федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт энергетики и электротехники
(институт, факультет)
Энергетические машины и системы управления
(кафедра)
13.03.03 (141100.62) «Энергетическое машиностроение»
(код и наименование направления подготовки, специальности)

БАКАЛАВРСКАЯ РАБОТА

на тему Автомобильный V-образный двигатель с рабочим объемом 3,2 л.

Студент(ка)	Хисматуллин Руслан Ильдарович	
	И.О. Фамилия	(личная подпись)
Руководитель	В.В. Смоленский	
•	(И.О. Фамилия)	(личная подпись)
Консультант	М.И. Фесина	
	(И.О. Фамилия)	(личная подпись)
Нормоконтроль	А.Г. Егоров	
	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
Зав. кафедрой «ЭМСУ»	к.т.н., Д.А. Павлов	
	(ученая степень, звание, И.О. Фамилия)	(личная подпись)
	«»	2016 г.

Тольятти 2016

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт энергетики и электротехник	хи
(институт, факультет)	
<u> Энергетические машины и системы управ</u>	ления
(кафедра)	
УТВЕРЖДАЮ:	
Зав. кафедрой «ЭМСУ»	Д.А. Павлов (И.О. Фамилия)
« »	
ЗАДАНИЕ	
на выполнение бакалаврской ра	боты
na zzmomenie oanamzpenon pa	
Студент Хисматуллин Руслан Ильдарович	
1. Тема работы Автомобильный V-образный двигатель с	рабочим объемом
3,2 л.	pace min cobemen
2,- 12.	
2. Срок сдачи студентом законченной работы 16-22 июн	ня 2016 гола.
согласно утвержденному графику защиты ВКР на 2015-2	
3. Исходные данные к работе D_u =90 мм; L_{uu} =147,5 мм; R_{uu}	
$V_h = 3,2$ л; $n_N = 5600$ мин ⁻¹ ; $i = 6$ – число цилиндров; $\tau = 4$ –	
степень сжатия. Расчет производится на следующих скорос	
n_{min} =900 мин $^{-1}$, $n = 2000$ мин $^{-1}$, n_{M} =3200 мин $^{-1}$, n_{N} =5600 мин $^{-1}$	-1. n _{max} =6000 мин ⁻¹ .
4. Содержание выпускной квалификационной работы (пе	
разработке вопросов, разделов)	ретенвиоднемации
Введение;	
Обзор применяемых технологий непосредственного впрыс	ка топлива в
цилиндр;	
Тепловой расчет двигателя;	
Расчет кинематики двигателя;	
Расчет динамики двигателя;	
Специальная часть	
Безопасность и экологичность проекта	
Расчет основных деталей двигателя;	
Расчет механизмов и систем двигателя;	
7.1 7	

Леродольный и поперечный разрез дви	1
ВСХ - 1 лист формата А1	пателя - 2 листа формата 131
Диаграммы теплового расчета - 1 лист	г формата А1
	ического расчетов - 2 листа формата А1
Конструкторский чертеж детали - 1 ли	
Сборочный чертеж форсунки - 1 лист	
(If	1 F AF
6. Консультант по нормоконтролю	– д.т.н., профессор Егоров А.І.
По постоять ПСосоятом стоять и отоять и	
По разделу "Безопасность и экологичи	ность работы
к.т.н., профессор Фесина М.И.	
7. Дата выдачи задания « »	2016 г.
г. дата выда ні задання — "/	2010 1.
Руководитель бакалаврской работы	В.В. Смоленский
	(подпись) (И.О. Фамилия)
Задание принял к исполнению	Р.И. Хисматуллин
	(подпись) (И.О. Фамилия)

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет» Институт энергетики и электротехники Энергетические машины и системы управления

У	TB	EPX	КД	ΑЮ):
---	----	-----	----	----	----

Зав. кафедрой «ЭМСУ»	_Д.А. Павлов		
	(подпись)	(И.О. Фамилия)	
« »		2016 г.	

КАЛЕНДАРНЫЙ ПЛАН выполнения бакалаврской работы

Студента Хисматуллин Руслан Ильдарович по теме Автомобильный V-образный двигатель с рабочим объемом 3,2 л.

№ эта- пов рабо- ты	Содержание этапов работы	Форма пред- ставления материала	Плановый срок выполнения этапа и представления его на контроль	Плани- руемый объём выпол- нения, %	Факти- ческий объём выпол- нения, %	Отмет- ка о выпол- нении
1	Тепловой расчет двигателя Чертеж диаграмм теплового расчета; ВСХ	Таблицы, описания Демонстрационный лист	30 апреля 2016 г.	90%		
2	Расчет кинематики и динамики двигателя Чертеж диаграмм кинематического и динамического расчетов	Таблицы, описания Демонстрационный лист	5 мая 2016 г.	90%		
3	Расчет основных деталей двигателя	Таблицы, описания Демонстрационный лист	11 мая 2016 г.	90%		
4	Расчет механизмов и систем двигателя	Таблицы, описания Демонстрационный лист	15 мая 2016 г.	90%		
5	Описание конструкции спроектированной установки	Раздел записки Графический лист	20 мая 2016 г.	80%		
6	Безопасность и экологичность работы	Раздел записки	10 июня 2016 г.	90%		
7	Оформление и доработка пояснительной записки и листов графической части с учетом замечаний, полученных во время предварительной защиты	Сброшюрованная записка и подписан- ные чертежи	10 июня 2016 г.	100%		

Студент		Р.И. Хисматуллин		
	(подпись)	(И.О. Фамилия)		
Руководитель		В.В. Смоленский		
_	(подпись)	(И.О. Фамилия)		
« »		2016 г.		
АН <u>НОТА</u> ПИЯ	Ţ	_		

Бакалаврская работа состоит из семи частей. В первой части работы представлено описание перспективных путей повышения мощности двигателей с искровым зажиганием, во второй части проведен тепловой расчет и тепловой баланс двигателя, в третьей кинематический расчет двигателя, в четвертой динамический расчет двигателя, в пятой прочностной расчет основных деталей двигателя, в шестой расчет систем двигателя, в седьмой дано описание конструкции двигателя спроектированного двигателя, проведен анализ его электронной системой распределенного впрыска топлива, в восьмой выполнена оценка безопасности и экологичности бакалаврской работы.

Пояснительная записка к бакалаврской работе состоит из 103 стр.

Графическая часть работы содержит 6 листов формата A1 и 2 листа в формате A0. Продольный и поперечный разрез двигателя.

СОДЕРЖАНИЕ

Введение	8
1.Обзор способов повышения мощности двигателя с искровым	
зажиганием	9
2 Тепловой расчет двигателя	14
2.1 Топливо	14
2.2 Параметры рабочего тела	14
2.3 Параметры окружающей среды и остаточные газы	15
2.4 Расчет процесса впуска	16
2.5 Расчет процесса сжатия рабочего тела и начала воспламенения	
смеси	17
2.6 Термодинамический расчёт процесса сгорания	19
2.7 Расчет процессов расширения и выпуска	22
2.8 Индикаторные показатели рабочего цикла	24
2.9 Эффективные показатели и параметры двигателя	25
2.10 Тепловой баланс двигателя	27
3 Расчет кинематики двигателя	29
4 Динамический расчет двигателя	30
4.1 Приведение масс частей кривошипно-шатунного механизма	30
4.2 Удельные и полные силы инерции	30
4.3 Удельные суммарные силы.	31
4.4 Крутящие моменты	32
4.5 Силы, действующие на шатунную шейку коленчатого вала	33
4.6 Силы, действующие на колено вала	33
5 Расчет основных деталей двигателя	35
5.1 Расчет поршневой группы	35
5.1.1 Расчет поршня	35
5.1.2 Расчет поршневого кольца	37
5.1.3 Расчет поршневого пальца.	38
5.2 Расчет шатуна	40

5.2.1 Расчет стержня шатуна.	40
6 Специальная часть бакалаврской работы	42
6.1 Описание спроектированного двигателя рабочим объемом 3.2 л	42
6.2 Экономичность, токсичность и дымность отработавших газов	
ДВС	42
6.3 Температурное состояние деталей связанных с компактной	
камерой сгорания	44
7 Безопасность и экологичность объекта бакалаврской работы	45
7.1 Экологические показатели ДВС	45
7.2 Экономичность, токсичность и дымность отработавших газов	46
ДВС	
7.3 Шумность при работе ДВС с новой системой впуска и камерой	47
сгорания	
7.4 Эффективность применении новой камеры сгорания и впускных	49
каналов	
7.5 Выводы по разделу безопасность и зкологичность бакалаврской	51
работы	
Заключение	52
Список использованных источников	53
Приложение А - Результаты теплового расчета	56
Приложение Б - Результаты кинематического расчета	67
Приложение В - Результаты динамического расчета	69
Приложение Г - Результаты расчетов сил действующих в КШМ	75
Приложение Д – Расчет механизмов и систем двигателя	90
Приложение Е – Спецификация сборочного чертежа	102

ВВЕДЕНИЕ

Прогресс в автомобильной отрасли материального производства, дальнейшее увеличение грузооборота автомобильного транспорта предусматриваем не только количественный рост автомобильного парка, но и значительное улучшение использование имеющихся автомобилей.

В области развития и совершенствования автомобильных двигателей основными задачами является: расширение использования экономичных двигателей, для грузовых автомобилей, снижение стоимости их изготовления и эксплуатации. На принципиально новый уровень ставится задача по уменьшению токсичных выбросов двигателей в атмосферу, а также ставятся задачи по снижению уровня шума работы двигателей. Выполнение этих задач требует от специалистов, связанных с производством и эксплуатацией автомобильных двигателе, глубоких знаний теории, конструкции и расчета автотракторных двигателей внутреннего сгорания.

Повышение мощностных показателей двигателей внутреннего сгорания остается наиболее актуальной проблемой современного двигателестроения. Наиболее простым и доступным способом повысить мощность двигателя без существенного увеличения его стоимости является разработка двигателя с увеличенным рабочим объемом.

Поэтому целью моей бакалаврской работы является разработка автомобильного бензинового V- образного двигателя, предназначенного для легкового автомобиля рабочим объемом 3.2 л. Имеющим более высокие показатели по мощности и крутящему моменту двигателя по сравнению с двигателем ВАЗ.

1 Обзор способов повышения мощности двигателя с искровым зажиганием

Повышение мощности может быть достигнуто за счет воздействия на рабочий процесс. А именно за счет повышения интенсификации процесса сгорания достигаемое различными способами проведение сгорания за более короткий промежуток времени, тем самым, повышая эффективность использования выделившейся в процессе сгорания теплоты. На рисунке 1.1 приведена зависимость влияния продолжительности сгорания на получаемую мощность при всех прочих одинаковых условиях. Так показано что увеличение продолжительности сгорания с 30 до 60 град. пкв уменьшает теоретически возможную мощность с 1.3% до 4.4% соответственно, что численно показывает эффективность сокращения продолжительности процесса сгорания ТВС.

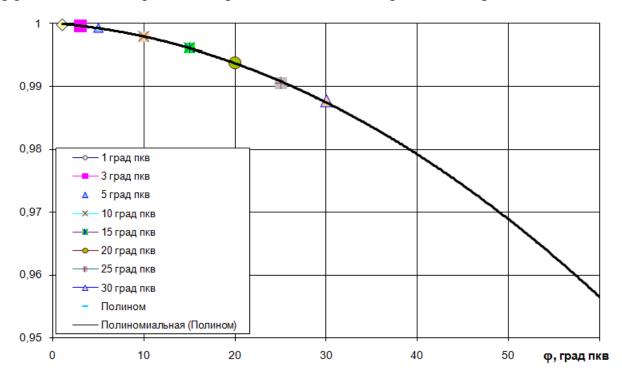


Рисунок 1.1 – Изменение эффективности сгорания ТВС в зависимости от продолжительности сгорания.

Одним из путей повышения интенсификации процесса сгорания является добавка промоутера в топливно-воздушную смесь (ТВС) улучшающего протекание процесса сгорания. Как показал анализ литературы, наиболее

эффективно себя показала добавка газообразного водорода в ТВС. При этом добавка водорода значительной степени интенсифицирует процесс сгорания ТВС, тем самым он осуществляется за меньший промежуток времени вблизи ВМТ, а также повышается полнота сгорания топлива, что дает увеличение индикаторного КПД двигателя.

Помимо добавления дополнительных активных центров (промоутеров) в процесс сгорания, повысить интенсивность процесса сгорания, а, следовательно, и мощность двигателя можно при осуществлении расслоении заряда ТВС. А именно в основной части камеры сгорания создается зона обогащенной ТВС, скорость распространения пламени в которой выше, а в пристеночной зоне создается зона с бедной смесью со свободным кислородом, там осуществляется догорание ТВС, тем самым достигается повышение мощности при снижении токсичности отработавших газов.

Также перспективным направлением, в проектировании современных двигателей с высокой мощностью, является создание некоторых конструктивных факторов влияющих на процесс сгорания. Было показано, что на процесс сгорания оказывает влияние два фактора, во-первых, это конструкция системы впуска, которая задаёт начальные параметры потока и, во-вторых, это форма камеры сгорания, отвечающая непосредственно за протекание процесса сгорания.

Рассмотрим влияние формы камеры сгорания на процесс сгорания. Компактная шатровая камера сгорания позволяет достигнуть быстрого сгорания топлива благодаря увеличенной интенсивности турбулентности потока в камере сгорания и уменьшенным расстоянием, которое проходит пламя в процессе сгорания, тем самым, повысив эффективность выделяемого топливом при сгорании тепла.

Рассмотрим влияние конструкции системы впуска, на процесс сгорания. В процессе впуска в камере сгорания формируется вихревое движение, которое и определяет состояние ТВС в момент воспламенения, а именно, турбулентность и конвективную скорость потока в ВМТ. Рассматривая систему

впуска можно отметить, что за счет создания хорошо организованного сократить вихревого движения удаляется заметно продолжительность начальной и основной фазы горения, это достигается благодаря более высокой турбулентности конвективной скорости потока, что определят продолжительность воспламенении ТВС и скорость распространения пламени в основной фазе сгорания. Так на рисунке 1.2 приведена схема распространения турбулентного фронта пламени.

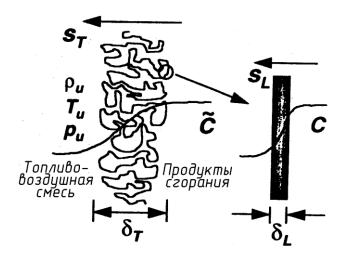


Рисунок 1.2 – Фронт турбулентного пламени

Таким образом, результируя сказанное: Во-первых, рассматривая влияние формы камеры сгорания на длительность сгорания, следует отметить, что длительность сгорания во многом зависит от расстояния от свечи зажигания до самой удаленной точки камеры сгорания. В связи с этим камеру сгорания следует конструировать так, чтобы свеча зажигания располагалась примерно по центру камеры сгорания, а камера сгорания имела форму близкую к сферической. Таким образом, применение компактной камеры сгорания позволяет сократить время сгорания не только основной фазы горения, но и значительно сократить время фазы догорания.[20], [24].

Во-вторых, рассматривая влияние параметров потока и формы камеры сгорания на детонационную стойкость, следует отметить, что увеличение интенсивности турбулентности и скорости потока несколько повышают детонационную стойкость, так как высокая турбулентность и высокие скорости потока разбавляют нагретые участки потока топливовоздушной смеси,

несколько препятствуя процессу самовоспламенения. В тоже время придание камере сгорания более компактной формы заметно повышает детонационную стойкость, это связано с тем, что в камере сгорания отсутствуют очень удаленные от свечи зажигания области камеры сгорания, а, следовательно, исключается возможность догорания топлива в процессе расширения и, следовательно, сильно перегретых участков поверхности камеры сгорания, в которых и начинается детонация.[24].

Подводя итоги по полученным данным, следует отметить, что увеличение интенсивности турбулентности и скорости потока, в той же мере как и компактность камеры сгорания позволяют лучше использовать выделившееся в процессе сгорания тепло, за счет того что сгорание происходит в меньшем объеме и за более короткий промежуток времени, тем самым увеличивая полноту сгорания топлива.

Увеличение частоты вращения коленчатого вала позволяет повысить мощность двигателя (1.1).

$$N_e = \frac{P_e \cdot V_{\mathcal{I}} \cdot n}{30\tau}$$
, кВт. , (1.1)

где P_e - среднее эффективное давление равное $P_e = P_{iT} - P_M$, МПа , среднему индикаторному давлению минус механические потери; $V_{\it II}$ - рабочий объем двигателя, n - частота вращения коленчатого вала, τ - тактность двигателя.

Таким образом, видно, что без увеличения рабочего объема увеличение мощности можно достигнуть следующими путями: применение наддува — его мы рассмотрели ранее, влиянием на процесс сгорания рассмотренным выше, осуществлением двухтактного цикла, что имеет свои значительные недостатки, а именно ухудшение условий протекания процесса сгорания, худшее наполнение, худшее использование выделившейся теплоты в процессе расширения, меньший ресурс двигателя. И последнее это увеличение частоты

вращения коленчатого вала, что ведет к увеличению механических потерь и повышенному износу двигателя.

Поэтому рассмотрим более внимательно возникающие проблемы на пути повышения частоты вращения коленчатого вала.

Во-первых, повышение частоты вращения коленчатого вала приводит к повышению средней скорости поршня (1.2), а, следовательно, к увеличению износа цилиндропоршневой группы. В связи с чем, при повышении частоты вращения коленчатого вала необходимо уменьшения радиуса кривошипа и длинны шатуна, тем самым, снижая её.

$$V_n = \frac{S \cdot n}{30}, \text{ m/c}$$
(1.2)

где S - ход поршня равный 2 радиусам КВ, n - частота вращения коленчатого вала

Во-вторых, повышение частоты вращения коленчатого вала приводит к увеличению инерционных сил, поэтому необходимо облегчать шатун и поршень, без значительного ущерба их износостойкости. А именно уменьшать длину и соответственно размеры шатуна, а также длину юбки на поршне.

2 Тепловой расчет двигателя

Произведем расчет четырехтактного двигателя с впрыском, предназначенного для легкового автомобиля по методике Вибе. [16]

Исходные данные: $D_{tt}=90$ мм; $L_{ttt}=147.5$ мм; $R_{ttttt}=39$ мм; $V_{h}=3.2$ л; $n_{N}=5600$ мин⁻¹; i=6 – число цилиндров; $\tau=4$ – тактность; $\epsilon=10.5$ – степень сжатия. Расчет производится на следующих скоростных режимах: $n_{min}=900$ мин⁻¹, n=2000 мин⁻¹, $n_{M}=3200$ мин⁻¹, $n_{N}=5600$ мин⁻¹, $n_{max}=6000$ мин⁻¹.

2.1 Топливо

Средний элементарный состав и молекулярная масса топлива: C=0.855; H=0.145 и $m_T=115$ кг/кмоль.

Низшая теплота сгорания топлива:

$$H_u = 33,91C + 125,6H - 10,89(O - S) - 2,51\cdot(9H + W); кДж/кг$$
 (2.1)
 $H_u = 33,91\cdot0,855 + 125,6\cdot0,145 - 2,51\cdot9\cdot0,145 = 43930 кДж/кг.$

2.2 Параметры рабочего тела

Теоретически необходимое количество воздуха для сгорания 1 кг топлива:

$$L_0 = \frac{1}{0,208} \left(\frac{C}{12} + \frac{H}{4} - \frac{O}{32} \right) = \frac{1}{0,208} \left(\frac{0,855}{12} + \frac{0,145}{4} \right) = 0,516$$
 кмоль возд/кг топл; (2.2)

$$l_0 = \frac{1}{0,23} \left(\frac{8}{3}C + 8H - O \right) = \frac{1}{0,23} \left(\frac{8}{3} \cdot 0,855 + 8 \cdot 0,145 \right) = 14,957$$
 кг возд/кг топл. (2.3)

T.к. проектируемый двигатель оборудован каталитическим нейтрализатором отработавших газов, системой впрыска топлива и электронного управления позволяет принять коэффициент избытка воздуха на всех режимах $\alpha=1$.

Далее проводятся расчетные формулы, а результаты расчета для всех режимов приводятся в виде таблиц.

Количество горючей смеси:

$$M_1 = \alpha L_0 + 1/m_T = 0,5247$$
 кмоль гор. см/кг топл. (2.4)

Количество отдельных компонентов продуктов сгорания при K = 0,5:

$$M_{co_2} = \frac{C}{12} - 2 \cdot \frac{1-\alpha}{1+K} \cdot 0,208 \cdot L_0 = 0,0713$$
 кмоль CO_2 /кг топл; (2.5)

$$M_{co} = 2 \cdot \frac{1-\alpha}{1+K} \cdot 0,208 \cdot L_0 = 0$$
 кмоль СО/кг топл; (2.6)

$$M_{_{H_2O}} = \frac{H}{2} - 2K \cdot \frac{1-\alpha}{1+K} \cdot 0,208 \cdot L_{_0} = 0,0725$$
 кмоль H_2O /кг топл; (2.7)

$$M_{_{H_{2}}} = 2K \cdot \frac{1-\alpha}{1+K} \cdot 0,208 \cdot L_{_{0}} = 0$$
 кмоль H_{2} /кг топл; (2.8)

$$M_{N_2} = 0.792 \cdot \alpha \cdot L_0 = 0.4087$$
 кмоль $N_2/\kappa \Gamma$ топл. (2.9)

Общее количество продуктов сгорания:

$$M_2 = {}^{M}{}_{CO_2} + {}^{M}{}_{CO} + {}^{M}{}_{H_2O} + {}^{M}{}_{H_2} + {}^{M}{}_{N_2} = 0,5524$$
 кмоль пр.сг/кг топл. (2.10)

Коэффициент молекулярного изменения свежей смеси

$$\mu_0 = M_2 / M_1 = 1,05243$$
 (2.11)

2.3 Параметры окружающей среды и остаточные газы

Атмосферные условия:

$$p_0 = 0,1$$
 МПа и $T_0 = 293$ К.

Давление остаточных газов:

$$p_r = p_k (1,035 + A_p \cdot 10^{-8} n^2),$$
 (2.12)

где $p_{rN} = 1,18p_0 = 1,18 \cdot 0,1 = 0,118 \text{ M}\Pi a; \quad A_p = (p_{rN} - p_0 \cdot 1,035) \ 10^8 / (n_N^2 p_0).$

Результаты расчета параметров окружающей среды и остаточных газов приведены в таблицу 2.1.

Таблица 2.1 - Параметры окружающей среды и остаточных газов

n, мин ⁻¹	ρ_{κ} , $\kappa\Gamma/M^3$	Т _к , К	рк, Мпа	T _r , K	р, Мпа		
	Спроектированный двигатель						
900	1,189	293	0,1	1105	0,110		
2000	1,189	293	0,1	1210	0,113		
3200	1,189	293	0,1	1300	0,115		
5000	1,189	293	0,1	1330	0,118		
5600	1,189	293	0,1	1370	0,120		
		Двигатель ВА	3-2112				
900	1,189	293	0,1	1080	0,109		
2600	1,189	293	0,1	1161	0,112		
3700	1,189	293	0,1	1245	0,114		
5000	1,189	293	0,1	1265	0,116		
5600	1,189	293	0,1	1305	0,118		

2.4 Расчет процесса впуска

С целью получения хорошего наполнения двигателя температура подогрева свежего заряда на номинальном скоростном режиме принимается $\Delta T_N = 8$ °C. Тогда, $A_T = \Delta T_N / (110 - 0.0125 n_N) = 8/(110 - 0.0125 \cdot 5600) = 0.2;$

$$\Delta T = A_T(110 - 0.0125n) = 0.2 (110 - 0.0125n) = 22 - 0.0025n.$$
 (2.13)

Плотность заряда на впуске:

$$\rho_{\kappa} = p_{\kappa} \cdot 10^6 / (R_B T_{\kappa}) = 0.1 \cdot 10^6 / (287 \cdot 293) = 1.189 \text{ kg/m}^3.$$

Потери давления на впуске.

$$\Delta p_a = \mathbf{G}^2 + \xi_{B\Pi} A_n^2 n^2 \rho_k \cdot 10^{-6} / 2 \text{ M}\Pi a. \tag{2.14}$$

Давление в конце впуска:

$$p_a = p_K - \Delta p_a; M\Pi a. \tag{2.15}$$

Коэффициент остаточных газов:

$$\gamma_r = \frac{T_{\kappa} + \Delta T}{T_r} \cdot \frac{\varphi_{ou} p_r}{\varepsilon \varphi_{oo3} p_a - \varphi_{ou} p_r} = \frac{293 + 8}{1060} \cdot \frac{0,118}{10,5 \cdot 1,1 \cdot 0,085 - 0,118} = 0,0415, \quad (2.16)$$

где ϕ_{oq} – коэффициент очистки; $\phi_{доз}$ – коэффициент дозарядки.

Температура в конце впуска:

$$T_a = (T_K + \Delta T + \gamma_r T_r)/(1 + \gamma_r)$$
; K. (2.17)

Коэффициент наполнения:

$$\eta_{V} = \frac{T_{\kappa}}{T_{\kappa} - \Delta T} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{1}{p_{\kappa}} \Phi_{\partial o s} \cdot \varepsilon \cdot p_{a} - \varphi_{o q} \cdot p_{r}$$

$$(2.18)$$

Удельный объем рабочего тела в конце процесса наполнения

$$V_{a} = 8.314 \cdot 10^{-3} \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{B}} + \frac{1}{\mu_{m}} \right) T_{a} \right] / \left[\left(\alpha \cdot \frac{l_{0}}{\mu_{$$

где µв = 28,9 молярная масса воздуха.

Результаты расчета процесса впуска приведены в таблице 2.3.

2.5 Расчет процесса сжатия рабочего тела и начала воспламенения смеси

Коэффициент молекулярного изменения рабочей смеси

$$\mu = (\mu_0 + \gamma_r) / (1 + \gamma_r) \tag{2.20}$$

Таблица 2.3 - Расчет процесса впуска

n, мин ⁻¹	ΔT, °C	Δра, Мпа	ра, Мпа	фоч	фдоз	γr	Та, К	ην	Va, K
			Спро	ектиро	ванный	двигатель			
900	19,75	0,010275	0,089725	0,99	0,9	0,041708	344,4699	0,728776	1,05061
2000	17	0,016054	0,083946	0,94	0,96	0,036777	341,9252	0,736186	1,11679
3200	12	0,021231	0,078769	0,88	1,05	0,030947	334,8677	0,775829	1,16563
5000	4	0,0271313	0,072869	0,84	0,97	0,034421	331,3737	0,667776	1,24686
5600	2	0,031466	0,068534	0,8	0,92	0,03652	332,8754	0,591791	1,33173
			Į	Т вигате	ель ВАЗ	3-2112			
900	19,75	0,005779	0,094221	1	0,85	0,043126	344,4703	0,721787	1,00049
2600	15,5	0,010275	0,089725	0,94	0,93	0,036289	338,3532	0,770691	1,03394
3700	12,75	0,013588	0,086412	0,98	1	0,033797	336,4559	0,804532	1,06756
5000	9,5	0,016054	0,083946	0,81	0,95	0,029931	330,4714	0,758778	1,07938
5600	8	0,019425	0,080575	0,77	0,94	0,029751	330,0071	0,721778	1,12296

Значение показателя политропы сжатия находится методом последовательных приближений

$$n_1 = 1 + \frac{8.314}{20.16 + 1.738 \cdot 10^{-3} (\varepsilon^{n_1 - 1} + 1) \cdot T_a}$$
(2.21)

Давление, температура и удельный объём в конце сжатия:

$$P_c = P_a \varepsilon^{n_1} \qquad M\Pi a \qquad (2.22)$$

$$T_c = T_a \varepsilon^{n_1 - 1} \qquad K \tag{2.23}$$

Удельный объём, давление и температура рабочего тела в момент воспламенения, при угле опережения зажигания Θ ,

$$V_{y} = \frac{V_{a}}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \left[\left\{ 1 + \frac{1}{\lambda} \right\} - \left\langle \cos \Theta \right\} + \frac{1}{\lambda} \sqrt{1 - \lambda^{2} \left(\sin \Theta \right)} \right\rangle \right] \right]; \tag{2.24}$$

$$P_{y} = P_{a} \left(\frac{V_{a}}{V_{y}}\right)^{n_{1}}; M\Pi a$$
 $T_{y} = T_{a} \left(\frac{V_{a}}{V_{y}}\right)^{n_{1}-1}; K$; (2.25)

Результаты расчета процесса сжатия рабочего тела и начала воспламенения смеси приведены в таблице 2.4.

Таблица 2.4 - Давление, температура и удельный объём в конце сжатия и воспламенения:

n, мин ⁻¹	μ	n_1	P_c , МПа	T_c , K	<i>Ө</i> °ПКВ	V_y , м 3 /кг	P_y , МПа	T_y , K		
Спроектированный двигатель										
900	1,06057	1,3704	2,250885	822,9999	822,9999 15		1,73766	767,4028		
2000	1,050572	1,37167	2,112198	819,3635	22	0,153412	1,2780	715,0775		
3200	1,050858	1,3728	1,987199	804,5864	26	0,179064	1,03085	673,2341		
5000	1,050688	1,37517	1,848629	800,6406	29	0,2086996	0,85129	647,9795		
5600	1,050585	1,37525	1,738991	804,6256	32	0,242999	0,71139	630,4833		
			Дви	гатель ВАЗ-	-2112					
900	1,060488	1,37058	2,364652	823,3493	15	0,115161	1,82387	767,5247		
2600	1,050596	1,372	2,259369	811,433	20	0,134725	1,46960	722,1175		
3700	1,050718	1,3728	2,180028	808,4022	23	0,150917	1,26760	697,7188		
5000	1,050909	1,37378	2,122703	795,8551	26	0,166039	1,09859	665,2796		
5600	1,050917	1,3753	2,044748	797,5824	28	0,182916	0,97744	652,0824		

2.6 Термодинамический расчёт процесса сгорания

Коэффициент выделения теплоты δ , учитывающий неполное сгорание топлива;

$$\delta = \frac{\mathbf{H}_{U} - 119950 (-\alpha) \mathbf{L}_{O}}{\mathbf{H}_{U}}, \tag{2.26}$$

где H_U (кДж/кг) — низшая теплота сгорания; L_o (кмоль возд./кг топлива) — теоретическое количество воздуха необходимое для полного сгорания 1 кг топлива.

Коэффициент эффективности сгорания топлива ξ:

$$\xi = \delta^* \Psi; \tag{2.27}$$

Удельная теплота сгорания рабочей смеси

$$q_z = \frac{\xi * H_u}{(+\gamma_r) * l_0 + 1}; \text{ кДж/кг.}$$
(2.28)

$$E_2 = \left(0.002 \frac{\varepsilon}{V_a}\right) q_z; M\Pi a \tag{2.29}$$

Давление газов в процессе сгорания

$$P_{2} = \frac{E_{2}\Delta X_{1-2} + P_{1} \cdot (K_{1-2}\psi \, \phi_{1}' - \psi \, \phi_{2}')}{K_{1-2}\psi \, \phi_{1}' - \psi \, \phi_{2}'}, \qquad (2.30)$$

где

$$\psi \phi' = 1 + \frac{\varepsilon - 1}{2} \left[\left(1 + \frac{1}{\lambda} \right) - \left(\cos \phi' + \frac{1}{\lambda} \sqrt{1 - \lambda^2 \cdot \sin^2 \phi'} \right) \right]; \tag{2.31}$$

Доля топлива, сгоревшего на рассматриваемом участке:

$$X_{1-2} = \exp\left[-6.908 \left[\frac{\varphi_1}{\varphi_z}\right]^{m+1}\right] - \exp\left[-6.908 \left[\frac{\varphi_2}{\varphi_z}\right]^{m+1}\right], \tag{2.32}$$

Среднее значение доли топлива сгоревшего на участке 1-2;

$$\Delta \chi_{1-2} = \frac{1}{2} \left[\exp \left[-6.908 \left[\frac{\varphi_1}{\varphi_z} \right]^{m+1} \right] - \exp \left[-6.908 \left[\frac{\varphi_2}{\varphi_z} \right]^{m+1} \right] \right]$$
(2.33)

Отношение средних теплоёмкостей рабочего тела на участке 1-2.

$$k_{1-2} = 1.259 + \left[76.7 - \left(13.6 - \frac{14.2}{\alpha}\right)x_{1-2}\right] \frac{1}{T_{1-2}} - \left(0.0665 - \frac{0.0245}{\alpha}\right)x_{1-2}$$
(2.34)

Фактор теплоёмкостей К₁₋₂

$$K_{1-2} = \frac{k_{1-2} + 1}{k_{1-2} - 1}$$
(2.35)

Средняя температура T_{1-2} на участке 1-2. Здесь температура T_2 определяется методом пробных подстановок.

$$T_{1-2} = \frac{T_1 + T_2}{2} \tag{2.36}$$

Определив k_{1-2} производят все вычисления для определения P_2 , а затем вычисляют температуру T_2 газов в процессе сгорания по следующей зависимости:

$$T_{2} = \frac{T_{y} P_{2} \psi \phi_{2}'}{P_{y} \psi \phi_{2}' \mu_{1-2}}, \qquad (2.37)$$

где:

$$\Psi \Phi' = 1 + \frac{\varepsilon - 1}{2} * \sigma \tag{2.38}$$

$$\sigma = \left(1 + \frac{1}{\lambda}\right) - \left[\cos(\varphi') + \frac{1}{\lambda} * \sqrt{1 - \lambda^2 \cdot (\sin(\varphi'))^2}\right]; \tag{2.39}$$

средний на рассматриваемом участке коэффициент молекулярного изменения рабочей смеси,

$$\mu_{1-2} = \frac{\mu_1 + \mu_2}{2} - \mu_1 = 1 + \frac{\mu_{0 \max} - 1 \left[1 - \exp\left[-6.908 \left[\frac{\varphi_1}{\varphi_z} \right]^{m+1} \right] \right]}{1 + \gamma_r}.$$
(2.40)

Если вычисленное значение T_2 значительно отличается от температуры, определенной экстраполяцией, то повторяется расчет $k_{1\text{-}2}$.

Доля выгоревшего топлива χ рассчитывается по уравнению выгорания:

$$\chi = 1 - \exp\left[-6.908 \left(\frac{\varphi}{\varphi_z}\right)^{m+1}\right]. \tag{2.41}$$

Основные коэффициенты термодинамического расчета приведены в таблице 2.5.

Таблица 2.5 - Коэффициенты термодинамического расчета:

n, мин ⁻¹	δ	Ψ	ξ	q_z , Дж/кг E_2 , МПа		$arphi_{z}$, град, пкв	m			
Спроектированный двигатель										
900	1	0,81	0,81	2098,549	41,946456	42	3.1			
2000	1	0,86	0,86	2310,212	43,440894	48	3.2			
3200	1	0,96	0,96	2590,321	46,66714	54	3.3			
5000	1	0,97	0,97	2555,006	43,03215	60	3.4			
5600	1	0,99	0,99	2630,187	41,46473	70	3.5			
			Двига	тель ВАЗ-211	2					
900	1	0,81	0,81	2095,696	43,98798	40	3.1			
2600	1	0,86	0,86	2284,733	46,40438	48	3.2			
3700	1	0,96	0,96	2556,549	50,28953	55	3.3			
5000	1	0,97	0,97	2592,875	50,44589	58	3.4			
5600	1	0,99	0,99	2646,799	49,49647	62	3.5			

Расчёт текущих параметров процесса сгорания проводится с определённым шагом — 1^0 ПКВ, а значения указанных параметров приводятся Приложении В.

2.7 Расчет процессов расширения и выпуска

Степень последующего расширения при V г

$$\delta = V_a / V_z \tag{2.44}$$

Средний показатель политропы расширения находится методом последовательных приближений из уравнения:

$$n_2 = 1 + \frac{8.314}{23.7 + 0.0046 \left(\frac{1}{\delta^{n_1 - 1}} + 1\right) \cdot T_Z}; \qquad (2.45)$$

Параметры в конце процесса расширения как политропного процесса

$$P_b = \frac{P_z}{\delta^{n_2}} = \text{M}\Pi a \tag{2.46}$$

$$T_b = \frac{T_Z}{\delta^{n_2 - 1}} \,\mathrm{K} \tag{2.47}$$

Текущие значения удельного объёма, давления и температуры газов от конца процесса сгорания до 540° поворота коленчатого вала находятся из соотношений

$$V_{PT} = \frac{V_a}{\varepsilon} \left[1 + \frac{\varepsilon - 1}{1} \cdot \left(\left(1 + \frac{1}{\lambda} \right) - \left[\cos \phi_{PT} \right) + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^2 \sin^2 \phi_{PT}} \right] \right], \quad (2.48)$$

где φ_{PT} – текущее значение поворота коленчатого вала

$$P_{PT} = P_b \cdot \left(\frac{V_a}{V_T}\right)^{n_2} \tag{2.49}$$

$$T_{PT} = T_b \left(\frac{V_a}{V_T}\right)^{n_2-1}$$
; (2.50)

Для оценки правильности выбора значения температуры отработавших газов, произведём проверку

$$T_r = \frac{T_b}{\sqrt[3]{P_b/P_r}} \qquad K$$
(2.51)

погрешность расчёта Δ :

$$\Delta = \frac{100 \left(T_r - T_r' \right)}{T_r}$$
 % (2.52)

Результаты расчета процесса расширения и выпуска приведены в таблице 2.6.

Таблица 2.6 - Расчет процесса расширения и выпуска

n, мин ⁻¹	V z , m ³	$T_{Z,K}$	P z , МПа	δ	n_2	P_b , МПа	T_b , K	T_r , K	Δ, %	
Спроектированный двигатель										
900	0,16606	2605,3	4,553	6,3267	1,1888	0,507	1838	1104,2	-0,065	
2000	0,171561	2819,93	4,734	6,5096	1,1824	0,517	2004	1207	-0,194	
3200	0,189587	3012,81	4,578	6,148	1,1752	0,541	2191	1307,5	0,579	
5000	0,22103	2920,74	3,806	5,641	1,1774	0,496	2148	1331	0,081	
5600	0,28784	2860,89	2,863	4,6278	1,1779	0,471	2178	1380,9	0,066	
			Двиі	гатель ВА	A3-2112					
900	0,1494	2639,83	5,121	6,688	1,188	0,5354	1846,58	1086,178	0,572	
2600	0,1684	2756,27	4,714	6,139	1,1835	0,5504	1975,7	1162,08	0,093	
3700	0,1951	2913,76	4,303	5,474	1,1775	0,5815	2155,05	1244,545	-0,036	
5000	0,1972	2929,05	4,279	5,474	1,1767	0,5789	2168,77	1265,439	0,0347	
5600	0,2052	2976,31	4,179	5,474	1,175	0,5669	2209,79	1309,556	0,349	

Температура остаточных газов принята правильно т.к. ошибка не более 5%.

2.8 Индикаторные показатели рабочего цикла

Теоретическая индикаторная работа цикла рассчитывается по методу трапеций;

$$L_{iT} = \sum_{i=1}^{n} \frac{P_{1i} + P_{2i}}{2} |V_{2i} - V_{1i}|;$$
(2.53)

Расчётное среднее индикаторное давление

$$P_{iT} = \frac{\varepsilon \cdot L_{iT}}{\langle \! \! \langle -1 \rangle \! \! \rangle_a}, \quad \text{M}\Pi a$$
(2.54)

Индикаторный коэффициент полезного действия

$$\eta_i = 8.314 \frac{M_1 \cdot P_{iT} \cdot T_0}{P_0 \cdot \eta_V \cdot H_u} \,. \tag{2.55}$$

Удельный индикаторный расход топлива

$$g_i = \frac{3600}{\eta_i \cdot H_u} \cdot 10^3, \ r/\text{kBt} \cdot \text{y}$$
 (2.56)

Результаты расчета индикаторных показателей рабочего цикла приведены в таблице 2.7.

Таблица 2.7 - Индикаторные показатели рабочего цикла

n, мин ⁻¹	L _i , кДж	P _i , Мпа	Ni, ĸBt	η_i	g _i , г/кВт*ч							
	Спроектированный двигатель											
900	0,9854048	1,0366619	11,662446	0,3982229	205,78797							
2000	1,1065808	1,095157	27,378926	0,4335122	189,03617							
3200	1,2406601	1,1764051	58,820254	0,4418794	185,45667							
5000	1,187885	1,0529843	94,768588	0,4595196	178,3373							
5600	1,1750886	0,9750105	97,501045	0,480124	170,68399							
		Двигател	ь ВАЗ-2112									
900	1,0012	1,1060343	12,442886	0,4289854	191,03093							
2600	1,09	1,1651984	37,868947	0,4405874	186,00051							
3700	1,1957	1,2379594	57,255621	0,4484105	182,75552							
5000	1,224	1,2533459	78,334121	0,4813589	170,24613							
5600	1,2406	1,2210353	85,47247	0,4929888	166,22992							

2.9 Эффективные показатели и параметры двигателя

Средняя скорость поршня:

$$v_n = \frac{Sn}{30}, \text{ M/c}$$
 (2.56)

Среднее давление механических потерь

$$P_M = 0.034 + 0.0113 v$$
 , MITa . (2.57)

Среднее эффективное давление

$$P_e = P_{iT} - P_M, \text{M}\Pi a \qquad (2.58)$$

Механический К.П.Д.

$$\eta_{M} = \frac{P_{e}}{P_{iT}}.$$
(2.59)

Эффективный К.П.Д.

$$\eta_e = \eta_i \cdot \eta_M \ . \tag{2.60}$$

Удельный эффективный расход топлива

$$g_e = \frac{g_i}{\eta_M}, \text{ kBT} \cdot \text{ }$$
(2.61)

Эффективная мощность

$$N_e = \frac{P_e \cdot V_{\mathcal{I}} \cdot n}{30\tau}, \text{ kBt.}$$
(2.62)

Часовой расход топлива

$$G_T = N_e \cdot g_e, \quad \text{KT/Y} \quad . \tag{2.63}$$

Крутящий момент

$$M_e = \frac{3 \cdot 10^4 \cdot N_e}{\pi \cdot n}, \text{ H} \cdot \text{M}$$
 (2.64)

Результаты расчета эффективных показателей двигателя приведены в таблице 2.8.

Таблица 2.8 - Эффективные показатели двигателя.

n, мин ⁻¹	$V_{\text{п.ср}},$ M/C	рм, Мпа	ре, Мпа	$\eta_{\scriptscriptstyle M}$	η_{e}	g _e , г/(кВт.ч)	Ne, кВт	Ме, Н.м	Gт, кг/ч		
	Спроектированный двигатель										
900	2,9	0,061176	0,975486	0,940988	0,3747	235,4	30,7	150,2	8,81		
2000	6,4	0,08828	1,006877	0,919391	0,3985	229,3	81,3	197,3	12,88		
3200	10,3	0,13756	1,038845	0,883067	0,3902	243,8	121,3	222,1	20,95		
5000	16	0,216408	0,836576	0,794481	0,365	264,3	189,75	192,2	28,06		
5600	18	0,23612	0,73889	0,757828	0,3638	278,8	206,4	138,8	32,7		
				Двигатель	BA3-2112	2					
900	2,13	0,0671	1,0389	0,9393	0,4029	273,3719	11,68	123,99	3,377		
2600	6,153	0,1202	1,0449	0,8968	0,3951	267,3998	33,96	124,72	9,043		
3700	8,756	0,1546	1,0834	0,8751	0,3924	258,8332	50,11	129,3	12,464		
5000	11,83	0,1952	1,0581	0,8442	0,4064	261,652	66,13	126,29	15,336		
5600	13,25	0,2139	1,0071	0,8248	0,4066	271,5434	70,49	120,19	17,208		

2.10 Тепловой баланс двигателя

Общее количество теплоты, введенной в двигатель с топливом:

$$Q_o = \frac{H_u G_T}{3.6} = \frac{43930 G_T}{3.6} = 12203 G_T \tag{2.67}$$

Теплота, эквивалентная эффективной работе за 1 с:

$$Q_e = 1000N_e \ u \ q_e = Q_e * 100/Q_0$$
 (2.68)

Теплота, передаваемая охлаждающей среде:

$$Q_{B} = \frac{ciD^{1+2m}n^{m}(H_{u} - \Delta H_{u})}{\alpha H_{u}}, \qquad (2.69)$$

$$q_B = Q_B * 100/Q_0;$$
 (2.70)

Теплота, унесенная с отработанными газами:

$$Q_{r} = \left(\frac{G_{T}}{3.6}\right) M_{2} \left(nc_{V}^{H}\right)_{2}^{7} + 8.315 \frac{1}{t_{r}} - M_{1} \left(nc_{V}^{H}\right)_{20}^{7} + 8.315 \frac{1}{t_{o}} + 8.315 \frac{1}{t_{o}},$$

$$(2.71)$$

$$q_r = Q_r *100/Q_0$$
 (2.72)

Теплота, потерянная из-за химической неполноты сгорания топлива отсутствует, так как на всех режимах поддерживается стехиометрический состав топливовоздушной смеси.

$$Q_{_{H,C}} = \Delta H_U * G_T / 3,6 \tag{2.73}$$

$$q_{\text{H.C.}} = Q_{\text{H.C.}} *100/Q_0 \tag{2.74}$$

Неучтенные потери теплоты:

$$Q_{ocm} = Q_o - (Q_e + Q_e + Q_r + Q_{H,c}), (2.75)$$

$$q_{ocm} = Q_{ocm} * 100/Q_0 \tag{2.76}$$

Результаты расчетов тепловой баланс двигателя сводим в таблицу 2.9.

Таблица 2.9 - Тепловой баланс разрабатываемого двигателя:

n,	$G_{\scriptscriptstyle \mathrm{T}}$,	Q_0 ,	Q _e ,	q _e , %	Q_B ,	q _B , %	Q _r ,	q _r , %	Q _{H.c.} ,	q _{н.с.} , %	Q _{oct} ,	q _{ост} , %
мин⁻¹	кг/ч	Дж/с	Дж/с	q e, 70	Дж/с	ч в, 70	Дж/с	q r, 70	Дж/с	Ч н.с., 70	Дж/с	Чост, 70
900	2,4	23363	8432	36,1	6352	27,2	6080	26,0	0	0	1181	5,1
2000	5,2	42977	16556	38,5	12405	28,9	12509	29,1	0	0	1508	3,5
3200	10,9	60525	22048	36,4	18022	29,8	18004	29,7	0	0	2450	4,0
5000	16,9	107949	33381	30,9	34522	32,0	35201	32,6	0	0	4845	4,5
5600	16,6	115752	33212	28,7	35804	30,9	36961	31,9	0	0	6514	5,6

3 Расчет кинематики двигателя

Премещение поршня

$$S_{x} = R \left[\left(-\cos \varphi \right) + \frac{\lambda}{4} \left(-\cos 2\varphi \right) \right]_{MM}. \tag{3.1}$$

Скорость поршня

$$\upsilon_{\Pi} = \omega R \left(\sin \varphi + \frac{\lambda}{2} \sin 2\varphi \right) M/c. \tag{3.2}$$

Ускорении поршня

$$j = \omega^2 R \cos \varphi + \lambda \cos 2\varphi ;_{\mathcal{M}}/c^2.$$
 (3.3)

Расчет S_x , υ_{II} , J_n производится аналитически через каждые 10^0 угла поворота коленчатого вала. Расчитанные значения представлениы в таблице 3.1, графики представлен на плакате "Диаграмм кинематического расчета".

4 Расчет динамики двигателя

4.1 Приведение масс частей кривошипно-шатунного механизма

Масса поршневой группы:

$$m_n = m_n F_n = 75.0,00622 = 0.316 \text{ K}\text{G};$$
 (4.4)

Масса шатуна:

$$m_{u} = m_{u} F_{n} = 109,60,00622 = 0,624 \text{ KT};$$
 (4.5)

Масса неуравновешанных частей одного колена вала без противовесов:

$$m_{\kappa} = m_{\kappa} F_n = 150.0,00622 = 0,805 \text{ K}\Gamma.$$
 (4.6)

Масса шатуна, сосредоточенная на оси поршневого пальца:

$$m_{u,n}=0,275$$
 $m_u=0,275$ $0,624=0,165$ Kr. (4.7)

Масса шатуна, сосредоточенная на оси кривошипа:

$$m_{\mu\nu} = 0.725^{\circ} m_{\mu} = 0.725^{\circ} 0.624 = 0.473 \text{ K}\Gamma.$$
 (4.8)

Массы, совершающие возвратно-поступательное движение:

$$m_i = m_n + m_{uv} = 0.316 + 0.165 = 0.481 \text{ K}\Gamma.$$
 (4.9)

Массы, совершающие вращательное движение:

$$m_r = m_k + m_{\mu,\kappa} = 0.805 + 0.473 = 1.278 \text{ K}\Gamma.$$
 (4.10)

4.2 Удельные и полные силы инерции

Сила инерции возвратно-поступательного движения масс

$$p_j = -jm_j/F_n = -j.0,481.10^{-6}/0,00535 = -j.141.10^{-6} \text{ M}\Pi a.$$
 (4.11)

Центробежная силаинерции вращающихся масс

$$K_R = -m_R R\omega^2 = -1,278.0,00374.586^2 = -28,02 \text{ kH}.$$
 (4.12)

Центробежная сила инерции вращающихся масс шатуна

$$K_{Ru} = -m_{u,\kappa} R\omega^2 = -0.473.0.00374.586^2 = -8.7 \text{ kH}.$$
 (4.13)

Центробежная сила инерции вращающихся масс кривошипа

$$K_{R\kappa} = -m_{\kappa} R\omega^2 = -0.805 \cdot 0.00374 \cdot 586^2 = -19.32 \text{ kH}.$$
 (4.14)

4.3 Удельные суммарные силы

Удельная сила, сосредоточенная на оси поршневого пальца:

$$p = \Delta p_z + p_j (M\Pi a). \tag{4.15}$$

Удельная нормальная сила:

$$p_N = p t g \beta \ (M \Pi a).$$
 (4.16)

Удельная сила, действующая вдоль шатуна:

$$p_s = p(1/\cos\beta) \ (M\Pi a). \tag{4.17}$$

Удельная сила, действующая по радиусу кривошипа

$$p_k = p\cos(\varphi + \beta)/\cos\beta \ (M\Pi a).$$
 (4.18)

Удельная и полная тангенциальные силы

$$p_T = p \sin(\varphi + \beta) / \cos\beta \ (M\Pi a) \ u \tag{4.19}$$

$$T = p_T 0,004776 \cdot 10^3 \tag{4.20}$$

Среднее значение тангенциальной силы за цикл:

$$T_{cp} = \frac{2 \cdot 10^6}{\pi \tau} p_i F_{II} = \frac{2 \cdot 10^6}{3,14 \cdot 4} \cdot 1,2486 \cdot 0,00535 = 1063 \ H;$$
(4.21)

$$p_{T_{cp}} = \frac{\sum F_1 - \sum F_2}{OB} Mp = \frac{1991 \cdot 1170}{240} \cdot 0,05 = 0,196 M\Pi a;$$
(4.22)

по данным расчета по площади, заключенной между кривой p_T и осью абсцисс ошибка Δ =(1063 – 1049)100/1063=1,31%

$$T_{cp} = p_{Tcp} F_{II} = 0.196 \cdot 0.00535 \cdot 10^6 = 1049 \ H;$$
 (4.23)

4.4 Крутящие моменты

Крутящий момент одного цилиндра

$$M_{\kappa p.\mu} = TR = T \cdot 0.0374 \cdot 10^3 \ HM$$
 (4.24)

Период изменения крутящего момента четырехтактного двигателя с равными интервалами между вспышками

$$\Theta = 720 / i = 720 / 4 = 180^{\circ}, \tag{4.25}$$

Суммирование крутящих моментов всех четырех цилиндров двигателя осуществляется табличным методом (таблице 4.2).

Средний крутящий момент двигателя:

- по данным теплового расчета

$$M_{\kappa p.cp} = M_i = M_e / \eta_M = 143.8 / 0.9052 = 158.8 \, HM,$$
 (4.26)

- по площади, заключенной под кривой $M_{\kappa p}$

$$M_{\kappa p.cp} = \frac{F_1 - F_2}{OA} M_{M} = \frac{1470 - 615}{60} 10 = 160,5 HM, \tag{4.27}$$

ошибка $\Delta = (158, 8 - 160, 5)100/158, 8 = 1,07\%$.

Максимальный и минимальный крутящие моменты

$$M_{\kappa p \; max} = 570 \; \text{Hm}; \quad M_{\kappa p \; min} = 277 \; \text{Hm}$$

4.5 Силы, действующие на шатунную шейку коленчатого вала

Для проведения расчета результирующей силы, действующей на шатунную шейку рядного двигателя, составляют таблицу 4.3, в которую из таблицу 4.2 переносят значения силы T.

Суммарная сила, действующая на шатунную шейку по радиусу кривошипа:

$$P_{k} = K + K_{RIII} = K + p_{k} F_{II} H. {4.28}$$

По развернутой диаграмме R_{uu} определяют

$$R_{uuu.max} = 17,31 \, kH;$$
 $R_{uuu.min} = 0,577 \, kH$
$$R_{uuu.cp} = FM_p / OB = 28425 \cdot 0,1/240 = 10,66 \, kH;$$

где OB – длина диаграммы, мм; F – площадь под кривой R_{uuu} , мм².

По полярной диаграмме строят диаграмму износа шатунной шейки. По диаграмме износа определяют расположение оси масляного отверстия.

4.6 Силы, действующие на колено вала

Суммарная сила, действующая на колено вала по радиусу кривошипа:

$$Kp\kappa = P\kappa + K_{RK} = P_K - 8,960 \text{ kH}.$$
 (4.28)

Результирующая сила, действующая на колено вала,

$$R_k = \sqrt{(PT_k \cdot 10^3 \cdot F_n)^2 + (K_{P_K})^2},$$
(4.29)

Силы, действующие на коренные шейки

Коленчатый вал рассчитываемого двигателя полноопрный с кривошипами, расположенными под углом $\gamma_{\kappa}=180^{\circ}$. Порядок работы двигателя 1-3-4-2. Следовательно, когда первый кривошип повернут на угол $\phi_1=0^{\circ}$, третий кривошип будет находиться в положении $\phi_3=0(720)-180=540^{\circ}$, четвертый $-\phi_4=0(720)-360=360^{\circ}$ и второй $-\phi_2=0(720)-540=180^{\circ}$.

Сила, действующая на первую коренную шейку:

$$R_{K,III1} = -0.5R_{k1}$$

Изменение силы $R_{\kappa,m1}$ в зависимости от ϕ показывает полярная диаграмма R_{κ} , но повернутая на 180^{0} .

Сила, действующая на вторую коренную шейку:

$$R_{\kappa.u.2} = \sqrt{T_{\kappa 2}^2 + K_{\kappa 2}^2},$$
 (4.30) где $T_{\kappa 2} = -0.5(T_I - T_2)$; $K_{\kappa 2} = -0.5(K_{p\kappa I} - K_{p\kappa 2})$.

Расчет силы $R_{\kappa, m2}$ приведен в таблице 4.5.

Сила, действующая на третью коренную шейку:

$$R_{\kappa.u.3} = \sqrt{T_{\kappa 3}^2 + K_{\kappa 3}^2},$$
 (4.31)
где $T_{\kappa 3} = 0.5(T_2 + T_3); K_{\kappa 3} = 0.5(K_{D\kappa 2} + K_{D\kappa 3}).$

5 Расчет основных деталей двигателя

- 5.1 Расчет поршневой группы
- 5.1.1 Расчет поршня

Напряжение изгиба в днище поршня

$$\sigma_{us} = p_{Z/\!\!/}(r_i/\delta)^2 = 7,659 \cdot (31,75/6,5)^2 = 182,2 \text{ МПа},$$
 (5.1)
где $r_i = D/2 - (s+t+\Delta t) = 82,5/2 - (5-3,9-0,6) = 31,75 \text{ мм}.$

Днище поршня должно быть усилено ребрами жесткости.

Напряжение сжатия в сечении х – х

$$\sigma_{c x c} = P_{Z / l} / F_{x-x} = 0.0409 / 0.00103 = 39,9 \text{ МПа},$$
 (5.2)
где $P_{Z / l} = p_{Z / l}$ $F_{I l} = 7.659 \cdot 53.45 \cdot 10^{-4} = 0.0409 \text{ MH};$

$$F_{x-x} = (\pi/4)(d^2_k - d^2_i) - n_M^* F = [(3,14/4)(73,5^2 - 63,5^2) - 10.5] \cdot 10^{-6} = 0,00103 \text{ m}^2;$$

$$d_k = D - 2(t + \Delta t) = 82,5 - 2(3,9 - 5) = 73,5 \text{ mm};$$

$$F = (d_k - d_i) d_M / 2 = (73,5 - 63,5) \cdot 1/2 = 5 \text{ mm}^2.$$

Напряжение разрыва в сечении x - x:

$$\omega_{x.x max} = \pi n_{x.x max}/30 = 3,14.7500/30 = 785 \text{ рад/с};$$
 (5.3)

масса головки поршня с кольцами, расположенными выше сечения х – х:

$$m_{x-x}=0.5m_n=0.5\cdot0.316=0.158 \text{ KT};$$
 (5.4)

максимальная разрывающая сила

$$P_i = m_{x-x}R\omega_{x,x max}^2(1+\lambda) = 0.158.0,0374.785^2(1+0.289) = 0.0045 \text{ MH}; (5.5)$$

Напряжение разрыва

$$\sigma_p = P_f / F_{x-x} = 0.0045 / 0.00103 = 4.4 \text{ M}\Pi a.$$
 (5.6)

Напряжение в верхней кольцевой перемычке:

среза

$$\tau = 0.0314 \ p_{Z\Pi} D/h_{\Pi} = 0.0314.7,659.82,5/3,7=5,4 \ \text{M}\Pi a;$$
 (5.7)

изгиба

$$\sigma_{u3} = 0.0045 \ p_{ZJ} (D/h_{II})^2 = 0.0045 \ 7.659 \ (82.5/3.7)^2 = 17.1 \ \text{M} \Pi \text{a};$$
 (5.8)

сложное

$$\sigma_{\Sigma} = \sqrt{\sigma_{u3}^2 + 4\tau^2} = \sqrt{17,1^2 + 4 \cdot 5,4^2} = 20,2 \, M\Pi a.$$
(5.9)

удельное давление поршня на стенку цилиндра:

$$q_1 = N_{max}/(h_{10}D) = 0.0079/(31.3.82.5) \cdot 10^{-3} = 3.059 \text{ M}\Pi a;$$
 (5.10)

$$q_2 = N_{max}/(HD) = 0.0079/(50.3.82.5) \cdot 10^{-3} = 1.904 \text{ M}\Pi a.$$
 (5.11)

Диаметры головки и юбки поршня:

$$D_{\Gamma} = D - \Delta_{\Gamma} = 82 - 0.57 = 81.43 \text{ mm};$$
 (5.12)

$$D_{IO} = D - \Delta_{IO} = 82 - 0.165 = 81,835 \text{ mm},$$
 (5.13)

где Δ_{Γ} =0,007D=0,007·82=0,57 мм; Δ_{IO} =0,002D=0,002·82=0,165 мм.

Диаметральные зазоры в горячем состоянии

$$\Delta_{\varepsilon}^{\cdot} = D[I + \alpha_{u}(T_{u} - T_{0})] - D_{\varepsilon}[I + \alpha_{n}(T_{n} - T_{0})] =$$

$$= 82,5[1 + 11 \cdot 10^{-6}(383 - 293)] - 81,93[1 + 22 \cdot 10^{-6}(593 - 293)] = 0,118 \text{ mm};$$
(5.14)

$$\Delta'_{io} = D[1 + \alpha_{ij}(T_{io} - T_0)] - D_{io}1 + \alpha_{n}(T_{io} - T_0)] =$$

$$= 82,5[1 + 11 \cdot 10^{-6}(383 - 293)] - 82,335[1 + 22 \cdot 10^{-6}(413 - 293)] = 0,056 \text{ mm},$$
(5.15)

где T_{y} =383 К, T_{Γ} =593 К, T_{w} =413 К, T_{0} =293 К температуры стенок цилиндра, головки и юбки поршня в рабочем состоянии и начальная температура приняты с учетом водяного охлаждения двигателя.

5.1.2 Расчет поршневого кольца

Необходимые данные приведены в п. 5.1.1. Материал кольца — серый чугун, $E=1,0.10^5$ МПа.

Среднее давление кольца на стенку цилиндра

$$P_{cp} = 0.152E \frac{A_0/t}{(D/t - 1)^3(D/t)} = 0.152 \cdot 1 \cdot 10^5 \cdot \frac{11.7/3.9}{(82.5/3.9 - 1)^3(82.5/3.9)} = 0.265 M\Pi a, \tag{5.16}$$

где $A_0=3t=3.3,9=11,7$ мм.

Давление (МПа) кольца на стенку цилиндра в различных точках окружности

$$p = p_{cp}\mu_{\kappa}, \tag{5.17}$$

Значения μ_{κ} для различных углов ψ , а также результаты расчета p приведены ниже.

Таблица 5.1 - Давление кольца на стенку цилиндра в различных точках окружности

ψ, град.	0	30	60	90	120	150	180
μ_{κ}	1,05	1,05	1,14	0,90	0,45	0,67	2,85
<i>p</i> , МПа	0,277	0,277	0,3	0,237	0,118	0,176	0,75

Напряжение изгиба кольца в рабочем состоянии

$$\sigma_{u3l} = 2,61p_{cp}(D/t - 1)^2 = 2,610,265(82,5/3,9 - 1)^2 = 279 \text{ M}\Pi a.$$
 (5.18)

$$\sigma_{u32} = \frac{4E(1 - 0.114 A_0 / t)}{m(D / t - 1.4)(D / t)} = \frac{4 \cdot 1 \cdot 10^5 (1 - 0.114 \cdot 11.7 / 3.9)}{1.57(82.5 / 3.9 - 1.4)(82.5 / 3.9)} = 401 MHa.$$
(5.19)

Напряжение изгиба при давлении кольца на поршень

Монтажный зазор в рамке поршневого кольца

$$\Delta_{\kappa} = \Delta_{\kappa} + \pi D[\alpha_{k}(T_{k} - T_{0}) - \alpha_{u}(T_{u} - T_{0})] =$$

$$(5.20)$$

$$=0.08+3.14\cdot82.5[11\cdot10^{-6}(493-293)-11\cdot10^{-6}(383-293)]=0.414$$
 MM,

где Δ_{κ} — минимально допустимый зазор замке кольца во время работы двигателя.

5.1.3 Расчет поршневого пальца

Материал поршневого пальца — сталь 15X, $E=2\cdot10^5$ МПа. Палец плавающего типа.

Расчетная сила, действующая на поршневой палец:

газовая

$$P_{z max} = p_{z max} F_n = 9,1489.53,45.10^4 = 0,0409 \text{ MH};$$
 (5.21)

инерционная

$$P_{j} = -m_{n}\omega_{M}^{2}R(1+\lambda)\cdot 10^{-6} = -0.316\cdot 691^{2}\cdot 0.0374(1+0.289)\cdot 10^{-6} = (5.22)$$
$$= -0.00703 \text{ MH},$$

где $\omega_{\scriptscriptstyle M} = \pi n_{\scriptscriptstyle M}/30 = 3,14.6600/30 = 691$ рад/с;

расчетная

$$P = P_{z max} + kP_j = 0.0409 - 0.820.00703 = 0.0352 \text{ MH}.$$
 (5.23)

где k=0.82 – коэффициент, учитывающий массу поршневого пальца.

Удельное давление пальца на втулку поршневой головки шатуна

$$q_{uu}=P/d_nl_{uu}=0.0352/0.022\cdot0.028=68,1 \text{ M}\Pi a.$$
 (5.24)

Удельное давление пальца на бобышки

$$q_{\delta} = P/d_n(l_n - b) = 0.0352/0.022(0.028 - 0.032) = 53.3 \text{ M}\Pi a.$$
 (5.25)

Напряжение изгиба в среднем сечении пальца

$$\sigma_{u3} = \frac{P(l_n + 2b - 1.5l_u)}{1.2(1 - \alpha^4)d_n^3} = \frac{0.0352(0.068 + 2.0.032 - 1.5.0.028)}{1.2(1 - 0.682^4)0.022^3} = 262.5 \, M\Pi a,$$
(5.26)

где $\alpha = d_e/d_n = 15/22 = 0,682$.

Касательная напряжения среза в сечениях между бобышками и головкой шатуна

$$\tau = \frac{0.85P(1+\alpha+\alpha^2)}{(1-\alpha^4)d_n^2} = \frac{0.85 \cdot 0.0352(1+0.682+0.682^2)}{(1-0.682^2) \cdot 0.022^2} = 132 MHa.$$
(5.27)

Наибольшее увеличение горизонтального диаметра пальца при овализации:

$$\Delta d_{nmax} = \frac{1,35P}{El_n} \left(\frac{1+\alpha}{1-\alpha}\right)^3 \sqrt{1-(\alpha-0.4)^3} = \frac{1,35\cdot0.0352}{2\cdot10^5\cdot0.068} \left(\frac{1+0.682}{1-0.682}\right)^3 \sqrt{1-0.682-0.4} = 0.0159 \text{ MM}$$
(5.28)

Напряжение овализации на внешней поверхности пальца:

в горизонтальной плоскости (точки 1, ψ =0⁰)

$$\sigma_{\alpha 0} = \frac{15P}{l_n d_n} \left[0.19 \frac{(2+\alpha)(1+\alpha)}{(1-\alpha)^2} - \frac{1}{1-\alpha} \right] \left[1 - (\alpha - 0.4)^3 \right] = \frac{15 \cdot 0.0352}{0.068 \cdot 0.022} \left[0.19 \frac{(2+0.682)(1+0.6862)}{(1-0.682)^2} - \frac{1}{1-0.682} \right] \left[1 - (0.682 - 0.4)^3 \right] = 73 M\Pi a$$
(5.29)

в вертикальной плоскости (точки 3, ψ =90°)

$$\sigma_{\alpha 90} = -\frac{15P}{l_n d_n} \left[0,174 \frac{(2+\alpha)(1+\alpha)}{(1-\alpha)^2} + \frac{0,636}{1-\alpha} \right] \left[1 - (\alpha - 0,4)^3 \right] =$$

$$= -\frac{15 \cdot 0,0352}{0,068 \cdot 0,022} \left[0,174 \frac{(2+0,682)(1+0,6862)}{(1-0,682)^2} + \frac{0,636}{1-0,682} \right] \left[1 - (0,682 - 0,4)^3 \right] = -92,6 M\Pi a$$

$$(5.30)$$

Напряжение овализации на внутренней поверхности пальца:

в горизонтальной плоскости (точки 2, ψ =0°)

$$\sigma_{\alpha 0} = -\frac{15P}{l_n d_n} \left[0,19 \frac{(1+2\alpha)(1+\alpha)}{(1-\alpha)^2 \alpha} + \frac{1}{1-\alpha} \right] \sqrt{1 - (\alpha - 0,4)^3} =$$

$$= -\frac{15 \cdot 0,0352}{0,068 \cdot 0,022} \left[0,19 \frac{(1+2 \cdot 0,682)(1+0,6862)}{(1-0,682)^2 \cdot 0,682} + \frac{1}{1-0,682} \right] \sqrt{1 - (0,682 - 0,4)^3} = -147 M\Pi a$$
(5.31)

в вертикальной плоскости (точки 4, ψ =90°)

$$\sigma_{\alpha 90} = \frac{15P}{l_n d_n} \left[0.174 \frac{(1+2\alpha)(1+\alpha)}{(1-\alpha)^2 \alpha} - \frac{0.636}{1-\alpha} \right] \left[1 - (\alpha - 0.4)^3 \right] = \frac{15 \cdot 0.0352}{0.068 \cdot 0.022} \left[0.174 \frac{(1+2 \cdot 0.682)(1+0.6862)}{(1-0.682)^2 \cdot 0.682} - \frac{0.636}{1-0.682} \right] \left[1 - (0.682 - 0.4)^3 \right] = 159 M\Pi a$$

$$(5.32)$$

5.2 Расчет шатуна

5.2.1 Расчет стержня шатуна

Сила, сжимающая шатун, достигает максимального значения в начале рабочего хода при $p_{z\partial}$.

$$P_{c \to c} = \left[F_n(p_{z o} - p_0) - m_j R \omega^2 (\cos \varphi + \lambda \cos 2\varphi) \right] \cdot 10^{-6} = 0,029719 MH, \tag{5.33}$$

Сила, растягивающая шатун, достигает максимального значения в начале впуска (в в.м.т.).

$$P_{cm} = \sqrt{r_n p_r - m_j R \omega^2 (1 + \lambda)} \frac{10^{-6}}{10^{-6}} = -0.010971 MH$$
 (5.34)

Площадь и моменты инерции

$$F_{cp} = h_{ub}b_{u} - (b_{uu} - a_{uu})(h_{uu} - 2t_{uu}) =$$

$$= 15 \cdot 14 - (14 - 7)(15 - 2 \cdot 4, 4) = 166, 6 \cdot 10^{-6} \text{ m}^{2}$$

$$J_{x} = [b_{uu}h^{3}_{uu} - (b_{uu} - a_{uu})(h_{uu} - 2t_{uu})^{3}]/12 =$$

$$= [15^{3} \cdot 14 - (14 - 7)(15 - 2 \cdot 4, 4)^{3}]/12 = 3798, 5 \cdot 10^{-6} \text{ m}^{2}$$

$$J_{y} = [b^{3}_{uu}h_{uu} - (b_{uu} - a_{uu})^{3}(h_{uu} - 2t_{uu})]/12 = [15 \cdot 14^{3} - (14 - 7)^{3} (15 - 2 \cdot 4, 4)]/12 = 3252, 8 \cdot 10^{-6} \text{ m}^{2}$$

Максимальное напряжение от сжимающей силы: в плоскости качания шатуна

$$\sigma_{max.x} = K_x P_{cse} / F_{cp} \cdot 10^{-6} = 1,268 \cdot 0,029719 / 166,6 \cdot 10^{-6} = 226,32 \text{ Мпа}$$
 (5.37) где $K_x = 1,268$

в плоскости, перпендикулярной плоскости качания шатуна:

$$\sigma_{max.y} = K_y P_{cse} / F_{cp} 10^{-6} = 1,095 \cdot 0,029719/166,6 \cdot 10^{-6} = 195,34 \ \mathrm{Mpa}$$
 где $K_y = 1,095$

Минимальное напряжение от растягивающей силы

$$\sigma_{min} = P_p / F_{cp} = 0.029719 / 166,6.10^{-6} = -65,852 \text{ M} \pi a.$$
 (5.38)

Среднее напряжение и амплитуды цикла:

$$\sigma_{mx} \coloneqq \frac{\sigma_{maxx} + \sigma_{min}}{2} \qquad \qquad \sigma_{mx} = 80.2371 \quad \text{M} \, \text{\Pi a} \end{tabular} \tag{5.39}$$

$$\sigma_{my} \coloneqq \frac{\sigma_{maxy} + \sigma_{min}}{2} \qquad \qquad \sigma_{my} = 64.7456 \quad \textbf{M}\, \textbf{\Pi} \textbf{a} \tag{5.40}$$

$$\sigma_{a.x} \coloneqq \frac{\sigma_{maxx} - \sigma_{min}}{2} \qquad \qquad \sigma_{a.x} = 146.0893 \quad \textbf{M}\, \textbf{\Pi} \textbf{a} \tag{5.41}$$

$$\sigma_{a.y} \coloneqq \frac{\sigma_{maxy} - \sigma_{min}}{2} \qquad \qquad \sigma_{a.y} = 130.5978 \quad \textbf{M}\, \textbf{\Pi} \textbf{a} \tag{5.42}$$

$$\sigma_{a.\kappa.x} \coloneqq \frac{\sigma_{a.x} \cdot k_{\sigma}}{\epsilon_{\text{M}} \cdot \epsilon_{\text{\Pi}}} \qquad \qquad \sigma_{a.\kappa.x} = 277.8492 \quad \textbf{M} \, \textbf{\Pi} \textbf{a} \tag{5.43}$$

$$\sigma_{a.\kappa.y} \coloneqq \frac{\sigma_{a.y} \cdot k_{\sigma}}{\epsilon_{_M} \cdot \epsilon_{_{\Pi}}} \qquad \qquad \sigma_{a.\kappa.y} = 248.3857 \quad \textbf{M}\, \textbf{\Pi} \textbf{a} \tag{5.44}$$

где k_{σ} =1,272; $\varepsilon_{\scriptscriptstyle M}$ =0,88 — определяется по табл. 48 [1]; $\varepsilon_{\scriptscriptstyle n}$ =1,3 — определяется по табл. 49 [1].

Запас прочности.

$$n_{T.\sigma.X} := \frac{\sigma_T}{\sigma_{a.K.X} + \sigma_{mX}} \qquad n_{T.\sigma.X} = 1.1729$$
(5.45)

$$n_{\text{T.}\sigma.y} := \frac{\sigma_{\text{T}}}{\sigma_{\text{a.k.y}} + \sigma_{\text{my}}} \qquad \qquad n_{\text{T.}\sigma.y} = 1.34129$$
(5.46)

6 Специальная часть бакалаврской работы

6.1 Описание спроектированного двигателя рабочим объемом 3.2 л

Шестицилиндровый, V-образным, четырехтактный, бензиновый двигатель с распределенным впрыском топлива, жидкостного охлаждения, с четырьмя клапанами на цилиндр. Расчетная эффективная мощность Ne=126 кВт при частоте вращения коленчатого вала n=5600 об/мин. Двигатель шестицилиндровый (i=6) с V-образным расположением цилиндров и углом развала 45°, рабочим объемом Vл=3,2 л, диаметр цилиндра D=90 мм, ход поршня S=82 мм. Степень сжатия є =11. Коленчатый вал — четырехопорный, чугунный, литой. Головка блока — из алюминиевого сплава. Привод распределительного вала — цепной механизм. Расположение клапанов — верхнее, рядное, наклонное. Привод клапанов — через гидрокомпенсаторы от двух распределительных валов (для впускных и выпускных клапанов).

В ходе модернизации были внесены в конструкцию следующие изменения. Во-первых была спроектирована компактная камера сгорания, площадь вытеснителей была увеличена с 9% до 28%. Диаметр впускных клапанов был уменьшен с 29 мм до 27 мм, диаметр выпускных клапанов был уменьшен с 26 мм до 24 мм. Были также внесены изменения в систему впуска, проходное сечение впускного канала было уменьшено на 12%. Один из впускных каналов был спрофилирован для создания в цилиндре двигателя горизонтального вихревого движения, в то время как второй канал имеет обычную форму, но имеет ширму на впускном клапане. Ширма установлена с таким расчётом чтобы создавать во время впуска сильное вертикальное вихревое движение, поэтому клапан заширмлен на 180° и угол между линиями проходящими от свечи через центр клапана и центр ширмы составляет 30°.

6.2 Экономичность, токсичность и дымность отработавших газов ДВС

В отработавших газах присутствует большое количество (до 300) химических веществ, среди которых выделяются токсические составляющие CO_2 , CO, NO_X , CH и сажа (твёрдые частицы), а также концерогенные вещества, соединения серы и свинца, которые по степени токсичности опаснее чем CO_2 , CO, NO_X , CH. Поэтому уделяется большое внимание по их уменьшению путём конструктивного и технологического совершенствования ДВС.

В данной бакалаврской работе предлагается изменить форму камеры сгорания, проходное сечение впускных и выпускных каналов, а также спрофилировать форму впускных каналов, чтобы обеспечить устойчивое вихревое движение ТВС на такте сжатия и в процессе сгорания.

Данные мероприятия влияют на токсичность отработавших газов следующим образом:

СН – токсичность по данному компоненту снижается за счет большей интенсивности турбулентности в камере сгорания и её компактности, что позволяет лучше догорать СН за фронтом пламени и в пристеночной области. В случае увеличения зазора между вытеснителями до 1 мм в прогретом состоянии обеспечивается полное догорание смеси в данном зажатом объеме. Таким образом, обеспечивается снижение токсичности ОГ по СН на 15% по сравнению с базовыми показателями.

 NO_x — токсичность по данному компоненту повышается, т.к. более быстрое и интенсивное сгорание обеспечивает большие значения температуры за фронтом пламени, что приводит к росту образования NO_x в процессе сгорания. Для выполнения норм по токсичности $O\Gamma$ необходимо устанавливать современные каталитические нейтрализаторы накопительного тапа, которые будут собирать избыточный NO_x в отстойник, и восстанавливать его при кратковременной работе на богатой смеси.

СО – токсичность по данному компоненту снижается, т.к. повышается полнота сгорания.

 ${
m CO_2}$ – выбросы по данному компоненту увеличиться в связи с увеличением рабочего объема двигателя

Удельная экономичность работы двигателя будет улучшаться, за счет более высокого термического КПД обеспеченного повышенной интенсивностью процесса сгорания, так согласно расчетам удельный эффективный расход топлива уменьшится на 5%.

6.3 Температурное состояние деталей связанных с компактной камерой сгорания

Температурное состояние узлов и агрегатов ДВС – состояние, характеризующее способность системы охлаждения ДВС к отводу избыточного тепла от его деталей, узлов и агрегатов и обеспечения температурного режима, необходимого для их эффективного и безотказного функционирования.

Ожидается, что установке компактной камеры сгорания температурные поля головки блока цилиндров, будут повышенной и могут достигать высоких значений, вследствие более быстрого сгорании и соответственно более высоким температурам в камере сгорания и головки блока.

Однако причин для волнения о повышенной тепловой напряженности деталей привода возникать не должно т.к. система охлаждения двигателя останется неизменной и будет выполнять свои функции в полном объёме.

Для сравнительного анализа основные показатели спроектированного двигателя и двигателя ВАЗ-2112 сведены в таблицу 7.1.

Таблица 6.1 - Сравнение расчетных эффективных и экономичных показателей базового и модернизированного двигателей.

n	g _e баз	де нов	Ме баз	Ме нов	Gt баз	Gt нов	Ne баз	Ne нов
мин ⁻¹	г/кВт*ч	г/кВт*ч	Н*м	Н*м	кг/ч	кг/ч	КВт	КВт
850	271,2995	248,33	109,6317	195,328	3,673048	5,936	9,5025	20
3400	240,2463	220,348	131,5549	218,25	12,36788	19,948	51,48	101
5000	254,6321	224,16	124,9823	207,32	17,0123	29,983	62,33	115
5600	262,2322	257,12	115,1884	190,08	18,2401	33,106	72,55	126
6200	271,3461	267,54	101,2225	173,41	18,95112	34,845	63,6	120

7 Безопасность и экологичность объекта бакалаврской работы

7.1 Экологические показатели ДВС

К ДВС экологическим показателям относятся параметры, характеризующие их воздействия (прямые и косвенные) на окружающую среду. В соответствии со вторым законом термодинамики, ДВС всегда будет выбрасывать теплоту в окружающее пространство и, таким образом, будет тепловое (подогрев) осуществляться загрязнение окружающей Соответственно, чем выше будет КПД ДВС – тем лучше его топливная экономичность, и тем выше будут его экологические качества. Кроме тепловой энергии ДВС АТС выбрасывает в окружающую среду и паразитную механическую энергию в виде воздушных акустических излучений (шума) и воздействий на вибрационных механических присоединённые твёрдые структуры опорных элементов (рамы, кабины водителя, пассажирского помещения). Ещё одним видом загрязнения окружающей среды, производимым ДВС АТС, является осуществляемый в нём рабочий процесс сгорания топлива с соответствующим потреблением кислорода воздуха и сопутствующим протеканием химических превращений продуктов сгорания во вредные токсические вещества, выбрасываемые в атмосферу (CO_2, CO, NO_X, CH , твёрдые частицы сажи). Продукт сгорания углеводородных топлив в ДВС – диоксид углерода (CO_2) , не являясь токсичным веществом, представляет серьёзную экологическую опасность для окружающей среды. Он препятствует излучению теплоты земным шаром в окружающее пространство, что вызывает появление «парникового эффекта», с соответствующим возрастанием температуры атмосферы и сопутствующими негативными климатическими изменениями. В качестве косвенных неблагоприятных экологических воздействий ДВС на окружающую среду следует отнести расходуемые невозобновляемые конструкционные и эксплуатационные материалы, используемые в процессах производства ДВС и в процессах их эксплуатации (ремонта, технического

обслуживания) в составе АТС. Сюда же могут быть отнесены и затраты энергии (соответственно – нефти, газа, угля) при добыче и переработке сырья (металлической руды), с сопутствующими реализуемыми «экологически грязными» технологиями, а также технологические процессы изготовления конструкционных материалов (металлов, пластмасс и т.п.) и деталей узлов ДВС, характеризующихся аналогичными негативными экологическими воздействиями на окружающую среду. В этом отношении, уменьшение массы ДВС является одним из важных направлений улучшения экологических показателей ДВС. В процессе эксплуатации ДВС глушители шума системы выпуска которых содержат пористые звукопоглощающее вещества в виде волокнистых набивок резонансных и расширительных камер (базальтовое волокно), может стеклянное происходить выдувание пульсирующим газовым потоком в открытую атмосферу, что является ещё одним негативным источником загрязнения ДВС окружающей среды [1, с.23].

7.2 Экономичность, токсичность и дымность отработавших газов ДВС

В отработавших газах присутствует большое количество (до 300) химических веществ, среди которых выделяются токсические составляющие CO_2 , CO, NO_X , CH и сажа (твёрдые частицы), а также концерогенные вещества, соединения серы и свинца, которые по степени токсичности опаснее чем CO_2 , CO, NO_X , CH. Поэтому уделяется большое внимание по их уменьшению путём конструктивного и технологического совершенствования ДВС.

В данной бакалаврской работе предлагается изменить форму камеры сгорания, проходное сечение впускных и выпускных каналов, а также спрофилировать форму впускных каналов, чтобы обеспечить устойчивое вихревое движение ТВС на такте сжатия и в процессе сгорания.

Данные мероприятия влияют на токсичность отработавших газов следующим образом:

СН – токсичность по данному компоненту снижается за счет большей интенсивности турбулентности в камере сгорания и её компактности, что позволяет лучше догорать СН за фронтом пламени и в пристеночной области. В случае увеличения зазора между вытеснителями до 1 мм в прогретом состоянии обеспечивается полное догорание смеси в данном зажатом объеме. Таким образом, обеспечивается снижение токсичности ОГ по СН на 15% по сравнению с базовыми показателями.

 NO_x — токсичность по данному компоненту повышается, т.к. более быстрое и интенсивное сгорание обеспечивает большие значения температуры за фронтом пламени, что приводит к росту образования NO_x в процессе сгорания. Для выполнения норм по токсичности ОГ необходимо устанавливать современные каталитические нейтрализаторы накопительного тапа, которые будут собирать избыточный NO_x в отстойник, и восстанавливать его при кратковременной работе на богатой смеси.

СО – токсичность по данному компоненту снижается, т.к. повышается полнота сгорания.

 ${
m CO_2}$ — выбросы по данному компоненту увеличиться в связи с увеличением рабочего объема двигателя

Удельная экономичность работы двигателя будет улучшаться, за счет более высокого термического КПД обеспеченного повышенной интенсивностью процесса сгорания, так согласно расчетам удельный эффективный расход топлива уменьшится на 5%.

7.3 Шумность при работе ДВС с новой системой впуска и камерой сгорания

Шум – неприятный, раздражающий, вредный для здоровья человека (и других живых организмов), нежелательный звук.

Шум движущегося автомобиля складывается из шума, создаваемого двигателем и его системами, агрегатами автомобиля, кузовом, который

колеблется от воздействия двигателя, дороги, потока воздуха, и шума вспомогательного оборудования. Количественная оценка шума каждого источника представляет собой сложную экспериментальную задачу.

На шумность работы двигателя установка компактной камеры сгорания влияет, прежде всего, повышение скорости потока во впускных и выпускных каналах вследствие их уменьшения проходного сечения, а также увеличения рабочего объема двигателя.

Прогнозирование уровня механического шума двигателя Шум поршневого двигателя внутреннего сгорания (ПДВС) является следствием рабочих процессов в цилиндрах, механизмах и системах, преобразующих химическую энергию топлива в тепловую и далее - в механическую. Часть энергии рабочих процессов (свободная энергия) преобразуется в звуковую.

При реализации рабочих и динамических процессов в механизмах и системах ПДВС возникают периодические свободные, или возмущающие силы. В ПДВС основными источниками шума являются:

- процесс сгорания топлива в цилиндрах, сопровождающийся возникновением газодинамических сил;
- рабочие динамические процессы в механизмах и системах (кривошипно-шатунном, газораспределительном, в системах топливоподачи, смазки и др.), сопровождающиеся возникновением ударов в сопряжениях и сил инерции;
- процессы впуска свежего заряда и выпуска отработавших газов (аэрогазодинамические силы);
- процесс взаимодействия лопастей вентиляторов системы охлаждения с упругой воздушной средой (аэродинамические силы).

Исходя из вышесказанного, однозначного заключения о пороге шумности при работе двигателя с компактной камерой сгорания сделать нельзя, т.к. отсутствует опытный образец и проведённые испытания на шумность.

Чтобы данная конструкция имела успех, нужно пройти испытания на внутренний шум ATC по ГОСТу Р 51616 и на внешний шум по правилам R 51 ЕЭК ООН.

Однако можно предположить, что в связи с увеличением габаритов двигателя, а значит и действием инерционных сил, шум от работы ГРМ и КШМ может несколько возрасти. Также специально спроектированные профили впускных каналов обеспечивают большую скорость потока на впуске, а значит увеличение шумности. Уменьшение диаметра выпускных каналов для создания компактной формы камеры сгорания однозначно приведет к повышению скорости движения выхлопных газов и повышенному шуму на кромках клапана.

7.4 Эффективность применении новой камеры сгорания и впускных каналов

Применение новой конструкции впускных каналов позволило несколько поднять коэффициент наполнения на малых и средних оборотах, в то время как на высоких оборотах он несколько ниже, чем на базовом двигателе. Это произошло за счет того, что проходное сечение каналов было уменьшено практически на 10%, что заметно повысило скорость движения потока по каналам, тем самым увеличилась инерциальность потока. Высокие скорости процессе впуска создают в цилиндре двигателя турбулентность потока, что способствует хорошему перемешиванию смеси, тем самым, повышая её гомогенность, что улучшает протекание процесса горения. Применение новой системы впуска позволило создать в цилиндре двигателя хорошо сформировавшуюся структуру потока с вихревым движением по всем плоскостям, коэффициент вихревого движения в горизонтальной плоскости в процессе впуска достигал 3.4, а в вертикальной плоскости 2.9. Что выгодно отличает его от базового двигателя, в котором вихревое движение потока практически отсутствовало. В процессе сжатия за счёт более организованного

движения заряда, а также увеличенной площадью вытеснителей удалось достигнуть высокого уровня турбулентности потока, при этом вытеснители повышают турбулентность потока именно в удалённых от свечи зажигания областях камеры сгорания, тем самым улучшая процесс сгорания топлива именно в заключительной фазе горения, что способствует уменьшению отработавших концентрации В газах несгоревших углеводородов. Предполагаемая пульсационная скорость потока в конце процесса сжатия составила 2 м/с, при этом сохраняется достаточно высокая конвективная скорость потока примерно 11 м/с, по сравнению с базовым двигателем, у которого пульсационная скорость составила порядка 0,5 м/с, а конвективная 3 м/с. Высокие скорости и турбулентность потока в процессе наполнения позволяют получить высокую степень гомогенности смеси, по сравнению с базовым. Благодаря компактной форме камеры сгорания, а также высокими значениями турбулентности и скорости потока удалось заметно улучшить детонационную стойкость, c ПО оценке исследуемыми детонационная стойкость по давлению возросла на 10%, что позволяет работать на оптимальных углах опережения зажигания не опасаясь детонации, что также даёт возможность для дальнейшего увеличения степени сжатия. За счет высоких скоростей и турбулентности потока, в сочетании с компактной камерой сгорания, удалось заметно сократить продолжительность горения во всех фазах в итоге общая продолжительность горения сократилась почти на 10° поворота коленчатого вала и составила 45° п.к.в., в то время как у базового оно составляет порядка 55° п.к.в. Всё это позволило повысить полноту сгорания топлива, а также индикаторный коэффициент полезного действия. Выбросы не сгоревших углеводородов на прогретом двигателе должны уменьшиться, так как задаваясь величиной щелевого объёма на прогретом двигателе равном 0,7 мм, и более высокой интенсивностью турбулентности, а, следовательно, и максимальной температурой в процессе сгорания было получено значительное уменьшение пристеночного слоя камеры сгорания.

Содержание в отработавших газах оксида азота будет несколько выше из-за более высокой температуры и давления в процессе сгорания.

7.5 Выводы по разделу безопасность и зкологичность бакалаврской работы

Предполагается, что проектируемая конструкция компактной камеры сгорания, соответствует предъявляемым нормативным требованиям отношении достижения удовлетворительных характеристик безопасности и экологичности. Для этого она должна пройти обязательную сертификацию ATC которая предусматривает процедуру отипования автомобилей, изложенную в системе сертификации ГОСТ Р. Также нужно пройти процесс омологации (официальное утверждение типа транспортного средства) т.е. сертификацию продукции В соответствии c Правилами Европейской экономической комиссии при Организации Объединённых наций (ЕЭК ООН). Он подразумевает контрольную проверку соответствия транспортного средства требованиям безопасности и экологичности с выдачей соответствующих подтверждающих документов.

В целом спроектированный двигатель удовлетворяет предъявляемым требованиям по токсичности и шуму, при условии установки на нем трехкомпонентного каталитического нейтрализатора и дополнительных устройств глушении шума.

ЗАКЛЮЧЕНИЕ

В бакалаврской работе спроектирован бензиновый двигатель с рабочим объемом Vh=3.2 л., работающим на номинальном скоростном режиме 5600 мин⁻¹. Основные конструктивные показатели по сравнению с двигателем ВАЗ: увеличен ход поршня с 71 до 78 мм, увеличен диаметр цилиндров с 82 до 90 мм,, длинна шатуна увеличилась с 121 до 147,5 мм, увеличилась общая длина двигателя с 510 до 525 мм, уменьшилась высота с 653 до 631 мм. Проведены основные расчеты двигателя, а именно, тепловой, кинематический, динамический, основных деталей и систем двигателя.

Получено в двигателе с рабочим объемом Vh=3.2 л.:

- минимальный удельный эффективный расход топлива 242 г/кВт*ч;
- максимальную мощность при номинальных оборотах n=5600 мин⁻¹
 206 кВт, по сравнению с базовым увеличение составило 105%;
- максимальный крутящий момент при номинальных оборотах n=3200 мин⁻¹ 232 H*м, по сравнению с базовым увеличение составило 85%;
- для выполнения двигателем норм по токсичности необходимо установка каталитического нейтрализатора.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Колчин, А.И. Расчет автомобильных и тракторных двигателей [Текст]/ Колчин, А.И. Демидов В.П. // Учебное пособие для вузов 2-е изд., перераб. и доп. М: Высшая школа 1980. с.496.
- 2. Орлин, А.С. Двигатели внутреннего сгорания: Системы поршневых и комбинированных двигателей. Учебник для вузов по специальности «Двигатели внутреннего сгорания» [Текст] /С.И. Ефимов, Н.А. Иващенко, В.И. Ивин и др.; Под общей редакцией А.С. Орлина, М.Г. Круглова//. –3-е издание, перераб. И доп. М.: Машиностроение, 1985. с.456.
- 3. Ховаха, М.С. Автомобильные двигатели 2-е изд., перераб. и доп. [Текст] /Под редакцией М.С. Ховаха// М.: Машиностроение, 1977. c.636.
- 4. Орлин, А.С. Двигатели внутреннего сгорания: Устройство и работа поршневых и комбинированных двигателей. Учебник для студентов втузов, обучающихся по специальности «Двигатели внутреннего сгорания» [Текст] /В.П. Алексеев, Н.А. Иващенко и др.; Под общей редакцией А.С. Орлина, М.Г. Круглова//. –3-е издание, перераб. и доп. М.: Машиностроение, 1980. с.528.
- 5. Орлин, А.С. Двигатели внутреннего сгорания: Конструирование и расчет на прочность поршневых и комбинированных двигателей. Учебник для студентов втузов, обучающихся по специальности «Двигатели внутреннего сгорания» [Текст] /Д.Н. Вырубов, С.И. Ефимов, Н.А. Иващенко и др.; Под общей редакцией А.С. Орлина, М.Г. Круглова. —4-е издание, перераб. И доп. М.: Машиностроение, 1984. с.384
- 6. Анурьев, В.И. Справочник конструктора-машиностроителя [Текст] / В.И. Анурьев// В 3-х т. 6-е изд., перераб. и доп. М.: Машиностроение, 1982. с.296.
- 7. Вибе, И.И. Уточненный тепловой расчет двигателя [Текст] / И.И. Вибе// М. Машиностроение, 1971. с.282
- 8. Кузнецов, Ю.М. Охрана труда на предприятиях автомобильного транспорта [Текст] /. М.: Транспорт, 1986.

- 9. Луканин, В.Н. Промышленная транспортная экология [Текст] / М.: Высшая школа, 2001.
- 10. Долин, П.А. Справочник по технике безопасности [Текст] / М.: Энергоатомиздат, 1985.
- 11. Dake, A.R. Modeling and control of cold start hydrocarbon emissions [Τεκcτ] / A.R. Dake // Master thesis. 2005. 101 c.
- 12. El-Mahallawy, F. Fundamentals and technology of combustion [Текст] / F. El-Mahallawy, S. E-Din Habik. London : Elsevier, 2002. 862 с.
- 13. Eriksson, L. Spark Advance Modeling and Control / L. Eriksson [Текст] // Doctoral thesis. 1999. 207 с.
- 14. Кузнецов, В.Р. Турбулентность и горение [Текст] / Кузнецов, В.Р., Собольников В.А.// М. Наука, 1986. 207 с.
- 15. Войнов, В.В. Процессы сгорания в двигателях внутреннего сгорания [Текст] / М. Наука, 1984. 211 с.
- 16. Звонов, В.А. Токсичность двигателей внутреннего сгорания [Текст] / М. Машиностроение, 1981. 210 с.
- 17. Nlootat, G. A Model for Converting SI Engine Flame Arrival Signals into Flame Contours [Tekct] / SAE, SP 1099, №950109, ctp. 99-110, 1999.
- 18. Khalighi, B. Computation and Measurement of Flow and Combustion in a Four-Valve Engine with Intake Variations [Tekct] / SAE, SP 1101, №950287, 2001. c. 147-179,
- 19. Jones, P. Full Cycle Computational Fluid Dynamics Calculations in a Motored Four Valve Pent Roof Combustion Chamber and Comparison with Experiment [Tekct] / SAE, SP 1101, №950286, 2001. c. 131-146
- 20. Наканиши, К. Разработка новой системы впуска для четырёхклапанного двигателя, работающего на бедных смесях [Текст] / SAE, SP 1097, №95050, 1997. с. 25-43
- 21. Хашимото, Н. Разработка низкотоксичной, высокоэффективной камеры сгорания для высокомощного четырехклапанного двигателя [Текст] / SAE, SP 1098, №95068, 1998. с. 347-365

- 22. Аносов, Ю.М. Основы отраслевых технологий и организации производства [Текст] / С-П., Политехника, 2002.
- 23. Каргин, С.А. Теоретическое обоснование и экспериментальное исследование рабочего процесса судового ДВС с комбинированным смесеобразованием и принудительным воспламенением : канд. техн. наук : 05.08.05 / Каргин Сергей Александрович. Астрахань, 2006. 177 с.
- 24. Каменев, В.Ф. Научные основы и пути совершенствования токсических характеристик автомобильных двигателей с искровым зажиганием: Дисс. . докт.техн.наук: 05.04.02 ГНЦ НАМИ / Каменев Владимир Федорович. Москва, 1996. 454 с.
- 25. Кутенёв, В.Ф. Комплексное решение проблем снижения выбросов вредных веществ и расхода топлива автомобильными двигателями. Автореф. дисс. докт. техн. наук. 05.04.02 / Кутенёв Вадим Федорович. М.: МАМИ. 1990. 45 с.
- 26. Машиностроение. Энциклопедия [Текст] /: в 40 т. / гл. ред. К.В. Фролов (пред.) и др.— М.: Машиностроение, 2013.- Т. IV-14: Двигатели внутреннего сгорания.- 784с.
- 27. Семенов, Е.С. Исследование турбулентности в цилиндре поршневого двигателя [Текст] // Е.С. Семенов, А.С. Соколик // Известия АН СССР. 1958. № 8. С. 130-140.
- 28. Смоленская, Н.М. Исследование эффективности рабочего процесса бензиновых двигателей с использованием электропроводности пламени [Текст] / Н.М. Смоленская, В.В. Смоленский, П.В. Ивашин, А.П. Шайкин // ВНТК "Проведение научных исследований в области машиностроения". 27-28 ноября 2009. Тольятти: Изд-во ТГУ. 2009. С.244-250.
- 29. Стечкин, Б.С. Индикаторная диаграмма, динамика тепловыделения и рабочий цикл быстроходного поршневого двигателя [Текст] / Б.С. Стечкин, К.И. Генкин, В.С. Золотаревский. М.: АН СССР, 1960. 200 с.
- 30. Рахимов, Р.Р. Улучшение показателей двигателей с искровым зажиганием путем интенсификации сгорания бедных смесей : автореферат дис. ... кандидата технических наук / Р. Р. Рахимов. Волгоград: ВолГТУ, 1999.

ПРИЛОЖЕНИЕ А

Таблица A1 - Результаты теплового расчета проектируемого двигателя при $n=900~\text{миH}^{-1}$

						ИСХ	КОДНЫЕ Д	ДАННЫЕ											
	Q	f	a	e	m		Py	Ty	Va	z	E2	g		1	r	n			
	15	40	1	10,5	1,0524	1	,833	768,617	1,002	0,9000	49,7618	0,04		0,264	4 :	3			
	P	асчёт про	оцесса	сгораг	ния											<u>.</u>			
f	f1	Vст	s	y(f1		2	Тпред	T1	T2	Т2истин	a T1-2	k	:1-2	K1-2	D X1-2	Р	m	m1-2	Χ
0	-15	0,11494	0,0429	1,203	397 1,3	E-06	768,6169	768,6169	774,7934	768,6169	771,7	052			2,7E-06	1,83349	1	1	0
1	-14	0,11245	0,0374	1,177	789 2E	-05	774,7934	774,7934	781,1302	774,8006	777,9	618 1	1,3584	6,5805	4E-05	1,88917	1	1	2,7E-06
2	-13	0,11013	0,0323	1,153	355 8,8	E-05	781,1302	781,1302	788,1034	781,1522	784,6	168 1	1,3576	6,593	0,00018	1,94484	1	1	4,32E-05
3	-12	0,10797	0,0276	1,130	0,00	0024	788,1034	788,1034	796,3754	788,1415	792,2	394 1	1,3567	6,6062	0,00047	2,00143	1	1	0,000219
4	-11	0,10598	0,0232	1,110	0,0	0005	796,3754	796,3754	806,7945	796,4314	801,5	585 1	1,3558	6,6212	0,00099	2,06044	1	1	0,000691
5	-10	0,10417	0,0192	1,091	111 0,0	0009	806,7945	806,7945	820,3812	806,8691	813,5	879 1	1,3546	6,6394	0,00181	2,12395	1,0001	1,0001	0,001685
6	-9	0,10252	0,0155	1,073	385 0,00	0148	820,3812	820,3812	838,3046	820,4714	829,3	429 1	1,3532	6,6623	0,00297	2,19461	1,0002	1,0001	0,003491
7	-8	0,10104	0,0123	1,058	339 0,00	0227	838,3046	838,3046	861,8467	838,3985	850,0	756 1	1,3514	6,6917	0,00453	2,27559	1,0003	1,0003	0,006458
8	-7	0,09974	0,0094	1,044	173 0,00	0328	861,8467	861,8467	892,352	861,9164	877,0	993 1	1,3491	6,7292	0,00656	2,37046	1,0006	1,0004	0,010992
9	-6	0,09861	0,0069	1,032	288 0,00	0454	892,352	892,352	931,1622	892,3441	911,7	571 1	1,3463	6,776	0,00907	2,48299	1,0009	1,0007	0,017549
10	-5	0,09765	0,0048	1,022	285 0,00	0606	931,1622	931,1622	979,5392	930,99	955,3	507 1	1,3429	6,8331	0,01211	2,61698	1,0013	1,0011	0,026624
11	-4	0,09686	0,0031	1,014	163 0,00	0784	979,5392	979,5392	1038,58	979,077	1009	,06	1,339	6,9004	0,01568	2,77592	1,0019	1,0016	0,038738
12	-3	0,09625	0,0017	1,008	323 0,00	0988	1038,58	1038,58	1109,129	1037,665	1073,	854 1	1,3346	6,9772	0,01976	2,96276	1,0027	1,0023	0,054418
13	-2	0,09582	0,0008	1,003	366 0,0°	1215	1109,129	1109,129	1191,697	1107,571	1150,	413 1	1,3299	7,062	0,0243	3,17958	1,0037	1,0032	0,074175
14	-1	0,09556	0,0002	1,000	0,0°	1461	1191,697	1191,697	1286,388	1189,295	1239,	043 1	1,3251	7,1526	0,02922	3,42733	1,0049	1,0043	0,098471
15	0	0,09547	0	1	0,0	172	1286,388	1286,388	1392,839	1282,954	1339,	614 1	1,3202	7,2463	0,0344	3,70558	1,0064	1,0057	0,127688
16	1	0,09556	0,0002	1,000	0,0°	1985	1392,839	1392,839	1510,177	1388,219	1451,	508 1	1,3154	7,3405	0,03969	4,01232	1,0081	1,0073	0,16209
17	2	0,09582	0,0008	1,003	366 0,02	2245	1510,177	1510,177	1637,001	1504,27	1573,	589 1	1,3109	7,4328	0,0449	4,34387	1,0101	1,0091	0,201784
18	3	0,09625	0,0017	1,008	323 0,0	249	1637,001	1637,001	1771,385	1629,769	1704,	193 1	1,3067	7,5209	0,0498	4,6948	1,0124	1,0113	0,246685
19	4	0,09686	0,0031	1,014	163 0,02	2707	1771,385	1771,385	1910,923	1762,858	1841,	154 1	1,3029	7,6033	0,05415	5,05804	1,0149	1,0137	0,296483
20	5	0,09765	0,0048	1,022	285 0,02	2885	1910,923	1910,923	2052,803	1901,187	1981,	863 1	1,2995	7,6788	0,05769	5,42505	1,0176	1,0163	0,350628
21	6	0,09861	0,0069	1,032	288 0,03	3011	2052,803	2052,803	2193,931	2041,995	2123,	367 1	1,2964	7,7466	0,06022	5,78618	1,0205	1,0191	0,408323
22	7	0,09974	0,0094	1,044	173 0,03	3076	2193,931	2193,931	2331,082	2182,218	2262,	506 1	1,2938	7,8065	0,06151	6,13115	1,0236	1,022	0,468539
23	8	0,10104	0,0123	1,058	339 0,03	3073	2331,082	2331,082	2461,093	2318,647	2396,	087 1	1,2916	7,8583	0,06145	6,44964	1,0266	1,0251	0,530052

24	9	0,10252	0,0155	1,07385	0,02999	2461,093	2461,093	2581,053	2448,119	2521,073	1,2898	7,9023	0,05998	6,73197	1,0297	1,0282	0,591505
25	10	0,10417	0,0192	1,09111	0,02857	2581,053	2581,053	2688,499	2567,709	2634,776	1,2882	7,9389	0,05713	6,9698	1,0327	1,0312	0,651486
26	11	0,10598	0,0232	1,11015	0,02652	2688,499	2688,499	2781,576	2674,931	2735,038	1,287	7,9686	0,05304	7,15668	1,0356	1,0342	0,708618
27	12	0,10797	0,0276	1,13096	0,02397	2781,576	2781,576	2859,152	2767,903	2820,364	1,286	7,992	0,04794	7,28859	1,0383	1,037	0,761661
28	13	0,11013	0,0323	1,15355	0,02105	2859,152	2859,152	2920,865	2845,462	2890,008	1,2853	8,0098	0,04211	7,36411	1,0407	1,0395	0,809597
29	14	0,11245	0,0374	1,17789	0,01795	2920,865	2920,865	2967,1	2907,219	2943,982	1,2848	8,0227	0,0359	7,38452	1,0428	1,0418	0,851705
30	15	0,11494	0,0429	1,20397	0,01483	2967,1	2967,1	2998,9	2953,537	2983	1,2844	8,0315	0,02966	7,35346	1,0446	1,0437	0,887605
31	16	0,1176	0,0488	1,23178	0,01185	2998,9	2998,9	3017,815	2985,439	3008,358	1,2842	8,0369	0,0237	7,27652	1,0461	1,0454	0,917261
32	17	0,12041	0,055	1,26131	0,00914	3017,815	3017,815	3025,722	3004,464	3021,769	1,2841	8,0394	0,01828	7,16061	1,0473	1,0467	0,940959
33	18	0,1234	0,0616	1,29255	0,0068	3025,722	3025,722	3024,627	3012,479	3025,174	1,2841	8,0398	0,0136	7,01328	1,0482	1,0478	0,959243
34	19	0,12654	0,0685	1,32547	0,00486	3024,627	3024,627	3016,495	3011,489	3020,561	1,2842	8,0385	0,00973	6,84205	1,0489	1,0486	0,97284
35	20	0,12984	0,0758	1,36007	0,00334	3016,495	3016,495	3003,112	3003,457	3009,804	1,2843	8,036	0,00668	6,65394	1,0494	1,0491	0,982566
36	21	0,1333	0,0834	1,39632	0,0022	3003,112	3003,112	2985,994	2990,17	2994,553	1,2844	8,0326	0,00439	6,45504	1,0497	1,0496	0,989245
37	22	0,13692	0,0914	1,43422	0,00138	2985,994	2985,994	2966,351	2973,144	2976,172	1,2846	8,0285	0,00276	6,25036	1,0499	1,0498	0,993637
38	23	0,14069	0,0997	1,47373	0,00083	2966,351	2966,351	2945,092	2953,591	2955,721	1,2847	8,024	0,00166	6,0438	1,0501	1,05	0,996399
39	24	0,14462	0,1084	1,51485	0,00047	2945,092	2945,092	2922,866	2932,422	2933,979	1,2849	8,0193	0,00094	5,83823	1,0502	1,0501	0,998055
40	25	0,1487	0,1174	1,55755	0,00026	2922,866	2922,866	2900,109	2910,284	2911,487	1,2851	8,0143	0,00051	5,63566	1,0502	1,0502	0,999

Таблица A2 - Результаты теплового расчета проектируемого двигателя при ${\sf n}=2000~{\sf мин}^{-1}$

						ИСХОДІ	НЫЕ ДАНН	ЫЕ								_	
	Q	f	a	e	m	Py	Ту	Va	Z	E2	g	1	1	n			
	20	50	1	10,5	1,05243	1,481636	5 727,110	8 1,0387	92 0,923	49,56278	0,036466	0,2644	068 3	,2			
	P	асчёт про	оцесса сг	орания													
f	f1	Vст	s	y(f1)	X1-2	Тпред	T1	T2	Т2истина	T1-2	k1-2	K1-2	DX1-2	Р	m	m1-2	X
0	-20	0,13456	0,07580	1,36007	0,00000	727,1108	727,1108	733,9924	727,1108	730,5516			0,00000	1,48164	1	1	0
1	-19	0,13113	0,06852	1,32547	0,00000	733,9924	733,9924	740,8621	733,9924	737,4273	1,36399	6,49467	0,00001	1,53470	1	1	1E-(
2	-18	0,12787	0,06159	1,29255	0,00002	740,8621	740,8621	747,8422	740,8621	744,3522	1,36301	6,50950	0,00004	1,58852	1	1	2E-0
3	-17	0,12478	0,05501	1,26131	0,00006	747,8422	747,8422	755,1243	747,842	751,4833	1,36204	6,52425	0,00012	1,64320	1	1	0,00
4	-16	0,12186	0,04880	1,23178	0,00013	755,1243	755,1243	762,973	755,1238	759,0487	1,36106	6,53926	0,00027	1,69898	1	1,00001	0,00
5	-15	0,11911	0,04294	1,20397	0,00025	762,973	762,973	771,7277	762,9722	767,3504	1,36004	6,55498	0,00050	1,75632	1	1,00002	0,00
6	-14	0,11653	0,03745	1,17789	0,00043	771,7277	771,7277	781,8019	771,7264	776,7648	1,35894	6,57201	0,00085	1,81584	1	1,00003	0,00
7	-13	0,11412	0,03233	1,15355	0,00067	781,8019	781,8019	793,6811	781,7999	787,7415	1,35772	6,59104	0,00134	1,87842	1,0001	1,00007	0,00

				1		1		1	1	Т	1	T	1	1	1	1	
8	-12	0,11189	0,02757	1,13096	0,00100	793,6811	793,6811	807,9174	793,6782	800,7993	1,35633	6,61284	0,00200	1,94514	1,0002	1,00012	0,00
9	-11	0,10983	0,02319	1,11015	0,00142	807,9174	807,9174	825,1199	807,913	816,5186	1,35472	6,63824	0,00285	2,01733	1,0003	1,00021	0,01
10	-10	0,10795	0,01918	1,09111	0,00195	825,1199	825,1199	845,9429	825,1133	835,5314	1,35285	6,66805	0,00390	2,09648	1,0004	1,00033	0,01
11	-9	0,10624	0,01555	1,07385	0,00260	845,9429	845,9429	871,0685	845,9332	858,5057	1,35069	6,70303	0,00520	2,18429	1,0006	1,0005	0,02
12	-8	0,10471	0,01229	1,05839	0,00337	871,0685	871,0685	901,1863	871,0542	886,1274	1,34820	6,74379	0,00674	2,28254	1,0009	1,00073	0,03
13	-7	0,10336	0,00942	1,04473	0,00428	901,1863	901,1863	936,9698	901,1654	919,0781	1,34538	6,79073	0,00856	2,39304	1,0012	1,00103	0,04
14	-6	0,10219	0,00692	1,03288	0,00532	936,9698	936,9698	979,0498	936,9398	958,0098	1,34223	6,84397	0,01065	2,51756	1,0016	1,00142	0,06
15	-5	0,10119	0,00481	1,02285	0,00651	979,0498	979,0498	1027,988	979,0077	1003,519	1,33879	6,90332	0,01302	2,65770	1,0022	1,00191	0,08
16	-4	0,10038	0,00308	1,01463	0,00783	1027,988	1027,988	1084,246	1027,93	1056,117	1,33511	6,96824	0,01566	2,81479	1,0028	1,00251	0,11
17	-3	0,09975	0,00173	1,00823	0,00928	1084,246	1084,246	1148,161	1084,169	1116,204	1,33124	7,03791	0,01855	2,98979	1,0036	1,00323	0,14
18	-2	0,09929	0,00077	1,00366	0,01084	1148,161	1148,161	1219,918	1148,062	1184,04	1,32727	7,11124	0,02167	3,18315	1,0046	1,0041	0,17
19	-1	0,09902	0,00019	1,00091	0,01249	1219,918	1219,918	1299,521	1219,792	1259,72	1,32326	7,18697	0,02498	3,39474	1,0057	1,00511	0,21
20	0	0,09893	0,00000	1,00000	0,01421	1299,521	1299,521	1386,776	1299,368	1343,149	1,31930	7,26377	0,02842	3,62376	1,0069	1,00629	0,26
21	1	0,09902	0,00019	1,00091	0,01596	1386,776	1386,776	1481,264	1386,594	1434,02	1,31544	7,34032	0,03192	3,86867	1,0084	1,00764	0,31
22	2	0,09929	0,00077	1,00366	0,01770	1481,264	1481,264	1582,337	1481,054	1531,801	1,31175	7,41540	0,03540	4,12716	1,01	1,00917	0,36
23	3	0,09975	0,00173	1,00823	0,01938	1582,337	1582,337	1689,103	1582,102	1635,72	1,30827	7,48791	0,03876	4,39616	1,0118	1,01087	0,42
24	4	0,10038	0,00308	1,01463	0,02095	1689,103	1689,103	1800,435	1688,845	1744,769	1,30502	7,55698	0,04189	4,67184	1,0137	1,01275	0,48
25	5	0,10119	0,00481	1,02285	0,02235	1800,435	1800,435	1914,981	1800,158	1857,708	1,30203	7,62188	0,04470	4,94969	1,0158	1,01479	0,54
26	6	0,10219	0,00692	1,03288	0,02353	1914,981	1914,981	2031,198	1914,691	1973,089	1,29931	7,68211	0,04706	5,22470	1,0181	1,01698	0,60
27	7	0,10336	0,00942	1,04473	0,02443	2031,198	2031,198	2147,389	2030,9	2089,293	1,29685	7,73731	0,04886	5,49145	1,0205	1,0193	0,66
28	8	0,10471	0,01229	1,05839	0,02501	2147,389	2147,389	2261,761	2147,088	2204,575	1,29467	7,78731	0,05002	5,74433	1,023	1,02173	0,71
29	9	0,10624	0,01555	1,07385	0,02523	2261,761	2261,761	2372,493	2261,462	2317,127	1,29274	7,83204	0,05046	5,97781	1,0255	1,02423	0,76
30	10	0,10795	0,01918	1,09111	0,02507	2372,493	2372,493	2477,806	2372,199	2425,15	1,29106	7,87155	0,05013	6,18668	1,028	1,02677	0,81
31	11	0,10983	0,02319	1,11015	0,02451	2477,806	2477,806	2576,049	2477,521	2526,928	1,28960	7,90599	0,04902	6,36628	1,0306	1,02931	0,85
32	12	0,11189	0,02757	1,13096	0,02357	2576,049	2576,049	2665,77	2575,775	2620,909	1,28837	7,93556	0,04714	6,51276	1,0331	1,03182	0,88
33	13	0,11412	0,03233	1,15355	0,02227	2665,77	2665,77	2745,785	2665,507	2705,777	1,28733	7,96053	0,04454	6,62328	1,0354	1,03425	0,91
34	14	0,11653	0,03745	1,17789	0,02067	2745,785	2745,785	2815,237	2745,535	2780,511	1,28648	7,98121	0,04134	6,69615	1,0377	1,03657	0,94
35	15	0,11911	0,04294	1,20397	0,01882	2815,237	2815,237	2873,628	2814,999	2844,432	1,28580	7,99794	0,03763	6,73092	1,0398	1,03874	0,95
36	16	0,12186	0,04880	1,23178	0,01679	2873,628	2873,628	2920,832	2873,401	2897,23	1,28526	8,01107	0,03359	6,72834	1,0417	1,04074	0,97
37	17	0,12478	0,05501	1,26131	0,01468	2920,832	2920,832	2957,084	2920,614	2938,958	1,28486	8,02099	0,02935	6,69033	1,0434	1,04254	0,98
38	18	0,12787	0,06159	1,29255	0,01255	2957,084	2957,084	2982,948	2956,875	2970,016	1,28457	8,02807	0,02509	6,61981	1,0449	1,04414	0,98
39	19	0,13113	0,06852	1,32547	0,01048	2982,948	2982,948	2999,258	2982,746	2991,103	1,28439	8,03268	0,02097	6,52044	1,0461	1,04551	0,99
40	20	0,13456	0,07580	1,36007	0,00855	2999,258	2999,258	3007,047	2999,06	3003,152	1,28429	8,03519	0,01710	6,39645	1,0472	1,04668	0,99

	- 1			,				ı			1			_	_	T	1
41	21	0,13814	0,08344	1,39632	0,00680	3007,047	3007,047	3007,474	3006,853	3007,26	1,284256	8,03592	0,01360	6,25231	1,0481	1,04764	0,99
42	22	0,14189	0,09141	1,43422	0,00527	3007,474	3007,474	3001,744	3007,282	3004,609	1,284285	8,03520	0,01053	6,09250	1,0488	1,04842	0,99
43	23	0,14580	0,09973	1,47373	0,00397	3001,744	3001,744	2991,034	3001,553	2996,389	1,284362	8,03330	0,00794	5,92129	1,0493	1,04903	
44	24	0,14987	0,10839	1,51485	0,00290	2991,034	2991,034	2976,439	2990,843	2983,737	1,284476	8,03047	0,00581	5,74258	1,0497	1,04949	
45	25	0,15409	0,11738	1,55755	0,00206	2976,439	2976,439	2958,928	2976,248	2967,684	1,28462	8,02692	0,00413	5,55973	1,05	1,04984	
46	26	0,15847	0,12670	1,60181	0,00142	2958,928	2958,928	2939,322	2958,736	2949,125	1,284786	8,02282	0,00284	5,37557	1,0502	1,05009	
47	27	0,16300	0,13634	1,64762	0,00094	2939,322	2939,322	2918,286	2939,128	2928,804	1,284968	8,01833	0,00189	5,19236	1,0503	1,05027	
48	28	0,16768	0,14630	1,69494	0,00061	2918,286	2918,286	2896,338	2918,09	2907,312	1,285163	8,01354	0,00122	5,01183	1,0504	1,05039	
49	29	0,17252	0,15658	1,74377	0,00038	2896,338	2896,338	2873,866	2896,141	2885,102	1,285366	8,00854	0,00075	4,83522	1,0505	1,05047	
50	30	0,17749	0,16717	1,79406	0,00023	2873,866	2873,866	2851,149	2873,668	2862,507	1,285575	8,00340	0,00045	4,66342	1,0505	1,05052	

Таблица A3 - Результаты теплового расчета проектируемого двигателя при n = 3400 мин⁻¹

						ИСХО	ЭДНЫЕ ,	ДАННЫЕ										•	
	Q	f	a	e	m	F	Ру	Ту	Va	Z	E	2	g	1	m				
;	30	60	1	10,5	1,052	24 0,9	772	651,6674	1,0701	0,96	50,1	665	0,0339	0,264	4 3,4				
	P	асчёт про	оцесса	сгоран	кин														
f	f1	Vст	s	У(£1)	X1-2	Тпред	T1	T2	Т2и	стина	T1-2	k1-2	K1-2	DX1-2	Р	m	m1-2	Χ
0	-30	0,1828	0,1672	2 1,	7941	5,2E-08	651,6674	651,667	4 659,718	4 651	,6674	655,692	.9		1,04E-07	0,97722	1	1	0
1	-29	0,1777	0,1566	6 1,	7438	1E-06	659,7184	659,718	4 666,814	658	3,6808	663,266	3 1,37598	6,3195	2,08E-06	1,01623	1	1	1,04E-07
2	-28	0,1727	0,1463	3 1,	6949	5,4E-06	666,8143	666,814	3 674,020	3 665	5,7655	670,417	3 1,37464	6,33846	1,08E-05	1,05675	1	1	2,19E-06
3	-27	0,1679	0,1363	3 1,	6476	1,7E-05	674,0203	674,020	681,400	2 672	2,9603	677,710	3 1,37341	6,35611	3,32E-05	1,09885	1	1	1,3E-05
4	-26	0,1632	0,1267	7 1,	6018	3,9E-05	681,4002	681,400	2 689,047	1 680	,3288	685,223	7 1,37217	6,37384	7,71E-05	1,14265	1	1	4,62E-05
5	-25	0,1587	0,1174	4 1,	5575	7,6E-05	689,0471	689,047	1 697,086	3 687	,9642	693,066	7 1,37093	6,39184	0,000152	1,18831	1,00001	1	0,000123
6	-24	0,1544	0,1084	4 1,	5148	0,00013	697,0863	697,0863	3 705,677	695	,9917	701,381	6 1,36966	6,41035	0,000267	1,23607	1,00001	1,00001	0,000275
7	-23	0,1502	0,0997	7 1,	4737	0,00022	705,677	705,677	715,013	8 704	,5708	710,345	4 1,36835	6,42967	0,000433	1,28624	1,00003	1,00002	0,000542
8	-22	0,1462	0,0914	4 1,	4342	0,00033	715,0138	715,013	8 725,327	4 71:	3,896	720,170	6 1,36696	6,45016	0,000661	1,33919	1,00005	1,00004	0,000975
9	-21	0,1423	0,0834	4 1,	3963	0,00048	725,3274	725,327	4 736,883	9 724	,1978	731,105	6 1,36548	6,47222	0,000964	1,39542	1,00008	1,00007	0,001636
10	-20	0,1386	0,0758	8 1,	3601	0,00068	736,8839	736,8839	9 749,984	3 735	5,7426	743,434	1,36388	6,49629	0,001352	1,45552	1,00013	1,00011	0,0026
11	-19	0,1351	0,0685	5 1,	3255	0,00092	749,9843	749,984	3 764,961	7 748	3,8313	757,47	3 1,36213	6,52285	0,001838	1,52017	1,0002	1,00017	0,003951
12	-18	0,1317	0,0616	6 1,	2925	0,00122	764,9617	764,961	7 782,178	1 763	3,7969	773,569	9 1,36021	6,55235	0,002434	1,59017	1,00029	1,00025	0,005789
13	-17	0,1285	0,055	1,	2613	0,00158	782,1781	782,178	1 802,019	1 781	,0014	792,098	6 1,35809	6,58525	0,003152	1,66644	1,00042	1,00036	0,008223
14	-16	0,1255	0,0488	8 1,	2318	0,002	802,0191	802,019	1 824,887	7 800	,8304	813,453	4 1,35575	6,62194	0,004004	1,74996	1,00058	1,0005	0,011375

15 -15 0,1227 0,0429 1,204 0,0025 824,8877 824,8877 851,1964 823,6869 838,042 1,35319 6,66273 0,004999 1,84182 1,00078 1,00068 16 -14 0,12 0,0374 1,1779 0,00307 851,1964 851,1964 881,3583 849,9835 866,2773 1,3504 6,70783 0,006146 1,94315 1,00103 1,00091 17 -13 0,1176 0,0323 1,1535 0,00373 881,3583 881,3583 915,7771 880,1334 898,5677 1,34739 6,75729 0,007454 2,05511 1,00135 1,00119 18 -12 0,1153 0,0276 1,131 0,00446 915,7771 915,7771 954,8359 994,8359 994,84359 994,84359 998,8853 953,5872 976,8606 1,34079 6,86877 0,010568 2,31542 1,00218 1,00195 20 -10 0,1112 0,0192 1,0911 0,00619 998,8853 998,8853	0,015379 0,020378 0,026524 0,033978 0,042906 0,053474 0,065848 0,08019 0,096651
17 -13 0,1176 0,0323 1,1535 0,00373 881,3583 915,7771 880,1334 898,5677 1,34739 6,75729 0,007454 2,05511 1,00135 1,00119 18 -12 0,1153 0,0276 1,131 0,00446 915,7771 915,7771 954,8359 914,5402 935,3065 1,34417 6,81102 0,008927 2,17884 1,00172 1,00153 19 -11 0,1131 0,0232 1,1101 0,00528 954,8359 954,8359 998,8853 953,5872 976,8606 1,34079 6,86877 0,010568 2,31542 1,00218 1,00195 20 -10 0,1112 0,0192 1,0911 0,00619 998,8853 998,8853 1048,232 997,6256 1023,559 1,33726 6,93013 0,012375 2,46584 1,00271 1,00244 21 -9 0,1094 0,0155 1,0739 0,00717 1048,232 1048,232 1046,962 1075,679 1,33364 6,99453 0,01434	0,026524 0,033978 0,042906 0,053474 0,065848 0,08019 0,096651
18 -12 0,1153 0,0276 1,131 0,00446 915,7771 915,7771 954,8359 914,5402 935,3065 1,34417 6,81102 0,008927 2,17884 1,00172 1,00153 19 -11 0,1131 0,0232 1,1101 0,00528 954,8359 954,8359 998,8853 953,5872 976,8606 1,34079 6,86877 0,010568 2,31542 1,00218 1,00195 20 -10 0,1112 0,0192 1,0911 0,00619 998,8853 998,8853 1048,232 997,6256 1023,559 1,33726 6,93013 0,012375 2,46584 1,00271 1,00244 21 -9 0,1094 0,0155 1,0739 0,00717 1048,232 1048,232 1046,962 1075,679 1,33364 6,99453 0,014342 2,63089 1,00334 1,00303	0,033978 0,042906 0,053474 0,065848 0,08019 0,096651
19 -11 0,1131 0,0232 1,1101 0,00528 954,8359 954,8359 998,8853 953,5872 976,8606 1,34079 6,86877 0,010568 2,31542 1,00218 1,00195 20 -10 0,1112 0,0192 1,0911 0,00619 998,8853 998,8853 1048,232 997,6256 1023,559 1,33726 6,93013 0,012375 2,46584 1,00271 1,00244 21 -9 0,1094 0,0155 1,0739 0,00717 1048,232 1103,126 1046,962 1075,679 1,33364 6,99453 0,014342 2,63089 1,00334 1,00303	0,042906 0,053474 0,065848 0,08019 0,096651
20 -10 0,1112 0,0192 1,0911 0,00619 998,8853 998,8853 1048,232 997,6256 1023,559 1,33726 6,93013 0,012375 2,46584 1,00271 1,00244 21 -9 0,1094 0,0155 1,0739 0,00717 1048,232 1048,232 1103,126 1046,962 1075,679 1,33364 6,99453 0,014342 2,63089 1,00334 1,00303	0,053474 0,065848 0,08019 0,096651
21 -9 0,1094 0,0155 1,0739 0,00717 1048,232 1048,232 1103,126 1046,962 1075,679 1,33364 6,99453 0,014342 2,63089 1,00334 1,00303	0,065848 0,08019 0,096651
	0,08019
22 -8 0 1079 0 0123 1 10584 0 00823 1 103 126 1 103 126 1 1163 748 1 1101 847 1 1133 437 1 32996 7 06129 1 0 01646 1 2 81115 1 00407 1 0037 1	0,096651
22 0 0,1077 0,0123 1,0504 0,00023 1105,120 1105,120 1101,047 1105,457 1105,457 1,057/0 1,00127 0,01040 2,01115 1,0047 1,0057	
23 -7 0,1065 0,0094 1,0447 0,00936 1163,748 1163,748 1230,197 1162,462 1196,973 1,32628 7,12966 0,018714 3,00692 1,0049 1,00448	0.115264
24 -6 0,1053 0,0069 1,0329 0,01054 1230,197 1230,197 1302,478 1228,906 1266,338 1,32264 7,19884 0,021081 3,21811 1,00585 1,00538	0,115364
25 -5 0,1042 0,0048 1,0228 0,01177 1302,478 1302,478 1380,49 1301,184 1341,484 1,31908 7,26803 0,023535 3,44428 1,00692 1,00639	0,136445
26 -4 0,1034 0,0031 1,0146 0,01302 1380,49 1380,49 1464,016 1379,196 1422,253 1,31563 7,33644 0,026041 3,68449 1,00811 1,00752	0,159979
27 -3 0,1028 0,0017 1,0082 0,01428 1464,016 1464,016 1552,715 1462,726 1508,365 1,31233 7,40338 0,028559 3,93734 1,00943 1,00877	0,18602
28 -2 0,1023 0,0008 1,0037 0,01552 1552,715 1552,715 1646,113 1551,431 1599,414 1,3092 7,46822 0,031043 4,20089 1,01088 1,01016	0,21458
29 -1 0,102 0,0002 1,0009 0,01672 1646,113 1646,113 1743,605 1644,839 1694,859 1,30626 7,53042 0,033441 4,47271 1,01246 1,01167	0,245623
30 0 0,1019 0 1 0,01785 1743,605 1743,605 1844,45 1742,343 1794,027 1,30351 7,58954 0,035697 4,74984 1,01415 1,0133	0,279064
31 1 0,102 0,0002 1,0009 0,01888 1844,45 1844,45 1947,782 1843,204 1896,116 1,30097 7,64526 0,037752 5,0289 1,01596 1,01506	0,314761
32 2 0,1023 0,0008 1,0037 0,01977 1947,782 1947,782 2052,62 1946,553 2000,201 1,29863 7,69732 0,039546 5,30607 1,01788 1,01692	0,352513
33 3 0,1028 0,0017 1,0082 0,02051 2052,62 2052,62 2157,887 2051,412 2105,253 1,29649 7,74557 0,041021 5,57727 1,01988 1,01888	0,392059
34 4 0,1034 0,0031 1,0146 0,02106 2157,887 2157,887 2262,431 2156,7 2210,159 1,29455 7,78992 0,042122 5,83824 1,02196 1,02092	0,43308
35 5 0,1042 0,0048 1,0228 0,0214 2262,431 2262,431 2365,056 2261,266 2313,743 1,29281 7,83036 0,042804 6,08465 1,0241 1,02303	0,475202
36 6 0,1053 0,0069 1,0329 0,02151 2365,056 2365,056 2464,557 2363,915 2414,806 1,29125 7,86691 0,043027 6,3123 1,02627 1,02518	0,518006
37 7 0,1065 0,0094 1,0447 0,02138 2464,557 2464,557 2559,753 2463,439 2512,155 1,28987 7,89965 0,042768 6,51725 1,02845 1,02736	0,561033
38 8 0,1079 0,0123 1,0584 0,02101 2559,753 2559,753 2649,53 2558,658 2604,642 1,28865 7,9287 0,042015 6,69595 1,03062 1,02954	0,6038
39 9 0,1094 0,0155 1,0739 0,02039 2649,53 2649,53 2732,878 2648,459 2691,204 1,2876 7,9542 0,040776 6,84543 1,03275 1,03169	0,645815
40 10 0,1112 0,0192 1,0911 0,01954 2732,878 2732,878 2808,926 2731,829 2770,902 1,28668 7,97632 0,039074 6,9634 1,03482 1,03379	0,686592
41 11 0,1131 0,0232 1,1101 0,01848 2808,926 2808,926 2876,974 2807,898 2842,95 1,28591 7,99524 0,036951 7,04833 1,0368 1,03581	0,725666
42 12 0,1153 0,0276 1,131 0,01723 2876,974 2876,974 2936,515 2875,965 2906,744 1,28526 8,01117 0,034465 7,0995 1,03868 1,03774	0,762617
43 13 0,1176 0,0323 1,1535 0,01584 2936,515 2936,515 2987,256 2935,525 2961,886 1,28472 8,02433 0,031685 7,11707 1,04042 1,03955	0,797082
44 14 0,12 0,0374 1,1779 0,01435 2987,256 2987,256 3029,118 2986,284 3008,187 1,2843 8,03492 0,028695 7,10197 1,04203 1,04123	0,828767
45 15 0,1227 0,0429 1,204 0,01279 3029,118 3029,118 3062,235 3028,162 3045,677 1,28396 8,04319 0,025582 7,05591 1,04349 1,04276	0,857462
46 16 0,1255 0,0488 1,2318 0,01122 3062,235 3062,235 3086,936 3061,293 3074,586 1,28371 8,04935 0,022436 6,98125 1,04478 1,04413	0,883044
47 17 0,1285 0,055 1,2613 0,00967 3086,936 3086,936 3103,723 3086,007 3095,33 1,28354 8,05363 0,019343 6,88085 1,04592 1,04535	0,90548

48	18	0,1317	0,0616	1,2925	0,00819	3103,723	3103,723	3113,237	3102,805	3108,48	1,28344	8,05625	0,016381	6,75796	1,0469	1,04641	0,924823
49	19	0,1351	0,0685	1,3255	0,00681	3113,237	3113,237	3116,222	3112,329	3114,73	1,28339	8,05742	0,013616	6,61605	1,04773	1,04732	0,941203
50	20	0,1386	0,0758	1,3601	0,00555	3116,222	3116,222	3113,484	3115,324	3114,853	1,28339	8,05734	0,011101	6,45864	1,04842	1,04808	0,95482
51	21	0,1423	0,0834	1,3963	0,00443	3113,484	3113,484	3105,852	3112,594	3109,668	1,28344	8,0562	0,008868	6,28919	1,04899	1,0487	0,96592
52	22	0,1462	0,0914	1,4342	0,00347	3105,852	3105,852	3094,143	3104,969	3099,998	1,28352	8,05418	0,006936	6,11098	1,04944	1,04921	0,974789
53	23	0,1502	0,0997	1,4737	0,00265	3094,143	3094,143	3079,127	3093,266	3086,635	1,28363	8,05142	0,005307	5,92697	1,04979	1,04961	0,981725
54	24	0,1544	0,1084	1,5148	0,00198	3079,127	3079,127	3061,51	3078,257	3070,319	1,28377	8,04806	0,003969	5,73982	1,05006	1,04992	0,987032
55	25	0,1587	0,1174	1,5575	0,00145	3061,51	3061,51	3041,914	3060,645	3051,712	1,28392	8,04422	0,002898	5,55176	1,05026	1,05016	0,991001
56	26	0,1632	0,1267	1,6018	0,00103	3041,914	3041,914	3020,867	3041,054	3031,39	1,28409	8,04002	0,002064	5,36468	1,0504	1,05033	0,993899
57	27	0,1679	0,1363	1,6476	0,00072	3020,867	3020,867	2998,808	3020,012	3009,837	1,28427	8,03552	0,001433	5,18008	1,05051	1,05046	0,995963
58	28	0,1727	0,1463	1,6949	0,00048	2998,808	2998,808	2976,09	2997,958	2987,449	1,28446	8,03079	0,000968	4,99909	1,05058	1,05055	0,997396
59	29	0,1777	0,1566	1,7438	0,00032	2976,09	2976,09	2952,985	2975,245	2964,538	1,28466	8,02591	0,000636	4,82259	1,05063	1,05061	0,998364
60	30	0,1828	0,1672	1,7941	0,0002	2952,985	2952,985	2929,702	2952,145	2941,343	1,28486	8,02089	0,000406	4,65117	1,05066	1,05065	0,999

Таблица A4 - Результаты теплового расчета проектируемого двигателя при ${\rm n}=5600~{\rm мин}^{-1}$

						ИСХО	ОДНЫЕ Д	ДАННЫЕ											
	Q	f	a	e	m	F	Ру	Ту	Va	Z	E2	2	g	1	m				
	40	70	1	10,5	1,052	2 0,6	648 5	573,433	1,074	0,97	50,6	97 0,	,030	0,264	3,6				
	F	асчёт про	оцесса	сгоран	ния														
f	f1	Vст	s	у(:	f1)	X1-2	Тпред	T1	T2	Т2ис	стина	T1-2	k1-2	K1-2	□X1-2	Р	m	m1-2	Х
0	-40	0,2427	0,289	2,	,3727	1,1E-08	573,433	573,4332	579,58	573	3,433	576,508			2,25E-08	0,64774	1	1	0
1	-39	0,2362	0,2756	5 2	2,309	2,6E-07	579,582	579,582	585,83	579	,582	582,708	1,39204	6,101488	5,23E-07	0,67273	1	1	2,25E-08
2	-38	0,2298	0,2624	- 2,	,2466	1,5E-06	585,834	585,8337	592,2	585	5,834	589,018	1,39063	6,119976	2,98E-06	0,69889	1	1	5,45E-07
3	-37	0,2236	0,2496	5 2,	,1854	4,9E-06	592,202	592,2019	598,71	592	2,202	595,456	1,38922	6,138527	9,7E-06	0,72626	1	1	3,52E-06
4	-36	0,2174	0,2369	2,	,1255	1,2E-05	598,711	598,7105	605,4	59	8,71	602,053	1,38781	6,157187	2,37E-05	0,75495	1	1	1,32E-05
5	-35	0,2114	0,2246	5 2,	,0668	2,4E-05	605,396	605,3956	612,31	605	,395	608,852	1,3864	6,176032	4,85E-05	0,78503	1	1,000001	3,69E-05
6	-34	0,2056	0,2125	2,	,0095	4,4E-05	612,307	612,3074	619,51	612	2,307	615,909	1,38497	6,195169	8,81E-05	0,81664	1	1,000003	8,54E-05
7	-33	0,1999	0,2008	1,	,9536	7,4E-05	619,511	619,5114	627,09	619	,511	623,301	1,38353	6,214739	0,000147	0,84991	1,00001	1,000007	0,000174
8	-32	0,1943	0,1893	1	,899	0,00012	627,09	627,0899	635,14	627	,089	631,116	1,38205	6,234919	0,000231	0,88504	1,00002	1,000013	0,000321
9	-31	0,1888	0,1781	1,	,8458	0,00017	635,143	635,143	643,79	635	5,142	639,466	1,38052	6,255916	0,000344	0,92224	1,00003	1,000022	0,000551
10	-30	0,1835	0,1672	1,	,7941	0,00025	643,79	643,7896	653,17	643	3,788	648,479	1,37893	6,277969	0,000492	0,96177	1,00005	1,000037	0,000895
11	-29	0,1784	0,1566	1,	,7438	0,00034	653,168	653,1677	663,44	653	3,166	658,302	1,37726	6,301344	0,000682	1,00395	1,00007	1,000058	0,001387

12	-28	0,1734	0,1463	1,6949	0,00046	663,435	663,4353	674,77	663,432	669,102	1,37549	6,32633	0,000919	1,04914	1,00011	1,000088	0,002069
13	-27	0,1686	0,1363	1,6476	0,00061	674,769	674,7695	687,37	674,765	681,068	1,37361	6,353229	0,001211	1,09775	1,00015	1,000129	0,002988
14	-26	0,1639	0,1267	1,6018	0,00078	687,367	687,3668	701,44	687,361	694,404	1,37159	6,382348	0,001564	1,15028	1,00021	1,000183	0,004199
15	-25	0,1593	0,1174	1,5575	0,00099	701,442	701,4416	717,23	701,434	709,333	1,36941	6,413986	0,001984	1,20728	1,00029	1,000254	0,005763
16	-24	0,155	0,1084	1,5148	0,00124	717,225	717,2251	734,96	717,215	726,094	1,36708	6,448423	0,002479	1,26935	1,00039	1,000344	0,007748
17	-23	0,1508	0,0997	1,4737	0,00153	734,963	734,9628	754,91	734,948	744,938	1,36457	6,485903	0,003055	1,33718	1,00052	1,000458	0,010227
18	-22	0,1467	0,0914	1,4342	0,00186	754,912	754,9122	777,34	754,893	766,126	1,36189	6,526617	0,003718	1,4115	1,00068	1,000598	0,013282
19	-21	0,1428	0,0834	1,3963	0,00224	777,34	777,3396	802,52	777,313	789,928	1,35902	6,570691	0,004475	1,49313	1,00087	1,000771	0,017
20	-20	0,1391	0,0758	1,3601	0,00267	802,516	802,5159	830,71	802,48	816,614	1,35599	6,618174	0,00533	1,58289	1,00109	1,000979	0,021475
21	-19	0,1356	0,0685	1,3255	0,00314	830,713	830,7128	862,2	830,664	846,455	1,35279	6,669021	0,006289	1,68167	1,00136	1,001229	0,026805
22	-18	0,1322	0,0616	1,2925	0,00368	862,198	862,1977	897,23	862,133	879,713	1,34946	6,723094	0,007355	1,79036	1,00169	1,001525	0,033095
23	-17	0,129	0,055	1,2613	0,00426	897,229	897,2288	936,05	897,143	916,639	1,34601	6,780158	0,00853	1,90987	1,00206	1,001872	0,04045
24	-16	0,126	0,0488	1,2318	0,00491	936,049	936,0492	978,88	935,938	957,465	1,34247	6,839887	0,009815	2,04105	1,00249	1,002277	0,048979
25	-15	0,1232	0,0429	1,204	0,0056	978,881	978,8814	1025,9	978,739	1002,4	1,33888	6,901873	0,011209	2,18471	1,00299	1,002744	0,058794
26	-14	0,1205	0,0374	1,1779	0,00635	1025,92	1025,921	1077,3	1025,74	1051,62	1,33525	6,96564	0,012708	2,34157	1,00356	1,003279	0,070003
27	-13	0,118	0,0323	1,1535	0,00715	1077,33	1077,329	1133,2	1077,1	1105,28	1,33164	7,030665	0,014308	2,51223	1,00421	1,003888	0,082711
28	-12	0,1157	0,0276	1,131	0,008	1133,23	1133,228	1193,7	1132,95	1163,46	1,32806	7,096397	0,016	2,6971	1,00494	1,004576	0,097019
29	-11	0,1136	0,0232	1,1101	0,00889	1193,69	1193,694	1258,7	1193,36	1226,22	1,32456	7,162277	0,017772	2,8964	1,00575	1,005347	0,113019
30	-10	0,1116	0,0192	1,0911	0,00981	1258,75	1258,747	1328,3	1258,35	1293,55	1,32114	7,227757	0,019611	3,11008	1,00666	1,006207	0,130791
31	-9	0,1099	0,0155	1,0739	0,01075	1328,35	1328,348	1402,4	1327,88	1365,37	1,31785	7,292319	0,021498	3,33782	1,00766	1,007159	0,150402
32	-8	0,1083	0,0123	1,0584	0,01171	1402,39	1402,392	1480,7	1401,85	1441,55	1,31469	7,355487	0,023414	3,57894	1,00875	1,008205	0,1719
33	-7	0,1069	0,0094	1,0447	0,01267	1480,7	1480,699	1563	1480,08	1521,86	1,31168	7,416836	0,025332	3,8324	1,00994	1,009349	0,195314
34	-6	0,1057	0,0069	1,0329	0,01361	1563,01	1563,014	1649	1562,31	1606,01	1,30883	7,476001	0,027226	4,09678	1,01123	1,010589	0,220646
35	-5	0,1046	0,0048	1,0228	0,01453	1649	1649	1738,2	1648,21	1693,62	1,30615	7,532676	0,029065	4,37022	1,01262	1,011927	0,247872
36	-4	0,1038	0,0031	1,0146	0,01541	1738,23	1738,234	1830,2	1737,36	1784,22	1,30365	7,586618	0,030817	4,6505	1,0141	1,013361	0,276937
37	-3	0,1031	0,0017	1,0082	0,01622	1830,22	1830,215	1924,4	1829,26	1877,29	1,30131	7,637639	0,032447	4,93497	1,01567	1,014885	0,307755
38	-2	0,1027	0,0008	1,0037	0,01696	1924,36	1924,357	2020	1923,32	1972,18	1,29915	7,685609	0,033918	5,22063	1,01732	1,016496	0,340201
39	-1	0,1024	0,0002	1,0009	0,0176	2020	2020	2116,4	2018,89	2068,21	1,29716	7,730444	0,035197	5,50419	1,01905	1,018185	0,37412
40	0	0,1023	0	1	0,01812	2116,42	2116,417	2212,8	2115,23	2164,62	1,29533	7,772102	0,036247	5,7821	1,02084	1,019945	0,409316
41	1	0,1024	0,0002	1,0009	0,01852	2212,82	2212,823	2308,4	2211,57	2260,61	1,29366	7,810579	0,037039	6,05069	1,02269	1,021763	0,445564
42	2	0,1027	0,0008	1,0037	0,01877	2308,39	2308,392	2402,3	2307,07	2355,33	1,29215	7,845903	0,037542	6,30622	1,02457	1,023629	0,482602
43	3	0,1031	0,0017	1,0082	0,01887	2402,27	2402,269	2493,6	2400,89	2447,93	1,29078	7,878128	0,037736	6,54503	1,02648	1,025528	0,520145
44	4	0,1038	0,0031	1,0146	0,0188	2493,6	2493,595	2581,5	2492,16	2537,56	1,28955	7,907329	0,037603	6,76363	1,0284	1,027444	0,557881

45	5	0.1046	0.0048	1.0228	0.01857	2581.52	2581,522	2665.2	2580.04	2623,38	1,28845	7,933599	0.037134	6,95884	1.03032	1.029362	0.595484
		-, -	-,	,	-,-	,-	, and the second	,	/ -	,		,	- ,		,	,	- ,
46	6	0,1057	0,0069	1,0329	0,01817	2665,24	2665,237	2744	2663,72	2704,61	1,28748	7,957047	0,03633	7,12785	1,03221	1,031265	0,632618
47	7	0,1069	0,0094	1,0447	0,0176	2743,98	2743,983	2817,1	2742,43	2780,53	1,28662	7,97779	0,0352	7,26839	1,03406	1,033135	0,668949
48	8	0,1083	0,0123	1,0584	0,01688	2817,08	2817,082	2884	2815,5	2850,52	1,28588	7,99596	0,033762	7,37873	1,03585	1,034956	0,704149
49	9	0,1099	0,0155	1,0739	0,01602	2883,95	2883,951	2944,1	2882,34	2914,04	1,28524	8,011692	0,032044	7,45779	1,03757	1,036712	0,737911
50	10	0,1116	0,0192	1,0911	0,01504	2944,12	2944,12	2997,2	2942,49	2970,68	1,28469	8,02513	0,030082	7,50513	1,0392	1,038387	0,769955
51	11	0,1136	0,0232	1,1101	0,01396	2997,25	2997,247	3043,1	2995,61	3020,18	1,28424	8,03642	0,027921	7,521	1,04073	1,039969	0,800037
52	12	0,1157	0,0276	1,131	0,0128	3043,12	3043,122	3081,7	3041,47	3062,4	1,28386	8,045713	0,025609	7,50625	1,04216	1,041445	0,827958
53	13	0,118	0,0323	1,1535	0,0116	3081,67	3081,675	3113	3080,02	3097,32	1,28356	8,053162	0,023201	7,46232	1,04346	1,042808	0,853567
54	14	0,1205	0,0374	1,1779	0,01038	3112,97	3112,969	3137,2	3111,31	3125,09	1,28333	8,058917	0,020751	7,39118	1,04464	1,044051	0,876769
55	15	0,1232	0,0429	1,204	0,00916	3137,2	3137,202	3154,7	3135,55	3145,94	1,28316	8,063132	0,018313	7,2952	1,0457	1,04517	0,89752
56	16	0,126	0,0488	1,2318	0,00797	3154,68	3154,684	3165,8	3153,04	3160,26	1,28305	8,065954	0,015938	7,17706	1,04663	1,046164	0,915833
57	17	0,129	0,055	1,2613	0,00684	3165,83	3165,831	3171,1	3164,19	3168,48	1,28298	8,067528	0,013672	7,03968	1,04744	1,047036	0,931771
58	18	0,1322	0,0616	1,2925	0,00578	3171,14	3171,137	3171,2	3169,51	3171,15	1,28297	8,067996	0,011553	6,88606	1,04814	1,04779	0,945443
59	19	0,1356	0,0685	1,3255	0,0048	3171,16	3171,161	3166,5	3169,54	3168,83	1,28299	8,06749	0,00961	6,7192	1,04873	1,048432	0,956995
60	20	0,1391	0,0758	1,3601	0,00393	3166,5	3166,495	3157,7	3164,89	3162,12	1,28304	8,066136	0,007865	6,54203	1,04922	1,048971	0,966605
61	21	0,1428	0,0834	1,3963	0,00316	3157,75	3157,749	3145,5	3156,16	3151,64	1,28312	8,064054	0,006329	6,35729	1,04962	1,049416	0,97447
62	22	0,1467	0,0914	1,4342	0,0025	3145,53	3145,526	3130,4	3143,95	3137,96	1,28323	8,06135	0,005004	6,16751	1,04994	1,049777	0,980799
63	23	0,1508	0,0997	1,4737	0,00194	3130,4	3130,404	3112,9	3128,85	3121,66	1,28336	8,058125	0,003884	5,97495	1,05019	1,050066	0,985803
64	24	0,155	0,1084	1,5148	0,00148	3112,92	3112,923	3093,6	3111,38	3103,25	1,28351	8,054465	0,002959	5,78157	1,05039	1,050292	0,989687
65	25	0,1593	0,1174	1,5575	0,00111	3093,57	3093,572	3072,8	3092,05	3083,18	1,28367	8,05045	0,00221	5,58906	1,05054	1,050466	0,992646
66	26	0,1639	0,1267	1,6018	0,00081	3072,78	3072,784	3050,9	3071,28	3061,86	1,28384	8,046146	0,001617	5,39879	1,05065	1,050598	0,994856

Таблица A5 - Результаты теплового расчета проектируемого двигателя при $n=6200~{\rm MuH}^{-1}$

						ИСХО	ОДНЫЕ Д	ДАННЫЕ									_	
	Q	f	a	e	m		Py	Ту	Va	Z	E2	g	1	m				
	28	65	1	10,5	1,05	24 0,9	9774	648,92	1,117	0,94	47,2320	0,0296	0,2933	3,8				
	P	асчёт про	оцесса (сгоран	кия													
f	f1	Vст	s	у(f	E1)	X1-2	Тпред	T1	T2	Т2исти	T1-2	k1-2	K1-2	D X1-2	Р	m	m1-2	Х
0	-28	0,18203	0,14954	1,7	71031	6,86E-09	648,93	648,93	655,97	648,93	652,45			1,37E-08	0,977444	1	1	0
1	-27	0,17689	0,13936	5 1,6	66198	1,84E-07	655,97	655,97	663,05	655,97	659,51	1,377	6,31	3,68E-07	1,016792	1	1	1,37E-08

	1															1	
2	-26	0,17191	0,12951	1,61519	1,15E-06	663,05	663,05	670,15	663,05	666,60	1,375	6,33	2,29E-06	1,057533	1	1	3,82E-07
3	-25	0,16709	0,11999	1,56997	3,99E-06	670,15	670,15	677,30	670,16	673,73	1,374	6,35	7,97E-06	1,099656	1	1	2,68E-06
4	-24	0,16245	0,11081	1,52635	1,02E-05	677,30	677,30	684,51	677,31	680,90	1,373	6,36	2,04E-05	1,143154	1,000001	1	1,06E-05
5	-23	0,15798	0,10197	1,48433	2,17E-05	684,51	684,51	691,81	684,52	688,16	1,372	6,38	4,35E-05	1,188028	1,000002	1,000001	3,11E-05
6	-22	0,15368	0,09346	1,44396	4,08E-05	691,81	691,81	699,26	691,83	695,53	1,370	6,40	8,17E-05	1,234292	1,000004	1,000003	7,46E-05
7	-21	0,14956	0,08531	1,40523	7,02E-05	699,26	699,26	706,92	699,29	703,09	1,369	6,42	0,00014	1,281981	1,000008	1,000006	0,000156
8	-20	0,14562	0,07751	1,36818	0,000113	706,92	706,92	714,89	706,96	710,90	1,368	6,43	0,000225	1,331157	1,000015	1,000012	0,000297
9	-19	0,14185	0,07007	1,33281	0,000172	714,89	714,89	723,27	714,94	719,08	1,367	6,45	0,000343	1,381914	1,000027	1,000021	0,000522
10	-18	0,13827	0,06298	1,29916	0,000251	723,27	723,27	732,21	723,34	727,74	1,366	6,47	0,000502	1,434387	1,000044	1,000035	0,000865
11	-17	0,13487	0,05626	1,26723	0,000354	732,21	732,21	741,85	732,29	737,03	1,364	6,49	0,000708	1,488757	1,00007	1,000057	0,001367
12	-16	0,13166	0,0499	1,23703	0,000485	741,85	741,85	752,38	741,95	747,11	1,363	6,51	0,00097	1,545261	1,000106	1,000088	0,002075
13	-15	0,12863	0,04392	1,2086	0,000649	752,38	752,38	764,02	752,51	758,20	1,362	6,53	0,001298	1,604192	1,000155	1,00013	0,003045
14	-14	0,12579	0,0383	1,18193	0,00085	764,02	764,02	776,99	764,17	770,50	1,360	6,55	0,0017	1,665907	1,000221	1,000188	0,004343
15	-13	0,12315	0,03306	1,15704	0,001093	776,99	776,99	791,55	777,17	784,27	1,359	6,58	0,002186	1,730828	1,000308	1,000264	0,006044
16	-12	0,12069	0,0282	1,13395	0,001382	791,55	791,55	807,99	791,77	799,77	1,357	6,61	0,002764	1,799437	1,000419	1,000363	0,008229
17	-11	0,11842	0,02372	1,11266	0,001723	807,99	807,99	826,60	808,25	817,29	1,355	6,64	0,003445	1,872275	1,00056	1,000489	0,010993
18	-10	0,11635	0,01962	1,09319	0,002119	826,60	826,60	847,69	826,92	837,14	1,353	6,67	0,004238	1,949929	1,000735	1,000648	0,014438
19	-9	0,11447	0,0159	1,07554	0,002576	847,69	847,69	871,59	848,07	859,64	1,351	6,71	0,005151	2,033021	1,000951	1,000843	0,018677
20	-8	0,11279	0,01257	1,05973	0,003096	871,59	871,59	898,63	872,04	885,11	1,348	6,75	0,006193	2,122186	1,001213	1,001082	0,023828
21	-7	0,1113	0,00963	1,04576	0,003684	898,63	898,63	929,12	899,16	913,87	1,346	6,79	0,007369	2,218048	1,001529	1,001371	0,030021
22	-6	0,11001	0,00708	1,03364	0,004342	929,12	929,12	963,39	929,74	946,25	1,343	6,84	0,008685	2,321195	1,001904	1,001716	0,037389
23	-5	0,10892	0,00492	1,02337	0,005072	963,39	963,39	1001,72	964,11	982,55	1,340	6,89	0,010144	2,432141	1,002346	1,002125	0,046074
24	-4	0,10802	0,00315	1,01496	0,005873	1001,72	1001,72	1044,38	1002,56	1023,05	1,337	6,94	0,011747	2,551299	1,002863	1,002605	0,056218
25	-3	0,10733	0,00177	1,00842	0,006745	1044,38	1044,38	1091,61	1045,35	1068,00	1,334	6,99	0,013491	2,67894	1,003461	1,003162	0,067965
26	-2	0,10683	0,00079	1,00374	0,007685	1091,61	1091,61	1143,58	1092,71	1117,60	1,330	7,05	0,015369	2,815162	1,004148	1,003805	0,081456
27	-1	0,10653	0,0002	1,00094	0,008687	1143,58	1143,58	1200,42	1144,82	1172,00	1,327	7,11	0,017374	2,959857	1,004931	1,004539	0,096825
28	0	0,10643	0	1	0,009744	1200,42	1200,42	1262,18	1201,81	1231,30	1,324	7,17	0,019488	3,112681	1,005816	1,005373	0,114199
29	1	0,10653	0,0002	1,00094	0,010847	1262,18	1262,18	1328,84	1263,72	1295,51	1,321	7,23	0,021694	3,273033	1,006808	1,006312	0,133687
30	2	0,10683	0,00079	1,00374	0,011983	1328,84	1328,84	1400,29	1330,54	1364,56	1,318	7,30	0,023965	3,440039	1,007913	1,00736	0,155381
31	3	0,10733	0,00177	1,00842	0,013136	1400,29	1400,29	1476,32	1402,16	1438,30	1,315	7,36	0,026272	3,612544	1,009133	1,008523	0,179346
32	4	0,10802	0,00315	1,01496	0,014289	1476,32	1476,32	1556,63	1478,36	1516,47	1,312	7,42	0,028579	3,78911	1,010471	1,009802	0,205618
33	5	0,10892	0,00492	1,02337	0,015422	1556,63	1556,63	1640,80	1558,83	1598,71	1,309	7,47	0,030844	3,968032	1,011926	1,011199	0,234197
34	6	0,11001	0,00708	1,03364	0,016511	1640,80	1640,80	1728,30	1643,17	1684,55	1,306	7,53	0,033022	4,147358	1,013497	1,012712	0,265041

25	7	0.1112	0.00062	1.04576	0.017521	1729 20	1720.20	1010 50	1720.92	1772 40	1 204	7.50	0.025062	4 224021	1.015170	1.01.4220	0,298063
35		0,1113	0,00963	1,04576	0,017531	1728,30	1728,30	1818,50	1730,83	1773,40	1,304	7,58	0,035063	4,324921	1,015179	1,014338	1 1
36	8	0,11279	0,01257	1,05973	0,018458 0,019263	1818,50	1818,50	1910,64	1821,19	1864,57	1,301	7,63	0,036915	4,498384	1,016964	1,016072	0,333126
37		0,11447	0,0159	1,07554	,	1910,64	1910,64	2003,91	1913,50	1957,27	1,299	7,68	0,038525	4,665295	1,018844	1,017904	0,370041
38	10	0,11635	0,01962	1,09319	0,019921	2003,91	2003,91	2097,36	2006,91	2050,63	1,297	7,73	0,039842	4,823148	1,020806	1,019825	0,408566
39	11	0,11842	0,02372	1,11266	0,020408	2097,36	2097,36	2190,03	2100,51	2143,69	1,296	7,77	0,040816	4,969458	1,022835	1,021821	0,448408
40	12	0,12069	0,0282	1,13395	0,020703	2190,03	2190,03	2280,87	2193,31	2235,45	1,294	7,80	0,041405	5,101831	1,024914	1,023874	0,489224
41	13	0,12315	0,03306	1,15704	0,020788	2280,87	2280,87	2368,87	2284,29	2324,87	1,292	7,84	0,041575	5,218049	1,027022	1,025968	0,53063
42	14	0,12579	0,0383	1,18193	0,020651	2368,87	2368,87	2452,99	2372,40	2410,93	1,291	7,87	0,041302	5,316142	1,029139	1,028081	0,572205
43	15	0,12863	0,04392	1,2086	0,020287	2452,99	2452,99	2532,27	2456,63	2492,63	1,290	7,90	0,040574	5,394464	1,031243	1,030191	0,613507
44	16	0,13166	0,0499	1,23703	0,019698	2532,27	2532,27	2605,82	2536,01	2569,04	1,289	7,92	0,039396	5,451754	1,033309	1,032276	0,654081
45	17	0,13487	0,05626	1,26723	0,018894	2605,82	2605,82	2672,87	2609,64	2639,34	1,288	7,94	0,037788	5,487187	1,035315	1,034312	0,693478
46	18	0,13827	0,06298	1,29916	0,017892	2672,87	2672,87	2732,79	2676,76	2702,83	1,287	7,96	0,035784	5,500411	1,03724	1,036277	0,731266
47	19	0,14185	0,07007	1,33281	0,016717	2732,79	2732,79	2785,13	2736,74	2758,96	1,287	7,98	0,033434	5,491563	1,039062	1,038151	0,767049
48	20	0,14562	0,07751	1,36818	0,015401	2785,13	2785,13	2829,59	2789,12	2807,36	1,286	7,99	0,030802	5,461261	1,040764	1,039913	0,800483
49	21	0,14956	0,08531	1,40523	0,013982	2829,59	2829,59	2866,10	2833,61	2847,84	1,286	8,00	0,027963	5,41058	1,042333	1,041549	0,831285
50	22	0,15368	0,09346	1,44396	0,012498	2866,10	2866,10	2894,75	2870,13	2880,42	1,285	8,01	0,024997	5,341005	1,043757	1,043045	0,859248
51	23	0,15798	0,10197	1,48433	0,010993	2894,75	2894,75	2915,81	2898,79	2905,28	1,285	8,01	0,021986	5,254368	1,04503	1,044393	0,884245
52	24	0,16245	0,11081	1,52635	0,009507	2915,81	2915,81	2929,73	2919,85	2922,77	1,285	8,02	0,019014	5,152764	1,04615	1,04559	0,906231
53	25	0,16709	0,11999	1,56997	0,008077	2929,73	2929,73	2937,08	2933,76	2933,41	1,285	8,02	0,016154	5,03847	1,047118	1,046634	0,925245
54	26	0,17191	0,12951	1,61519	0,006736	2937,08	2937,08	2938,52	2941,08	2937,80	1,285	8,02	0,013471	4,913842	1,04794	1,047529	0,941398
55	27	0,17689	0,13936	1,66198	0,005509	2938,52	2938,52	2934,78	2942,49	2936,65	1,285	8,02	0,011018	4,781234	1,048627	1,048284	0,95487
56	28	0,18203	0,14954	1,71031	0,004415	2934,78	2934,78	2926,62	2938,71	2930,70	1,285	8,02	0,00883	4,64291	1,049188	1,048907	0,965887
57	29	0,18734	0,16004	1,76017	0,003464	2926,62	2926,62	2914,80	2930,51	2920,71	1,285	8,02	0,006927	4,500976	1,049637	1,049412	0,974717
58	30	0,1928	0,17085	1,81153	0,002658	2914,80	2914,80	2900,03	2918,64	2907,41	1,285	8,01	0,005315	4,357325	1,04999	1,049814	0,981644
59	31	0,19843	0,18197	1,86436	0,001992	2900,03	2900,03	2882,97	2903,82	2891,50	1,285	8,01	0,003984	4,213599	1,050261	1,050125	0,986959
60	32	0,2042	0,1934	1,91864	0,001458	2882,97	2882,97	2864,20	2886,71	2873,58	1,285	8,01	0,002915	4,071178	1,050464	1,050362	0,990944
61	33	0,21013	0,20512	1,97434	0,00104	2864,195	2864,195	2844,212	2867,88	2854,204	1,286	8,00	0,002079	3,931172	1,050612	1,050538	0,993859
62	34	0,21621	0,21715	2,03144	0,000722	2844,21	2844,21	2823,43	2847,85	2833,82	1,286	8,00	0,001445	3,794438	1,050718	1,050665	0,995938
63	35	0,22243	0,22946	2,08991	0,000488	2823,43	2823,43	2802,16	2827,01	2812,79	1,286	7,99	0,000976	3,661603	1,050791	1,050755	0,997383
64	36	0,2288	0,24205	2,14972	0,000321	2802,16	2802,16	2780,68	2805,69	2791,42	1,286	7,99	0,000641	3,533094	1,050841	1,050816	0,998359
65	37	0,2353	0,25492	2,21085	0,000204	2780,68	2780,68	2759,16	2784,15	2769,92	1,286	7,98	0,000408	3,409174	1,050874	1,050858	0,999
66	26	0,1639	0,1267	1,6018	0,00081	3072,78	3072,784	3050,9	3071,28	3061,86	1,28384	8,04	0,001617	5,39879	1,05065	1,050598	0,994856
67	27	0,1686	0,1363	1,6476	0,00058	3050,93	3050,931	3028,3	3049,45	3039,63	1,28403	8,0461	0,001159	5,21187	1,05074	1,050695	0,996473

68	28	0,1734	0,1463	1,6949	0,00041	3028,33	3028,327	3005,2	3026,87	3016,78	1,28422	8,036	0,000812	5,02916	1,0508	1,050766	0,997632
69	29	0,1784	0,1566	1,7438	0,00028	3005,23	3005,228	2981,8	3003,79	2993,53	1,28441	8,03	0,000556	4,85131	1,05084	1,050816	0,998444
70	30	0,1835	0,1672	1,7941	0,00019	2981,84	2981,842	#3НАЧ!	2980,42	#3НАЧ!	1,28461	8,027	0,000372	4,67878	1,05086	1,050851	0,999

ПРИЛОЖЕНИЕ Б

(обязательное)

Таблица Б1 - расчетные значения перемещения, скорости и ускорения поршня.

аолица вт	- pacaethi	ыс значен	ия перем			корения порши
$\phi_{\scriptscriptstyle KB}$, град	$\phi_{\kappa B}$, рад	S_X , MM	V_X , M/c	W_{X1} , M/c^2	W_{X2} , M/c^2	W_X , M/c^2
0	0	0	0	16440,1	4346,882	20787
10	0,175	0,748	5,542	16190,4	4084,733	20275,1
20	0,349	2,955	10,81	15448,7	3329,904	18778,6
30	0,524	6,514	15,56	14237,6	2173,441	16411
40	0,698	11,25	19,57	12593,9	754,8281	13348,7
50	0,873	16,96	22,69	10567,5	-754,828	9812,68
60	1,047	23,37	24,83	8220,06	-2173,44	6046,62
70	1,222	30,21	25,95	5622,86	-3329,9	2292,95
80	1,396	37,23	26,08	2854,8	-4084,73	-1229,9
90	1,571	44,16	25,32	1E-12	-4346,88	-4346,9
100	1,745	50,77	23,79	-2854,8	-4084,73	-6939,5
110	1,92	56,89	21,64	-5622,86	-3329,9	-8952,8
120	2,094	62,37	19,03	-8220,06	-2173,44	-10394
130	2,269	67,09	16,1	-10567,5	-754,828	-11322
140	2,443	71,01	12,98	-12593,9	754,8281	-11839
150	2,618	74,06	9,762	-14237,6	2173,441	-12064
160	2,793	76,25	6,509	-15448,7	3329,904	-12119
170	2,967	77,56	3,252	-16190,4	4084,733	-12106
180	3,142	78	2E-15	-16440,1	4346,882	-12093
190	3,316	77,56	-3,25	-16190,4	4084,733	-12106
200	3,491	76,25	-6,51	-15448,7	3329,904	-12119
210	3,665	74,06	-9,76	-14237,6	2173,441	-12064
220	3,84	71,01	-13	-12593,9	754,8281	-11839
230	4,014	67,09	-16,1	-10567,5	-754,828	-11322
240	4,189	62,37	-19	-8220,06	-2173,44	-10394
250	4,363	56,89	-21,6	-5622,86	-3329,9	-8952,8
260	4,538	50,77	-23,8	-2854,8	-4084,73	-6939,5
270	4,712	44,16	-25,3	-3E-12	-4346,88	-4346,9
280	4,887	37,23	-26,1	2854,8	-4084,73	-1229,9
290	5,061	30,21	-25,9	5622,86	-3329,9	2292,95
300	5,236	23,37	-24,8	8220,06	-2173,44	6046,62
310	5,411	16,96	-22,7	10567,5	-754,828	9812,68
320	5,585	11,25	-19,6	12593,9	754,8281	13348,7
330	5,76	6,514	-15,6	14237,6	2173,441	16411
340	5,934	2,955	-10,8	15448,7	3329,904	18778,6
350	6,109	0,748	-5,54	16190,4	4084,733	20275,1
360	6,283	3E-31	-0	16440,1	4346,882	20787
370	6,458	0,748	5,542	16190,4	4084,733	20275,1
380	6,632	2,955	10,81	15448,7	3329,904	18778,6
390	6,807	6,514	15,56	14237,6	2173,441	16411
400	6,981	11,25	19,57	12593,9	754,8281	13348,7
410	7,156	16,96	22,69	10567,5	-754,828	9812,68
420	7,130	23,37	24,83	8220,06	-2173,44	-
		•		-	·	6046,62
430	7,505	30,21	25,95	5622,86	-3329,9	2292,95
440	7,679	37,23	26,08	2854,8	-4084,73	-1229,9
450	7,854	44,16	25,32	5E-12	-4346,88	-4346,9
460	8,029	50,77	23,79	-2854,8	-4084,73	-6939,5
470	8,203	56,89	21,64	-5622,86	-3329,9	-8952,8
480	8,378	62,37	19,03	-8220,06	-2173,44	-10394
		•				

490	8,552	67,09	16,1	-10567,5	-754,828	-11322
500	8,727	71,01	12,98	-12593,9	754,8281	-11839
510	8,901	74,06	9,762	-14237,6	2173,441	-12064
520	9,076	76,25	6,509	-15448,7	3329,904	-12119
530	9,25	77,56	3,252	-16190,4	4084,733	-12106
540	9,425	78	7E-15	-16440,1	4346,882	-12093
550	9,599	77,56	-3,25	-16190,4	4084,733	-12106
560	9,774	76,25	-6,51	-15448,7	3329,904	-12119
570	9,948	74,06	-9,76	-14237,6	2173,441	-12064
580	10,12	71,01	-13	-12593,9	754,8281	-11839
590	10,3	67,09	-16,1	-10567,5	-754,828	-11322
600	10,47	62,37	-19	-8220,06	-2173,44	-10394
610	10,65	56,89	-21,6	-5622,86	-3329,9	-8952,8
620	10,82	50,77	-23,8	-2854,8	-4084,73	-6939,5
630	11	44,16	-25,3	-7E-12	-4346,88	-4346,9
640	11,17	37,23	-26,1	2854,8	-4084,73	-1229,9
650	11,34	30,21	-25,9	5622,86	-3329,9	2292,95
660	11,52	23,37	-24,8	8220,06	-2173,44	6046,62
670	11,69	16,96	-22,7	10567,5	-754,828	9812,68
680	11,87	11,25	-19,6	12593,9	754,8281	13348,7
690	12,04	6,514	-15,6	14237,6	2173,441	16411
700	12,22	2,955	-10,8	15448,7	3329,904	18778,6
710	12,39	0,748	-5,54	16190,4	4084,733	20275,1
720	12,57	1E-30	-0	16440,1	4346,882	20787

ПРИЛОЖЕНИЕ В

(обязательное)

Таблица В1 - Сводная таблица динамического расчета двигателя.

	Δp_{Γ} ,		p _j ,			p _N ,		p _s ,		p _k ,				$M_{\kappa p. \iota \iota}$,
ϕ°	Мпа	W , M/c^2	МПа	р, Мпа	tgβ	МПа	1/cosβ	Мпа	$\cos(\beta+\phi)/\cos\beta$	Мпа	$\sin(\beta+\phi)/\cos\beta$	рт, Мпа	Т, кН	Нм
0	0,0119	20787	-2,453	-2,441	0	0	1	-2,441	1	-2,441	0	0	0	0
10	0,0019	20276	-2,393	-2,3906	0,046	-0,11	1,0011	-2,393	0,976826	-2,335	0,218912	-0,52334	-3,25577	-126,975
20	-0,0081	18780	-2,216	-2,2241	0,0908	-0,202	1,0041	-2,233	0,908628	-2,021	0,427345	-0,95047	-5,91301	-230,607
30	-0,0101	16413	-1,937	-1,9468	0,1334	-0,26	1,0088	-1,964	0,799307	-1,556	0,615481	-1,19824	-7,45443	-290,723
40	-0,0131	13351	-1,575	-1,5886	0,1724	-0,274	1,0147	-1,612	0,655115	-1,041	0,774821	-1,23085	-7,65732	-298,635
50	-0,0161	9816	-1,158	-1,1744	0,2068	-0,243	1,0209	-1,199	0,484237	-0,569	0,898798	-1,05554	-6,56669	-256,101
60	-0,0191	6051	-0,714	-0,7331	0,2351	-0,172	1,0269	-0,753	0,296175	-0,217	0,983285	-0,72083	-4,48437	-174,89
70	-0,0221	2298	-0,271	-0,2932	0,2564	-0,075	1,0318	-0,303	0,100933	-0,03	1,026901	-0,30112	-1,87328	-73,058
80	-0,0241	-1225	0,1445	0,1204	0,2695	0,0324	1,0351	0,1246	-0,091891	-0,011	1,031004	0,124126	0,772203	30,11592
90	-0,0241	-4341	0,5122	0,4881	0,274	0,1337	1,0362	0,5058	-0,273984	-0,134	0,999344	0,487792	3,034624	118,3504
100	-0,0194	-6933	0,8181	0,7986	0,2695	0,2153	1,0351	0,8267	-0,438974	-0,351	0,937398	0,748642	4,657407	181,6389
110	-0,0194	-8945	1,0555	1,0361	0,2564	0,2656	1,0318	1,0691	-0,58276	-0,604	0,851531	0,882287	5,488832	214,0644
120	-0,0194	-10385	1,2255	1,206	0,2351	0,2836	1,0269	1,2385	-0,703463	-0,848	0,748138	0,902289	5,613267	218,9174
130	-0,0194	-11314	1,335	1,3156	0,2068	0,272	1,0209	1,3431	-0,801056	-1,054	0,632955	0,832696	5,180319	202,0324
140	-0,0184	-11830	1,3959	1,3775	0,1724	0,2375	1,0147	1,3976	-0,87681	-1,208	0,510616	0,703353	4,375656	170,6506
150	-0,0174	-12054	1,4224	1,4049	0,1334	0,1874	1,0088	1,4173	-0,932676	-1,31	0,38448	0,540171	3,36048	131,0587
160	-0,0164	-12108	1,4287	1,4123	0,0908	0,1282	1,0041	1,4181	-0,970741	-1,371	0,25669	0,362525	2,255317	87,95735
170	-0,0144	-12094	1,4271	1,4127	0,046	0,0649	1,0011	1,4142	-0,992788	-1,402	0,128384	0,181365	1,1283	44,00369
180	-0,0124	-12081	1,4256	1,4131	3E-17	5E-17	1	1,4131	-1	-1,413	1,23E-16	1,73E-16	1,08E-15	4,2E-14
190	-0,0104	-12093	1,4269	1,4165	-0,046	-0,065	1,0011	1,418	-0,992788	-1,406	-0,128384	-0,18186	-1,13137	-44,1233
200	-0,0084	-12105	1,4284	1,42	-0,091	-0,129	1,0041	1,4258	-0,970741	-1,378	-0,25669	-0,3645	-2,26758	-88,4356
210	-0,0064	-12050	1,4219	1,4155	-0,133	-0,189	1,0088	1,4279	-0,932676	-1,32	-0,38448	-0,54422	-3,38564	-132,04
220	-0,0044	-11824	1,3952	1,3908	-0,172	-0,24	1,0147	1,4112	-0,87681	-1,219	-0,510616	-0,71017	-4,4181	-172,306
230	-0,0030	-11307	1,3342	1,3312	-0,207	-0,275	1,0209	1,3591	-0,801056	-1,066	-0,632955	-0,84258	-5,24181	-204,431
240	0,0060	-10377	1,2245	1,2305	-0,235	-0,289	1,0269	1,2636	-0,703463	-0,866	-0,748138	-0,92058	-5,72709	-223,356
250	0,0184	-8936	1,0544	1,0728	-0,256	-0,275	1,0318	1,107	-0,58276	-0,625	-0,851531	-0,91352	-5,68316	-221,643

260	0,0355	-6922	0,8168	0,8523	-0,27	-0,23	1,0351	0,8822	-0,438974	-0,374	-0,937398	-0,79895	-4,97037	-193,844
270	0,0595	-4329	0,5108	0,5703	-0,274	-0,156	1,0362	0,591	-0,273984	-0,156	-0,999344	-0,56995	-3,54572	-138,283
280	0,0939	-1211	0,1429	0,2368	-0,27	-0,064	1,0351	0,2451	-0,091891	-0,022	-1,031004	-0,24413	-1,51874	-59,2311
290	0,1442	2313	-0,273	-0,1287	-0,256	0,033	1,0318	-0,133	0,100933	-0,013	-1,026901	0,132156	0,822164	32,06439
300	0,2200	6067	-0,716	-0,4959	-0,235	0,1166	1,0269	-0,509	0,296175	-0,147	-0,983285	0,487652	3,033751	118,3163
310	0,3374	9834	-1,16	-0,823	-0,207	0,1702	1,0209	-0,84	0,484237	-0,399	-0,898798	0,739717	4,601882	179,4734
320	0,5231	13370	-1,578	-1,0546	-0,172	0,1819	1,0147	-1,07	0,655115	-0,691	-0,774821	0,817106	5,08333	198,2499
330	0,8405	16433	-1,939	-1,0986	-0,133	0,1465	1,0088	-1,108	0,799307	-0,878	-0,615481	0,676171	4,206553	164,0556
331	0,8849	16705	-1,971	-1,0863	-0,129	0,1404	1,0083	-1,095	0,811929	-0,882	-0,597837	0,649416	4,040105	157,5641
332	0,9328	16969	-2,002	-1,0695	-0,125	0,1338	1,0078	-1,078	0,824192	-0,882	-0,57991	0,62024	3,858597	150,4853
333	0,9847	17226	-2,033	-1,0479	-0,121	0,1267	1,0073	-1,056	0,836091	-0,876	-0,561709	0,588639	3,662004	142,8182
334	1,0411	17475	-2,062	-1,021	-0,117	0,1191	1,0068	-1,028	0,847619	-0,865	-0,543243	0,554625	3,450399	134,5656
335	1,1026	17717	-2,091	-0,988	-0,112	0,1111	1,0063	-0,994	0,858769	-0,848	-0,52452	0,51823	3,223983	125,7353
336	1,1696	17950	-2,118	-0,9485	-0,108	0,1026	1,0058	-0,954	0,869534	-0,825	-0,505547	0,479515	2,983127	116,342
337	1,2429	18176	-2,145	-0,9018	-0,104	0,0937	1,0054	-0,907	0,879908	-0,793	-0,486335	0,438571	2,728414	106,4081
338	1,3232	18393	-2,17	-0,8472	-0,1	0,0843	1,0049	-0,851	0,889885	-0,754	-0,466891	0,395536	2,460685	95,96672
339	1,4110	18602	-2,195	-0,7839	-0,095	0,0746	1,0045	-0,787	0,899461	-0,705	-0,447225	0,350593	2,181091	85,06253
340	1,5073	18802	-2,219	-0,7113	-0,091	0,0646	1,0041	-0,714	0,908628	-0,646	-0,427345	0,303986	1,891141	73,75449
341	1,6125	18993	-2,241	-0,6286	-0,086	0,0543	1,0037	-0,631	0,917382	-0,577	-0,407261	0,256023	1,592756	62,11749
342	1,7276	19175	-2,263	-0,5351	-0,082	0,0439	1,0033	-0,537	0,925718	-0,495	-0,386983	0,207086	1,288314	50,24423
343	1,8531	19349	-2,283	-0,4301	-0,078	0,0333	1,003	-0,431	0,933631	-0,402	-0,366519	0,157638	0,980688	38,24683
344	1,9896	19513	-2,303	-0,3129	-0,073	0,0229	1,0027	-0,314	0,941116	-0,294	-0,34588	0,108225	0,673283	26,25805
345	2,1378	19668	-2,321	-0,183	-0,069	0,0126	1,0023	-0,183	0,94817	-0,173	-0,325075	0,059483	0,37005	14,43196
346	2,2981	19813	-2,338	-0,0399	-0,064	0,0026	1,0021	-0,04	0,954787	-0,038	-0,304114	0,012134	0,075488	2,944044
347	2,4707	19949	-2,354	0,1166	-0,06	-0,007	1,0018	0,1169	0,960965	0,112	-0,283008	-0,03301	-0,20537	-8,00962
348	2,6557	20076	-2,369	0,2868	-0,055	-0,016	1,0015	0,2872	0,9667	0,277	-0,261765	-0,07507	-0,46703	-18,2141
349	2,8531	20192	-2,383	0,4704	-0,051	-0,024	1,0013	0,471	0,971988	0,457	-0,240396	-0,11309	-0,70355	-27,4383
350	3,0625	20299	-2,395	0,6672	-0,046	-0,031	1,0011	0,6679	0,976826	0,652	-0,218912	-0,14607	-0,9087	-35,4394
351	3,2833	20396	-2,407	0,8766	-0,041	-0,036	1,0009	0,8774	0,981212	0,86	-0,197322	-0,17297	-1,07609	-41,9677
352	3,5145	20482	-2,417	1,0976	-0,037	-0,04	1,0007	1,0983	0,985143	1,081	-0,175638	-0,19278	-1,19932	-46,7735
353	3,7550	20559	-2,426	1,329	-0,032	-0,043	1,0005	1,3297	0,988617	1,314	-0,153869	-0,20449	-1,27217	-49,6147
354	4,0031	20626	-2,434	1,5692	-0,028	-0,043	1,0004	1,5698	0,991632	1,556	-0,132026	-0,20718	-1,28887	-50,2659

355	4,2568	20682	-2,441	1,8163	-0,023	-0,042	1,0003	1,8168	0,994186	1,806	-0,110119	-0,20001	-1,24429	-48,5273
356	4,5141	20729	-2,446	2,0681	-0,018	-0,038	1,0002	2,0684	0,996277	2,06	-0,088159	-0,18232	-1,13423	-44,2349
357	4,7722	20765	-2,45	2,3219	-0,014	-0,032	1,0001	2,3222	0,997905	2,317	-0,066156	-0,15361	-0,95563	-37,2696
358	5,0284	20791	-2,453	2,5751	-0,009	-0,024	1	2,5752	0,999069	2,573	-0,044122	-0,11362	-0,70683	-27,5665
359	5,2797	20806	-2,455	2,8246	-0,005	-0,013	1	2,8246	0,999767	2,824	-0,022066	-0,06233	-0,38775	-15,1222
360	5,5229	20811	-2,456	3,0672	-6E-17	-2E-16	1	3,0672	1	3,067	-2,45E-16	-7,5E-16	-4,7E-15	-1,8E-13
361	5,7549	20806	-2,455	3,2998	0,0046	0,0152	1	3,2998	0,999767	3,299	0,022066	0,072814	0,452985	17,6664
362	5,9725	20791	-2,453	3,5192	0,0092	0,0325	1	3,5193	0,999069	3,516	0,044122	0,155273	0,965976	37,67306
363	6,1727	20765	-2,45	3,7224	0,0138	0,0515	1,0001	3,7227	0,997905	3,715	0,066156	0,246259	1,532012	59,74848
364	6,3526	20729	-2,446	3,9066	0,0184	0,0721	1,0002	3,9072	0,996277	3,892	0,088159	0,344399	2,142557	83,55971
365	6,5099	20683	-2,441	4,0693	0,0231	0,0938	1,0003	4,0704	0,994186	4,046	0,110119	0,448106	2,787728	108,7214
366	6,6424	20627	-2,434	4,2084	0,0276	0,1164	1,0004	4,21	0,991632	4,173	0,132026	0,555622	3,456602	134,8075
367	6,7485	20560	-2,426	4,3224	0,0322	0,1394	1,0005	4,3246	0,988617	4,273	0,153869	0,665083	4,137573	161,3653
368	6,8271	20484	-2,417	4,4101	0,0368	0,1624	1,0007	4,4131	0,985143	4,345	0,175638	0,774575	4,818739	187,9308
369	6,8777	20397	-2,407	4,4709	0,0414	0,1851	1,0009	4,4747	0,981212	4,387	0,197322	0,882204	5,488316	214,0443
370	6,9002	20300	-2,395	4,5048	0,046	0,2071	1,0011	4,5096	0,976826	4,4	0,218912	0,98616	6,135038	239,2665
371	6,8953	20194	-2,383	4,5124	0,0505	0,2279	1,0013	4,5182	0,971988	4,386	0,240396	1,084773	6,748523	263,1924
372	6,8639	20077	-2,369	4,4948	0,0551	0,2475	1,0015	4,5016	0,9667	4,345	0,261765	1,176569	7,319603	285,4645
373	6,8075	19951	-2,354	4,4533	0,0596	0,2653	1,0018	4,4612	0,960965	4,279	0,283008	1,260312	7,840574	305,7824
374	6,7281	19815	-2,338	4,3899	0,0641	0,2814	1,0021	4,3989	0,954787	4,191	0,304114	1,335025	8,305379	323,9098
375	6,6278	19670	-2,321	4,3067	0,0686	0,2954	1,0023	4,3169	0,94817	4,084	0,325075	1,400017	8,709701	339,6783
376	6,5091	19515	-2,303	4,2063	0,0731	0,3074	1,0027	4,2175	0,941116	3,959	0,34588	1,454874	9,050975	352,988
377	6,3745	19351	-2,283	4,0911	0,0775	0,3172	1,003	4,1033	0,933631	3,82	0,366519	1,499455	9,328322	363,8046
378	6,2266	19178	-2,263	3,9637	0,082	0,3249	1,0033	3,9769	0,925718	3,669	0,386983	1,533869	9,542416	372,1542
379	6,0681	18996	-2,241	3,8266	0,0864	0,3306	1,0037	3,8409	0,917382	3,51	0,407261	1,558443	9,695291	378,1163
380	5,9014	18804	-2,219	3,6825	0,0908	0,3344	1,0041	3,6976	0,908628	3,346	0,427345	1,573685	9,790117	381,8146
381	5,7288	18604	-2,195	3,5335	0,0952	0,3363	1,0045	3,5494	0,899461	3,178	0,447225	1,580249	9,830953	383,4072
382	5,5524	18396	-2,171	3,3817	0,0995	0,3366	1,0049	3,3984	0,889885	3,009	0,466891	1,57889	9,822494	383,0773
383	5,3742	18179	-2,145	3,2291	0,1039	0,3354	1,0054	3,2464	0,879908	2,841	0,486335	1,570425	9,769833	381,0235
384	5,1958	17953	-2,119	3,0773	0,1082	0,3329	1,0058	3,0952	0,869534	2,676	0,505547	1,555703	9,678244	377,4515
385	5,0185	17720	-2,091	2,9276	0,1124	0,3292	1,0063	2,946	0,858769	2,514	0,52452	1,53557	9,552999	372,567
386	4,7089	17479	-2,062	2,6465	0,1167	0,3088	1,0068	2,6644	0,847619	2,243	0,543243	1,437674	8,943973	348,815

387	4,5521	17230	-2,033	2,519	0,1209	0,3046	1,0073	2,5373	0,836091	2,106	0,561709	1,414961	8,802668	343,304
388	4,3997	16973	-2,003	2,3969	0,1251	0,2998	1,0078	2,4155	0,824192	1,976	0,57991	1,390009	8,647438	337,2501
389	4,2519	16709	-1,972	2,2803	0,1292	0,2947	1,0083	2,2992	0,811929	1,851	0,597837	1,363251	8,480977	330,7581
390	4,1088	16437	-1,94	2,1692	0,1334	0,2893	1,0088	2,1883	0,799307	1,734	0,615481	1,335096	8,305819	323,9269
391	3,9704	16159	-1,907	2,0636	0,1375	0,2837	1,0094	2,0829	0,786336	1,623	0,632837	1,305923	8,124333	316,849
392	3,8367	15874	-1,873	1,9635	0,1415	0,2778	1,0099	1,983	0,773021	1,518	0,649895	1,276087	7,938715	309,6099
393	3,7077	15583	-1,839	1,8689	0,1455	0,272	1,0105	1,8885	0,759371	1,419	0,666648	1,245912	7,750993	302,2887
394	3,5833	15285	-1,804	1,7797	0,1495	0,266	1,0111	1,7994	0,745394	1,327	0,68309	1,215698	7,563025	294,958
395	3,4635	14980	-1,768	1,6958	0,1534	0,2602	1,0116	1,7155	0,731097	1,24	0,699213	1,185715	7,3765	287,6835
396	3,3482	14670	-1,731	1,6171	0,1573	0,2544	1,0122	1,6368	0,71649	1,159	0,715011	1,156211	7,192948	280,525
397	3,2372	14355	-1,694	1,5434	0,1612	0,2487	1,0128	1,5632	0,701579	1,083	0,730477	1,127405	7,013743	273,536
398	3,1306	14034	-1,656	1,4746	0,165	0,2433	1,0134	1,4944	0,686374	1,012	0,745605	1,099494	6,840109	266,7642
399	3,0281	13707	-1,617	1,4107	0,1687	0,238	1,014	1,4305	0,670883	0,946	0,760388	1,072653	6,673126	260,2519
400	2,9297	13376	-1,578	1,3513	0,1724	0,233	1,0147	1,3711	0,655115	0,885	0,774821	1,047034	6,513742	254,0359
410	2,1384	9840	-1,161	0,9772	0,2068	0,2021	1,0209	0,9977	0,484237	0,473	0,898798	0,878333	5,464234	213,1051
420	1,6134	6075	-0,717	0,8965	0,2351	0,2108	1,0269	0,9207	0,296175	0,266	0,983285	0,881548	5,484236	213,8852
430	1,2599	2322	-0,274	0,9859	0,2564	0,2528	1,0318	1,0173	0,100933	0,1	1,026901	1,012399	6,298278	245,6329
440	1,0165	-1200	0,1416	1,1581	0,2695	0,3121	1,0351	1,1987	-0,091891	-0,106	1,031004	1,193985	7,427948	289,69
450	0,8450	-4316	0,5093	1,3544	0,274	0,3711	1,0362	1,4034	-0,273984	-0,371	0,999344	1,353477	8,420169	328,3866
460	0,7219	-6908	0,8152	1,5371	0,2695	0,4143	1,0351	1,591	-0,438974	-0,675	0,937398	1,440875	8,963886	349,5916
470	0,6322	-8921	1,0527	1,6848	0,2564	0,4319	1,0318	1,7385	-0,58276	-0,982	0,851531	1,434682	8,92536	348,089
480	0,5661	-10361	1,2226	1,7887	0,2351	0,4206	1,0269	1,8369	-0,703463	-1,258	0,748138	1,338208	8,325178	324,6819
490	0,5174	-11289	1,3321	1,8496	0,2068	0,3825	1,0209	1,8883	-0,801056	-1,482	0,632955	1,170695	7,283059	284,0393
500	0,4819	-11805	1,393	1,8749	0,1724	0,3233	1,0147	1,9024	-0,87681	-1,644	0,510616	0,957362	5,955886	232,2796
510	0,3819	-12030	1,4195	1,8014	0,1334	0,2403	1,0088	1,8173	-0,932676	-1,68	0,38448	0,692601	4,30877	168,042
520	0,2819	-12084	1,4259	1,7078	0,0908	0,1551	1,0041	1,7148	-0,970741	-1,658	0,25669	0,438366	2,727136	106,3583
530	0,2719	-12070	1,4242	1,6961	0,046	0,078	1,0011	1,6979	-0,992788	-1,684	0,128384	0,217757	1,354698	52,83324
540	0,1719	-12057	1,4227	1,5946	1E-16	2E-16	1	1,5946	-1	-1,595	3,68E-16	5,86E-16	3,65E-15	1,42E-13
550	0,1519	-12068	1,4241	1,576	-0,046	-0,072	1,0011	1,5776	-0,992788	-1,565	-0,128384	-0,20233	-1,25873	-49,0904
560	0,1319	-12081	1,4255	1,5575	-0,091	-0,141	1,0041	1,5638	-0,970741	-1,512	-0,25669	-0,39978	-2,4871	-96,9967
570	0,1119	-12026	1,419	1,5309	-0,133	-0,204	1,0088	1,5444	-0,932676	-1,428	-0,38448	-0,58861	-3,66182	-142,811
580	0,0919	-11800	1,3924	1,4843	-0,172	-0,256	1,0147	1,506	-0,87681	-1,301	-0,510616	-0,7579	-4,715	-183,885

590	0,0719	-11282	1,3313	1,4032	-0,207	-0,29	1,0209	1,4326	-0,801056	-1,124	-0,632955	-0,88818	-5,52552	-215,495
600	0,0519	-10353	1,2217	1,2736	-0,235	-0,299	1,0269	1,3078	-0,703463	-0,896	-0,748138	-0,95279	-5,92746	-231,171
610	0,0319	-8912	1,0516	1,0835	-0,256	-0,278	1,0318	1,118	-0,58276	-0,631	-0,851531	-0,92261	-5,73966	-223,847
620	0,0119	-6898	0,8139	0,8258	-0,27	-0,223	1,0351	0,8548	-0,438974	-0,363	-0,937398	-0,77413	-4,81597	-187,823
630	0,0119	-4304	0,5079	0,5198	-0,274	-0,142	1,0362	0,5386	-0,273984	-0,142	-0,999344	-0,51948	-3,23173	-126,037
640	0,0119	-1187	0,14	0,1519	-0,27	-0,041	1,0351	0,1573	-0,091891	-0,014	-1,031004	-0,15665	-0,97453	-38,0069
650	0,0119	2337	-0,276	-0,2638	-0,256	0,0676	1,0318	-0,272	0,100933	-0,027	-1,026901	0,270938	1,685546	65,73629
660	0,0119	6091	-0,719	-0,7069	-0,235	0,1662	1,0269	-0,726	0,296175	-0,209	-0,983285	0,695038	4,323929	168,6332
670	0,0119	9858	-1,163	-1,1513	-0,207	0,2381	1,0209	-1,175	0,484237	-0,558	-0,898798	1,03481	6,437696	251,0701
680	0,0119	13395	-1,581	-1,5687	-0,172	0,2705	1,0147	-1,592	0,655115	-1,028	-0,774821	1,215427	7,561342	294,8923
690	0,0119	16458	-1,942	-1,9301	-0,133	0,2574	1,0088	-1,947	0,799307	-1,543	-0,615481	1,187932	7,39029	288,2213
700	0,0119	18826	-2,221	-2,2095	-0,091	0,2006	1,0041	-2,219	0,908628	-2,008	-0,427345	0,944234	5,874212	229,0943
710	0,0119	20323	-2,398	-2,3862	-0,046	0,1097	1,0011	-2,389	0,976826	-2,331	-0,218912	0,522369	3,24973	126,7395
720	0,0119	20836	-2,459	-2,4467	-1E-16	3E-16	1	-2,447	1	-2,447	-4,9E-16	1,2E-15	7,46E-15	2,91E-13

Таблица В2 – Суммирование значений крутящих моментов всех четырех цилиндров.

		•		Цили	ндры	•			
0	1-й		2-й		3-й		4-й		$M_{\kappa p}$,
φ°	φ ^о кривошипа	М _{кр.ц} , Нм	φ ^о кривошипа	$M_{ ext{kp.ii}},\ HM$	$\phi^{ m o}$ кривошипа	М _{кр.ц} , Нм	φ ^о кривошипа	М _{кр.ц} , Нм	Нм
0	0	0	180	2E-14	360	8E-14	540	-2E-13	0
10	10	-63,69	190	-22,09	370	-25,82	550	207	95,39
20	20	-115,9	200	-44,3	380	-50,76	560	336,8	125,8
30	30	-146,2	210	-66,2	390	-74,35	570	308,2	21,41
40	40	-150,4	220	-86,45	400	-95,27	580	258,3	-73,84
50	50	-129,3	230	-102,6	410	-111,1	590	217,8	-125,3
60	60	-88,82	240	-112,6	420	-118,7	600	199	-121,1
70	70	-37,91	250	-112,4	430	-114,5	610	198,2	-66,58
80	80	13,77	260	-99,49	440	-95,51	620	206,2	24,96
90	90	58,13	270	-73,12	450	-64,58	630	213,9	134,3
100	100	90,25	280	-35,59	460	-20,43	640	214,9	249,1
110	110	106,6	290	7,291	470	31,654	650	206,1	351,7

120	120	109,1	300	46,67	480	83,35	660	187,7	426,9
130	130	100,8	310	72,37	490	124,82	670	161,7	459,7
140	140	85,17	320	75,95	500	146,95	680	131	439
150	150	65,44	330	52,39	510	143,81	690	92,96	354,6
160	160	43,94	340	-0,163	520	114,38	700	57,66	215,8
170	170	22	350	-56,4	530	63,299	710	28,59	57,48
180	180	2E-14	360	-2E-13	540	1E-13	720	8E-14	7E-14

ПРИЛОЖЕНИЕ Г

Таблица Г1- Силы, действующих на шатунную шейку коленчатого вала.

0 0 -7,60271488 -16,7289 16,7289 -31,4147 31 10 -1,633106 -7,28722283 -16,4134 16,4945 -31,0993 3 20 -2,972113 -6,31935783 -15,4456 15,7289 -30,1314 30 30 -3,749546 -4,86942365 -13,9956 14,4892 -28,6815 28 40 -3,857108 -3,26120099 -12,3874 12,9740 -27,0732 27 50 -3,316155 -1,78661365 -10,9128 11,4055 -25,5986 25 60 -2,277329 -0,68595285 -9,81215 10,0730 -24,498 24 70 -0,972177 -0,09555468 -9,22175 9,2729 -23,9076 23 80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 110 2,733688 -1,87084698 -10,997 11,3317	3,41475 3,1421 3,27762 3,92551 3,4661 5,81255 5,60361 3,92734 4,2665 5,00299 5,82796 5,59122 7,20533 7,64852 7,93287
10 -1,633106 -7,28722283 -16,4134 16,4945 -31,0993 3 20 -2,972113 -6,31935783 -15,4456 15,7289 -30,1314 30 30 -3,749546 -4,86942365 -13,9956 14,4892 -28,6815 28 40 -3,857108 -3,26120099 -12,3874 12,9740 -27,0732 27 50 -3,316155 -1,78661365 -10,9128 11,4055 -25,5986 25 60 -2,277329 -0,68595285 -9,81215 10,0730 -24,498 24 70 -0,972177 -0,09555468 -9,22175 9,2729 -23,9076 23 80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 <th>31,1421 3,27762 3,92551 3,34661 3,81255 3,60361 3,92734 3,84612 4,2665 3,00299 3,82796 3,59122 3,20533 3,64852</th>	31,1421 3,27762 3,92551 3,34661 3,81255 3,60361 3,92734 3,84612 4,2665 3,00299 3,82796 3,59122 3,20533 3,64852
20 -2,972113 -6,31935783 -15,4456 15,7289 -30,1314 30 30 -3,749546 -4,86942365 -13,9956 14,4892 -28,6815 28 40 -3,857108 -3,26120099 -12,3874 12,9740 -27,0732 27 50 -3,316155 -1,78661365 -10,9128 11,4055 -25,5986 25 60 -2,277329 -0,68595285 -9,81215 10,0730 -24,498 24 70 -0,972177 -0,09555468 -9,22175 9,2729 -23,9076 23 80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 <th>2,27762 3,92551 3,4661 3,81255 4,60361 3,92734 4,2665 4,2665 5,00299 5,82796 5,59122 7,20533 7,64852</th>	2,27762 3,92551 3,4661 3,81255 4,60361 3,92734 4,2665 4,2665 5,00299 5,82796 5,59122 7,20533 7,64852
30 -3,749546 -4,86942365 -13,9956 14,4892 -28,6815 28 40 -3,857108 -3,26120099 -12,3874 12,9740 -27,0732 27 50 -3,316155 -1,78661365 -10,9128 11,4055 -25,5986 25 60 -2,277329 -0,68595285 -9,81215 10,0730 -24,498 24 70 -0,972177 -0,09555468 -9,22175 9,2729 -23,9076 23 80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602	3,92551 3,4661 5,81255 5,60361 5,92734 5,84612 4,2665 5,00299 5,82796 5,59122 7,20533 7,64852
40 -3,857108 -3,26120099 -12,3874 12,9740 -27,0732 27 50 -3,316155 -1,78661365 -10,9128 11,4055 -25,5986 25 60 -2,277329 -0,68595285 -9,81215 10,0730 -24,498 24 70 -0,972177 -0,09555468 -9,22175 9,2729 -23,9076 23 80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,4339 <th>7,34661 6,81255 6,60361 6,92734 6,84612 4,2665 6,00299 6,82796 6,59122 7,20533 7,64852</th>	7,34661 6,81255 6,60361 6,92734 6,84612 4,2665 6,00299 6,82796 6,59122 7,20533 7,64852
50 -3,316155 -1,78661365 -10,9128 11,4055 -25,5986 25 60 -2,277329 -0,68595285 -9,81215 10,0730 -24,498 24 70 -0,972177 -0,09555468 -9,22175 9,2729 -23,9076 23 80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,4339	5,81255 6,60361 6,92734 6,84612 64,2665 6,00299 6,82796 6,59122 7,20533 7,64852
60 -2,277329 -0,68595285 -9,81215 10,0730 -24,498 24 70 -0,972177 -0,09555468 -9,22175 9,2729 -23,9076 23 80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,4339 -28,0724 28 160 1,126558 -4,26038545 -13,3866 13,4339	6,60361 6,92734 6,84612 6,00299 6,82796 6,59122 7,20533 7,64852
70 -0,972177 -0,09555468 -9,22175 9,2729 -23,9076 23 80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,4339 -28,0724 28 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	3,92734 3,84612 4,2665 5,00299 5,82796 5,59122 7,20533 7,64852
80 0,353152 -0,0314757 -9,15767 9,1645 -23,8435 23 90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	3,84612 4,2665 5,00299 5,82796 5,59122 7,20533 7,64852
90 1,490527 -0,40864865 -9,53485 9,6506 -24,2207 2 100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	4,2665 ,00299 ,82796 ,59122 ,20533 ,64852
100 2,314053 -1,08364657 -10,2098 10,4688 -24,8957 25 110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	5,00299 5,82796 5,59122 7,20533 7,64852
110 2,733688 -1,87084698 -10,997 11,3317 -25,6829 25 120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	5,82796 5,59122 7,20533 7,64852
120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	7,59122 7,20533 7,64852
120 2,798621 -2,63150229 -11,7577 12,0862 -26,4435 26 130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	7,59122 7,20533 7,64852
130 2,584028 -3,27029882 -12,3965 12,6630 -27,0823 27 140 2,183895 -3,7501 -12,8763 13,0602 -27,5621 27 150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	,20533 ,64852
150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	
150 1,677949 -4,07039094 -13,1966 13,3028 -27,8824 27 160 1,126558 -4,26038545 -13,3866 13,4339 -28,0724 28	
150 0.504000 4.00440540 40.4070 40.4004 00.4705 00	,09501
170 0,564006 -4,36143516 -13,4876 13,4994 -28,1735 28	,17911
180 5,39E-16 -4,39774297 -13,5239 13,5239 -28,2098 28	,20977
190 -0,566367 -4,37968659 -13,5059 13,5178 -28,1917 28	,19741
200 -1,135996 -4,29607797 -13,4223 13,4703 -28,1081 28	,13106
210 -1,697387 -4,11754515 -13,2437 13,3521 -27,9296 27	',98111
220 -2,216753 -3,8065235 -12,9327 13,1213 -27,6186 27	7,70737
230 -2,631792 -3,33074896 -12,4569 12,7319 -27,1428 27	,27007
240 -2,886041 -2,71370173 -11,8399 12,1866 -26,5257 26	,68227
250 -2,881713 -1,97215034 -11,0983 11,4664 -25,7842 25	,94472
260 -2,550919 -1,19456816 -10,3208 10,6313 -25,0066 25	,13637
270 -1,874973 -0,51404995 -9,64025 9,8209 -24,3261 24	,39823
280 -0,912601 -0,08133826 -9,20754 9,2527 -23,8934 23	,91079
290 0,186938 -0,01837398 -9,14457 9,1465 -23,8304 23	,83114
300 1,196586 -0,36042309 -9,48662 9,5618 -24,1725 24	,20205
310 1,855701 -0,99977855 -10,126 10,2946 -24,8118 24	,88111
320 1,94734 -1,64648436 -10,7727 10,9473 -25,4585 25	,53288
330 1,343224 -1,7444046 -10,8706 10,9533 -25,5564 25	5,59171
340 -0,004181 0,00888887 -9,11731 9,1173 -23,8031 23	,80314
350 -1,446224 6,45332154 -2,67288 3,0391 -17,3587 17	,41885
360 -4,34E-15 17,7259576 8,599761 8,5998 -6,08607 6,	086073
363 5,307453 23,6828406 14,55664 15,4940 -0,12919 5,	309026
370 8,634658 18,3591577 9,232961 12,6414 -5,45287 1	0,2123
380 7,902269 10,2624411 1,136244 7,9835 -13,5496 15	,68557
390 6,623434 5,60014052 -3,52606 7,5035 -18,2119 19	,37893
400 5,585779 3,00939811 -6,1168 8,2835 -20,8026 21	,53951
410 5,102861 1,53702974 -7,58917 9,1452 -22,275 22	,85202
420 5,081376 0,49944507 -8,62675 10,0121 -23,3126 23	,85995
430 5,286883 -0,4712089 -9,59741 10,9573 -24,2832 2	4,8521
440 5,485031 -1,50379766 -10,63 11,9617 -25,3158 25	,90322
450 5,509901 -2,58022839 -11,7064 12,9383 -26,3923 26	,96128
460 5,285031 -3,61690273 -12,7431 13,7956 -27,4289 27	,93346
470 4,812706 -4,52531625 -13,6515 14,4750 -28,3373 28	,74313

480	4,146164	-5,24731053	-14,3735	14,9596	-29,0593	29,35364
490	3,358183	-5,76654311	-14,8927	15,2667	-29,5786	29,7686
500	2,383615	-5,7822048	-14,9084	15,0978	-29,5942	29,69007
510	1,478511	-5,5913911	-14,7176	14,7917	-29,4034	29,44057
520	0,732955	-5,66790501	-14,7941	14,8122	-29,4799	29,48905
530	1,93E-15	-5,24491018	-14,3711	14,3711	-29,0569	29,05694
540	-0,662148	-5,12036201	-14,2466	14,2619	-28,9324	28,93997
550	-1,301548	-4,92215633	-14,0484	14,1085	-28,7342	28,76365
560	-1,906487	-4,62478329	-13,751	13,8825	-28,4368	28,50065
570	-2,442837	-4,19474566	-13,3209	13,5431	-28,0068	28,11311
580	-2,849762	-3,60660732	-12,7328	13,0478	-27,4186	27,56634
590	-3,043964	-2,8621945	-11,9884	12,3688	-26,6742	26,84735
600	-2,934665	-2,00838935	-11,1346	11,5148	-25,8204	25,98666
610	-2,449102	-1,14688861	-10,2731	10,5610	-24,9589	25,07879
620	-1,655983	-0,45401071	-9,58021	9,7223	-24,266	24,32248
630	-0,523843	-0,04668903	-9,17289	9,1878	-23,8587	23,86447
640	0,811628	-0,07977441	-9,20597	9,2417	-23,8918	23,90559
650	2,137183	-0,64373975	-9,76994	10,0010	-24,4558	24,54898
660	3,200465	-1,7242845	-10,8505	11,3126	-25,5363	25,73609
670	3,768072	-3,18592023	-12,3121	12,8758	-26,998	27,25964
680	3,687311	-4,78860095	-13,9148	14,3951	-28,6006	28,83734
690	2,932831	-6,23583604	-15,362	15,6395	-30,0479	30,19066
700	1,623045	-7,24232788	-16,3685	16,4488	-31,0544	31,09674
710	3,73E-15	-7,60271488	-16,7289	16,7289	-31,4147	31,41475
720	0	0	-9,1262	9,1262	-23,812	23,81203

Таблица Г2 - Определение суммарных сил, действующих по каждому лучу диаграммы износа шатунной шейки.

	ица 12	Эпределен.	пе суммар	ППП	сия, дене		і.ш і, кН, для луч		ai paiviivii	и изпоси ш	arymnon m	CHRH.
Rш.ш i	1	2	3	4	5	6	7	8	9	10	11	12
Rш.ш 0	13383	13383	13383	0	0	0	0	0	0	0	13383	13383
Rш.ш 10	13170	13170	13170	0	0	0	0	0	0	0	13170	13170
Rш.ш 20	12460	12460	12460	0	0	0	0	0	0	0	12460	12460
Rш.ш 30	11291	11291	11291	0	0	0	0	0	0	0	0	11291
Rш.ш 40	9830,3	9830,3	9830,3	0	0	0	0	0	0	0	0	9830,3
Rш.ш 50	8262,1	8262,1	8262,1	0	0	0	0	0	0	0	0	8262,1
Rш.ш 60	6856	6856	6856	0	0	0	0	0	0	0	0	6856
Rш.ш 70	5956,2	5956,2	5956,2	0	0	0	0	0	0	0	5956,2	5956,2
Rш.ш 80	5823	5823	5823	0	0	0	0	0	0	0	5823	5823
Rш.ш 90	6366,4	6366,4	0	0	0	0	0	0	0	0	6366,4	6366,4
Rш.ш 100	7244	7244	0	0	0	0	0	0	0	0	7244	7244
Rш.ш 110	8125,3	8125,3	0	0	0	0	0	0	0	0	8125,3	8125,3
Rш.ш 120	8865,6	8865,6	0	0	0	0	0	0	0	0	8865,6	8865,6
Rш.ш 130	9412,7	9412,7	0	0	0	0	0	0	0	0	9412,7	9412,7
Rш.ш 140	9777,9	9777,9	0	0	0	0	0	0	0	0	9777,9	9777,9
Rш.ш 150	9993	9993	0	0	0	0	0	0	0	0	9993	9993
Rш.ш 160	10104	10104	10104	0	0	0	0	0	0	0	10104	10104
Rш.ш 170	10158	10158	10158	0	0	0	0	0	0	0	10158	10158
Rш.ш 180	10179	10179	10179	0	0	0	0	0	0	0	10179	10179
Rш.ш 190	10176	10176	10176	0	0	0	0	0	0	0	10176	10176
Rш.ш 200	10141	10141	10141	0	0	0	0	0	0	0	10141	10141
Rш.ш 210	10043	10043	10043	0	0	0	0	0	0	0	0	10043
Rш.ш 220	9840,2	9840,2	9840,2	0	0	0	0	0	0	0	0	9840,2
Rш.ш 230	9484	9484	9484	0	0	0	0	0	0	0	0	9484
Rш.ш 240	8971,3	8971,3	8971,3	0	0	0	0	0	0	0	0	8971,3
Rш.ш 250	8271,1	8271,1	8271,1	0	0	0	0	0	0	0	0	8271,1
Rш.ш 260	7427,1	7427,1	7427,1	0	0	0	0	0	0	0	0	7427,1
Rш.ш 270	6568,1	6568,1	6568,1	0	0	0	0	0	0	0	0	6568,1
Rш.ш 280	5932,7	5932,7	5932,7	0	0	0	0	0	0	0	5932,7	5932,7
Rш.ш 290	5802,1	5802,1	5802,1	0	0	0	0	0	0	0	5802,1	5802,1
Rш.ш 300	6256,7	6256,7	0	0	0	0	0	0	0	0	6256,7	6256,7
Rш.ш 310	7029,9	7029,9	0	0	0	0	0	0	0	0	7029,9	7029,9
Rш.ш 320	7678,3	7678,3	0	0	0	0	0	0	0	0	7678,3	7678,3
Rш.ш 330	7644,1	7644,1	0	0	0	0	0	0	0	0	7644,1	7644,1
Rш.ш 340	5771,9	5771,9	5771,9	0	0	0	0	0	0	0	5771,9	5771,9
Rш.ш 350	1595	1595	1595	0	0	0	0	0	0	0	1595	1595
Rш.ш 360	11945	11945	11945	0	0	0	0	0	0	0	11945	11945
Rш.ш 370	18672	18672	18672	0	0	0	0	0	0	0	18672	18672
Rш.ш 380	15257	15257	15257	0	0	15256,9	15257	15257	0	0	15257	15257

	0 6625,9	0	0	0	0	0	0	0	9084,7	9084,7	9084,7	9084,7
-	6625 9										· ·	
D 110		6625,9	0	0	0	0	0	0	0	0	6625,9	6625,9
	6235,5	6235,5	0	0	0	0	0	0	0	0	6235,5	6235,5
	6636,9	6636,9	0	0	0	0	0	0	0	0	6636,9	6636,9
Rш.ш 430	7328,9	7328,9	0	0	0	0	0	0	0	0	7328,9	7328,9
Rш.ш 440	8187,7	8187,7	0	0	0	0	0	0	0	0	8187,7	8187,7
Rш.ш 450	9118,7	0	0	0	0	0	0	0	0	9118,7	9118,7	9118,7
Rш.ш 460	10013	10013	0	0	0	0	0	0	0	0	10013	10013
Rш.ш 470	10782	10782	0	0	0	0	0	0	0	0	10782	10782
	11374	11374	0	0	0	0	0	0	0	0	11374	11374
Rш.ш 490	11782	11782	0	0	0	0	0	0	0	0	11782	11782
Rш.ш 500	12026	12026	0	0	0	0	0	0	0	0	12026	12026
Rш.ш 510	11806	11806	0	0	0	0	0	0	0	0	11806	11806
Rш.ш 520	11468	11468	11468	0	0	0	0	0	0	0	11468	11468
Rш.ш 530	11472	11472	11472	0	0	0	0	0	0	0	11472	11472
Rш.ш 540	11026	11026	11026	0	0	0	0	0	0	0	11026	11026
Rш.ш 550	10921	10921	10921	0	0	0	0	0	0	0	10921	10921
Rш.ш 560	10782	10782	10782	0	0	0	0	0	0	0	10782	10782
Rш.ш 570	10579	10579	10579	0	0	0	0	0	0	0	0	10579
Rш.ш 580	10270	10270	10270	0	0	0	0	0	0	0	0	10270
Rш.ш 590	9810,4	9810,4	9810,4	0	0	0	0	0	0	0	0	9810,4
Rш.ш 600	9163,3	9163,3	9163,3	0	0	0	0	0	0	0	0	9163,3
Rш.ш 610	8323,6	8323,6	8323,6	0	0	0	0	0	0	0	0	8323,6
Rш.ш 620	7347,8	7347,8	7347,8	0	0	0	0	0	0	0	0	7347,8
Rш.ш 630	6450,9	6450,9	6450,9	0	0	0	0	0	0	0	0	6450,9
Rш.ш 640	5850,9	5850,9	5850,9	0	0	0	0	0	0	0	5850,9	5850,9
Rш.ш 650	5916,5	5916,5	5916,5	0	0	0	0	0	0	0	5916,5	5916,5
Rш.ш 660	6770,7	6770,7	0	0	0	0	0	0	0	0	6770,7	6770,7
Rш.ш 670	8159	8159	0	0	0	0	0	0	0	0	8159	8159
Rш.ш 680	9726,2	9726,2	0	0	0	0	0	0	0	0	9726,2	9726,2
Rш.ш 690	11194	11194	0	0	0	0	0	0	0	0	11194	11194
Rш.ш 700	12369	12369	0	0	0	0	0	0	0	0	12369	12369
Rш.ш 710	13124	13124	0	0	0	0	0	0	0	0	13124	13124
ΣКш.ш і	13383	13383	0	0	0	0	0	0	0	0	13383	13383

Таблица Г3 – Расчет сил, действующих на коренные шейки коленчатого вала.

Rк.ш1, H	јкв, град	Rк1, H	T1, H	Крк1, Н	Тк2, Н	Кк2, Н	Rк.ш2, Н	јкв, град	T2, H	Крк2, Н	Τκ3, Н	Кк3, Н	Rк.ш3, Н	јкв, град	Т3, Н	Крк3, Н
11414	0	22828,3	0	-22828,3	3E-13	1602,5	1602,5	180	5E-13	-19623,4	1E-12	-20046,9	20046,9	540	1,9E-12	-20470,5
11286	10	22572	-1633,1	-22512,8	533,37	1453,8	1548,5	190	-566,37	-19605,3	-614,26	-19975,6	19985,1	550	-662,15	-20346
10875	20	21749	-2972,1	-21545	918,06	1011,6	1366,1	200	-1136	-19521,7	-1218,8	-19834,7	19872,1	560	-1301,5	-20147,8
10221	30	20441,9	-3749,5	-20095	1026,1	375,94	1092,8	210	-1697,4	-19343,2	-1801,9	-19596,8	19679,4	570	-1906,5	-19850,4
9442,5	40	18884,9	-3857,1	-18486,8	820,18	-272,7	864,31	220	-2216,8	-19032,1	-2329,8	-19226,2	19366,9	580	-2442,8	-19420,4
8666,2	50	17332,4	-3316,2	-17012,2	342,18	-772,1	844,5	230	-2631,8	-18556,4	-2740,8	-18694,3	18894,1	590	-2849,8	-18832,2
8036,9	60	16073,7	-2277,3	-15911,6	-304,36	-1014	1058,6	240	-2886	-17939,3	-2965	-18013,6	18255,9	600	-3044	-18087,8
7676	70	15352	-972,18	-15321,2	-954,77	-938,3	1338,7	250	-2881,7	-17197,8	-2908,2	-17215,9	17459,8	610	-2934,7	-17234
7630,6	80	15261,2	353,152	-15257,1	-1452	-581,5	1564,2	260	-2550,9	-16420,2	-2500	-16396,3	16585,8	620	-2449,1	-16372,5
7852,6	90	15705,2	1490,53	-15634,3	-1682,7	-52,7	1683,6	270	-1875	-15739,7	-1765,5	-15709,6	15808,5	630	-1656	-15679,6
8236,3	100	16472,6	2314,05	-16309,3	-1613,3	501,15	1689,4	280	-912,6	-15307	-718,22	-15289,6	15306,5	640	-523,84	-15272,3
8656,8	110	17313,6	2733,69	-17096,5	-1273,4	926,24	1574,6	290	186,94	-15244	499,28	-15274,7	15282,8	650	811,628	-15305,4
9037,5	120	18075,1	2798,62	-17857,1	-801,02	1135,5	1389,6	300	1196,6	-15586	1666,9	-15727,7	15815,8	660	2137,18	-15869,4
9337,8	130	18675,5	2584,03	-18495,9	-364,16	1135,3	1192,2	310	1855,7	-16225,4	2528,1	-16587,6	16779,2	670	3200,46	-16949,9
9550,5	140	19101	2183,89	-18975,7	-118,28	1051,8	1058,4	320	1947,3	-16872,1	2857,7	-17641,8	17871,8	680	3768,07	-18411,5
9684,4	150	19368,8	1677,95	-19296	-167,36	1163	1175	330	1343,2	-16970	2515,3	-18492,1	18662,4	690	3687,31	-20014,2
9759,3	160	19518,5	1126,56	-19486	-565,37	2134,6	2208,2	340	-4,1806	-15216,7	1464,3	-18339,1	18397,5	700	2932,83	-21461,5
9797,6	170	19595,2	564,006	-19587	-1005,1	5407,4	5500	350	-1446,2	-8772,29	88,41	-15620,1	15620,4	710	1623,05	-22467,9
9811,7	180	19623,4	5,4E-13	-19623,4	-2E-12	11062	11062	360	-4E-12	2500,34	-3E-13	-10164	10164	720	3,7E-12	-22828,3
9806,7	190	19613,5	-566,37	-19605,3	2936,9	14031	14335	370	5307,5	8457,23	2653,7	-7185,55	7659,92	0	0	-22828,3
9777,4	200	19554,7	-1136	-19521,7	4885,3	11328	12336	380	8634,7	3133,54	3500,8	-9689,65	10302,7	10	-1633,1	-22512,8
9708,7	210	19417,5	-1697,4	-19343,2	4799,8	7190	8644,9	390	7902,3	-4963,17	2465,1	-13254,1	13481,4	20	-2972,1	-21545
9580,4	220	19160,8	-2216,8	-19032,1	4420,1	4703,3	6454,3	400	6623,4	-9625,47	1436,9	-14860,3	14929,6	30	-3749,5	-20095
9371	230	18742,1	-2631,8	-18556,4	4108,8	3170,1	5189,6	410	5585,8	-12216,2	864,34	-15351,5	15375,8	40	-3857,1	-18486,8
9085	240	18170	-2886	-17939,3	3994,5	2125,4	4524,7	420	5102,9	-13688,6	893,35	-15350,4	15376,4	50	-3316,2	-17012,2
8718,8	250	17437,5	-2881,7	-17197,8	3981,5	1235,8	4168,9	430	5081,4	-14726,2	1402	-15318,9	15382,9	60	-2277,3	-15911,6
8308,6	260	16617,1	-2550,9	-16420,2	3918,9	361,68	3935,6	440	5286,9	-15696,8	2157,4	-15509	15658,3	70	-972,18	-15321,2
7925,5	270	15850,9	-1875	-15739,7	3680	-494,9	3713,1	450	5485	-16729,4	2919,1	-15993,3	16257,5	80	353,152	-15257,1

767.1 280																	
7816 300 15631.9 1196,59 15586 1808,1 2082 275,8 480 4812,7 19750,9 3773,2 18423,7 18806,1 110 2733,69 17096,5 8165,6 310 16331,2 1855,7 16225,4 1105,2 2214 2412,9 490 4162,2 20472,9 3472,4 -1915,6 1097/1 120 2798,62 -1785,1 8492,1 320 16984,1 1947,34 46872,1 705,42 2000 2177,5 500 3358,2 -20992,2 2271,1 -1974,9 130 2584,03 -16875,7 7608,4 340 15216,7 -4,1806 15216,7 741,33 -2800 2896,6 520 1478,5 -20817 1578,2 20056,5 20118,5 150 1677,95 19396 4454,4 350 8890,71 -1462 2872,23 1089,6 1001 157,8 530 732,95 20832,5 29,76 2018,8 2011,5 150 1677,95 <td>7667,1</td> <td>280</td> <td>15334,1</td> <td>-912,6</td> <td>-15307</td> <td>3211,3</td> <td>-1249</td> <td>3445,8</td> <td>460</td> <td>5509,9</td> <td>-17805,8</td> <td>3500,2</td> <td>-16720,1</td> <td>17082,5</td> <td>90</td> <td>1490,53</td> <td>-15634,3</td>	7667,1	280	15334,1	-912,6	-15307	3211,3	-1249	3445,8	460	5509,9	-17805,8	3500,2	-16720,1	17082,5	90	1490,53	-15634,3
Belong B	7622,6	290	15245,1	186,938	-15244	2549	-1799	3120,1	470	5285	-18842,5	3799,5	-17575,9	17981,9	100	2314,05	-16309,3
8492.1 320 16984.1 1947.34 16872.1 705.42 2060 2177.5 500 3358.2 20992.2 2971.1 19744 19966.3 130 2584.03 18495.9 8511.5 330 17023.1 1343.22 14970 520.2 2019 2084.8 510 2383.6 22100.78 2283.8 19991.8 20121.8 140 2183.89 14895.9 7608.4 340 15216.7 74.135 7280 2896.6 520 1478.5 72081.7 757.2 2005.6 5211.8 150 1677.95 19296 1445.4 350 8597.1 1446.2 8772.29 1089.6 6061 6157.8 530 732.95 20893.5 929.76 2018.8 20211.2 160 1126.56 119486 1250.2 360 2500.34 4E.12 2500.34 38.12 11485 11485 540 2E.12 20470.5 282 20028.8 20201.8 170 564.006 19587 4992.3 370 9984.68 5307.85 8457.23 2284.8 -14402 14708 550 662.15 20346 -331.07 1998.7 1998.7 180 5.4E-13 -19623.4 4592.8 380 9185.66 8634.66 3133.54 4968.1 11641 12656 560 1301.5 20147.8 933.96 11987.5 19689.5 190 -566.37 -19605.3 4665.8 390 9331.61 7902.27 4963.17 4904.4 7444 814.1 570 -1965.5 -2985.4 -1983.2 1990.9 200 -1136 -19321.7 -1934.2 -19321.7 -1934.2 -1934.	7816	300	15631,9	1196,59	-15586	1808,1	-2082	2757,8	480	4812,7	-19750,9	3773,2	-18423,7	18806,1	110	2733,69	-17096,5
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	8165,6	310	16331,2	1855,7	-16225,4	1145,2	-2124	2412,9	490	4146,2	-20472,9	3472,4	-19165	19477,1	120	2798,62	-17857,1
Total Tota	8492,1	320	16984,1	1947,34	-16872,1	705,42	-2060	2177,5	500	3358,2	-20992,2	2971,1	-19744	19966,3	130	2584,03	-18495,9
4445,4 350 8890,71 -1446,2 8772,29 1089,6 -6061 6157,8 530 732,95 -20893,5 929,76 -20189,8 20211,2 160 1126,56 -19486 1250,2 360 2500,34 -4E-12 2500,34 3E-12 -11485 11485 540 2E-12 -20470,5 282 -20028,8 20030,8 170 564,006 -19587 4992,3 370 9984,68 5307,45 8457,23 -2984,8 14402 14708 550 -662,15 -20346 331,07 19984,7 19987,4 180 5,4E-13 19623,4 4992,8 380 9185,66 8634,66 3133,54 -4968,1 -11641 12656 560 -1301,5 -20147,8 -933,96 -19676,5 19898,5 190 -566,37 -19665,3 4655,8 390 9331,61 7902,27 -4963,17 -4904,4 -7444 8914,1 570 -1906,5 -20147,8 -933,96 -19676,5 19898,5 190 -566,37 -19606,3 5842,1 400 11684,2 6623,43 9625,47 -4533,1 4897 6673,4 580 -2442,8 19420,4 2070,1 19381,8 19492 210 -1097,4 19343,2 6716,3 410 13432,7 5585,78 -12216,2 -4217,8 -3308 5360,3 590 -2849,8 -18832,2 -2533,3 -18932,2 19100,9 220 -2216,8 -19032,1 7304,4 420 14608,8 510,286 13688,6 4073,4 -2200 4629,4 600 -3044 13807,8 -2837,9 18322,1 1840,6 230 -2631,8 -18556,4 7789,1 430 15578,2 5081,38 14776,2 4008 1254 4199,5 610 -2934,7 -17234 -2910,4 17586,7 17825,8 240 -2886 17939,3 8281,6 440 16563,3 5286,8 1569,8 -3868 -337,8 382,7 620 -2449,1 -16372,5 -2665,4 -16785,1 16995,4 250 -2881,7 -1719,8 8802,8 450 17605,6 5485,0 3 16729,4 -3570,5 524,89 360,9 630 -1656 1575,6 -2103,5 1550,2 370 -1875, -15739,7 9784,8 470 19569,7 5285,0 3 18842,5 -2236,7 1768,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 19750,9 -1337,8 1940,8 2357,2 660 2137,2 15869,4 1162,1 15556,7 15600 290 186,938 -15244 10444 490 20888,5 4146,16 2047,9 472,8 176,5 680 372,9 640 -523,84 -15272,3 -1199,4 -15566, 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 19750,9 -1337,8 1940,8 2357,2 660 2137,2 15869,4 1162,1 15556,7 15600 290 186,938 -15244 10444 490 20888,5 4146,16 2047,9 472,85 176,5 881,3 891,3	8511,5	330	17023,1	1343,22	-16970	520,2	-2019	2084,8	510	2383,6	-21007,8	2283,8	-19991,8	20121,8	140	2183,89	-18975,7
1250,2 360 250,34	7608,4	340	15216,7	-4,1806	-15216,7	741,35	-2800	2896,6	520	1478,5	-20817	1578,2	-20056,5	20118,5	150	1677,95	-19296
4992,3 370 9984,68 5307,45 8457,23 -2984,8 -14402 14708 550 -662,15 -20346 -331,07 -19984,7 19987,4 180 5,4E-13 -1962,4 4592,8 380 9185,66 8634,66 3133,54 -4968,1 -11641 12656 560 -1301,5 -20147,8 -933,96 -19876,5 19898,5 190 -566,37 -19605,3 4665,8 390 9331,61 7902,27 -4963,17 -4904,4 -7444 8914,1 570 -1906,5 -19850,4 -1521,2 -19686 19744,7 200 -1136 -19521,7 5842,1 400 11684,2 6623,43 -9625,47 -4533,1 -4897 6673,4 580 -2442,8 -19420,4 -2070,1 -19381,8 19492 210 -1697,4 -19343,2 6716,3 410 13432,7 5585,78 -12216,2 -4217,8 -3308 5360,3 590 -2849,8 -18832,2 -2533,3 -18932,2 19100,9 220 -2216,8 -19032,1 7304,4 420 14608,8 5102,86 -10368,6 -4073,4 -2200 4629,4 600 -3044 -18087,8 -2837,9 -18322,1 18540,6 230 -2631,8 -18556,4 7789,1 430 15578,2 5081,38 -14726,2 -4008 -1254 4199,6 610 -2934,7 -17234 -2910,4 -17586,7 17825,8 240 -2886 -17393,8 8281,6 440 16563,3 5286,88 15969,8 -3868 -337,8 3882,7 620 -2449,1 16372,5 -2665,4 -16785,1 16995,4 250 -2881,7 -17197,8 8802,8 450 17605,6 5485,03 -16729,4 -3570,5 524,89 3608,9 630 -1656 -15679,6 -2103,5 -16049,9 16187,2 260 -2550,9 -16420,2 9319,4 460 18638,9 5509,9 -17805,8 -3016,9 1266,8 3272 640 -523,84 -15272,3 -1199,4 -15506 15552,3 270 -1875 -15739,7 9784,8 470 19569,7 5285,03 -18842,5 -2236,7 1768,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 -19750,9 -1337,8 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600 290 186,938 -15244 10444 490 20888,5 4146,16 20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 1298,5 -16626 16415,9 300 1196,59 -15586 10530 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10435 520 20869,4 1478,51 -2087 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 19215,7 1334,3 330 1343,322 -16970 10453 530 2096,4 732,955 -2089,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -1842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -2228,3 -22E-12 -10164 10164 360 -4E-12 2503,43	4445,4	350	8890,71	-1446,2	-8772,29	1089,6	-6061	6157,8	530	732,95	-20893,5	929,76	-20189,8	20211,2	160	1126,56	-19486
4592,8 380 9185,66 8634,66 3133,54 -4968,1 -11641 12656 560 -1301,5 -20147,8 -933,96 -19876,5 19898,5 190 -566,37 -1960,3 4665,8 390 9331,61 7902,27 -4963,17 -4904,4 -7444 8914,1 570 -1906,5 -19850,4 -1521,2 -19686 19744,7 200 -1136 -19521,7 5842,1 400 11684,2 6623,43 -9625,47 -4533,1 -4897 6673,4 580 -2442,8 -19420,4 -2070,1 -19381,8 19492 210 -1697,4 -19343,2 6716,3 410 13432,7 5585,78 -12216,2 -4217,8 -3308 5360,3 590 -2849,8 -18832,2 -2533,3 -18932,2 19100,9 220 -2216,8 -19032,1 7304,4 420 14608,8 5102,86 -13688,6 -4073,4 -2200 4629,4 600 -3044 -18087,8 -2837,9 -18322,1 18540,6 230 -2631,8 -18556,4 7789,1 430 15578,2 5081,38 -14726,2 -4008 -1254 4199,6 610 -2934,7 -17234 -2910,4 -17586,7 17825,8 240 -2886 -17939,3 8281,6 440 16563,3 5286,8 -15696,8 -3868 -337,8 3882,7 620 -2449,1 -16372,5 -2665,4 -16785,1 16995,4 250 -2281,7 -1719,8 8802,8 450 17605,6 5485,03 -16729,4 -3570,5 524,89 3608,9 630 -1656 -15679,6 -2103,5 -16649,9 16187,2 260 -2550,9 -16420,2 9313,4 460 18638,9 5509,9 17805,8 -3016,9 1266,8 3272 640 -523,84 -15272,3 -1199,4 -15506 15552,3 270 -1875 -15739,7 9784,8 470 19569,7 5285,03 -18842,5 -2236,7 1786,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -155307 1044 480 20328,8 4812,71 -19750,9 -13378, 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600, 290 186,938 -15244 10444 490 20888,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 300,5 -16949,9 2198,5 -16588 16415,9 300 1195,59 -15586 10630 500 21259,1 3338,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10571 510 21142,6 2383,61 -21007,8 651,85 496,8 819,58 690 3687,3 -2014,2 2817,3 -18443,2 18657,1 320 1947,34 -16872,1 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -2083,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1.96-12 -20470,5 96-13 -1179 1178,9 720 46-12 -22828,3 -2212 -10164 10164 360 -46-12 2500,343	1250,2	360	2500,34	-4E-12	2500,34	3E-12	-11485	11485	540	2E-12	-20470,5	282	-20028,8	20030,8	170	564,006	-19587
4665,8 390 9331,61 7902,77 4963,17 4904,4 -7444 8914,1 570 1906,5 19850,4 -1521,2 -19686 19744,7 200 -1136 19521,7 5842,1 400 11684,2 6623,43 9625,47 4533,1 4897 6673,4 580 -2442,8 19420,4 -2070,1 19381,8 19492 210 -1697,4 19343,2 6716,3 410 13432,7 5585,78 12216,2 4217,8 3308 5360,3 590 -2849,8 18832,2 -2533,3 18932,2 19100,9 220 -2216,8 19032,1 7304,4 420 14608,8 5102,86 13688,6 4073,4 2200 4629,4 600 3044 18087,8 2837,9 18322,1 18540,6 230 2631,8 18556,4 7789,1 430 15578,2 5081,38 14726,2 4008 1254 4199,6 610 -2934,7 17234 2910,4 17586,7 17825,8 240 2886 17939,3 8821,6 440 16563,3 5286,88 15696,8 3868 337,8 3882,7 620 2449,1 16372,5 2665,4 16785,1 16995,4 250 2881,7 17197,8 8802,8 450 17605,6 5485,03 16729,4 3570,5 524,89 3608,9 630 1656 15679,6 2103,5 16049,9 16187,2 260 2550,9 16420,2 9319,4 460 18638,9 550,9 17805,8 3016,9 1266,8 3272 640 -523,84 15272,3 1199,4 15506 15552,3 270 1875,9 1739,7 9784,8 470 19569,7 5285,03 18842,5 2236,7 1768,6 2851,4 650 811,3 15305,4 50,487 15306,2 15306,3 280 912,6 153007 10164 480 20328,8 4812,71 19750,9 1337,8 1940,8 2357,2 660 2137,2 15869,4 1162,1 15556,7 15500 290 186,938 15244 10630 500 21259,1 3358,18 20992,2 204,94 1290,3 1306,5 680 3768,1 18411,5 2811,9 17318,5 17545,3 310 1855,7 16225,4 10571 510 21142,6 2383,61 21007,8 651,85 496,8 819,58 690 3687,3 20014,2 2817,3 18443,2 18657,1 320 1947,34 16872,1 10435 520 20869,4 1478,51 -20817 727,16 322,2 795,35 700 2932,8 21461,5 2138 19215,7 1934,3 330 1343,22 -16970 10453 530 20906,4 732,955 20893,5 445,05 787,2 904,3 710 1623 22467,9 809,43 18842,3 18859,7 340 -4,1806 -15216,7 10178 550 20356,7 -662,15 20346 331,07 1241 1284,6 0 0 0 -22828,3 -22412 10164 10164 360 -46-12 2500,343	4992,3	370	9984,68	5307,45	8457,23	-2984,8	-14402	14708	550	-662,15	-20346	-331,07	-19984,7	19987,4	180	5,4E-13	-19623,4
5842,1 400 11684,2 6623,43 -9625,47 -4533,1 -4897 6673,4 580 -2442,8 -1942,0,4 -2070,1 -19381,8 19492 210 -1697,A -19343,2 6716,3 410 13432,7 5585,78 -12216,2 -4217,8 -3308 5360,3 590 -2849,8 -18832,2 -2533,3 -18932,2 1910,9 220 -2216,8 -19032,1 7304,4 420 14608,8 5102,86 -13688,6 -4073,4 -2200 4629,4 600 -3044 -18087,8 -2837,9 -18322,1 1850,6 230 -2631,8 -1855,6 7789,1 430 15578,2 5081,38 -14726,2 -4008 -1254 4199,6 610 -2934,7 -17234 -2910,4 -1785,7 2665,4 -1695,4 250 -2881,7 -1719,8 8802,8 450 17605,6 5485,03 -16729,4 -3570,5 524,89 3608,9 630 -1656 -15679,6 -2103,5	4592,8	380	9185,66	8634,66	3133,54	-4968,1	-11641	12656	560	-1301,5	-20147,8	-933,96	-19876,5	19898,5	190	-566,37	-19605,3
6716,3 410 13432,7 5585,78 -12216,2 -4217,8 -3308 5360,3 590 -2849,8 -18832,2 -2533,3 -18932,2 19100,9 220 -2216,8 -19032,1 7304,4 420 14608,8 5102,86 -13688,6 -4073,4 -2200 4629,4 600 -3044 -18087,8 -2837,9 -18322,1 18540,6 230 -2631,8 -18556,4 789,1 430 15578,2 5081,38 -14726,2 -4008 -1254 4199,6 610 -2934,7 -17234 -2910,4 -17586,7 17825,8 240 -2886 -17939,3 8281,6 440 16563,3 5286,88 -15696,8 -3868 -337,8 3882,7 620 -2449,1 -16372,5 -2665,4 -16785,1 16995,4 250 -2881,7 -17197,8 8802,8 450 17605,6 5485,03 -16729,4 -3570,5 524,89 3608,9 630 -1656 -15679,6 -2103,5 -16049,9 16187,2 260 -2550,9 -16420,2 9319,4 460 18638,9 5509,9 -17805,8 -3016,9 1266,8 3272 640 -523,84 -15272,3 -1199,4 -15506 15552,3 270 -1875 -15739,7 9784,8 470 19569,7 5285,03 -18842,5 -2236,7 1768,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 -19750,9 -1337,8 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600 290 186,938 -15244 10444 490 20888,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 2198,5 -16268 16415,9 300 1196,59 -15586 10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10351 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22488,3 -2214,1 15800,3 15816,8 350 -1446,2 8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 0 -22828,3 -2212 -10164 10164 360 -4E-12 2500,343	4665,8	390	9331,61	7902,27	-4963,17	-4904,4	-7444	8914,1	570	-1906,5	-19850,4	-1521,2	-19686	19744,7	200	-1136	-19521,7
7304,4 420 14608,8 5102,86 -13688,6 -4073,4 -2200 4629,4 600 -3044 -18087,8 -2837,9 -18322,1 18540,6 230 -2631,8 -18556,4 7789,1 430 15578,2 5081,38 -14726,2 -4008 -1254 4199,6 610 -2934,7 -17234 -2910,4 -17586,7 17825,8 240 -2886 -17939,3 8281,6 440 16563,3 5286,88 -15696,8 -3868 -337,8 3882,7 620 -2449,1 -16372,5 -2665,4 -16785,1 16995,4 250 -2881,7 -17197,8 8802,8 450 17605,6 5485,03 -16729,4 -3570,5 524,89 3608,9 630 -1656 -15679,6 -2103,5 -16049,9 16187,2 260 -2550,9 -16420,2 9319,4 460 18638,9 5509,9 -17805,8 -3016,9 1266,8 3272 640 -523,84 -15272,3 -1199,4 -15506,0	5842,1	400	11684,2	6623,43	-9625,47	-4533,1	-4897	6673,4	580	-2442,8	-19420,4	-2070,1	-19381,8	19492	210	-1697,4	-19343,2
7789,1 430 15578,2 5081,38 -14726,2 -4008 -1254 4199,6 610 -2934,7 -17234 -2910,4 -17586,7 17825,8 240 -2886 -17939,3 8281,6 440 16563,3 5286,88 -15696,8 -3868 -337,8 3882,7 620 -2449,1 -16372,5 -2665,4 -16785,1 16995,4 250 -2881,7 -17197,8 802,8 450 17605,6 5485,03 -16729,4 -3570,5 524,89 3608,9 630 -1656 -15679,6 -2103,5 -16049,9 16187,2 260 -2550,9 -16420,2 9319,4 460 18638,9 5509,9 -17805,8 -3016,9 1266,8 3272 640 -523,84 -15272,3 -1199,4 -15506 15552,3 270 -1875 -15739,7 9784,8 470 19569,7 5285,03 -18842,5 -2236,7 1768,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 -19750,9 -1337,8 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600 290 186,938 -15244 10444 490 2088,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 2198,5 -16268 16415,9 300 1196,59 -15586 10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10435 520 2086,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	6716,3	410	13432,7	5585,78	-12216,2	-4217,8	-3308	5360,3	590	-2849,8	-18832,2	-2533,3	-18932,2	19100,9	220	-2216,8	-19032,1
8281,6 440 16563,3 5286,88 -15696,8 -3868 -337,8 3882,7 620 -2449,1 -16372,5 -2665,4 -16785,1 16995,4 250 -2881,7 -17197,8 8802,8 450 17605,6 5485,03 -16729,4 -3570,5 524,89 3608,9 630 -1656 -15679,6 -2103,5 -16049,9 16187,2 260 -2550,9 -16420,2 9319,4 460 18638,9 5509,9 -17805,8 -3016,9 1266,8 3272 640 -523,84 -15272,3 -1199,4 -15506 15552,3 270 -1875 -15739,7 9784,8 470 19569,7 5285,03 -18842,5 -2236,7 1768,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 -19750,9 -1337,8 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600 290 186,938 -15244 10444 490 20888,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 2198,5 -16268 16415,9 300 1196,59 -15586 10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -12461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	7304,4	420	14608,8	5102,86	-13688,6	-4073,4	-2200	4629,4	600	-3044	-18087,8	-2837,9	-18322,1	18540,6	230	-2631,8	-18556,4
8802,8 450 17605,6 5485,03 -16729,4 -3570,5 524,89 3608,9 630 -1656 -15679,6 -2103,5 -16049,9 16187,2 260 -2550,9 -16420,2 9319,4 460 18638,9 5509,9 -17805,8 -3016,9 1266,8 3272 640 -523,84 -15272,3 -1199,4 -15506 15552,3 270 -1875 -15739,7 9784,8 470 19569,7 5285,03 -18842,5 -2236,7 1768,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 -19750,9 -1337,8 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600 290 186,938 -15244 10444 490 20888,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 2198,5 -16268 16415,9 300 1196,59 -15586 10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10571 510 21142,6 2383,61 -21007,8 651,85 496,8 819,58 690 3687,3 -20014,2 2817,3 -18443,2 18657,1 320 1947,34 -16872,1 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	7789,1	430	15578,2	5081,38	-14726,2	-4008	-1254	4199,6	610	-2934,7	-17234	-2910,4	-17586,7	17825,8	240	-2886	-17939,3
9319,4 460 18638,9 5509,9 -17805,8 -3016,9 1266,8 3272 640 -523,84 -15272,3 -1199,4 -15506 15552,3 270 -1875 -15739,7 9784,8 470 19569,7 5285,03 -18842,5 -2236,7 1768,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 -19750,9 -1337,8 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600 290 186,938 -15244 10444 490 2088,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 2198,5 -16268 16415,9 300 1196,59 -15586 10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10571 510 21142,6 2383,61 -21007,8 651,85 496,8 819,58 690 3687,3 -20014,2 2817,3 -18443,2 18657,1 320 1947,34 -16872,1 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	8281,6	440	16563,3	5286,88	-15696,8	-3868	-337,8	3882,7	620	-2449,1	-16372,5	-2665,4	-16785,1	16995,4	250	-2881,7	-17197,8
9784,8 470 19569,7 5285,03 -18842,5 -2236,7 1768,6 2851,4 650 811,63 -15305,4 -50,487 -15306,2 15306,3 280 -912,6 -15307 10164 480 20328,8 4812,71 -19750,9 -1337,8 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600 290 186,938 -15244 10444 490 20888,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 2198,5 -16268 16415,9 300 1196,59 -15586 10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10571 510 21142,6 2383,61 -21007,8 651,85 496,8 819,58 690 3687,3 -20014,2 2817,3 -18443,2 18657,1 320 1947,34 -16872,1 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	8802,8	450	17605,6	5485,03	-16729,4	-3570,5	524,89	3608,9	630	-1656	-15679,6	-2103,5	-16049,9	16187,2	260	-2550,9	-16420,2
10164 480 20328,8 4812,71 -19750,9 -1337,8 1940,8 2357,2 660 2137,2 -15869,4 1162,1 -15556,7 15600 290 186,938 -15244 10444 490 20888,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 2198,5 -16268 16415,9 300 1196,59 -15586 10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10571 510 21142,6 2383,61 -21007,8 651,85 496,8 819,58 690 3687,3 -20014,2 2817,3 -18443,2 18657,1 320 1947,34 -16872,1 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,	9319,4	460	18638,9	5509,9	-17805,8	-3016,9	1266,8	3272	640	-523,84	-15272,3	-1199,4	-15506	15552,3	270	-1875	-15739,7
10444 490 20888,5 4146,16 -20472,9 -472,85 1761,5 1823,9 670 3200,5 -16949,9 2198,5 -16268 16415,9 300 1196,59 -15586 10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10571 510 21142,6 2383,61 -21007,8 651,85 496,8 819,58 690 3687,3 -20014,2 2817,3 -18443,2 18657,1 320 1947,34 -16872,1 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 <td< td=""><td>9784,8</td><td>470</td><td>19569,7</td><td>5285,03</td><td>-18842,5</td><td>-2236,7</td><td>1768,6</td><td>2851,4</td><td>650</td><td>811,63</td><td>-15305,4</td><td>-50,487</td><td>-15306,2</td><td>15306,3</td><td>280</td><td>-912,6</td><td>-15307</td></td<>	9784,8	470	19569,7	5285,03	-18842,5	-2236,7	1768,6	2851,4	650	811,63	-15305,4	-50,487	-15306,2	15306,3	280	-912,6	-15307
10630 500 21259,1 3358,18 -20992,2 204,94 1290,3 1306,5 680 3768,1 -18411,5 2811,9 -17318,5 17545,3 310 1855,7 -16225,4 10571 510 21142,6 2383,61 -21007,8 651,85 496,8 819,58 690 3687,3 -20014,2 2817,3 -18443,2 18657,1 320 1947,34 -16872,1 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7	10164	480	20328,8	4812,71	-19750,9	-1337,8	1940,8	2357,2	660	2137,2	-15869,4	1162,1	-15556,7	15600	290	186,938	-15244
10571 510 21142,6 2383,61 -21007,8 651,85 496,8 819,58 690 3687,3 -20014,2 2817,3 -18443,2 18657,1 320 1947,34 -16872,1 10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	10444	490	20888,5	4146,16	-20472,9	-472,85	1761,5	1823,9	670	3200,5	-16949,9	2198,5	-16268	16415,9	300	1196,59	-15586
10435 520 20869,4 1478,51 -20817 727,16 -322,2 795,35 700 2932,8 -21461,5 2138 -19215,7 19334,3 330 1343,22 -16970 10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	10630	500	21259,1	3358,18	-20992,2	204,94	1290,3	1306,5	680	3768,1	-18411,5	2811,9	-17318,5	17545,3	310	1855,7	-16225,4
10453 530 20906,4 732,955 -20893,5 445,05 -787,2 904,3 710 1623 -22467,9 809,43 -18842,3 18859,7 340 -4,1806 -15216,7 10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	10571	510	21142,6	2383,61	-21007,8	651,85	496,8	819,58	690	3687,3	-20014,2	2817,3	-18443,2	18657,1	320	1947,34	-16872,1
10235 540 20470,5 1,9E-12 -20470,5 9E-13 -1179 1178,9 720 4E-12 -22828,3 -723,11 -15800,3 15816,8 350 -1446,2 -8772,29 10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	10435	520	20869,4	1478,51	-20817	727,16	-322,2	795,35	700	2932,8	-21461,5	2138	-19215,7	19334,3	330	1343,22	-16970
10178 550 20356,7 -662,15 -20346 331,07 -1241 1284,6 0 0 -22828,3 -2E-12 -10164 10164 360 -4E-12 2500,343	10453	530	20906,4	732,955	-20893,5	445,05	-787,2	904,3	710	1623	-22467,9	809,43	-18842,3	18859,7	340	-4,1806	-15216,7
	10235	540	20470,5	1,9E-12	-20470,5	9E-13	-1179	1178,9	720	4E-12	-22828,3	-723,11	-15800,3	15816,8	350	-1446,2	-8772,29
10095 560 20189,8 -1301,5 -20147,8 -165,78 -1183 1194,1 10 -1633,1 -22512,8 1837,2 -7027,81 7263,97 370 5307,45 8457,226	10178	550	20356,7	-662,15	-20346	331,07	-1241	1284,6	0	0	-22828,3	-2E-12	-10164	10164	360	-4E-12	2500,343
	10095	560	20189,8	-1301,5	-20147,8	-165,78	-1183	1194,1	10	-1633,1	-22512,8	1837,2	-7027,81	7263,97	370	5307,45	8457,226

9970,9	570	19941,7	-1906,5	-19850,4	-532,81	-847,3	1000,9	20	-2972,1	-21545	2831,3	-9205,71	9631,27	380	8634,66	3133,543
9786,7	580	19573,4	-2442,8	-19420,4	-653,35	-337,3	735,3	30	-3749,5	-20095	2076,4	-12529,1	12700	390	7902,27	-4963,17
9523,3	590	19046,6	-2849,8	-18832,2	-503,67	172,7	532,46	40	-3857,1	-18486,8	1383,2	-14056,1	14124	400	6623,43	-9625,47
9171,1	600	18342,2	-3044	-18087,8	-136,1	537,79	554,74	50	-3316,2	-17012,2	1134,8	-14614,2	14658,2	410	5585,78	-12216,2
8741	610	17482,1	-2934,7	-17234	328,67	661,22	738,4	60	-2277,3	-15911,6	1412,8	-14800,1	14867,4	420	5102,86	-13688,6
8277,3	620	16554,7	-2449,1	-16372,5	738,46	525,67	906,45	70	-972,18	-15321,2	2054,6	-15023,7	15163,5	430	5081,38	-14726,2
7883,4	630	15766,8	-1656	-15679,6	1004,6	211,27	1026,5	80	353,15	-15257,1	2820	-15477	15731,8	440	5286,88	-15696,8
7640,6	640	15281,3	-523,84	-15272,3	1007,2	-181	1023,3	90	1490,5	-15634,3	3487,8	-16181,8	16553,4	450	5485,03	-16729,4
7663,4	650	15326,9	811,628	-15305,4	751,21	-501,9	903,47	100	2314,1	-16309,3	3912	-17057,6	17500,4	460	5509,9	-17805,8
8006,3	660	16012,6	2137,18	-15869,4	298,25	-613,6	682,2	110	2733,7	-17096,5	4009,4	-17969,5	18411,3	470	5285,03	-18842,5
8624,7	670	17249,4	3200,46	-16949,9	-200,92	-453,6	496,12	120	2798,6	-17857,1	3805,7	-18804	19185,3	480	4812,71	-19750,9
9396,6	680	18793,2	3768,07	-18411,5	-592,02	-42,19	593,52	130	2584	-18495,9	3365,1	-19484,4	19772,9	490	4146,16	-20472,9
10176	690	20351	3687,31	-20014,2	-751,71	519,25	913,61	140	2183,9	-18975,7	2771	-19983,9	20175,1	500	3358,18	-20992,2
10830	700	21660,9	2932,83	-21461,5	-627,44	1082,7	1251,4	150	1677,9	-19296	2030,8	-20151,9	20254	510	2383,61	-21007,8
11263	710	22526,5	1623,05	-22467,9	-248,24	1491	1511,5	160	1126,6	-19486	1302,5	-20151,5	20193,6	520	1478,51	-20817
11414	720	22828,3	3,7E-12	-22828,3	282	1620,6	1645	170	564,01	-19587	648,48	-20240,3	20250,7	530	732,955	-20893,5

Таблица Г4 – Силы действующие на колено вала.

Крк, Н	Rк, Н	Тк1, Н	Тк3, Н	Тк4, Н	Тк2, Н	Крк1, Н	Крк3, Н	Крк4, Н	Крк2, Н	Тк2=Тк4, Н	Тк3, Н	Кк2,4, Н	Кк3, Н	φ _{кв} , град
-22828,3	22828,3	0	1,928E-12	-4,343E-12	5,38789E-13	-22828,329	-20470,5247	2500,3431	-19623,357	5,388E-13	1,2333E-12	-3204,9719	-20046,941	0
-22512,8	22572	-1633,1063	-662,1484	5307,4535	-566,366713	-22512,837	-20345,9765	8457,2261	-19605,301	1066,7396	-614,25757	-2907,5362	-19975,639	10
-21545	21749	-2972,1131	-1301,548	8634,6578	-1135,99642	-21544,972	-20147,7708	3133,5432	-19521,692	1836,1167	-1218,7722	-2023,2799	-19834,732	20
-20095	20441,9	-3749,5463	-1906,487	7902,2694	-1697,38722	-20095,038	-19850,3978	-4963,1734	-19343,16	2052,1591	-1801,9373	-751,87851	-19596,779	30
-18486,8	18884,9	-3857,1083	-2442,837	6623,4337	-2216,75344	-18486,815	-19420,3602	-9625,474	-19032,138	1640,3548	-2329,7953	545,3225	-19226,249	40
-17012,2	17332,4	-3316,1547	-2849,762	5585,7794	-2631,79248	-17012,228	-18832,2218	-12216,216	-18556,363	684,36224	-2740,7773	1544,1353	-18694,293	50
-15911,6	16073,7	-2277,3286	-3043,964	5102,8606	-2886,04118	-15911,567	-18087,809	-13688,585	-17939,316	-608,71256	-2965,0027	2027,7489	-18013,563	60
-15321,2	15352	-972,17746	-2934,665	5081,376	-2881,71284	-15321,169	-17234,0039	-14726,169	-17197,765	-1909,5354	-2908,1891	1876,5957	-17215,884	70
-15257,1	15261,2	353,15199	-2449,102	5286,8834	-2550,91855	-15257,09	-16372,5031	-15696,823	-16420,183	-2904,0705	-2500,0103	1163,0925	-16396,343	80

-15634,3	15705,2	1490,5267	-1655,983	5485,031	-1874,97291	-15634,263	-15679,6252	-16729,412	-15739,664	-3365,4996	-1765,4778	105,4013	-15709,645	90
-16309,3	16472,6	2314,0531	-523,8429	5509,9011	-912,601421	-16309,261	-15272,3035	-17805,843	-15306,953	-3226,6545	-718,22218	-1002,3083	-15289,628	100
-17096,5	17313,6	2733,688	811,62833	5285,0307	186,9376808	-17096,461	-15305,3889	-18842,517	-15243,988	-2546,7503	499,283004	-1852,473	-15274,689	110
-17857,1	18075,1	2798,6215	2137,1833	4812,7062	1196,586363	-17857,117	-15869,3543	-19750,931	-15586,038	-1602,0351	1666,88481	-2271,0792	-15727,696	120
-18495,9	18675,5	2584,0278	3200,4648	4146,1643	1855,700794	-18495,913	-16949,899	-20472,925	-16225,393	-728,32698	2528,08282	-2270,5203	-16587,646	130
-18975,7	19101	2183,8949	3768,0717	3358,1835	1947,340401	-18975,715	-18411,5347	-20992,158	-16872,099	-236,55445	2857,70607	-2103,6156	-17641,817	140
-19296	19368,8	1677,9487	3687,3113	2383,6145	1343,223804	-19296,005	-20014,2155	-21007,819	-16970,019	-334,7249	2515,26755	-2325,9863	-18492,117	150
-19486	19518,5	1126,5584	2932,8312	1478,5114	-4,18060312	-19486	-21461,4505	-20817,006	-15216,726	-1130,739	1464,3253	-4269,2743	-18339,088	160
-19587	19595,2	564,0065	1623,0451	732,9549	-1446,22448	-19587,05	-22467,9424	-20893,52	-8772,293	-2010,231	88,4103083	-10814,757	-15620,118	170
-19623,4	19623,4	5,388E-13	3,726E-12	1,928E-12	-4,3434E-12	-19623,357	-22828,3294	-20470,525	2500,3431	-4,882E-12	-3,088E-13	-22123,701	-10163,993	180
-19605,3	19613,5	-566,36671	0	-662,14843	5307,453491	-19605,301	-22828,3294	-20345,977	8457,2261	5873,8202	2653,72675	-28062,527	-7185,5517	190
-19521,7	19554,7	-1135,9964	-1633,106	-1301,5481	8634,657838	-19521,692	-22512,8373	-20147,771	3133,5432	9770,6543	3500,77577	-22655,236	-9689,6471	200
-19343,2	19417,5	-1697,3872	-2972,113	-1906,4874	7902,269428	-19343,16	-21544,9723	-19850,398	-4963,1734	9599,6566	2465,07818	-14379,986	-13254,073	210
-19032,1	19160,8	-2216,7534	-3749,546	-2442,8371	6623,433651	-19032,138	-20095,0382	-19420,36	-9625,474	8840,1871	1436,94369	-9406,664	-14860,256	220
-18556,4	18742,1	-2631,7925	-3857,108	-2849,7621	5585,779415	-18556,363	-18486,8155	-18832,222	-12216,216	8217,5719	864,335566	-6340,1471	-15351,516	230
-17939,3	18170	-2886,0412	-3316,155	-3043,9643	5102,860633	-17939,316	-17012,2282	-18087,809	-13688,585	7988,9018	893,352955	-4250,7315	-15350,406	240
-17197,8	17437,5	-2881,7128	-2277,329	-2934,6654	5081,376044	-17197,765	-15911,5674	-17234,004	-14726,169	7963,0889	1402,02371	-2471,5954	-15318,868	250
-16420,2	16617,1	-2550,9186	-972,1775	-2449,1021	5286,883388	-16420,183	-15321,1692	-16372,503	-15696,823	7837,8019	2157,35297	-723,35926	-15508,996	260
-15739,7	15850,9	-1874,9729	353,15199	-1655,9827	5485,03099	-15739,664	-15257,0902	-15679,625	-16729,412	7360,0039	2919,09149	989,74772	-15993,251	270
-15307	15334,1	-912,60142	1490,5267	-523,84294	5509,901136	-15306,953	-15634,2632	-15272,304	-17805,843	6422,5026	3500,21389	2498,8901	-16720,053	280
-15244	15245,1	186,93768	2314,0531	811,62833	5285,030669	-15243,988	-16309,2611	-15305,389	-18842,517	5098,093	3799,54187	3598,5288	-17575,889	290
-15586	15631,9	1196,5864	2733,688	2137,1833	4812,706184	-15586,038	-17096,4615	-15869,354	-19750,931	3616,1198	3773,1971	4164,8932	-18423,696	300
-16225,4	16331,2	1855,7008	2798,6215	3200,4648	4146,16429	-16225,393	-17857,1168	-16949,899	-20472,925	2290,4635	3472,39289	4247,532	-19165,021	310
-16872,1	16984,1	1947,3404	2584,0278	3768,0717	3358,183474	-16872,099	-18495,9133	-18411,535	-20992,158	1410,8431	2971,10562	4120,0588	-19744,035	320
-16970	17023,1	1343,2238	2183,8949	3687,3113	2383,614547	-16970,019	-18975,7145	-20014,215	-21007,819	1040,3907	2283,7547	4037,8002	-19991,767	330
-15216,7	15216,7	-4,1806031	1677,9487	2932,8312	1478,511407	-15216,726	-19296,0054	-21461,451	-20817,006	1482,692	1578,23005	5600,28	-20056,506	340
-8772,29	8890,71	-1446,2245	1126,5584	1623,0451	732,9548953	-8772,293	-19486	-22467,942	-20893,52	2179,1794	929,756636	12121,227	-20189,76	350
2500,34	2500,34	-4,343E-12	564,0065	3,726E-12	1,92774E-12	2500,3431	-19587,0497	-22828,329	-20470,525	6,271E-12	282,003249	22970,868	-20028,787	360

8457,23	9984,68	5307,4535	5,388E-13	-1633,1063	-662,14843	8457,2261	-19623,3575	-22512,837	-20345,977	-5969,6019	-331,07422	28803,203	-19984,667	370
3133,54	9185,66	8634,6578	-566,3667	-2972,1131	-1301,54807	3133,5432	-19605,3011	-21544,972	-20147,771	-9936,2059	-933,95739	23281,314	-19876,536	380
-4963,17	9331,61	7902,2694	-1135,996	-3749,5463	-1906,48742	-4963,1734	-19521,6925	-20095,038	-19850,398	-9808,7568	-1521,2419	14887,224	-19686,045	390
-9625,47	11684,2	6623,4337	-1697,387	-3857,1083	-2442,83712	-9625,474	-19343,1597	-18486,815	-19420,36	-9066,2708	-2070,1122	9794,8862	-19381,76	400
-12216,2	13432,7	5585,7794	-2216,753	-3316,1547	-2849,76206	-12216,216	-19032,138	-17012,228	-18832,222	-8435,5415	-2533,2578	6616,0054	-18932,18	410
-13688,6	14608,8	5102,8606	-2631,792	-2277,3286	-3043,96431	-13688,585	-18556,3635	-15911,567	-18087,809	-8146,8249	-2837,8784	4399,2242	-18322,086	420
-14726,2	15578,2	5081,376	-2886,041	-972,17746	-2934,6654	-14726,169	-17939,3162	-15321,169	-17234,004	-8016,0414	-2910,3533	2507,8344	-17586,66	430
-15696,8	16563,3	5286,8834	-2881,713	353,15199	-2449,10213	-15696,823	-17197,7648	-15257,09	-16372,503	-7735,9855	-2665,4075	675,6797	-16785,134	440
-16729,4	17605,6	5485,031	-2550,919	1490,5267	-1655,98265	-16729,412	-16420,1827	-15634,263	-15679,625	-7141,0136	-2103,4506	-1049,7869	-16049,904	450
-17805,8	18638,9	5509,9011	-1874,973	2314,0531	-523,842938	-17805,843	-15739,6645	-16309,261	-15272,304	-6033,7441	-1199,4079	-2533,5394	-15505,984	460
-18842,5	19569,7	5285,0307	-912,6014	2733,688	811,6283278	-18842,517	-15306,9528	-17096,461	-15305,389	-4473,4023	-50,486547	-3537,1283	-15306,171	470
-19750,9	20328,8	4812,7062	186,93768	2798,6215	2137,183256	-19750,931	-15243,9885	-17857,117	-15869,354	-2675,5229	1162,06047	-3881,5765	-15556,671	480
-20472,9	20888,5	4146,1643	1196,5864	2584,0278	3200,464842	-20472,925	-15586,0376	-18495,913	-16949,899	-945,69945	2198,5256	-3523,026	-16267,968	490
-20992,2	21259,1	3358,1835	1855,7008	2183,8949	3768,071738	-20992,158	-16225,3931	-18975,715	-18411,535	409,88826	2811,88627	-2580,6229	-17318,464	500
-21007,8	21142,6	2383,6145	1947,3404	1677,9487	3687,311299	-21007,819	-16872,0989	-19296,005	-20014,215	1303,6968	2817,32585	-993,60385	-18443,157	510
-20817	20869,4	1478,5114	1343,2238	1126,5584	2932,831204	-20817,006	-16970,0191	-19486	-21461,451	1454,3198	2138,0275	644,44494	-19215,735	520
-20893,5	20906,4	732,9549	-4,180603	564,0065	1623,045101	-20893,52	-15216,7256	-19587,05	-22467,942	890,09021	809,432249	1574,4229	-18842,334	530
-20470,5	20470,5	1,928E-12	-1446,224	5,388E-13	3,72578E-12	-20470,525	-8772,29297	-19623,357	-22828,329	1,798E-12	-723,11224	2357,8047	-15800,311	540
-20346	20356,7	-662,14843	-4,34E-12	-566,36671	0	-20345,977	2500,34314	-19605,301	-22828,329	662,14843	-2,172E-12	2482,3529	-10163,993	550
-20147,8	20189,8	-1301,5481	5307,4535	-1135,9964	-1633,1063	-20147,771	8457,22608	-19521,692	-22512,837	-331,55824	1837,17359	2365,0665	-7027,8056	560
-19850,4	19941,7	-1906,4874	8634,6578	-1697,3872	-2972,11308	-19850,398	3133,54319	-19343,16	-21544,972	-1065,6257	2831,27238	1694,5745	-9205,7146	570
-19420,4	19573,4	-2442,8371	7902,2694	-2216,7534	-3749,54627	-19420,36	-4963,17344	-19032,138	-20095,038	-1306,7092	2076,36158	674,67799	-12529,106	580
-18832,2	19046,6	-2849,7621	6623,4337	-2631,7925	-3857,10828	-18832,222	-9625,47398	-18556,363	-18486,815	-1007,3462	1383,16268	-345,40633	-14056,145	590
-18087,8	18342,2	-3043,9643	5585,7794	-2886,0412	-3316,15472	-18087,809	-12216,2164	-17939,316	-17012,228	-272,19042	1134,81235	-1075,5808	-14614,222	600
-17234	17482,1	-2934,6654	5102,8606	-2881,7128	-2277,32862	-17234,004	-13688,5848	-17197,765	-15911,567	657,33677	1412,76601	-1322,4365	-14800,076	610
-16372,5	16554,7	-2449,1021	5081,376	-2550,9186	-972,177456	-16372,503	-14726,1694	-16420,183	-15321,169	1476,9247	2054,59929	-1051,3339	-15023,669	620
-15679,6	15766,8	-1655,9827	5286,8834	-1874,9729	353,1519926	-15679,625	-15696,8234	-15739,664	-15257,09	2009,1346	2820,01769	-422,53501	-15476,957	630
-15272,3	15281,3	-523,84294	5485,031	-912,60142	1490,526651	-15272,304	-16729,4122	-15306,953	-15634,263	2014,3696	3487,77882	361,95962	-16181,838	640

-15305,4	15326,9	811,62833	5509,9011	186,93768	2314,053076	-15305,389	-17805,8429	-15243,988	-16309,261	1502,4247	3911,97711	1003,8722	-17057,552	650
-15869,4	16012,6	2137,1833	5285,0307	1196,5864	2733,68802	-15869,354	-18842,5172	-15586,038	-17096,461	596,50476	4009,35934	1227,1072	-17969,489	660
-16949,9	17249,4	3200,4648	4812,7062	1855,7008	2798,621492	-16949,899	-19750,9308	-16225,393	-17857,117	-401,84335	3805,66384	907,21779	-18804,024	670
-18411,5	18793,2	3768,0717	4146,1643	1947,3404	2584,027776	-18411,535	-20472,925	-16872,099	-18495,913	-1184,044	3365,09603	84,378589	-19484,419	680
-20014,2	20351	3687,3113	3358,1835	1343,2238	2183,894856	-20014,215	-20992,1576	-16970,019	-18975,715	-1503,4164	2771,03916	-1038,501	-19983,936	690
-21461,5	21660,9	2932,8312	2383,6145	-4,1806031	1677,948702	-21461,451	-21007,8193	-15216,726	-19296,005	-1254,8825	2030,78162	-2165,4451	-20151,912	700
-22467,9	22526,5	1623,0451	1478,5114	-1446,2245	1126,558376	-22467,942	-20817,0056	-8772,293	-19486	-496,48672	1302,53489	-2981,9424	-20151,503	710
-22828,3	22828,3	3,726E-12	732,9549	-4,343E-12	564,0064972	-22828,329	-20893,5195	2500,3431	-19587,05	564,0065	648,480696	-3241,2797	-20240,285	720

Таблица Г5 – Силы действующие на шатунную шейку

т аолица	$15 - C_1$	илы деист	вующие на	шатунную	шеику	
К _{Rш} , Н	Рк, Η	Рк, Η	ψ, рад	ψ, град	Rш.ш., H	φ _{кв} , град
-5780,7604	-13383,5	13383,47526	0	0	13383	0
-5780,7604	-13068	13067,9832	0,1243255	7,1233258	13170	10
-5780,7604	-12100,1	12100,11821	0,2408585	13,800174	12460	20
-5780,7604	-10650,2	10650,18403	0,3385124	19,395331	11291	30
-5780,7604	-9041,96	9041,961366	0,4032071	23,102064	9830,3	40
-5780,7604	-7567,37	7567,374024	0,4130124	23,663867	8262,1	50
-5780,7604	-6466,71	6466,713226	0,3385993	19,400311	6856	60
-5780,7604	-5876,32	5876,315048	0,1639549	9,3939243	5956,2	70
-5780,7604	-5812,24	5812,236074	-0,0606855	-3,4770222	5823	80
-5780,7604	-6189,41	6189,40902	-0,2363191	-13,540089	6366,4	90
-5780,7604	-6864,41	6864,406939	-0,3251448	-18,629422	7244	100
-5780,7604	-7651,61	7651,607352	-0,3431365	-19,660273	8125,3	110
-5780,7604	-8412,26	8412,26266	-0,3211656	-18,401436	8865,6	120
-5780,7604	-9051,06	9051,059188	-0,2780965	-15,933754	9412,7	130
-5780,7604	-9530,86	9530,860372	-0,2252508	-12,90592	9777,9	140
-5780,7604	-9851,15	9851,15131	-0,1687111	-9,6664327	9993	150
-5780,7604	-10041,1	10041,14582	-0,111727	-6,4014844	10104	160
-5780,7604	-10142,2	10142,19553	-0,0555527	-3,1829343	10158	170
-5780,7604	-10178,5	10178,50334	-5,293E-17	-3,033E-15	10179	180
-5780,7604	-10160,4	10160,44696	0,0556847	3,1904969	10176	190
-5780,7604	-10076,8	10076,83834	0,1122595	6,4319931	10141	200
-5780,7604	-9898,31	9898,30552	0,1698308	9,730586	10043	210
-5780,7604	-9587,28	9587,283871	0,227225	13,019032	9840,2	220
-5780,7604	-9111,51	9111,509338	0,2811895	16,110973	9484	230
-5780,7604	-8494,46	8494,462098	0,3275194	18,765481	8971,3	240
-5780,7604	-7752,91	7752,910712	0,3558694	20,389814	8271,1	250
-5780,7604	-6975,33	6975,328536	0,3505976	20,087763	7427,1	260
-5780,7604	-6294,81	6294,810319	0,2894924	16,586695	6568,1	270
-5780,7604	-5862,1	5862,098637	0,1544386	8,8486798	5932,7	280
-5780,7604	-5799,13	5799,134353	-0,0322243	-1,8463157	5802,1	290
-5780,7604	-6141,18	6141,183467	-0,1924351	-11,02572	6256,7	300
-5780,7604	-6780,54	6780,538926	-0,267139	-15,305937	7029,9	310
-5780,7604	-7427,24	7427,24473	-0,2564172	-14,691622	7678,3	320
-5780,7604	-7525,16	7525,164971	-0,1766373	-10,120572	7644,1	330
-5780,7604	-5771,87	5771,871503	0,0007243	0,0414997	5771,9	340
-5780,7604	672,5612	-672,561164	-1,1355007	-65,059397	1595	350
-5780,7604	11945,2	-11945,1973	-3,636E-16	-2,083E-14	11945	360
-5780,7604	17902,08	-17902,0802	0,2882163	16,51358	18672	370
-5780,7604	12578,4	-12578,3973	0,6015857	34,468323	15257	380
-5780,7604	4481,681	-4481,6807	1,0548903	60,440762	9084,7	390
-5780,7604	-180,62	180,6198485	-1,5435333	-88,437941	6625,9	400
-5780,7604	-2771,36	2771,362264	-1,1102366	-63,611874	6235,5	410
-5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604 -5780,7604	-8494,46 -7752,91 -6975,33 -6294,81 -5862,1 -5799,13 -6141,18 -6780,54 -7427,24 -7525,16 -5771,87 672,5612 11945,2 17902,08 12578,4 4481,681 -180,62	8494,462098 7752,910712 6975,328536 6294,810319 5862,098637 5799,134353 6141,183467 6780,538926 7427,24473 7525,164971 5771,871503 -672,561164 -11945,1973 -17902,0802 -12578,3973 -4481,6807 180,6198485	0,3275194 0,3558694 0,3505976 0,2894924 0,1544386 -0,0322243 -0,1924351 -0,267139 -0,2564172 -0,1766373 0,0007243 -1,1355007 -3,636E-16 0,2882163 0,6015857 1,0548903 -1,5435333	18,765481 20,389814 20,087763 16,586695 8,8486798 -1,8463157 -11,02572 -15,305937 -14,691622 -10,120572 0,0414997 -65,059397 -2,083E-14 16,51358 34,468323 60,440762 -88,437941	8971,3 8271,1 7427,1 6568,1 5932,7 5802,1 6256,7 7029,9 7678,3 7644,1 5771,9 1595 11945 18672 15257 9084,7 6625,9	240 250 260 270 280 290 300 310 320 340 350 360 370 380 390

-5780,7604	-4243,73	4243,730637	-0,8770597	-50,251817	6636,9	420
-5780,7604	-5281,32	5281,315301	-0,7661064	-43,894664	7328,9	430
-5780,7604	-6251,97	6251,969276	-0,7019544	-40,219026	8187,7	440
-5780,7604	-7284,56	7284,558036	-0,6453972	-36,978536	9118,7	450
-5780,7604	-8360,99	8360,988765	-0,5826769	-33,384928	10013	460
-5780,7604	-9397,66	9397,663103	-0,5122961	-29,352405	10782	470
-5780,7604	-10306,1	10306,07663	-0,4368824	-25,031518	11374	480
-5780,7604	-11028,1	11028,07091	-0,3596161	-20,604484	11782	490
-5780,7604	-11547,3	11547,30349	-0,2830134	-16,215472	12026	500
-5780,7604	-11563	11562,96518	-0,2032944	-11,647913	11806	510
-5780,7604	-11372,2	11372,15148	-0,1292864	-7,4075647	11468	520
-5780,7604	-11448,7	11448,66538	-0,0639337	-3,6631333	11472	530
-5780,7604	-11025,7	11025,67056	-1,748E-16	-1,002E-14	11026	540
-5780,7604	-10901,1	10901,12238	0,0606668	3,4759499	10921	550
-5780,7604	-10702,9	10702,91671	0,1210127	6,9335153	10782	560
-5780,7604	-10405,5	10405,54366	0,1812086	10,382489	10579	570
-5780,7604	-9975,51	9975,506036	0,2401574	13,760005	10270	580
-5780,7604	-9387,37	9387,367697	0,2947326	16,886933	9810,4	590
-5780,7604	-8642,95	8642,954871	0,3386247	19,401766	9163,3	600
-5780,7604	-7789,15	7789,149718	0,3603156	20,644565	8323,6	610
-5780,7604	-6927,65	6927,64898	0,3398123	19,469812	7347,8	620
-5780,7604	-6234,77	6234,771088	0,2596104	14,87458	6450,9	630
-5780,7604	-5827,45	5827,449403	0,0896514	5,1366444	5850,9	640
-5780,7604	-5860,53	5860,534781	-0,1376151	-7,8847669	5916,5	650
-5780,7604	-6424,5	6424,50012	-0,3211457	-18,400293	6770,7	660
-5780,7604	-7505,04	7505,044868	-0,4030912	-23,095426	8159	670
-5780,7604	-8966,68	8966,6806	-0,3978238	-22,793626	9726,2	680
-5780,7604	-10569,4	10569,36133	-0,3356659	-19,232242	11194	690
-5780,7604	-12016,6	12016,59642	-0,2393851	-13,715754	12369	700
-5780,7604	-13023,1	13023,08825	-0,123989	-7,1040451	13124	710
-5780,7604	-13383,5	13383,47526	-2,784E-16	-1,595E-14	13383	720

Таблица $\Gamma 6$ – силы, действующие на 3-ю коренную шейку.

D., i				Зн	начения Кк.	ш i, l	Н, для	лучей	i			
Rк.ш i	1	2	3	4	5	6	7	8	9	10	11	12
Rк.ш 0	20046,9	20046,9	0	0	0	0	0	0	0	0	0	20046,9
R к.ш 10	19985,1	19985,1	19985	0	0	0	0	0	0	0	0	19985,1
R к.ш 20	19872,1	19872,1	19872	0	0	0	0	0	0	0	0	19872,1
R к.ш 30	19679,4	19679,4	19679	0	0	0	0	0	0	0	0	19679,4
R к.ш 40	19366,9	19366,9	19367	0	0	0	0	0	0	0	0	19366,9
R к.ш 50	18894,1	18894,1	18894	0	0	0	0	0	0	0	0	18894,1
R к.ш 60	18255,9	18255,9	18256	0	0	0	0	0	0	0	0	18255,9
R к.ш 70	17459,8	17459,8	17460	0	0	0	0	0	0	0	0	17459,8
R к.ш 80	16585,8	16585,8	0	0	0	0	0	0	0	0	16586	16585,8
R к.ш 90	15808,5	15808,5	0	0	0	0	0	0	0	0	15809	15808,5
Rк.ш 100	15306,5	15306,5	0	0	0	0	0	0	0	0	15306	15306,5

Rк.ш 110	15282,8	15282,8	0	0	0	0	0	0	0	0	15283	15282,8
Rк.ш 120	15815,8	15815,8	0	0	0	0	0	0	0	0	15816	15815,8
Rк.ш 130	16779,2	16779,2	0	0	0	0	0	0	0	0	16779	16779,2
Rк.ш 140	17871,8	17871,8	0	0	0	0	0	0	0	0	17872	17871,8
Rк.ш 150	18662,4	18662,4	0	0	0	0	0	0	0	0	18662	18662,4
Rк.ш 160	18397,5	18397,5	0	0	0	0	0	0	0	0	18397	18397,5
Rк.ш 170	15620,4	15620,4	0	0	0	0	0	0	0	0	15620	15620,4
Rк.ш 180	10164	10164	0	0	0	0	0	0	0	0	0	10164
Rк.ш 190	7659,92	7659,92	7659,9	0	0	0	0	0	0	0	0	7659,92
Rк.ш 200	10302,7	10302,7	10303	0	0	0	0	0	0	0	0	10302,7
Rк.ш 210	13481,4	13481,4	13481	0	0	0	0	0	0	0	0	13481,4
Rк.ш 220	14929,6	14929,6	14930	0	0	0	0	0	0	0	0	14929,6
Rк.ш 230	15375,8	15375,8	15376	0	0	0	0	0	0	0	0	15375,8
Rк.ш 240	15376,4	15376,4	15376	0	0	0	0	0	0	0	0	15376,4
Rк.ш 250	15382,9	15382,9	15383	0	0	0	0	0	0	0	0	15382,9
Rк.ш 260 Rк.ш 270	15658,3 16257,5	15658,3 16257,5	15658 16257	0	0	0	0	0	0	0	0	15658,3 16257,5
Rк.ш 270 Rк.ш 280	17082,5	17082,5	17082	0	0	0	0	0	0	0	0	17082,5
Rк.ш 290	17981,9	17981,9	0	0	0	0	0	0	0	0	17982	17981,9
Rк.ш 300	18806,1	18806,1	0	0	0	0	0	0	0	0	18806	18806,1
Rк.ш 310	19477,1	19477,1	0	0	0	0	0	0	0	0	19477	19477,1
Rк.ш 320	19966,3	19966,3	0	0	0	0	0	0	0	0	19966	19966,3
Rк.ш 330	20121,8	20121,8	0	0	0	0	0	0	0	0	20122	20121,8
Rк.ш 340	20118,5	20118,5	20119	0	0	0	0	0	0	0	0	20118,5
Rк.ш 350	0	0	0	0	0	0	0	0	20211,156	20211,156	20211	20211,2
Rк.ш 360	20030,8	20030,8	0	0	0	0	0	0	0	0	0	20030,8
Rк.ш 370	19987,4	19987,4	19987	0	0	0	0	0	0	0	0	19987,4
Rк.ш 380	19898,5	19898,5	19898	0	0	0	0	0	0	0	0	0
Rк.ш 390	0	19744,7	19745	0	19744,735	0	0	0	0	0	0	0
Rк.ш 400	0	0	0	0	0	0	0	0	0	0	19492	19492
Rк.ш 410	0	0	0	0	0	0	0	0	0	0	19101	19100,9
Rк.ш 420	18540,6	0	0	0	0	0	0	0	0	0	18541	18540,6
Rк.ш 430	17825,8	0	0	0	0	0	0	0	0	0	17826	17825,8
Rк.ш 440	16995,4	0	0	0	0	0	0	0	0	0	16995	16995,4
Rк.ш 450	16187,2	0	0	0	0	0	0	0	0	0	16187	16187,2
Rк.ш 460 Rк.ш 470	15552,3	0	0	0	0	0	0	0	0	0	15552	15552,3
Кк.ш 470 Кк.ш 480	15306,3 15600	15306,3 15600	0	0	0	0	0	0	0	0	15306 15600	15306,3 15600
Rк.ш 490 Rк.ш 490	16415,9	16415,9	0	0	0	0	0	0	0	0	16416	16415,9
Rк.ш 500	17545,3	17545,3	0	0	0	0	0	0	0	0	17545	17545,3
Rк.ш 510		18657,1	0	0	0	0	0	0	0	0	18657	18657,1
Rк.ш 520		19334,3	0	0	0	0	0	0	0	0	19334	19334,3
Rк.ш 530	18859,7	18859,7	0	0	0	0	0	0	0	0	18860	18859,7
Rк.ш 540	15816,8	15816,8	0	0	0	0	0	0	0	0	0	15816,8
Rк.ш 550	10164	10164	10164	0	0	0	0	0	0	0	0	10164
Rк.ш 560	7263,97	7263,97	7264	0	0	0	0	0	0	0	0	7263,97
Rк.ш 570	9631,27	9631,27	9631,3	0	0	0	0	0	0	0	0	9631,27
Rк.ш 580												12700
	12700	12700	12700	0	0	0	0	0	0	0	0	
Rк.ш 590		12700 14124	12700 14124	0	0	0	0	0	0	0	0	14124
Rк.ш 590 Rк.ш 600	12700 14124 14658,2	12700 14124 14658,2	14124 14658	0 0 0	0	0	0	0	0	0	0	14124 14658,2
Кк.ш 590 Кк.ш 600 Кк.ш 610	12700 14124 14658,2 14867,4	12700 14124 14658,2 14867,4	14124 14658 14867	0 0 0 0	0 0 0	0 0	0 0	0 0 0	0 0 0	0 0 0	0 0 0	14124 14658,2 14867,4
Rк.ш 590 Rк.ш 600 Rк.ш 610 Rк.ш 620	12700 14124 14658,2 14867,4 15163,5	12700 14124 14658,2 14867,4 15163,5	14124 14658 14867 15164	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	14124 14658,2 14867,4 15163,5
Rк.ш 590 Rк.ш 600 Rк.ш 610 Rк.ш 620 Rк.ш 630	12700 14124 14658,2 14867,4 15163,5 15731,8	12700 14124 14658,2 14867,4 15163,5 15731,8	14124 14658 14867 15164 15732	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	14124 14658,2 14867,4 15163,5 15731,8
Rк.ш 590 Rк.ш 600 Rк.ш 610 Rк.ш 620 Rк.ш 630 Rк.ш 640	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4	14124 14658 14867 15164 15732 16553	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	14124 14658,2 14867,4 15163,5 15731,8 16553,4
Rк.ш 590 Rк.ш 600 Rк.ш 610 Rк.ш 620 Rк.ш 630 Rк.ш 640 Rк.ш 650	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4	14124 14658 14867 15164 15732 16553 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0 17500	14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4
Rк.ш 590 Rк.ш 600 Rк.ш 610 Rк.ш 620 Rк.ш 630 Rк.ш 640 Rк.ш 650 Rк.ш 660	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3	14124 14658 14867 15164 15732 16553 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 17500 18411	14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3
RK.III 590 RK.III 600 RK.III 610 RK.III 620 RK.III 630 RK.III 650 RK.III 660 RK.III 670	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3	14124 14658 14867 15164 15732 16553 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 17500 18411 19185	14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3
RK.III 590 RK.III 600 RK.III 610 RK.III 620 RK.III 630 RK.III 650 RK.III 660 RK.III 670 RK.III 680	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9	14124 14658 14867 15164 15732 16553 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 17500 18411 19185 19773	14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9
RK.III 590 RK.III 600 RK.III 610 RK.III 620 RK.III 630 RK.III 650 RK.III 660 RK.III 670 RK.III 680 RK.III 690	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1	14124 14658 14867 15164 15732 16553 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 17500 18411 19185 19773 20175	14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1
RK.III 590 RK.III 600 RK.III 610 RK.III 620 RK.III 630 RK.III 650 RK.III 660 RK.III 670 RK.III 680 RK.III 690 RK.III 700	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1 20254	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1 20254	14124 14658 14867 15164 15732 16553 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 17500 18411 19185 19773 20175 20254	14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1 20254
RK.III 590 RK.III 600 RK.III 610 RK.III 620 RK.III 630 RK.III 650 RK.III 660 RK.III 670 RK.III 680 RK.III 690	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1	12700 14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1	14124 14658 14867 15164 15732 16553 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 17500 18411 19185 19773 20175	14124 14658,2 14867,4 15163,5 15731,8 16553,4 17500,4 18411,3 19185,3 19772,9 20175,1

Таблица Г7 - Суммарные силы действующие на 1-ю коренную шейку

Tav	олица 1 7 -	Суммарт	ыс силы ,							Ropelling	о шенку	
Р к.ш і	1	2	3				і, H, д.		_	10	1.1	12
D 0	1	_		4	5	6	7	8	9	10	11	12
Rк.ш 0	11414,165	11414,165	0	0	0	0	0	0	0	0	0	11414,165
Rк.ш 10	11285,997	11285,997	11285,997	0	0	0	0	0	0	0	0	11285,997
Rк.ш 20	10874,503	10874,503	10874,503	0	0	0	0	0	0	0	0	10874,503
R к.ш 30	10220,93	10220,93	10220,93	0	0	0	0	0	0	0	0	10220,93
Rк.ш 40	9442,4524	9442,4524	9442,4524	0	0	0	0	0	0	0	0	9442,4524
R к.ш 50	8666,2101	8666,2101	8666,2101	0	0	0	0	0	0	0	0	8666,2101
R к.ш 60	8036,8558	8036,8558	8036,8558	0	0	0	0	0	0	0	0	8036,8558
Rк.ш 70	7675,991	7675,991	7675,991	0	0	0	0	0	0	0	0	7675,991
R к.ш 80	7630,5884	7630,5884	0	0	0	0	0	0	0	0	7630,5884	7630,5884
Rк.ш 90	7852,5769	7852,5769	0	0	0	0	0	0	0	0	7852,5769	7852,5769
Rк.ш 100	8236,3044	8236,3044	0	0	0	0	0	0	0	0	8236,3044	8236,3044
Rк.ш 110	8656,8188	8656,8188	0	0	0	0	0	0	0	0	8656,8188	8656,8188
Rк.ш 120	9037,5453	9037,5453	0	0	0	0	0	0	0	0	9037,5453	9037,5453
Rк.ш 120	9337,7729	9337,7729	0	0	0	0	0	0	0	0	9337,7729	9337,7729
Rк.ш 130	•	•		0	0	0	0		0	0		
	9550,4861	9550,4861	0					0	_		9550,4861	9550,4861
Rк.ш 150	9684,4119	9684,4119	0	0	0	0	0	0	0	0	9684,4119	9684,4119
Rк.ш 160	9759,269	9759,269	0	0	0	0	0	0	0	0	9759,269	9759,269
Rк.ш 170	9797,5841	9797,5841	0	0	0	0	0	0	0	0	9797,5841	9797,5841
Rк.ш 180	9811,6787	9811,6787	0	0	0	0	0	0	0	0	0	9811,6787
Rк.ш 190	9806,7401	9806,7401	9806,7401	0	0	0	0	0	0	0	0	9806,7401
Rк.ш 200	9777,3586	9777,3586	9777,3586	0	0	0	0	0	0	0	0	9777,3586
Rк.ш 210	9708,7454	9708,7454	9708,7454	0	0	0	0	0	0	0	0	9708,7454
Rк.ш 220	9580,4002	9580,4002	9580,4002	0	0	0	0	0	0	0	0	9580,4002
Rк.ш 230	9371,0319	9371,0319	9371,0319	0	0	0	0	0	0	0	0	9371,0319
Rк.ш 240	9084,9918	9084,9918	9084,9918	0	0	0	0	0	0	0	0	9084,9918
Rк.ш 250	8718,764	8718,764	8718,764	0	0	0	0	0	0	0	0	8718,764
Rк.ш 260	8308,5736	8308,5736	8308,5736	0	0	0	0	0	0	0	0	8308,5736
Rк.ш 270	7925,4741	7925,4741	7925,4741	0	0	0	0	0	0	0	0	7925,4741
Rк.ш 280	7667,0667	7667,0667	7667,0667	0	0	0	0	0	0	0	0	7667,0667
Rк.ш 290	7622,5673	7622,5673	0	0	0	0	0	0	0	0	7622,5673	7622,5673
Rк.ш 300	7815,9514	7815,9514	0	0	0	0	0	0	0	0	7815,9514	7815,9514
	•								0			
Rк.ш 310	8165,5833	8165,5833	0	0	0	0	0	0	_	0	8165,5833	8165,5833
Rк.ш 320	8492,053	8492,053	0	0	0	0	0	0	0	0	8492,053	8492,053
Rк.ш 330	8511,548	8511,548	0	0	0	0	0	0	0	0	8511,548	8511,548
Rк.ш 340	7608,3631	7608,3631	7608,3631	0	0	0	0	0	0	0	0	7608,3631
Rк.ш 350	0	0	0	0	0	0	0	0	0	4445,354	4445,354	4445,354
Rк.ш 360	1250,1716	1250,1716	0	0	0	0	0	0	0	0	0	1250,1716
Rк.ш 370	4992,3375	4992,3375	4992,3375	0	0	0	0	0	0	0	0	4992,3375
Rк.ш 380	4592,8316	4592,8316	4592,8316	0	0	0	0	0	0	0	0	0
Rк.ш 390	0	4665,8052	4665,8052	0	0	0	0	0	0	0	0	0
Rк.ш 400	0	0	0	0	0	0	0	0	0	0	5842,0806	5842,0806
Rк.ш 410	0	0	0	0	0	0	0	0	0	0	6716,3397	6716,3397
Rк.ш 420	7304,3915	0	0	0	0	0	0	0	0	0	7304,3915	7304,3915
Rк.ш 430	7789,1021	0	0	0	0	0	0	0	0	0	7789,1021	7789,1021
Rк.ш 440	8281,6273	0	0	0	0	0	0	0	0	0	8281,6273	8281,6273
Rк.ш 450	8802,8234	0	0	0	0	0	0	0	0	0	8802,8234	8802,8234
Rк.ш 460	9319,4293	0	0	0	0	0	0	0	0	0	9319,4293	9319,4293
Rк.ш 470	9784,8353	9784,8353	0	0	0	0	0	0	0	0	9784,8353	9784,8353
Rк.ш 470	J10 - ,0JJJ	J10 - ,0333	•	0	0	0	0	0	0	0	10164,416	10164,416
	10164 416	1016/ /16	Λ		U	U	ı	U	U	U	10104,410	
+	10164,416	10164,416	0		Λ	0	0	^	^	0	10444 272	
Rк.ш 490	10444,273	10444,273	0	0	0	0	0	0	0	0	10444,273	10444,273
Кк.ш 490 Кк.ш 500	10444,273 10629,535	10444,273 10629,535	0	0	0	0	0	0	0	0	10629,535	10444,273 10629,535
Rк.ш 490 Rк.ш 500 Rк.ш 510	10444,273 10629,535 10571,307	10444,273 10629,535 10571,307	0 0 0	0 0	0	0	0	0	0	0	10629,535 10571,307	10444,273 10629,535 10571,307
Rк.ш 490 Rк.ш 500 Rк.ш 510 Rк.ш 520	10444,273 10629,535 10571,307 10434,722	10444,273 10629,535 10571,307 10434,722	0 0 0 0	0 0 0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0 0	10629,535 10571,307 10434,722	10444,273 10629,535 10571,307 10434,722
Rк.ш 490 Rк.ш 500 Rк.ш 510 Rк.ш 520 Rк.ш 530	10444,273 10629,535 10571,307 10434,722 10453,186	10444,273 10629,535 10571,307 10434,722 10453,186	0 0 0 0	0 0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	10629,535 10571,307 10434,722 10453,186	10444,273 10629,535 10571,307 10434,722 10453,186
Rк.ш 490 Rк.ш 500 Rк.ш 510 Rк.ш 520 Rк.ш 530 Rк.ш 540	10444,273 10629,535 10571,307 10434,722	10444,273 10629,535 10571,307 10434,722	0 0 0 0	0 0 0 0	0 0 0	0 0	0 0 0	0 0	0 0 0	0 0 0	10629,535 10571,307 10434,722	10444,273 10629,535 10571,307 10434,722
Rк.ш 490 Rк.ш 500 Rк.ш 510 Rк.ш 520 Rк.ш 530 Rк.ш 540 Rк.ш 550	10444,273 10629,535 10571,307 10434,722 10453,186	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374	0 0 0 0	0 0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 0 0 0	10629,535 10571,307 10434,722 10453,186	10444,273 10629,535 10571,307 10434,722 10453,186
Rк.ш 490 Rк.ш 500 Rк.ш 510 Rк.ш 520 Rк.ш 530 Rк.ш 540	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	10629,535 10571,307 10434,722 10453,186 0	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262
Rк.ш 490 Rк.ш 500 Rк.ш 510 Rк.ш 520 Rк.ш 530 Rк.ш 540 Rк.ш 550	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374	0 0 0 0 0 0 0 10178,374	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	10629,535 10571,307 10434,722 10453,186 0	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374
Rк.ш 490 Rк.ш 500 Rк.ш 510 Rк.ш 520 Rк.ш 530 Rк.ш 540 Rк.ш 550 Rк.ш 560	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884	0 0 0 0 0 0 0 10178,374 10094,884	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	10629,535 10571,307 10434,722 10453,186 0 0	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884
Rк.ш 490 Rк.ш 500 Rк.ш 510 Rк.ш 520 Rк.ш 530 Rк.ш 540 Rк.ш 550 Rк.ш 560 Rк.ш 570	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699	0 0 0 0 0 0 0 10178,374 10094,884 9970,8699	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	10629,535 10571,307 10434,722 10453,186 0 0 0	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699
RK.III 490 RK.III 500 RK.III 510 RK.III 520 RK.III 530 RK.III 550 RK.III 550 RK.III 560 RK.III 570 RK.III 570 RK.III 580	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981	0 0 0 0 0 0 0 10178,374 10094,884 9970,8699 9786,6981	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	10629,535 10571,307 10434,722 10453,186 0 0 0	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981 9523,3099
RK.III 490 RK.III 500 RK.III 510 RK.III 520 RK.III 530 RK.III 530 RK.III 550 RK.III 560 RK.III 570 RK.III 580 RK.III 580 RK.III 590 RK.III 600	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981 9523,3099 9171,0762	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981 9523,3099 9171,0762	0 0 0 0 0 0 0 10178,374 10094,884 9970,8699 9786,6981 9523,3099 9171,0762	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	10629,535 10571,307 10434,722 10453,186 0 0 0 0 0	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981 9523,3099 9171,0762
RK.III 490 RK.III 500 RK.III 510 RK.III 520 RK.III 530 RK.III 530 RK.III 550 RK.III 560 RK.III 570 RK.III 580 RK.III 580	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981 9523,3099	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981 9523,3099	0 0 0 0 0 0 0 10178,374 10094,884 9970,8699 9786,6981 9523,3099	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	10629,535 10571,307 10434,722 10453,186 0 0 0 0 0	10444,273 10629,535 10571,307 10434,722 10453,186 10235,262 10178,374 10094,884 9970,8699 9786,6981 9523,3099

Rк.ш 630	7883,415	7883,415	7883,415	0	0	0	0	0	0	0	0	7883,415
Rк.ш 640	7640,6424	7640,6424	7640,6424	0	0	0	0	0	0	0	0	7640,6424
Rк.ш 650	7663,4468	7663,4468	0	0	0	0	0	0	0	0	7663,4468	7663,4468
Rк.ш 660	8006,3093	8006,3093	0	0	0	0	0	0	0	0	8006,3093	8006,3093
Rк.ш 670	8624,7036	8624,7036	0	0	0	0	0	0	0	0	8624,7036	8624,7036
Rк.ш 680	9396,5815	9396,5815	0	0	0	0	0	0	0	0	9396,5815	9396,5815
Rк.ш 690	10175,523	10175,523	0	0	0	0	0	0	0	0	10175,523	10175,523
Rк.ш 700	10830,459	10830,459	0	0	0	0	0	0	0	0	10830,459	10830,459
Rк.ш 710	11263,245	11263,245	0	0	0	0	0	0	0	0	11263,245	11263,245
Σ В к.ш і	11414,165	11414,165	0	0	0	0	0	0	0	0	0	11414,165

Приложение Д

Д.1 Расчет элементов системы смазки

Д.1.1 Расчет масляного насоса

Общее количество тепла, выделяемого в течении 1 с, определяется по данным теплового расчета Q_0 =215,88 кДж/с.

Количество тепла, отводимого маслом от двигателя:

$$Q_{\text{M}} = 0.021 \cdot Q_0 = 0.021 \cdot 215,88 = 4.53 \text{ кДж/с.}$$
 (Д.1)

Теплоемкость масла $c_{M}=2,094 \text{ кДж/(кг K)}.$

Плотность масла $\rho_{\rm M}$ =900 кг/м³.

Температура нагрева масла в двигателе $\Delta T_{\rm M} = 10 \ {\rm K}$.

Циркуляционный расход масла

$$V_{u} = Q_{M} / (\rho_{M} c_{M} \Delta T_{M}) = 4,53 / (900 \cdot 2,094 \cdot 10) = 0,000238 \text{ } M^{3} / c.$$
 (Д.2)

Циркуляционный расход с учетом стабилизации давления масла в системе

$$V=2V_{\mu}=2.0,000238=0,000478 \text{ м}^3/\text{c}.$$
 (Д.4)

Объемный коэффициент подачи $\eta_{\scriptscriptstyle H}\!\!=\!\!0,\!7.$

Расчетная производительность насоса

$$V_p = V / \eta_M = 0,000478 = 0,000682 \text{ м}^3/\text{c}.$$
 (Д.5)

Модуль зацепления зуба т=4,5 мм.

Высота зуба h=2m=2·4,5=9 мм.

Число зубьев шестерен z=7.

Диаметр начальной окружности шестерни

$$D_0 = zm = 7.4,5 = 31,5 \text{ мм} = 0,0315 \text{ м}.$$
 (Д.4)

Диаметр внешней окружности шестерни

$$D=m(z+2)=4,5(7+2)=40,5$$
 мм=0,0405 м. (Д.5)

Окружная частота на внешнем диаметре шестерни u_n =6,36 м/с.

Частота вращения шестерни (насоса)

$$n_{H} = u_{H} 60/(\pi D) = 6,36.60/3,14.0,0405 = 3000 \text{ об/мин.}$$
 (Д.6)

$$b = \frac{60 \cdot V_p}{2\pi m^2 z n_{_H}} = \frac{60 \cdot 0,000682}{2 \cdot 3,14 \cdot 4,5^2 \cdot 7 \cdot 3000} = 0,015 \text{ m}.$$
(Д.7)

Длина зуба шестерни

Рабочее давление масла в системе $p=40.10^4$ Па.

Механический к.п.д. масляного насоса η_{MH} =0,87.

Мощность, затрачиваемая на привод масляного насоса:

$$N_{\rm H} = V_p p / (\eta_{\rm M.H} 10^3) = 0,000682 \cdot 40 \cdot 10^4 / (0,87 \cdot 10^3) = 0,31 \text{ кВт.}$$
 (Д.8)

Д.1.2 Расчет масляного радиатора

Количество тепла, отводимого маслом от двигателя $Q_{\rm M}$ =4530 кДж/с.

Коэффициент теплоотдачи от масла к стенке радиатора α_1 =250 Bt/(м²-К).

Толщина стенки радиатора δ =0,2 мм=0,0002 м.

Коэффициент теплопроводности стенки $\lambda_{ren}=100$ Bт/(м⁻K).

Коэффициент теплоотдачи от стенки радиатора к воде α_2 =3200 Bt/(м²-К).

Коэффициент теплопередачи от масла к воде

$$K_{M} = \frac{1}{1/\alpha_{1} + \delta/\lambda_{men} + 1/\alpha_{2}} = \frac{1}{1/250 + 0,0002/100 + 1/3200} = 232 \ Bm/(M^{2} \cdot K). \tag{1.9}$$

Средняя температура масла в радиаторе Т_{м.ср}=358 К.

Средняя температура воды в радиаторе Твод.ср=348 К.

Поверхность охлаждения масляного радиатора, омываемая водой:

$$F_{M} = \frac{Q_{M}}{K_{M}(T_{M.cp} - T_{sodcp})} = \frac{4530}{232(358 - 348)} = 2,01 \text{ m}^{2}.$$
(Д.10)

Д.2 Расчет элементов системы охлаждения

Д.2.1 Расчет водяного насоса

Циркуляционный расход воды в системе охлаждения

$$G_{\text{ж}} = Q_{\text{в}}/(c_{\text{ж}}\rho_{\text{ж}}\Delta T_{\text{ж}}) = 69730/(4187\cdot1000\cdot9,6) = 0,00173 \text{ м}^3/\text{c},$$
 (Д.11)

где $\Delta T_{\rm ж}$ =9,6 K — температурный перепад воды при принудительной циркуляции.

Расчетная производительность насоса

$$G_{\text{MC},p} = G_{\text{MC}}/\eta = 0.00173/0.82 = 0.00212 \text{ m}^3/\text{c},$$
 (Д.12)

где η=0,82 – коэффициент подачи насоса.

Радиус входного отверстия крыльчатки

$$r_1 = \sqrt{G_{\mathcal{M}.p}/(\pi c_1) + r_0^2} = \sqrt{0.00212/(3.14 \cdot 1.8) + 0.01} = 0.0193 \text{ M},$$
 (Д.13)

где c_1 =1,8 – скорость воды на входе в насос, м/с; r_0 =0,01 – радиус ступицы крыльчатки, м.

Окружная скорость потока воды на выходе из колеса

$$u_{2} = \sqrt{1 + tg \alpha_{2} c tg \beta_{2}} \sqrt{p_{M} / (\rho_{M} \eta_{h})} =$$

$$= \sqrt{1 + tg 10^{0} c tg 45^{0}} \sqrt{120000 / (1000 \cdot 0.65)} = 14.7 \text{ m/c}, \tag{A.14}$$

где угол α_1 = 10^0 , а угол β_2 = 45^0 ; η_h =0,65 – гидравлический к.п.д. насоса.

Радиус крыльчатки колеса на выходе

$$r_2 = 30u_2/(\pi n_{_{6.H}}) = 30.14,7/(3,14.4600) = 0,0305 \text{ M}.$$
 (Д.15)

Окружная скорость входа потока

$$u_1 = u_2 r_1 / r_2 = 14,7 \cdot 0,0193/0,0305 = 9,32 \,\text{m/c}.$$
 (Д.16)

Угол между скоростями c_1 и u_1 принимается α_1 =90°, при этом $tg\beta_1$ = c_1/u_1 =1,8/9,32=0,1956, откуда β_1 =10°15°.

Ширина лопатки на входе

$$b_1 = \frac{G_{_{\mathcal{M},p}}}{(2\pi r_1 - z\delta_1/\sin\beta_1)\cdot 1,8} = \frac{0,00212}{(2\cdot 3,14\cdot 0,0193 - 4\cdot 0,003/\sin 10^0 15^*)\cdot 1,8} = 0,0596 \text{ M},$$
(Д.17)

где z=4 — число лопаток на крыльчатке насоса; δ_1 =0,003 — толщина лопаток у входа, м.

Радиальная скорость потока на входе из колеса

$$c_r = \frac{p_{\mathcal{H}} t g \alpha_2}{\rho_{\mathcal{H}} \eta_h u_2} = \frac{120000 \cdot t g 10^0}{1000 \cdot 0,65 \cdot 14,7} = 2,2 \text{ m/c}.$$
(Д.18)

Ширина лопатки на выходе

$$b_2 = \frac{G_{_{36.p}}}{(2\pi r_2 - z\delta_2/\sin\beta_2)c_r} = \frac{0,00212}{(2\cdot3,14\cdot0,0305 - 4\cdot0,003/\sin45^0)\cdot2,2} = 0,0037 \text{ M}$$
(Д.19)

где δ_2 =0,003 – толщина лопаток на выходе, м.

Мощность, потребляемая водяным насосом:

$$N_{_{G.H}} = G_{_{\mathcal{HC},p}} p_{_{\mathcal{HC}}} / (1000 \, \eta_{_{M}}) = 0,00212 \cdot 120000 / (1000 \cdot 0,82) = 0,34 \, \kappa Bm, \tag{1.20}$$

где $\eta_{\rm M}$ =0,82 – механический к.п.д. водяного насоса.

6.2.2 Расчет поверхности охлаждения водяного радиатора

Количество воздуха, проходящего через радиатор:

$$G_{6030}^* = Q_{6030}/(c_{6030} \Delta T_{6030}) = 69730/(1000.24) = 2.9 \text{ кг/с},$$
 (Д.21)

где $\Delta T_{\text{возд}}$ =24 — температурный перепад воздуха в решетке радиатора, К.

Массовый расход воды, проходящей через радиатор:

$$G_{\mathcal{H}} = G_{\mathcal{H}} \rho_{\mathcal{H}} = 0,00173.1000 = 1,73 \text{ кг/c.}$$
 (Д.22)

Средняя температура охлаждающего воздуха, проходящего через радиатор:

$$T_{cp.so3d} = \frac{T_{so3dsx} + (T_{so3dsx} + \Delta T_{so3d})}{2} = \frac{313 + (313 + 24)}{2} = 325 K.$$
 (Д.23)

где Твоздвх=313 – расчетная температура воздуха перед радиатором, К.

Средняя температура воды в радиаторе

$$T_{cp.soo} = \frac{T_{soos} + (T_{soos} - \Delta T_e)}{2} = 358,2 K,$$
 (Д.24)

где $T_{\text{вод.вx}}$ =363 — температура воды перед радиатором, K; $\Delta T_{\text{в}}$ =9,6 — температурный перепад воды в радиаторе, K.

Поверхность охлаждения радиатора

$$F = \frac{Q_{600}}{K(T_{cp.600} - T_{cp.6030})} = \frac{69730}{160(358, 2 - 325)} = 11,51 \text{ m}^2,$$
(Д.24)

где K=160 — коэффициент теплопередачи для радиаторов легковых автомобилей, $B\tau/(M^2\cdot K)$.

Д.2.3 Расчет вентилятора

Плотность воздуха при средней его температуре в радиаторе

$$\rho_{6030} = p_0.10^6 / (R_6 T_{CD,6030}) = 0.1.10^6 / (287.325) = 1.07 \text{ kg/m}^3.$$
 (Д.25)

Производительность вентилятора

$$G_{603\partial} = G_{603\partial} / \rho_{603\partial} = 2.9/1.07 = 2.71 \text{ m}^3/\text{c}.$$
 (Д.26)

Фронтовая поверхность радиатора

$$F_{\phi p,pa\partial} = G_{\theta o 3 \partial} / \omega_{\theta 3 o \partial} = 2,71/20 = 0,135 \text{ м}^2,$$
 (Д.27)

где $\omega_{\text{взод}}$ =20 — скорость воздуха перед фронтом радиатора без учета скорости движения автомобиля, м/с.

Диаметр вентилятора

$$D_{\text{вент}} = 2\sqrt{F_{\phi p.pa \hat{o}}/\pi} = 2\sqrt{0,135/3,14} = 0,415 \text{ м.}$$
 (Д.28)

Окружная скорость вентилятора

$$u = \psi_{\pi} \sqrt{\Delta p_{mp} / \rho_{go30}} = 3,41\sqrt{800/1,07} = 93,4 \text{ m/c},$$
 (Д.29)

где ψ_{π} =3,41 – безразмерный коэффициент для плоских лопастей.

Частота вращения вентилятора

$$n_{\text{вент}} = 60u/(\pi D_{\text{вент}}) = 60.93,4/(3,14.0,415) = 4600 \text{ об/мин.}$$
 (Д.30)

Таким образом, выполнено условие $n_{\text{вент}} = n_{\text{в.н}} = 4600$ об/мин (вентилятор и водяной насос имеют общий привод).

Мощность, затрачиваемая на привод осевого вентилятора,

$$N_{\text{вент}} = G_{\text{возд}} \Delta p_{mp} / (1000\eta_{\text{в}}) = 2,71^{\circ}800 / (1000^{\circ}0,38) = 5,7 \text{ кВт},$$
 (Д.31)

где $\eta_{\rm B}$ =0,38 – к.п.д. клепанного вентилятора.

Д.3 Расчет механизма газораспределения

Д.3.1 Основные размеры проходных сечений в горловине и в клапане

Площадь проходного сечения при максимальном подъеме

$$F_{\kappa n} = \upsilon_{n.cp} F_n / \omega_{en} = 17.9 \cdot 54.5 / 140 = 5.85 \text{ cm}^2$$
 (Д.32)

диаметр горловины клапана

$$d_{zop} = \sqrt{4F_{zop}/\pi} = \sqrt{4 \cdot 11,026/3,14} = 3,75 \text{ cm},$$
(6.33)

где F_{cop} =1,12 $F_{\kappa\eta}$ =1,12·5,85=7,026 см².

Из условия возможного размещения клапанов в головке при верхнем расположении диаметр горловины может достигать

$$d_{cop}$$
=0,54 D =0,54·82 =34,23 мм. (Д.34)

Максимальная высота подъема клапана при угле фаски клапана $\alpha = 45^{\circ}$.

$$h_{\kappa_{7} \max} = \sqrt{4,93d_{2op}^{2} + 4,44F_{\kappa_{7}}} / 2,22 - d_{2op} =$$

$$= \sqrt{4,93 \cdot 34,23^{2} + 4,44 \cdot 9,85} / 2,22 - 34,23 = 10,6 \text{ мм}$$
(Д.35)

Д.3.2 Основные размеры впускного кулачка

Радиус начальной окружности r_0 =(1,3...2,0) $h_{\kappa n}$ $_{max}$ =1,9·10,6=20,1 мм; принимаем r_0 =20 мм; максимальный подъем толкателя h_{m} $_{max}$ = $h_{\kappa n}$ $_{max}$ =10,6 мм, в данном механизме роль толкателя выполняет гидравлический толкатель, находящийся непосредственно в контакте с кулачком.

Д.3.3 Профилирование безударного кулачка с плоским толкателем Протяженность участка сбега

$$\Phi_0 = \frac{\pi^2 \Delta s}{2 \cdot 180 \,\omega_{mo\kappa}} = \frac{3.14 \cdot 0.2}{2 \cdot 180 \cdot 0.02} = 0.27416 \, pa\delta = 15^{\circ}42^{\circ}, \tag{A.35}$$

где $\omega_{\text{ток}}$ =0,02 мм/ 0 — скорость толкателя в конце сбега, принята в пределах, рекомендованных для безударных кулачков.

Протяженность других участков ускорения толкателя:

$$\Phi_1=24^0$$
; $\Phi_2=5^07$; $\Phi_3=42^023$.

Перемещение толкателя задается полиномом

$$h_{T} = h_{T \max} \left[1 + C_{2} \left(\frac{\varphi_{\kappa}}{\varphi_{p0}} \right)^{2} + C_{p} \left(\frac{\varphi_{\kappa}}{\varphi_{p0}} \right)^{p} + C_{q} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{q} + C_{r} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{r} + C_{s} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{s} \right]. \tag{A.36}$$

В соответствии с этим определяют его скорость и ускорение:

$$V_{T} = h_{T \max} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right) \left[2C_{2} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right) + pC_{p} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{p-1} + qC_{q} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{q-1} + rC_{r} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{r-1} + sC_{s} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{s-1} \right] \cdot 10^{-3}$$
(Д.37)

$$j_{T} = h_{T \max} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right) \left[2C_{2} + p(p-1)C_{p} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{p-2} + q(q-1)C_{q} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{q-2} + r(r-1)C_{r} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{r-2} + s(s-1)C_{s} \left(\frac{\varphi_{k}}{\varphi_{p0}} \right)^{s-2} \right] \cdot 10^{-3}$$
(A.38)

Угол ϕ_{κ} в интервале $\phi_{p0} \!\! \leq \!\! \phi_{\kappa} \!\! \leq \!\! 0$ отсчитывается от вершины кулачка.

Постоянные коэффициенты C_2 , C_p , C_r , C_s определяются следующим образом:

$$C_{2} = -\frac{pqrs}{(p-2)(q-2)(r-2)(s-2)}; \quad C_{2} = \frac{2qrs}{(p-2)(q-p)(r-p)(s-p)};$$

$$C_{2} = -\frac{2prs}{(q-2)(q-p)(r-q)(s-q)}; \quad C_{2} = \frac{2pqs}{(r-2)(r-p)(r-q)(s-r)};$$

$$C_{2} = -\frac{2pqr}{(s-2)(s-p)(s-q)(s-r)}.$$
(Д.39)

Радиус кривизны профиля кулачка при плоском толкателе.

$$\rho = r_k - h_T + j_T \tag{Д.40}$$

Показатель смазочного числа, характеризует устойчивость к износу, не должен превышать значения 0,15.

$$\rho_I = 1/\rho \tag{Д.39}$$

Данные расчета представлены в таблице 6.1.

Таблица Д.1 - Профилирование безударного кулачка с плоским толкателем

	ца Д.1		F _				,		1		
φ^0 ,	-		jт,	ρ	ρ 1	φ^0 ,	hт,	Vт,	jт,	ho	$\rho 1$
г.п.р.в.	MM	м/с	м/с^2			г.п.р.в.	MM	м/с	м/с^2		
-72	0,0000	0,0000	0,0000	19,8000	0,0505	-2	10,5415	0,0039	-0,5658	8,6927	0,1150
-70	0,0003	0,0002	0,1178	19,9175	0,0502		,				0,1152
-66			1,1026	20,8616	0,0479				-0,5658	8,7322	0,1145
-62	0,2799	0,0284			0,0471			-0,0154			
-60	0,5140	0,0402	1,7071	20,9931	0,0476			-0,0193	-0,5658		
-58		0,0513	1,5285	20,5016	0,0488	12	10,0801	-0,0232	-0,5658	9,1541	0,1092
-56		0,0608	1,2569	19,8461	0,0504	14	9,9087	-0,0270	-0,5658	9,3255	0,1072
-54	1,6531	0,0684	0,9499	19,0968	0,0524	16	9,7110	-0,0309	-0,5657	9,5233	0,1050
-52	2,1397	0,0738	0,6482	18,3085	0,0546	20	9,2365	-0,0386	-0,5651	9,9984	0,1000
-50	2,6565	0,0773	0,3759	17,5194	0,0571	22	8,9597	-0,0425	-0,5643	10,2760	0,0973
-48	3,1911	0,0791	0,1444	16,7533	0,0597	24	8,6566	-0,0463	-0,5627	10,5806	0,0945
-46	3,7325	0,0794	-0,0437	16,0238	0,0624	26	8,3274	-0,0502	-0,5600	10,9127	0,0916
-44	4,2721	0,0786	-0,1910	15,3369	0,0652	28	7,9720	-0,0540	-0,5552	11,2728	0,0887
-42	4,8029	0,0768	-0,3030	14,6941	0,0681	30	7,5908	-0,0577	-0,5474	11,6618	0,0857
-40	5,3197	0,0745	-0,3857	14,0946	0,0709	32	7,1841	-0,0614	-0,5350	12,0809	0,0828
-38	5,8186	0,0716	-0,4453	13,5361	0,0739	34	6,7525	-0,0650	-0,5158	12,5317	0,0798
-36	6,2969	0,0684	-0,4872	13,0160	0,0768	36	6,2969	-0,0684	-0,4872	13,0160	0,0768
-34	6,7525	0,0650	-0,5158	12,5317	0,0798	38	5,8186	-0,0716	-0,4453	13,5361	0,0739
-32	7,1841	0,0614	-0,5350	12,0809	0,0828	40	5,3197	-0,0745	-0,3857	14,0946	0,0709
-30	7,5908	0,0577	-0,5474	11,6618	0,0857	42	4,8029	-0,0768	-0,3030	14,6941	0,0681
-28	7,9720	0,0540	-0,5552	11,2728	0,0887	44	4,2721	-0,0786	-0,1910	15,3369	0,0652
-26	8,3274	0,0502	-0,5600	10,9127	0,0916	46	3,7325	-0,0794	-0,0437	16,0238	0,0624
-24	8,6566	0,0463	-0,5627	10,5806	0,0945	48	3,1911	-0,0791	0,1444	16,7533	0,0597
-22	8,9597	0,0425	-0,5643	10,2760	0,0973	50	2,6565	-0,0773	0,3759	17,5194	0,0571
-20	9,2365	0,0386	-0,5651	9,9984	0,1000	52	2,1397	-0,0738	0,6482	18,3085	0,0546
-16	9,7110	0,0309	-0,5657	9,5233	0,1050	56	1,2108	-0,0608	1,2569	19,8461	0,0504
-14	9,9087	0,0270	-0,5658	9,3255	0,1072	58	0,8270	-0,0513	1,5285	20,5016	0,0488
-12	10,0801	0,0232	-0,5658	9,1541	0,1092	60	0,5140	-0,0402	1,7071	20,9931	0,0476
-10	10,2251	0,0193	-0,5658	9,0090	0,1110	62	0,2799	-0,0284	1,7249	21,2450	0,0471
-8	10,3438	0,0154	-0,5658	8,8904	0,1125	66	0,0410	-0,0081	1,1026	20,8616	0,0479
-6	10,4360	0,0116	-0,5658		0,1137	70	0,0003	-0,0002	0,1178		
-4	10,5019	0,0077	-0,5658	8,7322	0,1145	72	0,0000	0,0000	0,0000	19,8000	0,0505

Д.3.4 Время сечения клапана

Диаграммы подъема толкателя, построенные в масштабе по оси абсцисс $M_{\phi p} = 1^0$ /мм, по оси ординат $M_{h\tau} = 0,1$ мм/мм, являются диаграммами подъема клапана если изменить масштаб по оси ординат на

$$M_{h \kappa n} = h_{\kappa n \max} M_{hm} / h_{m \max} = 0,1 \text{ мм/мм}.$$
 (Д.40)

Время – сечения клапана

$$\int_{t_{1}}^{t_{2}} F_{\kappa n} dt = M_{t} M_{F} F_{abcd}$$
(Д.41)

где $M_t = M_{op}/(6n_p) = 1/(6.2800) = 5.952.10^{-5}$ с/мм;

 $M_F = M_{h \kappa n}$:2,22 d_{cop} =0,1:2,22:34,23=7,60 mm²/mm;

$$\int_{t_1}^{t_2} F_{\kappa n} dt = 5,952 \cdot 7,60 \cdot 5129 = 2,32 \text{ MM}^2 \cdot c,$$
(Д.42)

где F_{abcd} =5129 мм 2 – площадь под кривой подъема толкателя за такт впуска без учета площади, соответствующей выбору зазора 0,2 мм.

Средняя площадь проходного сечения клапана.

$$F_{\kappa_1 cp} = \int_{t_1}^{t_2} F_{\kappa_1} dt / (t_2 - t_1) = M_F F_{abcd} / l_{ad},$$
(Д.43)

где l_{ad} =90 мм – продолжительность такта впуска по диаграммам:

$$F_{\kappa n, cp} = 7.6.5129/90 = 4.33 \text{ cm}^2$$
.

Средняя скорость потока смеси в седле клапана:

$$\omega_{en}$$
'= $v_{n.cp}$: $F_n/F_{\kappa \pi.cp}$ =17,952.53,5/4,33=220 м/с; (Д.44)

Полное время-сечение клапана

$$\int_{tnn}^{tx} F_{\kappa n} dt = M_t M_F F_{gn} = 5,952 \cdot 7,6 \cdot 5648 = 2,7 \text{ mm}^2 \cdot c.$$
(Д.45)

где t_{np} – момент начала открытия впускного клапана; t_x и F_x – текущие значения времени и площади под кривой подъема толкателя.

Д.3.5 Расчет пружины клапана

Максимальная сила упругости пружин

$$P_{npmax} = K M_{\kappa} r_k \omega_p^2 / lm = 309$$
 H (Д.45)

где K=1,4 — коэффициент запаса; $M_{\kappa n}=m_{\kappa n}+(m_{np}/3)+m_{mon}=130$ г — суммарная масса клапанного механизма.

Минимальная сила упругости пружины

$$P_{npmin} = K \cdot M_{\kappa n} \cdot \omega_p^2 / lm = 156 \text{ H}$$
 (Д.46)

Жесткость пружины

$$c = K M_{\kappa \tau} \omega_p^2 = 15,6 \text{ кH/м}.$$
 (Д.47)

Деформация пружины предварительная

$$f_{min}=1,14r_0-r_0=2,8$$
 мм (Д.48)

полная

$$f_{max} = f_{min} + h_{\kappa n max} = 13,35 \text{ мм.}$$
 (Д.49)

Размеры пружины (приняты по конструктивным соображениям): диаметр проволоки $\delta_{\text{пр}}$ =3,6 мм; диаметр пружины $D_{\text{пр}}$ =25,7 мм.

Число рабочих витков пружины

$$i_p = \frac{G_2 \cdot \delta_{np} \cdot f_{\text{max}} \cdot 10^{-2}}{8 \cdot P_{np \,\text{max}} \cdot 10^{-6} \cdot D_{np}^3} = 4.8 \tag{A.50}$$

где $G_2=8,9$ – модуль упругости второго рода, MH/cm^2 .

Полное число витков

$$i_n = i_p + 2 = 4.8 + 2 = 6.8$$
 (Д.51)

Шаг витка

$$t = \delta_{np} + (f_{max}/i_p) + \Delta_{min} = 6,71 \text{ мм.}$$
 (Д.52)

где Δ_{min} =0,3 наименьший зазор между витками пружины при полностью закрытом клапане, мм.

Длина пружины при полностью открытом клапане

$$L_{min} = i_n \delta_{np} + i_p \Delta_{min} = 25,73 \text{ мм.}$$
 (Д.53)

Длина пружины при полностью закрытом клапане

$$L_0 = L_{min} + h_{\kappa,nmax} = 25,73 + 10,6 = 36,29 \text{ мм.}$$
 (Д.54)

Длина свободной пружины

$$L_{cs} = L_{min} + f_{max} = 25,73 + 13,35 = 39,09 \text{ мм}.$$
 (Д.55)

Максимальные и минимальные напряжения в пружине

$$\begin{split} \tau_{max} \coloneqq k'_{B} \cdot \frac{8 \cdot P_{npmax} \cdot D_{np}}{\pi \cdot \delta_{np}} & \tau_{max} = 536 \text{ M Па} \\ \tau_{min} \coloneqq k'_{B} \cdot \frac{8 \cdot P_{npmin} \cdot D_{np}}{\pi \cdot \delta_{np}} & \tau_{min} = 271 \text{ M Па} \end{split}$$
 (Д.56)

где $k_B=1,235$.

Средние напряжения и амплитуды напряжений

$$au_{m} \coloneqq \frac{\left| \tau_{max} + \tau_{min} \right|}{2} \qquad au_{m} = 403.3 \quad \mathbf{M} \, \Pi \mathbf{a}$$

$$au_{a} \coloneqq \frac{\left| \tau_{max} - \tau_{min} \right|}{2} \qquad au_{a} = 132.6 \quad \mathbf{M} \, \Pi \mathbf{a} \tag{$\upmath{$\Pi$}}.57)$$

Так как концентрация напряжений в витках пружины учитывается коэффициентом k`, а $k_\tau/(\epsilon_{\rm M}\epsilon_{\rm n}){\approx}1$, то

$$au_{a\kappa} \coloneqq au_a \cdot A$$
 $au_{a\kappa} = 132.6 \, \text{M } \, \text{Па}$ (Д.58)

Запас прочности пружины

$$n_{\tau} \coloneqq \frac{\tau_1}{\left[\tau_{a\kappa} + \alpha_{\tau} \cdot \tau_m\right]}$$
 $n_{\tau} = 1.64$
(Д.59)

где α_{τ} =0,2 определяется по табл. 43 [1].

6.3.6 Расчет распределительного вала

Максимальная сила от выпускного клапана, действующая на кулачок:

$$P_{\text{T.max}} := \left[P_{\text{прmax}} + \frac{\pi \cdot d_{\text{B}}^2 \cdot |p_{\Gamma} - p_0|}{4} \right] + M_{\text{T}} \cdot \omega_{\text{K}}^2 \cdot r_{\text{K}} \cdot 10^{-5} \qquad P_{\text{T.max}} = 2846 \text{ H}$$
 (Д.60)

$$M_{T} := \left(m_{K\Pi} + \frac{m_{\Pi p}}{3}\right) + m_{TO\Pi}$$
 $M_{T} = 130 \text{ r}$ (Д.61)

Стрела прогиба распределительного вала

$$y := 0.8 \cdot \frac{P_{\text{T.max}} \cdot a^2 \cdot b^2}{E \cdot 1 \cdot \left(d_p^4 - \delta_p^4\right)} \qquad y = 0.00155 \quad \text{MM}$$

$$(\text{$\underline{\mathcal{I}}$.62})$$

где $E=2,2^{1}10^{5}$ Мпа – модуль упругости стали.

Напряжение смятия

$$\sigma_{\text{cM}} \coloneqq 0.418 \cdot \sqrt{P_{\text{T.max}} \cdot \frac{E}{\left| b_{\text{K}} \cdot r_{0} \right|}}$$
 $\sigma_{\text{cM}} = 410$ М Па (Д.63)

где b_k =14,8 мм – ширина кулачка.

Форм.	Зана	/103.	Обозначени	е		Наименование		Коп.	Приме- чание	
						<u>Документаци</u> :	<u>9</u>			
A4			16.БР.ЭМиС.	<i>9.016</i>	5.00000Л3	Пояснительная запис	КΩ	104		
A1			16.БР.ЭМиС.	<i>9.016</i>	5.00 <i>000.CБ</i>	Сборочный чертеж		2		
						<u>Сборочные един</u>	ицы_			
		L								
Ц		1	16.БР.ЭМиС.			Блак цилиндрав		1		
Ц		2	16.6P.3MuC.			Вал коленчатый		1		
		3	70.07 .07 70 0.			Головка цилиндров		1		
Ц		4	16.6P.3MuC.			Демпфер крутильных ко	Λεοσκωύ	1		
Ш		5	10.01 .51100.			Картер масляный	_	1		
Ц		6	16.6P.3MuC.			Коллектор выпускног		2		
Ц		7	16.5P.3MuC.			Колпачак маслоотражат		12		
		8				Кольцо маслосъемна	2	6		
		9	70.57 .57 750.			Маховик		1		
Ц		10	16.6P.3MuC.			Насос водяной		1		
Ц		11	16.6P.3MuC.	9.016	5.11.000	Насос масляный		1		
Ц		12	16.БР.ЭМиС.	<i>9.016</i>	52.000	Натяжитель ремня				
Ц						автоматический		1		
		13	16.БР.ЭМиС.	9.016	5.13.000	Приемник масляного	насоса	1		
Ц		14	16.5P.3MuC.	<i>9.016</i>	5.14.000	Прокладка головки б	лока	1		
Изп.	Ø.	- T-	№ доушм Подо	Лата		16.БР.ЭМСУ.016.00.	000.СБ			
Pas	Иист № докум. Подп. Дата граб. Хиспатуплин Р.И.					Литера Лист Листо				
H.KI						Двигатель <u>III 1 3</u> пдернизированный ТГУ, ЭМСБ–1201				
וחצ	Ō.		Παδποδ Δ.Α.		72	-				

фри	Зана	/lø3.	Обазначение	Наименование	Ква.	Приме- чание
		15	16.5P.3MuCY.016.15.000	Ресивер	1	
Г		16	16.5P.3MuCY.016.16.000	Сальник коленчатого вала		
Г				задний	1	
Г		1 7	16. <i>5P.3MuCY.016.</i> 17.000	Сальник коленчатого вала		
				передний	1	
		18	16.5P.3MuCY.016.18.000	Толкатель гидравлический	24	
		19	16.5P.3MuCY.016.19.000	Фильтр очистки масла	1	
Г		20	16.5P.3MuCY.01620000	Форсунка масляная	6	
Г		21	16.5P.3MuCY.01621.000	Шатун	6	
Г						
Г				<u> Детали</u>		
Г						
Г		22	16.БР.ЭМиСУ.016.00.022	Вал распределительный		
Г				впускной	2	
Г		23	16.БР.ЭМиСУ.016.00.023	Вал распределительный		
				выпускной	2	
		24	16.БР.ЭМиСУ.О16.00.024	Вкладыш каренного подшипника		
				верхний	4	
Г		25	16.БР.ЭМиСУ.016.00.025	Вкладыш каренного подшипника	4	
		26	16.БР.ЭМиСУ.016.00.026	Вкладыш шатуннаго подшипника	6	
Г		27	16.БР.ЭМиСУ.016.00.027	Втулка направляющая	24	
	П	28	16.БР.ЭМиСУ.О16.00.028	Держатель заднего сальника		
Г	П			коленчатого вала	1	
	П	29	16.БР.ЭМиСУ.О16.00.029	Клапан впускной	12	
		30	16.БР.ЭМиСУ.О16.00.030	Клапан выпускной	12	
H	igspace	Щ				/urm
Изп.	. Au	ΕM	№ докум. Подп. Дата	16.БР.ЭМиСУ.016.00.000		Лист 2

Форм.	Зона Ль г	7,803,	Обозначение	Наименование	Koa.	Приме- чание
П	3	1	16.5P.3MuCY.016.00.031	Кольцо компрессионное верхнее	6	
	3.	2	16.6P.3MuCY.016.00.032	Кольцо компрессионное нижнее	6	
	3.	3	16.5P.3MuCY.016.00.033	Кольцо стопорное	12	
П	3	4	16.5P.3MuCY.016.00.034	Крышка головки цилиндров	2	
[=	× 3.	5	16.6P.3MuCY.016.00.035	Крышка зашитная задняя	1	
	3	6	16.5P.3MuCY.016.00.036	Крышка защитная передняя	1	
	3	7	16.5P.3MuCY.016.00.037	Муфта опоры ресивера	4	
	30	8	16.5P.3MuCY.016.00.038	Палец поршневой	6	
	3	9	16.6P.3MuCY.016.00.039	Полукальца упорного		
		T		подшипника	1	
	4	0	16.6P.3MuCY.016.00.040	Полукольцо упорного		
				подшипника	1	
	4	1	16.6P.3MuCY.016.00.041	Паршень	6	
	4	2	16.5P.3MuCY.016.00.042	Пружина клапана	24	
	4	3	16.6P.3MuCY.016.00.043	Ремень зубчатый	1	
	4	4	16.5P.3MuCY.016.00.044	Сухарь клапана	48	
	4	5	16.5P.3MuCY.016.00.045	Тарелка пружины	24	
П	4	6	16.5P.3MuCY.016.00.046	Труба впускная	1	
	4	7	16.6P.3MuCY.016.00.047	Шкив эубчатый впускного		
		T		распределительного вала	2	
	4	8	16.5P.3MuCY.016.00.048	Шкив зубчатый водяного		
		T		насоса	1	
	4	9	16.6P.3MuCY.016.00.049	Шкив зубчатый коленчатого		
		1		вала	1	
П	5	0	16.5P.3MuCY.016.00.050	Штуцер крепления фильтра	1	
Р	Щ	\downarrow				A
Изм	Лист		N° докум. Под п. Цата	16.5P.3MuCY.016.00.000		<i>/Lucm</i> 3