8047	36.471	36.2903	32.6027	23.7069
Время сжигания 99% массы топлива	deg	58.8388	53.5484	55.2231	52.5273	45.5533
Время максимального давления	deg	8.07154	13.0237	16.0901	16.3908	10.3389
Объемный КПД	-	2.19183	2.57841	2.29622	1.09992	0.767073

На рисунке 16 представлено среднее индикаторное давление при работе на дизельном топливе и на метаноле.

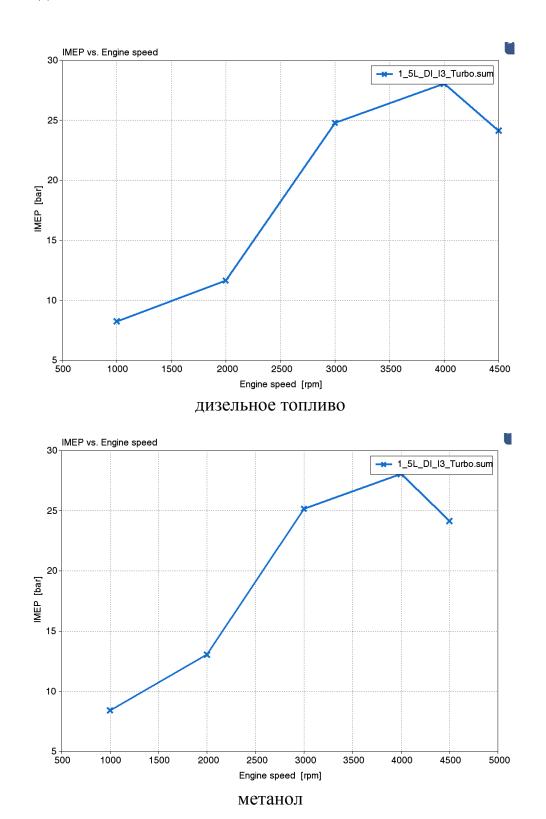
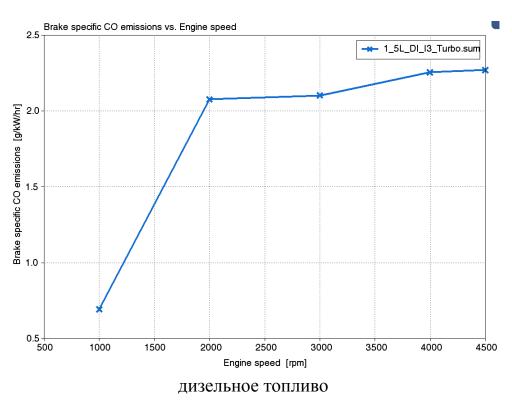



Рисунок 16 – Среднее индикаторное давление при работе на дизельном топливе и на метаноле

На рисунке 17 представлена зависимость удельных выбросов по CO в г/кВт ч от частоты вращения при работе на дизельном топливе и на метаноле.

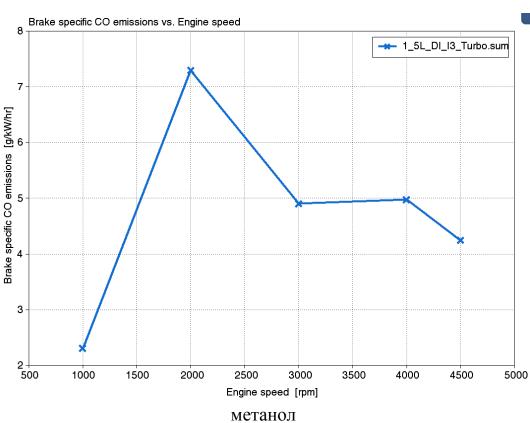


Рисунок 17 — Зависимость удельных выбросов по CO в г/кВт ч от частоты вращения при работе на дизельном топливе и на метаноле.

На рисунке 18 представлен график удельных выбросов по NO_2 в г/кВт ч и в мил $^{-1}$ (ppm) от частоты вращения при работе на дизельном топливе.

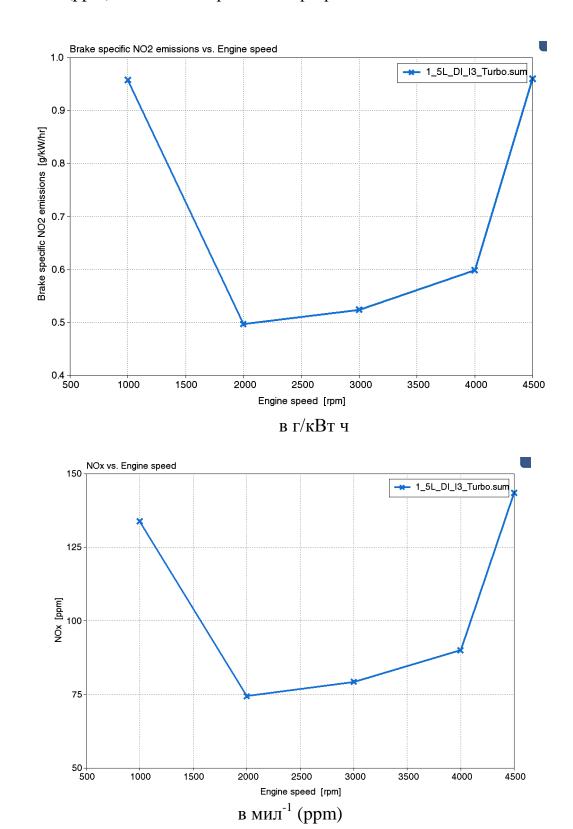
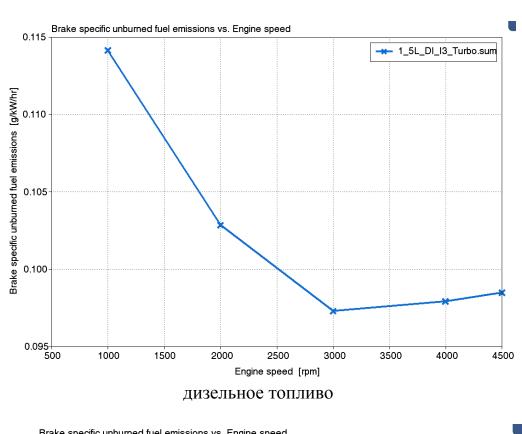



Рисунок 18 – Зависимость удельных выбросов по NO_x в г/кВт ч и в мил⁻¹ (ppm) от частоты вращения при работе на дизельном топливе.

На рисунке 19 представлена зависимость удельных выбросов по CH в г/кВт ч от частоты вращения при работе на дизельном топливе и на метаноле.

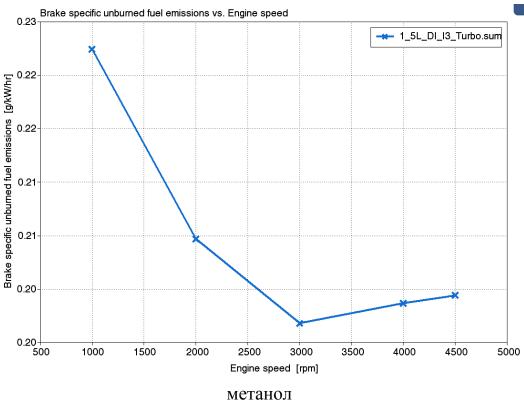


Рисунок 19 – Зависимость удельных выбросов по CH в г/кВт ч от частоты вращения при работе на дизельном топливе и на метаноле.

На рисунке 20 представлена зависимость концентрации CO в мил⁻¹ (ppm) от частоты вращения при работе на дизельном топливе и на метаноле.

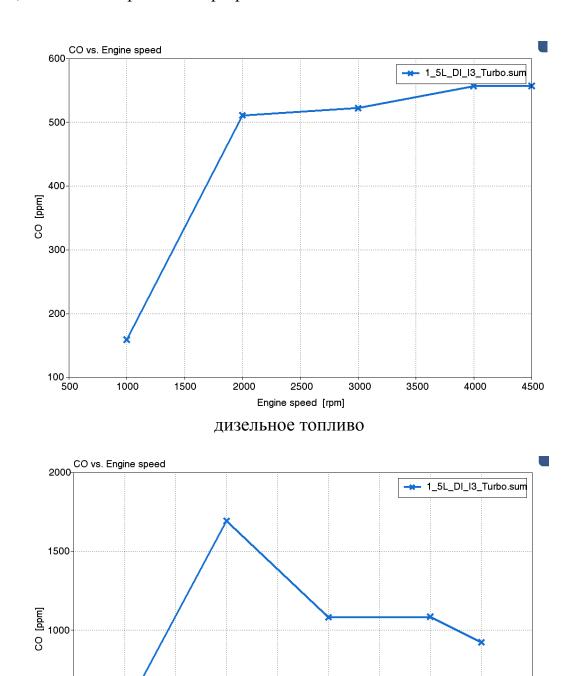


Рисунок 20 – Зависимость концентрации CO в мил⁻¹ (ppm) от частоты вращения при работе на дизельном топливе и на метаноле.

Engine speed [rpm] MCTaHOЛ

0 ↓

На рисунке 21 представлена зависимость концентрации СН в мил⁻¹ (ppm) от частоты вращения при работе на дизельном топливе и на метаноле.

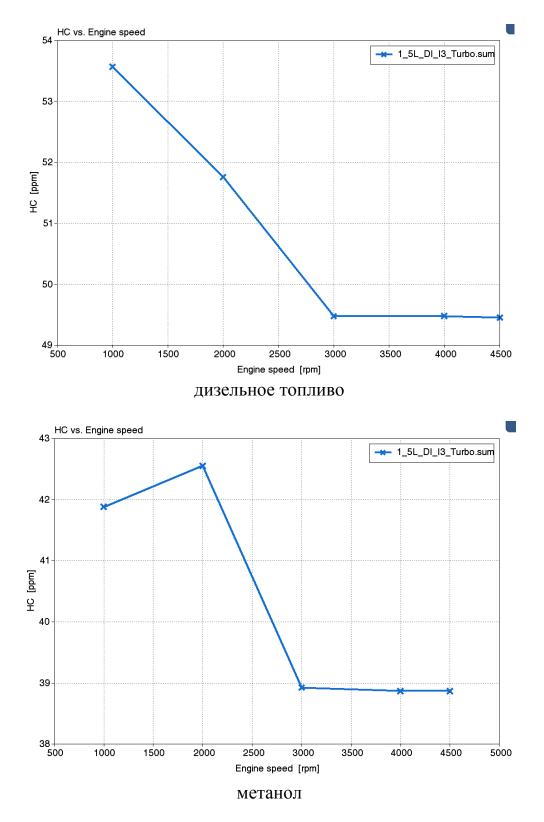


Рисунок 21 – Зависимость концентрации СН в мил⁻¹ (ppm) от частоты вращения при работе на дизельном топливе и на метаноле.

На рисунке 22 представлена эффективная мощность в кВт при работе на дизельном топливе и на метаноле.

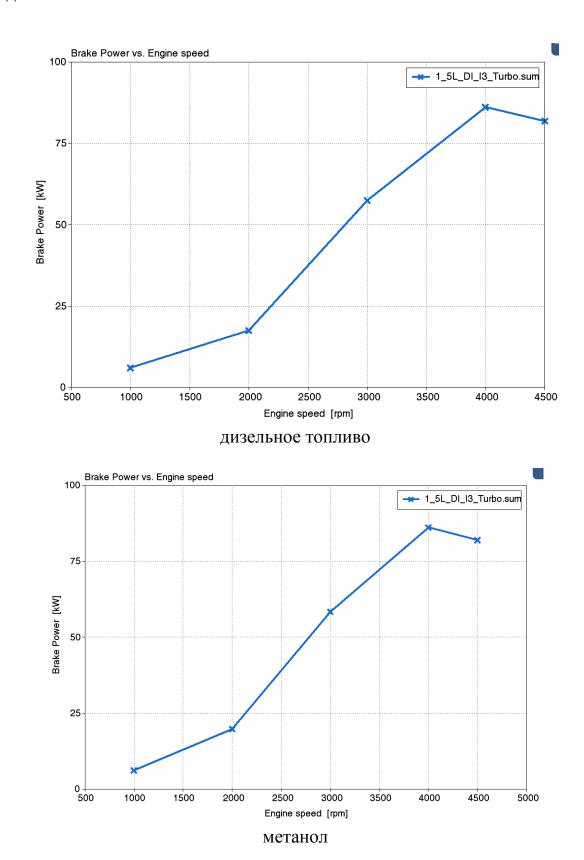


Рисунок 22 – Средняя эффективная мощность в кВт при работе на дизельном топливе и на метаноле.

На рисунке 23 представлен средний эффективный крутящий момент двигателя в (Н м) при работе на дизельном топливе и на метаноле.

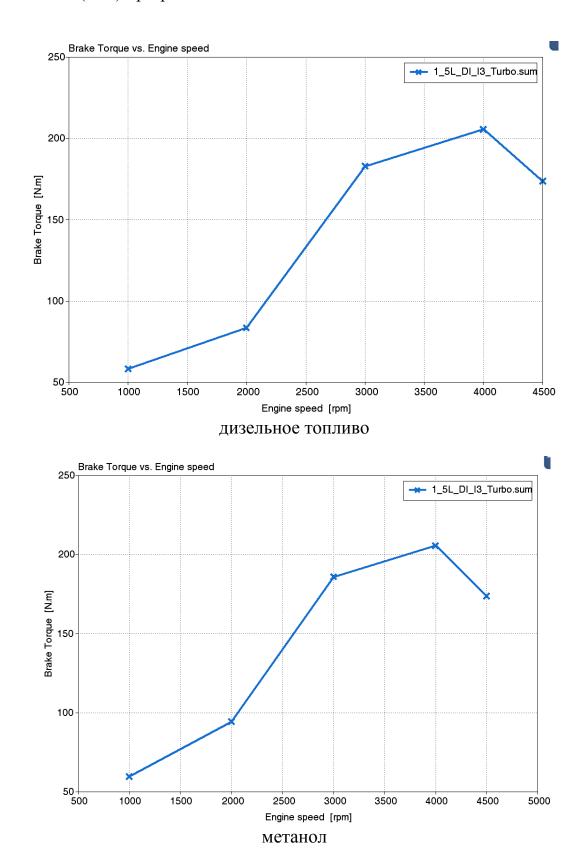


Рисунок 23 – Средний эффективный крутящий момент двигателя в (Н м) при работе на дизельном топливе и на метаноле.

На рисунке 24 представлен характеристики топливоподачи и процесса сгорания при работе на метаноле.

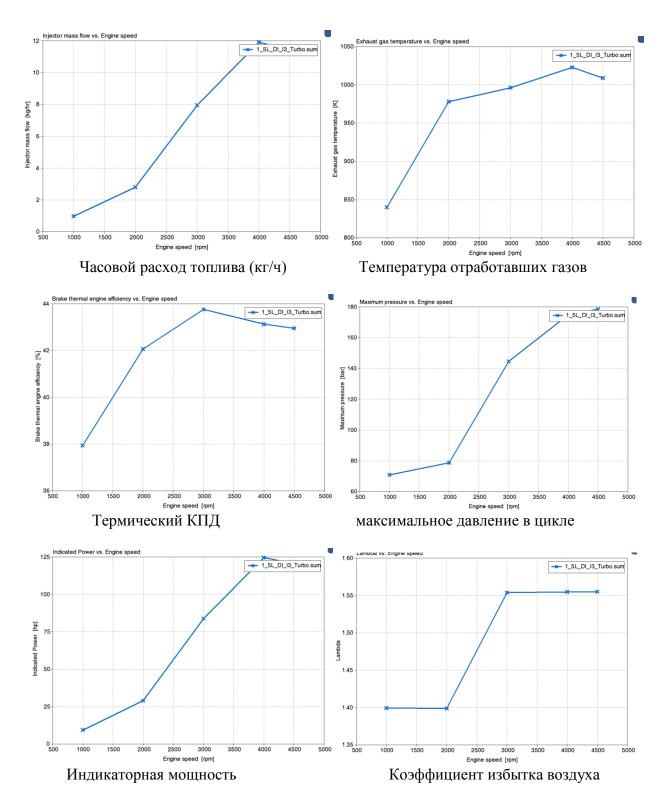


Рисунок 24 — Диаграммы характеристик топливоподачи и процесса сгорания при работе на метаноле

На рисунке 25 представлен характеристики топливоподачи и процесса сгорания при работе на дизельном топливе.

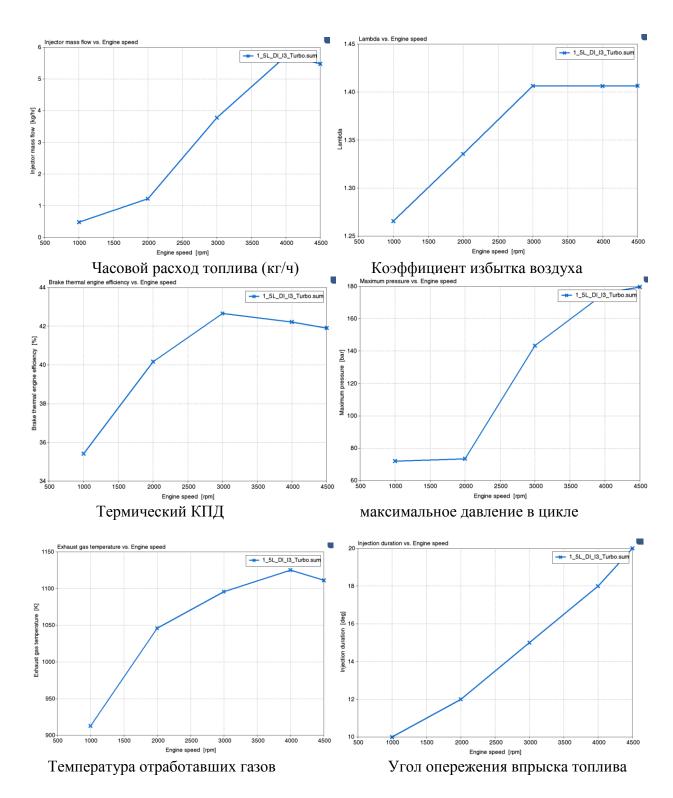


Рисунок 25 — Диаграммы характеристик топливоподачи и процесса сгорания при работе на дизельном топливе

Выводы по 4-му разделу

В ходе стационарного моделирования концепция была оптимизирована достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика Представленные двигателя. результаты наглядно показывают, что альтернативные кислородосодержащие топлива, например метанол снижают мощностные показатели на 15%. При этом токсичность отработавших газов на некоторых режимах улучшается. Из-за сложности моделирования концентрации оксидов азота, расчет их концентрации в отработавших газов для альтернативного топлива метанол показал ошибку, указано что требуется уточнение модели сгорания.

ЗАКЛЮЧЕНИЕ

В бакалаврской работе проведен анализ рабочего процесса в двухцилиндровом двигателе при работе на дизельном топливе и метаноле. Получены основные выводы по работе:

- 1. Поиск новых топлив с лучшими характеристиками по токсичности для дизельных двигателей при их доступности по цене и объемам производства является важной задачей современных исследований. К таким топливам можно смело отнести метанол, анализ которого и проведен в данной работе.
- 2. Представленные результаты наглядно показывают, что применение метанола в качестве основного топлива для дизельных двигателей для позволяет снизить токсичность двигателя по продуктам неполного сгорания, но при этом несколько снижаются эффективные показатели работы двигателя.

Выводы по первому разделу

В приведенном выше обзоре литературы представлена молекулярная структура нескольких альтернативных видов топлива с воспламенением от сжатия, а затем рассмотрено влияние молекулярной структуры топлива на В кинетику сгорания, физические процессы сгорания. качестве альтернативных видов топлива рассматривались биодизель, спирты, простые эфиры и кетоны. Можно сделать вывод, что в настоящее время наиболее распространенными биотопливами являются биодизельное топливо и смеси этанола с дизельным топливом, хотя в центре внимания исследований все больше находятся более длинные спирты из-за их высокого CN, эфиры из-за их высокого CN и низкого уровня выбросов выхлопных газов, а также как на кетонах из-за их подходящего CN и улучшения технологий производства.

Выводы по второму разделу

Проведенные расчеты показали некоторое снижение эффективных показателей работы двигателя при переходе с дизельного топлива на альтернативное топливо – метанол.

Выводы по 3-му разделу

Переход на альтернативное топливо — метанол позволяет незначительно снизить нагрузки на кривошипно-шатунный механизм.

Выводы по 4-му разделу

В ходе стационарного моделирования концепция была оптимизирована для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя. Представленные результаты наглядно показывают, что альтернативные кислородосодержащие топлива, например метанол снижают мощностные показатели на 15%. При этом токсичность отработавших газов на некоторых режимах улучшается. Из-за сложности моделирования концентрации оксидов азота, расчет их концентрации в отработавших газов для альтернативного топлива метанол показал ошибку, указано что требуется уточнение модели сгорания.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- Adnan N Ahmed, Zuhair H Obeid and Alauldinn H Jasim Experimental investigation for optimum compression ratio of single cylinder spark ignition engine / IOP Conf. Series: Materials Science and Engineering 454 (2018) 012003
- 2. Antriebskonzepte fur heute und morgen. Motorentechnische Zeitschrift MTZ, 09:630–631, 2013.
- 3. Helmut Eichlseder and Andreas Wimmer. Potential of IC-engines as minimum emission propulsion system. Atmospheric Environment, 37:5227–5236, 2003.
- 4. Lutz Eckstein, Rene Gobbels, and Roland Wohlecker. Benchmarking of the Electric Vehicle Mitsubishi i-MiEV. ATZ worldwide, 12:48–53, 2011.
- 5. R.A.B. Semin. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines. Am. J. Engg. & Applied Sci, 1:302–311, 2008.
- Wolfgang Warnecke, John Karanikas, Bruce Levell, Carl Mesters, J¨org Adolf, Jens Schreckenberg Max Kofod, and Karsten Wildbrand. Natural Gas
 A bridging tehcnology for future mobility? In 34. Internationales Wiener Motorensymposium, 25 26, April, 2013.
- 7. David Serrano and Bertrand Lecointe. Exploring the Potential of Dual Fuel Diesel-CNG Combustion for Passenger Car Engine. In Proceedings of the FISITA 2012 World Automotive Congress, Beijing, China, 27-30 November 2012.
- 8. Tobias Ott, Florian Zurbriggen, Christopher Onder, and Lino Guzzella. Cycle-averaged efficiency of hybrid electric vehicles. Institution of Mechanical Engineering Part D, Journal of Automobile Engineering, 227:78–86, 2012.
- 9. Tobias Ott, Christopher Onder, and Lino Guzzella. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine. Energies, 6:3571–3592, 2013.

- Norman Brinkman, Michael Wang, Trudy Weber, and Thomas Dar- lington.
 Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions, 2005.
- 11. T. Ishiyama, J. Kang, Y. Ozawa, and T. Sako. Improvement of Performance and Reduction of Exhaust Emissions by Pilot-Fuel-Injection Control in a Lean-Burning Natural-Gas Dual-Fuel Engine. SAE International Journal of Fuels and Lubricants, 5:243–253, 2012.
- 12. Thorsten Schmidt, Christian Weiskirch, Stefan Lieske, and Holger Manz. Modern industrial engines emission calibration and engine man- agement. ATZ off highway, 9:24–35, 2010.
- 13. Bernhard Schneeweiss and Philipp Teiner. Hardware-in-the-Loop-Simulation am Motorenprufstand fur realitatsnahe Emissions- und Verbrauchsanalysen. Automobiltechnische Zeitschrift ATZ, 5:76–79, 2010.
- 14. Gerhard Henning, Tobias Go¨decke, and Angsar Damm. Neue Getriebe fu¨r die neuen Kompakten. ATZ, 9:70–73, 2012.
- 15. Chasse and A. Sciaretta. Supervisory control of hybrid powertrains: An experimental benchmark of offline optimization and online energy management. Control Engineering Practice, 19:1253–1265, 2011.
- 16. Heffel, J. W. (2003). "NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation." International Journal of Hydrogen Energy, 28(8), pp. 901-908.
- 17. Lipman, T., and Hwang, R. (2003). "Hybrid electric and fuel cell vehicle technological innovation: hybrid and zero-emission vehicle technology links." Proceedings of the 2003 20th International Electric Vehicle Symposium and Exposition, Long Beach, CA.
- 18. Burke, A. (2005). "Hybrid vehicles: design approaches, component options, and potential fuel economy improvements." Institute of Transporation Studies, University of California at Davis.

- 19. Atwood, P., Gurski, S., Nelson, D. (2001). "Degree of hybridization modeling of a fuel cell hybrid electric sport utility vehicle." SAE Paper 2001-01-0236.
- 20. Miller, J. (2006). "Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type." IEEE Transactions on Power Electronics, 21(3), pp. 756-767.
- 21. Service, R. F. (2004). "The hydrogen backlash." Science, 305(5686), Aug 13, pp. 958-961.
- 22. Romm, J. J. (2004). The Hype About Hydrogen: Fact and Fiction in the Race to Save the Climate, Island Press, Washington, D.C.
- 23. Zhang, Y., Lin, H., Zhang, B., and Mi, C. (2006). "Performance Modeling and Optimization of a Novel Multi-mode Hybrid Powertrain." Journal of Mechanical Design, 128, pp. 79-89.
- 24. Adamchak F., Adede A., 2013. LNG as a marine fuel, 17th International conference and exhibition on Liquefied Natural Gas (LNG 17), Houston
- 25. Adom F., Dunn J.B., Elgowainy A., Han J., Wang M., Chang R., Perez H., Sellers J., Billings R., 2013. Life Cycle Analysis of Conventional and Alternative Marine Fuels in GREET.
- 26. Agostini A., Giuntoli J., Boulamanti A., 2013. Carbon accounting of forest bioenergy Conclusions and recommendations from a critical literature review. JRC Technical reports, EUR 25354 EN, ISBN 978-92-79-25100-9.
- 27. Anselmo A., Sullivan J., 2015. DME: The Best Fuel, Period. Dimethyl Ether: The Future of Electricity, Heat and Transportation. ChemBioPower Ltd. Available at: www.chembiopower.com/s/CBP-WhitePaper-v5.pdf
- 28. Bell Performance, 2013. Fuel Storage and Diesel Generator Problems: Fuel Microbes, Available at: http://www.bellperformance.com/bell-performs-blog/diesel-generator- problems-fuel-microbes
- 29. Bengtsson S., Andersson K., Fridell E., 2011. A comparative life cycle assessment of marine fuels; liquefied natural gas and three other fossil fuels.

- Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 225, pp. 97–110
- 30. Corvus, 2015. Corvus Energy Announces Investment from Statoil Technology Invest.
- 31. Cowie A., Berndes G., Smith T., 2013. On the timing of greenhouse gas mitigation benefits of forest-based bioenergy, IEA Bioenergy; ExCo 2013:04
- 32. Deniz C., Kilic A., Civkaroglu G., 2010. Estimation of shipping emissions in Candarli Gulf, Turkey. Environmental Monitoring and Assessment. Vol.171, pp.219–228.
- 33. DNV GL, 2014. Alternative fuels for shipping. DNV GL Strategic Research & Innovation Position Paper 1-2014.
- 34. Florentinus A., Hamelinck C., van den Bos A., Winkel R., Cuijpers M., 2012. Potential of biofuels for shipping Final Report. Prepared by Ecofys for European Maritime Safety Agency (EMSA).
- 35. Landalv I., Gebart R., Marke B., Granberg F., Furusjo E., Lownertz P., Öhrman O.G.W., Sørensen E. L., Salomonsson P., 2014. Two years experience of the BioDME project a complete wood to wheel concept. Environmental Progress and Sustainable Energy. Vol.33, pp. 744–750.
- 36. Lin C.Y., 2013. Effects of biodiesel blend on marine fuel characteristics for marine vessels. Energies. Vol.6, pp.4945–4955
- 37. O'Dowd C., 2012. Aerosol in Global Atmosphere. In Encyclopedia of Sustainability Science and Technology, Robert A. Meyers (Ed). pp 111-148. Springer New York
- 38. Petzold A., Lauer P., Fritsche U., Hasselbach J., Lichtenstern M., Schlager H., Fleischer F., 2011. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects. Environmental Science and Technology. Vol. 45, pp.10394–10400.
- 39. Sherrard A., 2015. Poly-gen flash pyrolysis praised for rapid roll-out. Bioenergy International 78(2). Pp 18-19

- 40. Thomson H., Corbett J. J., Winebrake J.J., 2015. Natural gas as a marine fuel. Energy Policy 87 pp 153–167
- 41. K. Ahn, A.G. Stefanopoulou and M. Jankovic, "Estimation of Ethanol Content in Flex-Fuel Vehicles Using an Exhaust Gas Oxygen Sensor: Model, Tuning and Sensitivity," In proceedings of ASME 2008 Dynamic Systems and Control Conference, October, 2008, Ann Arbor, MI, USA.
- 42. Jiang, S., and Nutter, D., "Implementation of Model-Based Calibration for a Gasoline Engine", SAE 2012-01-0722, 2012
- 43. Guerrier, M. and Cawsey, P., "The Development of Model Based Methodologies for Gasoline IC Engine Calibration," SAE Technical Paper 2004-01-1466, 2004
- 44. Vibe, I.I., "Semi-empirical expression for combustion rate in engines", Proceedings of Conference on piston engines, USSR Academy of sciences, Moscow, pp. 186-191, 1956.
- 45. Wiebe I.I., "Brennverlauf und Kreisprozeb von Ver-brennungsmotoren". In VEB- Verlag Technik, Berlin, 1970.
- 46. Lindström, F., Ångström, H., Kalghatgi, G., and Möller, C., "An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations," SAE Technical Paper, 2005-01-2106, 2005
- 47. Longwic, R., "Modelling the Combustion Process in the Diesel Engine with the Use of Neural Networks," SAE Technical Paper 2008-01-2446, 2008, doi:10.4271/2008-01-2446.
- 48. Maass, B., Deng, J., and Stobart, R., "In-Cylinder Pressure Modelling with Artificial Neural Networks," SAE Technical Paper 2011-01-1417, 2011, doi:10.4271/2011-01-1417.
- 49. Cavina N. and Suglia R., "Spark Advance Control based on a Grey Box Model of the Combustion Process", SAE 2005-01-3760, 2005
- 50. Heywood J. B., "Internal Combustion Engines Fundamentals", McGraw and Hill, 1988

- 51. Boiarciuc A. and Floch A., "Evaluation of a 0D Phenomenological SI Combustion Model", SAE 2011-01-1894, 2011
- 52. Prucka R., "An Experimental Characterization of a High Degree of Freedom Spark- Ignition Engine to Achieve Optimized Ignition Timing Control", Dissertation for the degree of Doctor of Philosophy, 2008
- 53. Schmid, A., Grill, M., Berner, H., Bargende, M. et al., "Development of a Quasi- Dimensional Combustion Model for Stratified SI-Engines," SAE Int. J. Engines 2(2):48-57, 2010
- 54. Rakopoulos, C., Michos, C., and Giakoumis, E., "Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi- Dimensional, Multi-Zone Combustion Model,"SAE Int. J. Engines 2(1):880-910, 2009
- 55. Tan, Z. and Reitz, R., "Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method," SAE Technical Paper 2003-01-0722, 2003.
- 56. Конструирование двигателей внутреннего сгорания: учебник для студентов вузов, обучающихся по специальности "Двигатели внутреннего сгорания" направления подготовки "Энергомашиностроение" / Н. Д. Чайнов, Н. А. Иващенко, А. Н. Краснокутский, Л. Л. Мягков; под ред. Н. Д. Чайнова. 3-е изд. Москва: Машиностроение, 2023. 495 с.
- 57. Автомобиль. Устройство. Автомобильные двигатели : учебное пособие / А. В. Костенко, А. В. Петров, Е. А. Степанова [и др.]. Изд. 3-е, стер. Санкт-Петербург : Лань, 2023. 436 с.
- 58. Петров, А. И. Техническая термодинамика и теплопередача : учебник / А. И. Петров. Изд. 2-е, стер. Санкт-Петербург : Лань, 2023. 428 с.
- 59. Баширов, Р. М. Автотракторные двигатели : конструкция, основы теории и расчета : учебник / Р. М. Баширов. Изд. 4-е, стер. Санкт-Петербург : Лань, 2022. 336 с.

- 60. Вальехо М. П. Расчет кинематики и динамики рядных поршневых двигателей: учебное пособие / М. П. Вальехо, Н. Д. Чайнов. Москва: ИНФРА-М, 2022. 259 с.
- 61. Суркин, В. И. Основы теории и расчёта автотракторных двигателей : курс лекций : учеб. пособие / В. И. Суркин. Изд. 2-е, перераб. и доп. Санкт-Петербург : Лань, 2022. 304 с.
- 62. Крюков, К. С. Теория и конструкция силовых установок : учеб. пособие / К. С. Крюков. Москва : ИНФРА-М, 2021. 211 с.
- 63. Курасов, В. С. Теория двигателей внутреннего сгорания : учеб. пособие / В. С. Курасов, В. В. Драгуленко. Москва : ИНФРА-М, 2021. 86 с.
- 64. Гоц А. Н. Динамика двигателей : курсовое проектирование : учеб. пособие / А. Н. Гоц. 3-е изд., испр. и доп. Москва : ИНФРА-М, 2020. 175 с.
- 65. Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / И.И. Вибе// М. Машиностроение, 1971. c.282