МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ МАШИНОСТРОЕНИЯ

(наименование института полностью)

Кафедра <u>«Энергетические машины и системы управления»</u> (наименование)

13.03.03 Энергетическое машиностроение (код и наименование направления подготовки)

«Альтернативные источники энергии транспортных средств» (направленность (профиль))

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Двигатель с искровым зажиганием, работающий на сжатом водороде_

Студент

А.Д. Габдушев (И.О. Фамилия)

(личная подпись)

Руководитель

к.т.н., доцент, В.В. Смоленский (ученая степень, звание, И.О. Фамилия)

Тольятти 2023

АННОТАЦИЯ

Выпускная квалификационная работа посвящена вопросу применения водорода в газовом автомобильном двигателе.

Целью бакалаврского проекта является оценка перспектив работы на сжатом водороде и оценка возможных низкотоксичных условий эксплуатации силовой установки на сжатом водороде.

Поэтому в данном бакалаврской работе представлены результаты проектирования четырехцилиндрового двигателя, адаптированного для работы на газовом топливе, а также проведен анализ влияния различных условий сгорания водорода на эффективность и токсичность работы двигателя. Бакалаврская работа состоит из пояснительной записки и графической части.

Пояснительная записка состоит из аннотации, введения, 4 разделов, заключения с основными результатами и выводами, содержит 25 рисунков, 11 таблиц, списка использованных источников (46 источник). Основной текст изложен на 65 страницах.

Графическая часть работы содержит 8 листов формата A1 иллюстрирующих материал, представленный в пояснительной записке.

ABSTRACT

Topic of the bachelor thesis: "Improving the efficiency of the fuel system for VAZ engines".

The fuel delivery system plays a crucial role in internal combustion engines. This thesis examines the shortcomings of the existing fuel delivery system and proposes a solution to address the high amplitude fuel pressure fluctuations.

This bachelor's thesis aims to improve the fuel delivery system for the VAZ 21129 gasoline engine. It consists of an explanatory note of 63 pages and a graphical part. The explanatory note covers the following topics:

- Analysis of the existing fuel delivery system;

- Thermal balance and thermal calculation of the engine;
- Kinematic and dynamic calculations were performed;
- Design of an external damper.

The graphic section contains six A1-sized sheets. They show longitudinal and transverse sections of the engine, three diagram sheets, and detailed drawings of the proposed fuel delivery system.

СОДЕРЖАНИЕ

Введение	4
1 Использование водорода в поршневых двигателях транспортных	
средств	5
1.1 Водород как топливо для двигателей внутреннего сгорания 5	5
1.2 Характеристики горения водорода	5
1.3 Стратегии смесеобразования для водородных двигателей 8	3
1.4 Последствия горения водородно-воздушных смесей в двигателях 1	12
1.5 Меры по проектированию или переоборудованию двигателя для	
работы на водороде 2	21
2 Тепловой расчет проектируемого двигателя	25
3 Кинематический и динамический расчет кривошипно-шатунного	
механизма двигателя	33
3.1 Кинематический расчет кривошипно-шатунного механизма	
двигателя	33
3.2 Динамический расчет кривошипно-шатунного механизма	
двигателя	35
4 Анализ токсичности отработавших газов и эффективности рабочего	
процесса при работе на водороде	40
Заключение	55
Список используемых источников	57

введение

Водород является привлекательным альтернативным энергоносителем, оставить в прошлом вредные выбросы, глобальное который может нефти. В текущей работе потепление И ненадежность поставок рассматривается возможность использования водорода В двигателях сгорания. Водородные двигатели могут быть внутреннего внедрены относительно легко как с технологической, так и с экономической точек зрения.

Водород демонстрирует отличительные черты приемлемого безуглеродного топлива. При сгорании водорода не образуются токсичные продукты, такие как углеводороды, монооксид углерода, оксиды серы, органические кислоты или диоксид углерода.

Хорошо известно, что пролитый водород не оказывает вредного воздействия на окружающую среду благодаря своей высокой плавучести и способности к диффузии в воздухе. Водородный поток быстро рассеивается в атмосфере. С другой стороны, пролитый бензин часто создает опасность возгорания, а в некоторых случаях оказался загрязнителем грунтовых вод.

Поэтому исследование перспектив применения водорода в автомобильных силовых установках является актуальной темой бакалаврской работы.

1 Использование водорода в поршневых двигателях транспортных средств

Нынешний способ удовлетворения мирового спроса на энергию, основанный в первую очередь на ископаемом топливе, становится все более несостоятельным. Запасы ископаемого топлива, о которых когда-то почти не задумывались, теперь явно исчерпаемы.

1.1 Водород как топливо для двигателей внутреннего сгорания

Ограниченный характер ресурсов ископаемого топлива И необходимость сокращения выбросов парниковых газов требуют изучения других энергоносителей, помимо известных сегодня углеводородных топлив, бензина и дизельного топлива. На международном уровне водород считается перспективным вторичным энергоносителем в качестве долгосрочного решения. Правительства США, Японии и Европейского Союза инициировали несколько стратегий исследований водорода, уделяя особое внимание автомобильному сектору, например. План использования водорода в США [55], Демонстрационный проект по водороду и топливным элементам в Японии [56] и Европейская технологическая платформа по водороду и топливным элементам [11]. Общей целью всех этих программ является технологий с нулевым выбросов высокой создание уровнем И эффективностью, основанных на водородной инфраструктуре.

Большинство программ сосредоточено на технологии топливных элементов. Однако считается, что водородные двигатели внутреннего сгорания способны сократить разрыв между углеродной и водородной экономикой [10]. Являясь частью будущих силовых установок транспортных средств, водородные двигатели внутреннего сгорания обладают потенциалом улучшения работы в отношении мощности, эффективности и выбросов по сравнению с двигателями, работающими на обычном топливе, даже с учетом

требований устойчивой мобильности [42]. Хотя пригодность водорода в качестве широко используемого вторичного энергоносителя все еще обсуждается, существуют противоположные экологические опасения относительно влияния утечки газообразного молекулярного водорода на химию разрушения озона и возмущения климатической системы [14, 19]. Что касается чистого снижения выбросов парниковых газов, решающую роль играет технология, используемая для производства водорода. Помимо широко распространенного метода производства водорода ИЗ возобновляемых ресурсов, существуют различные потенциальные пути производства, которые, например, основаны на ядерных или ископаемых источниках. Схема накопленных выбросов парниковых газов в зависимости от выбранного пути может быть найдена в анализе Well-to-Wheels, например недавно опубликованный отчет Европейского союза [14]. Автомобильным приложениям нужна легкая и экономичная система хранения для водородных транспортных средств. Вообще, пробег является ключевым вопросом современной техники. Сжатый газ в сосудах высокого давления и криогенных системах хранения проходит полевые испытания, в то время как хранение твердых веществ в органических соединениях все еще исследуется. Предпринимаются международные исследования и разработки, чтобы уменьшить вес И стоимость систем хранения водорода, например. интегрированный исследовательский проект EC StorHy [42].

1.2 Характеристики горения водорода

Сосредоточив внимание на разработке процесса сгорания в двигателе, водород обладает уникальными характеристиками сгорания для достижения высокоэффективного сгорания с практически нулевым уровнем выбросов. Широкий диапазон воспламеняемости, быстрая конверсия топлива, надежное воспламенение и безуглеродное сгорание делают водород идеальным топливом для двигателей внутреннего сгорания.

По сравнению с углеводородным топливом воспламеняемость водородно-воздушных смесей колеблется между коэффициентами эквивалентности воздух/топливо $\lambda = 0,14$ и 10,5, тогда как воспламеняемость бензина и метана ограничивается $0,4 \le \lambda \le 1,4$ и $0,7 \le \lambda \le 2,1$ соответственно. Следовательно, качественная работа двигателя в режиме гомогенного искрового зажигания возможна для широкого диапазона нагрузок с использованием водорода. Эффективность двигателя заметно повышается за счет снижения дроссельной заслонки и работы на обедненной смеси при низких нагрузках двигателя. Гомогенная работа с $\lambda > 2$ снижает температуру сгорания ниже температуры образования термических оксидов азота, что приводит к практически нулевым выбросам при сгорании. Помимо пределов воспламеняемости, скорость ламинарного горения водорода заметно отличается от скорости углеводородного топлива. При атмосферных условиях (p = 1,013 бар, T = 293,15 K) в качестве эталона скорость ламинарного пламени стехиометрических водородно-воздушных смесей (ul = 2,65 м/с до 3,25 м/с) примерно в семь раз выше скорости ламинарного пламени. бензина и метана (ul = 0,37 м/с до 0,45 м/с). Даже в обедненных условиях скорость пламени достаточно высока, чтобы предотвратить потерю эффективности, вызванную замедленным сгоранием. В случае прямого впрыска водорода под высоким давлением может быть получен эффективной дополнительный прирост скорости горения за счет повышенного уровня турбулентности.

Легкая воспламеняемость водородно-воздушных смесей свидетельствует о значительном снижении коэффициентов вариации от цикла к циклу по сравнению с бензиновыми двигателями, что позволяет оптимизировать настройку опережения зажигания с точки зрения эффективности.

Стехиометрическая потребность водорода в воздухе (Lstic = 34,3 кг/кг) чуть более чем в два раза выше, чем у бензиновых топлив. Однако соотношение низших теплотворных способностей двух видов топлива

значительно превышает это значение. Предполагая воздушно-наддувные двигатели с равной загрузкой, теплотворная способность смеси водородного двигателя теоретически превысит уровень бензинового типа на 17 %. Это подчеркивает преимущество двигателей с непосредственным впрыском, в которых устранено негативное влияние эффектов вытеснения воздуха, широко известных также для газовых двигателей с впрыском топлива во впускные отверстия. Наиболее важные теплофизические свойства водорода суммированы и сравнены со свойствами обычных углеводородных топлив в таблице 1.

Таблица 1 - Свойства водородного и углеводородного топлива, взятые из [32,45].

Свойство	Единица	Водород	Метан	Бензин
Низшая теплотворная способность	МДЖ/кг	120.0	50.0	45.0
Стехиометрическая фракция воздуха	Кг возд. / кг	34.3	17.2	14.7
	топл			
Богатый предел воспламенения	-	0.2	0.7	0.4
Бедный предел воспламеняемости,2	-	10.0	2.1	1.4
Скорость ламинарного пламени	м/с	2	0.4	0.4-0.8
Адиабатическая температура пламени	K	2390	2225	2275
Температура самовоспламенения	K	858	813	- 500
Минимальная энергия воспламенения	мДж	0.02	0.29	0.24
Плотность	г/л	0.09	0.72	730-780
Температура кипения	° C	-253	-162	25-215

1.3 Стратегии смесеобразования для водородных двигателей

1.3.1 Внешнее смесеобразование

Распределенный впрыск топлива (PFI) описывает непрерывный или последовательный впрыск водорода во впускной канал, где основные части приготовления смеси расположены вне камеры сгорания. Традиционно водородные двигатели внутреннего сгорания реализовывались с помощью безнаддувных систем сгорания с предварительным смешиванием с использованием PFI. Однако такие явления, как преждевременное зажигание, детонация и эффект вытеснения воздуха водородом, вызывают низкую выходную мощность и низкий объемный КПД, а также нестабильную работу

двигателя, сопровождаемую этими концепциями двигателя [16]. Недостатки двигателей с распределенным впрыском водорода можно преодолеть, используя двигатели внутреннего сгорания с передовыми технологиями впрыска водорода, такими как криогенный впрыск топлива с портом. Используя этот метод, газообразный водород переносится из криогенной системы хранения по изолированным трубам во впускной канал, где процесс смешивания с всасываемым воздухом вызывает увеличение плотности смеси за счет охлаждения. При стехиометрическом режиме работы с водородом могут быть достигнуты температуры впрыска Т = 45 К и температуры смеси T = 205 K, что приводит к теоретическому увеличению объемной удельной мощности примерно на 40 % по сравнению с впрыском водородного топлива в порт окружающей среды. Дополнительным положительным эффектом криогенного смесеобразования является значительное снижение аномалий сравнению с атмосферным впрыском топлива. Ранние горения ПО исследования образования криогенных смесей, начавшиеся в конце 1970-х годов, проводились японской исследовательской группой [37]. Недавние исследования проводятся в BMW Group Research and Technology [49]. Для получения дополнительной информации делается ссылка на работы по криогенным водородным двигателям, проводимые параллельно в рамках связанного исследовательского проекта [32,45].

1.3.2 Внутреннее смесеобразование

Быстрый прогресс в технологии прямого впрыска топлива (DI) в течение последних десятилетий также оказался выгодным для водородных двигателей внутреннего сгорания. Подобно современным двигателям, работающим на обычном топливе, современная технология впрыска упрощает работу с непосредственным впрыском, ЧТО значительно увеличивает возможности конструкции двигателя. Современная технология DI позволяет задавать определенные характеристики сгорания в водородных двигателях, т.е. расслоение топлива и многократный впрыск определенного количества топлива. В зависимости от стратегии впрыска смесеобразование в

водородных двигателях с непосредственным впрыском высокого давления не ограничивается сгоранием предварительного смешения, как в двигателях PFI, а позволяет сочетать предварительно смешанное, частично предварительно смешанное и не предварительно смешанное пламя с контролируемой диффузией. Явлений, таких как преждевременное зажигание и обратное воспламенение, обычно известных как недостатки водородных двигателей PFI, можно избежать, используя водородный непосредственный впрыск.

В то время как водородный криогенный впрыск топлива через порт использует увеличение плотности вдыхаемой водородно-воздушной смеси за счет охлаждения, прямой впрыск позволяет избежать эффектов вытеснения воздуха и, таким образом, приводит к увеличению нагрузки наддува. Объемная удельная мощность для прямого впрыска увеличена примерно на 40 % по сравнению с образованием смеси с водородом из окружающей среды.

Важным атрибутом, характеризующим различные режимы прямого впрыска, является уровень подачи водорода под давлением. Изменения момента впрыска, как исследовано в настоящей работе, требуют массового расхода топлива, который почти не зависит от противодавления в цилиндре. Это относится только к прямому впрыску под высоким давлением, когда соотношение между давлением впрыска и противодавлением превышает критическое соотношение (pH2 \geq 150 бар). Другие стратегии DI водорода, в которых давление подачи водорода значительно ниже, а впрыск ограничивается ранней стадией такта характеризуются сжатия, как гомогенные режимы.

Что касается подготовки топливной смеси, непосредственный впрыск различные водорода под высоким давлением допускает стратегии эксплуатации. Возможна стратификация воздух/топливо, а также многократный впрыск топлива. Эта дополнительная степень свободы способствует прямому впрыску водорода как подходящему методу избирательной организации сгорания на основе стратегии впрыска. Момент

впрыска напрямую влияет на приготовление топливной смеси. Соответственно, начало впрыска (SOI) является наиболее репрезентативным параметром для DI водорода. Следует различать различные режимы сгорания в зависимости от начала, продолжительности и количества впрысков топлива.

Что касается случаев однократного впрыска, то режим сгорания с предварительным смешиванием, сравнимый с PFI, присутствует, когда впрыск топлива происходит в начале такта сжатия, т.е. SOI = -120° CA (относительно верхней мертвой точки, ВМТ). В этом случае доступны большие сроки подготовки топливно-воздушной смеси. Режим частичнопредварительного горения может быть получен при уменьшении временных рамок приготовления топливно-воздушной смеси, т.е. когда событие впрыска происходит близко к концу такта сжатия (например, SOI = $-25 \circ$ CA). Временные рамки смешивания и, следовательно, степень расслоения воздуха/топлива напрямую связаны с SOI. Впрыск заканчивается до искрового воспламенения, и, следовательно, сгорание происходит по бензиновыми распространения пламени, сравнимому принципу с двигателями. Работа с несколькими событиями впрыска требует различия, происходит ли вторичный впрыск до или после момента зажигания. Первый тип называется режимом горения с распространением пламени, описанным выше для однократного впрыска. В этом режиме можно использовать несколько впрысков для улучшения гомогенизации или расслоения смеси. Последние типы приводят к диффузионно-факельному режиму горения, который вызван впрыском топлива во фронт пламени ранее созданного искрового воспламенения распространяющегося пламени. Этот режим, называемый контролем горения, сравним с комбинированным процессом типа бензинового/дизельного двигателя (режим без предварительного смешивания, диффузионный пламенный режим), реализуемым различными дискретными событиями впрыска [42]. Различные порции впрыскиваемого топлива могут быть выражены в терминах индивидуальных значений

коэффициента эквивалентности топливо/воздух, например $\varphi 1$ и $\varphi 2$ относятся к первому и второму событию инжекции. Общий коэффициент эквивалентности топливо/воздух определяется как $\varphi = \varphi 1 + \varphi 2$ или $(1/\lambda = 1/\lambda 1 + 1/\lambda 2)$.

В дополнение к увеличению удельного объемного КПД, системы сжигания водорода с непосредственным впрыском под высоким давлением предлагают потенциальные преимущества В отношении повышения эффективности использования топлива за счет снижения работы сжатия. При послойной эксплуатации можно отметить значительное сокращение выбросов термических оксидов азота, когда горение происходит локально в обогащенных зонах. Несколько дополнительных методов, таких как впрыск воды [98] и рециркуляция отработавших газов [48], для предотвращения аномалий сгорания и снижения выбросов оксида азота были исследованы, но далее здесь не обсуждаются.

1.4 Последствия горения водородно-воздушных смесей в двигателях

Те же свойства, которые делают водород таким желаемым топливом для двигателей внутреннего сгорания, также несут ответственность за аномальные процессы сгорания, связанные с водородом. В частности, широкие пределы воспламеняемости, низкая требуемая энергия воспламенения высокая скорость пламени могут привести И К нежелательным явлениям горения, которые обычно суммируются как аномалии горения. Эти аномалии включают возгорание на поверхности и обратное зажигание, а также самовоспламенение (детонацию).

Поверхностное зажигание используется здесь для обозначения неконтролируемого воспламенения, вызванного горячей точкой в камере сгорания. Предварительное зажигание обычно описывает события сгорания, происходящие внутри камеры сгорания во время такта сжатия двигателя, с

фактическим началом сгорания до момента зажигания. Обратное зажигание, также называемое обратной вспышкой, относится к событиям, в которых водородно-воздушный заряд сгорает во время такта впуска, обычно во впускном канале или впускном коллекторе. «Детонация» двигателя – это термин, используемый для типичных двигателей SI для описания самовоспламенения оставшегося горючего газа во время поздней части процесса сгорания с высокими колебаниями давления и типичным звуком звона. Как уже вкратце обсуждалось, следует соблюдать осторожность при использовании термина «детонация» в водородных двигателях.

1.4.1 Предварительное зажигание

Типичное преждевременное сгорание во время такта сжатия двигателя с закрытыми впускными клапанами в результате предварительного зажигания, аномалия поверхностного зажигания, может иметь множество причин. Поскольку преждевременное зажигание является случайным событием, подробные исследования преждевременного зажигания сложны, а фактическая причина преждевременного зажигания часто является не более чем предположениями.

На рисунке 1 показан график давления в цилиндре, а также давление во впускном коллекторе с измененным углом поворота коленчатого вала для цикла сгорания, в котором имело место преждевременное зажигание. Для сравнения показано обычное событие горения.

Данные были получены для одноцилиндрового исследовательского двигателя, работающего на водороде, с частотой вращения двигателя 3200 об/мин и IMEP 7 бар для случая обычного сгорания (пунктирная линия). Почти симметричная фазировка давления в цилиндре, вызванная предварительным зажиганием, приводит к падению IMEP почти до 0. Интересно отметить, что пиковое давление для случая предварительного зажигания выше, чем при обычном цикле сгорания. Однако из-за раннего повышения давления, которое начинается около 80°CA до BMT, указанное среднее эффективное давление для случая предварительного зажигания

составляет около 0 бар. Кривая давления на впуске для случая предварительного зажигания не показывает каких-либо значительных отличий от обычной кривой, потому что предварительное зажигание произошло после закрытия впускных клапанов.

Рисунок 1 – Типичные кривые давления в цилиндрах и впускном коллекторе с предварительным зажиганием (сплошные линии) в сравнении с обычными кривыми давления (пунктирные линии).

Меры по предотвращению преждевременного зажигания включают надлежащую конструкцию свечи зажигания, конструкцию системы зажигания с низким остаточным зарядом, специально разработанную вентиляцию картера, заполненные натрием выпускные клапаны, а также оптимизированную конструкцию охлаждающих каналов двигателя во избежание горячих. Непосредственный впрыск водорода в камеру сгорания – эффективного уменьшения еше одна мера ЛЛЯ ИЛИ устранения преждевременного воспламенения в зависимости от стратегии впрыска.

1.4.2 Обратная вспышка

Возгорание или обратная вспышка описывает сгорание свежего водородно-воздушного заряда во время такта впуска в камере сгорания двигателя и/или во впускном коллекторе. При открытии впускных клапанов свежая водородно-воздушная смесь всасывается в камеру сгорания. Когда

свежий заряд воспламеняется в горячих точках камеры сгорания, горячих остаточных газах или частицах, или оставшемся заряде в системе зажигания, происходит обратное воспламенение, подобно предварительному зажиганию. Основное различие между обратным зажиганием и предварительным зажиганием – ЭТО время возникновения аномалии. Предварительное зажигание происходит во время такта сжатия при уже закрытых впускных клапанах, тогда как обратное зажигание происходит при открытых впускных клапанах. Это приводит к сгоранию и повышению давления во впускном коллекторе, что не только отчетливо слышно, но также может повредить или разрушить впускную систему. Из-за более низкой энергии воспламенения возникновение обратного воспламенения более вероятно, когда смеси приближаются к стехиометрии. Поскольку большинство рабочих стратегий с работой на водороде начинают впрыск после закрытия впускных клапанов, возникновение обратного пламени обычно ограничивается концепциями внешнего смесеобразования.

На рисунке 2 показаны кривые давления в цилиндре и впуске для цикла обратного зажигания, измеренные на водородном одноцилиндровом двигателе автомобильного размера при частоте вращения двигателя 3200 об/мин и ІМЕР 7 бар. Ограниченная доступная информация об аномалиях горения также указывает на то, что предварительное зажигание и обратное зажигание тесно преждевременным связаны С зажиганием как предшественником возникновения обратного зажигания. Таким образом, предварительное зажигание нагревает камеру сгорания, что в конечном итоге обратному приводит к воспламенению В последующем цикле. Следовательно, любые меры, помогающие избежать преждевременного воспламенения, также снижают риск возникновения обратного горения. В качестве одного из возможных подходов были предложены стратегии впрыска, которые позволяют чистому воздуху поступать в камеру сгорания для охлаждения потенциальных горячих точек перед всасыванием топливновоздушной смеси.

Рисунок 2 – Типичные кривые давления в цилиндре и впуске для цикла обратного горения (сплошные линии) по сравнению с обычными кривыми давления (пунктирные линии).

В результате экспериментальных симуляционных работ И на PFI водородном двигателе были получены прогнозная модель И работе без обратной вспышки. Хотя рекомендации по тенденции, выявленные при исследовании горения водорода в двигателях, показали, что аномалии сгорания значительно ограничивают рабочий режим, оптимизация стратегии сочетании С изменяемыми фазами впрыска топлива В газораспределения как для впускных, так и для выпускных клапанов позволила эксплуатировать водородный двигатель с впрыском во впускной канал при стехиометрические смеси во всем диапазоне скоростей.

1.4.3 Самовоспламенение (детонация)

Когда условия конечного газа (давление, температура, время) таковы, что конечный газ самовоспламеняется, следует быстрое высвобождение оставшейся энергии, генерирующей волны давления большой амплитуды, в основном называемые детонацией в двигателе.

Стандартной мерой определения детонационных характеристик жидкого топлива является октановое число. Двигатель CFR или УИТ-85 используется для определения детонационной способности конкретного топлива путем сравнения его детонационной стойкости со смесью Наиболее нормального гептана И изооктана. распространенными стандартизированными испытаниями для определения детонационной стойкости двигателя CFR являются метод исследования, в результате которого определяется октановое число по исследовательскому методу (RON), и метод двигателя, позволяющий получить октановое число двигателя (MON). Хотя эти методы были разработаны и применимы только к жидкому моторному топливу SI, октановое число для водородного топлива указано в литрах. Сообщаемые значения варьируются от RON < 88 до RON = 130 и RON 130+ для бедных смесей. Неясно, как были определены эти значения; они должны быть либо оценочными значениями, либо измеряться методами, похожими, но не соответствующими методам ASTM. Также была проведена работа по имитации измерения детонации в двигателе CFR с использованием скорости изменения сигнала давления, отфильтрованной через фильтр нижних частот.

Определение октанового числа выполняется при постоянном опережении зажигания (13°СА ВТДС для RON и 19–26°СА ВТДС, в зависимости от степени сжатия для MON). Расхождения в номинальной детонационной стойкости водорода в основном связаны с чрезвычайно высокими скоростями пламени вокруг стехиометрии с сильной зависимостью от воздушно-топливного отношения, что делает сомнительным применение стандартных методов для определения детонационной стойкости.

Из-за высокой детонационной стойкости метана (115<MON<130) метановое число (MN) было определено для определения детонационных характеристик газообразного топлива. Для метанового числа используется эталонная топливная смесь из метана с MN, равного 100, и водорода с MN, равным 0. Согласно определению, MN водорода равно 0, что позволяет

предположить, что водород имеет очень низкую стойкость к детонации. Это явно противоречит некоторым октановым числам, приведенным в цитированных выше работах.

Сообщалось о попытках предсказать детонационное поведение двигателей, работающих на водороде. Сравнение с экспериментальными результатами показало хорошее согласие для изменения степени сжатия, соотношения воздушно-топливного эквивалента и температуры всасываемого воздуха. Эти результаты показывают, что режим работы водородного двигателя сильно ограничен возникновением детонационного сгорания.

На рисунке 3 показан график давления в цилиндре, а также отфильтрованный сигнал для работы водородного DI при 2000 об/мин и нагрузке двигателя 10 бар IMEP, записанных на одноцилиндровом исследовательском двигателе со степенью сжатия 12:1.

Рисунок 3 – Типичный график давления в цилиндре для легкого детонационного цикла

Сигнал давления в цилиндре показывает колебания давления, типичные для детонационного сгорания; сигнал с фильтром верхних частот показывает максимальную амплитуду давления примерно 3,6 бар.

Для тех же оборотов двигателя и нагрузки была зарегистрирована рабочая точка с сильным детонацией, возникшая в результате дальнейшего опережения времени зажигания (рисунок 4). Хотя обычное пиковое давление для этой рабочей точки составляет около 90 бар, максимальное давление в режиме детонации достигает 150 бар с колебаниями в фильтре верхних частот почти 65 бар.

Рисунок 4 – Типичный график давления в цилиндре для тяжелого детонационного цикла.

Подобные испытания, проведенные на двигателе CFR при степени сжатия 12:1, были нацелены на определение детонационных характеристик водорода и применимости стандартных автомобильных систем обнаружения детонации. Сравнительный анализ интенсивности детонации бензина и водорода показал, что следы детонационного давления демонстрируют сходные амплитуды пиков, а также сходные длительности и спады колебаний давления.

1.4.4 Как избежать ненормального горения

Ограничение максимального отношения эквивалента топлива к воздуху является эффективной мерой предотвращения аномального сгорания при работе с водородом. Из-за широких пределов воспламеняемости и высоких скоростей пламени водородные двигатели внутреннего сгорания обычно работают, используя стратегию обедненного горения, что позволяет избежать потерь на дроссельной заслонке. Избыточный воздух при работе на обедненной смеси действует как инертный газ и эффективно снижает температуру сгорания и, следовательно, температуру компонентов. Это значительно вероятность аномального снижает горения В режимах обедненного горения. Хотя режим обедненной смеси также очень эффективен, он ограничивает выходную мощность водородных двигателей. Результаты работы рядного четырехцилиндрового двигателя 1,8 с наддувом и промежуточным охлаждением, работающего на бензине и водороде, показали, что ненормального сгорания можно эффективно избежать, ограничив соотношение эквивалентности топлива и воздуха. В этом конкретном случае максимальное отношение эквивалента топлива к воздуху было ограничено до 0,63 ($\lambda = 1,6$) при 1500 об/мин и далее уменьшено в зависимости от частоты вращения двигателя с минимальным значением 0,48 $(\lambda = 2,1)$ при 6000 об/мин. Эффективно предотвращая аномальное сгорание, эта мера также значительно снижает выходную мощность с примерно 120 кВт при работе на бензине до примерно 70 кВт при работе на водороде.

Дальнейшие меры по предотвращению аномального сгорания приведены в следующем разделе, посвященном оборудованию водородного двигателя.

1.5 Меры по проектированию или переоборудованию двигателя для работы на водороде

В этом разделе обсуждаются некоторые особенности двигателей, разработанных или переоборудованных для работы на водороде. Возникновение аномалий горения, обсуждаемых в предыдущем разделе, или, в частности, желание предотвратить их, привело к большинству контрмер, предложенных в ранних работах по H₂ICE.

1.5.1 Свечи зажигания

Рекомендуется использовать свечи зажигания, рассчитанные на охлаждение, во избежание превышения температуры электродов свечи зажигания над пределом самовоспламенения и возникновения обратного пламени. Можно использовать холоднокалиберные свечи зажигания, поскольку на свечах почти нет отложений, которые можно сжечь.

1.5.2 Система впрыска

Ясно, что предварительным условием является своевременная подача топлива. Один из вариантов – использовать впрыск через порт и запрограммировать время впрыска таким образом, чтобы период охлаждения воздуха создавался в начальной фазе такта впуска, а в конце впрыска вводился весь водород, не оставляя водорода в коллекторе, когда впускной клапан закрывается. Второй вариант – использовать впрыск в цилиндр (DI) во время такта сжатия. Для DI требуются форсунки с высоким расходом и мгновенным расходом около 4-6 г/сек при давлении подачи 100 бар. В двигателях PFI требования к высокому расходу могут быть снижены за счет использования нескольких форсунок.

1.5.3 Поршневые кольца и щели

Можно уменьшить зазор поршня в верхней части головки для предотвращения распространения водородного пламени в зону жарового пояса, так используют зазор 0,152 мм, чтобы погасить водородное пламя. Некоторые исследователи изменили объемы щелей и/или поршневые кольца

с целью уменьшения оплавления несгоревшей смеси из второй площадки (объем щели между двумя верхними поршневыми кольцами) в верхнюю поверхность (предотвращение «подпитки» пламени верхней площадки во время выпуска и впуска). Меньшее расстояние гашения водородного пламени также подразумевает повышенную тепловую нагрузку на днище поршня, сообщают об изменениях (специальное покрытие) в области канавки верхнего поршневого кольца, чтобы учесть это.

1.5.4 Турбулентность в цилиндре

Из-за высоких скоростей пламени водорода можно использовать камеры сгорания с низкой турбулентностью (блинная или дисковая камера и выровненный по оси симметричный впускной канал), что может быть полезно для КПД двигателя (увеличивая объемный КПД и снижение тепловых потерь). Они могут быть даже необходимы, чтобы избежать чрезмерных темпов повышения давления (возможно, даже приводящего к детонационному сгоранию) при стехиометрическом режиме работы (где высокая турбулентность в цилиндре может вызвать очень высокие скорости пламени).

1.5.5 Материалы

Влияние водорода на механические свойства железа и стали широко исследовалось. Что касается эффекта охрупчивания водорода, хорошо известно, что доминирующими эффектами являются снижение пластичности и истинное напряжение при разрушении. Водородное охрупчивание сталей можно разделить на три основных типа:

- 1. Охрупчивание водородной реакцией возникает из-за образования водорода на поверхности в результате химической реакции.
- Охрупчивание из-за окружающей среды происходит в водородсодержащих атмосферах за счет адсорбции молекулярного водорода на поверхности и его поглощения в решетке после диссоциации в атомарную форму.

 Напротив, внутреннее водородное охрупчивание происходит в отсутствие гидрогенизированной атмосферы и вызывается водородом, который попал в решетку во время обработки или изготовления стали.

Охрупчивание окружающей среды в водородсодержащих атмосферах приводит к ограничениям при выборе материалов для систем хранения водорода и топливных систем. Были проведены исследования для оценки чувствительности обычно используемых нержавеющих сталей к водородной хрупкости, а также специальных сплавов. В обоих исследованиях был сделан вывод, что испытанные материалы демонстрируют значительную деградацию из-за присутствия водорода. Все металлические материалы обладают определенной чувствительностью к водородной хрупкости, причем чувствительность сильно зависит от уровня напряжения. Материалы, которые можно использовать для получения водорода – это латунь и медные сплавы, алюминий и алюминиевые сплавы, а также медь-бериллий. Известно, что никель и сплавы с высоким содержанием никеля, а также титан и титановые сплавы очень чувствительны к водородной хрупкости. Для сталей чувствительность к водородному охрупчиванию зависит от точного обработки, химического состава, термической или механической микроструктуры, примесей прочности. Отрицательные эффекты И водородного охрупчивания также были задокументированы для пьезоматериалов, используемых форсунок определенных типов ДЛЯ водородного топлива. Помимо эффекта охрупчивания компонентов бортовой водородной системы, испытания на водородное охрупчивание, проведенные на нескольких марках высокопрочных сталей для трубопроводов, показали потерю пластичности, которую, однако, можно было восстановить, когда заряженную сталь после зарядки оставляли на семь дней при температуре окружающей среды. Был сделан вывод, что управление системами катодной защиты может быть более критичным для трубопроводов из высокопрочной стали.

Что касается конкретных компонентов двигателя, то впускные коллекторы двигателей внутреннего сгорания водорода, в частности с впрыском топлива, в основном сделаны из металла, чтобы выдерживать обратную вспышку. Эта мера в основном применяется при разработке и калибровке динамометра, поскольку необходимо установить пределы аномального горения. Для транспортных средств и демонстрационных транспортных средств необходимо использовать калибровки, которые эффективно предотвращают аномальное сгорание.

Выводы по первому разделу

Проведённый анализ известных источников показал, перспективность применения водорода в двигателях, с искровым зажиганием. Широкие пределы воспламеняемости позволяют двигателям на водороде работать в условиях качественного регулирования нагрузкой в диапазоне составов смесей от стехиометрического до 5 – 6 по коэффициенту избытка воздуха, что приводит к снижению температуры сгорания и практически к нулевым выбросам токсичных компонентов на режимах низких нагрузок.

2 Тепловой расчет проектируемого двигателя

Основные характеристики проекта двигателя ВАЗ на платформе В0 выбранного как прототип для дальнейшей проработки, принятого для расчета приведены в таблице 2.

Таблица 2 – Технические параметры двигателя ВАЗ на платформе ВО выбранного как прототип для дальнейшей проработки

Параметры двигателя	Базовый
Тип	4-тактный с искровым
	зажиганием
Кол-во цилиндров, тип ГБЦ	4, DOHC
Порядок работы цилиндров	1-3-4-2
Диаметр цилиндров, мм	82
Ход поршня, мм	84
Длина шатуна, мм	132,2
Рабочий объем, л	1,774
Степень сжатия	10,5
Номинальная мощность при (6000) об/мин, кВт (л.с.)	93 (127)

Для удобства анализа регулировочных и термохимических характеристик представим данные в виде таблицы 3 и 4.

Таблица 3 – Рег	улировочные	характеристики	и лвигателя на	водороде
raomique rei	junpobo mbie	" map and opino minin	дын ат өмн на	DOGOPOGO

Название параметра, размерность	Условное обозначение	Значение характеристики				
Частота вращения	n, мин ⁻¹	800	2000	3500	5000	6000
Угол опережения зажигания,	Θ° ПКВ	10	13	15	18	22
Температура подогрева заряда в цилиндре ДВС	ΔTN, °C	1	1	1	1	1
Давление на впуске	Ро, МПа	0,1	0,1	0,1	0,1	0,1
Температура на впуске	To, K	293,15	293,15	293,15	293,15	293,15
Действительная политропа сжатия	n ₁	1,3782	1,3776	1,3769	1,3753	1,3749
Предполагаемая температура остаточных газов, при α=1	Т _г , К	596	604	619	644	661
Продолжительность горения, при α=1	фг, ПКВ	30	36	40	45	50
Показатель характера сгорания	m	3	3	3	3	3
Предполагаемая температура остаточных газов, при α=1,4	Т _г , К	562	564	580	602	624
Продолжительность горения, при α=1,4	фг, ПКВ	38	42	50	52	55
Коэффициент эффективности сгорания топлива	ځ	0,96	0,96	0,96	0,96	0,96

Название характеристики, размерность	Условное обозначение	Значение характеристики, при α=1	Значение характеристики, при α=1,4
Низшая теплота сгорания, МДж/кг	H _u	103010	103010
Теоретически необходимое количество воздуха в кмоль для сгорания 1 кг топлива	Lo	1,202	1,202
Теоретически необходимое количество воздуха в кг для сгорания 1 кг топлива	lo	34,783	34,783
Количество компонента продуктов	MH ₂ O,	0,5000	0,5000
сгорания, кмоль /кг топлива	MN ₂ ,	0,9519	1,3327
Общее количество продуктов сгорания топлива, кмоль пр. сг./кг топлива	M ₂	1,4519	1,9327
Коэффициент изменения горючей смеси	μ_0	0,8551	0,8871

Таблица 4 – Термохимические характеристики топлива (водород)

Тепловой расчет производиться по методике И.И. Вибе, для прототипа двигателя ВАЗ на платформе ВО. Расчет проводился для двигателя на водороде при коэффициенте избытка воздуха 1 и 1,4. Результаты расчета представлены в виде таблиц и графиков. Исследование проводятся на пяти режимах работы при оборотах коленчатого вала 800, 2000, 3500, 5000 и 6000 мин⁻¹.

Для удобства расчетов цикла для двигателя на водороде при α=1 представим данные в виде таблицы 5.

Название параметра	Условное обозначение	Значение характеристики				
Частота вращения	n, мин ⁻¹	600 2000 3500 5000 6000				
Давление остаточных газов	Pr, MΠa	0,1037	0,1058	0,1106	0,1180	0,1244
Температура подогрева	$\Delta \mathrm{T}_{\mathrm{N}}$, К	10,7895	8,9474	6,9737	5,0000	3,6842
Средняя скорость движения заряда	ω _{вп} , м/с	10,3703	35,0941	61,4147	87,7353	105,2824
Давление в конце впуска	Ра, МПа	0,0999	0,0985	0,0955	0,0909	0,0868
Коэффициент остаточных газов	γ_{r}	0,0544	0,0556	0,0590	0,0645	0,0702
Коэффициент наполнения	η_V	0,9874	0,9718	0,9349	0,8770	0,8267
Температура в конце впуска	Ta, K	310,8161	311,2274	312,6153	315,3396	317,9798
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	3,4757	3,5275	3,6552	3,8764	4,0900
Давление в конце сжатия	Р _с , МПа	2,5511	2,5168	2,4389	2,3183	2,2142
Температура в конце сжатия	T _c , K	756,1404	757,0669	760,1921	766,3206	772,2527

Таблица 5 – Расчет действительного цикла на α=1

Продолжение таблицы 5

Политропа расширения	n ₂	1,2473	1,2429	1,2432	1,2437	0,5907
Удельный объем рабочего тела в момент воспламенения	Vy, м ³ /кг	0,3627	0,3838	0,4253	0,4865	0,5419
Давление рабочего тела в момент воспламенения	Ру, МПа	2,2496	2,0950	1,8509	1,5851	1,4053
Температура рабочего тела в момент воспламенения	Ty, K	730,4910	719,9171	704,7988	690,4777	681,8111
Общая удельная теплота сгорания топлива	q _z , кДж/кг	2621,0882	2617,9754	2609,7015	2596,2359	2582,2507
Давление в процессе сгорания	Е₂, МПа	15,8363	15,5853	14,9933	14,0650	13,2586
Степень расширения	δ	7,6226	6,7357	6,5416	6,1669	5,6420
Давление в конце процесса сгорания	Р _z , МПа	3,4277	2,8796	2,6719	2,3338	1,9729
Температура в конце процесса сгорания	T _z , K	1621,9919	1564,7443	1548,3349	1520,1049	1480,7680
Давление в конце процесса расширения	Рь, МПа	0,2721	0,2690	0,2587	0,2429	0,2270
Температура в конце процесса расширения	T _b , K	981,5785	984,4852	980,5516	975,7093	961,3680
Теоретическая индикаторная работа цикла	L _т , кДж	1,5915	1,5696	1,5708	1,5420	1,4581
Расчетное среднее индикаторное давление	РіТ, МПа	0,5061	0,4918	0,4750	0,4397	0,3940
Индикаторный коэффициент полезного действия	ηί	0,2059	0,2033	0,2041	0,2014	0,1915
Удельный индикаторный расход топлива	g _i , г/кВт*ч	169,7269	171,8886	171,2121	173,5130	182,5162
Давление механических потерь	Р _м , МПа	0,0530	0,0973	0,1447	0,1922	0,2238
Средняя скорость поршня	С _п , м/с	1,6800	5,6000	9,8000	14,0000	16,8000
Среднее эффективное давление	Ре, МПа	0,4531	0,3945	0,3303	0,2475	0,1702
Механический КПД	ηм	0,8953	0,8022	0,6953	0,5629	0,4319
Эффективный КПД	ηе	0,1844	0,1631	0,1419	0,1134	0,0827
Удельный эффективный расход топлива	g _e , г/кВт*ч	189,5741	214,2721	246,2492	308,2706	422,5792
Эффективная мощность	N _e , кВт	4,0200	11,6675	17,0919	18,2969	15,0987
Часовой расход топлива	G _т , КГ/Ч	0,7621	2,5000	4,2089	5,6404	6,3804
Крутящий момент	Ме, Н*м	63,9800	55,7084	46,6331	34,9445	24,0304

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 5) и внешнюю скоростную характеристику (рисунок 6) для двигателя на водороде при α=1.

Рисунок 5 – Индикаторные диаграммы в P-V координатах, для исследуемых частот вращения для двигателя на водороде при α=1: (a) 800; (б) 2000; (в) 3500; (г) 5000 и (д) 6000 мин⁻¹.

Для удобства расчетов цикла для двигателя на водороде при α=1,4 представим данные в виде таблицы 6.

Название параметра	Условное обозначение	Значение характеристики				
Частота вращения	n, мин ⁻¹	600	2000	3500	5000	6000
Давление остаточных газон	Pr, MΠa	0,1037	0,1058	0,1106	0,1180	0,1244
Температура подогрева	$\Delta \mathrm{T}_{\mathrm{N}}$, К	10,7895	8,9474	6,9737	5,0000	3,6842
Средняя скорость движения заряда	ω _{вп} , м/с	10,3703	35,0941	61,4147	87,7353	105,2824
Давление в конце впуска	Ра, МПа	0,0999	0,0985	0,0955	0,0909	0,0868
Коэффициент остаточных газов	γ_{r}	0,0649	0,0654	0,0659	0,0706	0,0771
Коэффициент наполнения	η_V	0,8778	0,8852	0,8928	0,8570	0,7980
Температура в конце впуска	Ta, K	311,5546	311,4577	312,1955	314,4460	317,5110
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	2,7600	2,7964	2,8916	3,0620	3,2351

Таблица 6 – Расчет действительного цикла на α=1,4

1 / /						
Давление в конце сжатия	Р _с , МПа	2,5506	2,5166	2,4367	2,3188	2,2125
Температура в конце сжатия	T _c , K	757,8038	757,5856	758,4939	764,3112	770,5219
Политропа расширения	n ₂	1,2522	1,2527	1,2536	1,2536	1,2538
Удельный объем рабочего тела в момент воспламенения	Vy, м ³ /кг	0,2889	0,3042	0,3364	0,3843	0,4286
Давление рабочего тела в момент воспламенения	Ру, МПа	2,2393	2,0949	1,8494	1,5854	1,4044
Температура рабочего тела в момент воспламенения	Ty, K	731,2267	720,4126	703,2777	688,6501	680,3564
Общая удельная теплота сгорания топлива	q _z , кДж/кг	1868,6811	1867,7400	1866,8613	1858,7136	1847,4991
Давление в процессе сгорания	Е₂, МПа	14,2184	14,0261	13,5580	12,7478	11,9927
Степень расширения	δ	5,9869	5,6420	4,8713	5,0151	4,8713
Давление в конце процесса сгорания	P _z , MПа	2,3900	2,1823	1,7478	1,7085	1,5565
Температура в конце процесса сгорания	T _z , K	1392,8791	1367,3203	1311,4804	1317,9270	1305,0492
Давление в конце процесса расширения	Рь, МПа	0,2542	0,2498	0,2401	0,2263	0,2138
Температура в конце процесса расширения	T _b , K	886,9722	883,1061	877,6991	875,6273	873,1455
Теоретическая индикаторная работа цикла	L _т , кДж	1,1265	1,1252	1,0538	1,0537	1,0298
Расчетное среднее индикаторное давление	РіТ, МПа	0,4511	0,4447	0,4028	0,3803	0,3518
Индикаторный коэффициент полезного действия	ηi	0,2649	0,2590	0,2326	0,2288	0,2273
Удельный индикаторный расход топлива	g_i , г/к B т*ч	131,9204	134,9349	150,2671	152,7530	153,7680
Давление механических потерь	Р _м , МПа	0,0530	0,0973	0,1447	0,1922	0,2238
Средняя скорость поршня	Сп, м/с	1,6800	5,6000	9,8000	14,0000	16,8000
Среднее эффективное давление	Ре, МПа	0,3981	0,3475	0,2581	0,1881	0,1280
Механический КПД	ηм	0,8825	0,7813	0,6407	0,4947	0,3638
Эффективный КПД	ηe	0,2338	0,2023	0,1490	0,1132	0,0827
Удельный эффективный расход топлива	g _e , г/кВт*ч	149,4768	172,7136	234,5440	308,8031	422,7045
Эффективная мощность	N _e , кВт	3,5322	10,2756	13,3563	13,9099	11,3548
Часовой расход топлива	\mathbf{G}_{T} , КГ/Ч	0,5280	1,7747	3,1326	4,2954	4,7997
Крутящий момент	M _e , Н*м	56,2171	49,0622	36,4410	26,5660	18,0718

Продолжение таблицы 6

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 7) для двигателя на водороде при α=1.

Рисунок 7 – Индикаторные диаграммы в P-V координатах, для двигателя на водороде при α=1,4: (а) 800; (б) 2000; (в) 3500; (г) 5000 и (д) 6000 мин⁻¹.

По результатам расчетов построим внешнюю скоростную характеристику (рисунок 8) для двигателя на водороде при α=1,4.

Рисунок 8 – Внешняя скоростная характеристика для двигателя на водороде при α=1,4

Выводы по второму разделу

Проведенные расчеты показали значительное снижение мощностных показателей при работе на чистом водородном топливе. Мощность упала для стехиометрической смеси более чем в два раза. Соответственно для эффективного использования водорода требуется либо применения наддува, для улучшения наполнения цилиндров или работа в составе гибридной силовой установки, где недостаток мощности на нагрузочных режимах будет компенсирован электродвигателем. Также требуется провести оценку токсичности водородного двигателя по оксидам азота. 3 Кинематический и динамический расчет кривошипно-шатунного механизма двигателя

3.1 Кинематический расчет кривошипно-шатунного механизма двигателя

Кинематический расчет для центрального кривошипно-шатунного механизма проектируемого двигателя (радиус кривошипа 42 мм, а длина шатуна 132,2 мм) проводился по известным методикам приведенным в [1,2], при частоте вращения коленчатого вала 6000 мин⁻¹.

Результаты расчета перемещения, скорости и ускорения поршня приведены на рисунках 9, 10 и 11.

Рисунок 7 – Диаграмма изменения хода поршня

Рисунок 9 – Диаграмма изменения ускорения поршня

По результатам кинематического расчета мы можем определить инерционные силы в динамическом расчете.

3.2 Динамический расчет кривошипно-шатунного механизма двигателя

Динамический расчет кривошипно-шатунного механизма проектируемого двигателя проводился при частоте вращения коленчатого вала 6000 мин⁻¹, при работе на водороде при α =1, результаты приведение масс кривошипно-шатунного механизма по двух массовой схеме показаны в таблице 7.

|--|

Параметр	Размерность	Величина
Площадь поршня,	M ²	5281,0173
Удельная масса поршня,	$\kappa \Gamma / M^2$	100
Масса поршневой группы,	КГ	0,5281
Удельная масса шатуна,	$\kappa \Gamma / M^2$	150
Масса шатуна,	КГ	0,79215
Масса шатуна, сосредоточенная на оси поршневого	КГ	0,218
пальца,		
Масса шатуна, сосредоточенная на оси кривошипа,	КГ	0,574
Удельная масса одного колена вала,	$\kappa \Gamma / M^2$	140
Масса неуравновешенных частей одного колена вала,	КГ	0,7393
Массы, совершающие возвратно-поступательное	КГ	0,746
движение		
Массы, совершающие вращательное движение	КГ	1,31365
Центробежная сила инерции вращающихся масс	Н	
шатуна,		-9522,61
Центробежная сила инерции вращающихся масс	Н	
кривошипа,		-12259
Центробежная сила инерции вращающихся масс,	Н	-21782

Результаты расчета приведены в виде графиков. На рисунке 12 приведены силы инерции возвратно-поступательного движения.

В таблице 8 приведены силы, действующие на поршневой палец и крутящий момент двигателя на водороде при α=1.

Таблица 8 – Суммарные силы, действующие на поршневой палец и крутящий момент двигателя на водороде при α=1

$\phi_{\rm KB}$	N, H	К, Н	Z, H	T, H	Мкр.ц1	$\phi_{\rm KB}$	N, H	К, Н	Z, H	T, H	Мкр.ц1
0	0	-13513	-13513	0	0	370	204,54	3606,7	3510,7	826,72	204,54
10	-747,5	-13181	-12830	-3021	-1,864	380	295,29	2643,6	2367,6	1176	295,29
20	-1363	-12204	-10930	-5429	-3,441	390	-45,09	-276,12	-213,4	-175,3	-45,09
30	-1738	-10643	-8224	-6755	-4,5	400	-331,6	-1579,7	-970	-1247	-331,6
40	-1805	-8598,2	-5280	-6786	-4,916	410	-334,6	-1337,5	-576,1	-1207	-334,6
50	-1552	-6205	-2672	-5600	-4,681	420	37,233	131,64	30,888	127,96	37,233
60	-1026	-3628,3	-851,3	-3527	-3,903	430	556,4	1813	67,307	1811,7	556,4
70	-321,9	-1048,9	-38,94	-1048	-2,766	440	1158,6	3602,3	-548,7	3560,3	1158,6
80	435,84	1355,1	-206,4	1339,3	-1,488	450	1713,2	5245,5	-1713	4957,9	1713,2
90	1120,5	3430,9	-1121	3242,7	-0,272	460	2115	6575,8	-3164	5764,5	2115
100	1631,5	5072,7	-2441	4446,8	0,7275	470	2305	7510,6	-4611	5928,7	2305
110	1913,7	6235,8	-3828	4922,4	1,4252	480	2275,3	8044,5	-5828	5544,6	2275,3
120	1962,5	6938,7	-5027	4782,5	1,8003	490	2059,9	8233,4	-6702	4782,5	2059,9
130	1814,6	7253	-5904	4213	1,8826	500	1715,7	8172,8	-7224	3822	1715,7
140	1529,2	7284,3	-6439	3406,5	1,731	510	1276,7	7818,1	-7318	2750,9	1276,7
150	1167,7	7151,1	-6694	2516,2	1,4129	520	792,55	7095,2	-6897	1666,8	792,55
160	777,96	6964,6	-6770	1636,1	0,9892	530	393,84	6944,4	-6896	816,09	393,84
170	386,47	6814,5	-6767	800,82	0,5071	540	8E-13	6887,6	-6888	3E-12	8E-13
180	3E-13	6757,9	-6758	8E-13	4E-16	550	-393,8	6944,4	-6896	-816,1	-393,8
190	-386,6	6817,4	-6770	-801,2	-0,52	560	-792,5	7095,2	-6897	-1667	-792,5

200	-779.3	6976.7	-6781	-1639	-1.092	570	-1189	7282.5	-6817	-2563	-1189		
210	-1172	7179,3	-6720	-2526	-1,768	580	-1557	7417	-6556	-3469	-1557		
220	-1540	7337,4	-6486	-3431	-2,597	590	-1848	7387	-6013	-4291	-1848		
230	-1837	7341,9	-5976	-4265	-3,635	600	-2001	7074	-5125	-4876	-2001		
240	-2002	7078	-5128	-4878	-4,958	610	-1956	6372,1	-3912	-5030	-1956		
250	-1978	6445,2	-3957	-5088	-6,684	620	-1676	5209,7	-2507	-4567	-1676		
260	-1730	5379,5	-2588	-4716	-9,002	630	-1165	3568,1	-1165	-3372	-1165		
270	-1265	3874,3	-1265	-3662	-12,2	640	-479,9	1492,1	-227,3	-1475	-479,9		
280	-640,9	1992,6	-303,5	-1969	-16,7	650	280,07	-912,58	-33,88	911,95	280,07		
290	39,732	-129,46	-4,806	129,37	-23,04	660	987,97	-3493,1	-819,6	3395,5	987,97		
300	647,01	-2287,6	-536,7	2223,7	-31,87	670	1518,9	-6071	-2615	5479,1	1518,9		
310	1054,5	-4214,9	-1815	3803,9	-43,71	680	1777,2	-8465,5	-5198	6681,6	1777,2		
320	1171,7	-5581,4	-3427	4405,3	-58,37	690	1716,5	-10512	-8123	6671,8	1716,5		
330	980,28	-6003	-4639	3810,2	-73,16	700	1348,6	-12073	-10813	5370,8	1348,6		
340	565,56	-5063,2	-4535	2252,3	-79,07	710	740,15	-13051	-12703	2991,5	740,15		
350	175,91	-3101,8	-3019	711	-59,36	720	2E-12	-13384	-13384	7E-12	2E-12		
360	-1E-14	149,53	149,53	-4E-14	-1E-13	Мкр.	Мкр.ц.Суммарный Н*м						

Продолжение таблицы 8

В таблице 9 приведены силы, действующие на шатунную и коренные шейки коленчатого вала двигателя на водороде при α=1.

Таблица 9 – Силы, действующие на шатунную и коренные шейки коленчатого вала двигателя на водороде при α=1

	Rш.ш.,	Rк.ш1(5)	Rк.ш2(4),	Rк.ш3,		Rш.ш.,	Rк.ш1(5)	Rк.ш2(4),	Rк.ш3,
$\phi_{\kappa B}$	Н	, Н	Н	Н	$\phi_{\kappa B}$	Н	,Н	Н	Н
0	21766,18	17012,583	0	1,68E-12	370	4813,797	8510,6763	9035,826108	25951,03
10	21298,22	16739,217	10238,77657	25865,58	380	6001,64	9091,178	6841,208156	25308,49
20	19936,27	15953,546	9581,622779	25210,26	390	8468,115	10363,015	3809,939808	24684,46
30	17808,38	14759,86	7823,369607	24586,69	400	9306,783	10759,015	2079,027729	24188,96
40	15138,8	13334,687	5263,105179	24116,41	410	8911,112	10561,243	585,7115352	23906,66
50	12276,97	11925,55	2791,722828	23902,9	420	8223,035	10240,714	2294,998269	23846,99
60	9763,579	10826,223	3395,684678	23986,88	430	8383,717	10262,363	4244,306123	23916,65
70	8357,853	10288,784	6054,350338	24329,4	440	9494,438	10679,72	5262,326308	23933,23
80	8564,699	10380,785	8340,33959	24842,62	450	11131,21	11385,681	4803,85043	23676,69
90	9918,49	10937,055	9671,918359	25450,21	460	12789,73	12183,814	2636,538016	22957,53
100	11581,46	11689,755	9946,826857	26126,99	470	14164,2	12906,388	1743,122671	22044,63
110	13045,42	12416,421	9365,861149	26871,08	480	15133,69	13458,817	5978,006165	21035,43
120	14115,13	12991,577	8356,206698	27615,35	490	15701,05	13815,486	10246,07269	20593,84
130	14770,46	13374,853	7556,281519	28218,87	500	15941,88	13999,018	9663,479769	22617,03
140	15081,4	13582,532	7045,818705	28239,9	510	15812,19	13982,838	7106,914228	25230,38
150	15156,98	13660,883	6926,520839	27448,58	520	15241,03	13729,62	6056,449896	26677,1
160	15111,5	13665,338	6948,055049	25703,18	530	15171,19	13710,181	6434,485514	27214,69
170	15041,52	13645,464	6937,408246	23431,02	540	15140,52	13699,754	6919,664245	27188,23
180	15010,79	13634,889	6879,451655	20862,82	550	15171,19	13710,181	7195,42676	26915,59
190	15044,47	13646,934	6812,370775	18808,1	560	15240,98	13729,593	7278,152733	26337,22
200	15123,49	13671,286	6710,091992	19547,31	570	15286,06	13724,306	7115,344827	25715,29
210	15184,74	13674,521	6470,859675	21460,47	580	15209,7	13644,622	6688,425749	25057,74
220	15132,72	13607,366	6011,247197	22577,45	590	14897,26	13434,869	6092,268438	24392,16
230	14854,57	13414,666	5370,703869	22967,61	600	14239,02	13048,368	5589,032032	23912,29
240	14242,71	13050,061	4783,543004	23072,81	610	13163,69	12468,174	5536,930003	23885,44
250	13227,24	12495,985	4641,254805	23433,34	620	11688,76	11733,656	6071,279999	24350,68
260	11822,65	11788,412	5140,883037	24130,31	630	10003,85	10969,006	6739,782309	25068,83
270	10198,34	11041,478	5983,239538	25053,18	640	8607,476	10395,781	6874,528311	25693,07

r - ~									
280	8780,144	10454,191	6670,00105	25985,34	650	8336,835	10283,012	6910,774374	26436,87
290	8258,746	10258,565	6809,706607	26756,79	660	9687,129	10800,039	6067,989824	26968,31
300	9066,597	10582,899	6221,11608	27297,89	670	12170,73	11883,42	4358,639754	27285,3
310	10762,87	11324,478	5019,227492	27616,74	680	15019,13	13282,027	2379,737445	27418,84
320	12483,24	12170,521	3733,309631	27751,04	690	17682,74	14700,88	2876,138128	27394,08
330	13443,03	12718,866	3273,17325	27656,76	700	19807,97	15891,009	5491,174304	27224,92
340	12984,37	12573,791	3947,211741	27253,16	710	21168,8	16674,894	7948,158614	26914,19
350	11294,59	11770,956	5189,555895	26960,34	720	21636,45	16947,718	9590,126489	26453,5
360	8103,395	10181,192	7187,089434	26519,82					

Продолжение таблицы 9.

На рисунке 13 приведено сравнение суммарной силы, действующую на шатунную шейку в полярных координатах двигателя на водороде при α=1.

Рисунок 13 – Суммарная сила, действующая на шатунную шейку в полярных координатах двигателя на водороде при α=1

А на рисунке 14 приведено сравнение суммарных сил, действующих на 1-ю коренную шейку в полярных координатах двигателя на водороде при α=1.

Рисунок 14 – Суммарные силы, действующие на 1-ю коренную шейку в полярных координатах двигателя на водороде при α=1

Выводы по 3-му разделу

Как мы видим применение работа на водороде без наддува снижает нагрузки на детали кривошипно-шатунного механизмам почтив 2 раза, что позволяет говорить о возможностях снижения прочностных свойств деталей КШМ, за счет применения более дешевых материалов или уменьшения их размеров.

4 Анализ токсичности отработавших газов и эффективности рабочего процесса при работе на водороде

Анализ токсичности отработавших газов при работе на водороде проводился по модели, представленной на рисунке 15, выполненной с рынке программного обеспечения для использованием ведущего на моделирования двигателей WAVE Ricardo 17.1. Реализована прогнозирующая модель горения, использующая квазиразмерный процесс распространения пламени. Трехмерная модель формы камеры сгорания используется для расчета площади распространения пламени. Особое внимание при проверке модели уделялось давлению в цилиндре во время газообмена и сгорания для оценки производительности впускной и выпускной систем, а также прогнозирующей модели сгорания.

Рисунок 15 – Структура модели виртуального двигателя при работе на водороде

Таже проведен расчет скоростных и регулировочных по составу смеси характеристики двигателя при работе на водороде, представленный в таблице 10 и 11.

Скорость двигателя	rpm	6000	5000	3999	3000	2000	1200	799
Отношение воздуха к топливу		49.165	46.2152	36.1747	30.9218	25.5853	17.4064	15.3487
Массовый расход воздуха	kg/hr	61.5826	49.6542	35.7751	24.672	15.1347	7.52265	4.60707
Обратный поток (закрытие)	%	2.30894	4.59255	7.70324	9.38236	10.059	12.5164	14.8288
Обратный поток (перекрытие)	%	0.00311339	0.0104414	0.02407	0.0262684	0.0453537	0.0488581	0.0407012
Начало горения	deg	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217
Максимальная скорость повышения		1.39047	1.3685	1.53405	1.56389	1.50432	1.33397	1.26232
давления	bar/deg							
Массовый расход топлива	kg/hr	1.25412	1.0758	0.990327	0.798064	0.592035	0.432494	0.300414
GMEP	bar	9.24555	9.19435	10.095	10.046	9.1531	7.28851	6.27409
Скорость теплопередачи	W	7057.14	6036.85	6015.24	5164.52	3738.65	2220.28	1620.36
IMEP	bar	8.77703	8.95548	9.9779	9.98625	9.12778	7.28043	6.27065
Перекрытие клапана	deg	75	75	75	75	75	75	75
Максимальное давление	bar	59.1903	58.2225	60.5332	59.8272	56.7432	50.3893	47.1593
PMEP	bar	-0.583457	-0.306622	-0.15492	-0.0698085	-0.0256478	-0.00806108	-0.00335157
Объемный коэффициент наполнения	-	0.749861	0.730475	0.665514	0.615854	0.571497	0.482275	0.445509
Объемный коэффициент наполнения		0.735147	0.715579	0.648477	0.597587	0.551291	0.457617	0.420158
(только воздух)	-							
Остаточная газовая фракция	%	3.06226	3.0873	3.01045	3.18742	3.4405	3.888	4.17462
Продолжительность от 0% до 10% сжигания		13.2404	13.2398	13.2538	13.2536	13.2626	13.2645	13.2648
массы топлива	deg							
Продолжительность между от 0% до 2%		4.70286	4.70585	4.70862	4.70924	4.71157	4.71164	4.71177
сжигания массы топлива	deg							
Продолжительность между от 0% до 5%		8.09832	8.1002	8.09469	8.09164	8.08925	8.08827	8.08812
сжигания массы топлива	deg							
Продолжительность от 0% до 90% сжигания		35.2719	35.2722	35.2615	35.2574	35.2555	35.2542	35.2535
массы топлива	deg							
Время сжигания 1% массы топлива	deg	-6.68256	-6.67813	-6.6601	-6.65387	-6.64629	-6.64199	-6.64208
Продолжительность сжигания от 10% до		22.0315	22.0325	22.0077	22.0038	21.9929	21.9897	21.9887
90% массы топлива	deg							
Время сжигания 10% массы топлива	deg	3.02347	3.0228	3.03681	3.03666	3.04569	3.04756	3.04786
Время сжигания 50% массы топлива	deg	14.4716	14.4717	14.4718	14.4719	14.472	14.472	14.472
Время сжигания 90% массы топлива	deg	25.0549	25.0553	25.0445	25.0404	25.0385	25.0372	25.0366
Время сжигания 99% массы топлива	deg	33.2513	33.2491	33.2205	33.2287	33.2191	33.2179	33.2169
Время максимального давления	deg	15.9655	16.0557	16.448	16.6304	16.4875	15.9675	15.568
Объемный КПД	-	0.747957	0.723695	0.651765	0.599312	0.551459	0.456835	0.419667

Таблица 10 – Скоростная характеристики двигателя при работе на водороде

Скорость двигателя	rpm	3000	2999	2999	3000	3000	3000	2999
Отношение воздуха к топливу	`	27.393	26.2903	30.6376	30.9218	33.6609	40.0023	45.0098
Массовый расход воздуха	kg/hr	23.7262	23.3223	24.6148	24.672	25.3025	26.6612	27.3986
Обратный поток (закрытие)	%	9.37336	9.39085	9.37241	9.38236	9.35594	9.31221	9.295
Обратный поток (перекрытие)	%	0.0485646	0.0401327	0.0475044	0.0262684	0.0160326	0.0905599	0.123583
Начало горения	deg	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217	-10.217
Максимальная скорость повышения давления	bar/deg	1.66261	1.52075	1.63328	1.56389	1.56802	1.44044	1.35809
Массовый расход топлива	kg/hr	0.866958	0.887864	0.803653	0.798064	0.752295	0.66736	0.609124
GMEP	bar	10.1707	9.66434	10.14	10.046	10.1269	9.14408	8.60566
Скорость теплопередачи	W	5239.6	4850.06	5238.19	5164.52	5255.88	4445.27	4061.94
IMEP	bar	10.1119	9.60654	10.0803	9.98625	10.0662	9.07785	8.53699
Перекрытие клапана	deg	75	75	75	75	75	75	75
Максимальное давление	bar	60.4965	58.3083	60.3041	59.8272	60.2476	56.2536	54.1776
PMEP	bar	-0.0698162	-0.065583	-0.0708409	-0.0698085	-0.0722092	-0.0758621	-0.0771741
Объемный коэффициент наполнения	-	0.591213	0.583701	0.612767	0.615854	0.631144	0.66202	0.680037
Объемный коэффициент наполнения (только		0.571767	0.563449	0.594614	0.597587	0.613874	0.646966	0.666167
воздух)	-							
Остаточная газовая фракция	%	3.24213	3.35345	3.16701	3.18742	3.19125	3.29414	3.50932
Продолжительность от 0% до 10% сжигания		13.26	13.2595	13.2593	13.2536	13.2589	13.2623	13.251
массы топлива	deg							
Продолжительность между от 0% до 2%		4.71103	4.71111	4.71109	4.70924	4.70724	4.71047	4.70989
сжигания массы топлива	deg							
Продолжительность между от 0% до 5%		8.08849	8.08971	8.08835	8.09164	8.09129	8.09634	8.09431
сжигания массы топлива	deg							
Продолжительность от 0% до 90% сжигания		35.2582	35.2556	35.2627	35.2574	35.2559	35.2594	35.2571
массы топлива	deg							
Время сжигания 1% массы топлива	deg	-6.65133	-6.65101	-6.64967	-6.65387	-6.65591	-6.64407	-6.64285
Продолжительность сжигания от 10% до 90%	_	21.9982	21.9961	22.0034	22.0038	21.997	21.9971	22.0061
массы топлива	deg							
Время сжигания 10% массы топлива	deg	3.04302	3.04254	3.04232	3.03666	3.04192	3.04532	3.034
Время сжигания 50% массы топлива	deg	14.472	14.4719	14.4718	14.4719	14.472	14.4719	14.4718
Время сжигания 90% массы топлива	deg	25.0412	25.0386	25.0457	25.0404	25.0389	25.0424	25.0401
Время сжигания 99% массы топлива	deg	33.2293	33.219	33.2284	33.2287	33.222	33.2224	33.2214
Время максимального давления	deg	16.4062	16.5909	16.4307	16.6304	16.332	16.3085	16.1698
Объемный КПД	-	0.576336	0.566527	0.597922	0.599312	0.614628	0.647632	0.665544

Таблица 11 – Регулировочные характеристики по составу смеси двигателя на водороде при частоте 3000 об/мин

На рисунке 16 представлено среднее индикаторное давление при работе двигателя на водороде.

Рисунок 16 – Среднее индикаторное давление двигателя на водороде

На рисунке 17 представлена зависимость максимального давления в цикле в (бар) ч от частоты вращения при работе двигателя на водороде с переменным составом смеси.

Рисунок 17 – Зависимость максимального давления в цикле в (бар) ч от частоты вращения при работе двигателя на водороде с переменным составом смеси.

На рисунке 18 представлена зависимость удельных выбросов по NO₂ в г/кВт ч от частоты вращения при работе двигателя на водороде с переменным составом смеси.

Рисунок 18 – Зависимость удельных выбросов по NO₂ в г/кВт ч от частоты вращения при работе двигателя на водороде с переменным составом смеси.

На рисунке 19 представлена зависимость коэффициента избытка воздуха от частоты вращения при работе двигателя на водороде с переменным составом смеси.

Рисунок 19 – Зависимость коэффициента избытка воздуха от частоты вращения при работе двигателя на водороде с переменным составом смеси.

На рисунке 20 представлена зависимость эффективного термического коэффициента полезного действия от частоты вращения при работе двигателя на водороде с переменным составом смеси.

Рисунок 20 – Зависимость эффективного термического коэффициента полезного действия от частоты вращения при работе двигателя на водороде с переменным составом смеси.

На рисунке 21 представлена зависимость концентрации NO в мил⁻¹ (ppm) от частоты вращения при работе двигателя на водороде с переменным составом смеси.

На рисунке 22 представлена эффективная мощность в кВт при работе двигателя на водороде с переменным составом смеси.

Рисунок 22 – Средняя эффективная мощность в кВт при работе двигателя на водороде с переменным составом смеси

На рисунке 23 представлен средний эффективный крутящий момент двигателя в (Н м) при работе двигателя на водороде с переменным составом смеси.

Рисунок 23 – Средний эффективный крутящий момент двигателя в (Н м) при работе двигателя на водороде с переменным составом смеси

На рисунке 24 представлен средний часовой расход топлива в (кг/ч) при работе двигателя на водороде с переменным составом смеси.

Рисунок 24 – Средний эффективный крутящий момент двигателя в (Н м) при работе двигателя на водороде с переменным составом смеси

На рисунке 25 представлены индикаторные диаграммы в (бар) для частот вращения 6000, 5000, 4000, 3000, 2000, 1200 об/мин при работе двигателя на водороде с переменным составом смеси.

На рисунке 26 представлены изменение температуры в цилиндре двигателя (К) для частот вращения 6000, 5000, 4000, 3000, 2000, 1200 об/мин при работе двигателя на водороде с переменным составом смеси.

Рисунок 25 – Индикаторные диаграммы в (бар) для частот вращения 6000, 5000, 4000, 3000, 2000, 1200 об/мин при работе двигателя на водороде с переменным составом смеси

54

Рисунок 25 – Графики изменение температуры в цилиндре двигателя (К) для частот вращения 6000, 5000, 4000, 3000, 2000, 1200 об/мин при работе двигателя на водороде с переменным составом смеси

Выводы по 4-му разделу

В ходе стационарного моделирования концепция была исследованы характеристики сгорания водорода в ДВС с искровым зажиганием для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя.

Представленные результаты наглядно показывают, что применение водорода в двигателе с искровым зажиганием позволяет получить очень низкие характеристики по токсичности в двух случаях, в первом случае если мы работаем на слегка обогащенной смеси при небольшом недостатке кислорода, что приводит к отсутствию термических оксидов и лишь незначительному количеству быстрых оксидов азота, а потом нужно быстро переходить на состав смеси беднее по коэффициенту избытка воздуха чем 1,4, что привод к снижению температуры в процессе сгорания и делает выбросы по NOx в нормальных пределах, если же говорить об практически нулевых выбросах то тогда нужно работать при составах смеси беднее 1.8.

ЗАКЛЮЧЕНИЕ

В бакалаврской работе проведен анализ влияния водорода на рабочий процесс ДВС. Получены основные выводы по работе:

- Применение водорода осложнено падением мощности из-за вытеснения части воздуха при подаче газа во впускной коллектор, что привело к практически двухкратному снижению мощности если сравнивать работу на водороде и на бензине при подаче во впускной коллектор.
- 2. В ходе стационарного моделирования в программном пакете WAVE Ricardo 17.1 была оптимизирована концепция работы на чистом водороде. Полученные результаты наглядно показывают, что применение водорода в двигателе с искровым зажиганием позволяет получить очень низкие характеристики по токсичности в двух случаях, в первом случае если мы работаем на слегка обогащенной смеси при небольшом недостатке кислорода, что приводит к отсутствию термических оксидов и лишь незначительному количеству быстрых оксидов азота, а потом нужно быстро переходить на состав смеси беднее по коэффициенту избытка воздуха чем 1,4, что привод к снижению температуры в процессе сгорания и делает выбросы по NOx в нормальных пределах, если же говорить об практически нулевых выбросах то тогда нужно работать при составах смеси беднее 1.8.

Выводы по первому разделу

Проведённый анализ известных источников показал, перспективность применения водорода в двигателях, с искровым зажиганием. Широкие пределы воспламеняемости позволяют двигателям на водороде работать в условиях качественного регулирования нагрузкой в диапазоне составов смесей от стехиометрического до 5 – 6 по коэффициенту избытка воздуха, что приводит к снижению температуры сгорания и практически к нулевым выбросам токсичных компонентов на режимах низких нагрузок.

Выводы по второму разделу

Проведенные расчеты показали значительное снижение мощностных показателей при работе на чистом водородном топливе. Мощность упала для стехиометрической смеси более чем в два раза. Соответственно для эффективного использования водорода требуется либо применения наддува, для улучшения наполнения цилиндров или работа в составе гибридной силовой установки, где недостаток мощности на нагрузочных режимах будет компенсирован электродвигателем. Также требуется провести оценку токсичности водородного двигателя по оксидам азота.

Выводы по 3-му разделу

Как мы видим применение работа на водороде без наддува снижает нагрузки на детали кривошипно-шатунного механизмам почтив 2 раза, что позволяет говорить о возможностях снижения прочностных свойств деталей КШМ, за счет применения более дешевых материалов или уменьшения их размеров.

Выводы по 4-му разделу

В ходе стационарного моделирования концепция была исследованы характеристики сгорания водорода в ДВС с искровым зажиганием для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя.

Представленные результаты наглядно показывают, что применение водорода в двигателе с искровым зажиганием позволяет получить очень низкие характеристики по токсичности в двух случаях, в первом случае если мы работаем на слегка обогащенной смеси при небольшом недостатке кислорода, что приводит к отсутствию термических оксидов и лишь незначительному количеству быстрых оксидов азота, а потом нужно быстро переходить на состав смеси беднее по коэффициенту избытка воздуха чем 1,4, что привод к снижению температуры в процессе сгорания и делает выбросы по NOx в нормальных пределах, если же говорить об практически нулевых выбросах то тогда нужно работать при составах смеси беднее 1.8.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- Конструирование двигателей внутреннего сгорания : учебник для студентов вузов, обучающихся по специальности "Двигатели внутреннего сгорания" направления подготовки "Энергомашиностроение" / Н. Д. Чайнов, Н. А. Иващенко, А. Н. Краснокутский, Л. Л. Мягков ; под ред. Н. Д. Чайнова. - 3-е изд. - Москва : Машиностроение, 2023. - 495 с.
- 2 Автомобиль. Устройство. Автомобильные двигатели : учебное пособие / А. В. Костенко, А. В. Петров, Е. А. Степанова [и др.]. - Изд. 3-е, стер. -Санкт-Петербург : Лань, 2023. - 436 с.
- 3 Петров, А. И. Техническая термодинамика и теплопередача : учебник / А.
 И. Петров. Изд. 2-е, стер. Санкт-Петербург : Лань, 2023. 428 с.
- 4 Баширов, Р. М. Автотракторные двигатели : конструкция, основы теории и расчета : учебник / Р. М. Баширов. - Изд. 4-е, стер. - Санкт-Петербург : Лань, 2022. - 336 с.
- 5 Вальехо М. П. Расчет кинематики и динамики рядных поршневых двигателей : учебное пособие / М. П. Вальехо, Н. Д. Чайнов. Москва : ИНФРА-М, 2022. 259 с.
- 6 Суркин, В. И. Основы теории и расчёта автотракторных двигателей : курс лекций : учеб. пособие / В. И. Суркин. - Изд. 2-е, перераб. и доп. - Санкт-Петербург : Лань, 2022. - 304 с.
- Крюков, К. С. Теория и конструкция силовых установок : учеб. пособие / К. С. Крюков. Москва : ИНФРА-М, 2021. 211 с.
- 8 Курасов, В. С. Теория двигателей внутреннего сгорания : учеб. пособие / В. С. Курасов, В. В. Драгуленко. Москва : ИНФРА-М, 2021. 86 с.
- 9 Гоц А. Н. Динамика двигателей : курсовое проектирование : учеб. пособие
 / А. Н. Гоц. 3-е изд., испр. и доп. Москва : ИНФРА-М, 2020. 175 с.
- 10 Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / И.И. Вибе// М. Машиностроение, 1971. - с.282

- 11 Aeristech, 2016. Full electric Turbocharger [Online]. Available from: http://www.aeristech.co.uk/full-electric-turbocharger-technology/ [Accessed 10/10 2019].
- 12 Amann, M., Alger, T. & Mehta, D., 2011. The effect of EGR on low-speed preignition in boosted SI engines. SAE International Journal of Engines, 4(1), pp. 235-245.
- 13 Arnold, S., 2009. Single sequential turbocharger: a new boosting concept for ultra-low emission diesel engines. SAE International Journal of Engines, 1(1), pp. 232-239.
- 14 Arsie, I., Cricchio, A., Pianese, C., De Cesare, M. & Nesci, W., 2014. A comprehensive powertrain model to evaluate the benefits of electric turbo compound (ETC) in reducing CO2 emissions from small diesel passenger cars. (0148-7191). SAE Technical Paper.
- 15 Assanis, D., Ekchian, J., Frank, R. & Heywood, J., 1985. A computer simulation of the turbocharged turbo compounded diesel engine system: A description of the thermodynamic and heat transfer models.
- 16 Attard, W., 2007. Small engine performance limits-turbocharging, combustion or design. SAE Technical Paper Series.
- 17 Atzler, F., Wegerer, M., Mehne, F., Rohrer, S., Rathgeber, C. & Fischer, S., 2015. Fuel Consumption and Emissions Effects in Passenger Car Diesel Engines through the Use of a Belt Starter Generator. (0148-7191). SAE Technical Paper.
- 18 Avola, C., Copeland, C., Burke, R. & Brace, C., Numerical investigation of two-stage turbocharging systems performance. In: ASME 2016 Internal Combustion Engine Division Fall Technical Conference, 2016. American Society of Mechanical Engineers Digital Collection.
- 19 Avola, C., Copeland, C., Duda, T., Burke, R., Akehurst, S. & Brace, C., 2015. Review of Turbocharger Mapping and 1D Modelling Inaccuracies with Specific Focus on Two-Stag Systems. (0148-7191). SAE Technical Paper.

- 20 Baar, R., Biet, C., Boxberger, V., Mai, H. & Zimmermann, R., 2014. New evaluation of turbocharger components based on turbine outlet temperature measurements in adiabatic conditions. ISROMAC-15, Honolulu, HI, Feb, pp. 24-28.
- 21 Backlund, O., Keen, P., Rydquist, J., Giselmo, K. & Sundin, L., 1991. Volvo's MEP and PCP Engines: Combining Environmental Benefit with High Performance. (0148-7191). SAE Technical Paper.
- 22 Bahadori, A., 2014. Chapter 5 Gas Compressors. Natural Gas Processing, 1st Edition. Gulf Professional Publishing. pp. 223-273.
- 23 Baines, N., Wygant, K.D. & Dris, A., 2010. The analysis of heat transfer in automotive turbochargers. Journal of Engineering for Gas Turbines and Power, 132(4), p. 042301.
- 24 Baines, N.C., 2005. Fundamentals of turbocharging. Concepts NREC White River Junction, Vermont.
- 25 Balis, C., Middlemass, C. & Shahed, S., 2003. Design & development of eturbo for SUV and light truck applications. (No. CONF-200308-109). Garrett Engine Boosting Systems (US).
- 26 Bell, C., Zimmerle, D., Bradley, T., Olsen, D. & Young, P., 2016. Scalable turbocharger performance maps for dynamic state-based engine models. International Journal of Engine Research, 17(7), pp. 705-712.
- 27 Benson, R.S. & Svetnicka, F., 1974. Two-stage turbocharging of diesel engines: a matching procedure and an experimental investigation. SAE Transactions, pp. 2749-2766.
- 28 Bhinder, F., 1984. Supercharging compressors-problems and potential of the various alternatives. (0148-7191). SAE Technical Paper.
- 29 Bielaczyc, P., Woodburn, J. & Szczotka, A., 2016. Exhaust emissions of gaseous and solid pollutants measured over the NEDC, FTP-75 and WLTC chassis dynamometer driving cycles. (0148-7191). SAE Technical Paper.

- 30 Bohn, D., Heuer, T. & Kusterer, K., 2005. Conjugate flow and heat transfer investigation of a turbo charger. J. Eng. Gas Turbines Power, 127(3), pp. 663-669.
- 2017. Function of 31 BorgWarner, Design and Turbochargera Turbine\BorgWarner Turbo Systems. [Online]. Available from: http://www.turbos.bwauto.com/products/turbochargerTurbine.aspx [Accessed 15/10 2019].
- 32 BorgWarnerTurboSytems, 2018. BorgWarner Turbo Sytems compressor maps [Online]. Available from: https://www.quora.com/What-is-the-power-loss-fordiesel-engine-at-altitude [Accessed 09/12 2019].
- 33 BOSCH, 2019. 48V battery-Compact energy storage for low-voltage hybrid system [Online]. Available from: https://www.bosch-mobilitysolutions.com/en/products-and-services/passenger-cars-and-light-commercialvehicles/powertrain-systems/electric-drive/48v-battery/ [Accessed 10/23 2019].
- 34 Breitbach, H., Metz, D., Weiske, S. & Spinner, G., 2015. Application and Design of the Electrically Driven Compressor from BorgWarner. MTZ worldwide, 76(10), pp. 16-21.
- 35 Stephenson, Mark; MAHLE Powertrain, "Engine Downsizing An Analysis Perspective," in SIMULIA Customer Conference, London, 2009. [3] C. Reulein, "Charging of Internal Combustion Engines," in Combustion Engines Development, 2012.
- 36 ACEA, "ACEA.BE," 2017. [Online]. Available: https://www.acea.be/news/article/message- from-the-secretary-general-april-2017. [Accessed 17 08 2020].
- 37 J. B. Heywood, Internal combustion engine fundamentals, New York: McGraw-Hill, Inc., 1988.
- 38 T. K. Colin R. Ferguson, Internal Combustion Engines: Applied Thermosciences, Chichester: John Wiley & Sons, Ltd, 2016.

- 39 N. Terdich, PhD Thesis IMPACT OF ELECTRICALLY ASSISTED TURBOCHARGING ON THE TRANSIENT RESPONSE OF AN OFF-HIGHWAY DIESEL ENGINE, Imperial College London, 2015.
- 40 BorgWarner, "Application and Design of the eBooster," BorgWarner company paper, 2015.
- 41 G. Pasini, G. Lutzemberger, S. Frigo, S. Marelli, M. Ceraolo, R. Gentili and M. Capobianco, "Evaluation of an electric turbo compound system for SI engines: A," Applied Energy, 11 November 2015.
- 42 R. D. Burke, "A Numerical Study of the," ASME Journal of Engineering for Gas Turbines and Power, September 2016.
- 43 H. Dr. Breitbach, D. Metz, S. Dr. Weiske and G. Spinner, "Application and Design of the Electrically Driven Compressor from BorgWarner," MTZ, October 2015.
- 44 Audi AG, "Audi EPC," 2016. [Online]. Available: https://www.auditechnology- portal.de/en/drivetrain/engine-efficiency-technologies/audi-sq7-tdiv8-tdi-with-electric- powered-compressor-and-48-volt-electrical. [Accessed 20 04 2020].
- 45 W. Wei, W. Zhuge, Y. Zhang and Y. He, "COMPARATIVE STUDY ON ELECTRIC TURBO- COMPOUNDING SYSTEMS FOR GASOLINE ENGINE EXHAUST ENERGY RECOVERY,"
- 46 Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air GT2010, 14-18 June 2010.