федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

ИНСТИТУТ ЭНЕРГЕТИКИ И ЭЛЕКТРОТЕХНИКИ
(институт)
Энергетические машины и системы управления
(кафедра)
13.03.03 (141100.62) Энергетическое машиностроение
(код и наименование направления подготовки, специальности)
_ профиль Двигатели внутреннего сгорания
(наименование профиля, специализации)

БАКАЛАВРСКАЯ РАБОТА

на тему <u>Адаптация система смазки двигателя Honda CBR 600 RR под</u> требования регламента Formula Student

Студент(ка)	М.И. Харасов	
Руководитель	(И.О. Фамилия) Д.А. Павлов	(личная подпись)
Консультанты	(И.О. Фамилия) М.И. Фесина	(личная подпись)
	(И.О. Фамилия) А.Г. Егоров	(личная подпись)
	(И.О. Фамилия)	(личная подпись)
	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
Заведующий кафедрой	к.т.н., доцент Д.А. Павлов (ученая степень, звание, И.О. Фамилия)	(личная подпись)
«»		

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

ЭНЕРГЕТИКИ И ЭЛЕКТРОТЕХНИКИ

(институт)

Энергетические машины и системы управления (кафедра)

УТВЕРЖДАЮ)
Зав.кафедрой 3	ЭМиСУ
	<u>Д.А. Павлов</u>
(подпись)	(И.О. Фамилия
« »	20 г.

ЗАДАНИЕ на выполнение бакалаврской работы

Студент Харасов Мансур Искандарович		
1. Тема Адаптация система смазки двигат	еля Honda CBR 600 RR 1	под требования регламента
Formula Student		
2. Срок сдачи студентом законченной вып	ускной квалификационн	ой работы <u>27.06.16</u>
3. Исходные данные к выпускной квалифи	икационной работе <u>дви</u>	игателя Honda CBR 600 RR
4. Содержание выпускной квалификацион вопросов, разделов) Система смазки, подд		длежащих разработке
5.Ориентировочный перечень графической <u>Графики зависимости перемещения, скоро</u> индикаторная диаграмма двигателя внутр	ости, ускорения от угла і	оворота кривошипа, ВСХ,
болида Formula Student. 6. Консультанты по разделам Фесина М.И	- · · · · · · · · · · · · · · · · · · ·	п картера, рама топо того
7. Дата выдачи задания «»	20Γ.	
Руководитель выпускной квалификационной работы	(подпись)	(И.О. Фамилия)
Задание принял к исполнению	(подпись)	(И.О. Фамилия)

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

ЭНЕРГЕТИКИ И ЭЛЕКТРОТЕХНИКИ

(институт)

Энергетические машины и системы управления_ (кафедра)

УТВЕРЖДАЮ	
Зав.кафедрой	ЭМиСУ
	Д.А. Павлов_
(подпись)	(И.О. Фамилия)
« »	20 г.

КАЛЕНДАРНЫЙ ПЛАН выполнения выпускной квалификационной работы

Студента	Харасова Мансура Искандаровича
_	Адаптация система смазки двигателя Honda CBR 600 RR под требования
регламент	a Formula Student

Наименование	Плановый	Фактический	Отметка о	Подпись
раздела работы	срок	срок	выполнении	руководителя
	выполнения	выполнения		
	раздела	раздела		
Общие сведения о	27.04.2016-	27.04.2016-		
системе смазки	4.05.2016	4.05.2016		
Расчет	7.05.2016-	7.05.2016-		
действительного	14.05.2016	14.05.2016		
цикла двигателя	14.03.2010	14.03.2010		
Скоростные	15.05.2016-	15.05.2016-		
характеристики	17.05.2016	17.05.2016		
двигателя	17.03.2010	17.03.2010		
Расчет кинематики	20.05.2016-	20.05,2016-		
и динамики	27.05.2016	27.05.2016		
двигателя	27.03.2010	27.03.2010		
Проектирование				
поддона картера	30.05.2016-	30.05.2016-		
для двигателя	10.06.2016	10.06.2016		
Honda CBR 600 RR				
Безопасность и	11.06.2016	11.06.2016		
экологичность	11.06.2016-	11.06.2016-		
проекта	21.06.2016	21.06.2016		

Руководитель выпускной		
квалификационной работы	(подпись)	(И.О. Фамилия)
Задание принял к исполнению		
1	(подпись)	(И.О. Фамилия)

СОДЕРЖАНИЕ

ВВЕД	ЕНИЕ	
ГЛАВА 1 (ОБЩИЕ СВЕДЕНИЯ О СИСТЕМЕ СМАЗКИ	S
	виды трения в ДВС	
	истема смазки в ДВС	
1.3 3	тетройство системы смазки	
	1.3.1 Поддон картера	11
	1.3.2 Масляной насос	11
	1.3.3 Масляной фильтр	12
	1.3.4 Датчик давления	13
	1.3.5 Редукционный клапан	13
1.4 B	виды систем смазки	13
ГЛАВА 2	РАСЧЕТ ДЕЙСТВИТЕЛЬНОГО ЦИКЛА ДВИГАТЕЛЯ	15
2.1 Г	Іараметры окружающей среды, остаточные газы	15
2.2	Расчет процесса наполнения	15
2.3 Г	Іараметры сжатия рабочего тела и начала воспламенения см	меси16
2.4 T	ермохимический расчет	17
2.5 T	ермодинамический расчет	18
2.6 P	асчет процесса расширения	19
2.7 V	Індикаторные показатели	20
2.8 3	Оффективные показатели	21
2.9 T	°епловой баланс	23
ГЛАВА 3	СКОРОСТНЫЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ	26
3.1 Г	Іостроение внешней скоростной характеристики	26
ГЛАВА 4	РАСЧЕТ КИНЕМАТИКИ И ДИНАМИКИ ДВИГАТЕЛЯ.	29
4.1 K	инематические параметры кривошипно-шатунного механ	изма29

4.2 Динамика кривошипно-шатунного механизма	32
ГЛАВА 5 ПРОЕКТИРОВАНИЕ ПОДДОНА КАРТЕРА ДЛЯ ДВИГАТ	ЕЛЯ
HONDACBR600RR.	37
5.1 Центр тяжести твердого тела	37
5.2 Определения центра тяжести двигателя	40
5.3 Проектирование поддона картера	40
5.4 Способы определения координат центров тяжести тел	43
5.5 Расчет системы смазки	47
5.6 Безопасность и экологичность технического объекта	48
ЗАКЛЮЧЕНИЕ	50
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ	51
ПРИЛОЖЕНИЕ А	52

ВВЕДЕНИЕ

Двигатель внутреннего сгорания (ДВС) - это сложный технический агрегат, состоящий из большого количества трущихся частей. Вследствие этого трения повышается износ деталей состоящих в контакте друг с другом, что в конечном итоге может привести к выходу из строя ДВС. Чтобы снизить повышенный износ, необходимо смазывать трущиеся части деталей, для этого используют различные натуральные и синтетические масла и смазки, которые смазывают детали образующие пары трения. Так же система смазки предотвращает коррозию, удаляет продукты механического износа, а также частично охлаждает отдельные узлы, что обеспечивает долговечность и лучшую работу двигателя внутреннего сгорания. В зависимости от типа и конструкции ДВС применяют систему смазку разбрызгивание, под давление и комбинированную. Большинство ДВС имеют комбинированную систему смазки. Системе смазки необходимо уделять особое внимание, так как от состава и качества масла зависит работоспособность ДВС.

Для болида участвующего в сезоне 2015 года, командой Formula Student TGU Тольяттинского государственного университета было принято решение о самостоятельном изготовлении поддона картера для снижения центра тяжести болида. В работе рассматриваются этапы проектирования компьютерных испытаний, изготовления поддона картера для двигатель Honda CBR 600 RR.

Нахождение центра тяжести имеет большое значение не только при решении задач математического и физического содержания, но и при решении задач практической направленности.

В «Formula Student» присутствует испытание на опрокидывание, в котором болид помещается на испытательный стенд. Испытание заключается в следующем: стенд отклоняется от горизонтали под углом, успешным считается преодоление отметки в 60°. Результат испытания зависит от положения центра тяжести болида.

ГЛАВА 1ОБЩИЕ СВЕДЕНИЯ О СИСТЕМЕ СМАЗКИ

Большая напряженность узлов трения в двигателе внутреннего сгорания как по нагрузке, так и по температурным условиям определяет необходимость создания ряда устройств, обеспечивающих непрерывное поступление смазочных материалов (масла и консистентной смазки) к узлам трения. Совокупность этих устройств и составляет систему смазки.

Основное назначение подвода масла к трущимся деталям состоит в уменьшение трения путем замены граничного трения жидкостным. В современных быстроходных двигателях смазочное масло используется дополнительно в качестве теплоносителя для отвода тепла, выделяющегося в узле трения, а в некоторых случаях (поршни, форсунки).

Циркуляционная принудительная система смазки, применяющаяся в большинстве современных двигателей, имеет следующие элементы:

Насосы, обеспечивающие циркуляцию масла под давлением (ставят один или несколько);

Устройство для очистки масла от продуктов разложения самого масла вследствие нагрева и окисления, а также от продуктов износа деталей. В качестве таких устройств в настоящее время чаще всего применяют фильтры различных типов; на некоторых форсированных двигателей применяют также центробежные сепараторы (центрифуги);

Устройство для охлаждения масла (масляный холодильник или радиатор) в которых масло отдает тепло охлаждающему веществу (воде или воздуху);

Редукционный устройство (клапан), позволяющее регулировать давление масла в системе путем перепуска части подаваемого насосом масла из напорного патрубка во впускной, а также дроссельные шайбы и вентили для получения различных давлений в разных участках системы;

Маслопроводы: магистрали и ряд каналов и труб для подвода масла к узлам трения и нагретым деталям, если смазочное масло используется также для охлаждения;

Маслосборник, в котором собирается масло, вытекающее из смазываемых узлов. Из маслосборника оно вновь забирается циркуляционным насосом. В большей части автомобильных и тракторных двигателей в качестве маслосборника используют нижнюю часть картера, вследствие чего такая система называется системой смазки с мокрым картером.

В особенно большее судовых И В специальных двигателях распространение имеют системы с сухим картером, в которых стекающее в картер масло немедленно удаляется из него или самотеком, или при помощи особого откачивающего насоса и поступает в отдельный бак-маслосборник. В форсированных двигателях вследствие сильного пенообразования в картере приходится применять системы с сухим картером. Засасывание пены масляным насосом также приводит к прекращению смазки, во избежание чего и применяют системы с сухим картером, причем отдельный масло-сборник служит также пеноотделителем. Для надежного осущения картера при наклонных двигателя обычно устанавливают два откачивающих насоса для откачки масла из передней и задней части картера [1].

1.1 Виды трения в ДВС

В большинстве случаев трение играет отрицательную роль, так как является основной причиной изнашивания деталей и уменьшения кпд механизма. В процессе работы поверхности трения деталей находятся в различных условиях. В зависимости от того, есть или нет смазка между трущимися поверхностями, различают следующие виды трения:

- 1.1.1Трение без смазки, которое происходит при отсутствии на поверхностях трения обоих твердых тел смазочного материала всех видов.
- 1.1.2 Граничное трение двух твердых тел возникает при тонком слое смазки на поверхностях трения, не превышающем высоты шероховатостей соприкасающихся поверхностей.

1.1.3 Жидкостное трение возникает между двумя телами, полностью разделенными слоем жидкости (смазки). Отсутствие контакта между поверхностями предохраняет их от разрушения.

Двигатель внутреннего сгорания включает в себя все вышеперечисленные виды трения. Наиболее лучшее трение это жидкостное, когда между контактирующими деталями образуется слой смазочного вещества различной толщины, вследствие этого трения обеспечивается наименьший износ деталей. В качестве смазки в жидкостном трение, так же используют твердые (графитовый порошок).

1.2Система смазки в ДВС

Двигатель автомобиля представляет собой сложный агрегат, состоящий из множества деталей и узлов, часть их которых – трущиеся. Несмотря на то, что поверхности всех скользящих деталей при изготовлении тщательно обрабатываются, на них, тем не менее, остаются невидимые глазу шероховатости, из-за которых возрастает сила трения. Трение, в свою очередь, приводит к сильному нагреву и увеличенному износу деталей. Для предотвращения данного явления предназначена система смазки двигателя. Масло создает тонкую пленку на поверхностях деталей, в результате чего они легко скользят. Так же система смазки охлаждает трущиеся элементы, удаляет нагар и продукты износа, предотвращает появления коррозии[2].

1.3Устройство системы смазки

Независимо от типа двигателя, система смазки включает в себя следующие основные части: поддон картера, маслозаборник, маслорадиатор, масляный насос, масляный фильтр, датчики давления, уровня и температуры

масла, масляный щуп, перепускной клапан, масляную магистраль и масляные каналы[2].

1.3.1 Поддон картера

Это конструктивно установленная на блок цилиндров, в нижней части, емкость, в которой находиться моторное масло. Поддон картера изготавливают из железа или алюминия. Форма поддона картера обычно имеет наклонные плоскости, углубление для заборника масляного насоса. Заборник должен устанавливаться с учетом неполного забора масла со дна поддона. Делается это для предотвращения попадания частиц мусора, скапливающихся на дне поддона картера, в масляной насос. Так же у поддона картера имеется резьбовое сливное отверстие [3].

1.3.2 Масляной насос

Масляной насос предназначен для создания давления в системе смазки, и тем самым обеспечить смазку движущихся частей ДВС. Приводится в действие от коленчатого или распределительного вала. По характеру управления масляные насосы разделяют на нерегулируемые и регулируемые. Нерегулируемые насосы поддерживают постоянное давление в системе смазки с помощью редукционного клапана. В регулируемых насосах постоянное давление поддерживается путем изменения производительности насоса. В зависимости от конструкции различают насосы шестеренного и роторного типа.

Масляной насос шестеренного типа представляет собой две шестерни размещенных в корпусе. Масло в насос поступает через нагнетательный канал. Производительность шестеренчатого насоса пропорциональна частоте вращения коленчатого вала. При превышении давления нагнетаемого масла определенной величины срабатывает редукционный клапан и перепускает

часть масла во всасывающую полость или непосредственно в картер двигателя [3].

Масляный насос роторного типа объединяет два ротора — внутренний (ведущий) и внешний (ведомый), которые помещены в корпус. Масло всасывается в насос, захватывается лопастями роторов и нагнетается в систему. Также как в шестерном насосе, при необходимости срабатывает редукционный клапан.

1.3.3 Масляной фильтр

Существует несколько видов масляных фильтров, все они выполняют одну роль удаления загрязнения из смазочных масел.

Механические, наиболее распространенный и чаще всего используемые в современных ДВС тип фильтров выполненный в неразборном корпусе. В большинстве случаев эти фильтры одноразовые, то есть при смене масла, фильтр меняется соответственно. Конструктивно выделяют следующие типы механических фильтров: бумажные (картонные), сетчатые, войлочные, проволочные, пластинчатые и др.Бумажные и войлочные фильтры относят к фильтрам тонкой очистки, а сетчатые, пластинчатые и проволочные — к фильтрам средней и грубой очистки.

Масляной фильтр центробежного типа довольно широко применяются в в двигателестроении, как самостоятельно, так и в комбинации с фильтром грубой или тонкой очистки. Не требует периодической замены фильтрующего элемента и обеспечивает тщательную очистку масла от примесей. Принцип работы такого фильтра осуществляется при помощи центростремительного ускорения. При быстром вращение ротора все примеси, имеющиеся в масле, проходящие через ротор, под действием центробежных сил отбрасываются к стенкам корпуса фильтра.

Магнитный фильтр использует магнит или электромагнит для удаления ферримагнитных примесей. Наиболее часто встречается магнит встроенный в

сливную резьбовую пробку поддона картера. При выкручивание пробки для слива масла, с нее удаляется намагниченная стружка [3].

1.3.4 Датчик давления

Расположен в масляной магистрали, используется для контроля за давлением масла. Конструкция датчика давления предельно проста, основные элементы конструкции это мембрана, пружина и пару контактов, благодаря этому датчик достаточно компактен по размеру. Электросигнал поступает от него на приборную панель к контрольной лампе [3].

1.3.5 Редукционный клапан

Нужны для поддержания постоянного давления в магистрали. Обычно клапана ставят непосредственно в системные элементы, такие как масляный фильтр, масляный насос [3].

1.4 Виды систем смазки

В зависимости от метода подачи смазки к сопряженным деталям выделяют три основных вида систем:

- 1. с подачей масла разбрызгиванием;
- 2. с подачей масла под давлением;
- 3. комбинированные.

В первом случае система смазки автомобиля имеет довольно простое устройство. Масло на детали подается следующим образом: щеки коленчатого вала захватывают смазку из поддона картера ДВС и разбрызгивают ее. Основной недостаток такого варианта состоит в том, что качество смазывания деталей зависит от количества масла в поддоне, угла подъема или спуска дороги, величины оборотов коленчатого вала. В результате мотор

периодически испытывает масляное голодание и быстро изнашивается. Второй вариант подразумевает непрерывную подачу смазки ко всем деталям под давлением, которое нагнетает масляный насос. Такая система не имеет недостатков предыдущей, однако сложность изготовления и эксплуатации не ей распространения. В позволила получить широкого современных автомобилях, как правило, система смазки имеет комбинированное устройство. Ee особенность следующем: заключается В К деталям, более подверженным износу, масло подается под давлением, а к тем, которые работают в более легких условиях, разбрызгиванием. Эта система, в свою очередь, делится на два вида: система смазки с сухим и мокрым картером.

Чаще всего автопроизводители используют систему смазки с мокрый картер. Как уже было сказано, поддон картер ДВС в этом случае выполняет роль резервуара для хранения масла. Это техническое решение имеет ряд недостатков, наиболее существенные из которых — вспенивание масла при высоких оборотах коленчатого вала, а также сильное плескание в картере, из-за чего может оголиться маслоприемник, что ведет к масляному голоданию и значительному снижению давления в системе смазки.

Система смазки с сухим картером применяется на автомобилях, предназначенных для гонок, а также в некоторых моделях внедорожников. Масло содержится в отдельном резервуаре вне двигателя.

Преимущества такого технического решения заключаются в постоянном давление и лучшем охлаждение масла, смазка дольше сохраняет свои эксплуатационные свойства, т.к. не контактирует с картерными газами, меньшая высота двигателя (в случае, если резервуар находится за его пределами), это позволяет снизить центр тяжести автомобиля и улучшить аэродинамику. Из недостатков данного вида систем смазки можно отметить высокую стоимость, больший вес, более сложное устройство и больший заправочный объем в сравнении с системой с мокрым картером[2].

ГЛАВА 2РАСЧЕТ ДЕЙСТВИТЕЛЬНОГО ЦИКЛА ДВИГАТЕЛЯ

Расчет рабочего цикла двигателя Honda CBR 600 RR с впрыском бензина по методике И.И. Виббе.

Исходные данные:

$$n = 13500$$
 (об/мин);

i = 4;

D = 67 (MM);

S = 42,5 (MM);

$$V_{\pi} = 0.6 \ (\pi);$$

$$\tau = 4$$
; $\varepsilon = 12,2$;

$$\alpha = 0.98$$
.

2.1 Параметры окружающей среды, остаточные газы

Атмосферные условия

$$p_0 = 0.1 \text{ (M\Pi a)}; T_0 = 298 \text{ (K)}.$$
 (1)

Температура и давление остаточных газов

$$T_{\rm r} = 900 \,({\rm K}); p_{\rm r} = 0.115 \,({\rm M}\Pi{\rm a}).$$
 (2)

2.2 Расчет процесса наполнения

Температура подогрева свежего заряда $\Delta T = 8$.

Плотность заряда на впуске равна:

$$\rho_0 = \frac{p_0 \cdot 10^6}{287 \cdot T_0} = \frac{0.1 \cdot 10^6}{287 \cdot 298} = 1.189 (\kappa z / M^3).$$
 (3)

Потери давления на впуске при $A_n = \frac{95}{n}$;

$$\Delta p_a = \frac{2.8 \cdot A_n^2 \cdot n^2 \cdot \rho_0 \cdot 10^{-6}}{2} = \frac{2.8 \cdot 0.007^2 \cdot 13500^2 \cdot 0.1 \cdot 10^{-6}}{2} = 0.016 (M\Pi a) \cdot (4)$$

Давление в конце впуска

$$p_{\rm a} = p_0 - \Delta p_{\rm a}; \quad p_{\rm a} = 0.084 \text{ (M}\Pi\text{a)}.$$
 (5)

Коэффициент остаточных газов

$$\gamma_r = \frac{T_0 + \Delta T}{T_r} \cdot \frac{p_r}{\varepsilon \cdot p_a - p_r} = \frac{298 + 8}{900} \cdot \frac{0,115}{12,2 \cdot 0,084 - 0,115} = 0,0364.$$
 (6)

Температура в конце впуска

$$T_a = \frac{T_0 + \Delta T + \gamma_r \cdot T_r}{1 + \gamma_r} = \frac{298 + 8 + 0,0364 \cdot 900}{1 + 0,0364} = 322 \quad (K).$$
 (7)

Коэффициент наполнения при коэффициенте дозарядки $\varphi_{\text{доз}}$ = 1,145

$$\eta_{V} = \frac{T_{0}}{T_{0} + \Delta T} \cdot \frac{1}{\varepsilon - 1} \cdot \frac{1}{p_{0}} \cdot (\phi_{\partial o_{3}} \cdot \varepsilon \cdot p_{a} - p_{r}) = \frac{298}{298 + 8} \cdot \frac{1}{12, 2 - 1} \cdot \frac{1}{0, 1} \cdot (1,145 \cdot 12, 2 \cdot 0,084 - 0,115) = 0,92$$
(8)

Удельный объем рабочего тела в конце процесса наполнения (здесь $\mu_0=28,9$ — молярная масса воздуха, $m_{\rm T}=115$ кг/моль — молярная масса паров бензина, $l_0=14,957$ кг возд./кг топл.)

$$V_a = 8,314 \cdot 10^{-3} \frac{T_a}{\eta_V \cdot p_a} = 8,314 \cdot 10^{-3} \cdot \frac{322}{0,92 \cdot 0,084} = 1,102 \left(\frac{M^3}{\kappa^2} \right). \tag{9}$$

2.3 Параметры сжатия рабочего тела и начала воспламенения смеси

Значение показателя политропы сжатия находится методом последовательных приближений из уравнения

$$n_1 = 1 + \frac{8,314}{20,16 + 1,738 \cdot 10^{-3} (\varepsilon^{n_1 - 1} + 1) \cdot T_a}; n_1 = 1,39.$$
 (10)

Давление, температура и удельный объем в конце сжатия

$$p_{\rm C} = p \cdot \varepsilon^{\rm n}_{\rm 1}; \quad p_{\rm C} = 2{,}73 \text{ (M}\Pi\text{a});$$
 (11)

$$T_{\rm C} = T_{\rm a} \cdot \varepsilon^{\rm n-1}_{\rm 1}; \qquad T = 859,82 \text{ (K)}.$$
 (12)

Удельный объем, давление и температура рабочего тела в момент воспламенения, если угол опережения воспламенения Θ = 25 (град) и λ = 0,29

$$\begin{split} V_{y} &= \frac{V_{a}}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \cdot \left[\left(1 + \frac{1}{\lambda} \right) - \left[\cos \left(\frac{\Theta \cdot \pi}{180} \right) + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^{2} \left(\sin \left(\frac{(\Theta \cdot \pi)}{180} \right) \right)^{2}} \right] \right] \right] \\ &= \frac{1,102}{12,2} * \left[1 + \frac{12,2 - 1}{2} * \left[\left(1 + \frac{1}{0.21} \right) - \left[\cos \left(\frac{25 * 3.14}{180} \right) + \frac{1}{0.21} * \sqrt{1 - 0.21^{2} * \left(\sin \left(\frac{25 * 3.14}{180} \right) \right)^{2}} \right] \right] \right] \\ &= 0,147 \; (M^{3}/\kappa \varepsilon). \end{split}$$

$$(13)$$

$$p_{y} = \left(\frac{V_{a}}{V_{y}} \right)^{n_{1}} \cdot p_{a}; p_{y} = 1,385 \; (M\Pi a); (14)$$

$$T_{y} = \left(\frac{V_{a}}{V_{y}} \right)^{n_{1} - 1} \cdot T_{a}; T_{y} = 709,87 \; (K). (15)$$

Текущие значения удельного объема, давления и температуры рабочего тела рассчитываются по аналогичным формулам.

2.4 Термохимический расчет

Теоретическая масса воздуха, необходимая для сгорания 1 кг жидкого топлива если C=0.855 и H=0.145

$$l_0 = \frac{1}{0.23} \cdot \left(\frac{8}{3} \cdot C + 8H\right); l_0 = 14,9565 (кмоль.возд./ кг.топл).$$
 (16)

Количество воздуха необходимое для сгорания 1 кг жидкого топлива

$$L_0 = \frac{1}{0,208} \cdot \left(\frac{C}{12} + \frac{H}{4}\right); L_{\pi} = 0,5168 (кмоль.возд./кг.топл).$$
 (17)

Количество свежего заряда при $\alpha = 0.98$

$$M_1 := \alpha \cdot L_0 + \frac{1}{m_T}; M_1 = 0,5152 (кмольгор.см./кг.топл).$$
 (18)

Общее количество продуктов сгорания

$$M_2 = 0.5449$$
 (кмоль гор.см./кг топл.) (19)

Коэффициент молекулярного изменения свежей смеси

$$\mu_0 = \frac{M_2}{M_1}; \mu_0 = 1,0577 \ . \tag{20}$$

Коэффициент молекулярного изменения рабочей смеси

$$\mu = \frac{\mu_0 + \gamma_r}{1 + \gamma_r}; \mu = 1,056. \tag{21}$$

2.5 Термодинамический расчет

Коэффициент эффективности сгорания топлива при $\alpha=0.98$ выбираем из таблицы $\zeta=0.9$

Общая удельная теплота сгорания топлива

 $H_{\rm u} = 47293$ (кмольвозд/кг топл.)

$$q_{Z} = \frac{\zeta \cdot H_{u}}{(1 + \gamma_{r})(\alpha \cdot l_{0} + 1)}; q_{Z} = 2623(\kappa \beta \pi / \kappa \epsilon). \tag{22}$$

Давление газов в процессе сгорания

$$p_{2} = E_{2} \cdot \Delta X_{1-2} + p_{1} \cdot \left(K_{1-2} \cdot \psi(\varphi_{1}) - \psi(\varphi_{2}) \right) / \left[K_{1-2} \cdot \psi(\varphi_{1}) - \psi(\varphi_{1}) \right]$$

$$E_{2} = \left(0,002 \cdot \frac{\varepsilon}{V_{a}} \right) \cdot q_{Z}; E_{2} = 58,07 (M\Pi a).$$
(23)

Доля топлива, сгоревшего на рассматриваемом участке

$$\Delta X_{1-2} = \exp\left[-6.908 \left[\frac{\varphi_1}{\varphi_Z}\right]^{m+1}\right] - \exp\left[-6.908 \left[\frac{\varphi_2}{\varphi_Z}\right]^{m+1}\right]$$
(24)

Отношение средних теплоемкостей рабочего тела на участке 1-2

$$k_{1-2} = 1,259 + \left[76,7 - \left(13,6 - \frac{14,2}{\alpha}\right) \cdot x_{1-2}\right] \cdot \frac{1}{T_{1-2}} - \left(0,0665 - \frac{0,0245}{\alpha}\right) \cdot x_{1-2}$$
(25)

среднее значение доли топлива сгоревшего на участке 1-2

$$x_{1-2} = 0.5 \left[\exp \left[-6.908 \left[\frac{\varphi_1}{\varphi_Z} \right]^{m+1} \right] - \exp \left[-6.908 \left[\frac{\varphi_2}{\varphi_Z} \right]^{m+1} \right] \right]$$
(26)

 $T_{1-2} = (T_1 + T_2)/2$ — средняя температура на участке 1-2;

$$\psi(\varphi) = 1 + \frac{\varepsilon - 1}{2} \cdot \sigma$$

$$\sigma = \left(1 + \frac{1}{\lambda}\right) - \left[\cos(\varphi) + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^2 \left(\sin(\varphi)\right)^2}\right]$$
(28)

 $T_{2} = \frac{T_{y} \cdot p_{2} \cdot \psi(\varphi_{2})}{p_{y} \cdot \psi(\varphi_{y}) \cdot \mu_{1-2}}$ - температура газов в процессе сгорания;

 μ_{1-2} = $(\mu_1 + \mu_2)/2$ — средний на рассматриваемом участке коэффициент молекулярного изменения свежей смеси;

$$\mu_{1} = 1 + \frac{\left(\mu_{0 \max} - 1\right)\left[1 - \exp\left[-6.908\left(\frac{\varphi_{1}}{\varphi_{Z}}\right)^{m+1}\right]\right]}{1 + \gamma_{r}}$$

$$(29)$$

 $\mu_0 = \mu_{0 \text{ max}} = 1,056$ - - расчетный коэффициент молекулярного изменения свежей смеси.

Результаты расчета приведены в таблице 2.1 и 2.2

2.6 Расчет процесса расширения

Степень последующего расширения при V_Z = 0,2; δ = V_a/V_Z ; δ = 5,511, здесь V_Z — значение объема рабочего тела, соответствующее конечному значению давления p_Z = 4,95 МПа при сгорании, т.е. при φ = φ_Z (значение выбирается из расчетной таблицы 8.1). Средний показатель политропы расширения находится методом последовательных приближений из уравнения если T_Z = 2903,24 (K), n_2 = 1,1796

$$n_2 = 1 + \frac{8,341}{23,7 + 0,0046 \cdot T_Z \cdot \left(1 + \frac{1}{\delta^{n_2 - 1}}\right)} = 1,1779$$
(30)

Параметры в конце процесса расширения как политропного процесса

$$p_b = \frac{p_Z}{\delta^{n_2}}; p_b = 0.67(M\Pi a); T_b = \frac{T_Z}{\delta^{n_2-1}}; T_b = 2142.9(K),$$
(31,32)

$$V_{pm} = \frac{V_a}{\varepsilon} \cdot \left[1 + \frac{\varepsilon - 1}{2} \cdot \left[\left(1 + \frac{1}{\lambda} \right) - \left[\cos(\varphi_{pm}) + \frac{1}{\lambda} \cdot \sqrt{1 - \lambda^2 \sin^2(\varphi_{pm})} \right] \right] \right] = 0.992$$

 $arphi_{
m pt}$ – текущее значение угла поворота коленчатого вала

$$p_{pm} = \left(\frac{V_a}{V_T}\right)^{n_2} \cdot p_b = 0.757$$
 $T_{pm} = \left(\frac{V_a}{V_T}\right)^{n_2-1} \cdot T_b = 2183,46$ (33,34)

Для оценки правильности выбора значения температуры отработавших газов произведем проверку

$$T_r = \frac{T_b}{\sqrt[3]{p_b/p_r}}; T_r = 888,57(K)$$
 (35)

$$\Delta = \frac{100 \cdot \left(T_r - T_r\right)}{T_r}; \Delta = 1\%$$
(36)

Температура остаточных газов принята удачно, так как ошибка не превышает 5%.По результатам расчета построены индикаторная диаграмма.

2.7 Индикаторные показатели

Теоретическая индикаторная работа цикла

$$L_{iT} = \int_{\varphi_1}^{\varphi_2} p dV \tag{37}$$

здесь ϕ_1 , ϕ_2 — пределы интегрирования по углу поворота коленчатого вала, соответствующие закрытию впускного клапана и открытию выпускного клапана

$$L_{iT} = \sum_{i=1}^{n} \left[\left(\frac{p_1 + p_2}{2} \right) (V_2 - V_1) \right] - \text{по методу трапеций}$$
 (38)

здесь $\frac{p_1+p_2}{2}$ - среднее значение давления на i- том участке (V_2-V_1) - значение изменения объема на i — том участке

$$L_{iT} = 1,184 кДж$$

Расчетное среднее индикаторное давление

$$p_{iT} = \varepsilon / (\varepsilon - 1) \cdot L_{iT} / V_a = 12,2 / (12,2 - 1) \cdot 1,184 / 1,102 = 1,513 M\Pi a$$
(39)

Индикаторный коэффициент полезного действия

$$\eta_i = 8,314 \frac{M_1 p_i T_K}{p_K \eta_V H_u} = 8,314 \frac{0.7 \cdot 1,513 \cdot 293}{0.1 \cdot 0.92 \cdot 47293} = 0,19$$
(40)

Удельный индикаторный расход топлива

$$g_i = \frac{3600}{\eta_i H_u} 10^3 = \frac{3600}{0.19 \cdot 47293} 10^3 = 396.32 / \kappa Bm \cdot v$$
 (41)

2.8Эффективные показатели

Давление механических потерь

$$v_{II} = Sn/30 = 0.042 \cdot 13500/30 = 18.9 \text{ m/c}$$
 (42)

$$p_M = 0.034 + 0.0113 \cdot 18.9 = 0.25 (43)$$

Среднее эффективное давление

$$p_{y} = p_{i} - p_{M} = 1,513 - 0,25 = 1,263 M\Pi a$$
(44)

Механический КПД

$$\eta_M = p_e / p_i = 1,263 / 1,513 = 0,83$$
(45)

Эффективный КПД

$$\eta_e = \eta_i \eta_M = 0.19 \cdot 0.83 = 0.36 \tag{46}$$

Удельный эффективный расход топлива

$$g_{e} = 3600 \cdot \rho_{k} \cdot \eta_{v} / (P_{i} \cdot l_{0} \cdot \alpha) = 3600 \cdot 1{,}189 \cdot 0{,}92 / (1{,}513 \cdot 14{,}96 \cdot 0{,}92) \approx 212 \varepsilon / \kappa Bm \cdot u$$
 (47)

Эффективная мощность

$$N_e = \frac{p_e i V_h n}{30\tau} = \frac{1,263 \cdot 4 \cdot 0,15 \cdot 13500}{30 \cdot 4} \approx 85\kappa Bm \tag{48}$$

На основе полученных данных приведенных в таблице 2.2 построим диаграмму рабочего цикла бензинового ДВС рисунок 2.1 и индикаторную диаграмму рабочего цикла бензинового ДВС рисунок 2.2.

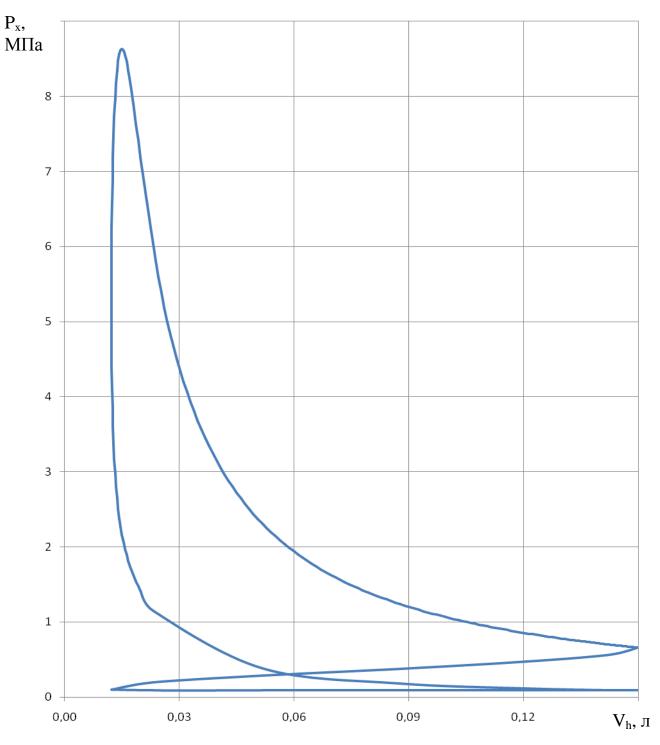


Рисунок 2.1 - Диаграмма рабочего цикла бензинового ДВС

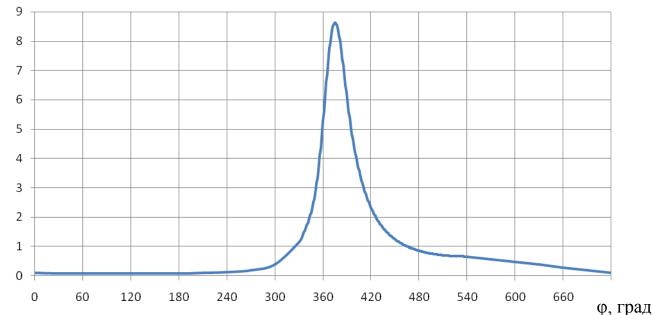


Рисунок 2.2 - Индикаторная диаграмма рабочего цикла бензинового ДВС.

2.9 Тепловой баланс

В двигателях внутреннего сгорания в эффективную работу превращается лишь 20-40% от располагаемой теплоты топлива. Остальная часть теплоты в виде различных потерь передается окружающей среде через систему охлаждения, с отработавшими газами и теплопередачей от наружных поверхностей двигателя.

Распределение теплоты на эффективную работу и по отдельным видам тепловых потерь называют внешним тепловым балансом.

Уравнение теплового баланса в абсолютных количествах теплоты (Дж/с) имеет вид: $Q_O = Q_e + Q_g + Q_r + Q_{H.C.} + Q_{ocm.}$,

где Q_0 – общее количество теплоты, введенной в двигатель с топливом (Дж/с);

 Q_e – теплота, эквивалентная эффективной работе за 1 сек (Дж/с);

 $Q_{\rm B}$ – теплота, передаваемая охлаждающей среде (Дж/с);

 Q_r – теплота, унесенная с отработавшими газами (Дж/с);

 $Q_{\text{н.с.}}$ – теплота, потерянная из-за химической неполноты сгорания топлива (Дж/с) (определяется только для карбюраторных двигателей);

 $Q_{ocm.}$ – неучтенные потери теплоты (Дж/с).

$$Q_O = H_u \cdot G_t / 3,6 = 237897 \ \text{Дж/c};$$
 (49)

$$Q_e = 1000 \cdot N_e = 85226,1 \, \text{Дж/c};$$
 (50)

$$Q_{\scriptscriptstyle R} = c \cdot i \cdot D^{1+2\cdot m} \cdot n^{\scriptscriptstyle m} \cdot (H_{\scriptscriptstyle H} - \Delta H_{\scriptscriptstyle H}) / (\alpha \cdot H_{\scriptscriptstyle H}) = 41640,7 \text{ Дж/c}; \tag{51}$$

$$Q_{r} = G_{m} \cdot \left\{ M_{2} \left[(\mu c_{v_{r}})_{t_{0}}^{t_{r}} + 8,315 \right] \cdot t_{r} - M_{1} \cdot \left[(\mu c_{v})_{t_{0}}^{t_{k}} + 8,315 \right] \cdot t_{k} \right\} = 88067,1 \text{ } \text{Дж/c};$$
 (52)

$$Q_{u.c.} = \Delta H_u \cdot G_t / 3.6 = 6033.52 \, \text{Дж/c};$$
 (53)

$$Q_{ocm} = Q_o - (Q_C + Q_s + Q_r + Q_{uc}) = 16929,52 \text{ Дж/c}$$
 (54)

Полученные результаты расчетов теплового баланса занесем в таблицу 2.3.

$$q_e = \frac{Q_e}{Q_o} \cdot 100\% = 35,82;$$
 $q_e = \frac{Q_e}{Q_o} \cdot 100\% = 17,50;$ (55,56)

$$q_r = \frac{Q_r}{Q_o} \cdot 100\% = 37,02; \ q_{\text{\tiny H.C.}} = \frac{Q_{\text{\tiny H.C.}}}{Q_o} \cdot 100\% = 2,54;$$
 (57,58)

$$q_{ocm.} = \frac{Q_{ocm.}}{Q_o} \cdot 100\% = 7,12; \tag{59}$$

Таблица 2.3 – Значения относительных величин внешнего теплового баланса

Составляющие теплового баланса	q%
Теплота, эквивалентная эффективной работе	35,82
Теплота, передаваемая охлаждающей среде	17,50
Теплота, унесенная с отработанными газами	37,02
Теплота, потерянная из-за химической неполноты сгорания топлива	2,54
Неучтенные потери теплоты	7,12
Общее количество теплоты, введенной в двигатель с топливом	100

ГЛАВА ЗСКОРОСТНЫЕ ХАРАКТЕРИСТИКИ ДВИГАТЕЛЯ

3.1 Построение внешней скоростной характеристики

С достаточной степенью точности внешнюю скоростную характеристику можно построить по результатам теплового расчета, проведенного для одного режима работы двигателя — режима максимальной мощности, и использования эмпирических зависимостей.

Расчетные точки кривой эффективности мощности определяются по следующим эмпирическим зависимостям через каждые 500-1000 мин⁻¹:

$$N_{ex} = N_e \frac{n_x}{n_N} \left[1 + \frac{n_x}{n_N} - \left(\frac{n_x}{n_N} \right)^2 \right], \tag{60}$$

где N_e и n_N - номинальная эффективная мощность, и частота вращения коленчатого вала при номинальной мощности N_{ex} и n_x — эффективная мощность и частота вращения коленчатого вала в искомой точке скоростной характеристики двигателя.

Точки кривой эффективного крутящего момента определяется по формуле:

$$M_{ex} = 3 \cdot 10^4 N_{ex} / (\pi n_x) \tag{61}$$

Среднее эффективное давления $p_{ex}(\text{М}\Pi a)$ для рассчитываемых точек можно определить по кривой M_{ex} или из выражения:

$$p_{ex} = N_{ex} 30\tau / V_{n} n_{x} \tag{62}$$

Удельный эффективный расход топлива, g_e , г/(кВт · ч), в искомой точке скоростной характеристики:

25

$$g_{ex} = g_{eN} \left[1, 2 - 1, 2n_x/n_N + (n_x/n_N)^2 \right]$$
 (63)

Часовой расход топлива, кг/ч:

$$G_{mx} = g_{ex} N_{ex} \cdot 10^{-3} \tag{64}$$

Коэффициент наполнения:

$$\eta_{Vx} = p_{ex} l_0 \alpha_x g_{ex} / (3600 \rho_k) \tag{65}$$

Результаты расчетов данных, необходимых для построения внешней скоростной характеристики ДВС занесены в таблицу 3.1. По данным таблицы 3.1 построена внешняя скоростная характеристика двигателя, представленная на рисунке 3.1.

 Таблица 3.1 - Результаты расчетов данных для построения внешней скоростной характеристики

n, мин ⁻¹	Nex, кВт	Mex, H·M	рех, МПА	ge, г/(кВт · ч)	Gt, кг/ч	nv
1500	10,39	66,18	1,39	229,23	2,38	1,09
2500	18,14	69,32	1,45	215,01	3,90	1,07
3500	26,30	71,79	1,51	203,12	5,34	1,05
4500	34,67	73,61	1,54	193,56	6,71	1,02
5500	43,04	74,77	1,57	186,33	8,02	1,00
6500	51,21	75,26	1,58	181,44	9,29	0,98
7500	58,95	75,10	1,57	178,87	10,55	0,96
8500	66,08	74,27	1,56	178,64	11,80	0,95
9500	72,37	72,79	1,53	180,74	13,08	0,94
10500	77,63	70,64	1,48	185,17	14,37	0,94
11500	81,64	67,83	1,42	191,93	15,67	0,93
12500	84,20	64,36	1,35	201,02	16,93	0,93
13500	85,10	60,23	1,26	212,44	18,08	0,92

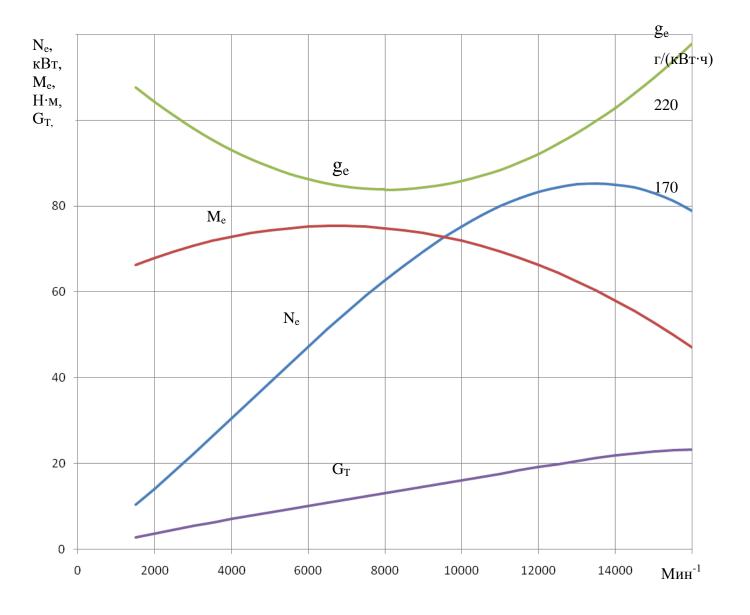


Рисунок 3.1 – Внешняя скоростная характеристика.

ГЛАВА 4РАСЧЕТ КИНЕМАТИКИ И ДИНАМИКИ ДВИГАТЕЛЯ

4.1 Кинематические параметры кривошипно-шатунного механизма

Принимаем, что коленчатый вал вращается с постоянной угловой скоростью ω (в действительности за счет постоянно изменяющихся газовых нагрузок на поршень и деформации коленчатого вала $\omega \neq \text{const}$) [9].

Перемещение поршня в зависимости от угла поворота кривошипа:

$$S_{x} = R \left[\left(1 - \cos \varphi \right) + \frac{\lambda}{4} \left(1 - \cos 2\varphi \right) \right]. \tag{66}$$

Скорость поршня:

$$\upsilon_{n} = \frac{ds}{dt} = \frac{d\varphi}{dt} \cdot \frac{ds}{d\varphi} = \omega R \left(\sin \varphi + \frac{\lambda}{2} \sin 2\varphi \right), \tag{67}$$

где угловая скорость вращения коленчатого вала, $\omega = \pi \cdot n/30$.

Ускорение поршня:

$$j = \frac{dv_n}{dt} = \frac{d\varphi}{dt} \cdot \frac{dv_n}{d\varphi} = \omega^2 R(\cos\varphi + \lambda\cos 2\varphi). \tag{68}$$

Расчет перемещения поршня S_x , скорости поршня υ_n , ускорения поршня j_n производится аналитически, через каждые 10° угла поворот коленчатого вала до 360°, а полученные данные заносятся в таблицу 4.1, и строятся зависимости указанных величин от угла поворота коленчатого вала (рисунок 4.1, рисунок 4.2, рисунок 4.3).

Таблица 4.1 — Расчетные значения перемещения поршня S_x , скорости поршня υ_n , ускорения поршня j_n

ф,град п.к.в.	$S_{x, MM}$	υ _π ,м/c	j _n ,м/c ²	ф,град п.к.в.
0	0,000	0,000	22547,919	360
10	0,385	4,143	22028,818	350
20	1,523	8,097	20508,580	340
30	3,361	11,685	18094,713	330
40	5,819	14,756	14954,499	320
50	8,787	17,194	11298,585	310
60	12,143	18,926	7360,684	300
70	15,752	19,922	3375,681	290
80	19,477	20,192	-441,404	280
90	23,188	19,785	-3913,275	270
100	26,767	18,778	-6913,148	260
110	30,112	17,264	-9371,166	250
120	33,136	15,346	-11273,960	240
130	35,776	13,124	-12657,651	230
140	37,984	10,688	-13595,432	220
150	39,726	8,112	-14181,437	210
160	40,983	5,453	-14513,095	200
170	41,743	2,748	-14674,266	190
180	42,000	0,025	-14721,369	180

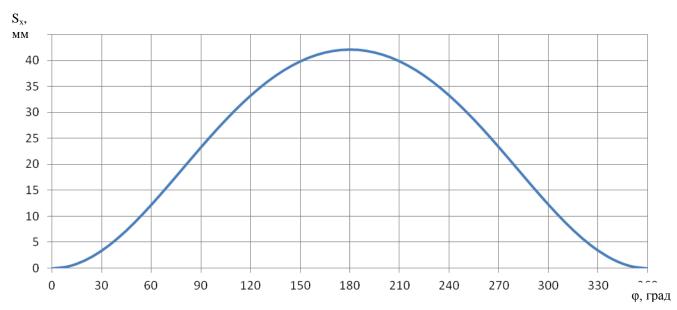


Рисунок 4.1 - Зависимость перемещения поршня от угла поворота кривошипа

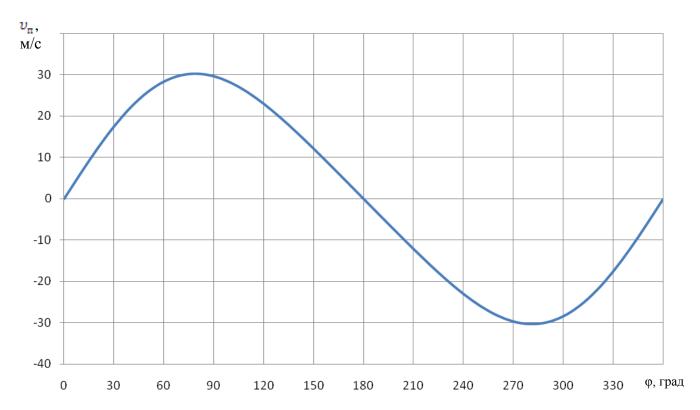


Рисунок 4.2 - Зависимость скорости поршня от угла поворота кривошипа.

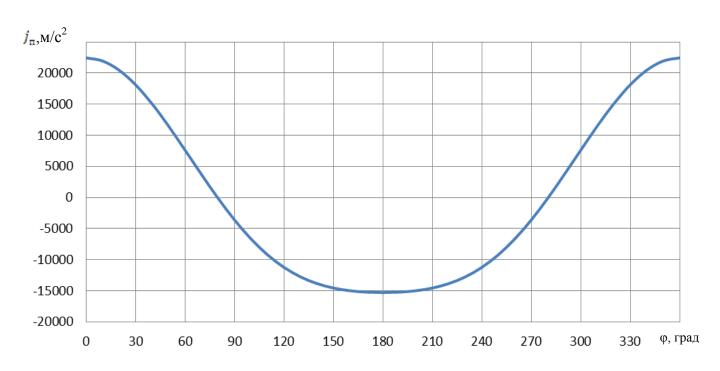


Рисунок 4.3 – Зависимость ускорения поршня от угла поворота кривошипа.

4.2 Динамика кривошипно-шатунного механизма

Динамический расчет кривошипно-шатунного механизма заключается в определении суммарных сил и моментов, возникающих от давления газов и сил инерции [9].

Сила давления газов на поршень:

$$P_{\Gamma} = (p_{\Gamma} - p_0)F_{\Pi}, \tag{69}$$

где F_{Π} - площадь поршня, м²; p_{ϵ} и p_0 - давление газов в любой момент времени и атмосферное давление, МПа. Рассчитанные значения заносятся в таблицу 4.2.

Приведение масс частей КШМ

Масса поршневой группы (для поршня из алюминиевого сплава m $_{_{\rm II}}^{^{2}}\!\!=\!\!80$ кг/м $^{^{2}}\!\!$) :

$$m_{\pi} = m_{\pi}' \cdot F_{\pi} = 80.0,003526 = 0,282 \text{ Kg}.$$
 (70)

Масса шатуна (для стального кованого шатуна $m_{_{\rm III}}$ '=100 кг/м ²):

$$m_{\text{III}} = m_{\text{III}} \cdot F_{\text{II}} = 100 \cdot 0,003526 = 0,3526 \text{ Kg}.$$
 (71)

Масса неуравновешенных частей одного колена вала без противовесов (для литого чугунного вала m $_{_{\rm K}}^{'}$ =110 кг/м 2):

$$m_{\kappa} = m_{\kappa} \cdot F_{\Pi} = 110 \cdot 0,005238 = 0,3878 \text{ кг.}$$
 (72)

Масса шатуна, сосредоточенная на оси кривошипа:

$$m_{\text{\tiny III.K}} = 0,725 m_{\text{\tiny III}} = 0,725 \cdot 0,3526 = 0,2566 \text{ Kg}.$$
 (73)

Масса шатуна, сосредоточенная на оси поршневого пальца:

$$m_{_{\text{III},II}} = 0,275 m_{_{\text{III}}} = 0,275 \cdot 0,3526 = 0,097 \text{ kg}.$$
 (74)

Массы, совершающие возвратно-поступательное движение:

$$m_{j} = m_{\pi} + m_{\text{III.II}} = 0,5238 + 0,216 = 0,379 \text{ Kg}.$$
 (75)

Массы, совершающие вращательное движение:

$$m_{R} = m_{K} + m_{\text{ил. K}} = 0.3878 + 0.2566 = 0.644 \text{ K}\text{ G}.$$
 (76)

Силы инерции

Сила инерции от возвратно-поступательно движущихся масс:

$$P_{i} = -m_{i} j = -m_{i} R \omega^{2} (\cos \varphi + \lambda \cos 2\varphi)$$
 (77)

Центробежная сила инерции вращающихся масс:

$$K_R = -m_R R\omega^2 = -0.644 \cdot 1413.717^2 \cdot 0.021 = -27.05 \text{ kH}$$
 (78)

Центробежная сила инерции K_R является результирующей двух сил: силы инерции вращающихся масс шатуна:

$$K_{RIII} = -m_{IIIK}R\omega^2 = -0.2566 \cdot 1413.717^2 \cdot 0.021 = -10.77 \text{ kH}$$
 (79)

и силы инерции вращающихся масс кривошипа

$$K_{RK} = -m_K R\omega^2 = -0.3878 \cdot 1413.717^2 \cdot 0.021 = -16.28 \text{ kH}$$
 (80)

Сила N(кH), действующая перпендикулярно оси цилиндра, называется нормальной силой и воспринимается стенками цилиндра:

$$N = Ptg \beta. \tag{81}$$

Нормальная сила N считается положительной, если создаваемый ею момент относительно оси коленчатого вала направлен противоположно направлению вращения вала двигателя.

Сила S (кH), действующая вдоль шатуна, воздействует на него и далее передается кривошипу. Она считается положительной, если сжимает шатун, и отрицательной, если его растягивает:

$$S = P(\frac{1}{\cos \beta}). \tag{82}$$

От действия силы S на шатунную шейку возникают две составляющие силы:

сила, направленная по радиусу кривошипа (кН):

$$K = \frac{P\cos(\varphi + \beta)}{\cos\beta},\tag{83}$$

и тангенциальная сила, направленная по касательной к окружности радиуса кривошипа (кH):

$$T = \frac{p\sin(\varphi + \beta)}{\cos\beta} \tag{84}$$

Рассчитанные значения сил, действующих на КШМ, заносятся в таблицу 4.2.

Таблица 4.2 – Силы действующие на КШМ

ф, град	P_{Γ} , кН	P_j , к \mathbf{H}	<i>N</i> , кН	<i>S</i> , кН	<i>К</i> , кН	<i>T</i> , кН
0	0,000	-13,420	0,000	-13,420	-13,420	0,000
30	-0,042	-10,828	-1,036	-10,920	-8,897	-6,333
60	-0,042	-4,542	-0,761	-4,647	-1,633	-4,351
90	-0,042	2,168	0,409	2,164	-0,409	2,125
120	-0,042	6,710	1,107	6,759	-4,293	5,221
150	-0,042	8,661	0,821	8,657	-7,874	3,598
180	-0,042	9,084	0,000	9,042	-9,042	0,000
210	-0,020	8,661	-0,823	8,680	-7,895	-3,607
240	0,066	6,710	-1,125	6,869	-4,363	-5,306
270	0,295	2,168	-0,474	2,508	-0,474	-2,463
300	0,991	-4,542	0,590	-3,600	-1,265	3,370
330	3,704	-10,828	0,679	-7,156	-5,830	4,150
360	18,285	-13,420	0,000	4,865	4,865	0,000
390	20,908	-10,828	0,960	10,125	8,249	5,871
420	7,794	-4,542	0,540	3,296	1,158	3,086
450	4,009	2,168	1,188	6,290	-1,188	6,176

Продолжение таблицы 4.2

480	2,648	6,710	1,554	9,486	-6,025	7,328
510	2,113	8,661	1,027	10,822	-9,843	4,498
540	1,967	9,084	0,000	11,051	-11,051	0,000
570	1,639	8,661	-0,981	10,346	-9,411	-4,300
600	1,311	6,710	-1,332	8,131	-5,164	-6,281
630	0,983	2,168	-0,606	3,209	-0,606	-3,151
660	0,656	-4,542	0,645	-3,940	-1,384	3,688
690	0,328	-10,828	1,001	-10,548	-8,594	6,117
720	0,000	-13,420	0,000	-13,420	-13,420	0,000

По полученным значениям строятся графики сил, действующих в КШМ (рисунок 4.4, рисунок 4.5, рисунок 4.6).

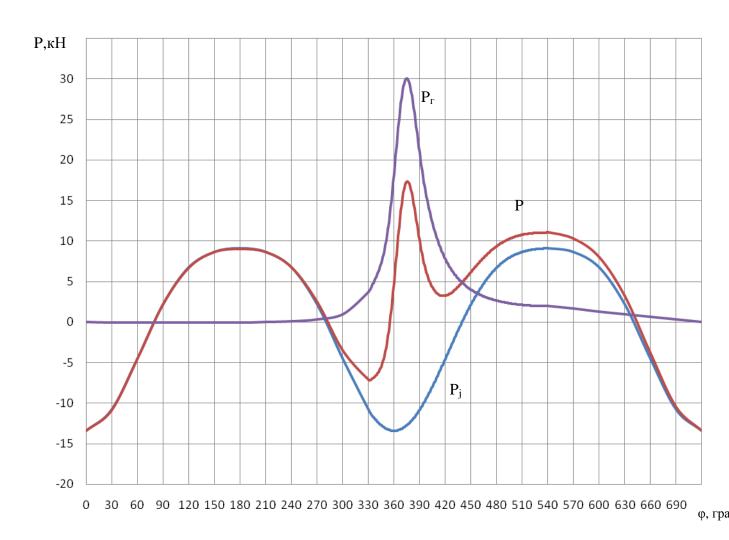


Рисунок 4.4 — Построение сил P, P_{j} , N

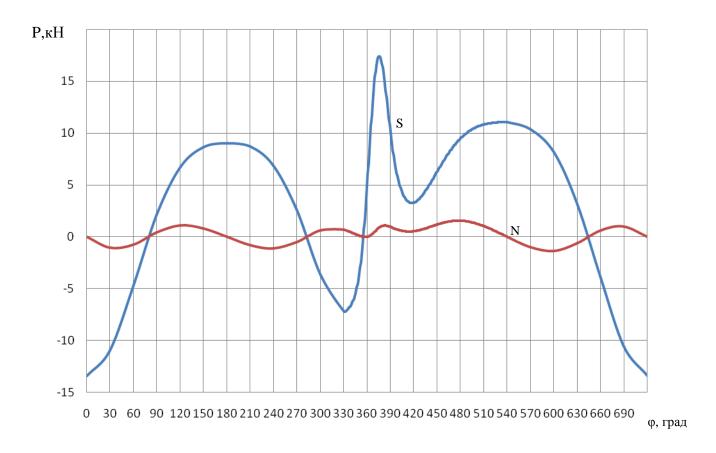


Рисунок 4.5 - Построение сил N, S

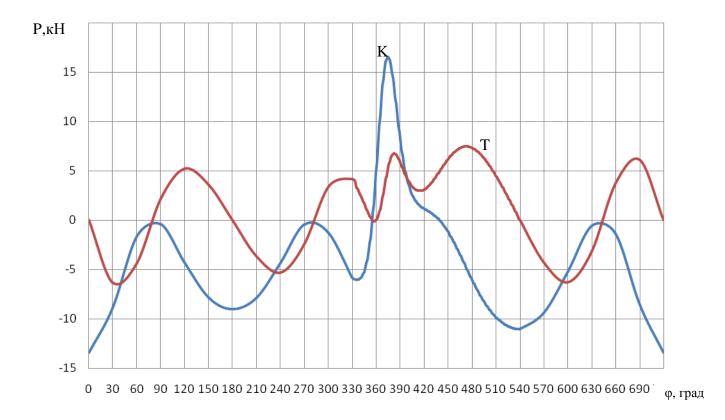


Рисунок 4.6 - Построение сил К, Т

ГЛАВА 5 ПРОЕКТИРОВАНИЕ ПОДДОНА КАРТЕРА ДЛЯ ДВИГАТЕЛЯ HONDACBR600RR

Для болида участвующего в сезоне 2015 года, командой Formula Student TGU Тольяттинского государственного университета было принято решение о самостоятельном изготовлении поддона картера для снижения центра тяжести болида.

Нахождение центра тяжести имеет большое значение не только при решении задач математического и физического содержания, но и при решении задач практической направленности [4].

Изрегламента 2015 Formula SAE® Rules:

- Т6.7 Устойчивости к опрокидыванию
- Т6.7.1Трасса и центр тяжести автомобиля должны в совокупности обеспечивать устойчивость к опрокидыванию.
- Т6.7.2 Устойчивость к опрокидыванию будет оцениваться по таблице наклона. Автомобили либо проходят эту проверку, либо нет. Автомобиль не должен падать при наклоне под углом шестьдесят градусов (60°) к горизонтали в любом направлении, что соответствует 1,7 G. Тест с наклоном будет проводиться с самым высоким водителем в нормальном положении для вождения».

В этом испытании большую роль играет центр тяжести. Центр тяжести болида, зависит от центра тяжести двигателя, так как рама проектируется под конкретный двигатель. Поместить двигатель на раму как можно ближе к земле получится, только изменив его габариты, но изменение габаритов двигателя без серьёзного вмешательства в конструкцию невозможно. Следовательно, самым простым способом является изменение габаритов поддона картера.

5.1 Центр тяжести твердого тела

Центром тяжести тела называется точка приложения веса тела. Одним из способов определения положения центра тяжести тела является способ симметрии: если тело имеет центр, ось или плоскость симметрии, то центр тяжести находится в центре, на оси или на плоскости симметрии. Чтобы найти положение центра тяжести тела сложной формы, используется метод деления тела на тела простой формы, положение центров, тяжести которых известно[5].

Центром тяжести твердого тела называется неизменно связанная с этим телом точка C, через которую проходит линия действия равнодействующей сил тяжести данного тела, при любом положении тела в пространстве.

Центр тяжести применяется при исследовании устойчивости положений равновесия тел и сплошных сред, находящихся под действием сил тяжести и в некоторых других случаях, а именно: в сопротивлении материалов и в строительной механике — при использовании правила Верещагина.

Существуют два способа определения центра тяжести тела: аналитический и экспериментальный. Аналитический способ определения центра тяжести непосредственно вытекает из понятия центра параллельных сил.

Координаты центра тяжести, как центра параллельных сил, определяются формулами:

$$X_c = \frac{\sum (p_k x_k)}{P}; Y_c = \frac{\sum (p_k y_k)}{P}; Z_c = \frac{\sum (p_k z_k)}{P},$$
 (85,86,87)

где P - вес всего тела; pk- вес частиц тела; xk, yk, zk - координаты частиц тела.

Для однородного тела вес всего тела и любой её части пропорционален объёму $P=V\gamma$, $pk=vk\gamma$, где γ - вес единицы объёма, V - объем тела. Подставляя выражения P, pk в формулы определения координат центра тяжести и, сокращая на общий множитель γ , получим:

$$X_{c} = \frac{\sum (v_{k}x_{k})}{V}; Y_{c} = \frac{\sum (v_{k}y_{k})}{V}; Z_{c} = \frac{\sum (v_{k}Z_{k})}{V}.$$
 (88,89,90)

Точка C, координаты которой определяются полученными формулами, называется центром тяжести объема.

Если тело представляет собой тонкую однородную пластину, то центр тяжести определяется формулами:

$$X_c = \frac{\sum (s_k x_k)}{S}; Y_c = \frac{\sum (s_k y_k)}{S},$$
 (91,92)

где S — площадь всей пластины; sk - площадь её части; xk, yk - координаты центра тяжести частей пластины.

Точка C в данном случае носит название центра тяжести площади. Числители выражений, определяющих координаты центра тяжести плоских фигур, называются cтатическими моментами площади относительно осей y и x:

$$M_{v} = \sum s_{k} x_{k} \; ; \; M_{x} = \sum s_{k} x_{k} \; .$$
 (93,94)

Тогда центр тяжести площади можно определить по формулам:

$$X_c = \frac{M_y}{S}; Y_c = \frac{M_x}{S}.$$
 (95,96)

Для тел, длина которых во много раз превышает размеры поперечного сечения, определяют центр тяжести линии. Координаты центра тяжести линии определяют формулами:

$$X_{c} = \frac{\sum (l_{k}x_{k})}{I}; Y_{c} = \frac{\sum (l_{k}y_{k})}{I}; Z_{c} = \frac{\sum (l_{k}z_{k})}{I},$$
(97,98,99)

где L - длина линии; lk- длина ее частей; xk, yk, zk - координата центра тяжести частей линии[6].

5.2 Определения центра тяжести двигателя

Команда Formula Student Тольяттинского государственного университета в соревнованиях 2015 года использует двигатель Honda CBR 600 RR. Определим его центр тяжести с помощью программы моделирования «КОМПАС - 3D» (рисунок 5.1).

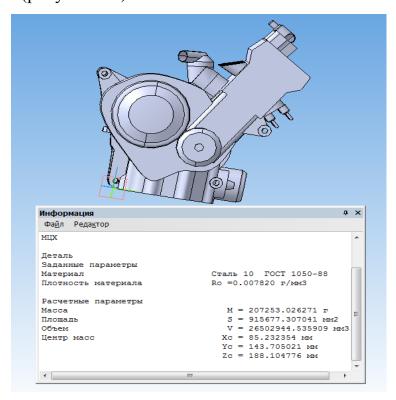


Рисунок 5.1- Модель двигателя и координаты центра тяжести

Из расчета видно, что центр тяжести располагается на высоте z_c =188 мм.

5.3 Проектирование поддона картера

Главной задачей является снижения центра тяжести, изменив его геометрию с сохранением объема поддона картера. Для того чтобы узнать центр тяжести двигателя воспользуемся программой для моделирования «КОМПАС - 3D». Следующим шагом будет проектирование нового поддона картера с сохранением его объема. По результатам измерения исходного поддона установлено, что его объем составляет 2 литра.

Измерим в программе моделирования «КОМПАС - 3D» площадь сечения отверстия поддона картера (рисунок 5.2).

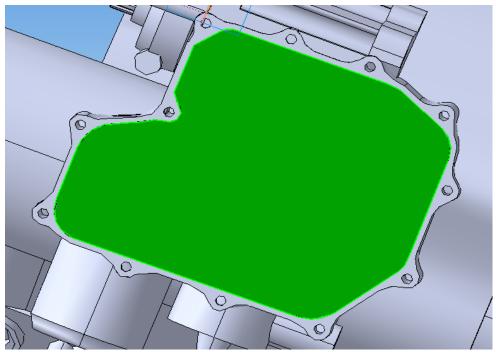


Рисунок 5.2- Площадь сечение отверстия поддона картера.

На основе этого сечения спроектируем свой профиль фланца (рисунок 5.3).

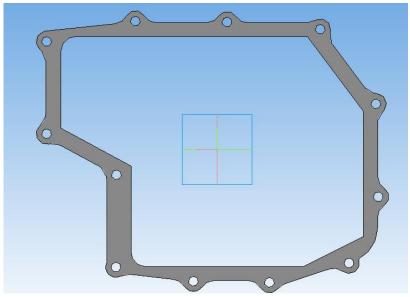


Рисунок 5.3- Спроектированный профиль фланца.

С помощью функции выдавливания спроектируем стенки и дно будущего поддона картера (рисунок 5.4). Так же учтем отверстие под маслослив.

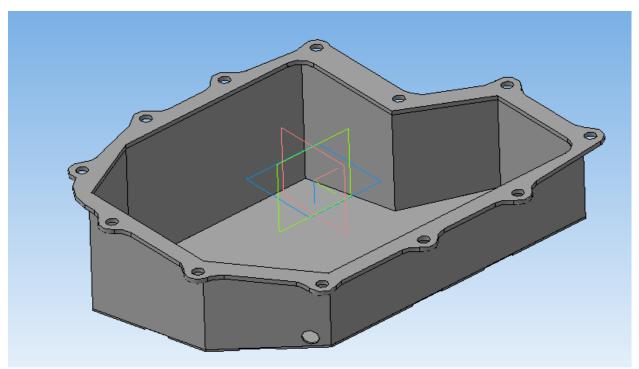


Рисунок 5.4- Полностью спроектированный поддон картера.

Рассчитаем объем путем вычитания объемов простых фигур: прямоугольник и прямоугольно треугольника.

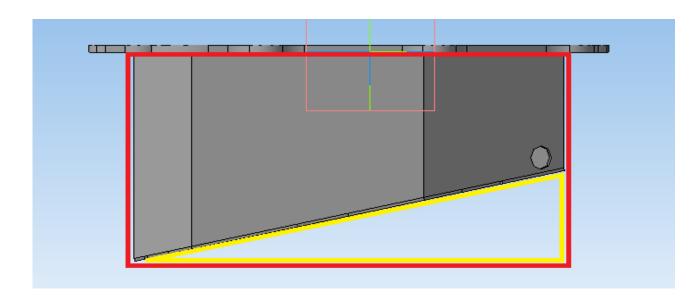


Рисунок 5.5 – Определение объема поддона картера.

Расчет объема произведем по формуле 100:

$$V = V_{\text{пр}} - V_{\text{тр}}$$

$$V_{\text{пр}} = 0.9 \cdot 3.1 = 2.79 \,\text{л}$$

$$V_{\text{тр}} = \frac{0.51 \cdot 3.1}{2} = 0.79 \,\text{л}$$

$$V = 2.79 \cdot 0.79 = 2 \,\text{л}$$

5.4 Способы определения координат центров тяжести тел

Основываясь на полученных формулах, можно предложить практические способы определения центров тяжести тел.

- 1. Симметрия. Если тело имеет центр симметрии, то центр тяжести находится в центре симметрии. Если тело имеет плоскость симметрии. Например, плоскость ХОУ, то центр тяжести лежит в этой плоскости.
- 2. Разбиение. Для тел, состоящих из простых по форме тел, используется способ разбиения. Тело разбивается на части, центр тяжести которых находится методом симметрии. Центр тяжести всего тела определяется по формулам центра тяжести объема (площади).

Рассчитаем центр тяжести исходного поддона картера. 3D модель поддона картера, представленная на рисунке 5.6.

Определить центр тяжести поддона картера без учета двигателя. Поддон картер можно разбить на прямоугольники и треугольник различным способом и определить координаты центра тяжести каждого прямоугольника и треугольника и их площади. Разбиение показано на рисунке 5.7.

Рассчитаем центр тяжести по формуле

$$\frac{h_1}{2} + \frac{h_2}{3} \tag{101}$$

где h1-высота параллелограмма, h2- высота треугольника.

Подставляя в формулу 101 высоты фигур, получим координаты центра тяжести поддона картера:

$$\frac{92}{2} + \frac{65}{3} = 67.6 \text{ MM}$$

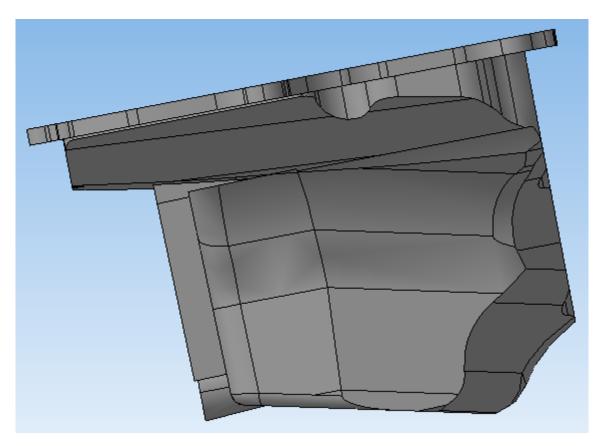


Рисунок 5.6- 3D модель исходного поддона картера.

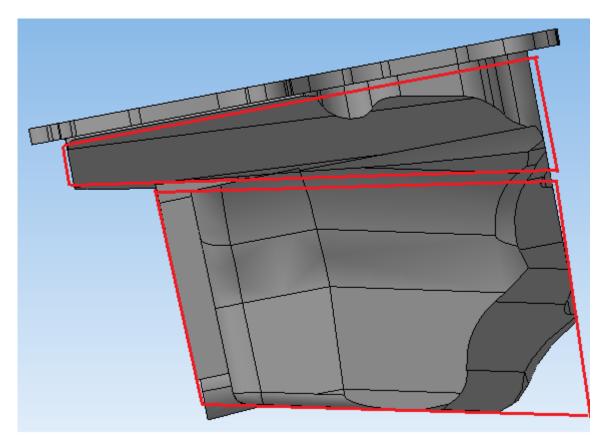


Рисунок 5.7- Разбитие поддона картера на простые фигуры.

Рассчитаем центр тяжести спроектированного поддона картера. 3D модель поддона картера, представленная на рисунке 5.8.

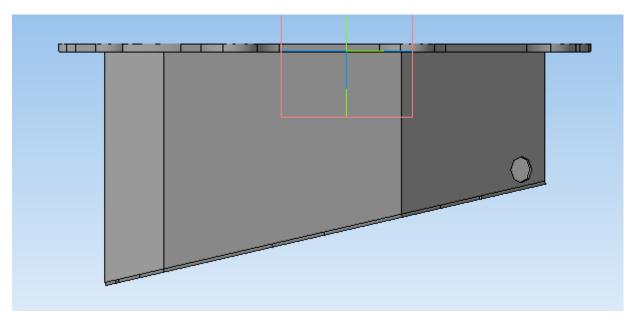


Рисунок 5.8- 3D модель спроектированного поддона картера.

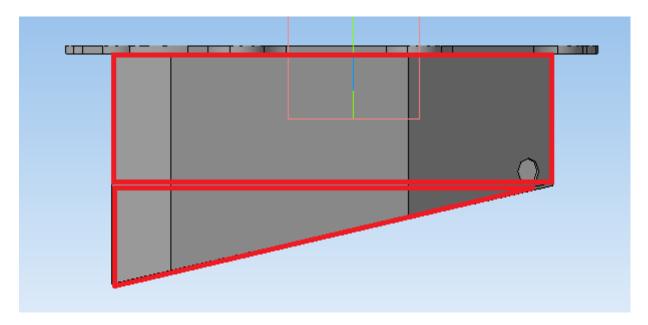


Рисунок 5.9- Разбитие картера на простые фигуры.

Аналогично рассчитаем центр тяжести для спроектированного поддона картера:

$$\frac{h_1}{2} + \frac{h_2}{3} \,, \tag{102}$$

где h1-высота прямоугольника, h2- высота треугольника.

Подставляя в формулу 102 высоты фигур, получим координаты центра тяжести поддона картера:

$$\frac{49}{2} + \frac{46}{3} = 39,6 \text{ MM}$$

Спроектированный поддон картер имеет центр тяжести находящийся на высоте 146мм. Исходный поддон картер имеет центр тяжести находящийся на высоте 188мм. Таким образом, спроектированный поддон картер на 42мм ниже исходного, что расположить двигатель на раме ближе к земле.

5.5 Расчет системы смазки

Исходной величиной для расчета элементов системы смазки является количество масла, прокачиваемого через систему в единицу времени, называемой протоком или прокачкой. Эту величину можно определить с учетом количества теплоты Q, которое должно быть перенесено маслом от деталей в холодильник. Если масло не используется для охлаждения поршней, то это количество тепла можно считать равным 1,5-2% от тепла сгорающего в цилиндрах топлива, что составляет в ккал/э. л.с.ч., для карбюраторных двигателей 30-40.

Удельный проток масла в системе можно подсчитать по формуле

$$G_m = \xi \cdot \frac{Q}{\Delta t \cdot c} = 2 \cdot \frac{30}{5 \cdot 0.5} = 24 \ \kappa c / 9.\pi. c. 4.,$$
 (103)

где c – теплоемкость масла, равный 0,5 *ккал/кг-град*;

 ξ – коэффициент запаса, величину, которой принимают равной 2.

Перепад Δt в °C в холодильнике принимают для двигателей автомобильных и тракторных двигателей 5.

Объем масла в системе смазки для снижения веса двигателя и уменьшения расхода масла при его смене должен быть по возможности малым, но достаточным для заполнения всей системы и смачивания деталей и стенок картера и для создания определенного запаса, компрессирующего расход масла между заправками двигателя. Этот расход вследствие испарения и выгорания составляет для двигателей различных типов и в зависимости от изношенности от 1 до 7% от расхода топлива.

В современных двигателей объем масла, заливаемого в систему смазки с мокрым картером, составляет, для автомобильных карбюраторных 0,05-0,15 в n/n. c [1].

Для двигателя Honda CBR 600 RR полный объем масла составляет 5 л.

5.6 Безопасность и экологичность технического объекта.

Ссылаясь на требования ТР ТС "О требованиях к смазочным материалам, маслам и специальным жидкостям" 030/2012, пункт 1.2 который гласит, что:

- 1.2. Основными опасными факторами (рисками), возникающими при выпуске в обращение, использовании (эксплуатации) и переработке (утилизации) продукции, являются:
 - пожаровзрывоопасность продукции;
 - содержание воды и механических примесей в количестве, превышающем установленные нормы;
 - экологическое воздействие отработанной продукции при попадании ее в окружающую среду;
 - вредное воздействие на организм человека.

Эти требования были учтены в разработке конструкции спортивного болида командой Formula Student (FS), выполненной в составе проектной группы ТГУ, в частности, в 2015 году была разработана и изготовлена оригинальная конструкция масляного поддона картера для гоночного болида FS. По требованию технического регламента «Formula SAE Rules 2015», нижняя габаритная точка системы смазки двигателя должна быть не ниже линии нижней точки главной дуги, силовой рамы гоночного болида (см.рисунок 5.10), до части рамы расположенной за корпусом двигателя. Если данное требование технического регламента не выполняется, то масляный поддон картера должен быть дополнительно защищен внешней оболочкой экранного типа или штатными трубчатыми элементами рамы гоночного болида, смонтированными под ним и размещенными в продольном направлении.

Данное техническое правило (требование) введено для того, чтобы при возможной аварии гоночного болида предотвратить утечку масла на трассу, обезопасив тем самым другие команды, участвующие в соревнованиях, от наезда на сколькую (замасленную) поверхность дорожного покрытия. Так же

исключается вероятность непосредственного повреждения самого гоночного болида и получения травм пилотом.

Рисунок 5.10 — Расположение поддона картера двигателя относительно габаритов рамы гоночного болида.

В техническом регламенте «Formula SAE Rules 2015» также приведен свод правил по экипировки водителя (пилота), относящейся к обеспечению его безопасности. Водитель должен быть одет в огнеупорное нижнее белье, которое должно быть сшито из огнеупорных материалов. Оно должно полностью закрывать туловище водителя от шеи до лодыжек и запястий. Поверх нижнего белья надевается двухслойный огнеупорный цельный костюм, который должен быть сертифицирован по одному из стандартов и иметь маркировку:

- SFI 3-2A/5 (или выше)

- FIA Standard 1986

- FIA Standard 8856-2000

У каждой команды Formula Student должно быть в количестве не менее 2 химических/порошковых огнетушителей весом 0,9 кг. Огнетушители всегда обязаны, находится рядом с гоночным болидом.

Таким образом, выполненная компоновочная схема гоночного болида в отношении конструкции масляного поддона картера двигателя и его расположение относительно задней части рамы гоночного болида, обеспечит его безопасную эксплуатацию в процессе проведения соревнований (исключает возможные разрушения стенки масляного поддона картера двигателя и выбросов масла на поверхность дорожного покрытия).

Используемая сертифицируемая одежда водителя спортивного болида, в виде нижнего белья из огнеупорных материалов и двухслойного огнеупорного цельного костюма, а также применяемые огнетушители порошкового типа, исключает (минимизирует) возможное получение ожогов водителем гоночного болида.

ЗАКЛЮЧЕНИЕ

В данной работе рассмотрена смазочная система, и ее значение в современных двигателях внутреннего сгорания. Конструктивные особенности, основные элементы, которые входят в систему смазки, их роль в двигателе.

Так же проведены тепловой, кинематический, динамический расчеты двигателя внутреннего сгорания Honda CBR 600 RR.

Произведен расчет поддона картера для двигателя Honda CBR 600 RR и впоследствии спроектирован для удовлетворения требований регламента студенческих инженерно-спортивных соревнований Formula Student.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Орлин, А.С., Круглов, М.Г. Двигатели внутреннего сгорания. Теория поршневых и комбинированных двигателей [Текст] / А.С. Орлин, М.Г. Круглов М.: «Машиностроение», 1983. 289 с.
- 2. Какую роль играет система смазки двигателя [электронный ресурс]: URL: http://znanieavto.ru/dvs/sistema-smazki-dvigatelya-avtomobilya.html
- 3. Система смазки двигателя [электронный ресурс]: URL: http://autoustroistvo.ru/dvigatel-dvs/sistema-smazki-dvigatelja/
- 4. Центр тяжести [электронный ресурс]: URL: http://engindoc.com/index.php?id=39&Itemid=45&option=com_content &task=view
- 5. Центр тяжести тел [электронный ресурс]: URL: http://teormech.ru/index.php/lections/lection/7
- 6. Колчин, А.И., Демидов, В.П. Расчет автомобильных и тракторных двигателей [Текст] / А.И. Колчин, В.П. Демидов М.: «Высшая школа», 1980. –496 с.
- 7. Вибе, И.И. Теория двигателей внутреннего сгорания: Конспект лекции [Текст] / И.И. Вибе Челябинск. : ЧПИ, 1974. 250 с.
- 8. Попык, К.Г. Динамика автомобильных и тракторных двигателей [Текст] / К.Г. Попык М.: «Мишиностроение», 1965. 400 с.
- 9. Honda. Мотоцикл CBR 600 RR руководство по эксплуатации [Текст] 2007. 148 с.
- 10. Система смазки двигателя [электронный ресурс]: URL: http://autoustroistvo.ru/dvigatel-dvs/sistema-smazki-dvigatelja/
- 11. Zavos, A., Nikolakopoulos, P. Effects of Surface Irregularities on Piston Ring-Cylinder Tribo Pair of a Two Stroke Motor Engine in Hydrodynamic Lubrication [Τεκcτ] / A. Zavos, P. Nikolakopoulos. 2015. 1-12 c.
- 12. Kai Li. A Novel Bearing Lubricating Device Based on the Piezoelectric Micro-Jet [Текст] / Kai Li. 2016. 38 с.

- 13. Sreten R. Perić. Results of experimental research of the tribological characteristics of oils from engines and power transmitters of vehicles [Текст] / Sreten R. Perić. 2011. 134-157 с.
- 14. Patel, S.J. Ferrofluid. Lubrication of a Rough Porous Hyperbolic Slider Bearing with Slip Velocity [Teκcτ] / S.J. Patel. 2014. 259-268 c.
- 15. CAO Jun, XU Jun-Hua, YU Li-Hua. Mechanical Properties and Tribological Performance of TiN [Tekct] / VCN Multilayers/ CAO Jun, XU Jun-Hua, YU Li-Hua. 2013. 195-200 c.
- 16. 2003 Honda CBR600RR First Ride [электронный ресурс]: URL: http://www.motorcycle-usa.com/2003/02/article/2003-honda-cbr600rr-first-ride/
- 17. Регламент международных соревнований 2015 Formula SAE® Rules
- 18. Шестопалов, К.С. Устройство, техническое обслуживание легкового автомобиля [Текст] / К.С. Шестопалов Учебное пособие. М.: Издательство ДОСААФ. 1990. –544 с.
- 19. Зубков, Б.В., Чумаков, С.В.. Энциклопедический словарь юного техника [Текст] /Б.В. Зубков, С.В. чумаков М.: «Высшая школа», 1988 г. 464 с.
- 20. Панкратов, Г.П. Двигатели внутреннего сгорания, автомобили, тракторы и их эксплуатация [Текст] / Г.П. Панкратов М.: «Высшая школа»,1979 г. 296 с.

ПРИЛОЖЕНИЕ А

Таблица 2.1 - Исходные данные и промежуточные результаты расчета

3	α	n_1	L _o	$l_{\rm o}$	$\gamma_{ m r}$	$\varphi_z^{\ o}$	θ_{o}	λ	$\mu_{\scriptscriptstyle m B}$	m	ΔΤ	p_{o}	$p_{\rm r}$	n_2
12,2	0,98	1,393	0,517	14,96	0,03520	60	25	0,21000	28,95	0,35	8	0,1	0,115	1,0747
μ_{omax}	٤	q_z	E_2	H_{u}	p_a	V_a	p_{y}	V_{y}	T_a	T_{y}	$T_{\rm o}$	T_{r}	δ	T_{b}
1,0577	0,9	2626	58,07	47293	0,084	1,103	1,385	0,147	322	710	293	930	5,04	1274,43

φ. ο	φ,°	V _{cT}	Т ₁ ,К	T ₂ ,K	T ₁₋₂	X ₁₋₂	ΔX_{1-2}	k ₁₋₂	K ₁₋₂	р1,Мпа	р ₂ ,Мпа	σ×10 ⁻²	ψ(φ)	μ	μ_{1-2}
	·					$\times 10^{-2}$	$\times 10^{-2}$								
0	-25	0,1473	710	709	710	1,35	2,71	1,37	6,46	1,39	1,39	1,124	7,29	1,000	1,0008
1	-24	0,1429	709	672	668	2,03	4,05	1,37	6,31	1,39	1,60	1,038	6,81	1,002	1,0027
2	-23	0,1387	665	680	676	2,32	4,64	1,37	6,35	1,54	1,67	0,955	6,35	1,004	1,0052
3	-22	0,1347	672	689	685	2,47	4,95	1,37	6,37	1,60	1,74	0,875	5,90	1,007	1,0080
4	-21	0,1308	680	698	693	2,54	5,09	1,37	6,39	1,67	1,81	0,798	5,47	1,009	1,0108
5	-20	0,1271	689	708	703	2,56	5,12	1,37	6,41	1,74	1,89	0,725	5,06	1,012	1,0138
6	-19	0,1236	698	720	714	2,53	5,06	1,37	6,43	1,81	1,97	0,656	4,67	1,015	1,0167
7	-18	0,1202	708	734	727	2,47	4,95	1,36	6,46	1,89	2,06	0,589	4,30	1,018	1,0196
8	-17	0,1171	720	749	741	2,39	4,79	1,36	6,49	1,97	2,16	0,526	3,95	1,021	1,0224
9	-16	0,1140	734	767	758	2,30	4,59	1,36	6,52	2,06	2,26	0,467	3,61	1,024	1,0250
10	-15	0,1112	749	788	777	2,19	4,38	1,36	6,55	2,16	2,38	0,411	3,30	1,026	1,0276
11	-14	0,1085	767	812	800	2,07	4,15	1,35	6,59	2,26	2,51	0,358	3,01	1,029	1,0301
12	-13	0,1061	788	840	826	1,95	3,91	1,35	6,64	2,38	2,65	0,309	2,73	1,031	1,0324
13	-12	0,1038	812	672	668	1,83	3,67	1,35	6,69	2,51	2,80	0,264	2,48	1,033	1,0346

Продолжение таблицы 2.1

34	(2)		\$1 (42		<u> </u>	30 (32)	63		(3)			- 100			
14	-11	0,1016	840	872	856	1,71	3,42	1,34	6,80	2,65	2,97	0,183	1,66	1,038	1,0385
15	-10	0,0997	872	908	890	1,59	3,19	1,34	6,86	2,80	3,16	0,149	1,50	1,039	1,0402
16	-9	0,0979	908	950	929	1,48	2,95	1,34	6,92	2,97	3,37	0,118	1,37	1,041	1,0419
17	-8	0,0964	950	996	973	1,36	2,73	1,33	6,99	3,16	3,59	0,090	1,26	1,043	1,0434
18	-7	0,0950	996	1048	1022	1,26	2,51	1,33	7,06	3,37	3,83	0,066	1,16	1,044	1,0448
19	-6	0,0938	1048	1106	1077	1,15	2,31	1,33	7,13	3,59	4,09	0,046	1,09	1,045	1,0460
20	-5	0,0927	1106	1169	1137	1,06	2,11	1,32	7,20	3,83	4,37	0,029	1,04	1,047	1,0472
21	-4	0,0919	1169	1237	1203	0,96	1,93	1,32	7,28	4,09	4,66	0,017	1,01	1,048	1,0482
22	-3	0,0912	1237	1312	1275	0,88	1,76	1,32	7,34	4,37	4,97	0,007	1,00	1,049	1,0492
23	-2	0,0908	1312	1391	1352	0,80	1,60	1,31	7,41	4,66	5,29	0,002	1,01	1,050	1,0501
24	-1	0,0905	1391	1476	1434	0,72	1,45	1,31	7,48	4,97	5,61	0,000	1,04	1,050	1,0509
25	0	0,0904	1476	1565	1521	0,65	1,31	1,31	7,54	5,29	5,94	0,002	1,09	1,051	1,0516
26	1	0,0905	1565	1659	1612	0,59	1,18	1,30	7,60	5,61	6,27	0,007	1,16	1,052	1,0522
27	2	0,0908	1659	1755	1707	0,53	1,06	1,30	7,65	5,94	6,59	0,017	1,26	1,053	1,0528
28	3	0,0912	1755	1855	1805	0,48	0,96	1,30	7,70	6,27	6,91	0,029	1,37	1,053	1,0533
29	4	0,0919	1855	1956	1905	0,43	0,86	1,30	7,75	6,59	7,21	0,046	1,50	1,054	1,0538
30	5	0,0927	1956	2058	2007	0,38	0,77	1,29	7,79	6,91	7,49	0,066	1,66	1,054	1,0542
31	6	0,0938	2058	2160	2109	0,34	0,69	1,29	7,83	7,21	7,75	0,090	1,83	1,054	1,0546
32	7	0,0950	2160	2261	2211	0,31	0,61	1,29	7,86	7,49	7,98	0,118	2,03	1,055	1,0549
33	8	0,0964	2261	2360	2311	0,27	0,55	1,29	7,90	7,75	8,18	0,149	2,24	1,055	1,0552
34	9	0,0979	2360	2456	2408	0,24	0,49	1,29	7,92	7,98	8,34	0,183	2,48	1,055	1,0555
35	10	0,0997	2456	2547	2502	0,22	0,43	1,29	7,95	8,18	8,47	0,222	2,73	1,056	1,0557
36	11	0,1016	2547	2633	2590	0,19	0,38	1,29	7,97	8,34	8,56	0,264	3,01	1,056	1,0559

Продолжение таблицы 2.1

37	_															
39	37	12	0,1038	2633	2714	856	0,17	0,34	1,29	7,99	8,47	8,62	0,309	3,30	1,056	1,0561
40 15 0,1112 2853 2912 973 0,12 0,23 1,28 8,03 8,63 8,55 0,467 4,30 1,057 1,0565 41 16 0,1140 2912 2962 1022 0,10 0,21 1,28 8,04 8,61 8,46 0,526 4,67 1,057 1,0566 42 17 0,1171 2962 3005 1077 0,09 0,18 1,28 8,04 8,55 8,34 0,589 5,06 1,057 1,0567 43 18 0,1202 3005 3039 3065 1203 0,07 0,14 1,28 8,05 8,46 8,19 0,656 5,47 1,057 1,0568 44 19 0,1236 3039 3065 1203 0,07 0,14 1,28 8,05 8,46 8,19 0,656 5,47 1,0570 45 20 0,1271 3065 3084 1275 0,06 0,12 <td>38</td> <td>13</td> <td>0,1061</td> <td>2714</td> <td>2787</td> <td>890</td> <td>0,15</td> <td>0,30</td> <td>1,29</td> <td>8,00</td> <td>8,56</td> <td>8,63</td> <td>0,358</td> <td>3,61</td> <td>1,056</td> <td>1,0563</td>	38	13	0,1061	2714	2787	890	0,15	0,30	1,29	8,00	8,56	8,63	0,358	3,61	1,056	1,0563
41 16 0,1140 2912 2962 1022 0,10 0,21 1,28 8,04 8,61 8,46 0,526 4,67 1,057 1,0566 42 17 0,1171 2962 3005 1077 0,09 0,18 1,28 8,04 8,55 8,34 0,589 5,06 1,057 1,0567 43 18 0,1202 3005 3039 1137 0,08 0,16 1,28 8,05 8,46 8,19 0,656 5,47 1,057 1,0569 44 19 0,1236 3039 3065 1203 0,07 0,14 1,28 8,05 8,34 8,02 0,725 5,90 1,057 1,0569 45 20 0,1271 3065 3084 1275 0,06 0,12 1,228 8,05 8,19 7,83 0,798 6,35 1,057 1,0570 47 22 0,1347 3096 3102 1434 0,05 0,91<	39	14	0,1085	2787	2853	929	0,13	0,26	1,28	8,02	8,62	8,61	0,411	3,95	1,056	1,0564
42 17 0,1171 2962 3005 1077 0,09 0,18 1,28 8,04 8,55 8,34 0,589 5,06 1,057 1,0567 43 18 0,1202 3005 3039 1137 0,08 0,16 1,28 8,05 8,46 8,19 0,656 5,47 1,057 1,0568 44 19 0,1236 3039 3065 1203 0,07 0,14 1,28 8,05 8,34 8,02 0,725 5,90 1,057 1,0569 45 20 0,1271 3065 3084 1275 0,06 0,12 1,28 8,05 8,19 7,83 0,798 6,35 1,057 1,0570 46 21 0,1308 3084 1302 305 0,05 0,11 1,28 8,05 8,92 7,63 0,875 6,81 1,057 1,0570 47 22 0,1347 3096 3102 1434 0,05 0,09 <td>40</td> <td>15</td> <td>0,1112</td> <td>2853</td> <td>2912</td> <td>973</td> <td>0,12</td> <td>0,23</td> <td>1,28</td> <td>8,03</td> <td>8,63</td> <td>8,55</td> <td>0,467</td> <td>4,30</td> <td>1,057</td> <td>1,0565</td>	40	15	0,1112	2853	2912	973	0,12	0,23	1,28	8,03	8,63	8,55	0,467	4,30	1,057	1,0565
43 18 0,1202 3005 3039 1137 0,08 0,16 1,28 8,05 8,46 8,19 0,656 5,47 1,057 1,0568 44 19 0,1236 3039 3065 1203 0,07 0,14 1,28 8,05 8,34 8,02 0,725 5,90 1,057 1,0569 45 20 0,1271 3065 3084 1275 0,06 0,12 1,28 8,05 8,19 7,83 0,798 6,35 1,057 1,0570 46 21 0,1308 3084 3096 1352 0,05 0,11 1,28 8,05 8,02 7,63 0,875 6,81 1,057 1,0570 47 22 0,1347 3096 3102 1434 0,05 0,09 1,28 8,05 7,83 7,41 0,955 7,29 1,057 1,0571 48 23 0,1387 3102 3102 1521 0,04 0,08 </td <td>41</td> <td>16</td> <td>0,1140</td> <td>2912</td> <td>2962</td> <td>1022</td> <td>0,10</td> <td>0,21</td> <td>1,28</td> <td>8,04</td> <td>8,61</td> <td>8,46</td> <td>0,526</td> <td>4,67</td> <td>1,057</td> <td>1,0566</td>	41	16	0,1140	2912	2962	1022	0,10	0,21	1,28	8,04	8,61	8,46	0,526	4,67	1,057	1,0566
44 19 0,1236 3039 3065 1203 0,07 0,14 1,28 8,05 8,34 8,02 0,725 5,90 1,057 1,0569 45 20 0,1271 3065 3084 1275 0,06 0,12 1,28 8,05 8,19 7,83 0,798 6,35 1,057 1,0570 46 21 0,1308 3084 3096 1352 0,05 0,11 1,28 8,05 8,02 7,63 0,875 6,81 1,057 1,0570 47 22 0,1347 3096 3102 1434 0,05 0,09 1,28 8,05 7,83 7,41 0,955 7,29 1,057 1,0571 48 23 0,1387 3102 3102 1521 0,04 0,08 1,28 8,05 7,63 7,18 1,038 7,79 1,057 1,0571 49 24 0,1429 3102 3096 1612 0,04 0,07 </td <td>42</td> <td>17</td> <td>0,1171</td> <td>2962</td> <td>3005</td> <td>1077</td> <td>0,09</td> <td>0,18</td> <td>1,28</td> <td>8,04</td> <td>8,55</td> <td>8,34</td> <td>0,589</td> <td>5,06</td> <td>1,057</td> <td>1,0567</td>	42	17	0,1171	2962	3005	1077	0,09	0,18	1,28	8,04	8,55	8,34	0,589	5,06	1,057	1,0567
45 20 0,1271 3065 3084 1275 0,06 0,12 1,28 8,05 8,19 7,83 0,798 6,35 1,057 1,0570 46 21 0,1308 3084 3096 1352 0,05 0,11 1,28 8,05 8,02 7,63 0,875 6,81 1,057 1,0570 47 22 0,1347 3096 3102 1434 0,05 0,09 1,28 8,05 7,83 7,41 0,955 7,29 1,057 1,0571 48 23 0,1387 3102 3102 1521 0,04 0,08 1,28 8,05 7,63 7,18 1,038 7,79 1,057 1,0571 49 24 0,1429 3102 3096 1612 0,04 0,07 1,28 8,05 7,41 6,95 1,124 8,31 1,057 1,0572 50 25 0,1473 3096 3087 1707 0,03 0,06 </td <td>43</td> <td>18</td> <td>0,1202</td> <td>3005</td> <td>3039</td> <td>1137</td> <td>0,08</td> <td>0,16</td> <td>1,28</td> <td>8,05</td> <td>8,46</td> <td>8,19</td> <td>0,656</td> <td>5,47</td> <td>1,057</td> <td>1,0568</td>	43	18	0,1202	3005	3039	1137	0,08	0,16	1,28	8,05	8,46	8,19	0,656	5,47	1,057	1,0568
46 21 0,1308 3084 3096 1352 0,05 0,11 1,28 8,05 8,02 7,63 0,875 6,81 1,057 1,0570 47 22 0,1347 3096 3102 1434 0,05 0,09 1,28 8,05 7,83 7,41 0,955 7,29 1,057 1,0571 48 23 0,1387 3102 3102 1521 0,04 0,08 1,28 8,05 7,63 7,18 1,038 7,79 1,057 1,0571 49 24 0,1429 3102 3096 1612 0,04 0,07 1,28 8,05 7,41 6,95 1,124 8,31 1,057 1,0572 50 25 0,1473 3096 3087 1707 0,03 0,06 1,28 8,05 7,18 6,72 1,213 8,85 1,057 1,0572 51 26 0,1518 3087 3074 1805 0,03 0,05 </td <td>44</td> <td>19</td> <td>0,1236</td> <td>3039</td> <td>3065</td> <td>1203</td> <td>0,07</td> <td>0,14</td> <td>1,28</td> <td>8,05</td> <td>8,34</td> <td>8,02</td> <td>0,725</td> <td>5,90</td> <td>1,057</td> <td>1,0569</td>	44	19	0,1236	3039	3065	1203	0,07	0,14	1,28	8,05	8,34	8,02	0,725	5,90	1,057	1,0569
47 22 0,1347 3096 3102 1434 0,05 0,09 1,28 8,05 7,83 7,41 0,955 7,29 1,057 1,0571 48 23 0,1387 3102 3102 1521 0,04 0,08 1,28 8,05 7,63 7,18 1,038 7,79 1,0571 49 24 0,1429 3102 3096 1612 0,04 0,07 1,28 8,05 7,41 6,95 1,124 8,31 1,057 1,0572 50 25 0,1473 3096 3087 1707 0,03 0,06 1,28 8,05 7,18 6,72 1,213 8,85 1,057 1,0572 51 26 0,1518 3087 3074 1805 0,03 0,05 1,28 8,04 6,95 6,49 1,306 9,40 1,057 1,0572 52 27 0,1565 3074 3057 1905 0,02 0,05 1,28 <td>45</td> <td>20</td> <td>0,1271</td> <td>3065</td> <td>3084</td> <td>1275</td> <td>0,06</td> <td>0,12</td> <td>1,28</td> <td>8,05</td> <td>8,19</td> <td>7,83</td> <td>0,798</td> <td>6,35</td> <td>1,057</td> <td>1,0570</td>	45	20	0,1271	3065	3084	1275	0,06	0,12	1,28	8,05	8,19	7,83	0,798	6,35	1,057	1,0570
48 23 0,1387 3102 3102 1521 0,04 0,08 1,28 8,05 7,63 7,18 1,038 7,79 1,057 1,0571 49 24 0,1429 3102 3096 1612 0,04 0,07 1,28 8,05 7,41 6,95 1,124 8,31 1,057 1,0572 50 25 0,1473 3096 3087 1707 0,03 0,06 1,28 8,05 7,18 6,72 1,213 8,85 1,057 1,0572 51 26 0,1518 3087 3074 1805 0,03 0,05 1,28 8,04 6,95 6,49 1,306 9,40 1,057 1,0572 52 27 0,1565 3074 3057 1905 0,02 0,05 1,28 8,04 6,72 6,26 1,401 9,97 1,057 1,0572 53 28 0,1613 3057 3039 2007 0,02 0,04 </td <td>46</td> <td>21</td> <td>0,1308</td> <td>3084</td> <td>3096</td> <td>1352</td> <td>0,05</td> <td>0,11</td> <td>1,28</td> <td>8,05</td> <td>8,02</td> <td>7,63</td> <td>0,875</td> <td>6,81</td> <td>1,057</td> <td>1,0570</td>	46	21	0,1308	3084	3096	1352	0,05	0,11	1,28	8,05	8,02	7,63	0,875	6,81	1,057	1,0570
49 24 0,1429 3102 3096 1612 0,04 0,07 1,28 8,05 7,41 6,95 1,124 8,31 1,057 1,0572 50 25 0,1473 3096 3087 1707 0,03 0,06 1,28 8,05 7,18 6,72 1,213 8,85 1,057 1,0572 51 26 0,1518 3087 3074 1805 0,03 0,05 1,28 8,04 6,95 6,49 1,306 9,40 1,057 1,0572 52 27 0,1565 3074 3057 1905 0,02 0,05 1,28 8,04 6,72 6,26 1,401 9,97 1,0572 53 28 0,1613 3057 3039 2007 0,02 0,04 1,28 8,04 6,49 6,03 1,500 10,55 1,057 54 29 0,1663 3039 3018 2109 0,02 0,03 1,28 8,03 <td>47</td> <td>22</td> <td>0,1347</td> <td>3096</td> <td>3102</td> <td>1434</td> <td>0,05</td> <td>0,09</td> <td>1,28</td> <td>8,05</td> <td>7,83</td> <td>7,41</td> <td>0,955</td> <td>7,29</td> <td>1,057</td> <td>1,0571</td>	47	22	0,1347	3096	3102	1434	0,05	0,09	1,28	8,05	7,83	7,41	0,955	7,29	1,057	1,0571
50 25 0,1473 3096 3087 1707 0,03 0,06 1,28 8,05 7,18 6,72 1,213 8,85 1,057 1,0572 51 26 0,1518 3087 3074 1805 0,03 0,05 1,28 8,04 6,95 6,49 1,306 9,40 1,057 1,0572 52 27 0,1565 3074 3057 1905 0,02 0,05 1,28 8,04 6,72 6,26 1,401 9,97 1,0572 53 28 0,1613 3057 3039 2007 0,02 0,04 1,28 8,04 6,49 6,03 1,500 10,55 1,0573 54 29 0,1663 3039 3018 2109 0,02 0,03 1,28 8,03 6,26 5,81 1,601 11,16 1,057 1,0573 55 30 0,1715 3018 2997 2211 0,02 0,03 1,28 8,03 </td <td>48</td> <td>23</td> <td>0,1387</td> <td>3102</td> <td>3102</td> <td>1521</td> <td>0,04</td> <td>0,08</td> <td>1,28</td> <td>8,05</td> <td>7,63</td> <td>7,18</td> <td>1,038</td> <td>7,79</td> <td>1,057</td> <td>1,0571</td>	48	23	0,1387	3102	3102	1521	0,04	0,08	1,28	8,05	7,63	7,18	1,038	7,79	1,057	1,0571
51 26 0,1518 3087 3074 1805 0,03 0,05 1,28 8,04 6,95 6,49 1,306 9,40 1,057 1,0572 52 27 0,1565 3074 3057 1905 0,02 0,05 1,28 8,04 6,72 6,26 1,401 9,97 1,057 1,0572 53 28 0,1613 3057 3039 2007 0,02 0,04 1,28 8,04 6,49 6,03 1,500 10,55 1,057 1,0573 54 29 0,1663 3039 3018 2109 0,02 0,03 1,28 8,03 6,26 5,81 1,601 11,16 1,057 1,0573 55 30 0,1715 3018 2997 2211 0,02 0,03 1,28 8,03 6,03 5,59 1,706 11,77 1,057 1,0573 56 31 0,1768 2997 2974 2311 0,01 0,0	49	24	0,1429	3102	3096	1612	0,04	0,07	1,28	8,05	7,41	6,95	1,124	8,31	1,057	1,0572
52 27 0,1565 3074 3057 1905 0,02 0,05 1,28 8,04 6,72 6,26 1,401 9,97 1,057 1,0572 53 28 0,1613 3057 3039 2007 0,02 0,04 1,28 8,04 6,49 6,03 1,500 10,55 1,057 1,0573 54 29 0,1663 3039 3018 2109 0,02 0,03 1,28 8,03 6,26 5,81 1,601 11,16 1,057 1,0573 55 30 0,1715 3018 2997 2211 0,02 0,03 1,28 8,03 6,03 5,59 1,706 11,77 1,057 1,0573 56 31 0,1768 2997 2974 2311 0,01 0,03 1,28 8,02 5,81 5,39 1,814 12,41 1,057 1,0573 57 32 0,1822 2974 2951 2408 0,01 0,		25	0,1473	3096	3087	1707	0,03	0,06	1,28	8,05	7,18	6,72	1,213	8,85	1,057	1,0572
53 28 0,1613 3057 3039 2007 0,02 0,04 1,28 8,04 6,49 6,03 1,500 10,55 1,057 1,0573 54 29 0,1663 3039 3018 2109 0,02 0,03 1,28 8,03 6,26 5,81 1,601 11,16 1,057 1,0573 55 30 0,1715 3018 2997 2211 0,02 0,03 1,28 8,03 6,03 5,59 1,706 11,77 1,057 1,0573 56 31 0,1768 2997 2974 2311 0,01 0,03 1,28 8,02 5,81 5,39 1,814 12,41 1,057 1,0573 57 32 0,1822 2974 2951 2408 0,01 0,02 1,29 8,02 5,59 5,19 1,924 13,06 1,057 1,0573 58 33 0,1878 2951 2927 2502 0,01 0	51	26	0,1518	3087	3074	1805	0,03	0,05	1,28	8,04	6,95	6,49	1,306	9,40	1,057	1,0572
54 29 0,1663 3039 3018 2109 0,02 0,03 1,28 8,03 6,26 5,81 1,601 11,16 1,057 1,0573 55 30 0,1715 3018 2997 2211 0,02 0,03 1,28 8,03 6,03 5,59 1,706 11,77 1,057 1,0573 56 31 0,1768 2997 2974 2311 0,01 0,03 1,28 8,02 5,81 5,39 1,814 12,41 1,057 1,0573 57 32 0,1822 2974 2951 2408 0,01 0,02 1,29 8,02 5,59 5,19 1,924 13,06 1,057 1,0573 58 33 0,1878 2951 2927 2502 0,01 0,02 1,29 8,01 5,39 4,99 2,037 13,72 1,057 1,0573 59 34 0,1935 2927 2903 2590 0,01 0	52	27	0,1565	3074	3057	1905	0,02	0,05	1,28	8,04	6,72	6,26	1,401	9,97	1,057	1,0572
54 29 0,1663 3039 3018 2109 0,02 0,03 1,28 8,03 6,26 5,81 1,601 11,16 1,057 1,0573 55 30 0,1715 3018 2997 2211 0,02 0,03 1,28 8,03 6,03 5,59 1,706 11,77 1,057 1,0573 56 31 0,1768 2997 2974 2311 0,01 0,03 1,28 8,02 5,81 5,39 1,814 12,41 1,057 1,0573 57 32 0,1822 2974 2951 2408 0,01 0,02 1,29 8,02 5,59 5,19 1,924 13,06 1,057 1,0573 58 33 0,1878 2951 2927 2502 0,01 0,02 1,29 8,01 5,39 4,99 2,037 13,72 1,057 1,0573 59 34 0,1935 2927 2903 2590 0,01 0	53	28	0,1613	3057	3039	2007	0,02	0,04	1,28	8,04	6,49	6,03	1,500	10,55	1,057	1,0573
56 31 0,1768 2997 2974 2311 0,01 0,03 1,28 8,02 5,81 5,39 1,814 12,41 1,057 1,0573 57 32 0,1822 2974 2951 2408 0,01 0,02 1,29 8,02 5,59 5,19 1,924 13,06 1,057 1,0573 58 33 0,1878 2951 2927 2502 0,01 0,02 1,29 8,01 5,39 4,99 2,037 13,72 1,057 1,0573 59 34 0,1935 2927 2903 2590 0,01 0,02 1,29 8,00 5,19 4,81 2,153 14,40 1,057 1,0573 59 34 0,1935 2927 2903 2590 0,01 0,02 1,29 8,00 5,19 4,81 2,153 14,40 1,057 1,0573	54	29	0,1663	3039	3018	2109	0,02	0,03	1,28	8,03	6,26	5,81	1,601	11,16	1,057	1,0573
57 32 0,1822 2974 2951 2408 0,01 0,02 1,29 8,02 5,59 5,19 1,924 13,06 1,057 1,0573 58 33 0,1878 2951 2927 2502 0,01 0,02 1,29 8,01 5,39 4,99 2,037 13,72 1,057 1,0573 59 34 0,1935 2927 2903 2590 0,01 0,02 1,29 8,00 5,19 4,81 2,153 14,40 1,057 1,0573 59 34 0,1935 2927 2903 2590 0,01 0,02 1,29 8,00 5,19 4,81 2,153 14,40 1,057 1,0573	55	30	0,1715	3018	2997	2211	0,02	0,03	1,28	8,03	6,03	5,59	1,706	11,77	1,057	1,0573
57 32 0,1822 2974 2951 2408 0,01 0,02 1,29 8,02 5,59 5,19 1,924 13,06 1,057 1,0573 58 33 0,1878 2951 2927 2502 0,01 0,02 1,29 8,01 5,39 4,99 2,037 13,72 1,057 1,0573 59 34 0,1935 2927 2903 2590 0,01 0,02 1,29 8,00 5,19 4,81 2,153 14,40 1,057 1,0573	56	31	0,1768	2997	2974	2311	0,01	0,03	1,28	8,02	5,81	5,39	1,814	12,41	1,057	1,0573
59 34 0,1935 2927 2903 2590 0,01 0,02 1,29 8,00 5,19 4,81 2,153 14,40 1,057 1,0573	57	32	0,1822	2974	2951	2408	0,01	0,02					1,924		1,057	1,0573
3,000 2	58	33	0,1878	2951	2927	2502	0,01	0,02	1,29	8,01		4,99	2,037	13,72	1,057	1,0573
60 35 0 1994 2903 2879 2891 0 01 0 01 1 29 7 99 4 99 4 63 2 272 14 83 1 057 1 0573	59	34	0,1935	2927	2903	2590	0,01	0,02	1,29	8,00	5,19	4,81	2,153	14,40	1,057	1,0573
35 0,1551 2505 2075 2051 0,01 0,01 1,25 7,55 1,55 1,55 1,55 1,55 1,55 1,55 1,5	60	35	0,1994	2903	2879	2891	0,01	0,01	1,29	7,99	4,99	4,63	2,272	14,83	1,057	1,0573

ПРИЛОЖЕНИЕ Б

Таблица 2.2 - Расчёт параметров индикаторной диаграммы

ϕ^0	V_h	P _x
0	0,012	1,00
10	0,014	0,088
20	0,017	0,088
30	0,023	0,088
40	0,031	0,088
50	0,041	0,088
60	0,052	0,088
70	0,064	0,088
80	0,076	0,088
90	0,088	0,088
100	0,100	0,088
110	0,111	0,088
120	0,121	0,088
130	0,129	0,088
140	0,137	0,088
150	0,142	0,088
160	0,147	0,088
170	0,149	0,088
180	0,150	0,088
190	0,149	0,089
200	0,147	0,091
210	0,142	0,094
220	0,137	0,100
230	0,129	0,108
240	0,121	0,119
250	0,111	0,134
260	0,100	0,155
270	0,088	0,184
280	0,076	0,226
290	0,064	0,287
300	0,052	0,381

363 0,012 6,268 364 0,012 6,592 365 0,013 6,906 366 0,013 7,207 367 0,013 7,488 368 0,013 7,747 369 0,013 7,978 370 0,014 8,178 371 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,821 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6	φ^0	V_h	P_{x}
365 0,013 6,906 366 0,013 7,207 367 0,013 7,488 368 0,013 7,747 369 0,013 7,978 370 0,014 8,178 371 0,014 8,343 372 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,023 6	363	0,012	6,268
366 0,013 7,207 367 0,013 7,488 368 0,013 7,747 369 0,013 7,978 370 0,014 8,178 371 0,014 8,343 372 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,610 377 0,016 8,552 378 0,016 8,461 379 0,017 8,340 380 0,017 8,340 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,952 389 0,022 6,256 390 0,023 6,030 400 0,031 4	364	0,012	6,592
367 0,013 7,488 368 0,013 7,747 369 0,013 7,978 370 0,014 8,178 371 0,014 8,343 372 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,452 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,256 390 0,023 6,030 400 0,041 3	365	0,013	6,906
368 0,013 7,747 369 0,013 7,978 370 0,014 8,178 371 0,014 8,343 372 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,041 3,057	366	0,013	7,207
369 0,013 7,978 370 0,014 8,178 371 0,014 8,343 372 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,452 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,023 6,030 400 0,031 4,203 410 0,041 3,057	367	0,013	7,488
370 0,014 8,178 371 0,014 8,343 372 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,041 3,057	368	0,013	7,747
371 0,014 8,343 372 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,552 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,952 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	369	0,013	7,978
372 0,014 8,473 373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,552 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	370	0,014	8,178
373 0,014 8,564 374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,552 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	371	0,014	8,343
374 0,015 8,617 375 0,015 8,632 376 0,015 8,610 377 0,016 8,552 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	372	0,014	8,473
375 0,015 8,632 376 0,015 8,610 377 0,016 8,552 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	373	0,014	8,564
376 0,015 8,610 377 0,016 8,552 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,023 6,030 400 0,031 4,203 410 0,041 3,057	374	0,015	8,617
377 0,016 8,552 378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	375	0,015	8,632
378 0,016 8,461 379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	376	0,015	8,610
379 0,017 8,340 380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	377	0,016	8,552
380 0,017 8,192 381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	378	0,016	8,461
381 0,018 8,021 382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	379	0,017	8,340
382 0,018 7,831 383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	380	0,017	8,192
383 0,019 7,625 384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	381	0,018	8,021
384 0,019 7,408 385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	382	0,018	7,831
385 0,020 7,182 386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	383	0,019	7,625
386 0,021 6,952 387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	384	0,019	7,408
387 0,021 6,719 388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	385	0,020	7,182
388 0,022 6,487 389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	386	0,021	6,952
389 0,022 6,256 390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	387	0,021	6,719
390 0,023 6,030 400 0,031 4,203 410 0,041 3,057	388	0,022	6,487
400 0,031 4,203 410 0,041 3,057	389	0,022	6,256
410 0,041 3,057	390	0,023	6,030
	400	0,031	4,203
420 0,052 2,311	410	0,041	3,057
	420	0,052	2,311

310	0,041	0,528
320	0,031	0,766
335	0,020	1,417
336	0,019	1,477
337	0,019	1,538
338	0,018	1,602
339	0,018	1,669
340	0,017	1,739
341	0,017	1,812
342	0,016	1,890
343	0,016	1,973
344	0,015	2,062
345	0,015	2,159
346	0,015	2,265
347	0,014	2,381
348	0,014	2,508
349	0,014	2,649
350	0,014	2,804
351	0,013	2,975
352	0,013	3,163
353	0,013	3,368
354	0,013	3,592
355	0,013	3,834
356	0,012	4,094
357	0,012	4,371
358	0,012	4,663
359	0,012	4,969
360	0,012	5,286
361	0,012	5,611
362	0,012	5,939
<u> </u>	1	l .

430	0,064	1,814
440	0,076	1,475
450	0,088	1,237
460	0,100	1,067
470	0,111	0,943
480	0,121	0,851
490	0,129	0,784
500	0,137	0,734
510	0,142	0,699
520	0,147	0,676
530	0,149	0,662
540	0,150	0,658
550	0,149	0,662
560	0,147	0,596
570	0,142	0,565
580	0,137	0,534
590	0,129	0,503
600	0,121	0,472
610	0,111	0,441
620	0,100	0,410
630	0,088	0,379
640	0,076	0,348
650	0,064	0,317
660	0,052	0,286
670	0,041	0,255
680	0,031	0,224
690	0,023	0,193
700	0,017	0,162
710	0,014	0,131