МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ИНСТИТУТ МАШИНОСТРОЕНИЯ

(наименование института полностью)

Кафедра «Энергетические машины и системы управления»

13.03.03 Энергетическое машиностроение (код и наименование направления подготовки)

«Альтернативные источники энергии транспортных средств»

(направленность (профиль))

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему <u>Проектирование с</u>	одноцилиндрового бензинового двига	ателя
Студент	А.А. Альшин	
Руководитель	(И.О. Фамилия) К.Т.Н., ДОЦЕНТ, В.В. ((ученая степень звание в	

АННОТАЦИЯ

Выпускная квалификационная работа посвящена вопросу проектирования одноцилиндрового двигателя на альтернативных жидких топливах в качестве вспомогательной силовой установки электромобиля по типу REEV.

Целью бакалаврского проекта исследования перспектив использования жидких альтернативных топлив во вспомогательной силовой установки электромобиля по типу REEV.

Поэтому в данном бакалаврской работе представлены результаты проектирования одноцилиндрового двигателя с анализом процесса сгорания на жидких альтернативных топливах (бензин, этанол, E85), также выполнено имитационное моделирование в программе WAVE Ricardo 17.1. Бакалаврская работа состоит из пояснительной записки и графической части.

Пояснительная записка состоит из аннотации, введения, 4 разделов, заключения с основными результатами и выводами, содержит 29 рисунков, 18 таблиц, списка использованных источников (65 источник). Основной текст изложен на 60 страницах.

Графическая часть работы содержит 8 листов формата A1 иллюстрирующих материал, представленный в пояснительной записке.

ABSTRACT

Topic of the bachelor thesis: "Improving the efficiency of the fuel system for VAZ engines".

The fuel delivery system plays a crucial role in internal combustion engines. This thesis examines the shortcomings of the existing fuel delivery system and proposes a solution to address the high amplitude fuel pressure fluctuations.

This bachelor's thesis aims to improve the fuel delivery system for the VAZ 21129 gasoline engine. It consists of an explanatory note of 63 pages and a graphical part. The explanatory note covers the following topics:

- Analysis of the existing fuel delivery system;
- Thermal balance and thermal calculation of the engine;
- Kinematic and dynamic calculations were performed;
- Design of an external damper.

The graphic section contains six A1-sized sheets. They show longitudinal and transverse sections of the engine, three diagram sheets, and detailed drawings of the proposed fuel delivery system.

СОДЕРЖАНИЕ

Введение	4
1 Проблемы применения альтернативных топлив в двигателях с	
искровым зажиганием	5
1.1 Адаптивное управление фазой сгорания на основе модели для	
многотопливных двигателей с искровым зажиганием	5
1.2 Альтернативные виды топлива	8
1.3 Альтернативные автомобильные приводы и APU	
(вспомогательные силовые установки)	15
1.4 Электрический привод	16
2 Тепловой расчет проектируемого двигателя	19
2.1 Тепловой расчет одноцилиндрового двигателя при работе на	
бензине	19
2.2 Тепловой расчет одноцилиндрового двигателя на этаноле	24
2.3 Тепловой расчет одноцилиндрового двигателя на топливе Е85	28
3 Кинематический и динамический расчет кривошипно-шатунного	
механизма двигателя	33
3.1 Кинематический расчет кривошипно-шатунного механизма	
двигателя	33
3.2 Динамический расчет кривошипно-шатунного механизма	
двигателя	35
4 Анализ токсичности отработавших газов при работе	
одноцилиндрового двигателя на бензине, этаноле и Е85	40
Заключение	52
Список используемых источников	54

ВВЕДЕНИЕ

Автомобильная промышленность пережила огромный рост увеличением мобильности людей. Транспорт рассматривается как основная необходимость и удобство. Однако использование автомобилей на обычном топливе, таком как бензин, оказывает пагубное воздействие на окружающую среду в виде загрязнения воздуха. Кроме того, запасы ископаемого топлива истощаются угрожающими темпами, что, по-видимому, приводит увеличению стоимости этого топлива. Растущая забота об окружающей среде привели к энергетическим реформам и исследованиям по сокращению использования автомобильного топлива. Новые автомобильные технологии, позволяющие транспортным средствам работать на возобновляемых и альтернативных источниках энергии, рассматриваются, разрабатываются и создаются прототипы. Основное внимание в них уделяется повышению эффективности двигателей, сокращению выбросов и, если возможно, устранению их без ущерба для существующего пробега и комфорта.

1 Проблемы применения альтернативных топлив в двигателях с искровым зажиганием

1.1 Адаптивное управление фазой сгорания на основе модели для многотопливных двигателей с искровым зажиганием

Процесс сторания обычно описывается процентной долей сторевшей массы в зависимости от угла поворота коленчатого вала, как показано на рисунке 1. Есть несколько критических положений фаз сторания, которые представляют интерес, но CA50 (место сторания 50% массы в углах поворота коленчатого вала) представляет основной интерес для анализа и контроля фазирования сторания. CA50 можно понимать как «центральную линию» процесса сторания. Управляя моментом зажигания, процесс сторания можно синхронизировать с заданной целью.

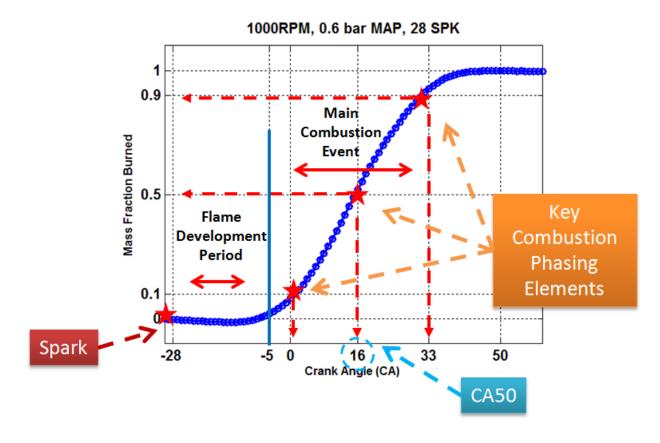


Рисунок 1 – Описание управления фазой горения

Фазирование сгорания напрямую влияет на КПД двигателя, как показано на рисунке 2, который представляет собой график зависимости IMEP от CA50 для искрового разряда в установившихся условиях работы. Существует одно оптимальное место для СА50, которое может обеспечить максимальную эффективность, называемое синхронизацией максимального (MBT). Также тормозного момента онжом заметить, что потеря эффективности при времени МВТ меньше, чем при фазировании сгорания дальше от МВТ. Это можно использовать в качестве функции стоимости или требования к производительности для управления опережением зажигания. На рисунке 2 также показано изменение естественного горения. Каждое облако точек данных одного цвета представляет собой СА50 из 500 последовательных циклов при одном искровом разряде. Могут наблюдаться большие отклонения, и это может ограничивать работу систем управления моментом зажигания.

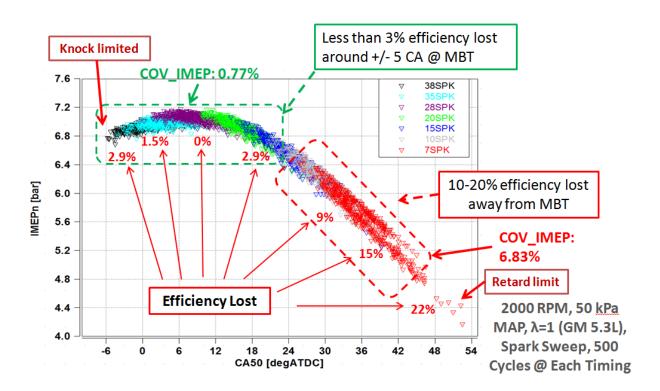


Рисунок 2 – Задача управления фазами горения

На рисунке 3 показано, как различные источники топлива могут влиять на процесс сгорания. Рисунок 3а показывает, что скорость горения бензина и

Е85 различна при одинаковых условиях эксплуатации. Рисунок 36 иллюстрирует интенсивность детонации бензина и Е85 во время искрового разряда для аналогичных условий эксплуатации. Из графика видно, что эти дизельные топлива имеют совершенно разные характеристики детонации при определенных условиях, и наилучший достижимый СА50 будет ограничен источником топлива. Целевой алгоритм адаптивного фазирования сгорания должен адаптироваться к обоим этим отличительным аспектам поведения топлива.

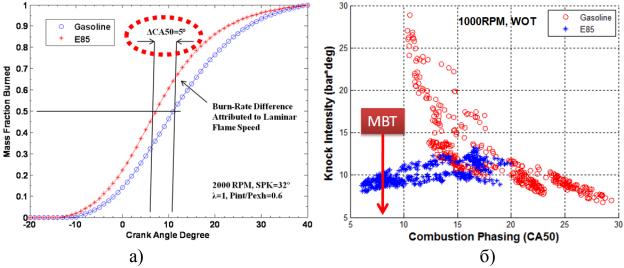


Рисунок 3 – Поведение топлива отличается для бензина и Е85

Момент зажигания является последней настройкой управляющего исполнительного механизма, выбранной в данной рабочей точке, поскольку она сильно зависит от всех других положений исполнительного механизма. Правильное время зажигания чрезвычайно важно для экономии топлива и выбросов. Важно разработать модели быстрого прогнозирования, которые можно использовать в сочетании с алгоритмами, разработанными для исполнительных Ha остальных механизмов. рисунке показан относительный КПД, определенный как нормализованное значение среднего эффективного давления (ІМЕР) по сравнению с лучшим доступным ІМЕР при минимальном опережении зажигания для оптимального крутящего момента (МВТ) для одной скорости вращения двигателя и нагрузки (2250 об/мин и 0,5 бар МАР). Момент зажигания для достижения наилучшей эффективности двигателя на бензине и E85 (смесь 85% этанола с 15% бензина) требует разницы угла поворота коленчатого вала (СА) в 9 градусов. Если бы время зажигания оставалось неизменным для этих двух видов топлива, потеря КПД двигателя в этих условиях эксплуатации составила бы 2%. Кроме того, этот запас эффективности увеличится до 15% в некоторых режимах работы с ограничением детонации, поскольку октановое число двух видов топлива значительно различается. Наличие возможности определять различные свойства топлива и оптимизировать алгоритм управления для поддержания максимальной эффективности двигателя является необходимостью.

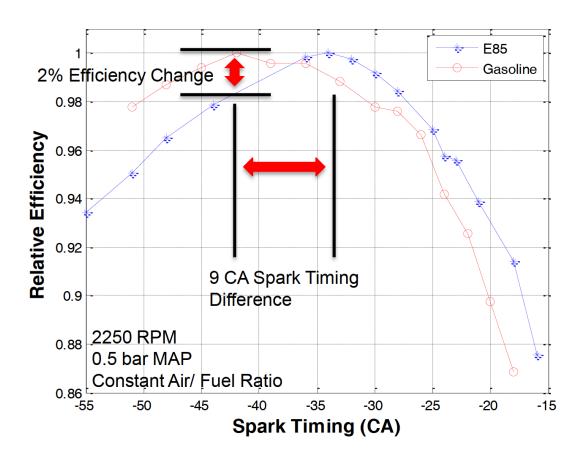


Рисунок 4 — Снижение КПД двигателя при неизменном моменте зажигания при использовании другого типа топлива.

1.2 Альтернативные виды топлива

Альтернативные виды топлива могут внести значительный вклад в сокращение выбросов парниковых газов и потребления ископаемого

углеводородного топлива [1,2] и обеспечить соблюдение новых правил вплоть нулевых выбросов токсичных компонентов для двигателей в составе гибридных установок. В таблице 1 выделены некоторые важные моменты, касающиеся альтернативных видов топлива.

Для внедрения новых видов топлива доступны два типа двигателей: Дизельные двигатели — воздух сжимается настолько, что нагревается и воспламеняет топливо. Разные виды топлива с разной температурой самовоспламенения требуют разных типов двигателей. В дизельных двигателях работают следующие виды топлива [3,4,5,6]:

- Дизель
- Биодизель (МЭЖК),
- растительное масло, ДМЭ (диметиловый эфир),
- GTL (газ-жидкость),
- BTL (биомасса-жидкость),
- HVO (гидроочищенное растительное масло).

Двигатель Отто – топливно-воздушная смесь не воспламенится, пока не появится искра. Степень сжатия намного ниже (обычно 1:11) по сравнению с 1:20 для воспламенения от сжатия (дизель). В двигателях Отто работают следующие виды топлива [3,4,5,6]:

- Бензин, этанол, метанол, природный газ;
- Биометан (как в сжатом (КПГ), так и в жидком виде (СПГ))
- Водород

Различные виды топлива в одном и том же типе двигателя требуют лишь относительно небольших регулировок топливопроводов, фильтров и форсунок. Однако преобразование дизельного двигателя в двигатель Otto требует серьезной настройки и ремонта больших частей двигателя. Следовательно, производители двигателей играют важную роль во внедрении альтернативных видов топлива, поскольку они гарантируют работу двигателей на топливе с особыми свойствами [8,9,10].

Таблица 1 – Обзор альтернативных топлив

Топливо	Плюсы	Минусы
Топливо с	Соответствовать действующим	Все еще ископаемое топливо;
низким	правилам; доступность в настоящее	доступность; соответствие после
содержанием	время	2026 года под вопросом
серы		1
Метанол/биоме	Топливо, рекомендованное CEESA;	Низкая температура вспышки;
танол	двухтопливная концепция	токсичен при попадании на кожу;
		пар плотнее воздуха
Диметиловый	Нетоксичный; быстро разлагается в	Уровень технологической
эфир	атмосфере; случайные разливы не	готовности 5;
	могут отравить окружающую среду	
Биодизель	Преобладающее биотопливо; может	Деградирует со временем; в
	увеличить температуру	настоящее время в значительной
	воспламенения других видов	степени зависит от пальмового
	топлива при смешивании, повышая	масла
	безопасность	
Биотопливо из	Возможность производства в	Текущая стоимость непомерно
водорослей	больших масштабах; безопасный как	высока для общего использования;
	дизель; заправочное топливо	доступность ограничена; низшая
		теплотворная способность
Сжиженный	Доступно на рынке; хорошая	Тяжелее воздуха; опасность взрыва;
нефтяной газ	инфраструктура снабжения	премиальный продукт;
(LPG)		
Сжиженный	Доступность на рынке;	Стоимость дооснащения; объем
природный газ	государственная поддержка	хранения топлива; плотность
(СПГ)		энергии 60% дизельного топлива;
Биометан	Химически идентичен СПГ;	Рассеянная доступность; дороже,
	топливо, наиболее безопасное для	чем СПГ
	выбросов СО2; лучшее качество,	
	чем ископаемый СПГ	
Электричество	Более эффективен, чем дизельные	Низкая плотность энергии; высокие
	двигатели в преобразовании	капитальные затраты
	энергии;	
ФТ дизель	Нетоксичное топливо (ЕРА)	Ограниченная доступность;
	-	коммерчески невыгодно
Пиролизное	Коммерчески жизнеспособная	Еще не сертифицирован для
масло	технология; потенциальный	использования в дизельных
	заменитель остаточного масла	двигателях; энергоемкость вдвое
		меньше, чем у дизеля; потенциально
		нестабильный; ограниченная
		возможность смешивания с
		дизельным топливом
Водород и	Наилучшее соотношение энергии к	Коммерческие двигатели
топливный	весу среди всех видов топлива	недоступны; сложно и дорого
элемент		производить, транспортировать и
		хранить

Альтернативные виды топлива могут быть реализованы в двух основных видах использования: монотопливном и двухтопливном. Каждый тип имеет преимущества и недостатки, которые описаны ниже [11,12].

- Монотопливо: когда необходимо изменить тип двигателя с дизельного на полуавтоматический (требуется серьезная регулировка, требуется ремонт частей двигателя), например, при переходе с дизельного топлива на СПГ, СПГ, этанол или водород; экономия СО₂ ниже, чем можно было бы ожидать, исходя из энергоемкости. Дизельные двигатели примерно на 30% эффективнее двигателей Отто из-за более высокой степени сжатия. При переходе с дизельного топлива на СПГ (Otto) это приводит к общему сокращению выбросов СО₂ на 10–15 %.
- Двойное топливо: при одновременном сжигании газа и дизельного топлива в дизельном двигателе экономия СО2 настолько высока, насколько можно ожидать, исходя из энергоемкости. Эта технология включает в себя две топливные системы на автомобиле. Как правило, небольшое количество дизельного топлива используется в качестве запального топлива ДЛЯ запуска процесса воспламенения c альтернативного последующим выбранного сжиганием топлива. Двигатель может работать на различной комбинации доступных видов топлива. Например, возможна вариация от 100 % дизельного топлива до 97 % СПГ и 3 % дизельного топлива, что приводит к значительной экономии СО₂ и значительному снижению затрат на стоимость топлива.

Альтернативные виды топлива. Топливо, которое может снизить выбросы ниже требуемого уровня, может сыграть важную роль в будущем в качестве заменителей дизельного топлива. Спрос на топливо с низким содержанием серы, а также потребность в сокращении выбросов парниковых газов (ПГ) можно удовлетворить путем внедрения альтернативных видов топлива с низким содержанием углерода при условии, что эти виды топлива и необходимые технологии предлагаются по конкурентоспособным ценам. Наиболее часто рассматриваемыми сегодня альтернативными видами

являются сжиженный природный газ (СПГ), электричество, топлива биодизель и метанол. Другими видами топлива, которые могут сыграть роль в будущем, являются сжиженный нефтяной газ (СНГ), диметиловый эфир (ДМЭ), синтетическое (особенно биометан, топливо, водород ДЛЯ использования в топливных элементах), возобновляемое дизельное топливо, полученное путем гидрогенизации (HDRD) и пиролизное масло. Кроме того, такие виды топлива, как дизельное топливо со сверхнизким содержанием серы (ULSD), могут использоваться для соблюдения правил и поддержки перехода на альтернативные виды топлива.

1.2.1 Биотопливо

Ранние испытания, проведенные в 2006 году, продемонстрировали коммерческую и техническую осуществимость использования биотоплива в гибридных автомобилях [20,21].

Биотопливо, полученное из растений или организмов, быстро разлагается, создавая гораздо меньший риск для окружающей среды в случае разлива; гибкими, поскольку их можно смешивать с обычным ископаемым топливом для питания обычных двигателей внутреннего сгорания или в качестве замены. Например, биогаз/биометан, произведенный из отходов, можно использовать для замены СПГ. Однако, учитывая, что земля, необходимая для производства 300 миллионов тонн нефтяного эквивалента (Мтнэ) биодизеля на основе сегодняшней технологии (биотоплива первого и 5% существующих второго поколения), больше, немного чем сельскохозяйственных В мире, обеспечение необходимого земель производства объем. К 2030 году биотопливо будет играть более важную роль при условии, что его можно будет производить в значительных количествах на устойчивой основе и по привлекательной цене [22,23]. Maersk предполагает, что к 2030 году около 10% мирового автопарка будут работать на биотопливе.

1.2.2 Метанол и биометанол (EN 228)

Этот первый в своем роде коммерческий завод в Нидерландах расщепляет сырой глицерин (остаток производства биодизельного топлива) в синтез-газ и синтезирует в метанол со скоростью 250 мл/год. Это также крупнейший современный завод по производству биотоплива в мире. Производство метанола из биомассы, т.е. целлюлозный материал технически осуществим, но в настоящее время ограничен.

В промышленных масштабах метанол преимущественно производится из природного газа путем реформинга газа с паром, а затем преобразования и дистилляции полученной смеси синтезированных газов для получения чистого метанола (Метанекс 3). В результате получается прозрачный жидкий органический химикат, растворимый в воде и легко биоразлагаемый. При производстве из природного газа обычно используется комбинация парового риформинга и частичного окисления с эффективностью преобразования энергии примерно до 70%. Это соответствует производственным выбросам около 24 кг СО₂/ГДж топлива и 68,8 кг СО2/ГДж топлива при использовании ископаемого метанола, что в сумме дает 92,8 кг СО2/ГДж топлива, что выбросам дизельного топлива. Метанол, полученный аналогично результате газификации угля, зависит от дешевого, широкодоступного ресурса, но выбросы ПГ примерно в два раза выше, чем при сжигании природного газа, при 182-190 кг CO_2/Γ Дж топлива [24].

Еще одна интересная возможность производства метанола с низким выбросом CO_2 — непосредственно из водорода после электролиза с использованием геотермального электричества и CO_2 из того же геотермального источника. В настоящее время это тестируется в Исландии [24].

Хотя метанол сам по себе немного дороже СПГ, компромисс между метанолом и СПГ связан со сложностью топливной системы и стоимостью топлива [25]. Метанол имеет свойства, подобные свойствам метана, когда он впрыскивается в двигатель. Следовательно, метанол также используется в

двухтопливной концепции. Метанол имеет относительно низкую температуру воспламенения, токсичен при контакте с кожей, при вдыхании или проглатывании, а его пары плотнее воздуха [26]. Важно отметить, что к 2050 году ожидается, что биомасса в метанол/ДМЭ станет наиболее энергоэффективным способом получения энергии для транспорта [27].

1.2.3 Биотопливо из водорослей

топливо производится в co спецификацией соответствии гидроочищенного возобновляемого дизельного топлива (HRD)-76. Водоросли могут расти очень высокими темпами по сравнению с сельскохозяйственными культурами. Тем не менее, текущие затраты являются непомерно высокими для общего коммерческого использования, кроме экспериментального или для демонстраций производительности, а коммерческая доступность ограничена. Дизельное топливо из водорослей так же безопасно, как нефтяное дизельное топливо, но имеет несколько более низкую теплотворную способность, чем у ископаемого аналога [50]. Смешивание с нефтяным дизельным топливом устраняет эти недостатки, поэтому характеристики смешанного топлива выгодно отличаются от нефтяного дизельного топлива. Смешивание также снижает содержание серы в обычном дизельном топливе, которое необходимо пропорционально разбавлять. Топливо из водорослей почти не содержит серы, поэтому выбросы SOx в отработавших газах практически равны нулю. При 50% смешивании cнефтяным дизельным топливом должен соответствовать требованиям для нефтяного дизельного топлива F-76. С точки зрения совместимости с топливной системой и компонентами двигателя это топливо считается сменным топливом. Испытания, не выявили побочных эффектов от использования смеси топлива из водорослей и нефтяного дизельного топлива в соотношении 50/50 на компоненты двигателя и топливной.

1.3 Альтернативные автомобильные приводы и APU (вспомогательные силовые установки)

За некоторыми исключениями, современные автомобили оснащены бензиновыми и дизельными двигателями. В некоторых странах этанол добавляется в бензин, и двигатель работает на смешанном топливе. Рапсовый метиловый эфир (РМЭ) доступен для дизельных автомобилей, хотя и в составляют недостаточном количестве. Исключение автомобили, работающие на КПГ (сжатый природный газ) или СНГ (сжиженный нефтяной Гибридные газ). системы привода, электромобили аккумуляторами или топливными элементами и специальные варианты гибридных систем привода, «plug-in» и «Range-Extender», теперь доступны в различных формах и уже достигли значительных успехов. Доля рынка легковых автомобилей с бензиновыми двигателями, в настоящее время, занимают около 80% мирового рынка включая, гибридные автомобили на базе бензиновых двигателей (на автомобили с дизельными двигателями приходится около 20 %). В связи с ростом стоимости топлива и высокой эффективностью дизельных двигателей, а также прогресс в сокращении выбросов твердых частиц и твердых частиц и выбросов NO_x, этот тип привода также представляет особый интерес. Наряду с электричеством, КПГ и СНГ завоевывают все большую долю рынка во всем мире.

Причины использования альтернативных источников энергии являются либо местными, либо зависят от наличия собственных источников энергии в соответствующей стране или регионе. В то время как в прошлом было достаточно нефти в качестве исходной энергии для бензинового и дизельного топлива, поиск альтернатив в последние годы значительно возрос. Основными причинами для этого являются:

 Многие государства пытаются сделать свое потребление энергии более независимым от диктата стран, продвигающих нефть. Кроме того, добыча сырой нефти становится все более дорогостоящей.

- Сокращение выбросов углекислого газа является основной целью развития на будущее. Снижение уровня парниковых газов в атмосфере важная мировая задача.
- На местном уровне существует стремление к полностью безэмиссионным автомобилям. Улучшение экологической обстановки значительно повышает комфорт проживания людей.

При оценке использования альтернативных источников энергии для приводов транспортных средств необходимо учитывать упомянутые факторы.

В настоящее время становится очевидным, что подключаемые гибриды, наряду с другими гибридными решениями и автомобилями с дизельными двигателями будут доминировать в мире силовых агрегатов ближайшие 20-40 лет. Топливный элемент также приобретает все большую актуальность.

Тип используемой энергии имеет решающее значение для оценки приводов транспортных средств. В любом случае, вся энергетическая цепочка должна всегда приниматься во внимание. Это включает в себя разработку сырьевой энергии, разработку рафинирование, транспортировка и преобразование в транспортном средстве. Важно отметить, что, помимо дальнейшего развития технологии привода, во внимания принимают рамки доступных источников энергии.

1.4 Электрический привод

Электроприводы в автомобилях начали использоваться практически с истории развития автомобилей. До сегодняшнего дня они имеют только накопитель энергии (аккумулятор), по сравнению с бензиновыми и дизельными двигателями.

Хотя электромобиль при эксплуатации не производит выбросов, общая оценка выбросов зависит от типа производства электроэнергии.

Система привода электромобилей включает в себя:

- Электродвигатели с электронным управлением (Инвертор) и охлаждение,
- Тяговая батарея с управлением батареей и необходимым зарядным устройством,
- Любую необходимую передачу, включая дифференциальную,
- Передача мощности на ведущие колеса,
- Электроусилителя руля и тормозов,
- Система отопления и кондиционирования воздуха,
- Зарядные устройства (стационарный или «на борту»).
 Компоненты для электроприводов показаны на рис.32.

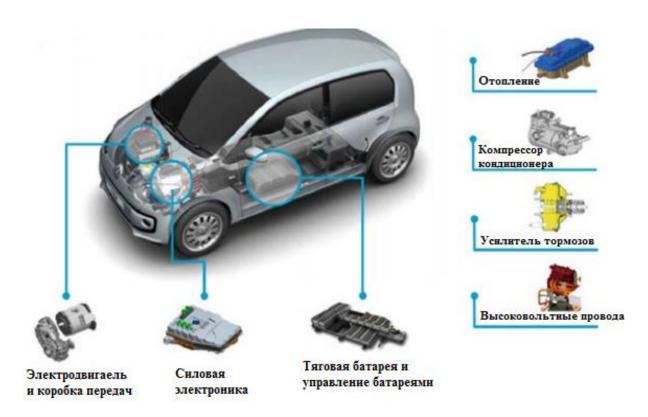


Рисунок 5 – Компоненты для электроприводов

Основной причиной незначительного использования электромобилей, является ограниченная эффективность и цена батареи. Тяговая батарея является наиболее важным компонентом электропривода. Дальность действия автомобиля зависит от содержания энергии. Подаваемая

электрическая мощность определяет ходовые качества. В настоящее время и в ближайшем будущем используется литий-ионный аккумулятор, который с 2008 года имеет серийное использование в гибридных приводах. Несмотря на широкое использование и конкуренцию со стороны производителей батарей, цены находятся на высоком уровне. Даже если указанные целевые значения достигаются индивидуально, накопители энергии могут использоваться только в узком диапазоне, не превышающей 50% от фактической емкости для обеспечения долговечности. Кроме того, при оптимизации плотности энергии страдает плотность мощности, и наоборот. При этом следует отметить, что по всему миру требования для транспортных средств с выбросом СО₂ разработки батарей, особенно нулевым ДЛЯ металлогидрида и литий-ионных аккумуляторов, были продвинуты вперед. По мере повышения производительности батарей предложения на их покупку, безусловно, увеличатся. Однако энергоемкость дизельного топлива имеет большее значение, нежели электропривод. По сравнению со свинцовокислотной батареей, это фактор $\cong 350$, а литий-ионная батарея – фактор \cong 120. Кроме того, литий-ионный аккумулятор смог продемонстрировать свою эффективность только в нескольких концепциях, которые дольше всего используются клиентами.

Выводы по первому разделу

По вопросам применения альтернативных видов топлива, следует отметить, что наиболее перспективными считаются спирты для двигателей с искровым зажиганием. Для газов имеется существенные ограничения по применению вследствие значительного увеличения массы хранения топлива и стоимости системы топливоподачи. Но можно отметить, как перспективные это компримированный природный газ и водород.

При использовании альтернативных топлив необходимо учитывать необходимость адаптации рабочего процесса на изменение свойств горения нового топлива.

2 Тепловой расчет проектируемого двигателя

Основные параметры двигателя, выбранного для дальнейшей проработки, приведены в таблице 2.

Таблица 2 — Технические параметры двигателя, выбранного как прототип для дальнейшей проработки

Параметры двигателя	Базовый
Тип	4-тактный бензиновый
Кол-во цилиндров, тип ГБЦ	1, DOHC
Диаметр цилиндров, мм	67
Ход поршня, мм	42,5
Длина шатуна, мм	109
Рабочий объем, л	0,149
Степень сжатия	12,2

2.1 Тепловой расчет одноцилиндрового двигателя при работе на бензине

Тепловой расчет производиться по методике И.И. Вибе. Расчет проводился для трех видов топлива на бензине, на этаноле и на E85. Результаты расчета представлены в виде таблиц и графиков. Исследование проводятся на пяти режимах работы при оборотах коленчатого вала 800, 2000, 3500, 5000 и 6000 мин⁻¹.

Для удобства анализа регулировочных характеристик представим данные в виде таблицы 3. Коэффициент избытка воздуха принят равным стехиометрическим, так как это обеспечивает оптимальные условия работы трехкомпонентного каталитического нейтрализатора.

Для удобства анализа термохимических характеристик бензина представим их в виде таблицы 4. Массовое содержание элементов в бензине взято из [6 и 12]. Тем самым мы получили действительные значения теоретически необходимое количество воздуха в кг для сгорания 1 кг топлива равное 14.7, что соответствует действительным значениям, получаемым при экспериментах.

Таблица 3 – Регулировочные характеристики базового двигателя

Название параметра,	Условное обозначение	Значение характеристики				
размерность Частота вращения, мин ⁻¹	п	800	2000	3500	5000	6000
Угол опережения зажигания, ° ПКВ	Θ	10	13	15	18	22
Коэффициент избытка воздуха	α	1	1	1	1	1
Температура подогрева заряда в цилиндре ДВС, °С	ΔΤΝ	5	5	5	5	5
Давление на впуске (атмосферное), МПа	Ро	0,1	0,1	0,1	0,1	0,1
Температура на впуске (окружающей среды), К	То	293,15	293,15	293,15	293,15	293,15
Расчетная политропа сжатия	n_p	1,3782	1,3776	1,3769	1,3753	1,3749
Действительная политропа сжатия	$\mathbf{n}_{\scriptscriptstyle\mathrm{J}}$	1,3342	1,3343	1,3344	1,3344	1,3344
Предполагаемая температура остаточных газов, К	T_{r}	1045	1050	1062	1085	1100
Продолжительность горения, ° ПКВ	Φ_{Γ}	50	56	62	68	75
Показатель характера сгорания	m	3	3	3	3	3
Коэффициент выделения теплоты	σ	1	1	1	1	1
Коэффициент использования теплоты	δi	0,86	0,86	0,86	0,86	0,86
Коэффициент эффективности сгорания топлива	ξ	0,86	0,86	0,86	0,86	0,86

Таблица 4 – Термохимические характеристики топлива (бензин Аи-92)

Название характеристики, размерность	Условное обозначение	Значение характеристики
Массовое содержание Н	Н	0,14268
Массовое содержание С	C	0,84132
Массовое содержание О	O	0,004
Массовое содержание S	S	0,005
Массовое содержание N	N	0,007
Массовое содержание H ₂ O	H_2O	0
Низшая теплота сгорания, МДж/кг	$\mathrm{H_u}$	43237,518
Теоретически необходимое	Lo, кмоль воздуха/кг топлива	0,508
количество воздуха для сгорания 1 кг топлива	Lo, кг воздуха/кг топлива	14,700
	Мс СО, кмоль СО/кг топлива	0,0701
Количество компонента продуктов	$ m MH_2O$, кмоль $ m H_2O/кг$ топлива	0,0713
сгорания	MN_2 , кмоль N_2 /кг топлива	0,4023
	MO_2 , кмоль O_2 /кг топлива	0
Общее количество продуктов сгорания топлива,	M_2 кмоль пр. сг./кг топлива	0,5438
Коэффициент изменения гор. смеси	μ_0	1,0525

Для удобства расчетов цикла для базового двигателя представим данные в виде таблицы 5.

Таблица 5 – Расчет действительного цикла базового двигателя

Тиолици з тис тет дег	Условное			<u></u>		
Название параметра	обозначение	Значение характеристики				
Частота вращения	n, мин ⁻¹	800	2000	3500	5000	6000
Давление остаточных газов	Pr, МПа	0,1039	0,1058	0,1106	0,1180	0,1244
Температура подогрева	$\Delta T_{ m N}$, K	10,5263	8,9474	6,9737	5,0000	3,6842
Средняя скорость движения заряда	$\omega_{\scriptscriptstyle B\Pi}, {\rm M/c}$	5,5843	13,9608	24,4314	34,9020	41,8824
Давление в конце впуска	Ра, МПа	0,1000	0,0998	0,0993	0,0986	0,0979
Коэффициент остаточных газов	$\gamma_{\rm r}$	0,0283	0,0283	0,0290	0,0299	0,0317
Коэффициент наполнения	η_V	0,9196	0,9313	0,9388	0,9519	0,9331
Температура в конце впуска	Ta, K	324,0730	322,6987	321,6210	320,9963	321,5247
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	0,8882	0,8861	0,8874	0,8923	0,8996
Давление в конце сжатия	Р _с , МПа	2,8136	2,8088	2,7963	2,7756	2,7576
Температура в конце сжатия	T _c , K	747,6603	744,6760	742,4489	741,0069	742,2266
Политропа расширения	n_2	1,1920	1,1926	1,1933	1,1944	0,4923
Удельный объем рабочего тела в момент воспламенения	V у, $M^3/K\Gamma$	0,0802	0,0851	0,0893	0,0970	0,1095
Давление рабочего тела в момент воспламенения	Ру, МПа	2,4730	2,2749	2,1274	1,9042	1,6277
Температура рабочего тела в момент воспламенения	Ty, K	723,8818	706,3639	693,2749	674,2340	650,3628
Общая удельная теплота сгорания топлива	q _z , кДж/кг	2303,2856	2303,2106	2301,6219	2299,6824	2295,6412
Давление в процессе сгорания	E ₂ , MΠa	63,2765	63,4202	63,2845	62,8832	62,2646
Степень расширения	δ	4,8096	4,4212	3,9684	3,6719	3,4077
Давление в конце процесса сгорания	P _z , MΠa	3,9910	3,5967	3,1478	2,8412	2,5622
Температура в конце процесса сгорания	T _z , K	2559,7179	2503,7301	2444,9434	2398,2905	2349,6441
Давление в конце процесса расширения	Рь, МПа	0,6138	0,6110	0,6077	0,6009	0,5920
Температура в конце процесса расширения	T _b , K	1893,4013	1880,3230	1873,1331	1862,5633	1850,0699
Теоретическая индикаторная работа цикла	$L_{\scriptscriptstyle m T}$, кДж	1,1676	1,1581	1,1380	1,1151	1,1019
Расчетное среднее индикаторное давление	РіТ, МПа	1,4320	1,4236	1,3969	1,3612	1,3342
Индикаторный коэффициент полезного действия	ηί	0,4535	0,4452	0,4333	0,4164	0,4164
Удельный индикаторный расход топлива	g_i , г/к B т*ч	183,5915	187,0163	192,1424	199,9308	199,9463
Давление механических потерг	Р _м , МПа	0,0468	0,0660	0,0900	0,1140	0,1301
Средняя скорость поршня	C_{Π} , M/c	1,1333	2,8333	4,9583	7,0833	8,5000
Среднее эффективное давлени	Ре, МПа	1,3852	1,3576	1,3069	1,2472	1,2042
Механический КПД	ηм	0,9673	0,9536	0,9356	0,9162	0,9025
Эффективный КПД	ηе	0,4387	0,4246	0,4054	0,3816	0,3758
Удельный эффективный расход топлива	g_e , г/к B т * ч	189,7953	196,1104	205,3786	218,2124	221,5400
Эффективная мощность	N_e , к B т	1,3837	3,3904	5,7116	7,7866	9,0218
Часовой расход топлива	$G_{\scriptscriptstyle m T}$, КГ/Ч	0,2626	0,6649	1,1730	1,6991	1,9987
Крутящий момент	M_e , $H*_M$	16,5166	16,1879	15,5833	14,8712	14,3587

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 6) и внешнюю скоростную характеристику (рисунок 7).

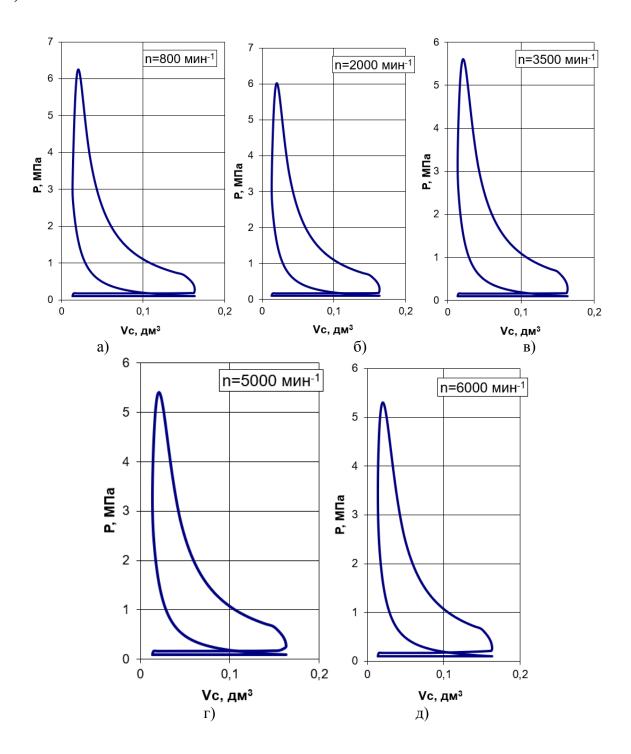


Рисунок 6 — Индикаторные диаграммы в P-V координатах, для исследуемых частот вращения: (а) 800; (б) 2000; (в) 3500; (г) 5000 и (д) 6000 мин $^{-1}$.

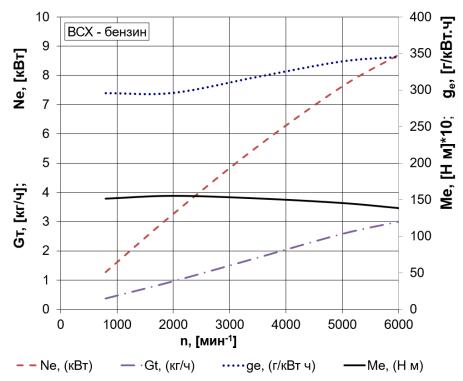


Рисунок 7 – Внешняя скоростная характеристика базового двигателя

Для удобства расчетов теплового баланса двигателя при работе на бензине представим данные в виде графика на рисунке 8.

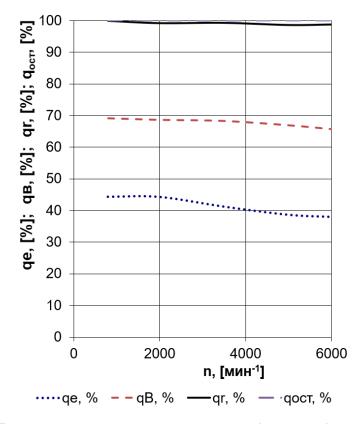


Рисунок 8 – Диаграмма внешнего теплового баланса базового двигателя

2.2 Тепловой расчет одноцилиндрового двигателя на этаноле

Для удобства анализа регулировочных характеристик одноцилиндрового двигателя на этаноле представим данные в виде таблицы 6. Для удобства анализа термохимических характеристик топлива этанол представим их в виде таблицы 7.

Таблица 6 – Регулировочные характеристики одноцилиндрового двигателя на этаноле

Название параметра, размерность	Условное обозначение	Значение характеристики				
Частота вращения, мин ⁻¹	n	800	2000	3500	5000	6000
Угол опережения зажигания, ° ПКВ	Θ	11	18	20	23	26
Температура подогрева заряда в цилиндре ДВС, °С	ΔΤΝ	5	5	5	5	5
Действительная политропа сжатия	$n_{_{ m I\!\! /}}$	1,3341	1,3343	1,3344	1,3344	1,3344
Предполагаемая температура остаточных газов, К	T_{r}	1020	1015	1025	1040	1070
Продолжительность горения, ° ПКВ	фг	57	62	67	73	80
Показатель характера сгорания	m	3	3	3	3	3
Коэффициент использования теплоты	δί	0,86	0,86	0,86	0,86	0,86
Коэффициент эффективности сгорания топлива	ξ	0,86	0,86	0,86	0,86	0,86

Таблица 7 – Термохимические характеристики топлива – этанол

Название характеристики, размерность	Условное обозначение	Значение характеристики
Массовое содержание Н	Н	0,131
Массовое содержание С	C	0,521
Массовое содержание О	O	0,347
Массовое содержание S	S	0
Массовое содержание N	N	0
Молекулярная масса топлива,	$m_{\scriptscriptstyle \mathrm{T},}$ кг/моль	46,069
Низшая теплота сгорания, МДж/кг	H_{u}	43237,518
Теоретически необходимое	Lo, кмоль воздуха/кг топлива	0,315
количество воздуха для сгорания 1 кг топлива	Lo, кг воздуха/кг топлива	9,102
	Мс СО, кмоль СО/кг топлива	0,0435
Количество компонента продуктов	MH_2O , кмоль $H_2O/кг$ топлива	0,0656
сгорания	MN_2 , кмоль N_2 /кг топлива	0,2491
	MO_2 , кмоль O_2 /кг топлива	0
Общее количество продуктов сгорания топлива,	M_2 кмоль пр. сг./кг топлива	0
Коэффициент изменения гор. смеси	μ_0	0,3582

Для удобства расчетов цикла одноцилиндрового двигателя на этаноле представим данные в виде таблицы 8.

Таблица 8 – Расчет цикла одноцилиндрового двигателя на этаноле

Название параметра	Условное		Значен	ие характер	истики	
	обозначение	000				6000
Частота вращения	n, мин ⁻¹	800	2000	3500	5000	6000
Давление остаточных газов	Pr, MΠa	0,1039	0,1058	0,1106	0,1180	0,1244
Средняя скорость движения	1	2.7022	6.0004	12 2157	17 4510	41.0004
заряда в наименьшем сечении	$\omega_{\text{вп}}, \text{ M/C}$	2,7922	6,9804	12,2157	17,4510	41,8824
впускной системы	D. MII.	0.1000	0.0000	0.0000	0.0006	0.0070
Давление в конце впуска	Ра, МПа	0,1000	0,0999	0,0998	0,0996	0,0979
Коэффициент остаточных газов	$\gamma_{\rm r}$	0,0311	0,0310	0,0306	0,0315	0,0334
Коэффициент наполнения	η_V	0,8568	0,8802	0,9231	0,9422	0,9121
Температура в конце впуска	Ta, K	325,2892	323,5340	321,6430	320,8179	321,7935
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	0,9014	0,8969	0,8928	0,8921	0,9106
Политропа расширения	n_2	1,1972	1,1977	1,1976	0,4764	0,4299
Удельный объем рабочего тела						
в момент воспламенения	Vy , м $^3/кг$	0,0830	0,0975	0,1026	0,1118	0,1248
Давление рабочего тела в момент воспламенения	Ру, МПа	2,4109	1,9302	1,7914	1,5927	1,3889
Температура рабочего тела в момент воспламенения	Ty, K	721,8059	679,2777	663,1577	642,5492	625,4884
Общая удельная теплота сгорания топлива	$\mathbf{q}_{\mathbf{z}}$, кДж/кг	2264,1460	2264,3852	2265,2783	2263,2494	2259,2199
Давление в процессе сгорания	E ₂ , MΠa	61,2911	61,6001	61,9126	61,9016	60,5392
Степень расширения	δ	4,0751	4,3013	3,9684	3,6719	3,3261
Давление в конце процесса сгорания	P _z , МПа	3,2099	3,3824	3,0764	2,7921	2,4228
Температура в конце процесса сгорания	T _z , K	2409,9487	2394,0926	2349,1824	2302,6713	2251,7298
Давление в конце процесса расширения	Рь, МПа	0,5971	0,5894	0,5904	0,5880	0,5740
Температура в конце процесса расширения	T _b , K	1826,8799	1794,3475	1789,0893	1780,5422	1774,2597
Теоретическая индикаторная работа цикла	L₁, кДж	1,0910	1,1288	1,1181	1,0926	1,0788
Расчетное среднее индикаторное давление	РіТ, МПа	1,3185	1,3708	1,3642	1,3340	1,2905
Индикаторный коэффициент полезного действия	ηi	0,4599	0,4654	0,4416	0,4231	0,4228
Удельный индикаторный расход топлива	g_i , г/к B т*ч	285,4693	282,0814	297,2729	310,2732	310,4722
Давление механических потерг	Р _м , МПа	0,0468	0,0660	0,0900	0,1140	0,1301
Средняя скорость поршня	C_{Π} , M/C	1,1333	2,8333	4,9583	7,0833	8,5000
Среднее эффективное давлени	Ре, МПа	1,2717	1,3048	1,2742	1,2200	1,1605
Механический КПД	ηм	0,9645	0,9518	0,9340	0,9145	0,8992
Эффективный КПД	ηe	0,4435	0,4430	0,4125	0,3869	0,3802
Удельный эффективный расход топлива	g _e , г/кВт*ч	295,9767	296,3533	318,2771	339,2764	345,2651
Эффективная мощность	N_e , к B т	1,2703	3,2585	5,5686	7,6169	8,6944
Часовой расход топлива	$G_{\scriptscriptstyle m T}$, кг/ч	0,3760	0,9657	1,7724	2,5842	3,0019
Крутящий момент	Ме, Н*м	15,1631	15,5584	15,1932	14,5472	13,8376

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 9) и внешнюю скоростную характеристику (рисунок 10) для одноцилиндрового двигателя на этаноле.

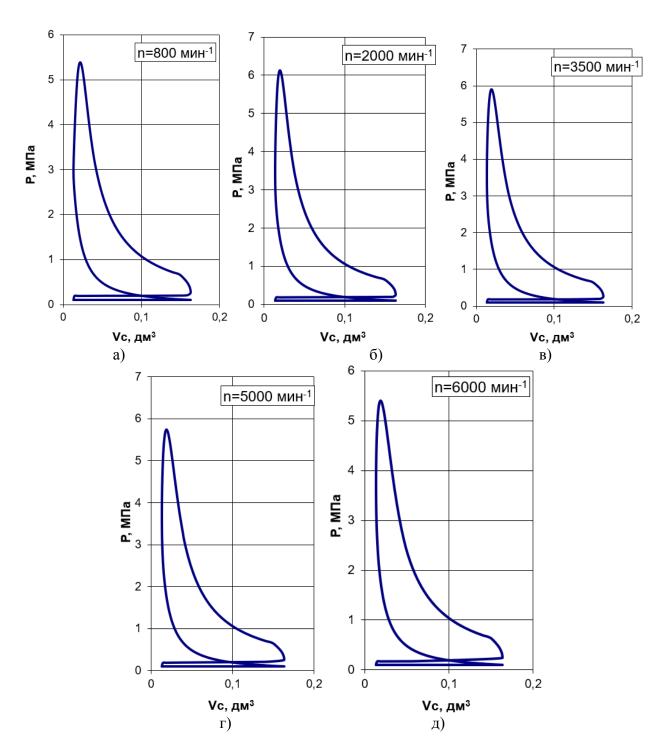


Рисунок 9 — Индикаторные диаграммы в P-V координатах, для одноцилиндрового двигателя на этаноле: (а) 800; (б) 2000; (в) 3500; (г) 5000 и (д) 6000 мин $^{-1}$.

Для удобства расчетов теплового баланса одноцилиндрового двигателя на этаноле представим данные в виде графика (рисунок 11).

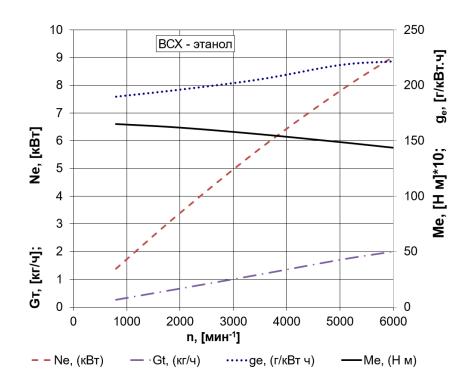


Рисунок 10 – Внешняя скоростная характеристика одноцилиндрового двигателя на этаноле

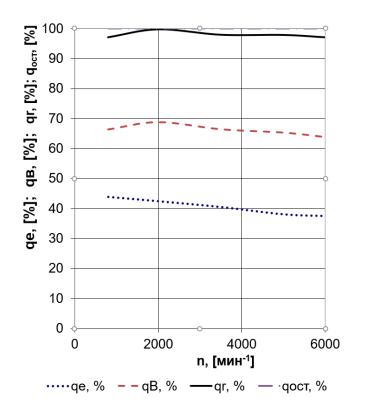


Рисунок 11 – Диаграмма внешнего теплового баланса одноцилиндрового двигателя на этаноле

2.3 Тепловой расчет одноцилиндрового двигателя на топливе Е85

Для удобства анализа регулировочных характеристик одноцилиндрового двигателя на топливе E85 представим данные в виде таблицы 9. Для удобства анализа термохимических характеристик топлива этанол представим их в виде таблицы 10.

Таблица 9 – Регулировочные характеристики одноцилиндрового двигателя на топливе E85

Название параметра, размерность	Условное обозначение		Значени	ие характер	истики	
Частота вращения, мин ⁻¹	n	800	2000	3500	5000	6000
Угол опережения зажигания, ^о ПКВ	Θ	13	19	25	29	32
Действительная политропа сжатия	$n_{\scriptscriptstyle m I\!\!I}$	1,3743	1,3744	1,3746	1,3747	1,3746
Предполагаемая температура остаточных газов, К	T_{r}	1020	1020	1030	1040	1060
Продолжительность горения, ^о ПКВ	фг	62	68	71	78	85
Показатель характера сгорания	m	3	3	3	3	3
Коэффициент эффективности сгорания топлива	۳۷	0,86	0,86	0,86	0,86	0,86

Таблица 10 – Термохимические характеристики топлива – Е85

Название характеристики, размерность	Условное обозначение	Значение характеристики
Массовое содержание Н	Н	0,132991138
Массовое содержание С	С	0,569417953
Массовое содержание О	О	0,295790909
Массовое содержание S	S	0,00075
Массовое содержание N	N	0,00105
Молекулярная масса топлива,	$m_{\scriptscriptstyle \mathrm{T},}$ кг/моль	56,40865
Низшая теплота сгорания, МДж/кг	$H_{\rm u}$	29795,384
Теоретически необходимое	Lo, кмоль воздуха/кг топлива	0,344
количество воздуха для сгорания 1 кг топлива	Lo, кг воздуха/кг топлива	9,942
	Мс СО, кмоль СО/кг топлива	0,0475
Количество компонента продуктов	MH_2O , кмоль $H_2O/кг$ топлива	0,0665
сгорания	MN_2 , кмоль N_2 /кг топлива	0,2721
	MO_2 , кмоль O_2 /кг топлива	0
Общее количество продуктов сгорания топлива,	${ m M}_2$ кмоль пр. сг./кг топлива	0
Коэффициент изменения гор. смеси	μ_0	0,3860

Для удобства расчетов цикла одноцилиндрового двигателя на топливе E85 представим данные в виде таблицы 11.

Таблица 11 — Расчет действительного цикла одноцилиндрового двигателя на топливе E85

Название параметра	Условное	Значение характеристики				
	обозначение					
Частота вращения	n, мин ⁻¹	800	2000	3500	5000	6000
Давление остаточных газов	Pr, MΠa	0,1039	0,1058	0,1106	0,1180	0,1244
Средняя скорость движения заряда в наименьшем сечении впускной системы	$ω_{\text{вп}}, \text{m/c}$	5,5843	13,9608	24,4314	34,9020	41,8824
Давление в конце впуска	Ра, МПа	0,1000	0,0998	0,0993	0,0986	0,0979
Коэффициент остаточных газов	$\gamma_{ m r}$	0,0311	0,0309	0,0310	0,0319	0,0337
Коэффициент наполнения	η_V	0,8565	0,8785	0,9071	0,9308	0,9121
Температура в конце впуска	Ta, K	325,2956	323,6217	322,0582	321,0868	321,6955
Удельный объем рабочего тела в конце наполнения	Va, м ³ /кг	0,8944	0,8916	0,8915	0,8955	0,9030
Удельный объем рабочего тела в момент воспламенения	Vy, м ³ /кг	0,0859	0,0996	0,1186	0,1344	0,1484
Давление рабочего тела в момент воспламенения	Ру, МПа	2,5034	2,0289	1,5897	1,3367	1,1722
Температура рабочего тела в момент воспламенения	Ty, K	782,0222	735,2787	685,6808	653,4979	632,7809
Общая удельная теплота сгорания топлива	\mathbf{q}_{z} , кДж/кг	2271,1940	2271,6591	2271,4948	2269,4668	2265,5836
Давление в процессе сгорания	E_2 , МПа	61,9575	62,1695	62,1677	61,8370	61,2162
Степень расширения	δ	3,7670	3,7670	5,2450	3,7670	3,4077
Давление в конце процесса сгорания	P _z , МПа	2,9867	2,9488	4,3718	2,8586	2,4999
Температура в конце процесса сгорания	T _z , K	2419,3809	2380,9607	2538,2057	2318,4255	2260,4007
Давление в конце процесса расширения	Рь, МПа	0,6108	0,5962	0,5957	0,5767	0,5691
Температура в конце процесса расширения	T _b , K	1863,8419	1813,5112	1813,8991	1761,9477	1753,4926
Теоретическая индикаторная работа цикла	L₁, кДж	1,0686	1,0946	1,1366	1,1110	1,0916
Расчетное среднее индикаторное давление	РіТ, МПа	1,3014	1,3374	1,3887	1,3514	1,3168
Индикаторный коэффициент полезного действия	ηi	0,4490	0,4499	0,4524	0,4290	0,4266
Удельный индикаторный расход топлива	g_i , г/к B т*ч	269,0932	268,5842	267,0919	281,6191	283,1978
Давление механических потерг	P_{M} , $M\Pi a$	0,1024	0,1224	0,1475	0,1726	0,1893
Средняя скорость поршня	C_{Π} , M/c	1,1333	2,8333	4,9583	7,0833	8,5000
Среднее эффективное давлени	Ре, МПа	1,1990	1,2149	1,2411	1,1788	1,1275
Механический КПД	ηм	0,9213	0,9085	0,8938	0,8723	0,8562
Эффективный КПД	ηе	0,4137	0,4087	0,4043	0,3742	0,3653
Удельный эффективный расход топлива	g _e , г/кВт*ч	292,0691	295,6504	298,8354	322,8498	330,7457
Эффективная мощность	N_{e} , к B т	1,1977	3,0341	5,4242	7,3596	8,4471
Часовой расход топлива	$G_{\scriptscriptstyle \mathrm{T}}$, кг/ч	0,3498	0,8970	1,6210	2,3761	2,7938
Крутящий момент	Ме, Н*м	14,2967	14,4868	14,7993	14,0559	13,4440

По результатам расчетов построим индикаторные диаграммы в P-V координатах (рисунок 12) и внешнюю скоростную характеристику (рисунок 13) для одноцилиндрового двигателя на топливе E85.

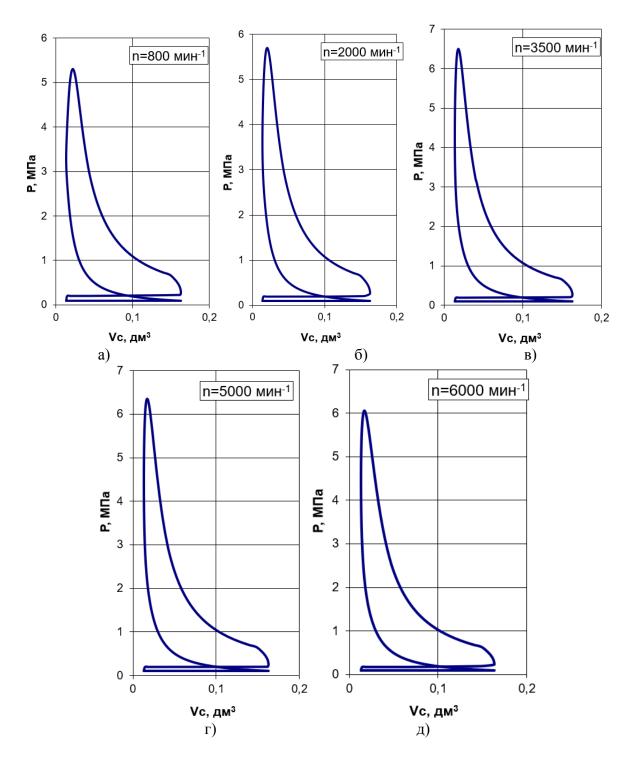


Рисунок 12 — Индикаторные диаграммы в P-V координатах, для одноцилиндрового двигателя на топливе E85: (а) 800; (б) 2000; (в) 3500; (г) $5000 \text{ и (д) } 6000 \text{ мин}^{-1}$.

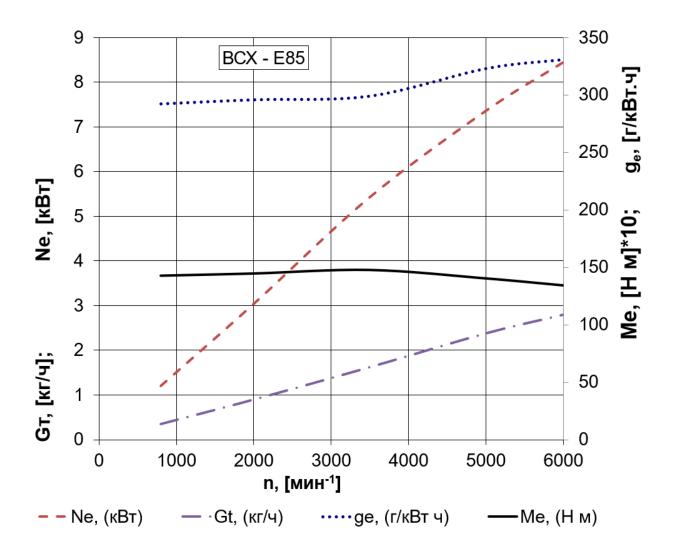


Рисунок 13 — Внешняя скоростная характеристика одноцилиндрового двигателя на топливе E85

Для удобства представление расчетов теплового баланса одноцилиндрового двигателя на топливе E85 представим их в виде рисунка 14.

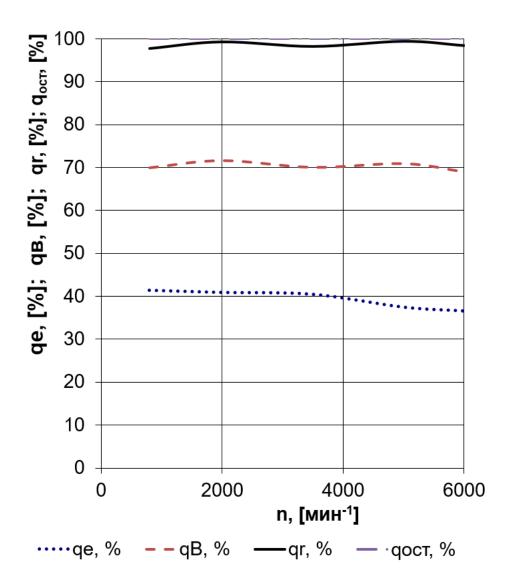


Рисунок 14 — Диаграмма внешнего теплового баланса одноцилиндрового двигателя на топливе E85

Выводы по второму разделу

Проведенные расчеты показали некоторое улучшение эффективных показателей работы двигателя при переходе с бензина на альтернативное топливо – этанол и E85 (85% этанол и 15% бензин).

3 Кинематический и динамический расчет кривошипно-шатунного механизма двигателя

3.1 Кинематический расчет кривошипно-шатунного механизма двигателя

Кинематический расчет для центрального кривошипно-шатунного механизма проектируемого двигателя (радиус кривошипа 21,25 мм, а длина шатуна 109 мм) проводился по известным методикам приведенным в [1,2], при частоте вращения коленчатого вала 6000 мин⁻¹.

Результаты расчета перемещения, скорости и ускорения поршня приведены на рисунках 15, 16 и 17.

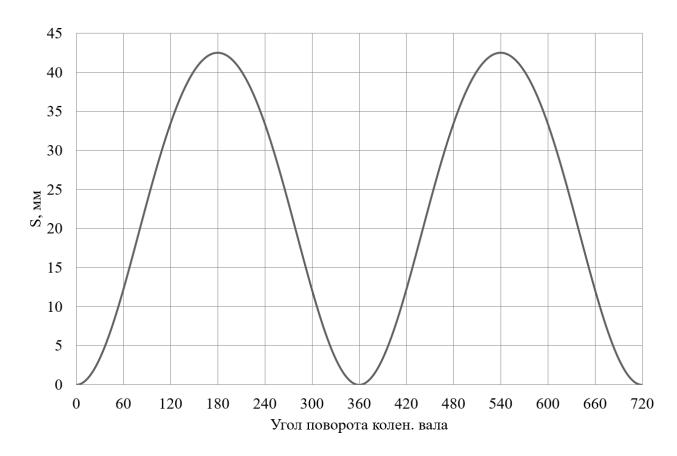


Рисунок 15 – Диаграмма изменения хода поршня

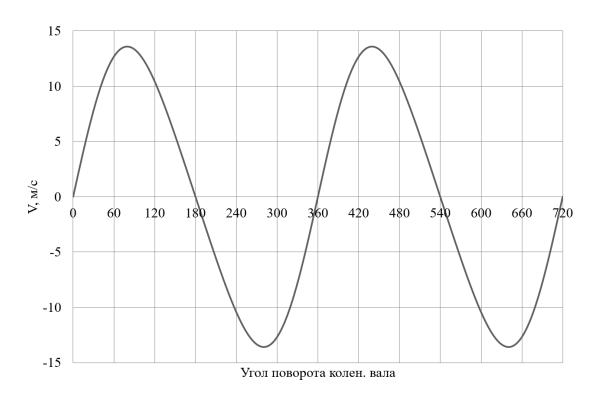


Рисунок 16 – Диаграмма изменения скорости поршня

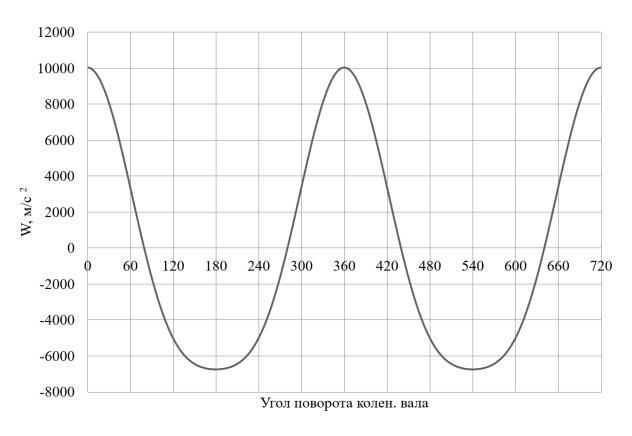


Рисунок 17 – Диаграмма изменения ускорения поршня

По результатам кинематического расчета мы можем определить инерционные силы в динамическом расчете.

3.2 Динамический расчет кривошипно-шатунного механизма двигателя

Динамический расчет кривошипно-шатунного механизма проектируемого двигателя проводился при частоте вращения коленчатого вала 6000 мин⁻¹, при работе на бензине и этаноле, E85 рассматривать не будем, так как характеристики на нем находятся между характеристиками при работе на бензине и при работе на этаноле, результаты приведение масс кривошипно-шатунного механизма по двух массовой схеме показаны в таблице 12.

Таблица 12 – Приведение масс кривошипно-шатунного механизма

Параметр	Величина		
Площадь поршня, M^2	0,003526		
Удельная масса поршня, кг/м ²	80		
Масса поршневой группы, кг	0,28205		
Удельная масса шатуна, кг/м ²	130		
Масса шатуна, кг	0,4583348		
Масса шатуна, сосредоточенная на оси поршневого	0,126		
пальца, кг			
Масса шатуна, сосредоточенная на оси кривошипа, кг	0,332		
Удельная масса одного колена вала, кг/м ²	140		
Масса неуравновешенных частей одного колена вала,	0,4936		
КГ			
Массы, совершающие возвратно-поступательное	0,408		
движение			
Массы, совершающие вращательное движение	0,82588		
Центробежная сила инерции вращающихся масс			
шатуна, Н	-2787,66		
Центробежная сила инерции вращающихся масс			
кривошипа, Н	-4140,818		
Центробежная сила инерции вращающихся масс, Н	-6928,477		

Результаты расчета приведены в виде графиков. На рисунке 18 приведены силы инерции возвратно-поступательного движения.

В таблице 13 приведены силы, действующие на поршневой палец и крутящий момент двигателя на бензине.

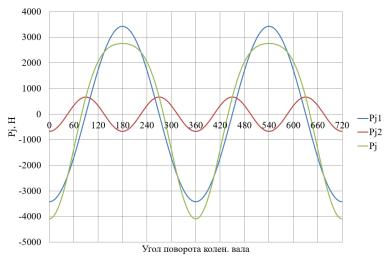


Рисунок 18 — Силы инерции возвратно-поступательного движения поршня и шатуна

Таблица 13 - Суммарные силы, действующие на поршневой палец и

крутящий момент двигателя на бензине

Фкв	N, H	К, Н	Z, H	T, H	Мкр.ц1	$\phi_{\scriptscriptstyle KB}$	N, H	K, H	Z, H	T, H	Мкр.ц1
0	0	-4098	-4098	0	0	370	396,7	11718	11465	2424,3	51,52
10	-136	-4008	-3922	-829,3	-17,6	380	970,3	14552	13312	5877,7	124,9
20	-250	-3744	-3425	-1512	-32,1	390	1355	13902	11305	8091,6	171,9
30	-324	-3322	-2701	-1933	-41,1	400	1339	10682	7257,9	7837,5	166,5
40	-347	-2768	-1881	-2031	-43,2	410	1133	7583,3	3952,2	6471,9	137,5
50	-316	-2116	-1103	-1806	-38,4	420	977,6	5790,5	2007	5431,5	115,4
60	-237	-1406	-487,2	-1318	-28	430	896,3	4892,5	802,77	4826,2	102,6
70	-124	-678,5	-111,3	-669,3	-14,2	440	861	4484,8	-83,68	4484	95,29
80	4,958	25,823	-0,482	25,819	0,549	450	848,1	4350,1	-848,1	4266,6	90,67
90	131,2	673	-131,2	660,09	14,03	460	835,5	4351,8	-1564	4060,8	86,29
100	237,6	1237,4	-444,8	1154,6	24,54	470	807,2	4405,9	-2240	3794,1	80,62
110	312,1	1703,7	-866,1	1467,1	31,18	480	753,8	4464,8	-2853	3434,2	72,98
120	349,1	2067,8	-1321	1590,5	33,8	490	672,9	4505,5	-3379	2980,2	63,33
130	348,8	2335,4	-1751	1544,7	32,83	500	566,7	4522,5	-3801	2449,9	52,06
140	315,7	2519,2	-2118	1364,7	29	510	407	4175,4	-3802	1725,3	36,66
150	257	2636,4	-2401	1089,4	23,15	520	206,1	3091,2	-2969	861,21	18,3
160	180,3	2704,5	-2597	753,47	16,01	530	102,2	3018,8	-2989	423,27	8,994
170	92,71	2738,6	-2712	383,98	8,16	540	2E-13	2923,1	-2923	1E-12	2E-14
180	7E-14	2748,8	-2749	3E-13	7E-15	550	-96,5	2849,5	-2821	-399,5	-8,49
190	-92,8	2741,2	-2714	-384,3	-8,17	560	-188	2815,6	-2704	-784,4	-16,7
200	-181	2715,1	-2608	-756,4	-16,1	570	-268	2747,8	-2502	-1135	-24,1
210	-259	2661,1	-2423	-1100	-23,4	580	-330	2630,9	-2211	-1425	-30,3
220	-321	2565,2	-2156	-1390	-29,5	590	-366	2447,5	-1836	-1619	-34,4
230	-360	2411,6	-1809	-1595	-33,9	600	-368	2180,3	-1393	-1677	-35,6
240	-369	2186	-1397	-1681	-35,7	610	-333	1816,5	-923,5	-1564	-33,2
250	-344	1879,4	-955,5	-1618	-34,4	620	-259	1350,3	-485,4	-1260	-26,8
260	-287	1492,5	-536,5	-1393	-29,6	630	-153	786,02	-153,2	-770,9	-16,4
270	-203	1039	-202,5	-1019	-21,7	640	-26,6	138,77	-2,589	-138,8	-2,95
280	-105	549,24	-10,25	-549,1	-11,7	650	103,6	-565,7	-92,82	558,05	11,86
290	-13,6	74,409	12,209	-73,4	-1,56	660	218,3	-1293	-448,2	1213	25,78
300	52,03	-308,2	-106,8	289,09	6,143	670	299,2	-2004	-1044	1710,1	36,34
310	72,33	-484,3	-252,4	413,33	8,783	680	332,8	-2656	-1805	1948,7	41,41
320	35,81	-285,8	-194,2	209,68	4,456	690	312,9	-3210	-2611	1868,6	39,71
330	-50,5	517,65	420,93	-301,3	-6,4	700	242,2	-3633	-3323	1467,4	31,18
340	-142	2134,1	1952,3	-862	-18,3	710	131,9	-3897	-3813	806,34	17,13
350	-153	4510,9	4413,3	-933,3	-19,8	720	4E-13	-4098	-4098	2E-12	4E-14
360	-0	7693,4	7693,4	-2E-12	-0	Мкр.	ц.Сумма	рный Н*м			12,78

В таблице 14 приведены силы, действующие на поршневой палец и крутящий момент двигателя на этаноле.

Таблица 14 — Суммарные силы, действующие на поршневой палец и крутящий момент двигателя на этаноле

$\phi_{\scriptscriptstyle KB}$	N, H	K, H	Z, H	T, H	Мкр.ц1	$\phi_{\scriptscriptstyle KB}$	N, H	К, Н	Z, H	T, H	Мкр.ц1
0	0	-4098	-4098	0	0	370	538,4	15904	15560	3290,4	69,92
10	-136	-4008	-3922	-829,3	-17,6	380	1137	17056	15603	6889,3	146,4
20	-250	-3744	-3425	-1512	-32,1	390	1407	14432	11736	8399,9	178,5
30	-324	-3322	-2701	-1933	-41,1	400	1313	10477	7118,5	7687	163,3
40	-347	-2768	-1881	-2031	-43,2	410	1097	7344,8	3827,9	6268,4	133,2
50	-316	-2116	-1103	-1806	-38,4	420	944,2	5592,5	1938,4	5245,8	111,5
60	-237	-1406	-487,2	-1318	-28	430	865,2	4722,8	774,93	4658,8	99
70	-124	-678,5	-111,3	-669,3	-14,2	440	832,7	4337	-80,92	4336,2	92,15
80	4,958	25,823	-0,482	25,819	0,549	450	822,6	4219,3	-822,6	4138,3	87,94
90	131,2	673	-131,2	660,09	14,03	460	812,9	4234,1	-1522	3951,1	83,96
100	237,6	1237,4	-444,8	1154,6	24,54	470	787,5	4298,5	-2185	3701,6	78,66
110	312,1	1703,7	-866,1	1467,1	31,18	480	737	4365,4	-2790	3357,7	71,35
120	349,1	2067,8	-1321	1590,5	33,8	490	659	4412,3	-3309	2918,6	62,02
130	348,8	2335,4	-1751	1544,7	32,83	500	555,6	4434	-3727	2402	51,04
140	315,7	2519,2	-2118	1364,7	29	510	398,7	4090,1	-3725	1690	35,91
150	257	2636,4	-2401	1089,4	23,15	520	206,3	3094,2	-2972	862,05	18,32
160	180,3	2704,5	-2597	753,47	16,01	530	105,6	3118,1	-3087	437,19	9,29
170	92,71	2738,6	-2712	383,98	8,16	540	2E-13	3128,1	-3128	1E-12	2E-14
180	7E-14	2748,8	-2749	3E-13	7E-15	550	-106	3118,1	-3087	-437,2	-9,29
190	-92,8	2741,3	-2714	-384,4	-8,17	560	-206	3084,6	-2962	-859,4	-18,3
200	-181	2715,5	-2608	-756,5	-16,1	570	-294	3017,5	-2748	-1247	-26,5
210	-259	2661,9	-2424	-1100	-23,4	580	-364	2901,5	-2439	-1572	-33,4
220	-322	2566,7	-2157	-1390	-29,5	590	-406	2719	-2039	-1798	-38,2
230	-361	2414,1	-1811	-1597	-33,9	600	-414	2452,6	-1567	-1887	-40,1
240	-370	2190,1	-1400	-1685	-35,8	610	-383	2089,5	-1062	-1799	-38,2
250	-345	1885,9	-958,8	-1624	-34,5	620	-312	1623,8	-583,8	-1515	-32,2
260	-288	1502,5	-540,2	-1402	-29,8	630	-207	1059,7	-206,6	-1039	-22,1
270	-206	1054,5	-205,6	-1034	-22	640	-79,2	412,3	-7,693	-412,2	-8,76
280	-110	573,58	-10,7	-573,5	-12,2	650	53,61	-292,7	-48,02	288,69	6,135
290	-20,7	113,13	18,563	-111,6	-2,37	660	172,3	-1021	-353,8	957,51	20,35
300	41,37	-245	-84,93	229,84	4,884	670	258,7	-1732	-902,8	1478,4	31,42
310	56,47	-378,1	-197,1	322,68	6,857	680	298,9	-2385	-1621	1750,2	37,19
320	12,72	-101,5	-68,98	74,491	1,583	690	286,6	-2941	-2391	1711,6	36,37
330	-81,5	836,2	679,97	-486,7	-10,3	700	224,3	-3364	-3077	1358,8	28,87
340	-181	2707,4	2476,8	-1094	-23,2	710	122,9	-3629	-3550	750,77	15,95
350	-206	6085,5	5953,9	-1259	-26,8	720	4E-13	-4098	-4098	2E-12	4E-14
360	-0	11193	11193	-3E-12	-0	Мкр.і	ц.Суммар	ный Н*м			11,06

В таблице 15 приведены силы, действующие на шатунную и коренные шейки коленчатого вала двигателя на бензине и на этаноле.

Таблица 15 – Силы, действующие на шатунную и коренные шейки коленчатого вала базового двигателя

$\phi_{\scriptscriptstyle KB}$	Rш.ш. _б ,	Rк.ш1(2)	Rш.ш.₃,	Rк.ш1(2)	Фкв	Rш.ш. _б ,	Rк.ш1(2)	Rш.ш.₃,	Rк.ш1(2)
0	H 6886,015	, Н 5513,4167	H 6886,015	, Н 5513,4167	370	H 9009,161	, Н 2571,6174	H 13189,64	, Н 4618,8439
10	6760,383	5440,8952	6760,383	5440,8952	380	12054,43	4338,6924	14549,66	5538,674
20	6394,131	5231,701	6394,131	5231,701	390	11747,93	4599,5922	12272,83	4839,0605
30	5819,37	4910,9005	5819,37	4910,9005	400	9022,664	3922,1907	8823,02	3844,6609
40	5090,725	4520,009	5090,725	4520,009	410	6575,889	3561,7494	6354,151	
50	4289,009	4320,009	4289,009	4115,8398	420	5487,337			3496,6582
60	3530,29	3765,9795	3530,29		430	5218,385	3664,7729	5314,143 5074,956	3620,0727
				3765,9795	440		3899,2318		3859,0888
70	2975,238	3535,7725	2975,238 2788,26	3535,7725		5324,551	4161,6275	5199,205	4121,1233
80	2788,26	3464,5033		3464,5033	450	5605,591	4435,0537	5491,75	4393,2974
90	2992,571	3545,2371	2992,571	3545,2371	460	5952,411	4706,9105	5846,81	4664,3254
100	3432,507	3731,578	3432,507	3731,578	470	6298,525	4961,2033	6199,373	4918,4042
110	3937,332	3965,7379	3937,332	3965,7379	480	6603,963	5183,4791	6510,029	5140,9128
120	4406,176	4200,9146	4406,176	4200,9146	490	6849,1	5364,8655	6759,377	5322,7621
130	4794,798	4408,1747	4794,798	4408,1747	500	7029,77	5503,0018	6943,358	5461,4234
140	5091,51	4574,1925	5091,51	4574,1925	510	6812,047	5434,2871	6727,977	5393,1481
150	5301,582	4696,3299	5301,582	4696,3299	520	5820,531	4967,3411	5823,497	4968,8091
160	5437,522	4777,8177	5437,522	4777,8177	530	5792,158	4963,2594	5891,194	5012,6527
170	5512,587	4823,8303	5512,587	4823,8303	540	5710,753	4925,7856	5915,724	5028,2712
180	5536,441	4838,6295	5536,441	4838,6295	550	5623,227	4879,0086	5891,194	5012,6527
190	5515,19	4825,1283	5515,268	4825,1676	560	5547,503	4832,2344	5814,007	4964,1125
200	5448,053	4783,0281	5448,375	4783,1874	570	5410,356	4749,4007	5674,181	4878,1579
210	5325,716	4708,1042	5326,469	4708,4713	580	5198,319	4625,1967	5457,782	4749,1605
220	5135,448	4595,1728	5136,858	4595,8458	590	4898,474	4456,1555	5150,997	4573,1056
230	4865,252	4440,7789	4867,599	4441,8649	600	4504,759	4244,5374	4746,042	4351,3724
240	4509,74	4246,7417	4513,36	4248,3439	610	4027,297	4003,1106	4249,659	4095,4145
250	4078,026	4024,1724	4083,261	4026,3453	620	3507,246	3760,1079	3696,279	3831,7645
260	3604,166	3796,9143	3611,126	3799,5511	630	3040,267	3561,7776	3169,518	3605,1885
270	3159,07	3601,7323	3166,897	3604,3219	640	2793,695	3466,2273	2825,582	3474,2039
280	2851,288	3480,2104	2856,519	3481,4178	650	2934,04	3521,7211	2850,336	3491,2339
290	2776,419	3458,3285	2771,343	3455,4073	660	3455,735	3737,8716	3284,15	3672,483
300	2908,88	3520,6176	2881,767	3508,5853	670	4196,191	4077,0421	3975,545	3984,7927
310	3068,035	3596,3849	3002,103	3566,416	680	4988,61	4473,9236	4743,129	4363,271
320	2989,19	3562,8657	2857,612	3498,9277	690	5712,49	4860,1744	5454,419	4737,7991
330	2385,826	3257,2573	2163,155	3133,718	700	6284,8	5178,1972	6020,314	5048,8164
340	1200,378	2525,1526	1136,914	2292,0371	710	6649,88	5385,9264	6382,348	5252,8577
350	1874,505	1341,355	3407,337	796,08633	720	6886,015	5513,4167	6886,015	5513,4167
360	4905,743	382,46217	8405,241	2132,2114					

На рисунке 19 приведено сравнение суммарной силы, действующую на шатунную шейку в полярных координатах. А на рисунке 20 приведено сравнение суммарных сил, действующих на 1-ю коренную шейку в полярных координатах.

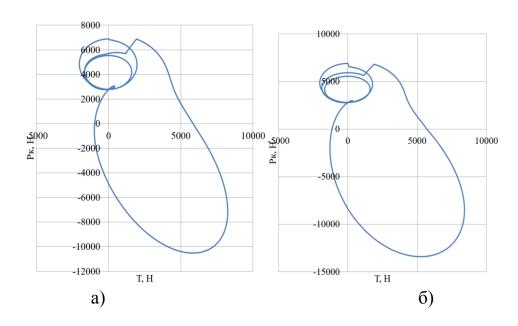


Рисунок 19 – Суммарная сила, действующая на шатунную шейку в полярных координатах: (а) базовый двигатель; (б) модернизированный двигатель

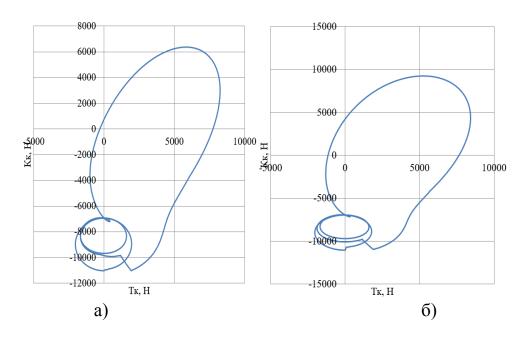


Рисунок 20 – Суммарные силы, действующие на 1-ю коренную шейку в полярных координатах: (а) двигатель на бензине; (б) двигатель на этаноле

Выводы по 3-му разделу

Переход на альтернативное топливо (этанол или E85) позволяет снизить нагрузки на кривошипно-шатунный механизм.

4 Анализ токсичности отработавших газов при работе одноцилиндрового двигателя на бензине, этаноле и E85

Анализ токсичности отработавших газов при работе одноцилиндрового двигателя на бензине, этаноле и Е85 проводился по модели, представленной на рисунке 21, выполненной с использованием ведущего на рынке программного обеспечения для моделирования двигателей WAVE Ricardo 17.1. Реализована прогнозирующая модель горения, использующая квазиразмерный процесс распространения пламени. Трехмерная модель формы камеры сгорания используется для расчета площади распространения пламени. Особое внимание при проверке модели уделялось давлению в цилиндре во время газообмена и сгорания для оценки производительности впускной и выпускной систем, а также прогнозирующей модели сгорания.

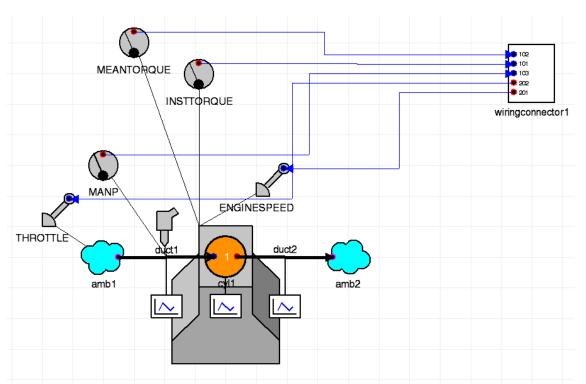


Рисунок 21 — Структура модели виртуального одноцилиндрового двигателя на бензине, этаноле и E85

Таже проведен расчет скоростных характеристики двигателя при работе на бензине, этаноле и E85, представлены в таблицах 16, 17 и 18.

Таблица 16 – Скоростные характеристики одноцилиндрового двигателя при работе на бензине

Скорость двигателя	rpm	6000	5500	5000	4500	4000	3500	3000	2500	1999	1500	1000
Массовый расход воздуха	kg/hr	29.1078	26.25	22.4604	19.8572	18.1638	15.1684	13.3499	10.8265	8.60564	6.31057	4.09351
Обратный поток (закрытие)	%	10.1136	9.66539	13.1103	10.0414	12.3772	13.9875	12.8811	14.3588	14.5573	16.0833	18.7083
Обратный поток (перекрытие)	%	0.249044	0.0436739	0.542191	1.46313	0.371932	0.98301	0.364512	0.688688	0.308519	0.291617	0.141281
Начало горения	deg	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466
Максимальная скорость повышения		2.2045	2.17139	2.05234	2.01328	2.05678	1.96914	2.01117	1.95623	1.93014	1.86383	1.76857
давления	bar/deg											
Массовый расход топлива	kg/hr	1.98042	1.78587	1.52834	1.35157	1.23589	1.03227	0.908352	0.736739	0.585551	0.429392	0.27853
GMEP	bar	12.0128	11.7638	11.0094	10.6951	10.8389	10.2111	10.2434	9.69136	9.22135	8.43743	7.28431
Скорость теплопередачи	W	4066.2	3828.81	3479.73	3245.21	3101.09	2806.25	2648.27	2374.74	2119.96	1809.46	1435.82
IMEP	bar	11.9475	11.7066	10.961	10.6574	10.8049	10.1838	10.2176	9.67473	9.21202	8.43381	7.28258
Перекрытие клапана	deg	75	75	75	75	75	75	75	75	75	75	75
Максимальное давление	bar	65.9909	64.9769	61.7261	60.7846	61.3622	59.1054	59.7741	58.0458	56.9971	54.9286	51.9279
		-0.0782397	-	-0.0519009	-0.0392975	-0.0345179	-0.0273015	-0.0212408	-0.0149235	-	-	-
PMEP	bar		0.0651207							1		0.00169165
Объемный коэффициент наполнения	-	0.943654	0.929058	0.874347	0.85993	0.886523	0.844813	0.86887	0.845984	0.841329	0.823255	0.802964
Объемный коэффициент наполнения		0.924941	0.910633	0.857116	0.842881	0.868765	0.828031	0.85152	0.82914	0.824604	0.806961	0.786947
(только воздух)	-											
Остаточная газовая фракция	%	2.40866	2.55843	3.91716	4.63678	2.98571	4.43355	3.38284	3.981	3.91556	4.25261	4.5184
Продолжительность от 0% до 10%		17.2593	17.2593	17.2593	17.2593	17.2593	17.2593	17.2522	17.2572	17.2577	17.26	17.2624
сжигания массы топлива	deg											
Продолжительность между от 0% до	_	9.93125	9.93125	9.93125	9.93125	9.93125	9.93125	9.94236	9.94209	9.9435	9.94909	9.95179
2% сжигания массы топлива	deg											
Продолжительность между от 0% до	,	13.5687	13.5687	13.5687	13.5687	13.5687	13.5687	13.5652	13.572	13.5792	13.5763	13.5789
5% сжигания массы топлива	deg	40.260	40.260	40.260	40.260	40.260	40.260	40.2670	40.2744	40.000	40.2602	40.2660
Продолжительность от 0% до 90%	1	48.269	48.269	48.269	48.269	48.269	48.269	48.2679	48.2744	48.2686	48.2683	48.2668
сжигания массы топлива	deg	16.40	16.40	16.40	16.40	16.40	16.40	16 4041	16 4750	1.6 4722	16.4650	16.4625
Время сжигания 1% массы топлива	deg	-16.49	-16.49	-16.49	-16.49	-16.49	-16.49	-16.4841	-16.4758	-16.4732	-16.4659	-16.4625
Продолжительность сжигания от 10%	4	31.0097	31.0097	31.0097	31.0097	31.0097	31.0097	31.0157	31.0171	31.0109	31.0084	31.0044
до 90% массы топлива	deg	-7.08725	-7.08725	-7.08725	-7.08725	-7.08725	-7.08725	-7.09441	-7.08932	-7.08884	-7.08659	-7.08417
Время сжигания 10% массы топлива	deg			8.00074		8.00074			8.00097			
Время сжигания 50% массы топлива	deg	8.00074 23.9224	8.00074 23.9224	23.9224	8.00074 23.9224	23.9224	8.00074 23.9224	8.00088 23.9213	23.9278	8.00085 23.922	8.0008 23.9218	8.00076 23.9202
Время сжигания 90% массы топлива	deg											
Время сжигания 99% массы топлива	deg	26.8704	26.8704	26.8704	26.8704	26.8704	27.851	27.8093	28.3329	27.8279	27.3122	27.5442
Время максимального давления	deg	13.4052	13.3863	13.3576	13.3342	13.3099	13.1538	13.0734	12.9108	12.7957	12.4078	11.8523
Объемный КПД	-	0.926843	0.911829	0.858212	0.84305	0.86755	0.827978	0.850164	0.827361	0.822055	0.803757	0.782064

Таблица 17 – Скоростные характеристики одноцилиндрового двигателя при работе на этаноле

Скорость двигателя	rpm	6000	5500	5000	4500	4000	3500	3000	2500	1999	1500	1000
Массовый расход воздуха	kg/hr	30.2889	27.5965	25.0447	20.955	18.7039	16.6628	13.757	11.2751	8.97526	6.60932	4.29126
Обратный поток (закрытие)	%	9.98404	10.9818	11.0144	12.4439	13.0503	12.6481	14.015	13.3973	15.1905	16.5913	19.1014
Обратный поток (перекрытие)	%	0.988456	0.457624	0.0306247	0.996335	1.31118	0.0931739	1.10273	1.18337	0.851778	0.462468	0.121902
Начало горения	deg	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466
Максимальная скорость повышения		1.68383	1.66754	1.66224	1.55373	1.55496	1.57303	1.51752	1.48683	1.47138	1.42716	1.37295
давления	bar/deg											
Массовый расход топлива	kg/hr	2.061	1.87758	1.70383	1.42588	1.27279	1.13363	0.936115	0.767228	0.610703	0.449691	0.291959
GMEP	bar	8.94967	8.83525	8.75383	8.09773	8.0295	8.03752	7.63456	7.31848	7.02771	6.51571	5.73084
Скорость теплопередачи	W	2358.72	2209.13	2087.31	1876.28	1759.74	1656.24	1493.19	1344.35	1197.45	1026.23	822.347
IMEP	bar	8.86986	8.76336	8.69073	8.04934	7.99142	8.00654	7.60806	7.30165	7.0181	6.51194	5.72892
Перекрытие клапана	deg	75	75	75	75	75	75	75	75	75	75	75
Максимальное давление	bar	55.8241	54.7355	54.4976	51.5179	51.4202	51.6143	50.0532	49.1415	48.3426	46.8555	44.5791
		-0.0859645	-	-0.0649934	-0.048933	-0.0381213	-0.0309897	-	-0.0153557	-0.00943653	-	-
PMEP	bar		0.0757867					0.0218003			0.00432998	
Объемный коэффициент наполнения	-	0.931651	0.930067	0.928818	0.863107	0.867411	0.885002	0.851743	0.840547	0.838468	0.828563	0.812951
Объемный коэффициент наполнения		0.913347	0.911568	0.910357	0.845959	0.85012	0.867256	0.834811	0.823757	0.821864	0.812112	0.796717
(только воздух)	-											
Остаточная газовая фракция	%	4.16758	3.01004	2.90318	4.96506	4.69038	3.57058	4.70231	5.19309	4.87478	4.91015	4.87938
Продолжительность от 0% до 10%		17.2593	17.2593	17.2593	17.2593	17.2593	17.2593	17.2596	17.2552	17.2572	17.2609	17.2619
сжигания массы топлива	deg											
Продолжительность между от 0% до		9.93125	9.93125	9.93125	9.93125	9.93125	9.93125	9.93136	9.93965	9.95015	9.95187	9.95162
2% сжигания массы топлива	deg											
Продолжительность между от 0% до		13.5687	13.5687	13.5687	13.5687	13.5687	13.5687	13.5685	13.5673	13.5744	13.5788	13.5783
5% сжигания массы топлива	deg	40.260	40.260	40.260	40.260	10.260	40.260	40.2607	40.0505	10.0717	40.2600	40.2657
Продолжительность от 0% до 90%		48.269	48.269	48.269	48.269	48.269	48.269	48.2687	48.2735	48.2717	48.2688	48.2657
сжигания массы топлива	deg	16.40	16.40	16.40	16.40	16.40	16.40	16 4000	16.4676	16.4602	16 4655	16 4611
Время сжигания 1% массы топлива	deg	-16.49	-16.49	-16.49	-16.49	-16.49	-16.49	-16.4899	-16.4676	-16.4683	-16.4655	-16.4611
Продолжительность сжигания от 10%		31.0097	31.0097	31.0097	31.0097	31.0097	31.0097	31.0092	31.0183	31.0145	31.0079	31.0038
до 90% массы топлива	deg	7.00725	7.00725	7.00725	7.00725	7.00725	7.00725	7.09600	7.00125	7.00027	7.00565	7.00467
Время сжигания 10% массы топлива	deg	-7.08725	-7.08725	-7.08725	-7.08725	-7.08725	-7.08725	-7.08699	-7.09135	-7.08937 8.00075	-7.08565 9.00075	-7.08467
Время сжигания 50% массы топлива	deg	8.00074	8.00074	8.00074 23.9224	8.00074	8.00074 23.9224	8.00074	8.00075	8.00083	8.00075	8.00075	8.00077
Время сжигания 90% массы топлива	deg	23.9224	23.9224		23.9224		23.9224	23.9222	23.927	23.9251	23.9223	23.9191
Время сжигания 99% массы топлива	deg	27.8478	28.822	28.8219	28.8201	27.8478	27.8478	28.814	28.6792	28.4512	28.3459	28.5557
Время максимального давления	deg	13.0261	13.0835	13.0446	12.8492	12.7998	12.7879	12.6352	12.5005	12.3569	12.0352	11.4638
Объемный КПД	-	0.96445	0.958602	0.95696	0.889655	0.893345	0.909554	0.876088	0.861645	0.857363	0.841807	0.819846

Таблица 18 – Скоростные характеристики одноцилиндрового двигателя при работе на Е85

таолица то – Скоростные хара	ikicpin			1	,				1	1	1	
Скорость двигателя	rpm	6000	5500	5000	4500	4000	3500	3000	2500	1999	1500	1000
Массовый расход воздуха	kg/hr	29.5842	27.0108	24.1546	20.308	18.1886	15.9625	13.3471	10.8762	8.74963	6.48327	4.21115
Обратный поток (закрытие)	%	9.65687	9.7557	10.8399	10.8281	12.9415	12.9581	13.8594	13.099	14.814	16.1043	18.4128
Обратный поток (перекрытие)	%	0.885435	0.335664	0.0178841	1.22199	1.09705	0.122319	0.934955	1.18718	0.689025	0.466839	0.139481
Начало горения	deg	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466	-24.3466
Максимальная скорость повышения		1.74434	1.73114	1.70359	1.59769	1.60189	1.59979	1.55826	1.52221	1.52214	1.49529	1.43753
давления	bar/deg											
Массовый расход топлива	kg/hr	2.01277	1.83758	1.64323	1.38183	1.23769	1.08601	0.908309	0.740241	0.595443	0.441173	0.286529
GMEP	bar	9.20072	9.107	8.9193	8.29008	8.2706	8.18672	7.88349	7.54138	7.32662	6.8271	5.97069
Скорость теплопередачи	W	2554.68	2407.4	2263.83	2046.07	1933.2	1811.02	1654.29	1492.25	1343.12	1149.87	915.819
IMEP	bar	9.12382	9.03814	8.85948	8.24532	8.23402	8.15688	7.85774	7.52511	7.31742	6.82343	5.96886
Перекрытие клапана	deg	75	75	75	75	75	75	75	75	75	75	75
Максимальное давление	bar	56.5239	55.5977	54.7794	51.9943	51.8131	51.5368	50.3251	49.2178	48.8094	47.5635	45.3232
		-	-	-	-0.0453959	-0.036729	-0.0298544	-0.0213608	-0.0147979	-0.00905081	-	-
PMEP	bar	0.0832087	0.0728084	0.0616861							0.00421223	0.00178209
Объемный коэффициент наполнения	-	0.917538	0.9178	0.902583	0.842837	0.850793	0.853304	0.832477	0.816311	0.823545	0.816355	0.801421
Объемный коэффициент наполнения		0.899386	0.899454	0.88462	0.826081	0.833734	0.836203	0.815842	0.800025	0.807133	0.800241	0.785418
(только воздух)	-											
Остаточная газовая фракция	%	3.9095	2.821	3.08684	5.15441	4.31459	3.79687	4.40642	5.13157	4.58194	4.67844	4.87916
Продолжительность от 0% до 10%		17.2593	17.2593	17.2593	17.2593	17.2593	17.2593	17.2598	17.2573	17.2629	17.2631	17.2617
сжигания массы топлива	deg											
Продолжительность между от 0% до		9.93125	9.93125	9.93125	9.93125	9.93125	9.93125	9.93697	9.94031	9.943	9.9494	9.9525
2% сжигания массы топлива	deg											
Продолжительность между от 0% до		13.5687	13.5687	13.5687	13.5687	13.5687	13.5687	13.5644	13.5753	13.5739	13.5789	13.5787
5% сжигания массы топлива	deg											
Продолжительность от 0% до 90%		48.269	48.269	48.269	48.269	48.269	48.269	48.2692	48.2728	48.2711	48.2663	48.2668
сжигания массы топлива	deg											
Время сжигания 1% массы топлива	deg	-16.49	-16.49	-16.49	-16.49	-16.49	-16.49	-16.4857	-16.4804	-16.4732	-16.467	-16.4628
Продолжительность сжигания от 10%		31.0097	31.0097	31.0097	31.0097	31.0097	31.0097	31.0094	31.0155	31.0082	31.0033	31.0051
до 90% массы топлива	deg											
Время сжигания 10% массы топлива	deg	-7.08725	-7.08725	-7.08725	-7.08725	-7.08725	-7.08725	-7.08677	-7.08928	-7.0837	-7.08352	-7.08492
Время сжигания 50% массы топлива	deg	8.00074	8.00074	8.00074	8.00074	8.00074	8.00074	8.00099	8.00083	8.00079	8.00082	8.00077
Время сжигания 90% массы топлива	deg	23.9224	23.9224	23.9224	23.9224	23.9224	23.9224	23.9226	23.9262	23.9245	23.9198	23.9202
Время сжигания 99% массы топлива	deg	26.8704	26.8704	26.8704	26.8704	28.8363	27.8478	28.6611	29.5609	29.58	29.126	28.7928
Время максимального давления	deg	13.307	13.3517	13.286	13.085	13.0821	13.0316	12.8885	12.7261	12.5344	12.1853	11.5107
Объемный КПД	-	0.942012	0.938257	0.922946	0.862186	0.868732	0.871325	0.849985	0.831158	0.835809	0.825753	0.804541

На рисунке 22 представлено среднее индикаторное давление при работе на бензине, этаноле и E85.



Рисунок 22 — Среднее индикаторное давление при работе на бензине, этаноле и E85

На рисунке 23 представлена зависимость удельных выбросов по CO в г/кВт ч от частоты вращения при работе на бензине, этаноле и E85.

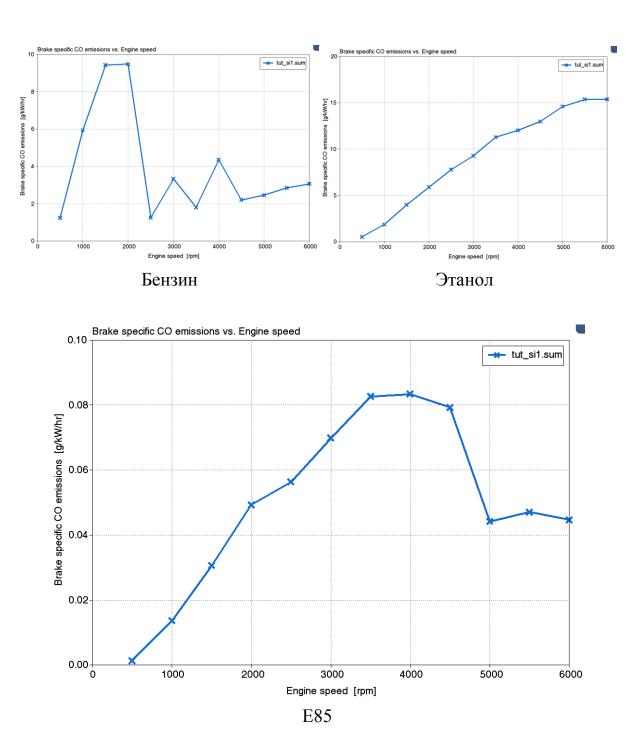
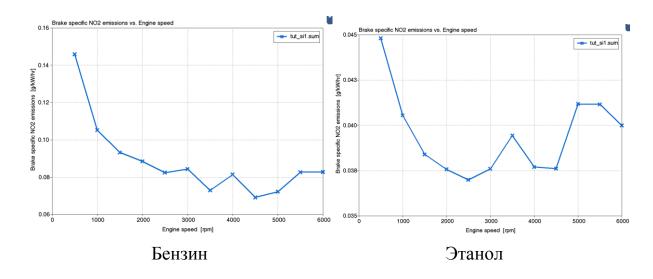



Рисунок 23 – Зависимость удельных выбросов по CO в г/кВт ч от частоты вращения при работе на бензине, этаноле и E85.

На рисунке 24 представлена зависимость удельных выбросов по NO_2 в $\Gamma/\kappa B\tau$ ч от частоты вращения при работе на бензине, этаноле и E85.

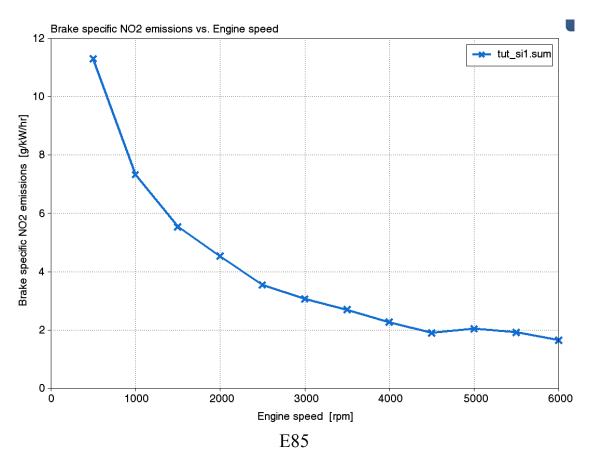


Рисунок 24 — Зависимость удельных выбросов по NO_2 в г/кВт ч от частоты вращения при работе на бензине, этаноле и E85.

На рисунке 25 представлена зависимость концентрации CO в мил⁻¹ (ppm) от частоты вращения при работе на бензине, этаноле и E85.

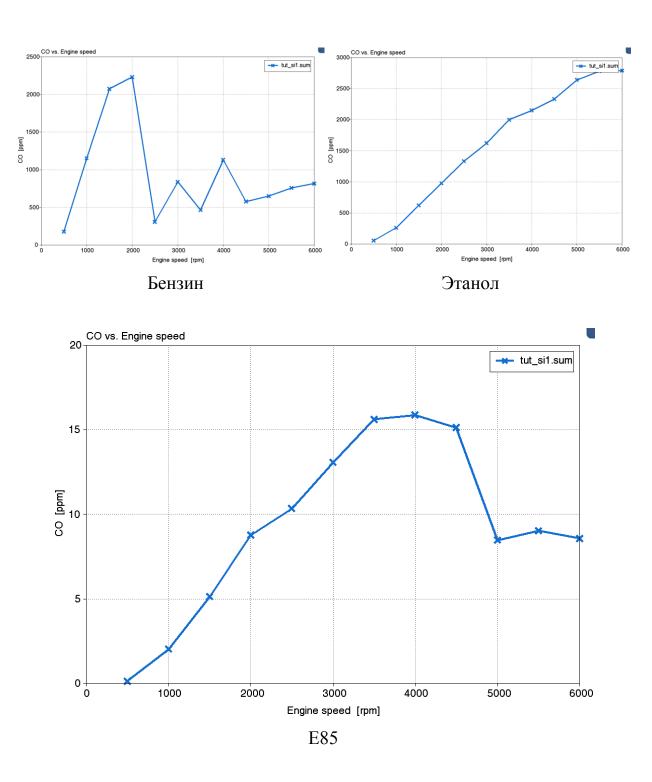


Рисунок 25 — Зависимость концентрации CO в мил⁻¹ (ppm) от частоты вращения при работе на бензине, этаноле и E85.

На рисунке 26 представлена зависимость концентрации СН в мил⁻¹ (ppm) от частоты вращения при работе на бензине, этаноле и E85.

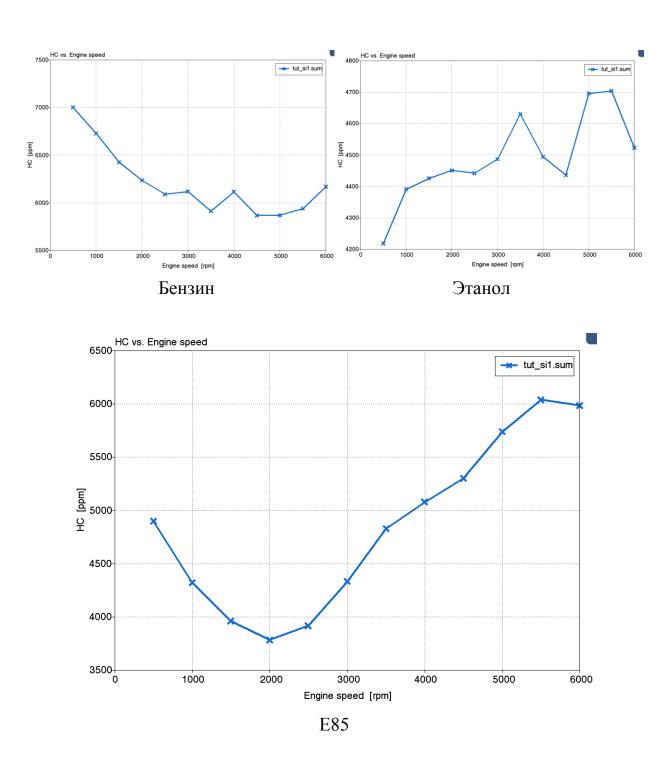
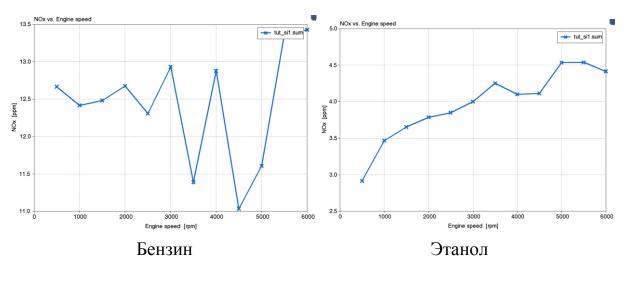



Рисунок 26 – Зависимость концентрации СН в мил⁻¹ (ppm) от частоты вращения при работе на бензине, этаноле и E85.

На рисунке 27 представлена зависимость концентрации NO в мил⁻¹ (ppm) от частоты вращения при работе на бензине, этаноле и E85.

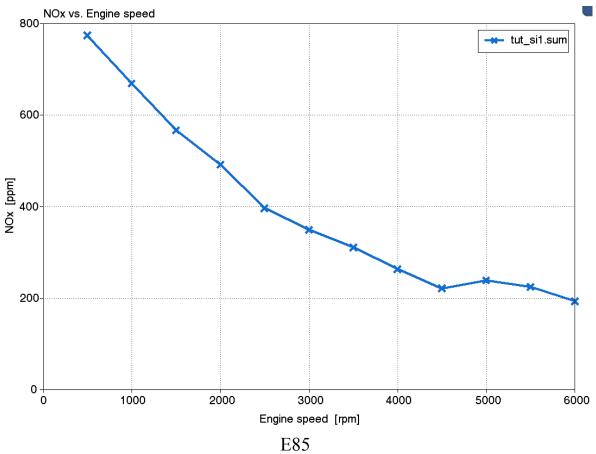


Рисунок 27 – Зависимость концентрации NO в мил⁻¹ (ppm) от частоты вращения при работе на бензине, этаноле и E85.

На рисунке 28 представлена эффективная мощность в кВт при работе на бензине, этаноле и E85.

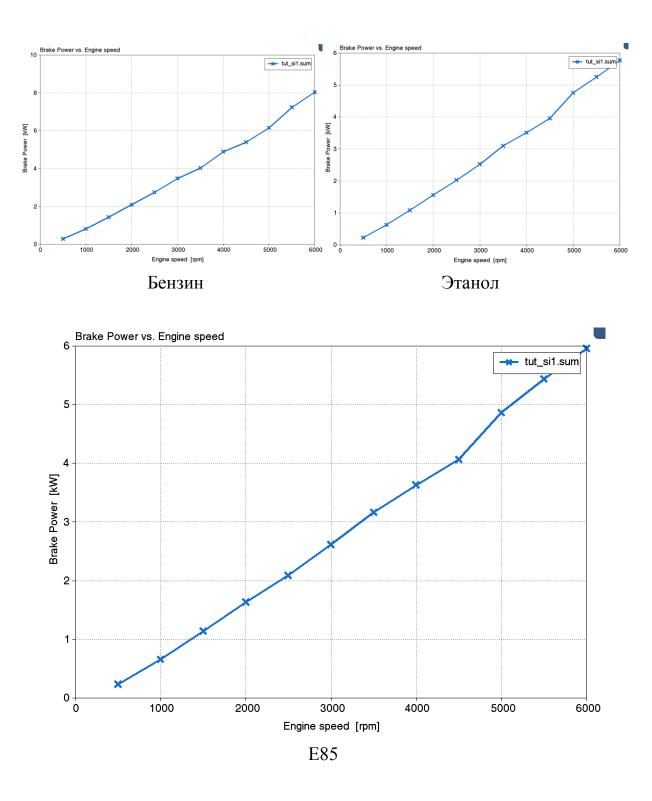


Рисунок 28 — Средняя эффективная мощность в кВт при работе на бензине, этаноле и E85.

На рисунке 29 представлен средний эффективный крутящий момент двигателя в (H м) при работе на бензине, этаноле и E85.

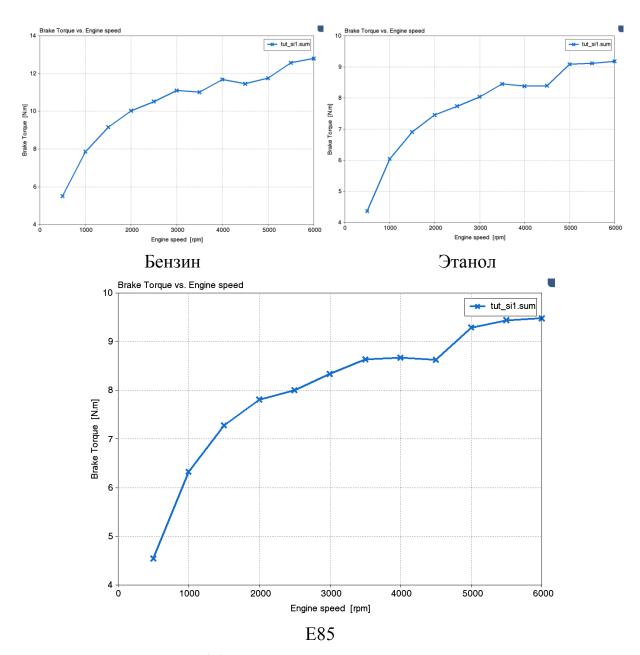


Рисунок 29 — Средний эффективный крутящий момент двигателя в (H м) при работе на бензине, этаноле и E85.

Выводы по 4-му разделу

В ходе стационарного моделирования концепция была оптимизирована для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя. Представленные результаты наглядно показывают, что альтернативных топлив этанол и E85 снижают мощностные показатели на 10-15%. При этом токсичность отработавших газов улучшается.

ЗАКЛЮЧЕНИЕ

В бакалаврской работе проведен анализ рабочего процесса в одноцилиндровом двигателе при работе на бензине, этаноле и Е85. Получены основные выводы по работе:

- 1. Этанол это вариант топлива будущего, так как он достаточно дешево получается через конверсию метана, с выходной ценой почти в 2 раза ниже, чем бензин, при этом нет необходимости в создании второй топливной системы и размещать газ на борту автомобиля.
- 2. Этанол имеет некоторые проблемы при холодном пуске при пониженных температурах, что приводит к необходимости при эксплуатации при отрицательных температурах добавлять в топливо бензин, так появилось топливо E85 состоящее из 85% этанола и 15 % бензина, это наиболее успешный коммерческий проект развития альтернативного топлива.
- 3. Представленные результаты наглядно показывают, что применение топливо E85 для двигателя с искровым зажиганием позволяет снизить токсичность двигателя примерно на 40% по продуктам неполного сгорания, но при этом снижаются эффективные показатели работы двигателя.

Выводы по первому разделу

По вопросам применения альтернативных видов топлива, следует отметить, что наиболее перспективными считаются спирты для двигателей с искровым зажиганием. Для газов имеется существенные ограничения по применению вследствие значительного увеличения массы хранения топлива и стоимости системы топливоподачи. Но можно отметить, как перспективные это компримированный природный газ и водород.

При использовании альтернативных топлив необходимо учитывать необходимость адаптации рабочего процесса на изменение свойств горения нового топлива.

Выводы по 2-му разделу

Проведенные расчеты показали некоторое улучшение эффективных показателей работы двигателя при переходе с бензина на альтернативное топливо – этанол и E85 (85% этанол и 15% бензин).

Выводы по 3-му разделу

Переход на альтернативное топливо (этанол или Е85) позволяет снизить нагрузки на кривошипно-шатунный механизм.

Выводы по 4-му разделу

В ходе стационарного моделирования концепция была оптимизирована для достижения наилучших характеристик и эффективности с учетом реальных ограничений, таких как температура и давление в камере сгорания, и т. д. В результате была получена полная скоростная характеристика двигателя. Представленные результаты наглядно показывают, что альтернативных топлив этанол и Е85 снижают мощностные показатели на 10-15%. При этом токсичность отработавших газов улучшается.

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- Adnan N Ahmed, Zuhair H Obeid and Alauldinn H Jasim Experimental investigation for optimum compression ratio of single cylinder spark ignition engine / IOP Conf. Series: Materials Science and Engineering 454 (2018) 012003
- 2. Antriebskonzepte fur heute und morgen. Motorentechnische Zeitschrift MTZ, 09:630–631, 2013.
- 3. Helmut Eichlseder and Andreas Wimmer. Potential of IC-engines as minimum emission propulsion system. Atmospheric Environment, 37:5227–5236, 2003.
- 4. Lutz Eckstein, Rene Gobbels, and Roland Wohlecker. Benchmarking of the Electric Vehicle Mitsubishi i-MiEV. ATZ worldwide, 12:48–53, 2011.
- 5. R.A.B. Semin. A Technical Review of Compressed Natural Gas as an Alternative Fuel for Internal Combustion Engines. Am. J. Engg. & Applied Sci, 1:302–311, 2008.
- Wolfgang Warnecke, John Karanikas, Bruce Levell, Carl Mesters, J"org Adolf, Jens Schreckenberg Max Kofod, and Karsten Wildbrand. Natural Gas
 A bridging tehcnology for future mobility? In 34. Internationales Wiener Motorensymposium, 25 26, April, 2013.
- 7. David Serrano and Bertrand Lecointe. Exploring the Potential of Dual Fuel Diesel-CNG Combustion for Passenger Car Engine. In Proceedings of the FISITA 2012 World Automotive Congress, Beijing, China, 27-30 November 2012.
- 8. Tobias Ott, Florian Zurbriggen, Christopher Onder, and Lino Guzzella. Cycle-averaged efficiency of hybrid electric vehicles. Institution of Mechanical Engineering Part D, Journal of Automobile Engineering, 227:78–86, 2012.
- 9. Tobias Ott, Christopher Onder, and Lino Guzzella. Hybrid-Electric Vehicle with Natural Gas-Diesel Engine. Energies, 6:3571–3592, 2013.

- Norman Brinkman, Michael Wang, Trudy Weber, and Thomas Dar- lington.
 Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions, 2005.
- 11. T. Ishiyama, J. Kang, Y. Ozawa, and T. Sako. Improvement of Performance and Reduction of Exhaust Emissions by Pilot-Fuel-Injection Control in a Lean-Burning Natural-Gas Dual-Fuel Engine. SAE International Journal of Fuels and Lubricants, 5:243–253, 2012.
- 12. Thorsten Schmidt, Christian Weiskirch, Stefan Lieske, and Holger Manz. Modern industrial engines emission calibration and engine man- agement. ATZ off highway, 9:24–35, 2010.
- 13. Bernhard Schneeweiss and Philipp Teiner. Hardware-in-the-Loop-Simulation am Motorenprufstand fur realitatsnahe Emissions- und Verbrauchsanalysen. Automobiltechnische Zeitschrift ATZ, 5:76–79, 2010.
- 14. Gerhard Henning, Tobias Go¨decke, and Angsar Damm. Neue Getriebe fu¨r die neuen Kompakten. ATZ, 9:70–73, 2012.
- 15. Chasse and A. Sciaretta. Supervisory control of hybrid powertrains: An experimental benchmark of offline optimization and online energy management. Control Engineering Practice, 19:1253–1265, 2011.
- 16. Heffel, J. W. (2003). "NOx emission and performance data for a hydrogen fueled internal combustion engine at 1500 rpm using exhaust gas recirculation." International Journal of Hydrogen Energy, 28(8), pp. 901-908.
- 17. Lipman, T., and Hwang, R. (2003). "Hybrid electric and fuel cell vehicle technological innovation: hybrid and zero-emission vehicle technology links." Proceedings of the 2003 20th International Electric Vehicle Symposium and Exposition, Long Beach, CA.
- 18. Burke, A. (2005). "Hybrid vehicles: design approaches, component options, and potential fuel economy improvements." Institute of Transporation Studies, University of California at Davis.

- 19. Atwood, P., Gurski, S., Nelson, D. (2001). "Degree of hybridization modeling of a fuel cell hybrid electric sport utility vehicle." SAE Paper 2001-01-0236.
- 20. Miller, J. (2006). "Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type." IEEE Transactions on Power Electronics, 21(3), pp. 756-767.
- 21. Service, R. F. (2004). "The hydrogen backlash." Science, 305(5686), Aug 13, pp. 958-961.
- 22. Romm, J. J. (2004). The Hype About Hydrogen: Fact and Fiction in the Race to Save the Climate, Island Press, Washington, D.C.
- 23. Zhang, Y., Lin, H., Zhang, B., and Mi, C. (2006). "Performance Modeling and Optimization of a Novel Multi-mode Hybrid Powertrain." Journal of Mechanical Design, 128, pp. 79-89.
- 24. Adamchak F., Adede A., 2013. LNG as a marine fuel, 17th International conference and exhibition on Liquefied Natural Gas (LNG 17), Houston
- 25. Adom F., Dunn J.B., Elgowainy A., Han J., Wang M., Chang R., Perez H., Sellers J., Billings R., 2013. Life Cycle Analysis of Conventional and Alternative Marine Fuels in GREET.
- 26. Agostini A., Giuntoli J., Boulamanti A., 2013. Carbon accounting of forest bioenergy Conclusions and recommendations from a critical literature review. JRC Technical reports, EUR 25354 EN, ISBN 978-92-79-25100-9.
- 27. Anselmo A., Sullivan J., 2015. DME: The Best Fuel, Period. Dimethyl Ether: The Future of Electricity, Heat and Transportation. ChemBioPower Ltd. Available at: www.chembiopower.com/s/CBP-WhitePaper-v5.pdf
- 28. Bell Performance, 2013. Fuel Storage and Diesel Generator Problems: Fuel Microbes, Available at: http://www.bellperformance.com/bell-performs-blog/diesel-generator-problems-fuel-microbes
- 29. Bengtsson S., Andersson K., Fridell E., 2011. A comparative life cycle assessment of marine fuels; liquefied natural gas and three other fossil fuels.

- Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 225, pp. 97–110
- 30. Corvus, 2015. Corvus Energy Announces Investment from Statoil Technology Invest.
- 31. Cowie A., Berndes G., Smith T., 2013. On the timing of greenhouse gas mitigation benefits of forest-based bioenergy, IEA Bioenergy; ExCo 2013:04
- 32. Deniz C., Kilic A., Civkaroglu G., 2010. Estimation of shipping emissions in Candarli Gulf, Turkey. Environmental Monitoring and Assessment. Vol.171, pp.219–228.
- 33. DNV GL, 2014. Alternative fuels for shipping. DNV GL Strategic Research & Innovation Position Paper 1-2014.
- 34. Florentinus A., Hamelinck C., van den Bos A., Winkel R., Cuijpers M., 2012. Potential of biofuels for shipping Final Report. Prepared by Ecofys for European Maritime Safety Agency (EMSA).
- 35. Landalv I., Gebart R., Marke B., Granberg F., Furusjo E., Lownertz P., Öhrman O.G.W., Sørensen E. L., Salomonsson P., 2014. Two years experience of the BioDME project a complete wood to wheel concept. Environmental Progress and Sustainable Energy. Vol.33, pp. 744–750.
- 36. Lin C.Y., 2013. Effects of biodiesel blend on marine fuel characteristics for marine vessels. Energies. Vol.6, pp.4945–4955
- O'Dowd C., 2012. Aerosol in Global Atmosphere. In Encyclopedia of Sustainability Science and Technology, Robert A. Meyers (Ed). pp 111-148.
 Springer New York
- 38. Petzold A., Lauer P., Fritsche U., Hasselbach J., Lichtenstern M., Schlager H., Fleischer F., 2011. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects. Environmental Science and Technology. Vol. 45, pp.10394–10400.
- 39. Sherrard A., 2015. Poly-gen flash pyrolysis praised for rapid roll-out. Bioenergy International 78(2). Pp 18-19

- 40. Thomson H., Corbett J. J., Winebrake J.J., 2015. Natural gas as a marine fuel. Energy Policy 87 pp 153–167
- 41. K. Ahn, A.G. Stefanopoulou and M. Jankovic, "Estimation of Ethanol Content in Flex-Fuel Vehicles Using an Exhaust Gas Oxygen Sensor: Model, Tuning and Sensitivity," In proceedings of ASME 2008 Dynamic Systems and Control Conference, October, 2008, Ann Arbor, MI, USA.
- 42. Jiang, S., and Nutter, D., "Implementation of Model-Based Calibration for a Gasoline Engine", SAE 2012-01-0722, 2012
- 43. Guerrier, M. and Cawsey, P., "The Development of Model Based Methodologies for Gasoline IC Engine Calibration," SAE Technical Paper 2004-01-1466, 2004
- 44. Vibe, I.I., "Semi-empirical expression for combustion rate in engines", Proceedings of Conference on piston engines, USSR Academy of sciences, Moscow, pp. 186-191, 1956.
- 45. Wiebe I.I., "Brennverlauf und Kreisprozeb von Ver-brennungsmotoren". In VEB- Verlag Technik, Berlin, 1970.
- 46. Lindström, F., Ångström, H., Kalghatgi, G., and Möller, C., "An Empirical SI Combustion Model Using Laminar Burning Velocity Correlations," SAE Technical Paper, 2005-01-2106, 2005
- 47. Longwic, R., "Modelling the Combustion Process in the Diesel Engine with the Use of Neural Networks," SAE Technical Paper 2008-01-2446, 2008, doi:10.4271/2008-01-2446.
- 48. Maass, B., Deng, J., and Stobart, R., "In-Cylinder Pressure Modelling with Artificial Neural Networks," SAE Technical Paper 2011-01-1417, 2011, doi:10.4271/2011-01-1417.
- 49. Cavina N. and Suglia R., "Spark Advance Control based on a Grey Box Model of the Combustion Process", SAE 2005-01-3760, 2005
- 50. Heywood J. B., "Internal Combustion Engines Fundamentals", McGraw and Hill, 1988

- 51. Boiarciuc A. and Floch A., "Evaluation of a 0D Phenomenological SI Combustion Model", SAE 2011-01-1894, 2011
- 52. Prucka R., "An Experimental Characterization of a High Degree of Freedom Spark- Ignition Engine to Achieve Optimized Ignition Timing Control", Dissertation for the degree of Doctor of Philosophy, 2008
- 53. Schmid, A., Grill, M., Berner, H., Bargende, M. et al., "Development of a Quasi- Dimensional Combustion Model for Stratified SI-Engines," SAE Int. J. Engines 2(2):48-57, 2010
- 54. Rakopoulos, C., Michos, C., and Giakoumis, E., "Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi- Dimensional, Multi-Zone Combustion Model,"SAE Int. J. Engines 2(1):880-910, 2009
- 55. Tan, Z. and Reitz, R., "Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method," SAE Technical Paper 2003-01-0722, 2003.
- 56. Конструирование двигателей внутреннего сгорания: учебник для студентов вузов, обучающихся по специальности "Двигатели внутреннего сгорания" направления подготовки "Энергомашиностроение" / Н. Д. Чайнов, Н. А. Иващенко, А. Н. Краснокутский, Л. Л. Мягков; под ред. Н. Д. Чайнова. 3-е изд. Москва: Машиностроение, 2023. 495 с.
- 57. Автомобиль. Устройство. Автомобильные двигатели : учебное пособие / А. В. Костенко, А. В. Петров, Е. А. Степанова [и др.]. Изд. 3-е, стер. Санкт-Петербург : Лань, 2023. 436 с.
- 58. Петров, А. И. Техническая термодинамика и теплопередача : учебник / А. И. Петров. Изд. 2-е, стер. Санкт-Петербург : Лань, 2023. 428 с.
- 59. Баширов, Р. М. Автотракторные двигатели : конструкция, основы теории и расчета : учебник / Р. М. Баширов. Изд. 4-е, стер. Санкт-Петербург : Лань, 2022. 336 с.

- 60. Вальехо М. П. Расчет кинематики и динамики рядных поршневых двигателей: учебное пособие / М. П. Вальехо, Н. Д. Чайнов. Москва: ИНФРА-М, 2022. 259 с.
- 61. Суркин, В. И. Основы теории и расчёта автотракторных двигателей : курс лекций : учеб. пособие / В. И. Суркин. Изд. 2-е, перераб. и доп. Санкт-Петербург : Лань, 2022. 304 с.
- 62. Крюков, К. С. Теория и конструкция силовых установок : учеб. пособие / К. С. Крюков. Москва : ИНФРА-М, 2021. 211 с.
- 63. Курасов, В. С. Теория двигателей внутреннего сгорания : учеб. пособие / В. С. Курасов, В. В. Драгуленко. Москва : ИНФРА-М, 2021. 86 с.
- 64. Гоц А. Н. Динамика двигателей : курсовое проектирование : учеб. пособие / А. Н. Гоц. 3-е изд., испр. и доп. Москва : ИНФРА-М, 2020. 175 с.
- 65. Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / И.И. Вибе// М. Машиностроение, 1971. с.282