МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

Институт энергетики и электротехники

Кафедра «Электроснабжение и электротехника»

13.03.02 Электроэнергетика и электротехника

(код и наименование направления подготовки, специальности)

Электроснабжение

(направленность (профиль))

БАКАЛАВРСКАЯ РАБОТА

A M Comm

на тему «Реконструкция городской понизительной подстанции 110/6 кВ Центрального района г. Тольятти»

CTVITALITY (100)

А.М. Салин	
(И.О. Фамилия)	(личная подпись)
С.В. Шаповалов	
(И.О. Фамилия)	(личная подпись)
(И.О. Фамилия)	(личная подпись)
(И.О. Фамилия)	(личная подпись)
д.т.н., профессор В.В. Вахнина	
, , r - r	
2016 г.	
	(И.О. Фамилия) С.В. Шаповалов (И.О. Фамилия) (И.О. Фамилия) (И.О. Фамилия)

Тольятти 2016

Аннотация

В работе представлена реконструкция трансформаторной подстанции «Западная 110/6 кВ». Реконструкция вызвана увеличением электрической нагрузки в западной части центрального района г. Тольятти, а также необходимостью модернизации и замены оборудования.

Работа включает в себя следующие вопросы по замене оборудования:

- 1. Замена высоковольтного оборудования на стороне 110 кВ;
- 2. Замена высоковольтного оборудования на стороне 6 кВ;
- 3. Замена силовых трансформаторов на более мощные;
- 4. Установка современной микропроцессорной защиты.

Работа состоит из пояснительной записки на 47 листах, содержащая 17 таблиц, 9 рисунков, графическая часть представлена на шести листах формата A1.

Содержание

Введение	4
1 Общая характеристика объекта проектирования	6
1.1 Описание электрической части подстанции «Западная»	6
1.2 Объемы реконструкции понизительной подстанции	7
2 График электрических нагрузок подстанции «Западная»	9
2.1 Определение годового графика нагрузки	9
2.2 Показатели и коэффициенты ГН	12
3 Выбор силовых трансформаторов	14
4 Расчёт токов КЗ	21
4.1 Ход выполнения расчетов	21
5 Выбор электрооборудования	25
5.1 Выбор оборудования ОРУ – 110 кВ	25
5.2 Выбор оборудования на стороне 6 кВ	32
6 Выбор релейной защиты и автоматики	38
6.1 Микропроцессорное устройство РС83-ДТ2	38
6.2 Расчёт уставок защиты трансформатора с применением устройства	a PC83-
ДТ2	38
6.3 Расчёт уставок дифференциальной защиты трансформатора	39
Заключение	43
Список использования у истонников	11

Введение

В последние годы энергетическая отрасль страны испытывает значительный дефицит денежных ресурсов. Это привело к тому, что основные фонды электростанций и подстанций морально и физически устарели и не соответствуют современным требованиям эргономичности, безопасности, надёжности и др.

Работа посвящена модернизации понизительной подстанции (ПС) филиала «Жигулевское ПО» ПАО «МРСК – Волги» «Самарские распределительные сети» «Западная» 110/6 кВ, которая находиться в северо – западной части центрального района г.о. Тольятти. Выбранная тема работы является актуальной, т.к. в ближайшем будущем запланировано строительство новых микрорайонов в лесопарковой зоне Тольятти.

Электрическая схема трансформаторной подстанции – определяет технические свойства и особенности подстанции.

Современные трансформаторные подстанции, должны отвечать следующим требованиям:

- обеспечить надежность электроснабжения городских и промышленных потребителей;
- при эксплуатации оборудования подстанции должны быть безопасными для обслуживающего персонала;
 - обладать мобильностью и гибкостью и т.д.

Целью проектирования является повышение надежности функционирования системы электроснабжения западной части центрального района г.о. Тольятти, путем замены электрооборудования установленного на ПС «Западная» 110/6 кВ.

Согласно поставленной цели, в дипломном проекте решаются следующие задачи:

- Замена трансформаторов марки ТРДН-25000/110/6/6;

- Замена высоковольтного оборудования на стороне 110 кВ на более современные;
 - Замена ячеек комплектно распределительного устройства 6 кВ;
- Расчёт токов КЗ для максимального и минимального режимов работы, а также выбор и установка современных микропроцессорных устройств релейной защиты и автоматики.

После реконструкции открытого распределительного устройства 110 кВ ПС 110/6 кВ «Западная» главная электрическая схема не измениться.

1 Общая характеристика объекта проектирования

1.1 Описание электрической части подстанции «Западная»

Действующая ПС 110/6 кВ «Западная» расположена в г.о. Тольятти Самарской области, и принадлежит ПАО «Россети» и эксплуатируется филиалом «Жигулевское ПО» ПАО «МРСК – Волги» «Самарские распределительные сети» с 1969 г.

Понизительная подстанция осуществляет электроснабжение потребителей II и III категории по надежности, по кабельным линиям 6 кВ. Питание ПС осуществляется по двухцепной воздушной линии электропередач 110 кВ: «Западная-1» и «Западная-2» с ТоТЭЦ (ПАО «Т Плюс»).

Районная подстанция «Западная» в своем составе имеет:

- открытое распределительное устройство (ОРУ) 110 кВ;
- закрытое распределительное устройство (ЗРУ) 6 кВ, для электроснабжения потребителей микрорайона Тольятти.

Данная подстанция является подстанцией ответвительного типа. ПС «Западная» является подстанцией с односторонним питанием. Согласно стандарту СТО ПАО «ФСК ЕЭС», на ПС 110/6 кВ «Западная», электрическая схема соединений соответствует схеме 110-4Н «Два блока с выключателями и неавтоматической перемычкой со стороны линий» (рисунок 1), а РУ-6 кВ существующей подстанции выполнено схеме: «одна секционированная система сборных шин».

На реконструируемой ПС установлены два силовых трансформатора: Т1 и Т2 типа ТРДН-25000/110 У1 мощностью 25 МВА, напряжением 110/6 кВ. Трансформаторы с расщепленной обмоткой на данной подстанции можно не принимать, т.к. резко-переменная нагрузка отсутствует.

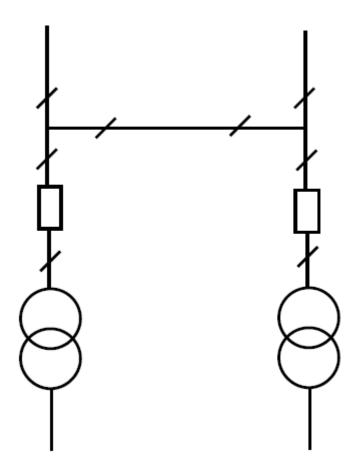


Рисунок 1 – Типовая схема распределительных устройств

На стороне 6 кВ схема выполнена двумя секционированными системами сборных шин с оборудованием 34 линейных ячеек 6 кВ. Оперативный ток на ПС 110/6 кВ «Западная» - переменный 220 В.

Наличие ABP на шинах собственных нужд обеспечивает достаточную надёжность питания цепей оперативного тока. Питание CH трансформаторной подстанции и цепей 220 В, осуществляется от двух трансформаторов марки ТМ-160/6/0,23. Ограничение токов КЗ осуществляется с помощью реакторов марки РБГ-6-2500-0,14, установленных за каждым силовым трансформатором.

Территория понизительной подстанции обнесена сетчатым забором и частично ж/бетонными плитами.

1.2 Объемы реконструкции понизительной подстанции

Согласно объемам реконструкции планируется произвести следующие:

- Реконструкция ОРУ 110 кВ: замена электротехнического оборудования 110 кВ; замена силовых трансформаторов.
- Реконструкция РУ 6 кВ: замена комплектно распределительного устройства на более нового образца.

Установка вместо разрядников устройств ограничения перенапряжений типа ОПН.

2 График электрических нагрузок подстанции «Западная»

На рисунке 2 представлены суммарные суточные графики нагрузки ПС 110/6~ кВ «Западная». Из анализа графиков видно, что $P_{\rm max}=39~{\rm MBr}$, а $P_{\rm min}=3~{\rm MBr}$.

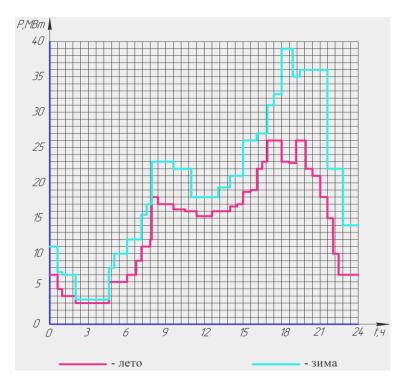


Рисунок 2 – Суммарные суточные графики нагрузки ПС 110/6 кВ «Западная»

2.1 Определение годового графика нагрузки

Данные суточных ведомостей подстанции «Западная» предоставлены диспетчерской службой ПАО «МРСК-Волги».

Годовой график электрической нагрузки строится по данным летних и зимних суток.

Электропотребление нагрузки за интервал времени Ті:

$$T_i = t_i \cdot N, \tag{1}$$

где t_i — длительность суточных графиков; N — количество календарных дней: N_{3um} = 200 дней, N_{nem} = 165 дней. Результаты сведены в таблицу 1.

Таблица 1 - Данные для годового графика нагрузки по активной мощности

	J	[ето			Зима		
Р, МВт	t,4	N, дни	Т,ч	Р, МВт	t,4	N, дни	Т,ч
3	2,6	165	429	3,5	2,6	200	520
4	1	165	165	7	1	200	200
5	0,4	165	66	7,4	0,4	200	80
6	1,4	165	231	8	0,4	200	80
7	0,6	165	99	10	1	200	200
7	0,7	165	115,5	11	0,6	200	120
7	1,5	165	247,5	12	0,11	200	22
9	0,4	165	66	14	1,2	200	240
10	0,4	165	66	15,5	0,4	200	80
11	0,7	165	115,5	17	0,4	200	80
12	0,1	165	16,5	18	2,1	200	420
15	0,5	165	82,5	19,4	0,9	200	180
15,3	1,2	165	198	21	1	200	200
16	0,9	165	148,5	22	1,4	200	280
16	1,4	165	231	22	1,2	200	240
16,3	0,9	165	148,5	26	1,1	200	220
16,7	0,6	165	99	27	0,8	200	160
17	1,2	165	198	31	0,5	200	100
17	0,4	165	66	32,5	0,6	200	120
18	0,5	165	82,5	35	0,5	200	100
18	0,6	165	99	36	2,2	200	440
18,7	0,6	165	99	39	1	200	200
19	0,4	165	66				
21	0,6	165	99				
22	0,4	165	66				
22	0,5	165	82,5				
22,8	0,5	165	82,5				
23	0,4	165	66				
23	0,6	165	99				
26	1,1	165	181,5				
26	0,8	165	132				

Для упрощения дальнейших расчетов по выбору оптимальных мощностей силовых трансформаторов, годовой график объединяется. Полученные данные приведены в таблице 2.

Таблица 2 - Данные для эквивалентного годового графика нагрузки по полной мощности

S, MBA	Т,ч
3,23	1545
5,38	1868
16,13	1431
19,35	946,5
22,58	1315,5
27,96	1013,5
38,71	440
41,93	200

На рисунке 3 представлен эквивалентный годовой график нагрузки ПС 110/6 кВ «Западная» по полной мощности.

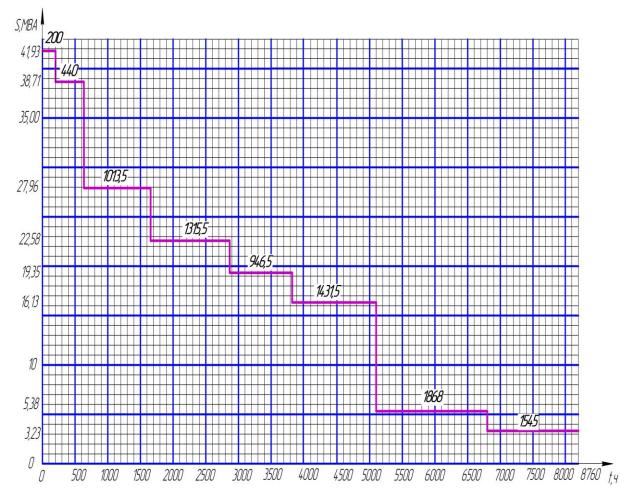


Рисунок 3 - Эквивалентный годовой график нагрузки ПС 110/6 кВ «Западная» по полной мощности

2.2 Показатели и коэффициенты ГН

Годовое электропотребление, МВт-ч:

$$W_{\tilde{I}\tilde{N}} = \sum_{i=1}^{N} (P_i \cdot T_i),$$

где P_i - мощность, МВт; T_i - интервал графика, ч.

$$W_{IIC} = (39 \cdot 200) + (36 \cdot 440) + (26 \cdot 1013,5) + (21 \cdot 1315,5) + (18 \cdot 946,5) + (15 \cdot 1431,5) + (5 \cdot 1868) + (3 \cdot 1545) = 138933,6 MBm \cdot v.$$

Средняя мощность за сутки, МВт:

$$P_{CP.3/JI} = \frac{W}{8760}$$
;
$$P_{CP.3/JI.HH} = \frac{138933,6}{8760} = 15,9 \text{ MBT}.$$

Число часов за год, ч:

$$T_{\max} = \frac{W_{\Pi C}}{P_{\max}}$$
;
$$T_{\max} = \frac{138933,6}{39} = 3562,4 \text{ ч.}$$

Время электрических потерь, ч:

$$\begin{split} \tau_{\text{max}} &= (0.124 + \frac{T_{\text{max}}}{10000})^2 \cdot 8760 \text{ ;} \\ \tau_{\text{max}} &= (0.124 + \frac{3562.4}{10000})^2 \cdot 8760 = 2185.588 \text{ y}. \end{split}$$

Коэффициент заполнения ГН:

$$K_{3II} = \frac{P_{CP}}{P_{\text{max}}};$$

$$K_{3II.3M} = \frac{15.9}{39} = 0.41;$$

$$K_{3\Pi.\Pi T} = \frac{15.9}{26} = 0.61.$$

Результаты расчётов сводим в таблицу 3.

Таблица 3 - Основные показатели и коэффициенты графика нагрузок

Показатели	Полученные данные
W _{год.} , MBт·ч	138933,6
Р _{СР. 3/Л} , МВт	15,9
Т _{max} , ч	3562,4
$ au_{ ext{max}}$, Ч	2185,588
К _{зп.зм}	0,41
$K_{3\Pi.\Pi T}$	0,61

3 Выбор силовых трансформаторов

ощность силовых трансформаторов определяется на основании годовых графиков нагрузки понизительной подстанции.

Суммарная максимальная нагрузка подстанции:

$$S_{\text{max}} = 41,93 \text{ MBA}.$$

Следовательно, мощность одного трансформатора, МВА:

$$S_{\text{HOM.T}} = 0.7 \cdot S_{\text{max}}$$
;

$$S_{\text{hom.T}} = 0,7.41,93 = 29,36 \text{ MBA}.$$

По вышеприведённым расчётам можно сделать вывод что, в связи с ожидаемым ростом электрических нагрузок понизительной подстанции установленные трансформаторы ТРДН-25000/110/6/6 на ПС 110/6 кВ «Западная» будут работать с перегрузкой.

В связи с планируемым ростом промышленных и бытовых нагрузок, выбираем силовые трансформаторы большей мощности.

По справочникам к установке выбираем силовые трансформаторы следующих марок:

ТДН-32000/110/6;

ТДН-40000/110/6.

Данные трансформаторы изготавливаются ООО «Тольяттинский Трансформатор» г. Тольятти.

1. Рассмотрим вариант с установкой трансформаторами типа ТДН–32000/110/6, паспортные данные которого в таблице 4.

Таблица 4 – Каталожные данные трансформатора ТДН- 32000/110/6

Тип	S_{-} ,	Каталожные данные					
трансформатора	ном.1.	$U_{\scriptscriptstyle HOM}$ о	бмоток, кВ	<i>u_K</i> , %	ΔP_{κ} , κΒτ	ΔP_x , кВт	<i>I</i> _x , %
трансформатора	MBA	BH	НН	u_{κ} , 70	ΔI_K , KD1	$\Delta I \chi$, KD1	I_X , 70
ТДН -32000/110/6	32	115	6,3	10,5	145	44	0,75
Цена: 7 800 000 руб.							

Коэффициенты загрузки обмоток трансформатора высшего и низшего напряжений:

$$\begin{split} k_{_{3.6}} &= \frac{S_{_B}}{S_{_{HOM}T}};\\ k_{_{3.6}} &= \frac{S_{_B}}{S_{_{HOM}T}} = \frac{41940}{32000} = 1,31;\\ k_{_{3.H1}} &= k_{_{3.H2}} \frac{S_{_{H1,2}}}{S_{_{HOM}T}};\\ k_{_{3.H1}} &= k_{_{3.H2}} = \frac{20970}{32000} = 0,66 \;, \end{split}$$

где $S_{\scriptscriptstyle B}$, $S_{\scriptscriptstyle H}$ — расчетные нагрузки обмоток трансформатора высшего, и низшего напряжений.

Потери холостого хода в силовом трансформаторе – активная мощность:

$$P'_{x} = \Delta P_{x} + \kappa_{un} \cdot Q_{x};$$

 $P'_{x} = 44 + 0.05 \cdot 240 = 56 \,\kappa Bm,$

где $\Delta P_{\rm xx}$ потери в режиме короткого замыкания – реактивная мощность:

$$Q_{x} = \frac{I_{x}(\%)}{100} \cdot S_{\text{ном.T}};$$

$$Q_{x} = \frac{0.75}{100} \cdot 32000 = 240 \ \ \kappa eap.$$

Потери мощности в режиме короткого замыкания:

$$\begin{split} P'_{\kappa.\textit{H}_{1}} &= P'_{\kappa.\textit{H}_{2}} = P_{\kappa.\textit{H}_{1,2}} + \kappa_{\textit{un}} \cdot Q_{\kappa.\textit{H}_{1,2}}; \\ P'_{\kappa.\textit{H}_{1}} &= 290 + 0.05 \cdot 5880 = 584 \, \kappa \textit{Bm}; \\ P'_{\kappa.\textit{G}} &= P_{\kappa.\textit{G}} + \kappa_{\textit{un}} \cdot Q_{\kappa.\textit{G}}; \\ P'_{\kappa.\textit{G}} &= 0 + 0.5 \cdot 420 = 21 \, \kappa \textit{Bm}, \\ P'_{\kappa.\textit{G}} &= 0; \\ P_{\kappa.\textit{H}_{1}} &= P_{\kappa.\textit{H}_{2}} = 2 \cdot \Delta P_{\kappa.\textit{BH-HH}}; \\ P_{\kappa.\textit{H}_{1}} &= P_{\kappa.\textit{H}_{2}} = 2 \cdot 145 = 290 \, \kappa \textit{Bm}. \end{split}$$

Потери мощности (реактивной) в обмотках ВН, НН1 и НН2 в режиме короткого замыкания:

$$\begin{split} Q_{\kappa.6} &= \frac{U_{\kappa.6}(\%)}{100} \cdot S_{\text{hom}T}; \\ Q_{\kappa.6} &= \frac{1,3125}{100} \cdot 32000 = 420 \; \text{kbap}; \\ Q_{\kappa.H_1} &= Q_{\kappa.H_2} = \frac{U_{\kappa.H_{1,2}}(\%)}{100} \cdot S_{\text{hom}T}; \\ Q_{\kappa.H_1} &= Q_{\kappa.H_2} = \frac{18,375}{100} \cdot 32000 = 5880 \; \text{kbap}, \end{split}$$

где $U_{\kappa,s}$, U_{κ,n_1} , U_{κ,n_2} — напряжения к.з.,(%), обмоток трехфазного трансформатора с расщепленной обмоткой, которые при заданных в справочнике значениях напряжений к.з. между обмотками $u_{\kappa,BH-HH}$ определяются из приближенных выражений:

$$\begin{split} &U_{_{\kappa.6}}=0,\!125\cdot\!u_{_{\kappa.BH-HH}};\\ &U_{_{\kappa.6}}=0,\!125\cdot\!10,\!5=1,\!3125\quad\%\;; \end{split}$$

$$\begin{split} U_{_{\kappa,H_1}} &= U_{_{\kappa,H_2}} = 1{,}75 \cdot u_{_{\kappa,BH-HH}}; \\ \\ U_{_{\kappa,H_1}} &= U_{_{\kappa,H_2}} = 1{,}75 \cdot 10{,}5 = 18{,}375 \%. \end{split}$$

Затем определим финансовые затраты на годовые потери электрической энергии в трансформаторах:

$$M_{_{9}} = \Delta W_{nc} \cdot C_{_{9}};$$

 $M_{_{9}} = 1642399 \cdot 0.97 = 1593127,03,$

где ΔW_{nc} — потери электроэнергии в трансформаторах, принимаем равными $1.642-399-\kappa Bm\cdot u$; $C_{_{9}}$ — стоимость $1\kappa Bm\cdot u$ электроэнергии, $py\delta/\kappa Bm\cdot u$, определяется из выражения:

$$C_{9} = \frac{\alpha}{T_{\text{max}}} + \beta$$
,
 $C_{9} = \frac{270}{3754.96} + 0.9 = 0.97 \quad \kappa Bm \cdot u$,

где α —основная ставка двухставочного тарифа за $1~\kappa Bm$ договорной мощности, принимаем равной $270~\kappa Bm$; β —дополнительная ставка двухставочного тарифа за каждый $\kappa Bm \cdot u$ активной энергии, учтенной расчетной счетчиком, принимаем равной $0.9~\kappa Bm \cdot u$.

Экономическая целесообразность выбора трансформаторов определяется методом приведенных затрат:

$$3_{np} = E_H \cdot K + M_o + M_s;$$

$$3_{np} = 0.15 \cdot 7800000 + 733200 + 1593127,03 = 3496327,03 \ py6,$$

где K— капитальные затраты на оборудование ПС = 7 800 000 $py\delta$; E_{H} — нормативный коэффициент дисконтирования, принимаем равным 0.15; $M_{_{3}}$ —

стоимость годовых потерь электроэнергии в трансформаторах, определяемых по выражению; $H_{\scriptscriptstyle o}-$ годовые отчисления, которые можно определить из выражения:

$$M_o = p_{cym} \cdot K$$
;
$$M_o = p_{cym} \cdot K = 0.094 \cdot 7800000 = 733200 py \delta,$$

где $p_{cym} = p_a + p_{op}$ — суммарный коэффициент отчислений, который состоит из отчислений на амортизацию $-p_a$, обслуживание и ремонт $-p_{op}$, принимаем равным 0.094 для ПС 110 кВ.

2. Рассмотрим вариант подстанции с установкой силовых трансформаторов типа ТДН—40000/110/6 (таблица 5).

Таблица 5 – Паспортные данные трансформатора ТДН-40000/110/6

Тип	C	Каталожные данные					
трансформатора	$b_{hom.T.}$	$U_{\scriptscriptstyle HOM}$ О	бмоток, кВ	u_{κ} , %	ΔP_{κ} , κΒτ	ΔP_x , кВт	I_x , %
трансформатора	MBA	BH	НН	u_{κ} , 70	ΔI_K , KD1	$\Delta I x$, KD1	I_X , 70
ТДН -40000/110/6	40	115	6,3	10,5	160	50	0,65
Цена: 11 200 200 руб.							

Потери мощности (активной) силового трансформатора:

$$P_x' = 50 + 0.05 \cdot 260 = 63 \,\kappa Bm;$$

$$Q_x = \frac{0.65}{100} \cdot 40000 = 260 \ \hat{e}\hat{a}\hat{a}\delta.$$

Потери мощности (активной) при режиме короткого замыкания, обмоток ВН, НН1 и НН2:

$$P_{\kappa.\rm B}=0$$
 ;
$$P_{\kappa.\rm H_1}=P_{\kappa.\rm H_2}=2\cdot 160=320~\kappa Bm~.$$

Потери мощности (реактивная) обмоток силового трансформатора в режиме короткого замыкания:

$$\begin{split} Q_{\kappa.\theta} &= \frac{1,3125}{100} \cdot 40000 = 525 \; \kappa \theta ap \; ; \\ Q_{\kappa.n_1} &= Q_{\kappa.n_2} = \frac{18,375}{100} \cdot 40000 = 7350 \; \kappa \theta ap \; ; \\ U_{\kappa.\theta} &= 0,125 \cdot 10,5 = 1,3125 \; \% \; ; \\ U_{\kappa.n_1} &= U_{\kappa.n_2} = 1,75 \cdot 10,5 = 18,375 \; \% \; ; \\ P'_{\kappa.\theta} &= 0 + 0,05 \cdot 525 = 26 \; \kappa Bm \; ; \\ P'_{\kappa.n_1} &= 320 + 0,05 \cdot 7350 = 688 \; \kappa Bm \; . \end{split}$$

Определим стоимости годовых потерь электроэнергии в трансформаторах:

$$M_{3} = 1884178 \cdot 0.97 = 1827652.66 \ py\delta.$$

Стоимость $1 \kappa Bm \cdot u$ электроэнергии:

$$C_9 = \frac{270}{375496} + 0.9 = 0.97 \ \kappa Bm \cdot v.$$

Экономическая целесообразность выбора трансформаторов определяется методом приведенных затрат:

$$3_{np} = 0.15 \cdot 11200000 + 1052800 + 1827652,66 = 4560452,66$$
 py6;
$$M_o = 0.094 \cdot 11200000 = 1052800$$
 py6.

Согласно полученным результатам приведённые затраты на установку трансформатора марки ТДН-40000/110/6 составляет 4 560 452,66 руб, а на трансформатор марки ТДН-32000/110/6 составляет 3 496 327,03 руб.

Вследствие этого к установке на понизительной подстанции 110/6 кВ «Западная» принимаются два трансформатора марки ТДН-32000/110/6, имеющие меньшие приведённые затраты. Устанавливаемы силовые трансформаторы будут работать параллельно.

При проведении реконструкции ПС 110/6 кВ «Западная» главная электрическая схема не измениться, т.к. действующая схема соответствует современным требованиям надежности.

4 Расчёт токов КЗ

4.1 Ход выполнения расчетов

На рисунке 4 приведена схема замещения ПС 110/6 кВ «Западная».

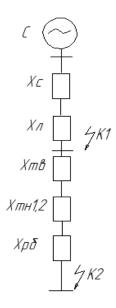


Рисунок 4 – Схема замещения ПС

Исходные данные для расчета:

Система: $U_H = 110 \, \kappa B$, $S_E = 1000 \, MB \cdot A$, $S_{K3} = 5000 \, MB \cdot A$.

Линии: $x_{y\partial 1}=0,42~O$ м / км , l=8 км , 340~м , $U_H=110$ кB , $x_{y\partial}=0,42~O$ м / км , l=8 км , 340~м , $U_H=6$ кB .

Трансформатор: $S_H = 32 \, MB \cdot A$, $S_E = 1000 \, MB \cdot A$.

Реактор: $x_{HOM} = 0.14 \, OM$.

Необходимо определить параметры схемы замещения при приближенном приведении в относительных единицах.

Система:

$$x_{*\delta,c} = \frac{S_{\delta}}{S_{\kappa}};$$

$$x_{*\delta,c} = \frac{1000}{5000} = 0.2.$$

Трансформатор:

$$x_{*\delta,T_{e}} = \frac{U_{\kappa,6},\%}{100} \frac{S_{\delta}}{S_{\mu o_{M}T}};$$

$$x_{*\delta,T_{e}} = \frac{1,3125}{100} \cdot \frac{1000}{32} = 0,41;$$

$$x_{*\delta,T_{H1}} = x_{*\delta,T_{H2}} = \frac{U_{\kappa,H1},\%}{100} \frac{S_{\delta}}{S_{\mu o_{M}T}};$$

$$x_{*\delta,T_{H1}} = x_{*\delta,T_{H2}} = \frac{18,375}{100} \cdot \frac{1000}{32} = 5,74.$$

Линия:

$$x_{*\delta,\pi} = x_{y\delta} l \frac{S_{\delta}}{U_{cp}^{2}};$$

$$x_{*\delta,\pi} = 0.4 \cdot \frac{8.34}{2} \cdot \frac{1000}{115^{2}} = 0.13,$$

где $U_{_{\kappa,\theta}} = 1,3125~\%$, $U_{_{\kappa,H1}} = U_{_{\kappa,H2}} = 18,375~\%$ — (для трансформатора $S_{_{HOM}} = 32~MB \cdot A$). Реактор:

$$x_{*\delta} = x_{nom} \frac{S_{\delta}}{U_{cp}^{2}};$$

$$x_{*\delta} = 0.14 \cdot \frac{1000}{6.3^{2}} = 3.53.$$

Короткое замыкание в точке К1:

$$x_{*pe3(6)} = x_{*6,c} + x_{*6,\pi};$$

 $x_{*pe3(6)} = 0.2 + 0.13 = 0.33.$

Базисный ток:

$$I_{\delta} = \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}};$$

$$I_{\delta} = \frac{1000}{\sqrt{3} \cdot 115} = 5,02 \text{ } \kappa A.$$

Начальное значение периодической составляющей тока короткого замыкания:

$$I_{n,o}^{3} = \frac{E_{*\delta}''}{x_{*pes(\delta)}} \cdot I_{\delta};$$

$$I_{n,o}^{3} = \frac{1}{0.15} \cdot 5,02 = 15,2 \, \kappa A.$$

0,15

Ударный ток короткого замыкания:

$$\begin{split} i_{yo} &= \sqrt{2} \cdot I_{n,o} \cdot k_{yo}; \\ i_{yo} &= \sqrt{2} \cdot 33,47 \cdot 1,8 = 38,3 \ \kappa A, \end{split}$$

где $k_{y\partial}$ =1,8 –ударный коэффициент.

Короткое замыкание в точке К2:

$$x_{_*pe_3(\delta)} = x_{_*\delta,c} + x_{_*\delta,\pi} + x_{_*\delta,T_e} + x_{_*\delta,T_{H1,2}} + x_{*\delta} = 0,2 + 0,13 + 0,41 + 5,74 + 3,53 = 10,01 \,.$$

Базисный ток:

$$I_{\delta} = \frac{S_{\delta}}{\sqrt{3} \cdot U_{\delta}} = \frac{1000}{\sqrt{3} \cdot 6.3} = 91,75 \text{ } \kappa A.$$

Значение периодической составляющей тока короткого замыкания:

$$I_{n,o}^{3} = \frac{E_{*\delta}''}{x_{*pe3(\delta)}} \cdot I_{\delta} = \frac{1}{10,01} \cdot 91,75 = 9,17 \, \kappa A.$$

Ударный ток короткого замыкания:

$$i_{y\partial} = \sqrt{2} \cdot I_{n,o} \cdot k_{y\partial} = \sqrt{2} \cdot 9,17 \cdot 1,96 = 25,33 \, \kappa A,$$

где $k_{y\partial}$ =1,96 – ударный коэффициент.

Данные расчетов токов к.з. сведены в таблицу 6.

Таблица 6 – Данные расчета токов к.з.

№ п/п	U _н , кВ	К _{уд}	Ι ⁽³⁾ _κ , κΑ	і _{уд} , кА
K1	115	1,8	15,2	38,3
К2	6,3	1,96	14,1	25,33

5 Выбор электрооборудования

5.1 Выбор оборудования ОРУ – 110 кВ

Расчетный ток продолжительного режима с учетом 40 % перегрузки:

$$I_{\text{max}} = 1,4 \cdot \frac{S_{T.\text{HOM}}}{\sqrt{3} \cdot U_{\text{HOM}}};$$

$$I_{\text{max}} = 1,4 \cdot \frac{32000}{\sqrt{3} \cdot 115} = 225,18 \ A.$$

5.1.1 Выбор выключателей

Согласно нормативным документам ПАО «ФСК ЕЭС» и ПАО «Россети» закреплено решение о преимущественном применении при строительстве, реконструкции, техническом перевооружении и замене оборудования подстанций напряжением 330—750 кВ замена на элегазовые выключатели, а на подстанциях напряжением 6, 10, 20, 35 кВ — вакуумных выключателей. В классе напряжения 110—220 кВ из – за отсутствия каких-либо альтернативных вариантов предлагается применять элегазовые выключатели, которые при всех своих достоинствах имеют и ряд следующих недостатков.

Основные недостатки элегазовых выключателей:

- в процессе длительной эксплуатации выключателя возможны утечки элегаза;
- снижение давления в дугогасящей камере при колебаниях температуры окружающей среды;
- необходимо дополнительной дорогостоящее оборудование для автоматической подкачки и снятия значений давления в ДУ;
- не надежное функционирование при низких температурах окружающей среды (так в 2006 г. из-за мороза в Тюменской области -41°C из строя вышли 59 выключателей);
 - негативное влияние элегаза на окружающую среду в случае его утечки;

- токсичен и представляет опасность для обслуживающего и ремонтного персонала и т.д.
- необходимо иметь на территории предприятия современные газотехнологические аппараты.

Таким образом, проведенный анализ показал, что для дальнейшего рассмотрения высоковольтных выключателей из — за ряда недостатков необходимо отказаться от установки элегазовых выключателей. Основной причиной этого решения является, что данная подстанция «Западная» находится на территории, где в зимний период времени температура может опускаться согласно статистическим данным до -43°C.

К установке на ОРУ 110 кВ предлагаются следующие типы вакуумных выключателей:

- выключатель вакуумный колонкового типа, марки ВБП-110-31,5/2000
 производства ОАО Научно производственное предприятие «Контакт»
 г.Саратов;
- выключатель вакуумный колонкового типа, марки BPC-110-31,5/2500
 УХЛ1 производства ЗАО "Высоковольтный союз" г. Екатеринбург.

Необходимо провести сравнительный анализ двух видов выключателей и сделать выбор в пользу более экономичного и технически выгодного варианта. Сравнительный анализ технических характеристик выключателей типов ВБП-110-31,5/2000 и ВРС–110-31,5/2500 представлен в таблице 7.

После анализа данных таблицы 7, для дальнейшего рассмотрения был выбран выключатель типа BPC–110-31,5/2500, так как данный вид выключателя обладает необходимыми техническими характеристиками, по ценовому показателю является наиболее экономически выгодным.

Вакуумный выключатель типа ВРС-110-31,5/2500 представлен на рисунке 5.

Необходимо проверить выключатель типа BPC–110-31,5/2500 на возможность установки на OPУ 110 кВ ПС «Западная».

Таблица 7 – Сравнительный анализ технических характеристик выключателей

Наимонородию поромотро	ВБП-110-	BPC-
Наименование параметра	31,5/2000	110-31,5/2500
Номинальное напряжение, кВ	110	110
Наибольшее рабочее напряжение, кВ	126	126
Номинальный ток, А	2000	2500
Номинальный ток отключения, кА	31,5	31,5
Собственное время отключения, с.	0,046	0,044
Полное время отключения, сек.	0,08	0,057
Собственное время включения, с.	0,063	0,063
Масса выключателя, кг	1710	1649
Срок службы, лет	30	40
Гарантийный срок, лет	3,5	5

Рисунок 5 – Внешний вид выключателя марки ВРС–110-31,5/2500

Паспортные данные выключателя, а также расчетные параметры электрической сети представлены в таблице 8.

Таблица 8 - Выбор выключателей на стороне 110кВ

Методика	Расчет	Паспорт BPC-110-31,5/2500
1	2	3
$U_{\scriptscriptstyle HOM}\!\geq\!U_{\scriptscriptstyle C}$	$U_c = 110 \ \kappa B$	$U_{{\scriptscriptstyle HOM}} = 110 \;\; \kappa B$
$I_{_{HOM}} \geq I_{_{\rm TMAX}}$	$I_{\text{max}} = I_{pab,yms,w} = 225,18 A$	$I_{iii} = 2500 A$
$I_{\mathit{omkihom}} \geq I_{\mathit{nt}}$	$I_{n\tau} = 15,2 \ \kappa A$	$I_{om\kappa lhom} = 31,5 \ \kappa A$
$i_{a.\text{HOM}} \ge i_{a au}$	$i_{a\tau} = 9,673 \ \kappa A$	$i_{a.hom} = 16,4 \ \kappa A$
$I_{\scriptscriptstyle \partial u \scriptscriptstyle H} \geq I_{\scriptscriptstyle n0}$	$I_{n0} = 15,2 \ \kappa A$	$I_{\partial uh} = 31,5 \ \kappa A$
$i_{\scriptscriptstyle \partial u \scriptscriptstyle H} \geq i_{\scriptscriptstyle y \scriptscriptstyle \partial}$	$i_{y\partial} = 38,3 \ \kappa A$	$i_{\partial uh} = 102 \ \kappa A$
$I_{mep}^2 \cdot t_{mep} \ge B_k$	$B_k = 20,79 \ \kappa A^2 \cdot c$	$I_{mep}^2 \cdot t_{mep} = 31,5^2 \cdot 3 = 2976,7 \kappa A^2 \cdot c$

Из произведенных расчетов сделан вывод о возможности установки вакуумного выключателя марки ВРС–110-31,5/2500 на ОРУ 110 кВ ПС «Западная», так как технические параметры выключателя удовлетворяют всем условиям проверки.

5.1.2 Выбор разъединителей

Выбираем к установке разъединитель марки РГ-110/1000 УХЛ 1 (ЗАО «ЗЭТО», г. Великие Луки). На рисунке 6 представлен разъединитель марки РГ-110/1000 УХЛ 1.

Параметры разъединителя и расчетные данные сведены в таблицу 9.

Таблица 9 – Выбор разъединителей

Условия выбора	Методика	Паспорт	
$U_{\scriptscriptstyle HOM}\!\geq\!U_{\scriptscriptstyle C}$	$U_c = 110 \ \kappa B$	$U_{_{HOM}} = 110 \ \kappa B$	
$I_{_{HOM}} \ge I_{_{ m max}}$	$I_{\text{max}} = 225,18 A$	$I_{\tilde{m}} = 1000 A$	
$i_{\scriptscriptstyle\partial u \scriptscriptstyle H} \geq i_{\scriptscriptstyle y \scriptscriptstyle \partial}$	$i_{\delta\ddot{a}} = 38,3 \ \kappa A$	$i_{\partial u_H} = 80 \ \kappa A$	
$I_{mep}^2 \cdot t_{mep} \ge B_k$	$B_k = 20,97 \ \kappa A^2 \cdot c$	$I_{mep}^2 \cdot t_{mep} = 31,5^2 \cdot 4 = 3969 \ \kappa A^2 \cdot c$	

Сравнивая данные (таблица 11), видим, что разъединитель РГ -110/1000 УХЛ 1 выбран правильно, так как основные технические параметры разъединителя удовлетворяют всем условиям проверки.

Рисунок 6 - Разъединитель марки РГ-110/1000 УХЛ 1

5.1.3 Выбор трансформаторов тока

На территории ОРУ 110 кВ ПС «Западная» согласно ряду положений трансформаторы тока должны устанавливаться как перед высоковольтными выключателями, так и встраиваться в ввода силовых трансформаторов.

Таблица 10 – Нагрузка ТТ на вторичной обмотке

Прибор	Тип	Нагрузка по фазам, $B \cdot A$			
		A	В	C	
Амперметр	ЭА-0702	0,5	-	-	
Ваттметр	Ц-301/1	0,5	-	0,5	
Счетчик	ЕвроАльфа	3,6	3,6	3,6	
Итого:		4,6	3,6	4,1	

Сопротивление приборов находится по формуле:

$$r_{npu\delta} = \frac{4.6}{5^2} = 0.184$$
 Om.

Для ТФЗМ-110-У1 в классе 0,5 $Z_{2_{HOM}} = 1,2 \ Om.$

Допускаемое сопротивление проводника:

$$r_{npos} = 1,2 - 0,184 - 0,1 = 0,916$$
 Om.

Тогда:

$$q = \frac{\rho \cdot \sqrt{3} \cdot l_{pac^{4}}}{r_{npob}};$$

$$q = \frac{(0.0283 \cdot \sqrt{3} \cdot 60)}{0.916} = 3.21 \text{ MM}.$$

Кабель контрольный с алюминиевыми жилами - 4мм².

$$r_{npos} = \frac{0.0283 \cdot \sqrt{3} \cdot 60}{4} = 0.74 \ Om.$$

Вторичная нагрузка ТТ:

$$r_2 = 0.184 + 0.74 + 0.1 = 1.024 \ Om.$$

Согласно расчетам, выбираем ТТ типа ТФЗМ-110-У1 (ЗАО Энергомаш, г. Екатеринбург-Уралэлектротяжмаш).

Таблица 11 – Расчёт трансформатора тока 110 кВ

Расчёт	Паспорт ТФЗМ-110-У1
$U_{ycm} = 110 \ \kappa B$	$U_{_{HOM}} = 110 \ \kappa B$
$I_{\text{max}} = 225,18 \ A$	$I_{_{HOM}} = 50 - 600 A$
$i_{y\partial} = 38.3 \ \kappa A$	$I_{\partial un} = 126 \ \kappa A$
$B_{\kappa} = 20,79 \ \kappa A^2 * c$	$B_{\kappa} = 2028 \ \kappa A^2 * c$
$r_2 = 1,024 \ Om$	$r_2 = 1,2 \ Om$

На рисунке 7 представлен трансформатор тока ТФЗМ-110-У1.

Рисунок 7 - Трансформатор тока ТФЗМ-110-У1

Также для установки принимается трансформатор тока типа ТВТ – 300/5 встраиваемый в высоковольтные ввода трансформатора со стороны 110 кВ производства ООО ТД «Автоматика» г. Смоленск.

5.1.4 Выбор измерительного трансформатора напряжения

Нагрузка подключённых приборов по формуле:

$$S_{2\Sigma} = \sqrt{\left(\sum S_{npu\delta} \times \cos \varphi_{npu\delta}\right)^2 + \left(\sum S_{npu\delta} \times \sin \varphi_{npu\delta}\right)^2} = \sqrt{P^2_{npu\delta} + Q^2_{npu\delta}}.$$

Таблица 12 – Вторичная агрузка ТН 110кВ

Наименование прибора	Мощность, потребляемая одной катушкой, $B \cdot A$	cosφ	Потребляемая мощность		цность
			Вт	вар	$B \cdot A$
Вольтметр Э-762	9	1	9	0	9
Ваттметр Ц-301/1	10	1	10	0	10
Счетчик «ЕвроАльфа»	1,5	0,53	0,8	1,27	1,5
Итого по ТН:	-	-	19,8	1,27	19,8

Вторичная нагрузка трансформатора напряжения $S_{2\Sigma} = 19.8~B \cdot A$.

К установке выбираем трансформатор напряжения НАМИ-110 (ЗАО Энергомаш, г. Екатеринбург-Уралэлектротяжмаш).

На рисунке 8 представлен трансформатор тока НАМИ-110.

5.2 Выбор оборудования на стороне 6 кВ

Распределительное устройство 6 кВ выполнено в виде комплектного распределительного устройства, с выкатными тележками и масляными выключателями марки ВМП. КРУ – 6 кВ размещен на территории закрытого распределительного устройства.

Согласно выше сказанному, при реконструкции КРУ – 6 кВ старое оборудование заменить полностью на новое КРУ-6 кВ с вакуумными выключателями.

Наиболее лучшими техническими характеристиками обладают ячейки КРУ серии КРУ-СЭЩ-70 (рисунок 9).

Рисунок 8 - Трансформатор напряжения НАМИ-110

Токи с учетом 40 % перегрузки:

$$I_{\text{max}} = 1.4 \cdot \frac{S_{T.\text{HOM}}}{\sqrt{3} \cdot U_{\text{HOM}} \cdot 2} = 1.4 \cdot \frac{32000}{\sqrt{3} \cdot 6.3 \cdot 2} = 2055 \ A.$$

5.2.1 Выбор выключателей на 6 кВ

Выключатель выбирается по таким же параметрам, что и выключатель на высокой стороне. Все каталожные и расчетные величины сведены в таблице 13.

Таблица 13 – Вакуумный выключатель 6 кВ

Расчет	Паспорт
$U_{_{HOM}} = 6 \kappa B$	$U_{cem.hom} = 6\kappa B$
$I_{\text{max}} = 2055 A$	$I_{_{HOM}} = 2500 \ A$
$I_{n,o}^{3} = 14,1 \ \kappa A$	$I_{om\kappa_{n,HOM}} = 31,5 \ \kappa A$
$i_{a,\tau} = 5.5 \kappa A$	$i_{a,\mu_{OM}} = 20,04\kappa A$
$I_{\partial u_H} = 14.1 \kappa A$	$I_{n,o} = 31.5 \ \kappa A$
$B_{\kappa} = 1.85 \ \kappa A^2 \cdot c$	$B_{\kappa_{HCM}} = 2976 \kappa A^2 \cdot c$

Рисунок 9 – КРУ типа КРУ-СЭЩ-70

5.2.2 Выбор трансформатора тока

Выбираем и проверяем трансформатор тока: ТОЛ – СЭЩ – 6 ЗАО «Самарский электрощит» г. Самара. Все каталожные и расчетные величины сведены в таблице 14. Трансформатор тока ТОЛ – СЭЩ – 6 кВ обеспечивает передачу сигнала измерительной информации измерительным приборам.

Таблица 14 – Расчетные и каталожные данные трансформатора тока ТОЛ – 6 кВ

Расчёт	Паспорт: ТОЛ-СЭЩ 6 кВ
$U_{ycm} = 6 \kappa B$	$U_{_{HOM}} = 6 \kappa B$
$I_{\text{max}} = 2055 A$	$I_{_{HOM}} = 2500 \ A$
$i_{yo} = 25,33 \ \kappa A$	$I_{\partial un} = 100 \ \kappa A$
$B_k = 1.85 \ \kappa A^2 \cdot C$	$B_{\kappa} = 4800 \ \kappa A^2 * c$

Данные контрольно-измерительных приборов представлены в таблице 15. Таблица 15 – Данные контрольно-измерительных приборов

№ п/п	Прибор	Тип	S прибора [B·A]
1	Амперметр	ЭА-0702	0.5
2	Счетчик активной энергии	ЕвроАльфа	3,6
3	Счетчик реактивной энергии	ЕвроАльфа	3,6
4	Варметр	H-395	2
5	Ваттметр	Ц-301/1	0,5
	Итого		10,2

Расчет вторичной нагрузки трансформатора тока:

$$r_{npu\delta} = \frac{10.2}{5^2} = 0.45 \ Om.$$

Для ТОЛ-СЭЩ 6 кВ в классе 0,5 $Z_{2_{HOM}} = 1,2 \ Om.$

Допустимое сопротивление провода:

$$r_{npo6} = Z_{2nom} - r_{npu6} - r_{\kappa};$$

$$r_{npo6} = 1,2 - 0,45 - 0,1 = 0,65 \quad Om.$$

Тогда:

$$q = \frac{\rho \cdot \sqrt{3} \cdot l_{pacu}}{r_{npos}};$$

$$q = \frac{(0,0283 \cdot \sqrt{3} \cdot 60)}{0,65} = 4,51 \text{ MM.}$$

$$r_{npos} = \frac{0,0283 \cdot \sqrt{3} \cdot 60}{5} = 0,59 \text{ OM.}$$

Таким образом, вторичная нагрузка составляет:

$$r_2 = 0.45 + 0.59 + 0.1 = 1.14 \ Om.$$

5.2.3 Выбор трансформатора напряжения

Из предлагаемого перечня трансформаторов напряжения к установке принимается трансформатор напряжения НАМИ – 6 кВ ЗАО «Самарский электрощит».

Контроль на стороне 6 кВ осуществляется с помощью следующих контрольно-измерительных приборов: вольтметр, вольтметр фазный, фазометр, частотомер. Данные контрольно-измерительных приборов представлены в таблице 16.

Таблица 16 – Контрольно-измерительные приборы во вторичной цепи ТН

Прибор	Типы приборов	Потребляемая мощность одной	Число катушек	$\cos \varphi$	$\sin \varphi$	Число приборов	Оби потребл мощн	іяемая
		катушки, BA					P, Bm	у, вар
Вольтметр	Э-351	2,0	1	1	0	1	2	
Ваттметр	Ц-301/1	2,0	1	1	0	1	2	
Счетчик активной энергии	САЭ – 681	2	2	0,38	0,925	1	1,52	3,7
Счетчик реактивной энергии	СР4- И673М	2	2	0,38	0,925	1	1,52	3,7
Итого					7,04	7,4		

$$S_{2\Sigma} = \sqrt{(\sum S_{npu\delta} \cos \varphi)^2 + (\sum S_{npu\delta} \sin \varphi)^2} = \sqrt{P_{npu\delta}^2 + Q_{npu\delta}^2} = \sqrt{7.04^2 + 7.4^2} = 9.91 B \cdot A..$$

Выбранный трансформатор напряжения НАМИ – СЭЩ – 6 кВ имеет номинальную мощность в классе точности 0,5, необходимом для присоединения счетчиков, $75\ B\cdot A$. Таким образом:

$$S_{2\Sigma} \leq S_{\scriptscriptstyle HOM}$$

 $11,7 \le 75$.

Из произведенных расчетов сделан вывод о возможности установки трансформатора напряжения марки HAMU-CЭЩ-6 кВ, так как технические параметры трансформатора напряжения удовлетворяют всем условиям проверки.

6 Выбор релейной защиты и автоматики

6.1 Микропроцессорное устройство РС83-ДТ2

Микропроцессорное устройство РС83-ДТ2 изготавливается компанией ООО «Системы РЗА» (г. Москва), и выполняет функции токовой защиты (в том числе дифференциальной) для двухобмоточных трансформаторов, синхронных компенсаторов, генераторов, электродвигателей и т.д.

Функции данного устройства таковы:

- трехступенчатая максимально-токовая защита (МТЗ) с независимой выдержкой времени;
- двухступенчатая дифференциальная защита. Первая ступень чувствительная дифференциальная зашита (ДТ) с функцией торможения, вторая ступень дифференциальная отсечка (ДО).

Питание устройства РС83-ДТ2 может осуществляться как от источника постоянного, так и от источника переменного оперативного тока.

Все имеющиеся данные в устройстве передаются диспетчеру и могут обрабатываться по месту или дистанционно.

6.2 Расчёт уставок защиты трансформатора с применением устройства PC83-ДТ2

Параметры терминала PC83-ДТ2 для защиты силового трансформатора, со схемой Y/ Δ :

- на ВН звезда;
- на НН треугольник.

Электрическая нагрузка (максимальная) силового трансформатора – $S_{\text{harp.max}} = 41,93 \text{ MB}\cdot\text{A}.$

Значения токов КЗ (максимальный/минимальный режим) на стороне 110 кВ (точка К1) и шинах 6 кВ (точка К2) представлены в таблице 17.

Таблица 17 – Значения токов КЗ

Величина напряжения	Режим ЭЭС	Ток КЗ
Сторона 110 кВ	Максимальный	$I_{K1MAX}^{(3)BH} = 4827 A$
	Минимальный	$I_{K1MIN}^{(3)BH} = 2357 A$
Сторона 6 кВ	Максимальный	$I_{K2MAX}^{(3)HH} = 24840 A$
	Минимальный	$I_{K2MIN}^{(3)HH} = 21323 A$

Значения токов короткого замыкания в К2, приведенные к стороне ВН определяются по выражению:

$$I_{K2}^{(3)BH} = \frac{I_{K2}^{(3)HH}}{k_T},$$

где $I_{\kappa_2}^{^{(3)HH}}$ - ток 3х-фазного КЗ на стороне 6 кВ; $k_{\rm T}$ - коэффициент трансформации СТ.

Ток короткого замыкания в максимальном режиме электроэнергетической системы:

$$I_{K2MAX}^{(3)BH} = \frac{24840}{115/6.3} = 1361 A.$$

Ток КЗ в минимальном режиме электроэнергетической системы:

$$I_{K2MIN}^{(3)BH} = \frac{21323}{115/6,3} = 1168 A.$$

6.3 Расчёт уставок дифференциальной защиты трансформатора

Дифференциальная защита реализовывается на основе терминала типа PC83-ДТ2. Методика выбора уставок представлено ниже:

- На стороне ВН – 110 кВ, коэффициент выравнивания:

$$K_{B1} = \frac{I_{HOM.TT.BH}}{\sqrt{3} \cdot I_{HOM.TP.BH}} ,$$

$$K_{B1} = \frac{300}{\sqrt{3} \cdot 160.8} = 1,078, K_{B1} = 1,08.$$

На стороне НН – коэффициент выравнивания:

$$K_{B2} = \frac{I_{HOM.TT.HH}}{I_{HOM.TP.HH}},$$

$$K_{B2} = \frac{3000}{2936,05} = 1,022, K_{B2} = 1,02.$$

Уставки по току находятся:

$$I_{VCT.BH}^{\mathcal{I}T} = \frac{5 \cdot 1,0}{1.08} = 4,63A.$$

$$I_{VCT,BH}^{\mathcal{I}T} = 4,6A.$$

$$I_{VCT.HH}^{\mathcal{I}T} = \frac{5 \cdot 1,0}{1,02} = 4,91A.$$

$$I_{VCT.HH}^{\mathcal{I}T} = 4.9A.$$

Ток срабатывания:

$$I_{C3.BH}^{\mathcal{I}T} = \frac{I_{VCT.BH}^{\mathcal{I}T} \cdot K_{TT.BH}}{K_{CX.BH}},$$

$$I_{C3.BH}^{ZT} = \frac{4,6 \cdot 300 / 5}{\sqrt{3}} = 159,54 A.$$

Коэффициент чувствительности:

$$k_{q} = \frac{I_{K3.\text{min}}^{(2)}}{I_{CP.TO}},$$

$$I_{K3}^{(2)} = \frac{\sqrt{3}}{2} \cdot I_{K3}^{(3)};$$

$$I_{K3}^{(2)} = \frac{\sqrt{3}}{2} \cdot 1168 = 1010 A;$$

$$k_{\times} = \frac{1010}{159.64} = 6,33 > 2.$$

Уставка по вторичному току срабатывания:

$$I_{VCT.BH}^{DO} = \frac{5 \cdot I_{CP}^{DO}}{K_{B_1}};$$

$$I_{VCT.BH}^{DO} = \frac{5 \cdot 6.0}{1,08} = 27,78 A. I_{VCT.BH}^{DO} = 28 A.$$

$$I_{VCT.HH}^{DO} = \frac{5 \cdot I_{CP}^{DO}}{K_{B_2}};$$

$$I_{VCT.HH}^{DO} = \frac{5 \cdot 6.0}{1.02} = 29,41 A. I_{VCT.HH}^{DO} = 30 A.$$

Грубая ступень отсечки дифференциальной:

$$I_{C3.BH}^{DO} = \frac{28 \cdot 300 / 5}{\sqrt{3}} = 971,09 A.$$

По известному значению тока трехфазного КЗ в минимальном режиме в точке К1 найдем ток двухфазного КЗ:

$$I_{K_1 \, \text{min}}^{(2)} = \frac{\sqrt{3}}{2} \cdot 2357 = 2041 A;$$

$$k_{\rm q} = \frac{2041}{971,09} = 2,11 \ge 1,5$$
.

Грубая ступень отсечки терминала PC83-ДТ2 удовлетворяет требованиям.

Заключение

В работе был разработан проект реконструкции подстанции «Западная» 110/6 кВ.

Согласно условиям реконструкции была произведена замена существующих трансформаторов мощностью 25 MBA на трансформаторы мощностью 32 MBA в связи с повышением нагрузки.

Согласно нормативным документам и проделанным расчетам к установке было принято следующее оборудование:

- на стороне 110 кВ: вакуумный выключатель марки ВРС–110-31,5/2500; трансформаторы тока ТФЗМ-110-У1 и ТВТ 110 кВ; ограничители перенапряжения типа ОПНН-110/85-У1; трансформаторы напряжения марки НАМИ 110; разъединители марки РГ-110/1000 УХЛ 1;
- на стороне 6 кВ: были выбраны ячейки КРУ типа КРУ СЭЩ –70 для установки в ЗРУ 6 кВ со следующим оборудованием: вакуумный выключатель ВБУ-10-20/2500У2; трансформатор тока ТОЛ СЭЩ -10; трансформатор напряжения НАМИ 10 кВ.

Также была произведена замена средств релейной защиты на микропроцессорные терминалы защит типа «РС83-ДТ2» производства ООО «Системы РЗА» (г. Москва).

В результате произведённой реконструкции главной понизительной подстанции она соответствует всем современным нормам и требованиям.

Список использованных источников

- 1. Правила устройств электроустановок (ПУЭ). С.Пб.: Энергоатомиздат, 2002.
- 2. Правила технической эксплуатации электроустановок потребителей и Правила техники безопасности при эксплуатации электроустановок и потребителей. М.: Энергоатомиздат, 1990.
- 3. Руководящие указания по расчету токов короткого замыкания и выбору электрооборудования: РД 153-34.0-20.527-98/ под ред. Б.Н. Неклепаева. М.: Изд-во НЦ ЭНАС, 2006.
- 4. Кудрин, Б.И. Электроснабжение промышленных предприятий: учебник для вузов / Б.И. Кудрин. М.: Интермет Инжиниринг, 2005.
- 5. Ульянов, С.А. Электромагнитные переходные процессы в электрических системах/ С.А. Ульянов М.: Энергоатомиздат, 1981.
- 6. Камнев, В.Н. Чтение схем и чертежей электроустановок/ В.Н. Камнев. М.: Энергоатомиздат, 1986.
- 7. Свирен, С.Я. Электрические станции и подстанции: пособие по дипломному проектированию/ С.Я. Свирен М.: Интермет Инжиниринг, 1990.
- 8. Мукосеев, Ю.Л. Электроснабжение промышленных предприятий/ Ю.Л. Мукосеев. М.: Энергия, 1973.
- 9. Басс, Э.И. Релейная защита электроэнергетических установок/ Э. И. Басс М.: Энергоатомиздат, 2002.
- 10. Двоскин, Л.И. Схемы и конструкции распределительных устройств/ Л.И. Двоскин М.: Энергоатомиздат, 1985.
- 11. Неклепаев, Б.Н. Электрическая часть электростанций и подстанций. Справочные материалы для курсового и дипломного проектирования: учеб. пособие для вузов/ Б.Н. Неклепаев, И.П. Крючков. М.: Энергоатозиздат, 1989.
- 12. Рожкова, Л.Д. Электрооборудование электрических станций и подстанций/ Л.Д.Рожкова, Л.К. Карнеева, Т.В. Чиркова М.: Изд. центр «Академия», 2004.

- 13. Макаров, Е.Ф. Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ: в 6 т. / Е.Ф. Макаров ; под ред. гл. специалистов ОАО «Мосэнерго». М. : Изд-во «Энергия», 2006. Т.4.
- 14. Макаров, Е.Ф. Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ: в 6 т. / Е.Ф. Макаров ; под ред. гл. специалистов ОАО «Мосэнерго». М. : Изд-во «Энергия», 2006. Т.2.
- 15. Макаров, Е.Ф. Справочник по электрическим сетям 0,4-35 кВ и 110-1150 кВ: в 6 т. / Е.Ф. Макаров ; под ред. гл. специалистов ОАО «Мосэнерго». М. : Изд-во «Энергия», 2006. Т.6.
- 16. Шабад, М.А. Расчеты релейной защиты и автоматики распределительных сетей/ М.А. Шабад М.: Энергия, 1970.
- 17. Справочник по проектированию электроснабжения/ Под ред. Ю.Г. Барыбина и др. М.: Энергоатомиздат, 1990.
- 18. Справочник энергетика. Учебник./В.И. Григорьев М.: Колос, 2006.
- 19. Электротехнический справочник: В 4 т. Т.3. Производство, передача и распределение электрической энергии/ Под общ. ред. В.Г. Герасимова и др. М.: МЭИ, 2002.
- 20. Самолина, О.В. Релейная защита понизительной трансформаторной подстанции: учебное пособие/ О.В. Самолина Тольятти: ТГУ, 2007.
- 21. Щербаков, Е.Ф. Распределение электрической энергии на предприятиях: учебное пособие/ Е.Ф. Щербаков, А.Л. Дубов Ульяновск: УГТУ, 2006.
- 22. Шевченко, Н.Ю. Электроснабжение: учебное пособие/ Н.Ю. Шевченко Волгоград: ВГТУ, 2006.
- 23. Mcdonald, J. D. Electric Power Substations Engineering / J. D. Mcdonald [и др.]. Майями: CRC Press Taylor & Francis Group, 2012. 593c
- 24. Hewitson, Leslie G. Practical System Protection (Practical Professional Books) / L. G. Hewitson. Newnes, 2005. 290 c.

- 25. Gers, J. M. Protection of Electricity Distribution Networks, 3^{rd} Edition (Energy Engineering) / J. M. Gers, E. D. Holmes. The Institution of Engineering and Technology, 2011. 368 c.
- 26. Lakervi, E. Electricity Distribution Network Design, 2^{nd} Edition (Energy Engineering) / E. Lakervi, E. J. Holmes. The Institution of Engineering and Technology, 2005.-338 c.
- 27. Bayliss, C. Transmission and Distribution Electrical Engineering / C. Bayliss, B. Hardly. Newnes, 2012. 1180 c.