МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ МАШИНОСТРОЕНИЯ

(наименование института полностью)

Кафедра «Энергетические машины и системы управления»

13.03.03 Энергетическое машиностроение

(код и наименование направления подготовки)

«Альтернативные источники энергии транспортных средств»

(направленность (профиль))

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Повышение эффективных показателей дизельных генераторных установок____

Студент	К.Р. Кокулов	
	(И.О. Фамилия)	(личная подпись)
Руководитель	к.т.н., доцент, Д.А. 1	Павлов
_	(ученая степень, звание, И.О.	Фамилия)

АННОТАЦИЯ

Выпускная квалификационная работа посвящена вопросу повышению эффективных показателей дизельных генераторных установок.

Целью бакалаврского проекта является повышение эффективных показателей дизельных генераторных установок за счет перехода на газодизельный альтернативный цикл.

Поэтому в данном бакалаврской работе представлены результаты проектирования четырехцилиндровой дизельной генераторной установки, адаптированной для работы по газодизельному альтернативному циклу, в котором компримированный природный газ подается во впускной коллектор, а запальная часть дизельного топлива подается непосредственно перед началом процесса сгорания. Бакалаврская работа состоит из пояснительной записки и графической части.

Пояснительная записка состоит из аннотации, введения, 4 разделов, заключения с основными результатами и выводами, содержит 25 рисунков, 17 таблиц, списка использованных источников (65 источник). Основной текст изложен на 62 страницах.

Графическая часть работы содержит 8 листов формата A1 иллюстрирующих материал, представленный в пояснительной записке.

ABSTRACT

Topic of the bachelor thesis: "Improving the efficiency of the fuel system for VAZ engines".

The fuel delivery system plays a crucial role in internal combustion engines. This thesis examines the shortcomings of the existing fuel delivery system and proposes a solution to address the high amplitude fuel pressure fluctuations.

This bachelor's thesis aims to improve the fuel delivery system for the VAZ 21129 gasoline engine. It consists of an explanatory note of 63 pages and a graphical part. The explanatory note covers the following topics:

- Analysis of the existing fuel delivery system;
- Thermal balance and thermal calculation of the engine;
- Kinematic and dynamic calculations were performed;
- Design of an external damper.

The graphic section contains six A1-sized sheets. They show longitudinal and transverse sections of the engine, three diagram sheets, and detailed drawings of the proposed fuel delivery system.

СОДЕРЖАНИЕ

Введение.	4
1 Работа дизельного двигателя на альтернативных топливах	5
1.1 Альтернативные топлива для дизельных двигателей	6
1.2 Биодизель	7
1.3 Двойное топливо на природном газе и дизельном топливе	11
1.4 Влияние природного газа на двигатель CI	15
2 Тепловой расчет проектируемого двигателя	19
2.1 Тепловой расчет двигателя при работе на дизельном топливе	19
2.2 Тепловой расчет двигателя на газодизельном топливе	24
3 Кинематический и динамический расчет кривошипно-шатунного	
механизма двигателя	30
3.1 Кинематический расчет кривошипно-шатунного механизма	
двигателя	30
3.2 Динамический расчет кривошипно-шатунного механизма	
двигателя	32
4 Анализ токсичности отработавших газов и эффективных	
показателей для газодизельного двигателя, полученных на	
виртуальной модели	38
Заключение	54
Список используемых источников	56

ВВЕДЕНИЕ

Дизельные двигатели работают с внутренним смешением. В конце такта сжатия в области воспламенения жидкое топливо впрыскивается в сильно сжатый воздух. Сразу после попадания топливных капель, средний диаметр сотейника которых (в зависимости от давления и расстояния измерения) примерно находится между 5 и 15 мкм (первичный распад), начинается физическая И химическая подготовка воспламеняющейся воздушно-топливной смеси. Процессы испарения топлива, смешивания с воздухом и последующего воспламенения и последующее сгорание происходит параллельно. Целью образования смеси, с одной стороны, является как можно более быстрое воспламенение воздушно-топливной смеси, а с другой – как можно более полное сжигание всего впрыснутого количества топлива, избегая высоких пиковых температур сгорания. При соблюдении этих двух основных условий сгорание в значительной степени с низким содержанием загрязняющих веществ, избегая при этом более экстремальных скачков давления и, следовательно, высокий шум сгорания и высокую механическую и тепловую нагрузки.

Вредные выбросы являются основной проблемой для систем сжигания и постоянно увеличиваются с использованием ископаемого сырья по всему миру. Двигатель с воспламенением от сжатия (ДВС) является одним из основных источников выбросов вредных веществ. По сравнению с двигателем с искровым зажиганием (SI), двигатель СІ производит высокие выбросы твердых частиц (РМ) и оксидов азота (NOx). Необходимость улучшения характеристик двигателя; расход топлива и тепловая эффективность являются еще одной проблемой. Исследование влияния компонентов топлива является одним из подходов, которые можно использовать для снижения выбросов выхлопных газов и повышения производительности.

1 Работа дизельного двигателя на альтернативных топливах

Изобретенные Рудольфом Дизелем в 1892 году двигатели с воспламенением от сжатия (СІ) имеют более высокий тепловой КПД по сравнению с двигателями с искровым зажиганием (SI). Двигатель обычно работает по 4-тактному циклу, и основы обычного дизельного сгорания кратко объясняются ниже.

В дизельных двигателях воздух для горения подается в камеру сгорания через впускной коллектор. Этот процесс индукции происходит, когда поршень движется вниз, в то время как впускной клапан открывается. Количество вводимого заряда свежего воздуха зависит от частоты вращения двигателя, которая выше при высокой частоте вращения двигателя. Затем поршень движется вверх от нижней мертвой точки, чтобы сжать заряд воздуха, при этом впускной и выпускной клапаны закрыты. За несколько градусов угла поворота коленчатого вала до того, как поршень достигнет верхней мертвой точки, топливо впрыскивается с высокой скоростью через небольшие отверстия или форсунки в наконечнике форсунки и распыляет топливо. Высокое давление и температура воздуха в цилиндрах затем смешиваются с испарившимся топливом. Когда температура воздушнотопливной смеси выше температуры самовоспламенения топлива, происходит ряд спонтанных химических реакций, ведущих к быстрому самовоспламенению (Heywood, 1988). Затем давление и температура в цилиндрах поднимаются до гораздо более высокого уровня. Поскольку происходит процесс расширения, когда поршень движется вниз, оставшееся впрыскиваемое топливо все еще подвергается распылению и испарению из-за высокой температуры сгорания. Процесс сгорания продолжается еще несколько градусов угла поворота коленчатого вала после окончания впрыска (EOI).

Рассмотрим основные подходы для повышения эффективности работы двигателя при работе на альтернативных топливах

1.1 Альтернативные топлива для дизельных двигателей

Соответствующие исследования двигателей с воспламенением в основном были сосредоточены на новых технологиях двигателей и подходах к альтернативным видам топлива. Как показано на рисунке 2.1

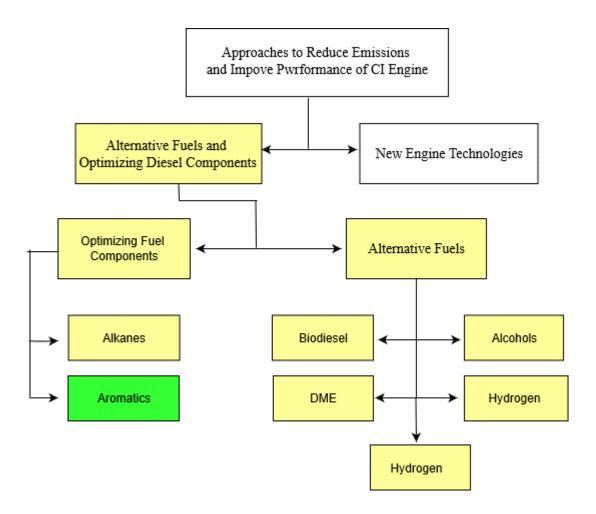


Рисунок 1 — Схематическая диаграмма альтернативных топлив для дизельных двигателей

В первой части этой главы альтернативные виды топлива, а именно различные биодизельные топлива, три типа из спиртов (метанол, этанол и бутанол), диметиловый эфир (ДМЭ), как сжатый, так и сжиженный природный газ, водород, ароматические и алкано-углеводородные топлива смеси рассматриваются с упором на их свойства и влияние на выбросы и производительность. Обсуждаются как газообразные, так и твердые выбросы альтернативных видов топлива.

1.2 Биодизель

биодизельного Для производства топлива ОНЖОМ использовать различные виды сырья; животный жир, растительное масло и отработанное кулинарное масло [51, 52]. Например, соевое и рапсовое масла обычно используются для биодизельного топлива. Американское общество по испытаниям и материалам (ASTM) сообщило, что биодизель можно определить как моноалкиловые эфиры длинноцепочечных жирных кислот [53]. Однако работа двигателя СІ с чистыми растительными маслами приводит ко многим проблемам, таким как смолообразование, а также проблемы с прокачкой, загрязнение форсунок, распыление, нагар на поршне, следы износа и загрязнение смазочного масла при длительной работе двигателя. Это может происходить из-за высокой плотности, вязкости, нелетучести этих масел [54]. Поэтому многие исследователи рекомендовали переэтерификацию растительного масла для снижения его вязкости [54]. Переэтерификация — это процесс преобразования растительного масла в биодизельное топливо, которое будет использоваться в двигателях CI [55].

Сегодня многие исследования были посвящены влиянию биодизеля на выбросы и производительность двигателя с воспламенением. Лапуэрта и др. [63] опубликовали обзорную статью, в которой основное внимание уделялось влиянию биодизеля на двигатели СІ. Они обнаружили, что может не быть разницы в выходной мощности, когда двигатель с воспламенением работает на биодизеле при частичной нагрузке [63]. Возможная причина в том, что повышенный расход биодизельного топлива компенсирует снижение его теплотворной способности. Однако при полной нагрузке выходная мощность в результате использования биодизеля ниже, чем мощность, связанная с пониженной теплотворной способностью. Кроме того, авторы сообщили, что увеличение BSFC может быть пропорционально уменьшению теплотворной способности. Таким образом, замена дизельного топлива на биодизельное

топливо (смешанное или чистое) не влияет на тепловой КПД. Напротив, уровни уровней NOx повышены.

Уровни ТЧ снижаются из-за отсутствия ароматических соединений в биодизеля. Высокая составе концентрация кислорода составе биодизельного топлива способствует более полному сгоранию и, как следствие, низкому значимому уровню выбросов НС и СО. ЕРА [51] представило сводку общих результатов по уровням UHC, CO, PM и NOx, как показано на рисунок 2. Уровень CO и UHC снижается при увеличении концентрации биодизеля. Более высокая концентрация кислорода в биодизельном топливе может снизить локальные области, богатые топливом, и ограничить образование первичных частиц. Это способствует повышению эффективности сгорания из-за естественного насыщения биодизеля. Другими словами, более высокая концентрация кислорода в биодизеле доступна для сжигания, что способствует более полному и стабильному сгоранию, а затем и снижению выбросов.

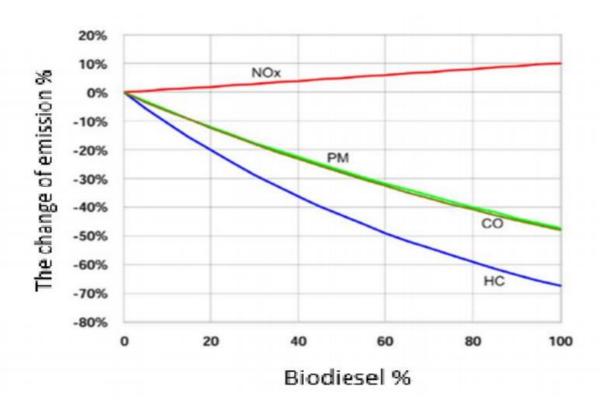


Рисунок 2 – Средние результаты по выбросам биодизеля [51]

Томич и др. [71] протестировали различные смеси биодизеля и дизельного топлива; 15%, 25%, 50%, 75% и 100%. По сравнению с дизельным топливом все топливные смеси способствовали более высокому BSFC в диапазоне 1,32–13,35%. Возможная причина связана с высокой плотностью и низкой теплотворной способностью смесей. Сгорание биодизель-дизельной смеси более полное, что приводит к снижению уровня СО на 1,84–13,15%. Однако выбросы NOx при всех нагрузках двигателя 1,51 11,38% увеличиваются до при увеличении концентрации биодизельного топлива в смеси из-за увеличения содержания кислорода в продуктах выхлопа.

Метиловый эфир масла ятрофы оценивали Ong et al. [72] для оценки выбросов и рабочих характеристик при различных оборотах двигателя и условиях высокой нагрузки. Общие результаты эксперимента показали, как правило, более высокий крутящий момент, более низкий BSFC и более высокую мощность для 10% биодизеля в смеси из-за влияния биодизеля на плотность смеси и теплотворную способность. Однако ухудшающееся сгорание и высокие тепловые потери при максимальных оборотах двигателя увеличивают BSFC. По сравнению с дизельным топливом все испытанные биодизельные смеси выделяли меньше CO, CO2 и дыма, при этом было зарегистрировано небольшое повышение уровня NOx. Наконец, авторы рекомендовали, чтобы концентрация метилового эфира масла ятрофы 10% в смеси работала лучше, чем другие концентрации смеси.

Сурешкумар и др. [73] оценивали влияние метилового эфира понгамиапинната (ППМЭ) при 1500 об/мин. Они обнаружили, что значения ВЅFС для 40% РРМЕ и 20% РРМЕ в смесях равны и ниже, чем у дизельного топлива, соответственно. Напротив, дальнейшее увеличение концентрации ПФМЭ в смесях приводило к высоким ВЅFС при всех нагрузках из-за снижения теплотворной способности смесей. В заключение они рекомендовали замену дизельного топлива на РРМЕ в количестве до 40% по объему, что, вероятно, обеспечит лучшую производительность и более

низкий уровень выбросов, что приведет как к защите окружающей среды, так и к экономии энергии.

Алтипармак и др. [74] испытывали смеси метилового эфира таллового масла с дизельным топливом в диапазоне 1800—3200 об/мин и высокой нагрузке. Было обнаружено, что выходная мощность и крутящий момент увеличились на 6,1% и 5,9% соответственно при смешивании метилового эфира таллового масла при высоких оборотах двигателя. Более того, при использовании этих смесей уровни СО были снижены до 38,9%, а уровни NOх увеличены до 30% по сравнению с чистым дизельным топливом, и не было значительного влияния на непрозрачность дыма на всех скоростях. Причины низкого уровня СО, связанные с высоким цетановым числом в смесях и содержанием азота в метиловом эфире таллового масла, привели к большему образованию NOх.

Већсеt [75] оценил различные концентрации отработанного масла анчоусов (25% (В25), 50% (В50) и 75% (В75)) в смеси с дизельным топливом. Эксперименты проводились при переменных скоростях (1000-2500 об/мин) и в режиме высокой нагрузки. Из-за содержания кислорода в отработанном масле анчоусов выбросы СО и UHC были снижены на 21,3% и 33,42% соответственно при всех скоростях. Однако температура выхлопных газов, NOx и кислород (О2) увеличились на 7,54%, 29,37% и 9,63% соответственно. Короткая задержка воспламенения, содержание кислорода и азота в топливе привели к повышению уровня NOx.

Lapuerta [76] изучал влияние смесей отработанного масла и дизельного топлива при различных режимах работы двигателя. Отработанные кулинарные масла смешивали с дизельным топливом в трех концентрациях; 30, 70 и 100% по объему. Общие результаты не показали значительного влияния на ВТЕ, тогда как низкая теплотворная способность биодизеля привела к более высокому BSFC. С другой стороны, дымоемкость, выбросы твердых частиц и средний размер частиц значительно снижались с

увеличением содержания биодизеля. Распределение частиц смещалось в сторону значений малого диаметра с увеличением содержания биодизеля.

Панвар и др. [77] протестировали касторовый метиловый эфир (СМЕ) при различных степенях сжатия при 1500 об/мин и в условиях переменной нагрузки. Они обнаружили, что высокий ВТЕ и низкий ВЅГС были отмечены для определенной концентрации СМЕ в смесях СМЕ-дизель, после чего наблюдалось снижение ВТЕ. Возможная причина этого связана со смазывающей способностью СМЕ, которая уменьшает трение, а затем и потери тепла. Когда больше СМЕ смешивалось с дизельным топливом, теплотворная способность снижалась. В то же время, более высокая температура выхлопных газов была отмечена при увеличении содержания СМЕ. Однако уровни NOх при низкой нагрузке не изменились, а немного увеличились при полная нагрузка.

1.3 Двойное топливо на природном газе и дизельном топливе

Природный газ является многообещающим альтернативным топливом из-за его низкой стоимости, в целом низкого уровня выбросов и больших запасов в тех же количествах, что и сырая нефть [52, 93]. Использование способствовать уменьшению природного газа может энергетического кризиса [93]. Как правило, природный газ состоит из большого количества метана (80-98 % по объему), а также этана (1-8 %), пропана (2 %), пентана и бутана (< 1 %). Кроме того, природный газ включает около 0,2-1,5% углекислого газа и азота и небольшую долю соединений серы. Метан имеет октановое число 130 и поэтому обладает высокой детонационной стойкостью. Природный газ тэжом использоваться В качестве автомобильного топлива в сжиженном и сжатом виде; сжиженный природный газ (СПГ) и компримированный природный газ (КПГ). СПГ представляет собой природный газ под высоким давлением (20 МПа) и при температуре окружающей среды, тогда как жидкая форма (СПГ) охлаждается до низкой температуры (-161 °C) при атмосферном давлении.

Свойства природного газа представлены в таблице 1.

Таблица 1 – Альтернативные виды топлива и свойства дизельного топлива

Характеристик	Дизель	Природн	Метанол		Бутанол	ДМЭ	Водород
И	[6]	ый газ	[7]	Этанол [17]	[27]	[26]	
Химическая	C10 -C25	CH_4	СН₃ОН	CH ₃ CH ₂ OH	C ₄ H ₉ OH	CHOCH ₃	H2
структура				[28]	[8]		
Молекулярная	170	19	32.04	46 [98]	74 [98]	46.069	2.016
масса	[38]						
Цетановое	40-55		3.8	5-8	25	55-60	
число	[9]	-				[99]	
Содержание	43		20.1	26.9	33.1	28.9	120 [11]
энергии		48.6					
(МДж/кг)		[94]					
Плотность при	0.82	0.72	0.7866	0.7851	0.8098	0.66	0.000838
20 °С (г/мл)	0.88	[11]					[10]
Температура	250		463	423	397	350	500
самовоспламе		650					
нения (°С)		[4]					
Температура	70	_	12	13	35	-41	_
вспышки (°С)	70	_	12	13	33	-41	_
Точка кипения							
(°C)	260		65	78	117-118	-24	20.3
Содержание							
углерода	86.57	75 [14]	n/a	52.2 [12]	n/	52.17	0
Содержание	0	0	49.93	34.73 [52]	21.6	34.57	0
кислорода			[52]		[18]		
Ароматическо	20-30	0	-	-	-	0	0
е содержание							

Высокое октановое число делает природный газ более подходящим для двигателей SI. С другой стороны, использование природного газа приводит к плохим характеристикам воспламенения из-за пониженного цетанового числа, а также повышения температуры самовоспламенения [93, 94]. Следовательно, были разработаны три различных метода подачи в цилиндр; вспомогательное зажигание с горячей поверхностью, непосредственный впрыск высокого давления (HPDI) и двойная топливная система. В случае HPDI, во-первых, небольшое количество пилотного дизельного топлива

индуцируется в конце такта сжатия после того, как природный газ непосредственно впрыскивается в камеру (см. рисунок 3) [14].

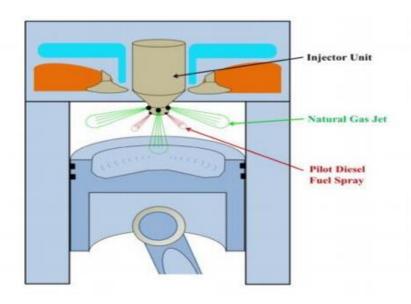


Рисунок 3 – Принципиальная схема режима НРО [4]

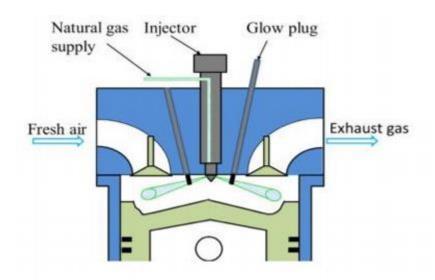


Рисунок 4 – Режим воспламенения с помощью горячей поверхности [94]

В определенное время во время впрыска природного газа или между двумя впрысками источником воспламенения является самовоспламенение пилотного дизеля [24, 25]. В режиме воспламенения с помощью горячей поверхности природный газ подается непосредственно в камеру сгорания вблизи горячей поверхности, которая имеет диапазон высоких температур (1200-1400 К, как показано на рисунке 4. Этот режим имеет много

преимуществ; высокая тепловая эффективность и удельная мощность, но долговечность горячей поверхности является критической проблемой из-за необходимой высокой температуры.

Система двухтопливного режима является наиболее распространенной системой и предназначена для работы на двух видах топлива; обычное топливо и альтернативное топливо [52]. На рисунке 5 показана принципиальная схема двухтопливной системы [101].

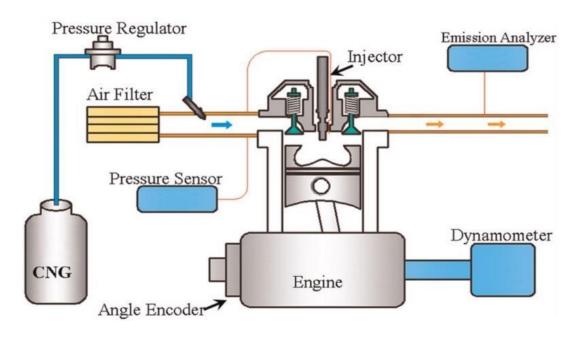


Рисунок 5 – Принципиальная схема двухтопливной системы [101]

Во-первых, альтернативное топливо сжимается и вводится во впускной коллектор, после чего смешивается с воздухом для образования однородной смеси. Он воспламеняется свечой зажигания или пилотным дизелем, когда поршень находится в ВМТ [52, 94]. Количество впрыскиваемого альтернативного топлива изменяется в зависимости от выходной мощности двигателя, тогда как количество дизельного топлива остается постоянным при различных условиях эксплуатации.

Двухтопливная система обычно предназначена для работы на различных видах топлива, таких как природный газ, спирты, ДМЭ и водород. Эти виды топлива используются в качестве основного, а дизельное топливо – в качестве пилотного. Двухтопливный двигатель по сравнению с обычным

дизельным двигателем обычно производит более низкие уровни РМ и NOx. С другой стороны, существуют некоторые трудности, связанные с двухтопливной комбинацией. Эффективность сгорания низкая при работе на средних и малых нагрузках. В результате выбросы СО и UHC значительно увеличиваются при сжигании двойного топлива [103]. Двухтопливная система является более перспективным методом, чем вспомогательное зажигание с горячей поверхностью и HPDI [94], и поэтому в этом разделе все рассмотренные исследования были посвящены влиянию природного газа, работающего на двухтопливной системе.

1.4 Влияние природного газа на двигатель СІ

Воздушно-дизельная смесь в камере регулируется диффузионно. Напротив, для природного газа происходит сжигание предварительно смешанной смеси. Добавление природного газа в камеру влияет на производительность и выбросы выхлопных газов из-за изменений в процессе образования воздушно-топливной смеси. Есть много исследований, посвященных природному газу, как показано в Таблице 2 и 3.

Таблица 2 — Исследования воздействия двойного топлива природный газдизель на эффективные показатели работы

	Условия испытаний	эффективные показатели работы					
		Крутящий момент	Мощность	Удельный			
		(BTE)		эффективный			
КПГ или				расход топлива			
СПГ				(BSFC)			
КПГ	Полные нагрузки, обороты	-3,50% при 1500		-11,6% при 1500			
(LNG)	двигателя (1100-1900 об/мин)	об/мин и -13,9%		об/мин и -13,6%			
		при 1900 об/мин		при 1900 об/мин			
	Массовая доля природного						
	газа колебалась от 0 до 80%.						
	по массе Различные нагрузки						
СПГ	Различные нагрузки Две			20% при 1500			
(CNG)	скорости; 1500 и 2500 об/мин			об/мин, 5 бар			
	Различные нагрузки и		10,3% при				
	скорости		нагрузке 80% и	-16,6 при нагрузке			
			2000 об/мин	80% и 2200 об/мин			

Таблица 3 — Исследования воздействия двойного топлива природный газдизель на токсичность

КПГ или	Условия испытаний	токсичность					
СПГ		HC	CO	NOx	nvPM		
КПГ	Полные нагрузки,		77.% при 1500	31,25% при 1500			
(LNG)	обороты двигателя		об/мин	об/мин и 68,8%			
	(1100-1900 об/мин)			при 1900 об/мин			
	Массовая доля						
	природного газа			-33,3% при 80%			
	колебалась от 0 до 80%.		50% при 30% и	природного газа и			
	по массе Различные		80% природного	(30-80%			
	нагрузки		газа	природного газа)			
СПГ	Различные нагрузки Две		260% при 1500	-57% при 1500	-88% при		
(CNG)	скорости; 1500 и 2500		об/мин и 5 бар	об/мин и 5 бар -	1500 об/мин		
	об/мин		200% при 2500	22% при 2500	и 5 бар		
			об/мин, 5 бар	об/мин и 5 бар			
	Различные нагрузки и		-28,5% при	20% при нагрузке			
	скорости		нагрузке 80% и	80% и 2200 об/мин			
			2000 об/мин				

Влияние дизельного топлива и природного газа на работу двухтопливного двигателя с воспламенением и выбросы кратко изложено ниже. Выходная мощность снижается при использовании двухтопливной системы по сравнению с обычным двигателем по двум причинам. Во-первых, теплотворная способность дизель-воздушной смеси выше, чем у смеси природного газа с воздухом [94]. Во-вторых, впрыск природного газа в такте впуска уменьшает всасывание воздуха, следовательно, объемный КПД, что способствует снижению мощности двигателя, особенно в условиях высокой нагрузки.

Снижение мощности двигателя можно компенсировать увеличением температуры впуска, давления и количества запального дизельного топлива, но это может привести к детонации [104]. ВТЕ немного ниже по сравнению со сгоранием дизельного топлива как при низких, так и при средних нагрузках, тогда как при высокой нагрузке пилотный дизель, скорее всего, будет немного выше или близок к нормальному сгоранию дизельного топлива [90, 94, 105]. Снижение БТЭ двухтопливного режима связано со слишком бедной смесью природного газа при малых нагрузках. Это

затрудняет воспламенение запального дизельного топлива и обеспечивает неадекватное сгорание, что приводит к низкой эффективности использования топлива и снижению ВТЕ. Кроме того, потери тепла во время горения при низкой скорости горения из-за низкой скорости распространения пламени играют важную роль в снижении ВТЕ.

Более высокие выбросы СО обнаруживаются при двухтопливном режиме [90, 94, 105]. Смесь природного газа с воздухом воспламеняется пилотным дизелем и одновременно распространяется пламя. Чтобы поддерживать распространение пламени, некоторые области смеси очень обеднены, что приводит к снижению локальной температуры, а также к замораживанию окисления СО, а затем к повышению уровня СО [94].

Уровни НС сильно повышаются при двухтопливном режиме [90, 94, 105]. Небольшое количество смеси природного газа с воздухом выбрасывается за пределы камеры сгорания во время процесса продувки изза периода перекрытия клапана. Это способствует более высоким выбросам НС. Кроме того, улавливание смеси природного газа с воздухом в гасящем слое ограничивает воспламенение на поздней стадии процессов сгорания, что приводит к более высоким выбросам НС. Кроме того, слишком бедная смесь и низкая температура в камере вызывают образование выбросов НС [94].

В большинстве исследований сообщается, что уровни NOх ниже при двухтопливном режиме [90, 105, 106], в то время как в нескольких исследованиях были обнаружены более высокие выбросы NOх при высоких нагрузках [94]. Также отмечается, что увеличение количества пилотного дизеля и нагрузки на двигатель связано с повышением уровня NOх, хотя с ростом частоты вращения двигателя наблюдается снижение [94]. Снижение NOх может быть связано с более высокой удельной теплоемкостью природного газа по сравнению с воздухом [106]. Таким образом, впрыск большего количества природного газа в камеру приводит к увеличению теплоемкости смеси за счет снижения температуры в процессе сгорания, особенно в конце такта сжатия. Таким образом, выбросы NOх снижаются из-

за снижения температуры сгорания. Дальнейшее снижение NOx отчетливо наблюдается при малых нагрузках, поскольку температура в цилиндре уже низкая. Введение природного газа в камеру также уменьшает количество воздуха, что вызывает недостаток кислорода, необходимого для образования NOx, и, следовательно, приводит к уменьшению выбросов NOx [94, 106].

Кроме того, при более высоких оборотах двигателя выбросы NOх уменьшаются, поскольку не хватает времени для образования выбросов NOх. Сокращение выбросов ТЧ является одним из основных преимуществ использования природного газа в двигателях с воспламенением [94]. При двухтопливном сгорании количество используемого дизельного топлива меньше, чем в режиме дизельного топлива [109]. Большое количество пилотного дизельного топлива сжигается при предварительном сгорании и небольшое количество - при диффузионном режиме. Это снижает образование сажи и приводит к снижению концентрации ТЧ. Отсутствие связей С-С, ароматических соединений и соединений серы в природном газе снижает образование выбросов ТЧ [94].

Выводы по первому разделу

Проведённый анализ известных источников показал, перспективность применения двухтопливного режима работы (сжатый природный газ и запальная доза дизельного топлива) Широкие пределы воспламеняемости природного газа позволяют двигателям работать в условиях качественного регулирования нагрузкой в диапазоне составов смесей от стехиометрического до 5 – 6 по коэффициенту избытка воздуха.

2 Тепловой расчет проектируемого двигателя

Основные параметры двигателя, выбранного для дальнейшей проработки, приведены в таблице 4.

Таблица 4 — Технические параметры двигателя, выбранного как прототип для дальнейшей проработки

Параметры двигателя	Базовый
Тип	4-тактный дизельный
Кол-во цилиндров, тип ГБЦ	4, DOHC
Диаметр цилиндров, мм	76
Ход поршня, мм	84
Длина шатуна, мм	135
Рабочий объем, л	1,525
Степень сжатия в режиме газодизель	14
Степень сжатия в режиме дизель	24

2.1 Тепловой расчет двигателя при работе на дизельном топливе

Тепловой расчет производиться по методике И.И. Вибе. Расчет проводился для двух видов топлива это дизельное топливо и газодизельное топливо (96% КПГ и 4% дизельное топливо для номинального режима и 90% КПГ и 10% дизельного топлива). Результаты расчета представлены в виде таблиц и графиков. Исследование проводятся на пяти режимах работы при оборотах коленчатого вала 600, 2000, 3500, 5000 и 6000 мин⁻¹.

Для удобства анализа регулировочных характеристик представим данные в виде таблицы 5. Коэффициент избытка воздуха принят равным 1,417 для расчета на дизельном топливе и равным 1 для расчета на газодизельном топливе в связи с необходимостью поддержания эффективной работы каталитического нейтрализатора отработавших газов, так как это максимально возможная величина, которая обеспечивает оптимальные условия работы системы нейтрализации отработавших газов.

Для удобства анализа термохимических характеристик дизельного представим их в виде таблицы 6. Массовое содержание элементов в дизельном топливе взято из [6 и 12].

Таблица 5 – Регулировочные характеристики двигателя на дизельном топливе

Название параметра, размерность	Условное обозначение	Значение характеристики				
Частота вращения, мин ⁻¹	n	600	2000	3500	5000	6000
Угол опережения впрыска топлива, ° ПКВ	Θ	10	12	15	18	20
Коэффициент избытка воздуха	α	1,4180	1,4180	1,4180	1,4180	1,4180
Температура подогрева заряда в цилиндре ДВС, °С	ΔΤΝ	5	5	5	5	5
Степень сжатия	3	24	24	24	24	24
Температура на впуске, К	То	293,15	293,15	293,15	293,15	293,15
Расчетная политропа сжатия	n_p	1,3704	1,3704	1,3705	1,3706	1,3706
Действительная политропа сжатия	$n_{\scriptscriptstyle \mathcal{I}}$	1,3604	1,3604	1,3605	1,3606	1,3606
Предполагаемая температура остаточных газов, К	T_{r}	788	787	795	810	822
Продолжительность горения, ° ПКВ	фг	50	56	62	68	75
Показатель характера сгорания	m	1	1	1	1	1
Коэффициент выделения теплоты	σ	1	1	1	1	1
Коэффициент использования теплоты	δί	0,86	0,86	0,86	0,86	0,86
Коэффициент эффективности сгорания топлива	ξ	0,86	0,86	0,86	0,86	0,86

Таблица 6 – Термохимические характеристики дизельного топлива

Название характеристики, размерность	Условное обозначение	Значение характеристики
Массовое содержание Н	Н	0,12017
Массовое содержание С	С	0,85743
Массовое содержание О	О	0,00381
Массовое содержание S	S	0,00333
Массовое содержание N	N	0,01526
Молекулярная масса топлива	m _т , кг/моль	206,21535
Низшая теплота сгорания, МДж/кг	H_{u}	41449,095
Теоретически необходимое количество	Lo, кмоль возд./кг топлива	0,487
воздуха для сгорания 1 кг топлива	Lo, кг возд./кг топлива	14,105
	Мс СО, кмоль СО/кг	0,0715
	топлива	0,0713
Количество компонента продуктов	MH_2O , кмоль $H_2O/кг$	0,0601
сгорания	топлива	0,0001
	MN_2 , кмоль N_2 /кг топлива	0,5404
	MO_2 , кмоль O_2 /кг топлива	0
Общее количество продуктов сгорания	M_2 кмоль пр. сг./кг	0,7125
топлива,	топлива	0,7123
Коэффициент изменения гор. смеси	μ_0	1,0368

Для удобства расчетов цикла для двигателя на дизельном топливе представим данные в виде таблицы 7.

Таблица 7 – Расчет действительного цикла двигателя на дизельном топливе

II	Условное	Значение характеристики					
Название параметра	обозначение			ние характе	ристики		
Частота вращения	n, мин ⁻¹	600	2000	3500	5000	6000	
Давление остаточных газов	Pr, MΠa	0,1037	0,1058	0,1106	0,1180	0,1244	
Температура подогрева	ΔT_{N} , K	10,7895	8,9474	6,9737	5,0000	3,6842	
Средняя скорость движения заряда	$\omega_{_{B\Pi}},_{M}/c$	3,9786	13,3639	23,3868	33,4096	40,0916	
Давление в конце впуска	Ра, МПа	0,1000	0,0998	0,0994	0,0987	0,0838	
Коэффициент остаточных газов	$\gamma_{\rm r}$	0,0182	0,0183	0,0188	0,0193	0,0240	
Коэффициент наполнения	η_V	0,9225	0,9355	0,9454	0,9619	0,8020	
Температура в конце впуска	Ta, K	312,5843	310,8210	309,2351	307,8429	309,1665	
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	0,8626	0,8594	0,8588	0,8608	1,0173	
Давление в конце сжатия	Р _с , МПа	7,5361	7,5267	7,4983	7,4512	6,3282	
Температура в конце сжатия	T _c , K	981,7502	977,2424	973,7892	971,6983	972,2641	
Политропа расширения	n_2	1,2204	1,2214	1,2222	1,2229	0,5667	
Удельный объем рабочего тела в момент воспламенения	Vy, м ³ /кг	0,0442	0,0484	0,0570	0,0694	0,0807	
Давление рабочего тела в момент воспламенения	Ру, МПа	5,6869	5,0319	4,0638	3,1688	2,6362	
Температура рабочего тела в момент воспламенения	Ty, K	911,5751	882,1250	838,9915	796,7783	770,9198	
Общая удельная теплота сгорания топлива	q _z , кДж/кг	1667,0801	1666,3947	1664,5323	1661,5830	1657,5788	
Давление в процессе сгорания	Е2, МПа	92,6308	91,5556	88,3603	83,0662	78,2069	
Степень расширения	δ	5,4089	4,7048	4,2655	3,8879	3,3687	
Давление в конце процесса сгорания	Р _z , МПа	3,2406	2,6829	2,2846	1,9120	1,5078	
Гемпература в конце процессо сгорания	T _z , K	1811,2358	1743,4970	1694,9422	1652,7020	1593,8310	
Давление в конце процесса расширения	Рь, МПа	0,4130	0,4047	0,3880	0,3634	0,3406	
Гемпература в конце процесса расширения	T _b , K	1248,5436	1237,3566	1227,8999	1221,0999	1212,9429	
Теоретическая индикаторная работа цикла	L _т , кДж	1,0677	1,0538	1,0175	1,0064	1,0093	
Расчетное среднее индикаторное давление	РіТ, МПа	1,2898	1,2586	1,1742	1,0937	1,0352	
Индикаторный коэффициент полезного действия	ηi	0,5730	0,5599	0,5357	0,5202	0,5282	
Удельный индикаторный расход топлива	g _i , г/кВт*ч	151,5775	155,1210	162,1313	166,9704	164,4241	
Давление механических потерь	P _м , МПа	0,0530	0,0973	0,1447	0,1922	0,2238	
Средняя скорость поршня	С _п , м/с	1,6800	5,6000	9,8000	14,0000	16,8000	
Среднее эффективное давление	Ре, МПа	1,2368	1,1614	1,0294	0,9015	0,8114	
Механический КПД	ηм	0,9589	0,9227	0,8767	0,8243	0,7838	
Эффективный КПД	ηе	0,5495	0,5166	0,4697	0,4288	0,4140	
Удельный эффективный расход топлива	g _e , г/кВт*ч	158,0712	168,1146	184,9273	202,5684	209,7851	
Эффективная мощность	N _e , кВт	9,4257	29,5033	45,7657	57,2549	61,8368	
Часовой расход топлива	$G_{\scriptscriptstyle m T}$, кг/ч	1,4899	4,9599	8,4633	11,5980	12,9724	
Крутящий момент	Ме, Н*м	150,0151	140,8680	124,8658	109,3487	98,4163	

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 6) и внешнюю скоростную характеристику (рисунок 7) двигателя на дизельном топливе.

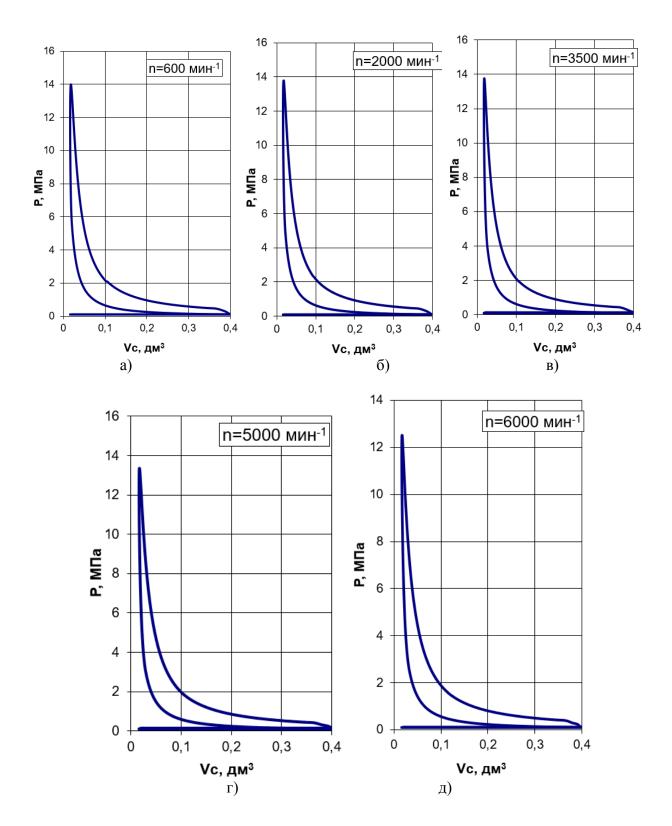


Рисунок 6 — Индикаторные диаграммы в P-V координатах двигателя на дизельном топливе: (а) 600; (б) 2000; (в) 3500; (г) 5000 и (д) 6000 мин $^{-1}$.

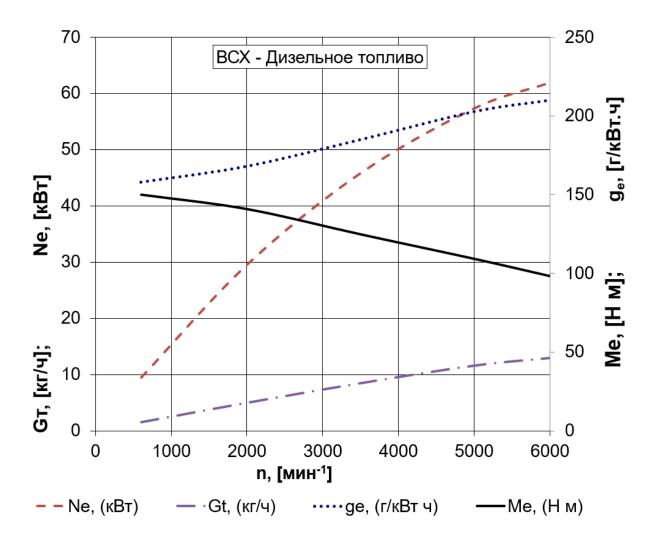


Рисунок 7 — Внешняя скоростная характеристика двигателя на дизельном топливе

Для удобства расчетов теплового баланса двигателя на дизельном топливе представим данные в виде графика на рисунке 8.

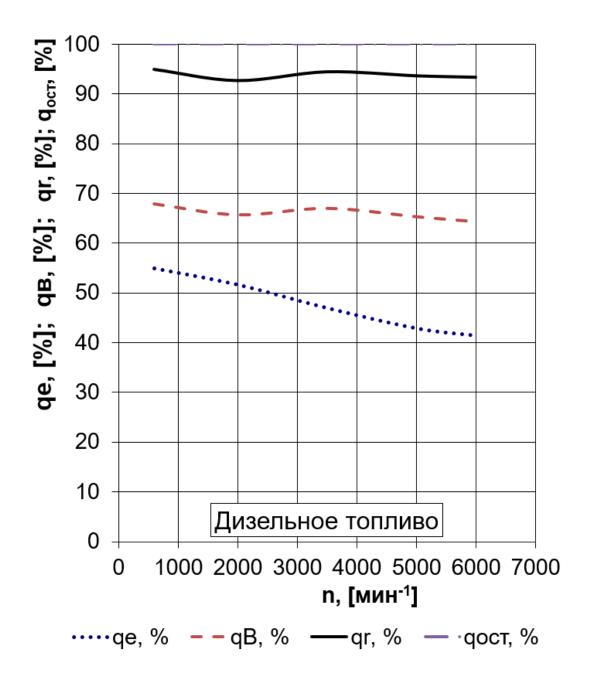


Рисунок 8 – Диаграмма внешнего теплового баланса двигателя на дизельном топливе

2.2 Тепловой расчет двигателя на газодизельном топливе

Для удобства анализа регулировочных характеристик дизельного двигателя на газодизельном топливе представим данные в виде таблицы 8. Для удобства анализа термохимических характеристик газодизельного топлива представим их в виде таблицы 9.

Таблица 8 — Регулировочные характеристики дизельного двигателя на газодизельном топливе

Название параметра, размерность	Условное обозначение	Значение характеристики				
Частота вращения, мин ⁻¹	n	600	2000	3500	5000	6000
Угол опережения впрыска топлива, ° ПКВ	Θ	10	12	15	18	20
Коэффициент избытка воздуха	α	1	1	1	1	1
Температура подогрева заряда в цилиндре ДВС, °С	ΔΤΝ	1,3736	1,3736	1,5262	1,5262	1,5262
Действительная политропа сжатия	$n_{_{ m I\!\! /}}$	1,3603	1,3604	1,3605	1,3606	1,3605
Предполагаемая температура остаточных газов, К	T_{r}	970	1010	1020	1040	1055
Продолжительность горения, ° ПКВ	фг	48	55	60	65	70
Показатель характера сгорания	m	3	3	3	3	3
Степень сжатия	3	14	14	14	14	14
Коэффициент эффективности сгорания топлива	ξ	0,86	0,86	0,86	0,86	0,86

Таблица 9 – Термохимические характеристики топлива – газодизель

Название характеристики	Условное обозначение	Значение характеристики							
Частота вращения, мин ⁻¹	n	600	2000	3500	5000	6000			
	Н	0,23821	0,24083	0,24346	0,24477	0,24608			
Массовое	С	0,75955	0,75738	0,75520	0,75411	0,75303			
содержание	O	0,00038	0,00030	0,00023	0,00019	0,00015			
элементов в топливе	S	0,00033	0,00027	0,00020	0,00017	0,00013			
	N	0,00153	0,00122	0,00092	0,00076	0,00061			
Молекулярная масса топлива	т, кг/моль	35,06024	31,25679	27,45334	25,55162	23,64989			
Низшая теплота сгорания, МДж/кг	H_{u}	50293,784	50490,333	50686,881	50785,156	50883,430			
Теоретически необходимое количество воздуха	Lo, кмоль возд./кг топлива	0,591	0,593	0,595	0,596	0,597			
для сгорания 1 кг топлива	Lo, кг возд./кг топлива	17,090	17,157	17,223	17,256	17,289			
I/	Mc CO	0,0633	0,0631	0,0629	0,0628	0,0628			
Количество	MH_2O	0,1191	0,1204	0,1217	0,1224	0,1230			
компонента продуктов сгорания, кмоль /кг	MN_2	0,4677	0,4695	0,4714	0,4723	0,4732			
сторания, кмоль / кт	MO_2	0	0	0	0	0			
Общее количество	M_2 кмоль								
продуктов сгорания	пр. сг./кг	0,6501	0,6531	0,6560	0,6575	0,6590			
топлива,	топлива								
Коэффициент изменения гор. смеси	μ_0	1,0502	1,0452	1,0387	1,0347	1,0301			

Для удобства расчетов цикла дизельного двигателя на газодизельном топливе представим данные в виде таблицы 10.

Таблица 10 – Расчет цикла дизельного двигателя на газодизельном топливе

	Условное					
Название параметра	обозначение		Значе	ние характе	ристики	
Частота вращения	n, мин ⁻¹	600	2000	3500	5000	6000
Давление остаточных газов	Pr, MΠa	0,1037	0,1058	0,1106	0,1180	0,1244
Температура подогрева	$\Delta T_{ m N}$, K	10,7895	8,9474	6,9737	5,0000	3,6842
Средняя скорость движения заряда	$\omega_{_{B\Pi}},_{M}/c$	3,9786	13,3639	23,3868	33,4096	40,0916
Давление в конце впуска	Ра, МПа	0,1000	0,0998	0,0994	0,0987	0,0019
Коэффициент остаточных газов	$\gamma_{\rm r}$	0,0347	0,0998	0,0994	0,0987	0,0981
Коэффициент наполнения	η_V	0,8577	0,0345	0,0341	0,0351	0,0366
Температура в конце впуска	Ta, K	320,0878	0,8804	0,9202	0,9347	0,9175
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	0,9316	318,2144	316,4402	315,5289	315,8417
Давление в конце сжатия	Р _с , МПа	3,6639	0,9353	0,9436	0,9530	0,9663
Температура в конце сжатия	T _c , K	842,8236	839,8194	837,1113	838,3136	842,6901
Политропа расширения	n_2	1,2037	1,2025	1,2031	1,2036	1,2041
Удельный объем рабочего тела в момент воспламенения	Vy, м ³ /кг	0,0757	0,0812	0,0923	0,1087	0,1244
Давление рабочего тела в момент воспламенения	Ру, МПа	3,0977	2,8515	2,4485	2,0260	1,7491
Температура рабочего тела в момент воспламенения	Ту, К	806,3041	789,2370	763,0265	738,6717	725,0780
Общая удельная теплота сгорания топлива	q _z , кДж/кг	2325,4653	2327,9363	2326,7696	2320,9855	2312,8369
Давление в процессе сгорания	Е2, МПа	69,3427	68,0080	64,9922	60,4436	56,1663
Степень расширения	δ	5,0637	4,3453	4,0988	3,8727	3,5679
Давление в конце процесса сгорания	Р _z , МПа	3,8817	3,3216	2,9510	2,5587	2,1613
Гемпература в конце процесс сгорания	T _z , K	2358,7361	2392,8692	2347,9101	2305,9097	2261,5480
Давление в конце процесса расширения	Рь, МПа	0,5509	0,5678	0,5406	0,5015	0,4672
Гемпература в конце процесс расширения	T _b , K	1695,1237	1777,2446	1763,1021	1750,2945	1744,3669
Теоретическая индикаторная работа цикла	L _т , кДж	1,3223	1,2214	1,2376	1,2718	1,2789
Расчетное среднее индикаторное давление	РіТ, МПа	1,5165	1,3724	1,3295	1,2739	1,1945
Индикаторный коэффициент полезного действия	ηi	0,5313	0,4784	0,4635	0,4669	0,4750
Удельный индикаторный расход топлива	g _i , г/кВт*ч	134,7362	149,0256	153,2512	151,8240	148,9361
Давление механических потерь	P _м , МПа	0,0530	0,0973	0,1447	0,1922	0,2238
Средняя скорость поршня	Сп, м/с	1,6800	5,6000	9,8000	14,0000	16,8000
Среднее эффективное давление	Ре, МПа	1,4635	1,2751	1,1848	1,0817	0,9707
Механический КПД	ηм	0,9651	0,9291	0,8911	0,8491	0,8126
Эффективный КПД	ηе	0,5127	0,4445	0,4130	0,3965	0,3860
Удельный эффективный расход топлива	g _e , г/кВт*ч	139,6142	160,3951	171,9731	178,8008	183,2819
Эффективная мощность	N_e , к B т	11,1535	32,3929	52,6727	68,6986	73,9760
Часовой расход топлива	$G_{\scriptscriptstyle m T}$, кг/ч	1,5572	5,1957	9,0583	12,2834	13,5585
Крутящий момент	Ме, Н*м	177,5142	154,6648	143,7107	131,2047	117,7364

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 9) для дизельного двигателя на газодизельном топливе.

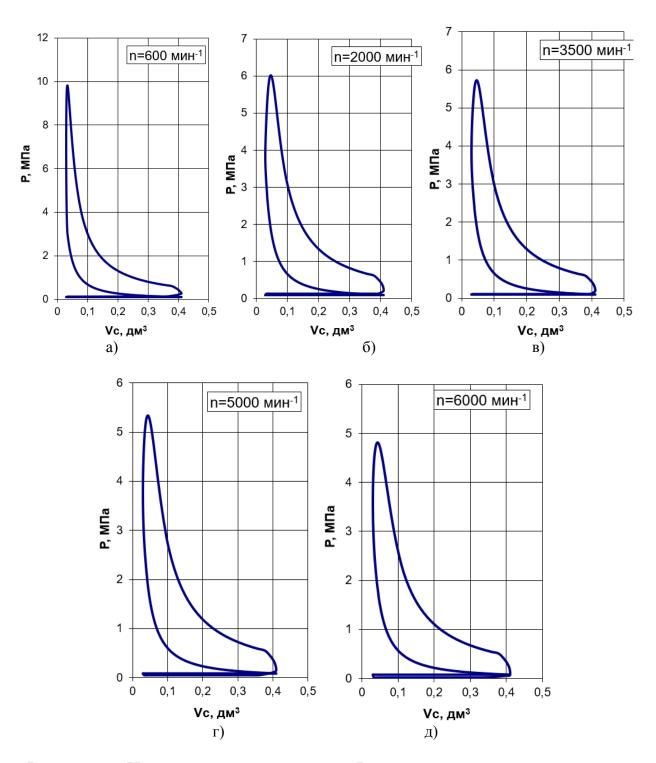


Рисунок 9 — Индикаторные диаграммы в P-V координатах, для дизельного двигателя на газодизельном топливе: (a) 600; (б) 2000; (в) 3500; (г) 5000 и (д) 6000 мин^{-1} .

По результатам расчетов построим внешнюю скоростную характеристику (рисунок 10) для дизельного двигателя на газодизельном топливе.

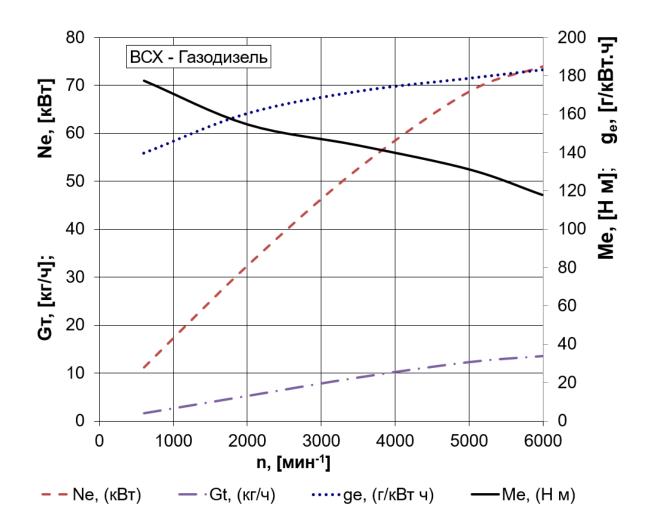


Рисунок 10 — Внешняя скоростная характеристика дизельного двигателя на газодизельном топливе

Для удобства расчетов теплового баланса дизельного двигателя на газодизельном топливе представим данные в виде графика (рисунок 11).

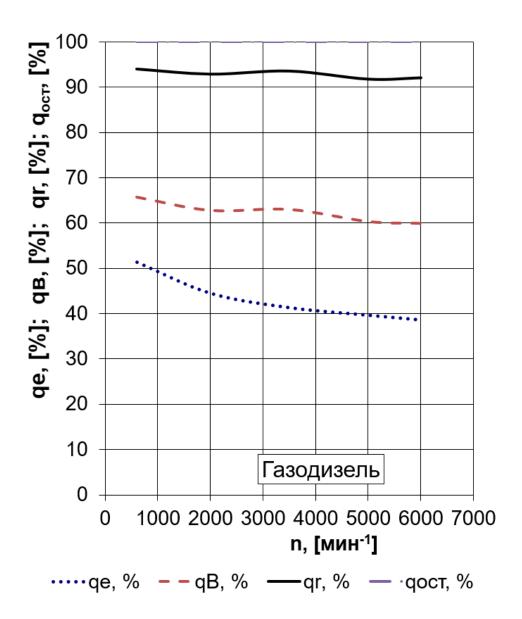


Рисунок 11 — Диаграмма внешнего теплового баланса дизельного двигателя на газодизельном топливе

Выводы по второму разделу

Проведенные расчеты трёхцилиндрового дизельного двигателя на газодизельном топливе и на дизельном топливе, показали некоторое снижение эффективных показателей работы двигателя при переходе с дизельного топлива на альтернативное топливо — газодизель.

3 Кинематический и динамический расчет кривошипно-шатунного механизма двигателя

3.1 Кинематический расчет кривошипно-шатунного механизма двигателя

Кинематический расчет для центрального кривошипно-шатунного механизма проектируемого двигателя (радиус кривошипа 42 мм, а длина шатуна 135 мм) проводился по известным методикам приведенным в [1,2], при частоте вращения коленчатого вала 6000 мин⁻¹.

Результаты расчета перемещения, скорости и ускорения поршня приведены на рисунках 12, 13 и 14.

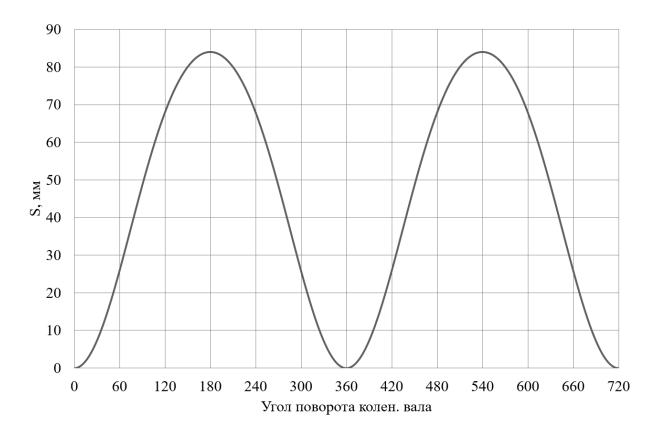


Рисунок 12 – Диаграмма изменения хода поршня

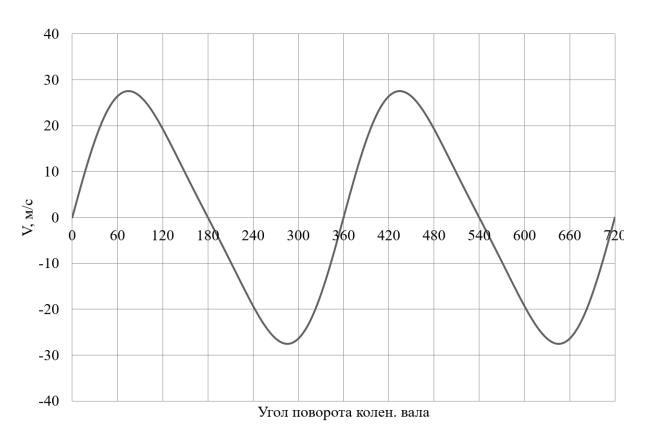


Рисунок 13 – Диаграмма изменения скорости поршня

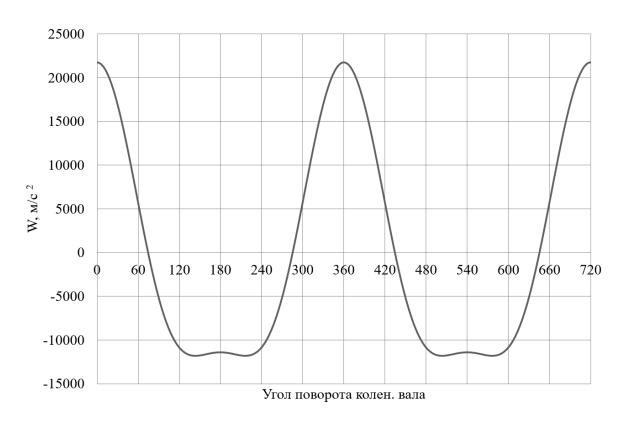


Рисунок 14 – Диаграмма изменения ускорения поршня

32

По результатам кинематического расчета мы можем определить инерционные силы в динамическом расчете.

3.2 Динамический расчет кривошипно-шатунного механизма двигателя

Динамический расчет кривошипно-шатунного механизма проектируемого двигателя проводился при частоте вращения коленчатого вала 6000 мин⁻¹, при работе на обоих рассматриваемых топливах – дизельном и газодизеле (96% КПГ и 4% дизельного топлива по массе), результаты приведение масс кривошипно-шатунного механизма по двух массовой схеме показаны в таблице 11.

Таблица 11 – Приведение масс кривошипно-шатунного механизма

Параметр	Величина
Площадь поршня, M^2	0,004536
Удельная масса поршня, $\kappa \Gamma / M^2$	80
Масса поршневой группы, кг	0,36292
Удельная масса шатуна, кг/м ²	130
Масса шатуна, кг	0,5897398
Масса шатуна, сосредоточенная на оси поршневого	0,162
пальца, кг	
Масса шатуна, сосредоточенная на оси кривошипа, кг	0,428
Удельная масса одного колена вала, кг/м ²	140
Масса неуравновешенных частей одного колена вала,	0,6351
КГ	
Массы, совершающие возвратно-поступательное	0,5251
движение	
Массы, совершающие вращательное движение	1,06267
Центробежная сила инерции вращающихся масс	
шатуна, Н	-7089,37
Центробежная сила инерции вращающихся масс	
кривошипа, Н	-10530,62
Центробежная сила инерции вращающихся масс, Н	-17619,99

Результаты расчета приведены в виде графиков. На рисунке 15 приведены силы инерции возвратно-поступательного движения.

В таблице 12 приведены силы, действующие на поршневой палец и крутящий момент трехцилиндрового двигателя.

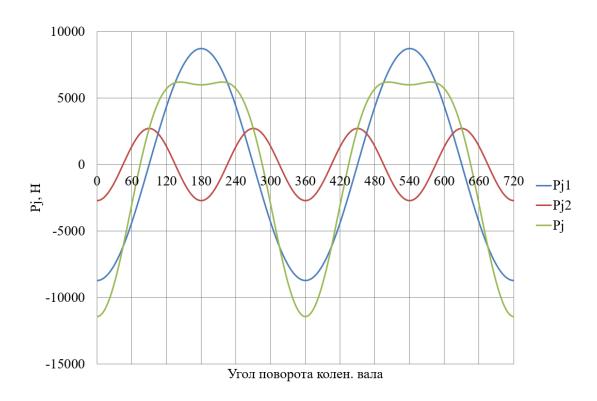


Рисунок 15 — Силы инерции возвратно-поступательного движения поршня и шатуна

Таблица 12 – Суммарные силы, действующие на поршневой палец и крутящий момент двигателя на дизельном топливе

$\phi_{\scriptscriptstyle KB}$	N, H	K, H	Z, H	T, H	Мкр.ц1	$\phi_{\scriptscriptstyle KB}$	N, H	K, H	Z, H	T, H	Мкр.ц1
0	0	-3825,2	-3825	0	0	370	1225,3	27251	26597	5933,9	172,08
10	-168	-3735,5	-3646	-813,4	-23,59	380	1517,9	17140	15524	7265,7	210,71
20	-307,5	-3472	-3145	-1472	-42,68	390	1210,2	9347,8	7422,2	5682,7	164,8
30	-395	-3051,3	-2423	-1855	-53,79	400	852,59	5122,6	3321,4	3900	113,1
40	-416,2	-2500,6	-1621	-1904	-55,21	410	615,2	3101,6	1482,8	2724,2	79,001
50	-368,1	-1855,6	-887,1	-1630	-47,27	420	515,9	2300,7	674,26	2199,6	63,79
60	-259,8	-1158,4	-339,5	-1108	-32,12	430	515,21	2117,5	218,32	2106,2	61,08
70	-110,5	-454,05	-46,81	-451,6	-13,1	440	563,64	2210,4	-183,9	2202,7	63,88
80	54,604	214,14	-17,82	213,39	6,1884	450	625,55	2415,9	-625,5	2333,5	67,672
90	209,49	809,06	-209,5	781,47	22,663	460	672,76	2638,3	-1106	2395,5	69,47
100	332,57	1304,2	-546,5	1184,2	34,341	470	687,24	2824,5	-1583	2339,4	67,842
110	410,3	1686,3	-945	1396,7	40,503	480	661,74	2951,1	-2011	2159,7	62,632
120	438,58	1955,8	-1333	1431,4	41,51	490	598,09	3015,3	-2358	1879,5	54,507
130	421,53	2125,2	-1662	1324,7	38,415	500	504,05	3028,5	-2612	1533,4	44,469
140	368,65	2215	-1910	1121,5	32,524	510	360,2	2782,2	-2569	1067,5	30,957
150	291,3	2250	-2078	863,27	25,035	520	205,85	2324,4	-2246	598,44	17,355
160	199,65	2254,4	-2178	580,43	16,832	530	104,23	2318,1	-2299	299,48	8,685
170	101,09	2248,3	-2229	290,47	8,4236	540	2E-13	2314,5	-2314	9E-13	2E-14
180	7E-14	2244,8	-2245	3E-13	8E-15	550	-104,2	2318,1	-2299	-299,5	-8,685
190	-101,2	2250	-2231	-290,7	-8,43	560	-205,8	2324,4	-2246	-598,4	-17,35
200	-200,3	2261,3	-2185	-582,2	-16,88	570	-300,4	2320,3	-2143	-890,2	-25,82
210	-293,4	2265,9	-2092	-869,4	-25,21	580	-380,4	2285,7	-1971	-1157	-33,56
220	-373,6	2244,7	-1936	-1137	-32,96	590	-435,6	2196,3	-1717	-1369	-39,7
230	-431,4	2174,9	-1701	-1356	-39,31	600	-454,6	2027,4	-1382	-1484	-43,03
240	-456	2033,6	-1386	-1488	-43,16	610	-427,8	1758,2	-985,3	-1456	-42,23
250	-438,8	1803,3	-1011	-1494	-43,31	620	-350,9	1376,3	-576,7	-1250	-36,24
260	-376,5	1476,3	-618,6	-1340	-38,87	630	-228,2	881,22	-228,2	-851,2	-24,68

Продолжение таблицы 12

	1	1									
270	-274,4	1059,9	-274,4	-1024	-29,69	640	-72,98	286,22	-23,82	-285,2	-8,272
280	-147,9	580,11	-48,27	-578,1	-16,76	650	92,993	-382,19	-39,41	380,16	11,025
290	-21,04	86,465	8,9147	-86	-2,494	660	243,73	-1086,9	-318,5	1039,2	30,137
300	76,414	-340,77	-99,87	325,81	9,4484	670	353,96	-1784,5	-853,1	1567,4	45,454
310	113,34	-571,39	-273,2	501,86	14,554	680	404,43	-2430	-1576	1850	53,649
320	62,325	-374,47	-242,8	285,09	8,2676	690	385,94	-2981,1	-2367	1812,2	52,554
330	-91,58	707,35	561,64	-430	-12,47	700	301,28	-3402	-3081	1442,1	41,82
340	-317,1	3581	3243,3	-1518	-44,02	710	164,82	-3665,7	-3578	798,21	23,148
350	-589,6	13114	12799	-2856	-82,81	720	5E-13	-3755,5	-3756	2E-12	5E-14
360	-2E-12	27476	27476	-7E-12	-2E-13	Мкр.ц.Суммарный Н*м					28,84

В таблице 13 приведены силы, действующие на поршневой палец и крутящий момент двигателя при работе на газодизельном цикле.

Таблица 13 – Суммарные силы, действующие на поршневой палец и крутящий момент двигателя на газодизельном цикле

$\phi_{\scriptscriptstyle KB}$	N, H	K, H	Z, H	T, H	Мкр.ц1	Фкв	N, H	К, Н	Z, H	T, H	Мкр.ц1
0	0	-3825,2	-3825	0	0	370	368,57	8197,2	8000,5	1785	51,764
10	-168	-3735,5	-3646	-813,4	-23,59	380	850,24	9600,8	8695,6	4069,7	118,02
20	-307,5	-3472	-3145	-1472	-42,68	390	1100,2	8498,4	6747,8	5166,3	149,82
30	-395	-3051,3	-2423	-1855	-53,79	400	1001,5	6017,1	3901,4	4581	132,85
40	-416,2	-2500,6	-1621	-1904	-55,21	410	812,98	4098,7	1959,5	3600	104,4
50	-368,1	-1855,6	-887,1	-1630	-47,27	420	724,84	3232,4	947,33	3090,5	89,624
60	-259,8	-1158,4	-339,5	-1108	-32,12	430	710,63	2920,6	301,12	2905,1	84,247
70	-110,5	-454,05	-46,81	-451,6	-13,1	440	740,52	2904	-241,7	2894	83,925
80	54,604	214,14	-17,82	213,39	6,1884	450	782,53	3022,2	-782,5	2919,1	84,655
90	209,49	809,06	-209,5	781,47	22,663	460	809,95	3176,3	-1331	2884	83,636
100	332,57	1304,2	-546,5	1184,2	34,341	470	805,24	3309,5	-1855	2741	79,49
110	410,3	1686,3	-945	1396,7	40,503	480	761,28	3394,9	-2314	2484,6	72,053
120	438,58	1955,8	-1333	1431,4	41,51	490	679,87	3427,6	-2680	2136,5	61,959
130	421,53	2125,2	-1662	1324,7	38,415	500	568,69	3416,9	-2947	1730,1	50,172
140	368,65	2215	-1910	1121,5	32,524	510	408,38	3154,4	-2913	1210,3	35,098
150	291,3	2250	-2078	863,27	25,035	520	206,08	2327	-2249	599,12	17,374
160	199,65	2254,4	-2178	580,43	16,832	530	104,34	2320,7	-2301	299,82	8,6947
170	101,09	2248,3	-2229	290,47	8,4236	540	2E-13	2317	-2317	9E-13	2E-14
180	7E-14	2244,8	-2245	3E-13	8E-15	550	-104,3	2320,7	-2301	-299,8	-8,695
190	-101,2	2249,9	-2231	-290,7	-8,43	560	-206,1	2327	-2249	-599,1	-17,37
200	-200,2	2261	-2185	-582,1	-16,88	570	-300,7	2322,9	-2145	-891,2	-25,85
210	-293,3	2265,4	-2092	-869,2	-25,21	580	-380,9	2288,3	-1973	-1159	-33,6
220	-373,4	2243,7	-1935	-1136	-32,95	590	-436,2	2198,9	-1719	-1371	-39,75
230	-431	2173	-1699	-1355	-39,28	600	-455,2	2030	-1383	-1486	-43,08
240	-455,3	2030,5	-1384	-1486	-43,1	610	-428,4	1760,8	-986,7	-1458	-42,29
250	-437,5	1798,2	-1008	-1489	-43,19	620	-351,6	1379	-577,8	-1252	-36,31
260	-374,3	1467,9	-615,1	-1333	-38,65	630	-228,9	883,9	-228,9	-853,8	-24,76
270	-270,8	1045,7	-270,8	-1010	-29,29	640	-73,67	288,89	-24,04	-287,9	-8,349
280	-141,7	555,62	-46,24	-553,7	-16,06	650	92,345	-379,53	-39,13	377,51	10,948
290	-10,3	42,339	4,3652	-42,11	-1,221	660	243,14	-1084,3	-317,8	1036,7	30,063
300	95,298	-424,98	-124,6	406,32	11,783	670	353,44	-1781,9	-851,9	1565,1	45,387
310	147,65	-744,4	-355,9	653,82	18,961	680	404	-2427,3	-1574	1848	53,591
320	127,01	-763,1	-494,8	580,97	16,848	690	385,6	-2978,5	-2365	1810,6	52,508
330	32,724	-252,77	-200,7	153,66	4,4562	700	301,05	-3399,4	-3079	1441	41,788
340	-97,26	1098,2	994,68	-465,5	-13,5	710	164,7	-3663,1	-3575	797,65	23,132
350	-142,2	3162,5	3086,6	-688,6	-19,97	720	5E-13	-3825,2	-3825	2E-12	5E-14
360	-4E-13	5616,4	5616,4	-1E-12	-4E-14	Мкр.	ц.Суммар	ный Н*м			79,26

В таблице 14 приведены силы, действующие на шатунную и коренные шейки коленчатого вала двигателя на дизельном топливе.

Таблица 14 — Силы, действующие на шатунную и коренные шейки коленчатого двигателя на дизельном топливе

	Rш.ш.,	R к.ш1(5)	Rк.ш2(4),	Rк.ш3,		Rш.ш.,	Rк.ш1(5)	Rк.ш2(4),	Rк.ш3,
$\phi_{\kappa \scriptscriptstyle B}$	Н	, Н	Н	H	$\phi_{\kappa \scriptscriptstyle B}$	Н	, н	Н	H
0	21766,18	17012,583	0	1,68E-12	370	4813,797	8510,6763	9035,826108	25951,03
10	21298,22	16739,217	10238,77657	25865,58	380	6001,64	9091,178	6841,208156	25308,49
20	19936,27	15953,546	9581,622779	25210,26	390	8468,115	10363,015	3809,939808	24684,46
30	17808,38	14759,86	7823,369607	24586,69	400	9306,783	10759,015	2079,027729	24188,96
40	15138,8	13334,687	5263,105179	24116,41	410	8911,112	10561,243	585,7115352	23906,66
50	12276,97	11925,55	2791,722828	23902,9	420	8223,035	10240,714	2294,998269	23846,99
60	9763,579	10826,223	3395,684678	23986,88	430	8383,717	10262,363	4244,306123	23916,65
70	8357,853	10288,784	6054,350338	24329,4	440	9494,438	10679,72	5262,326308	23933,23
80	8564,699	10380,785	8340,33959	24842,62	450	11131,21	11385,681	4803,85043	23676,69
90	9918,49	10937,055	9671,918359	25450,21	460	12789,73	12183,814	2636,538016	22957,53
100	11581,46	11689,755	9946,826857	26126,99	470	14164,2	12906,388	1743,122671	22044,63
110	13045,42	12416,421	9365,861149	26871,08	480	15133,69	13458,817	5978,006165	21035,43
120	14115,13	12991,577	8356,206698	27615,35	490	15701,05	13815,486	10246,07269	20593,84
130	14770,46	13374,853	7556,281519	28218,87	500	15941,88	13999,018	9663,479769	22617,03
140	15081,4	13582,532	7045,818705	28239,9	510	15812,19	13982,838	7106,914228	25230,38
150	15156,98	13660,883	6926,520839	27448,58	520	15241,03	13729,62	6056,449896	26677,1
160	15111,5	13665,338	6948,055049	25703,18	530	15171,19	13710,181	6434,485514	27214,69
170	15041,52	13645,464	6937,408246	23431,02	540	15140,52	13699,754	6919,664245	27188,23
180	15010,79	13634,889	6879,451655	20862,82	550	15171,19	13710,181	7195,42676	26915,59
190	15044,47	13646,934	6812,370775	18808,1	560	15240,98	13729,593	7278,152733	26337,22
200	15123,49	13671,286	6710,091992	19547,31	570	15286,06	13724,306	7115,344827	25715,29
210	15184,74	13674,521	6470,859675	21460,47	580	15209,7	13644,622	6688,425749	25057,74
220	15132,72	13607,366	6011,247197	22577,45	590	14897,26	13434,869	6092,268438	24392,16
230	14854,57	13414,666	5370,703869	22967,61	600	14239,02	13048,368	5589,032032	23912,29
240	14242,71	13050,061	4783,543004	23072,81	610	13163,69	12468,174	5536,930003	23885,44
250	13227,24	12495,985	4641,254805	23433,34	620	11688,76	11733,656	6071,279999	24350,68
260	11822,65	11788,412	5140,883037	24130,31	630	10003,85	10969,006	6739,782309	25068,83
270	10198,34	11041,478	5983,239538	25053,18	640	8607,476	10395,781	6874,528311	25693,07
280	8780,144	10454,191	6670,00105	25985,34	650	8336,835	10283,012	6910,774374	26436,87
290	8258,746	10258,565	6809,706607	26756,79	660	9687,129	10800,039	6067,989824	26968,31
300	9066,597	10582,899	6221,11608	27297,89	670	12170,73	11883,42	4358,639754	27285,3
310	10762,87	11324,478	5019,227492	27616,74	680	15019,13	13282,027	2379,737445	27418,84
320	12483,24	12170,521	3733,309631	27751,04	690	17682,74	14700,88	2876,138128	27394,08
330	13443,03	12718,866	3273,17325	27656,76	700	19807,97	15891,009	5491,174304	27224,92
340	12984,37	12573,791	3947,211741	27253,16	710	21168,8	16674,894	7948,158614	26914,19
350	11294,59	11770,956	5189,555895	26960,34	720	21636,45	16947,718	9590,126489	26453,5
360	8103,395	10181,192	7187,089434	26519,82		-			-

В таблице 15 приведены силы, действующие на шатунную и коренные шейки коленчатого вала двигателя на газодизельном цикле.

Таблица 15 – Силы, действующие на шатунную и коренные шейки коленчатого двигателя на газодизельном цикле

Фкв	Rш.ш., Н	Rк.ш1(5) , H	Rк.ш2(4) , Н	Rк.ш3, Н	Фкв	Rш.ш., Н	Rк.ш1(5)	Rк.ш2(4) , Н	Rк.ш3, Н
0	664,0803	2E-14	671,148	0	370	24823,11	0,906	614,321	24695,9
10	652,9433	-24,464	614,321	474,736	380	28901,5	2,7514	615,36	26799,7
20	620,3813	-51,4	615,36	439,053	390	27178,05	6,8203	616,372	22374,9
30	568,9254	-83,196	616,372	383,545	400	21165	14,956	616,568	14523,3
40	502,7594	-122,2	616,568	332,206	410	15221,36	29,529	615,342	7889,88
50	427,7592	-171,05	615,342	318,439	420	11297,01	53,075	612,565	3705,66
60	351,7636	-233,32	612,565	357,13	430	8788,929	87,604	608,685	2065,8
70	285,2265	-314,54	608,685	425,807	440	7104,643	133,66	604,52	3834,85
80	241,2335	-423,61	604,52	494,15	450	5944,89	189,39	600,902	6882,37
90	229,968	-574,18	600,902	543,357	460	5127,582	249,9	599,28	10894,3
100	247,7228	-785,85	599,28	565,806	470	4539,875	307,32	607,045	15705
110	279,9063	-1084,4	607,045	562,038	480	4110,637	351,69	656,69	21306,1
120	314,1822	-1499,8	656,69	361,536	490	3794,524	372,69	842,26	27710,1
130	344,2041	-2056,9	842,26	326,425	500	3562,528	361,91	1323,06	31721,9
140	367,6889	-2746,8	1323,06	289,784	510	2772,609	315,05	2276,23	29293,3
150	384,4851	-3442,9	2276,23	259,145	520	713,3496	233,4	3837,49	21642,9
160	395,3853	-3721	3837,49	237,49	530	529,9413	124,28	5931,63	15497,5
170	401,4012	-2793,2	5931,63	222,894	540	341,2465	2E-13	8641,25	11413,6
180	403,3107	-5E-12	8641,25	210,704	550	225,7616	-183,65	11794,1	8822,99
190	405,6547	5182,6	11794,1	199,428	560	222,6899	46,553	13872,3	7096,7
200	412,5614	11759	13872,3	191,735	570	217,2336	-423,61	13073,2	5898,22
210	423,7574	15928	13073,2	186,34	580	209,4859	-5E-12	10150,1	5047,93
220	439,1194	15644	10150,1	179,717	590	200,8595	4702,6	7278,84	4434,56
230	459,1557	13093	7278,84	168,293	600	195,4083	2,7514	5428,64	3986,72
240	485,7068	10670	5428,64	149,728	610	200,5813	351,69	4291,01	3656,25
250	523,0074	8704,4	4291,01	122,944	620	224,7333	233,4	3562,94	3408,56
260	579,4402	7095,3	3562,94	89,3863	630	271,4833	124,28	3088,86	2593,86
270	670,5188	5782,2	3088,86	73,9668	640	337,941	2E-13	2773,64	491,926
280	823,7013	4702,6	2773,64	153,064	650	417,9634	-183,65	2558,82	248,565
290	1085,678	3804	2558,82	349,732	660	504,7881	46,553	2408,51	20,865
300	1533,988	3044,7	2408,51	725,349	670	591,834	-423,61	2300,85	233,99
310	2297,637	2392,7	2300,85	1429,04	680	672,9186		2222,82	344,645
320	3589,959	1823	2222,82	2721,32	690	742,4656	4702,6	1856,81	455,234
330	5728,022	1057,6	1856,81	4994,07	700	795,7668	2,7514	850,242	552,02
340	9000,501	135,8	850,242	8617,94	710	829,243	351,69	764,063	621,901
350	13273,96	41,933	764,063	13403,9	720	664,0803	0	671,148	478,968
360	18544,33	4E-14	671,148	18971,8					

На рисунке 16 приведено сравнение суммарной силы, действующую на шатунную шейку в полярных координатах. А на рисунке 17 приведено сравнение суммарных сил, действующих на 1-ю коренную шейку в полярных координатах.

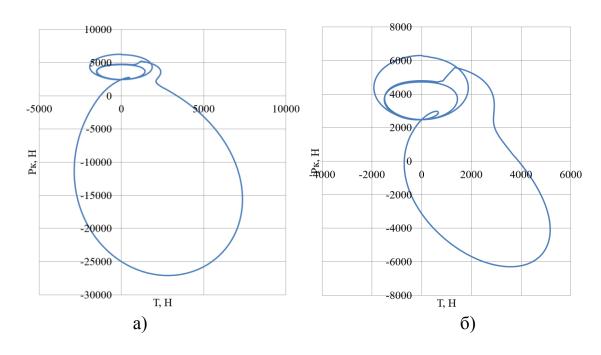


Рисунок 16 – Суммарная сила, действующая на шатунную шейку в полярных координатах: (a) на дизельном топливе; (б) на газодизельном цикле

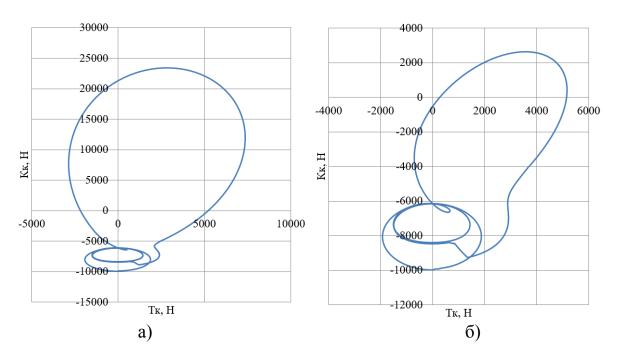


Рисунок 17 – Суммарные силы, действующие на 1-ю коренную шейку в полярных координатах: (a) на дизельном топливе; (б) на газодизельном цикле

Выводы по 3-му разделу

Переход на альтернативное топливо, двухтопливная работа двигателя, КПГ подается во впускной трубопровод, а воспламеняется запальной дозой дизельного топлива — такой цикл позволяет значительно снизить нагрузки на кривошипно-шатунный механизм.

4 Анализ токсичности отработавших газов и эффективных показателей для газодизельного двигателя, полученных на виртуальной модели

Анализ токсичности отработавших газов при работе одноцилиндрового газодизельного двигателя проводился по модели, представленной на рисунке 18, выполненной с использованием ведущего на рынке программного обеспечения для моделирования двигателей WAVE Ricardo 17.1. Реализована прогнозирующая модель горения, использующая квазиразмерный процесс распространения пламени. Трехмерная модель формы камеры сгорания используется для расчета площади распространения пламени. Особое внимание при проверке модели уделялось давлению в цилиндре во время газообмена и сгорания для оценки производительности впускной и выпускной систем, а также прогнозирующей модели сгорания.

Для моделирования сгорание дизельного топлива с предварительным впрыском, используется расширенная подмодель Вибе для дизельного двигателя. Расширенная модель имеет дело только с разделенным впрыском, состоящим из двух частей: предварительным и основным впрыском.

Сначала модель проверяется, чтобы увидеть, разделена ли скорость впрыска топлива на две отдельные части. Если впрыск однократный, модель предварительным горения будет отключена. Если впрыск состоит из двух или более отдельных частей, модель будет определять время начала и соотношения массы топлива в предварительной и основной фазе впрыска. Затем предполагается, что все топливо, впрыскиваемое предварительно, сгорает как по модели гомогенного горения, а все топливо основного впрыска — как диффузионное горение с диффузионным догоранием. Две отдельные функции Вибе используются для предварительного и основного сгорания. Масса топлива горит в соответствии с нормализованной площадью под кривой впрыска для каждой фазы сгорания.

Для сгорания с предварительным впрыском задержка зажигания имеет те же параметры, что и для стандартной дизельной подмодели сгорания Вибе. Для основного сгорания нет задержки зажигания. Все параметры модели, включая формы и продолжительность горения, такие же, как у стандартной дизельной подмодели Вибе.

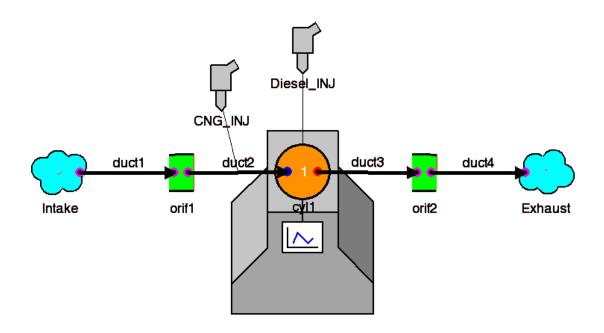


Рисунок 18 – Структура модели виртуального газодизельного двигателя

Это расширение модели предназначено для предоставления простого инструмента для сгорания дизельного топлива с предварительным впрыском. У него есть следующие ограничения, а именно: если разделенный впрыск, состоящий из двух частей, состоит из основного впрыска и дополнительного впрыска (случай 1), или небольшое количество топлива впрыскивается в течение периода предварительного впрыска (случай 2), фактические комбинированные модели скоростей горения предварительно смешанного и диффузионного типа могут происходят в период основного впрыска. Однако эта модель сгорания дизельного топлива с предварительным впрыском может обеспечить либо единственный пик горения предварительно смешанного топлива для случая (1), либо простую кривую диффузионного горения для случая **(2)**. В ЭТИХ ДВУХ ситуациях результаты этой модели

предварительным впрыском хуже, чем исходная подмодель дизельного топлива Вибе с однократным впрыском топлива.

Кроме того, в случае раздельного впрыска основная фаза сгорания всегда имеет некоторую задержку зажигания, но в данной модели это игнорируется.

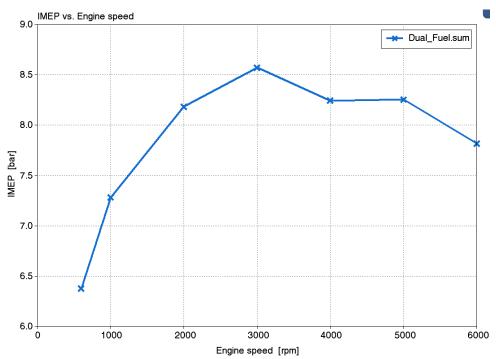
Многотопливное (двухтопливное) сгорание и модель Вибе

При многотопливном сгорании каждое топливо должно быть настроено на предварительное смешивание или без предварительного смешивания в соответствии с его смешиванием с воздухом для сгорания в цилиндре. В настоящее время пользователь может установить только одно топливо как «предварительно смешанное (гомогенное)». Используются входные данные модели горения Мульти-Вибе, но вместо сборки одного профиля горения из кривых, многотопливное сжигание объединяет два независимых профиля горения (горение с предварительным смешиванием и сгорания без предварительного смешивания) из входных кривых.

Таже проведен расчет скоростных характеристики газодизельного двигателя при коэффициенте избытка воздуха около 1 и около 1.4, представлены в таблицах 16 и 17.

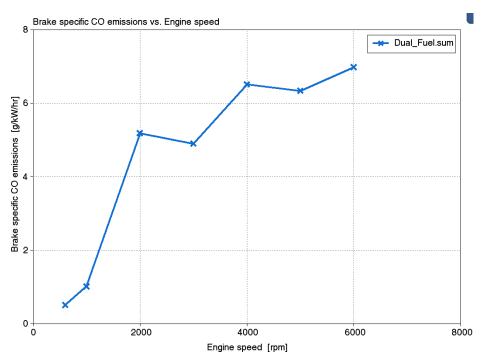
Таблица 16 – Скоростные характеристики газодизельного двигателя при коэффициенте избытка воздуха около 1

Скорость двигателя	rpm	6000	4999	4000	3000	2000	999	600
Массовый расход воздуха	kg/hr	72.5629	59.6544	45.7974	33.0008	21.6936	10.4386	6.0567
Обратный поток (закрытие)	%	1.59442	3.50925	6.39016	8.51667	9.05093	11.6796	14.3313
Обратный поток (перекрытие)	%	0.045761	0.112517	0.195364	0.0105429	0.0653229	0.0703322	0.036648
Начало горения	deg	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217
Максимальная скорость повышения		1.63925	1.62031	1.57782	1.51919	1.48141	1.37637	1.32224
давления	bar/deg							
Воздухо-топливное соотношение А/F		14.5587	14.5352	14.3296	14.2213	14.3522	14.4377	14.2416
(Дизельное топливо)								
Массовый расход топлива (ДТ)	kg/hr	0.2	0.1667	0.1333	0.1	0.0667	0.0333	0.02
Продолжительность от 0% до 10% сжигания		2.70772	2.70772	2.70772	2.74259	2.75568	2.77739	2.78294
массы топлива (ДТ)	deg							
Продолжительность от 0% до 90% сжигания		7.85833	7.85833	7.85833	7.84354	7.81129	7.78894	7.78735
массы топлива (ДТ)	deg							
Воздухо-топливное соотношение А/F (КПГ)		16.4282	16.4017	16.1697	16.0475	16.1952	16.2917	16.0704
Массовый расход топлива (КПГ)	kg/hr	4.24155	3.49046	2.71486	1.96862	1.28094	0.611679	0.359381
Продолжительность от 0% до 10% сжигания		11.1225	11.1225	11.1225	11.1251	11.1335	11.1368	11.1368
массы топлива (КПГ)	deg							
Продолжительность от 0% до 90% сжигания		31.1528	31.1528	31.1528	31.1412	31.1443	31.1381	31.1377
массы топлива (КПГ)	deg							
GMEP	bar	11.606	11.4093	10.9611	10.4374	9.9628	8.92902	7.95915
Скорость теплопередачи	W	8482.44	7095.81	5752.68	4527.9	3374.63	2201.54	1678.77
IMEP	bar	10.6064	10.879	10.7156	10.3308	9.92499	8.92019	7.95611
Перекрытие клапана	deg	75	75	75	75	75	75	75
Максимальное давление	bar	51.686	50.8835	49.111	47.1519	45.6728	42.9908	41.4773
PMEP	bar	-0.999569	-0.530294	-0.245417	-0.106541	-0.0378068	-0.00883244	-0.00303563
Объемный коэффициент наполнения	-	0.920528	0.912754	0.879955	0.854217	0.831378	0.804978	0.779657
Объемный коэффициент наполнения		0.869775	0.86251	0.831043	0.80631	0.785743	0.761039	0.73668
(только воздух)								
Остаточная газовая фракция	%	3.53224	3.81169	4.11642	4.19092	4.53876	5.05719	5.52837
Время максимального давления	deg	20.2703	20.2822	20.1768	20.0803	20.0689	19.8501	19.4579
Объемный КПД	-	0.881319	0.869445	0.834355	0.801627	0.790444	0.760695	0.735622


Таблица 17 – Скоростные характеристики газодизельного двигателя при коэффициенте избытка воздуха около 1.4

Скорость двигателя	rpm	6000	4999	4000	3000	2000	999	600
Массовый расход воздуха	kg/hr	74.4809	61.4354	47.1684	33.8962	22.2289	10.6667	6.20565
Обратный поток (закрытие)	%	1.7388	3.74385	6.6947	8.78134	9.37148	12.1296	14.8804
Обратный поток (перекрытие)	%	0.170278	0.000727677	0.13754	0.011637	0.0262012	0.0432283	0.0430298
Начало горения	deg	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217
Максимальная скорость повышения	_	2.16146	2.22701	2.19765	2.24224	2.4517	2.70827	2.7902
давления	bar/deg							
Воздухо-топливное соотношение А/F		23.6345	23.1079	22.4816	20.4704	20.4662	19.8451	19.6281
(Дизельное топливо)								
Массовый расход топлива (ДТ)	kg/hr	0.4	0.35	0.28	0.22	0.15	0.08	0.05
Продолжительность от 0% до 10% сжигания		2.70772	2.70772	2.70772	2.72369	2.75162	2.7751	2.78078
массы топлива (ДТ)	deg							
Продолжительность от 0% до 90% сжигания		7.85833	7.85833	7.85833	7.78925	7.80483	7.78868	7.78792
массы топлива (ДТ)	deg							
Воздухо-топливное соотношение А/F (КПГ)		26.6694	26.0752	25.3685	23.099	23.0944	22.3934	22.1486
Массовый расход топлива (КПГ)	kg/hr	2.43933	2.04715	1.61215	1.27347	0.830123	0.405916	0.236115
Продолжительность от 0% до 10% сжигания		11.1225	11.1225	11.1225	11.1301	11.1336	11.1352	11.1363
массы топлива (КПГ)	deg							
Продолжительность от 0% до 90% сжигания		31.1528	31.1528	31.1528	31.1429	31.1445	31.1392	31.1377
массы топлива (КПГ)	deg							
GMEP	bar	8.63597	8.6737	8.44706	8.66854	8.22083	7.28991	6.38207
Скорость теплопередачи	W	5770.83	4956.14	4116.28	3623.84	2744.8	1858.02	1415.89
IMEP	bar	7.81767	8.25406	8.2429	8.56946	8.18165	7.28031	6.37874
Перекрытие клапана	deg	75	75	75	75	75	75	75
Максимальное давление	bar	55.6784	55.3721	53.5027	53.2034	51.7934	49.3078	46.9136
PMEP	bar	-0.818301	-0.419643	-0.204151	-0.0990843	-0.0391743	-0.0095961	-0.00333456
Объемный коэффициент наполнения	-	0.930341	0.924896	0.89004	0.86062	0.841203	0.810366	0.783424
Объемный коэффициент наполнения		0.900903	0.895201	0.860848	0.829541	0.811297	0.781146	0.755456
(только воздух)	-							
Остаточная газовая фракция	%	3.40736	3.44718	3.77107	3.70424	3.90416	4.32437	4.64539
Время максимального давления	deg	15.2817	15.3812	15.5114	15.8868	15.6019	15.0643	14.4301
Объемный КПД	-	0.904614	0.895403	0.859331	0.823379	0.80995	0.777318	0.753712

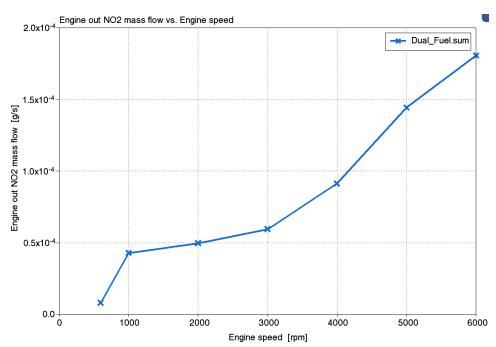
На рисунке 19 представлено среднее индикаторное давление при работе на газодизельном топливе при коэффициенте избытка воздуха около 1 и около 1.4.


При коэффициенте избытка воздуха около 1

При коэффициенте избытка воздуха около 1,4

Рисунок 19 — Среднее индикаторное давление при работе на газодизельном топливе при коэффициенте избытка воздуха около 1 и около 1.4.

На рисунке 20 представлена зависимость удельных выбросов по СО в г/кВт ч от частоты вращения при работе на газодизельном топливе при коэффициенте избытка воздуха около 1 и около 1.4.


При коэффициенте избытка воздуха около 1

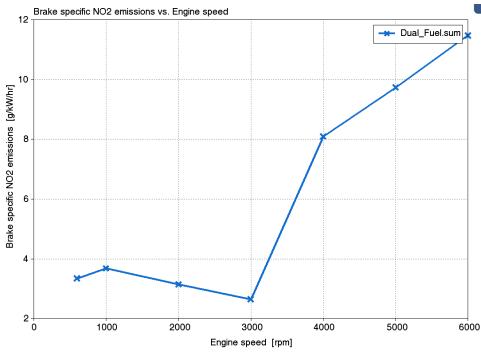
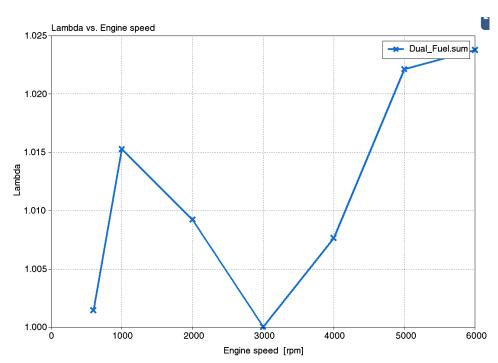

При коэффициенте избытка воздуха около 1,4

Рисунок 20 – Зависимость удельных выбросов по СО в г/кВт ч от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.

На рисунке 18 представлен график удельных выбросов по NO_2 в г/кВт ч от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.


При коэффициенте избытка воздуха около 1

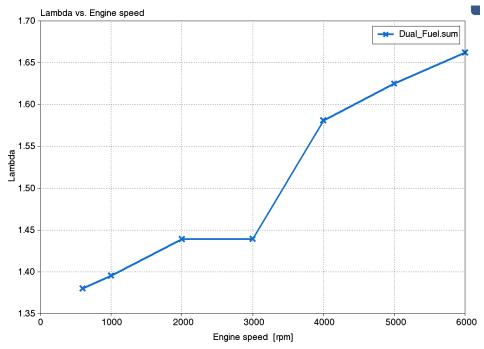

При коэффициенте избытка воздуха около 1,4

Рисунок 18 — Зависимость удельных выбросов по NO_2 в г/кВт ч от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.

На рисунке 19 представлена зависимость коэффициента избытка воздуха от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.

При коэффициенте избытка воздуха около 1

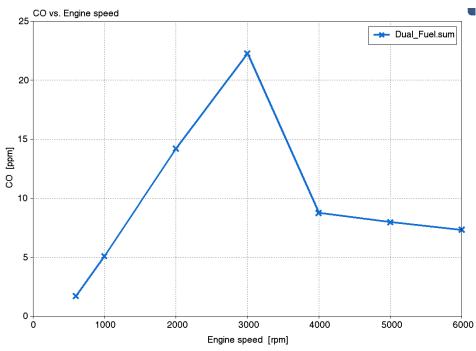
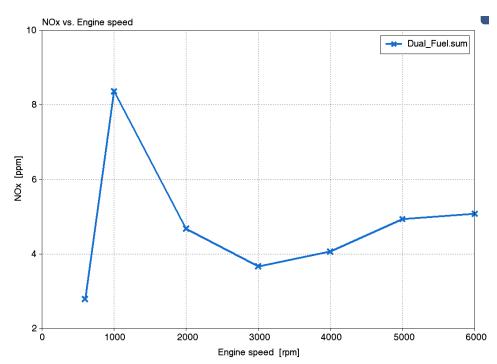

При коэффициенте избытка воздуха около 1,4

Рисунок 19 – Зависимость удельных выбросов по СН в г/кВт ч от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.

На рисунке 20 представлена зависимость концентрации СО в мил⁻¹ (ppm) от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.


При коэффициенте избытка воздуха около 1

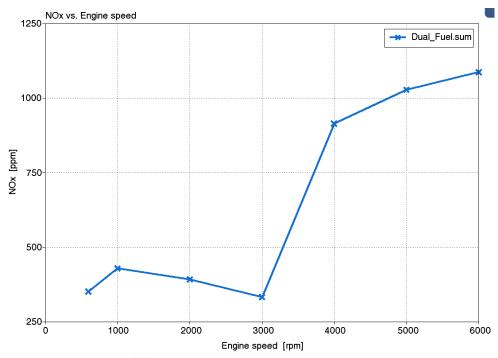
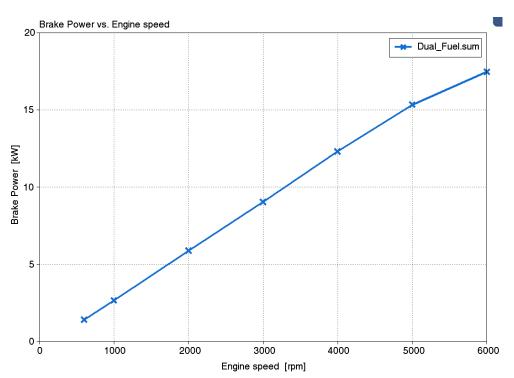

При коэффициенте избытка воздуха около 1,4

Рисунок 20 – Зависимость концентрации CO в мил⁻¹ (ppm) от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.

На рисунке 21 представлена зависимость концентрации NO в мил⁻¹ (ppm) от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.


При коэффициенте избытка воздуха около 1

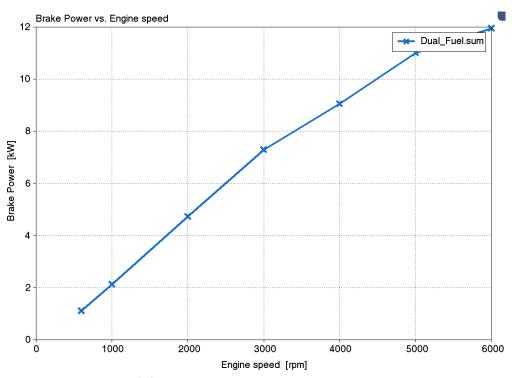
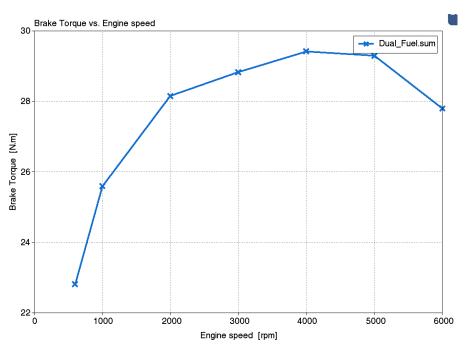

При коэффициенте избытка воздуха около 1,4

Рисунок 21 — Зависимость концентрации NO в мил⁻¹ (ppm) от частоты вращения при работе с коэффициентом избытка воздуха около 1 и около 1.4.

На рисунке 22 представлена эффективная мощность в кВт при работе с коэффициентом избытка воздуха около 1 и около 1.4.


При коэффициенте избытка воздуха около 1

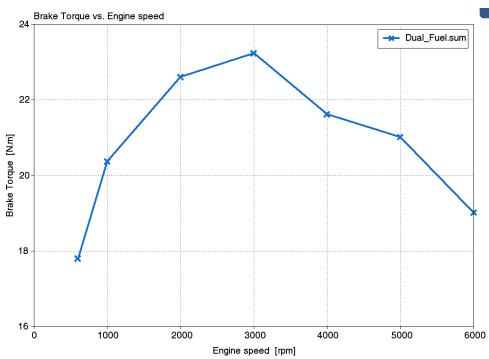

При коэффициенте избытка воздуха около 1.4

Рисунок 22 — Средняя эффективная мощность в кВт при работе с коэффициентом избытка воздуха около 1 и около 1.4.

На рисунке 23 представлен средний эффективный крутящий момент двигателя в (H м) при работе с коэффициентом избытка воздуха около 1 и около 1.4.

При коэффициенте избытка воздуха около 1

При коэффициенте избытка воздуха около 1,4

Рисунок 23 — Средний эффективный крутящий момент двигателя в (Н м) при работе с коэффициентом избытка воздуха около 1 и около 1.4.

На рисунке 24 представлен характеристики топливоподачи и процесса сгорания при работе с коэффициентом избытка воздуха около 1.

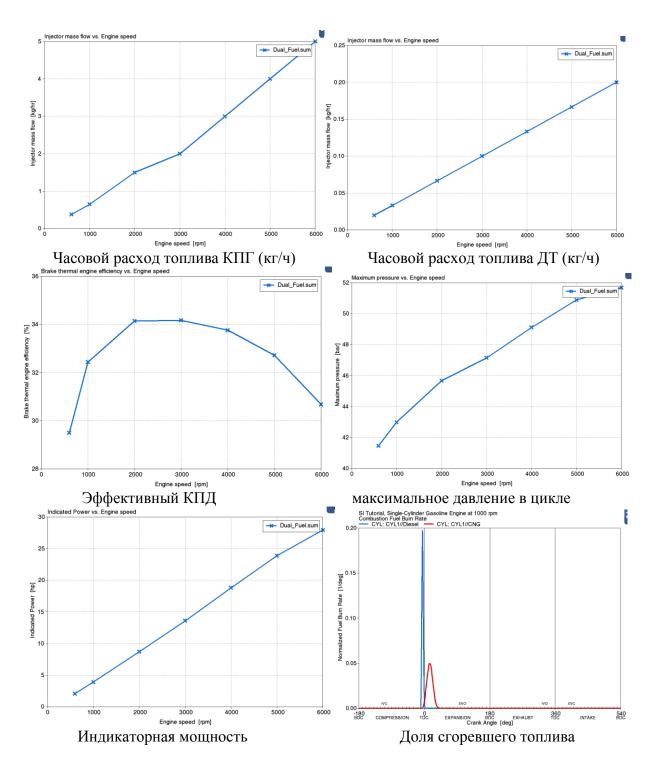


Рисунок 24 — Диаграммы характеристик топливоподачи и процесса сгорания при работе с коэффициентом избытка воздуха около 1

На рисунке 25 представлен характеристики топливоподачи и процесса сгорания при работе с коэффициентом избытка воздуха около 1.4.

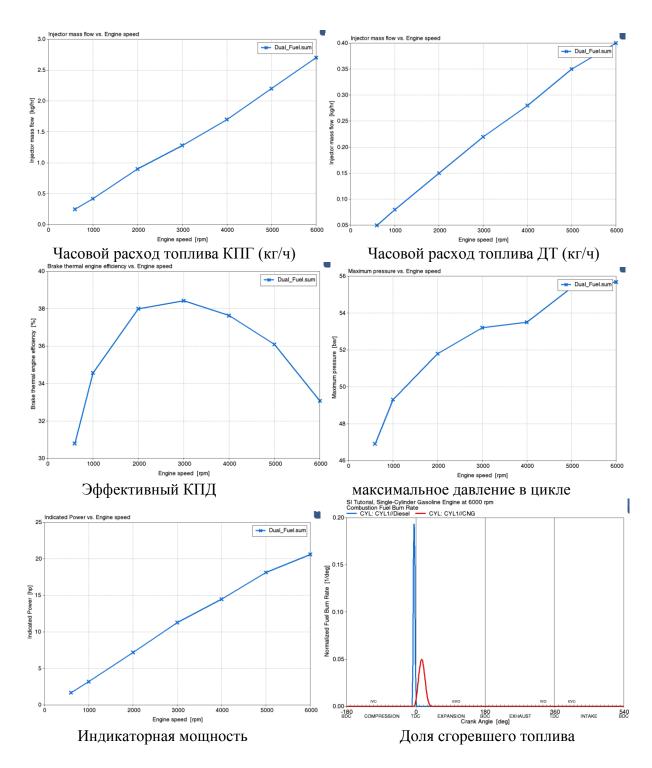


Рисунок 25 — Диаграммы характеристик топливоподачи и процесса сгорания при работе с коэффициентом избытка воздуха около 1.4

Выводы по 4-му разделу

В ходе стационарного моделирования концепция газодизельного цикла была оптимизирована для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя. Представленные результаты наглядно показывают, что при обеднении смеси и увеличении доли дизельного топлива концентрация оксидов азота значительно увеличивается, что говорит о целесообразности на большинстве режимов пытаться поддерживать стехиометрический состав смеси, а только на режимах низких нагрузок уходить сразу в бедную смесь около 1,8 и ниже для обеспечения низкотоксичного режима работы двигателя. Также видим, что с обеднением смеси растет эффективный КПД цикла.

ЗАКЛЮЧЕНИЕ

В бакалаврской работе проведен анализ рабочего процесса газодизельного цикла в дизельном двигателе. Получены основные выводы по работе:

- 1. Поиск новых топлив с лучшими характеристиками по токсичности для дизельных двигателей при их доступности по цене и объемам производства является важной задачей современных исследований. К таким топливам можно смело отнести компримированный природный газ, подаваемый во впускной коллектор, который может успешно сгорать при впрыске в конце такта сжатия запальной дозы дизельного топлива. Анализ процесса сгорания альтернативного газодизельного топлива и проведен в данной работе на примере трехцилиндрового дизельного двигателя.
- 2. Представленные результаты наглядно показывают, что при обеднении смеси и увеличении доли дизельного топлива концентрация оксидов азота значительно увеличивается, что говорит о целесообразности на большинстве режимов пытаться поддерживать стехиометрический состав смеси, а только на режимах низких нагрузок уходить сразу в бедную смесь около 1,8 и ниже для обеспечения низкотоксичного режима работы двигателя. Также видим, что с обеднением смеси растет эффективный КПД цикла.

Выводы по первому разделу

Проведённый анализ известных источников показал, перспективность применения двухтопливного режима работы (сжатый природный газ и запальная доза дизельного топлива) Широкие пределы воспламеняемости природного газа позволяют двигателям работать в условиях качественного регулирования нагрузкой в диапазоне составов смесей от стехиометрического до 5 – 6 по коэффициенту избытка воздуха.

Выводы по второму разделу

Проведенные расчеты трёхцилиндрового дизельного двигателя на газодизельном топливе и на дизельном топливе, показали некоторое снижение эффективных показателей работы двигателя при переходе с дизельного топлива на альтернативное топливо – газодизель.

Выводы по 3-му разделу

Переход на альтернативное топливо, двухтопливная работа двигателя, КПГ подается во впускной трубопровод, а воспламеняется запальной дозой дизельного топлива — такой цикл позволяет значительно снизить нагрузки на кривошипно-шатунный механизм.

Выводы по 4-му разделу

В ходе стационарного моделирования концепция газодизельного цикла была оптимизирована для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя. Представленные результаты наглядно показывают, что при обеднении смеси и увеличении доли дизельного топлива концентрация оксидов азота значительно увеличивается, что говорит о целесообразности на большинстве режимов пытаться поддерживать стехиометрический состав смеси, а только на режимах низких нагрузок уходить сразу в бедную смесь около 1,8 и ниже для обеспечения низкотоксичного режима работы двигателя. Также видим, что с обеднением смеси растет эффективный КПД цикла.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- Adnan N Ahmed, Zuhair H Obeid and Alauldinn H Jasim Experimental investigation for optimum compression ratio of single cylinder spark ignition engine / IOP Conf. Series: Materials Science and Engineering 454 (2018) 012003
- 2. Antriebskonzepte fur heute und morgen. Motorentechnische Zeitschrift MTZ, 09:630–631, 2013.
- 3. Helmut Eichlseder and Andreas Wimmer. Potential of IC-engines as minimum emission propulsion system. Atmospheric Environment, 37:5227–5236, 2003.
- 4. Lutz Eckstein, Rene Gobbels, and Roland Wohlecker. Benchmarking of the Electric Vehicle Mitsubishi i-MiEV. ATZ worldwide, 12:48–53, 2011.
- 5. R.A.B. Semin. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines. Am. J. Engg. & Applied Sci, 1:302–311, 2008.
- Wolfgang Warnecke, John Karanikas, Bruce Levell, Carl Mesters, J"org Adolf, Jens Schreckenberg Max Kofod, and Karsten Wildbrand. Natural Gas
 A bridging tehcnology for future mobility? In 34. Internationales Wiener Motorensymposium, 25 26, April, 2013.
- 7. David Serrano and Bertrand Lecointe. Exploring the Potential of Dual Fuel Diesel-CNG Combustion for Passenger Car Engine. In Proceedings of the FISITA 2012 World Automotive Congress, Beijing, China, 27-30 November 2012.
- 8. Tobias Ott, Florian Zurbriggen, Christopher Onder, and Lino Guzzella. Cycle-averaged efficiency of hybrid electric vehicles. Institution of Mechanical Engineering Part D, Journal of Automobile Engineering, 227:78–86, 2012.

- 9. Tobias Ott, Christopher Onder, and Lino Guzzella. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine. Energies, 6:3571–3592, 2013.
- Norman Brinkman, Michael Wang, Trudy Weber, and Thomas Dar- lington.
 Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems A North
 American Study of Energy Use, Greenhouse Gas Emissions, and Criteria
 Pollutant Emissions, 2005.
- 11. T. Ishiyama, J. Kang, Y. Ozawa, and T. Sako. Improvement of Performance and Reduction of Exhaust Emissions by Pilot-Fuel-Injection Control in a Lean-Burning Natural-Gas Dual-Fuel Engine. SAE International Journal of Fuels and Lubricants, 5:243–253, 2012.
- 12. Thorsten Schmidt, Christian Weiskirch, Stefan Lieske, and Holger Manz. Modern industrial engines emission calibration and engine man- agement. ATZ off highway, 9:24–35, 2010.
- 13. Bernhard Schneeweiss and Philipp Teiner. Hardware-in-the-Loop-Simulation am Motorenprufstand fur realitatsnahe Emissions- und Verbrauchsanalysen. Automobiltechnische Zeitschrift ATZ, 5:76–79, 2010.
- 14. Gerhard Henning, Tobias Go"decke, and Angsar Damm. Neue Getriebe fu"r die neuen Kompakten. ATZ, 9:70–73, 2012.
- 15. Chasse and A. Sciaretta. Supervisory control of hybrid powertrains: An experimental benchmark of offline optimization and online energy management. Control Engineering Practice, 19:1253–1265, 2011.
- 16. Heffel, J. W. (2003). "NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation." International Journal of Hydrogen Energy, 28(8), pp. 901-908.
- 17. Lipman, T., and Hwang, R. (2003). "Hybrid electric and fuel cell vehicle technological innovation: hybrid and zero-emission vehicle technology links." Proceedings of the 2003 20th International Electric Vehicle Symposium and Exposition, Long Beach, CA.

- 18. Burke, A. (2005). "Hybrid vehicles: design approaches, component options, and potential fuel economy improvements." Institute of Transporation Studies, University of California at Davis.
- 19. Atwood, P., Gurski, S., Nelson, D. (2001). "Degree of hybridization modeling of a fuel cell hybrid electric sport utility vehicle." SAE Paper 2001-01-0236.
- 20. Miller, J. (2006). "Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type." IEEE Transactions on Power Electronics, 21(3), pp. 756-767.
- 21. Service, R. F. (2004). "The hydrogen backlash." Science, 305(5686), Aug 13, pp. 958-961.
- 22. Romm, J. J. (2004). The Hype About Hydrogen: Fact and Fiction in the Race to Save the Climate, Island Press, Washington, D.C.
- 23. Zhang, Y., Lin, H., Zhang, B., and Mi, C. (2006). "Performance Modeling and Optimization of a Novel Multi-mode Hybrid Powertrain." Journal of Mechanical Design, 128, pp. 79-89.
- 24. Adamchak F., Adede A., 2013. LNG as a marine fuel, 17th International conference and exhibition on Liquefied Natural Gas (LNG 17), Houston
- 25. Adom F., Dunn J.B., Elgowainy A., Han J., Wang M., Chang R., Perez H., Sellers J., Billings R., 2013. Life Cycle Analysis of Conventional and Alternative Marine Fuels in GREET.
- 26. Agostini A., Giuntoli J., Boulamanti A., 2013. Carbon accounting of forest bioenergy Conclusions and recommendations from a critical literature review. JRC Technical reports, EUR 25354 EN, ISBN 978-92-79-25100-9.
- 27. Anselmo A., Sullivan J., 2015. DME: The Best Fuel, Period. Dimethyl Ether: The Future of Electricity, Heat and Transportation. ChemBioPower Ltd. Available at: www.chembiopower.com/s/CBP-WhitePaper-v5.pdf

- 28. Bell Performance, 2013. Fuel Storage and Diesel Generator Problems: Fuel Microbes, Available at: http://www.bellperformance.com/bell-performs-blog/diesel-generator-problems-fuel-microbes
- 29. Bengtsson S., Andersson K., Fridell E., 2011. A comparative life cycle assessment of marine fuels; liquefied natural gas and three other fossil fuels. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 225, pp. 97–110
- 30. Corvus, 2015. Corvus Energy Announces Investment from Statoil Technology Invest.
- 31. Cowie A., Berndes G., Smith T., 2013. On the timing of greenhouse gas mitigation benefits of forest-based bioenergy, IEA Bioenergy; ExCo 2013:04
- 32. Deniz C., Kilic A., Civkaroglu G., 2010. Estimation of shipping emissions in Candarli Gulf, Turkey. Environmental Monitoring and Assessment. Vol.171, pp.219–228.
- 33. DNV GL, 2014. Alternative fuels for shipping. DNV GL Strategic Research & Innovation Position Paper 1-2014.
- 34. Florentinus A., Hamelinck C., van den Bos A., Winkel R., Cuijpers M., 2012. Potential of biofuels for shipping Final Report. Prepared by Ecofys for European Maritime Safety Agency (EMSA).
- 35. Landalv I., Gebart R., Marke B., Granberg F., Furusjo E., Lownertz P., Öhrman O.G.W., Sørensen E. L., Salomonsson P., 2014. Two years experience of the BioDME project a complete wood to wheel concept. Environmental Progress and Sustainable Energy. Vol.33, pp. 744–750.
- 36. Lin C.Y., 2013. Effects of biodiesel blend on marine fuel characteristics for marine vessels. Energies. Vol.6, pp.4945–4955
- 37. O'Dowd C., 2012. Aerosol in Global Atmosphere. In Encyclopedia of Sustainability Science and Technology, Robert A. Meyers (Ed). pp 111-148. Springer New York

- 38. Petzold A., Lauer P., Fritsche U., Hasselbach J., Lichtenstern M., Schlager H., Fleischer F., 2011. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects. Environmental Science and Technology. Vol. 45, pp.10394–10400.
- 39. Sherrard A., 2015. Poly-gen flash pyrolysis praised for rapid roll-out. Bioenergy International 78(2). Pp 18-19
- 40. Thomson H., Corbett J. J., Winebrake J.J., 2015. Natural gas as a marine fuel. Energy Policy 87 pp 153–167
- 41. K. Ahn, A.G. Stefanopoulou and M. Jankovic, "Estimation of Ethanol Content in Flex-Fuel Vehicles Using an Exhaust Gas Oxygen Sensor: Model, Tuning and Sensitivity," In proceedings of ASME 2008 Dynamic Systems and Control Conference, October, 2008, Ann Arbor, MI, USA.
- 42. Jiang, S., and Nutter, D., "Implementation of Model-Based Calibration for a Gasoline Engine", SAE 2012-01-0722, 2012
- 43. Guerrier, M. and Cawsey, P., "The Development of Model Based Methodologies for Gasoline IC Engine Calibration," SAE Technical Paper 2004-01-1466, 2004
- 44. Vibe, I.I., "Semi-empirical expression for combustion rate in engines", Proceedings of Conference on piston engines, USSR Academy of sciences, Moscow, pp. 186-191, 1956.
- 45. Wiebe I.I., "Brennverlauf und Kreisprozeb von Ver-brennungsmotoren". In VEB- Verlag Technik, Berlin, 1970.
- 46. Lindström, F., Ångström, H., Kalghatgi, G., and Möller, C., "An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations," SAE Technical Paper, 2005-01-2106, 2005
- 47. Longwic, R., "Modelling the Combustion Process in the Diesel Engine with the Use of Neural Networks," SAE Technical Paper 2008-01-2446, 2008, doi:10.4271/2008-01-2446.

- 48. Maass, B., Deng, J., and Stobart, R., "In-Cylinder Pressure Modelling with Artificial Neural Networks," SAE Technical Paper 2011-01-1417, 2011, doi:10.4271/2011-01-1417.
- 49. Cavina N. and Suglia R., "Spark Advance Control based on a Grey Box Model of the Combustion Process", SAE 2005-01-3760, 2005
- 50. Heywood J. B., "Internal Combustion Engines Fundamentals", McGraw and Hill, 1988
- 51. Boiarciuc A. and Floch A., "Evaluation of a 0D Phenomenological SI Combustion Model", SAE 2011-01-1894, 2011
- 52. Prucka R., "An Experimental Characterization of a High Degree of Freedom Spark- Ignition Engine to Achieve Optimized Ignition Timing Control", Dissertation for the degree of Doctor of Philosophy, 2008
- 53. Schmid, A., Grill, M., Berner, H., Bargende, M. et al., "Development of a Quasi- Dimensional Combustion Model for Stratified SI-Engines," SAE Int. J. Engines 2(2):48-57, 2010
- 54. Rakopoulos, C., Michos, C., and Giakoumis, E., "Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi- Dimensional, Multi-Zone Combustion Model,"SAE Int. J. Engines 2(1):880-910, 2009
- 55. Tan, Z. and Reitz, R., "Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method," SAE Technical Paper 2003-01-0722, 2003.
- 56. Конструирование двигателей внутреннего сгорания: **учебник** для обучающихся "Двигатели студентов вузов, ПО специальности сгорания" внутреннего направления ПОДГОТОВКИ "Энергомашиностроение" / Н. Д. Чайнов, Н. А. Иващенко, А. Н. Краснокутский, Л. Л. Мягков; под ред. Н. Д. Чайнова. - 3-е изд. -Москва: Машиностроение, 2023. - 495 с.

- 57. Автомобиль. Устройство. Автомобильные двигатели : учебное пособие / А. В. Костенко, А. В. Петров, Е. А. Степанова [и др.]. Изд. 3-е, стер. Санкт-Петербург : Лань, 2023. 436 с.
- 58. Петров, А. И. Техническая термодинамика и теплопередача: учебник / А. И. Петров. Изд. 2-е, стер. Санкт-Петербург: Лань, 2023. 428 с.
- 59. Баширов, Р. М. Автотракторные двигатели : конструкция, основы теории и расчета : учебник / Р. М. Баширов. Изд. 4-е, стер. Санкт-Петербург : Лань, 2022. 336 с.
- 60. Вальехо М. П. Расчет кинематики и динамики рядных поршневых двигателей: учебное пособие / М. П. Вальехо, Н. Д. Чайнов. Москва: ИНФРА-М, 2022. 259 с.
- 61. Суркин, В. И. Основы теории и расчёта автотракторных двигателей : курс лекций : учеб. пособие / В. И. Суркин. Изд. 2-е, перераб. и доп. Санкт-Петербург : Лань, 2022. 304 с.
- 62. Крюков, К. С. Теория и конструкция силовых установок : учеб. пособие / К. С. Крюков. Москва : ИНФРА-М, 2021. 211 с.
- 63. Курасов, В. С. Теория двигателей внутреннего сгорания : учеб. пособие / В. С. Курасов, В. В. Драгуленко. Москва : ИНФРА-М, 2021. 86 с.
- 64. Гоц А. Н. Динамика двигателей : курсовое проектирование : учеб. пособие / А. Н. Гоц. 3-е изд., испр. и доп. Москва : ИНФРА-М, 2020. 175 с.
- 65. Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / И.И. Вибе// М. Машиностроение, 1971. c.282