МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Институт инженерной и экологической безопасности (наименование института полностью)

20.03.01 «Техносферная безопасность» (код и наименование направления подготовки, специальности) Пожарная безопасность (направленность (профиль) / специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

, –	ая опасность компрессоров и компре	<u>-</u>			
меры		пожарной			
безопасности					
Студент	В.А. Кочетков				
	(И.О. Фамилия)	(личная подпись)			
Руководитель	ель к т.н., доцент А.Н. Москалюк				
	(ученая степень, звание, И.О. Ф	амилия)			
Консультант	к.э.н., доцент Т.Ю. Фрезе				
	(ученая степень, звание, И.О. Ф	амилия)			

Аннотация

Тема данной выпускной квалификационной работы — пожарная опасность компрессоров и компрессорных станций и меры пожарной безопасности.

Ключевые слова: пожарная безопасность, средства пожарной безопасности, обнаружение и тушение пожаров, экологическая безопасность, экономическая эффективность.

Выпускная квалификационная работа содержит 46 листов материала, включает в себя 1 рисунок, 7 таблиц и 15 используемых источников.

В ведении обоснована актуальность темы, обозначены предмет и объект исследования, определена цель и задачи исследования.

В первом разделе дана характеристика рассматриваемого объекта.

Во втором разделе проведен анализ соответствия объекта требованиям пожарной безопасности.

В третьем разделе разработана система пожарной безопасности.

В четвертом разделе рассмотрен процесс организации эвакуации с рассматриваемого объекта.

В пятом разделе разработана процедура прохождения медицинских осмотров.

В шестом разделе проидентифицированы экологические аспекты организации.

В седьмом разделе рассчитана полученная экономическая эффективность мероприятий, которые предложены в настоящем исследовании.

В заключении обобщены основные вопросы и приведены тезисные выводы, подводящие итог всей выпускной квалификационной работы.

Содержание

Введение	4
Термины и определения	5
Перечень обозначений и сокращений	6
1 Характеристика объекта	7
2 Анализ соответствия объекта требованиям пожарной	
безопасности	10
3 Разработка систем пожарной безопасности и способов защиты	
объекта	
•	15
4 Организация процесса эвакуации на	
объекте	17
5 Охрана труда	25
6 Охрана окружающей среды и экологической безопасности	31
7 Оценка эффективности мероприятий по обеспечению техносферной	
безопасности	
•	35
Заключение	44
Список используемых источников	45

Введение

Система противопожарной безопасности имеет огромную значимость не только для пожарной службы, но и для собственников квартир, частных домов. Пожар представляет собой процесс горения, вышедший из-под человеческого контроля. Виновником его возникновения может стать сам человек. Для обеспечения нужного уровня безопасности можно использовать разные виды профилактики, а также практического предупреждения пожаров.

Настоящая выпускная квалификационная работа написана на базе промышленного объекта.

Целью данной выпускной квалификационной работы является анализ пожарной опасности компрессоров и компрессорных станций и разработка мер по обеспечению их пожарной безопасности.

Для достижения поставленной цели необходимо выполнение следующие задач:

- дать характеристику рассматриваемого объекта;
- оценить соответствие производственного объекта требованиям пожарной безопасности;
- разработать мероприятия по повышению уровня пожарной безопасности объекта;
- рассмотреть организацию процесса эвакуации на объекте;
- разработать процедуру прохождения обязательных предварительных и периодических осмотров;
- проидентифицировать экологические аспекты организации;
- рассчитать полученную экономическую эффективность мероприятий, которые предложены в настоящем исследовании.

Объект исследования: участок тепловых источников и тепловых сетей Ульяновской ТЭЦ №1.

Термины и определения

Противопожарная защита — это «совокупность организационнотехнических мероприятий, конструктивных и объемно-планировочных решений, а также технических средств, направленных на предотвращение воздействия на людей опасных факторов пожара и ограничение материальных потерь от пожара» [14].

Распыленная вода — «вода, которая увеличивает поверхность соприкосновения воды с горящим веществом, быстро превращается в пар и этим способствует тушению пожара» [5].

Огнетушащий состав — «вещества и материалы, обладающие физикохимическими свойствами, которые позволяют создать условия для прекращения горения» [3].

Тепловой поток — это «количество тепловой энергии, которое передается через изотермическую поверхность за единицу времени» [12].

Пожарный извещатель — «техническое средство, которое устанавливают непосредственно на защищаемом объекте для передачи тревожного извещения о пожаре на пожарный приёмно-контрольный прибор и/или оповещения и отображения информации об обнаружении загораний» [1].

Перечень обозначений и сокращений

НПБ – нормы пожарной безопасности.

ПБ – пожарная безопасность.

ПБОО – паспорт безопасности опасного объекта

ПВР – пункт временного размещения

ГОСТ – межгосударственный стандарт.

СНиП – строительные нормы и правила.

РД – руководящий документ.

ООО – общество с ограниченной ответственностью.

АБК – административно-бытовой корпус.

ИП – извещатель пожарный.

ИПР – извещатель пожарный ручной.

СОУЭ – система оповещения и управления эвакуацией.

ОПС – охранно-пожарная система.

1 Характеристика объекта

ТЭЦ расположена в ж.р. Энергетик, предназначена для производства тепловой и электрической энергии и отпуска ее потребителям.

Общая площадь территории предприятия составляет — 7 Га, по периметру территория обнесена железобетонным забором высотой 2,5 метра, на территорию имеется 1 въезд для автотранспорта с восточной стороны с проезда Стройиндустрии и 1 въезд для железнодорожного транспорта с западной стороны.

Главный корпус ТЭЦ — 4-этажное здание, 1961, 1964, 1980 г.г. постройки по очередям 1,2,3. В главном корпусе ТЭЦ расположены: котлотурбинный цех с ГРУ, распределительные устройства электроцеха, кабельные сооружения электроцеха и ЦТАИ, мастерские ЦЦР, а также бытовые и административные помещения.

Котельное отделение (КО) — 2 степени огнестойкости, размеры в плане 156×36 м, высота котельного зала 29 м. Балки перекрытия металлические и железобетонные. Несущие фермы и колонны железобетонные. Перекрытия из сборных железобетонных плит и из монолитного железобетона. Покрытие — из железобетонных плит с продольными несущими ребрами «вниз» по металлическим незащищенным балкам. Кровля мягкая из рубероида на битумной мастике. В котельном отделении отопление - центральное водяное, освещение электрическое и естественное (на отметки 0.00 м — только электрическое). Имеется поисковая радиосвязь и местная телефонная связь. Извещатели радиопоисковой связи (РИС) установлены на отметках, обслуживания 0.00, 7,20 м и 20,0 м. Рабочие места оборудованы местными телефонами и микрофонами РПС.

Турбинное отделение — 2 степени огнестойкости, размеры в плане 66×15 м, высота машинного зала 17 м. Стены выполнены из железобетонных панелей. Колонны железобетонные и металлические. Фермы металлические, предел огнестойкости 0,25 часа. Покрытие из железобетонных плит. Кровля

битумной мастике. рубероида на Балки перекрытий мягкая, железобетонные и металлические. Перекрытия из сборных железобетонных плит и монолитного железобетона. Турбогенераторы установлены на железобетонных фундаментах. Площадки монолитных обслуживания турбогенераторов И перекрытия ПОД деаэраторной этажеркой железобетонных плит с продольными несущими ребрами «вниз» по металлическим и несущим балкам. В турбинном отделении освещение естественное и электрическое. Отопление – водяное. Имеются извещатели поисковой связи и местные телефоны (на отметках 0.00 м, деаэраторной этажерке и в подвале сырой воды).

К главному корпусу примыкает тракт топливоподачи, в который входят ленточные конвейеры (ЛК) №№ 1,2,3,5. Причем ЛК-3 представляет собой надбункерную галерею, расположенную в верхней части главного корпуса.

Для обнаружения пожара в главном корпусе помещения ГРУ, помещение электрофильтров, бытовые и административные помещения оборудованы автоматической пожарной сигнализацией с установкой извещателей ИДПЛ, ДИП, ИП-104 с выводом шлейфов на ПКП «Сигнал-20», «УОТС», «С-2000», с выводом приёмной аппаратуры на ЦТЩ.

Под зданием главного корпуса на отметке 2 м ниже уровня пола расположен кабельный подвал, состоящий из 4 отсеков: отсеки №№ 1,2 под ГРУ-6 кВ; отсек №3 под РУСН-0,4 кВ; отсек №4 под РУСН-0,4 кВ и РУСН-6 кВ. Отсеки №1 и №2 разделены противопожарными дверями. Между отсеками №3 и №4 имеется переход с самозакрывающимися противопожарными дверями. Между отсеками №1 и №3, №2 и №3 выполнены переходы с противопожарными дверями.

Основные конструкции кабельных подвалов выполнены из бетонных стен, перекрытие железобетонные. Пол из асфальтового покрытия. Окна не предусмотрены. Для входа в кабельный подвал предусмотрено 6 люков.

Размеры отсеков кабельного подвала:

- отсеки №№ 1,2 - длина 50 м, ширина 6 м, высота 2 м;

- отсек №3 длина 56 м, ширина 3 м, высота 2 м;
- отсек №4 длина 84 м, ширина 6 м, высота 2 м.

В кабельном подвале вдоль стен установлены металлоконструкции (кабельные стойки и полки), на которых уложены кабельные линии 6 кВ и 0,4 кВ для запитки токоприемников и кабельные линии связи секций (рабочие и резервные).

Отопление в кабельном подвале не предусмотрено, освещение электрическое напряжением 36 В. Вентиляция естественная, вентиляционные шахты расположены в отсеке №4 под РУСН-6 кВ. В случае пожара обесточивание кабелей производится отключением ВМ-6 кВ установленных в РУСН-6 кВ, а также с главного щита управления ТЭЦ.

В кабельном подвале установлены пожарные извещатели ДИП-1 в количестве 39 шт. подают сигнал на пульт ППС-1, установленный на ЦТЩ-1,2 ТЭЦ. Извещатели собраны в лучи от ППС-1 на ЦТЩ-1: 3 луч – кабельный подвал к.а. 5, 8 луч – 3 отсек кабельного подвала, 9 луч – 2 отсек кабельного подвала, 10 луч – 1 отсек кабельного подвала от ППС-2 на ЦТЩ-2, 11 луч – кабельный подвал, 12 луч – кабельный подвал.

В кабельном подвале предусморена дренчерная система автоматического пожаротушения, которая состоит из насосной станции, сети магистральных водопроводов и узлов управления с электрифицированными задвижками. Насосная станция включает в себя два пожарных насоса, аппаратура управления которых установлена на панели ЦТЩ-1 и непосредственно по месту. Управление электрифицированной запорной арматурой пожарных трубопроводов осуществляется с ЦТЩ-1,2 и кнопками по месту установки задвижек.

2 Анализ соответствия объекта требованиям пожарной безопасности

«Определяем время свободного развития пожара τ_{cB} до прибытия первого пожарного подразделения» [7] по формуле:

$$T_{CB} = T_{\partial c} + T_{c\bar{o}} + T_{cn1} + T_{\bar{o}p} \tag{1}$$

где $au_{\partial c}$ - «промежуток времени от начала возникновения пожара до сообщения о нем в пожарную охрану, мин» [7];

 τ_{c6} — «время сбора л/с боевых расчетов по тревоге, мин (принимается равным 1 мин)» [24];

т _{сл} – «время следования подразделений на пожар, мин» [7];

 $au_{\text{бр}}$ – «время боевого развертывания пожарных подразделений, мин. (принимаем 3 минуты)» [7].

$$T_{CB} = 1 + 1 + 1 + 3 = 6$$
мин
$$T_{CR1} = \frac{60 \times L}{V_{CR}},$$
(2)

где «L – путь от ПЧ до места пожара, км» [7];

 $V_{\rm cn}$ — скорость движения пожарного автомобиля по твердом покрытию, равная 45 км/ч.

$$T_{cn1} = \frac{60 \times 0, 6}{45} = 1$$
мин

«Расчёт пути, пройденного огнём» [24]:

$$R = 0.5V\pi \cdot TcB, \tag{3}$$

где R — «радиус развития пожара» [7];

 V_{π} – «линейная скорость распространения горения, 1 м/мин» [7].

$$R = 0.5 \cdot 1 \cdot 6 = 3$$
,

«Определение площади пожара» [7]:

$$S\Pi = \pi \cdot R^2,\tag{4}$$

где R — «радиус развития пожара» [24].

$$S\pi = 3.14 \cdot 3^2 = 28.26 \text{ m}^2$$

«Определение площади тушения пожара» [7]:

При условии развитии пожара по круговой форме, при $R \le h$, принимаем $S \pi = S \tau$.

«Определение требуемого расхода воды для локализации при тушении по фронту» [7]:

$$Q \mathsf{T} \mathsf{p} = S \mathsf{T} \cdot I \mathsf{T} \mathsf{p} \,, \tag{5}$$

где $S_{\rm T}$ – «площадь тушения пожара» [7];

 $I_{\rm rp}$ — «интенсивность подачи воды для тушение пожара» [7], л/м 2 с.

$$Q$$
тр = 28,26 · 0,1 = 2,38 л/с,

«Определение требуемого количества стволов для локализации и тушения пожара» [7]:

$$N_{\rm CT}^{\rm T} = \frac{Q_{\rm TP}^{\rm T}}{q_{\rm CT}},\tag{6}$$

где $Q_{\rm Tp}^{\ \ \ \ }$ – «требуемый расход огнетушащих веществ на тушение, л/с» [7];

 $q_{\rm cr}$ – «расход ствола» [7], л/с.

$$N_{\rm ct}^{\rm T} = \frac{2{,}38}{3.7} = 0{,}64 \approx 1$$
 ствол «РСК-50»,

«Определение общего фактического расхода воды на ликвидацию горения и защиту» [7]:

$$Q_{\Phi} = (N_{\rm cT}^3 \cdot q_{\rm cT}) + (N_{\rm cT}^{\rm T} \cdot q_{\rm cT}), \tag{7}$$

где $q_{\rm cr}$ – «расход ствола» [7], л/с;

 $N_{\rm cr}^{-3}$ – количество стволов на защиту, шт.;

 $N_{\rm cr}^{\ \ T}$ – количество стволов на тушение, шт.

$$Q_{\Phi} = (1 \cdot 3.7) + (3 \cdot 3.7) = 14.8 \,\text{m/c},$$

«Проверим обеспеченность объекта водой для целей пожаротушения» [7]. «Водоотдача наружного противопожарного водопровода» [7] К-150 по справочным данным, при напоре 40 м в.ст., составит 95 л/с ($Q_{\text{вод}}$), «фактический расход на тушение и защиту, л/с» [7], составляет 14,8 л/с (Q_{ϕ}). При этом $Q_{\phi} < Q_{\text{вод}}$ «Таким образом: объект водой обеспечен полностью при напоре 40 метров» [7].

«Определение требуемого количества пожарных автомобилей» [7]:

$$N_{\text{па}} = \frac{Q_{\phi}}{Q_{\text{H}}} \cdot 0.8,\tag{8}$$

где Q_{ϕ} – «фактический расход на тушение и защиту, л/с» [7];

 $Q_{\rm H}$ – «производительность насоса» [7], л/с;

0,8 – «коэффициент, учитывающий износ насоса» [7].

$$N_{\text{па}} = \frac{14.8}{40} \cdot 0.8 = 0.3 \approx 1, \text{ AU},$$

«Определим предельной длины прокладки магистральных линий» [7]:

$$L_{\rm np} = \frac{H_{\rm H} - (H_{\rm p} \pm Z_{\rm M} \pm Z_{\rm CT})}{S \cdot Q^2} \cdot 20$$
 (9)

«где L_{np} — предельное расстояние подачи огнетушащих веществ, м;

 H_{H} – напор на насосе, м;

 H_p – потери напора на разветвлении, м ($H_p = H_{cme} + 10$);

 $Z_{\scriptscriptstyle M}$ – высота подъема местности, м;

 Z_{cms} – наибольшая высота подъема стволов, м;

20 – длина рукава, м;

S — сопротивление одного прорезиненного рукава диаметром 77 мм;

Q — расход по одной максимально загруженной магистральной рукавной линии» [7].

$$L_{\rm np} = \frac{100 - (50 \pm 0 \pm 0)}{0.015 \cdot 14.8^2} \cdot 20 = 304.8 \text{ M},$$

Учитывая, что ПГ расположены на расстоянии до 20 м от объекта, их использование возможно. «Определим необходимое количество личного состава» [7]:

$$N_{\pi/c} = (N_{\text{гдзc}} \cdot 3) + N_{\text{p}} + N_{\pi 6} + N_{\text{cB}}, \tag{10}$$

где $N_{\text{гдзс}}$ — «количество людей, задействованных в звеньях ГДЗС на тушении и защите» [7];

 $N_{\rm p}$ – «количество личного состава на разветвлениях» [7];

 $N_{\rm nf}$ – «количество личного состава на постах безопасности» [7];

 $N_{\rm cs}$ – «количество связных» [7].

$$N_{\pi/c} = (4 \cdot 3) + 2 + 4 + 5 = 23$$
 человека,

«Определим количество отделений основного назначения» [7]:

$$N_{\text{отд}} = \frac{N_{\pi/c}}{4},\tag{11}$$

$$N_{\text{отд}} = \frac{23}{4} = 5,7 = 6$$
 отделений.

Таким образом, для ликвидации возгорания необходимо 6 пожарных отделений.

Ликвидацию горения на Ульяновской ТЭЦ №1 производить:

- «факельного горения струй газа на фланцевых соединениях и запорной арматуре аппаратов и трубопроводов, нагретых до высоких температур, а также загораний внутри ректификационной печи – при помощи системы азототушения;
- горение в помещение компрессорной при помощи систем пенного пожаротушения;
- факельного горения в сырьевой насосной системой порошкового пожаротушения;
- небольших проливов нефтепродуктов, пропусков трубопроводов и запорной арматуры – огнетушителями;
- горения в административных и подсобных помещениях газовое пожаротушение или огнетушителями;
- возгораний в электрощитках, электропроводке, электроприборах углекислотными и порошковыми огнетушителями» [12].

3 Разработка систем пожарной безопасности и способов защиты объекта

Итак, по проведенному далее расчету эвакуационное время из помещений Ульяновской ТЭЦ №1 составляет 6,89 мин, что значительно больше допустимого значения (5,05 мин), при этом, значительный отрезок времени занимает равный 4,1 мин. Следовательно, напрашивается вывод: здание, принадлежащее компании, должно быть оборудовано пожарной автоматической системой сигнализации, что обеспечит существенное сокращение времени задержки до начала процесса эвакуации. Для производственных объектов Ульяновской ТЭЦ №1 разработаны планы эвакуации, включающие ряд пунктов.

Общие положения. В этом пункте указаны ссылки на основные законодательно-нормативные акты, приводится краткое изложение нормативной базы, указывается требование обязательного выполнения каждым сотрудником производственного объекта данной инструкции;

Передача сведений о ЧС (пожарной или аварийной). В этом пункте указаны признаки возникновения и развития пожарных ситуаций, приводится последовательность действий и оперативные данные при информировании пожарного подразделения, ответственных за состояние пожарной безопасности сотрудников предприятия.

Действия персонала при эвакуации. Приводится перечень мер, снижающих развитие пожара, обеспечивающих сохранение жизней и здоровья работникам – отключение электроснабжения, применение СИЗ и др. Здесь же указаны обязательные действия и их очередность дежурному персоналу, руководителям подразделений, ответственным за пожарную безопасность лицам, согласно утвержденного списка; четко определены безопасные места для эвакуированных сотрудников;

Первые средства тушения пожара. Тут содержится краткое изложение действий, как привести в рабочее состояние огнетушители (углекислый,

порошковый); перечислены местоположения огнетушителей и пожарных водных кранов; приведены краткие сведения - в каких ситуациях могут использоваться данные средства тушения пламени [20].

Проектом предусмотрено использование прибора адресного приемноохранно-пожарного Рубеж-2ОП. Для контрольного И управления оповещения людей о пожаре используются речевые охранно-пожарные оповещатели Соната-М, которые распределены ПО коридору И подключаются к источнику вторичного электропитания через адресный релейный модуль РМ-2. Обеспечение требуемого уровня слышимости в каждом месте помещения производится оповещателями, причем, сигнал подается определенный и отличный от других. При возникновении пожара производится включение всех оповещателей. По итогу предполагаемого произведены расчеты, расчетное внедрения были время составило:

$$T_p = 1,85 \cdot 2 = 3,7$$
 мин

Расчет времени отказа системы оповещения:

$$\tau_{om\kappa} = 1, 2\left(T_p + T_{_{M.3}}\right) \tag{12}$$

«где $\tau_{om\kappa}$ – время от начала пожара до момента отказа АПС;

1,2 - коэффициент запаса;

 $T_{M,3}$ – интервал от возникновения пожара до начала эвакуации» [7].

$$\tau_{om\kappa} > 1, 2(3, 7+4)$$
 $60 > 9, 74$

Итак, в данном разделе было выяснено, что время отказа системы больше, чем время эвакуации людей из здания, поэтому в следующем

разделе необходимо рассмотреть процесс организации процесса эвакуации на объекте.

4 Организация процесса эвакуации на объекте

Информация о наличии людей, их спасении и эвакуации представлены в таблицах 1 и 2.

Таблица 1 — Информация о наличии людей, спасение и эвакуация из заводоуправления

Этаж	отметки до подоконник	этаже лнем/ночью	обслужива ющего	O	Количество выходов на лестничную клетку	Наличие	Наличие системы дымоудален ия
Цок	1.5 метров	15/0	15/0	24	2	нет	нет
этаж							
1 этаж	5 метров	50/0	50/0	30	3	нет	нет
2 этаж	9 метров	30/0	30/0	29	3	нет	нет

Таблица 2 – Информация о наличии людей, спасение и эвакуация инженерный корпус

Этаж	Высота от 0 отметки до подоконник а	лнем/ночью	оослужива ющего	на этаже		Наличие	Наличие системы дымоудале ния
Цок	1 метров	15/0	15/0	30	2	нет	нет
этаж							
1 этаж	4 метров	50/1	50/1	30	3	нет	нет
2 этаж	7 метров	30/0	30/0	24	4	нет	нет
3 этаж	10 метров	20/0	20/0	25	3	нет	нет
Tex	12 метров	20/0	20/0	3	3	нет	нет
этаж							

Итак, по анализу таблиц 1 и 2 можно отметить, что в целом днем в зданиях заводоуправления и инженерного корпуса находится около 230 человек, ночью – 2-3 человека.

План действий персонала при возникновении пожара представлен в

таблице 3.

Таблица 3 – План действий персонала при возникновении пожара

Наименование действий	Порядок и последовательность действий	Ответственный исполнитель
Сообщение о пожаре	При обнаружении пожара или его признаков немедленно сообщить по телефону 01, 010, 112 с сотового в пожарную охрану, сообщить адрес, место возникновения пожара и свою фамилию. Оповестить весь персонал и посетителей, поставить в известность руководство.	Первый заметивший или обнаруживший пожар
Эвакуация людей, порядок эвакуации	Все люди должны выводиться наружу через коридоры и выходы, согласно плану эвакуации, немедленно при обнаружении пожара. В первую очередь эвакуируются те, кому непосредственно угрожает опасность.	Ответственные за обеспечение пожарной безопасности
Эвакуация материальных ценностей	Материальные ценности эвакуируются согласно составленным по помещениям спискам в соответствии с обстановкой пожара. Эвакуация имущества в первую очередь организуется из помещений, где произошел пожар и выносится наиболее ценное имущество. Организовать охрану.	Персонал
Пункты размещения эвакуированных	При эвакуации в дневной (светлый) периода суток, людей размещают на соседней безопасной территории, в ночной период суток или зимой — в помещениях близко расположенных зданий. Обязательно должна проводиться списочная проверка эвакуированных людей, при обнаружении отсутствий кого-либо, незамедлительно известить руководителя тушения пожара.	Ответственные за обеспечение пожарной безопасности
Отключение электроэнергии	Отключение электроэнергии производится в том случае, если производится тушение пожара водой, а также по окончанию эвакуационных работ для обеспечения дальнейшей работы пожарной охраны по тушению пожара.	электрик.
Тушение пожара до прибытия пожарных подразделений	Тушение пожара организуется и проводится немедленно с момента его обнаружения. Для тушения используются все имеющиеся в средства пожаротушения, в первую очередь огнетушители.	дпд
Организация встречи пожарного подразделения	По прибытии пожарного подразделения: проинформировать руководителя тушения пожара о ходе эвакуации людей, об очаге пожара, мерах, принятых мерах для его ликвидации пожара.	Директор, заместитель директора

«На данном объекте АСС не создана, техника, средства связи отсутствуют. Участники тушения пожара обеспечены средствами индивидуальной защиты согласно норм положенности. Защита эвакуируемых людей возможна с помощью спасательных устройств СИЗОД л/с пожарной охраны, участвующего в тушении» [7].

«Критическая продолжительность пожара по температуре рассчитывается с учетом мебели в помещении» [7]:

$$\tau_{nk}^{1} = \sqrt[3]{\frac{W_{nom} \cdot c \cdot \left(t_{kp} - t_{H}\right)}{\left(1 - \varphi\right) \cdot \pi \cdot Q \cdot n \cdot V^{2}}} \tag{13}$$

«где Wпом – объем воздуха в рассматриваемом здании или помещении;

с – удельная изобарная теплоемкость газа;

tкр – критическая для человека температура;

tн – начальная температура воздуха;

ф – коэффициент, характеризующий потери тепла на нагрев конструкций и окружающих предметов;

Q – теплота сгорания веществ;

f – площадь поверхности горения;

n – весовая скорость горения» [7].

$$\tau_{nk}^{1} = \sqrt[3]{\frac{100, 8 \cdot 1009 \cdot (70 - 20)}{(1 - 0, 5) \cdot 3, 14 \cdot 13800 \cdot 14 \cdot 0, 36^{2}}} = 5,05$$
мин

«Критическая продолжительность пожара по концентрации кислорода рассчитывается по формуле» [7]:

$$\tau_{nk}^{2} = \sqrt[3]{\frac{0.01^{-1} \cdot W_{no.M}}{\pi \cdot n \cdot W_{o_{2}} \cdot V^{2}}}$$
 (14)

где « $W_{\rm O2}$ – расход кислорода на сгорание 1 кг горючих веществ» [7].

$$\tau_{nk}^2 = \sqrt[3]{\frac{100 \cdot 100, 8}{3,14 \cdot 14 \cdot 4,76 \cdot 0,36^2}} = 7,19$$
 мин

Следовательно, допустимая продолжительность эвакуации будет равна по формуле:

$$\tau_{\partial on}^1 = m \cdot \tau_{nk}^1 \tag{15}$$

$$\tau_{\partial on}^1 = 1.5,05 = 5,05$$
 мин

Поскольку в здании отсутствует пожарная автоматическая система оповещения и сигнализации, то в случае возгорания эвакуация сотрудников начнется с задержкой во времени на 4,2 мин. Расчетное время выхода сотрудников с первого участка проводится с учетом плотности движения людей, габаритного размера помещения (6м на 7м) на основании формулы:

$$D_{\rm l} = \frac{N_{\rm l} \cdot f}{L_{\rm l} \cdot b_{\rm l}} \tag{16}$$

где «N – число людей в эвакуационном проходе;

f – средняя площадь горизонтальной проекции человека;

L – длина участка пути;

b – ширина участка пути» [7].

$$D_1 = \frac{7 \cdot 0.1}{6 \cdot 7} = 0.02$$

Время движения по первому участку:

$$t_1 = \frac{L_1}{V_1} \tag{17}$$

$$t_1 = \frac{7}{100} = 0,07$$
 мин

Максимального значения поток движения в зоне проёма при нормальных условиях достигает qmax = 19,6 м/мин, расчет интенсивности в зоне проёма при ширине 1,1 м определяется формулой:

$$q_d = 2.5 + 3.75b \tag{18}$$

$$q_d = 2,5+3,75\cdot 1,1=6,62 \text{ M}/\text{ MUH}$$

Так как $q_d < q_{\max}$, движение проходит беспрепятственно. «Время движения в проеме определяется по формуле» [7]:

$$t_{dL} = \frac{N \cdot f}{q \cdot b} \tag{19}$$

$$t_{dL} = \frac{7 \cdot 0.1}{6.62 \cdot 1.1} = 0,096 \text{ мин}$$

На втором этаже плотность людского потока составит:

$$D_4 = \frac{N_4 \cdot f}{L_4 \cdot b_4} \tag{20}$$

$$D_4 = \frac{76 \cdot 0.1}{28 \cdot 3} = 0.09$$
 мин

Расчет скорости перемещения людского потока по лестничному маршу требует предварительного расчета интенсивности движения по третьему участку пути:

$$t_3 = \frac{L_3}{V_3} \tag{21}$$

«где bi, bi-1 – ширина рассматриваемого и предшествующего участков пути;

qi, qi-1 — интенсивность движения людского потока по рассматриваемому и предшествующему участкам пути» [7].

$$q_i = \frac{8 \cdot 3}{1.5} = 16 \text{ M/MUH}$$

«Это показывает, что на лестнице скорость людского потока V3 = 40 м/мин. Время движения по лестнице вниз (3-й участок)» [7]:

$$t_3 = \frac{L_3}{V_3} \tag{22}$$

$$t_3 = \frac{10}{40} = 0,25$$
 мин

«Плотность людского потока для первого этажа» [7]:

$$D_4 = \frac{N_4 \cdot f}{L_4 \cdot b_4} \tag{23}$$

$$D_4 = \frac{76 \cdot 0.1}{28 \cdot 3} = 0.09 \text{ M} / \text{ MUH}$$

Значение интенсивности q₄ в данном случае будет приблизительно равно 8 м/мин. На стыке участков 3 и 4 произойдет объединение потоков людей с двух этажей — 1-ого и 2-ого. Соответственно, значение интенсивности будет определяться на основании формулы:

$$q_{i} = \frac{\sum q_{q-1} \cdot b_{i-1}}{b_{i}} \tag{24}$$

«где qi-1 – интенсивность движения людских потоков, сливающихся в начале участка;

bi-1 - ширина участков пути до места слияния;

bi – ширина рассматриваемого участка пути» [7].

$$q_i = \frac{(16 \cdot 1, 5) + (8 \cdot 3)}{3} = 16 \text{ M/MUH}$$

«Время движения по коридору первого этажа составит» [7]:

$$t_4 = \frac{28}{40} = 0,7$$
 мин

Помещение тамбура с выходом на улицу длинной 5м, именно в нем создается поток людей максимальной плотности, из-за чего, на основании приведенных в приложении данных, происходит замедление скорости движения до 15 м/мин, соответственно перемещение в зоне тамбура займет время:

$$t_5 = \frac{5}{15} = 0,3$$
 мин

Максимально возможная плотность движения людей в зоне дверного проема выхода на улицу при ширине около 1,6 м, обеспечит поток

интенсивностью 8,5 м/мин, а значение времени прохождения проема составит:

$$t_{d2} = \frac{174 \cdot 0.1}{8.5 \cdot 2} = 1,02$$
 мин

Расчетное время эвакуации вычисляется по формуле

$$t_p = t_{H.3.} + t_1 + t_{dL} + t_2 + t_3 + t_4 + t_5 + t_{d2}$$
(25)

$$t_p = 4,1+0,07+0,096+0,35+0,25+0,7+0,3+1,02=6,89$$
 мин

Итак, в четвертом разделе бакалаврской работы рассмотрен процесс организации процесса эвакуации на объекте. Представлены табличные данные о наличии людей, спасении и эвакуации из заводоуправления и инженерного корпуса.

Охарактеризован план действий персонала, рассчитана критическая продолжительность пожара. Изучена информация о допустимой продолжительности эвакуации, рассчитано время движения по всем участкам промышленного объекта, плотность людского потока для всех этажей здания. В итоге было получено расчетное время эвакуации.

5 Охрана труда

Итак, управление охраной труда — это «совместная деятельность работодателей и работников, которая очень важна для обеспечения безопасности труда» [4]. Данная деятельность осуществляется на основе действующих законодательных норм по охране труда и техники безопасности, перечень предъявляемых требований представлен нормативными актами, утвержденных федеральными органами.

Действующая в настоящее время система законодательных и нормативных правовых актов охраны труда представляет собой сложную и неупорядоченную систему и применяется в рамках действующей в организации системы управления охраной труда [4].

Трудовой кодекс устанавливает условия труда работающим, регулирование трудовых отношений осуществляют:

- «организации труда и управлению трудом;
- трудоустройству у данного работодателя;
- подготовке и дополнительному профессиональному образованию работников непосредственно у данного работодателя;
- социальному партнерству, ведению коллективных переговоров,
 заключению коллективных договоров и соглашений;
- участию работников и профессиональных союзов в установлении условий труда и применении трудового законодательства в предусмотренных законом случаях;
- материальной ответственности работодателей и работников в сфере труда;
- государственному контролю (надзору), профсоюзному контролю за соблюдением трудового законодательства (включая законодательство об охране труда) и иных нормативных правовых актов, содержащих нормы трудового права;
- разрешению трудовых споров;

- обязательному социальному страхованию в случаях, предусмотренных федеральными законами» [13].

Правила охраны труда:

- «собственник обеспечивает возможность проведения техобслуживания, ремонта, реконструкции и модернизации оборудования;
- объем работ по техническому обслуживанию и ремонту установок определяется в зависимости от нужной степени их работоспособности;
- все виды производимых ремонтов оборудования производятся согласно заранее составленным годовым планам. Документы утверждаются техническим руководителем;
- собственник обязуется разработать долгосрочный план, по которому будет проводиться реконструкция и перевооружение оборудования;
- установка периодичности проведения всех видов ремонтных мероприятий, а также продолжительности ежегодных простоев осуществляется с учетом указаний заводов-производителей и действующих норм, согласно отрасли задействования;
- если истек срок службы технологических систем и оборудования, указанный в документации, установки в обязательном порядке проходят техническое освидетельствование. Специальными полномочиями наделена специально созданная комиссия, во главе которой указывается технический руководитель. Комиссией оценивается состояние оборудования, а также устанавливаются сроки и условия дальнейшего его использования» [15].

Каждый работник, включая руководителей предприятий и работодателей, имеющих статус индивидуального предпринимателя, должны пройти процесс обучения и контроль знаний, правила проведения контроля определены Министерством труда. Нормами закона установлено, что каждый работодатель обязан организовать проведение инструктажей по технике

безопасности и охране труда всем принимаемым на работу сотрудникам и тем, которые переводятся на другое рабочее место, обучить безопасным способам выполнения трудовых операций, ознакомить с приемами оказания доврачебной (первой) помощи пострадавшему при несчастном случае. При приеме сотрудника на работу с вредными или опасными условиями труда, должен быть проведен с ним процесс обучения безопасным методам исполнения трудовых обязанностей и проведена стажировка, после чего сотрудник сдает экзамен, и только при успешной его сдаче, может приступить к выполнению трудовой деятельности. Обучение сотрудников по охране труда и технике безопасности, контроль знаний проводятся на регулярной основе. На основании Трудового кодекса государство должно создавать условия и содействовать процессу обучения охране труда в образовательных учреждениях, подготавливать специалистов в сфере охраны труда.

На рассматриваемом объекте Ульяновская ТЭЦ №1 проводятся инструктажи персонала согласно законодательству: «Проведение инструктажей заключается в изложении в устной или письменной форме инструктирующим лицом инструктируемому лицу конкретных руководящих и обязательных для исполнения требований по условиям, порядку и последовательности безопасного совершения тех или иных конкретных действий во время исполнения инструктируемым лицом порученных ему трудовых и поведенческих функций» [8]. В Ульяновская ТЭЦ №1 проводят:

- вводный инструктаж («для всех принимаемых на работу лиц, а также для лиц, командированных на работу на предприятие — организатор обучения либо выполняющих подрядные (субподрядные) работы на подконтрольных предприятию — организатору обучения территории и объектах, а также для обучающихся образовательных организаций и учреждений соответствующих уровней, проходящих производственную практику, либо для иных лиц, участвующих в

- производственной деятельности предприятия организатора обучения» [8];
- первичный и повторный инструктажи на рабочем месте («со всеми вновь принятыми на работу лицами, в том числе для выполнения краткосрочных, сезонных и иных временных работ, в свободное от основной работы время, а также на дому; с работающими, переведенными в установленном порядке из другого подразделения, с командированным на работу, с персоналом подрядчиков с обучающимися образовательных учреждений» [8]);
- внеплановый инструктаж («при введении в действие новых или изменении законодательных и иных нормативных правовых актов, при изменении технологических процессов, замене или модернизации оборудования; при нарушении работниками требований охраны труда, по требованию должностных лиц органов государственного надзора и контроля, при перерывах в работе, по решению работодателя» [8]);
- целевой инструктаж («при выполнении разовых работ, при ликвидации последствий аварий, стихийных бедствий и работ, на которые оформляется наряд-допуск, разрешение или другие специальные документы, а также при проведении в организации массовых мероприятий» [8]).

Любой вид инструктажа должен проводится сотрудником производственного объекта, исполняющего руководящие функции при выполнении работ, для чего предварительно он проходит обучение и сдачу экзамена.

Сведения по проведенному инструктажу фиксируются в специальном журнале. Содержание инструктажа должно включать:

 информирование сотрудников о вредных и опасных факторах в процессе производственной деятельности;

- информирование о требованиях охраны труда, установленных нормативно-правовыми и локальными актами;
- освоение сотрудником безопасных способов, приемов при выполнении трудовых операций.

По окончании ознакомления сотрудника, требуется провести проверку приобретенных им знаний в устной форме.

Рабочие. Работодателю надлежит в месячный срок от дня, когда был принят на работу сотрудник или переведен на другое место работы, провести обучение сотрудников по безопасному выполнению рабочих операций, приемов. В случае ведения сотрудником трудовой деятельности во вредных или опасных условиях, после процесса обучения должна пройти стажировка на рабочем месте, по окончании стажировки проводится экзамен. В процессе всего рабочего периода сотрудники, работающие во вредных и опасных условиях, должны периодически проходить обучение и контроль знаний (экзамен). В случае наличия перерыва трудовой деятельности у сотрудника 1 год и более, он также должен пройти обучение. Для рабочих один раз в год должны проводиться обучающие занятия по оказанию доврачебной (первой) помощи.

Руководители и специалисты. Для данной группы сотрудников обязательно проходит обучение при приеме на работу, которое должно пройти не позднее месячного срока от дня приема, в дальнейшем обучение проводится раз в три года. Для руководителей охраны труда проводится внутренний обучающий процесс, т.е. самим предприятием, при условии создания комиссии по контролю знаний в области охраны труда, в противном случае обучение должно быть пройдено в специализированном обучающем учреждении.

Руководителю работ предстоит проверить в устной форме знания у сотрудников по окончанию их обучения. На этом экзамене выявляются знания действующих инструкций, знания по нормативно-правовым и локальным нормативным актам, знания особенностей данного производства,

изложенных в дополнительных инструкциях. Руководителям и специалистам в обязательном порядке надлежит раз в три года сдавать экзамен в обучающем учреждении, с которым заключен договор, или экзаменационной комиссии своего предприятия. Перечисленная информация относится к плановым проверкам. Проведение внеочередных проверок знания имеет такие же причины, что и внеочередные инструктажи (изложено выше). Тот, кто инициирует проверку знаний, определяет тематику, вопросы и порядок проведения. Результаты проводимого экзамена по охране труда отражаются в протоколе экзамена.

Знания в области охраны труда обеспечивают безопасную деятельность сотрудникам, поэтому процесс обучения и проверки знаний должны строго контролироваться. Федеральная государственная инспекция выполняет надзорные и контролирующие функции, обязанностью работодателя является организация своевременного обучения, за надлежащее качество проводимого обучения отвечает работодатель или обучающее учреждение.

Во втором разделе настоящего исследования было установлено, что среди основных опасных и вредных производственных факторов, которые угрожают работникам линейно-производственным диспетчерским станциям можно выделить:

- «смеси углеводородов (химический фактор);
- общая вибрация, пониженная температура воздуха в производственных помещениях и на
- открытой территории, шум, высота, общая вибрация» [9].

В данном исследовании рассмотрен процесс устройства ограждений элементов от производственного оборудования от воздействия движущихся частей. «На рабочих местах основными техническими средствами охраны труда коллективной защиты являются защитные И блокировочные устройства. Защитные устройства применяются для исключения воздействия рабочих опасных производственных факторов. на вредных и Они подразделяются на оградительные, блокировочные, предохранительные,

специальные, тормозные, автоматического контроля и сигнализации, дистанционного управления» [10].

6 Охрана окружающей среды и экологической безопасности

Для Ульяновская ТЭЦ №1 основным фактором экологической нагрузки от его производственной деятельности служит образование сточных вод. Рисунок 1 приводит значения концентраций сточных вод после прохождения технологических процессов Ульяновская ТЭЦ №1.

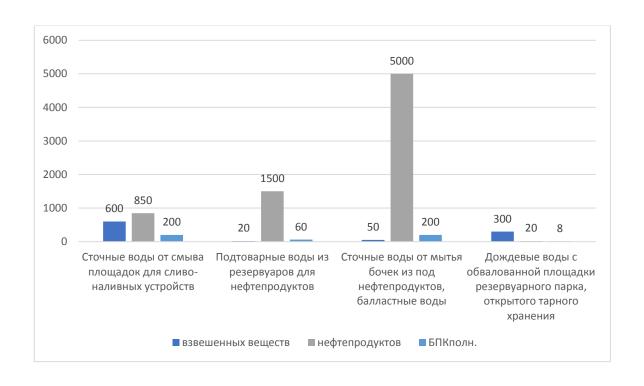


Рисунок 1 – Концентрация сточных вод при технологическом процессе Ульяновская ТЭЦ №1

Приведенные данные позволяют выбрать ряд следующих мероприятий, оказывающих позитивной воздействие на антропогенную нагрузку ООО «Нефтесбыт». Превентивные меры по сокращению негативного воздействия на экологическое состояние местности: использование коалесцентного фильтра, который используется на промышленных предприятиях. «Устройство относится к устройствам для очистки сточных вод и применима на данном типе производства. Техническое устройство включает корпус с

трубопроводами, две решетки с ячейками различного диаметра, внутренние элементы с отверстиями различного диаметра, смотровую трубку, люк для очистки от механических примесей и взвешенных веществ, нагревательные элементы, а также трубопровод подачи деэмульгатора с целью увеличения скорости отделения загрязнений от воды» [2]. «При этом нагревательные элементы предназначены для нагревания воды в целях повышения эффективности отделения загрязнений от воды. Решетки предназначены для очистки сточной воды от механических примесей и взвешенных веществ, а смотровая трубка для определения уровней загрязнений и воды. Внутренние элементы служат для коалесценции капель загрязнений» [2].

«Технический результат достигается поэтапной очисткой сточной воды от механических примесей и взвешенных веществ. При этом процесс отделение загрязнений от воды ускоряется с помощью нагревательных элементов и подачи деэмульгатора» [11].

Профилактические мероприятия снижения воздействия:

- «соблюдение всех норм технологического режима в процессе работы оборудования;
- качественное обучение и проверка знаний обслуживающего персонала по профессиям;
- соблюдение правил и инструкций по ТБ при проведении газоопасных огневых работ;
- проведение учебно-тренировочных занятий по ликвидации аварий и локализации пожаров и возгораний на площадке подготовки нефти;
- блокировка оборудования и сигнализации при отклонении от нормальных условий технологических процессов;
- периодическое диагностирование узлов запорной арматуры ультразвуковыми, электромагнитными и другими приборами;
- выполнение антикоррозийной защиты участков трубопроводов;
- прокладка трубопроводов в кожухах при пересечении ими

автомобильных дорог;

молниезащита и защита от статического электричества сооружений,
 технологического оборудования и трубопроводов» [2].

Мероприятия по охране ОС при обращении с отходами включают в себя:

- «селективное накопление отходов с целью их дальнейшей транспортировки, обезвреживания, утилизации и захоронения;
- обеспечение удаления жидких и твердых отходов в специализированные места, утилизация буровых шламов;
- обеспечение надежной системы утилизации пластовой воды и различных видов промышленных стоков;
- использование герметизированной системы сбора, транспорта продукции скважин;
- применение антикоррозионных покрытий, ингибиторов для борьбы с солеотложениями и коррозией нефтепромыслового оборудования;
- быструю ликвидацию аварийных разливов нефти, строительство нефтеловушек на реках, в местах ливневых стоков;
- разработка мероприятий по безопасности утилизации отходов, по использованию производственных и буровых реагентов, по безопасной эксплуатации всех видов продуктопроводов;
- рациональное использование и рекультивацию земель» [2].

Для снижения воздействия на окружающую среду отходов, образующихся при функционировании Ульяновская ТЭЦ №1, предлагается ряд организационно-технических мероприятий:

- «назначение приказом лиц, ответственных за производственный контроль в области обращения с отходами;
- разработка соответствующих должностных инструкций;
- обучение персонала в соответствии с утвержденными программами;
- регулярное проведение инструктажа с лицами, ответственными за

- производственный контроль в области обращения с отходами, по соблюдению требований законодательства Российской Федерации в области обращения с отходами производства и потребления, технике безопасности при обращении с опасными отходами;
- организация мест сбора, временного накопления и размещения отходов в соответствии с требованиями нормативных документов, санитарных требований и требований пожарной безопасности, а также соблюдение требований к содержанию мест сбора и размещения отходов;
- организация селективного сбора и временного накопления отходов;
- соблюдение правил сбора, временного накопления, транспортировки и технологии утилизации отходов;
- соблюдение периодичности вывоза отходов;
- организация учета образующихся отходов;
- организация контроля в области обращения с опасными отходами;
- разработка плана профилактических мероприятий по
- предотвращению аварийных ситуаций при обращении с отходами,
 включая разработку соответствующей инструкции и определения
 состава аварийной команды, средств ликвидации последствий
 аварии, средств пожарной защиты и средств индивидуальной
 защиты;
- своевременная разработка проектов нормативов образования отходов и лимитов на их размещение (ПНООЛР);
- обеспечение своевременного внесения платы за негативное воздействие размещаемых на полигонах отходов;
- организация взаимодействия с органами охраны окружающей среды и санитарно-эпидемиологического надзора по всем вопросам безопасного обращения с отходами» [2].
- С целью защиты накопление отходов осуществляется в

специализированных контейнерах. При производстве работ должен вестись контроль над тем, чтобы на местах работ не оставались обрезки труб, тара, электроды, прочие материалы и отходы жизнедеятельности рабочих.

7 Оценка эффективности мероприятий по обеспечению техносферной безопасности

Итак, предлагаемые мероприятия в Ульяновская ТЭЦ №1 должны обеспечить пожарную безопасность, далее рассмотрим предлагаемый план мероприятий, реализованный в Ульяновская ТЭЦ №1 в таблице 4.

Таблица 4 — План мероприятий по реализации системы обеспечения противопожарного режима

Наименование мероприятия	Ответственный за выполнение	Дата (период) выполнения	Примечание (выполнено/ не выполнено)
Использование способа противопожарной защиты и система для его осуществления	Руководитель организации, специалист по ПБ	1 кв-л 2022 года	выполнено

Таблица 5 демонстрирует смету расходов, необходимых для внедрения системы, обеспечивающей противопожарную защиту.

Таблица 5 – Смета затрат

Статьи затрат	Сумма, руб.	
Строительно-монтажные работы	57000	
Стоимость оборудования	2800500	
Материалы и комплектующие	-	
Пуско-наладочные работы	-	
Итого:	2857500	

«Исходные данные для применения способа противопожарной защиты и системы для его осуществления представлены в таблице 6» [6].

Таблица 6 – Исходные данные для расчетов

	Единица	Условное	Базовый	Проектный
Наименование показателя	измерения	обозначение	вариант	вариант
«Общая площадь» [6]	M ²	F	4200	
«Стоимость поврежденного	2	~		
оборудования и основных фондов»	руб/м²	$C_{\scriptscriptstyle \mathrm{T}}$	31000	
[6]				
«Стоимость поврежденных частей здания» [6]	руб/м²	C_{κ}	111000	
«Вероятность возникновения	2		_	
пожара» [6]	$1/M^2$ в год	J	16,0 x 10 ⁻⁶	
«Площадь пожара на время				
тушения пожара первичными	\mathbf{M}^2	F _{пож}	200	
средствами» [6]				
«Площадь тушения средствами	2			
автоматического пожаротушения»	M ²	$F_{\text{пож}}$	60,0	
[6]				
«Площадь тушения пожара при	M^2	E	F _{пож} 3198	
отказе вех средств пожаротушения» [6]	M	$\Gamma_{\Pi O ext{W}}$		
«Вероятность тушения пожара				
первичными средствами» [6]	-	p_1	0,85	
«Вероятность тушения пожара				0.05
привозными средствами» [6]	-	p_2	0,95	
«Вероятность тушения пожара	_	n _o	0,86	
автоматическими средствами» [6]	_	p ₃	C	,,,,,,
«Коэффициент, учитывающий				
степень уничтожения объекта	-	-	C),52
тушения пожара привозными средствами» [6]			- 7-	
«Коэффициент, учитывающий				
косвенные потери» [6]	-	К	1,3	
«Линейная скорость	/		1.25	
распространения» [6]	м/мин	V_{π}	1,25	
«Время свободного горения» [6]	МИН	$B_{c_B}r$	18	
«Стоимость автоматических	руб.	К	3000025	
средств пожаротушения» [6]	pyo.	IX.	300	1
«Норма амортизационных	%	Нам	-	5
отчислений» [6]	_			70
«Суммарный годовой расход» [6] «Коэффициент транспортно-	T	W _{OB}	-	70
«коэффициент транспортно- заготовительных расходов» [6]	-	Ктзср	-	0,55
«Численность работников		**		
обслуживающего персонала» [6]	чел	Ч	- 1	
«Заработная плата 1 работника» [6]	руб.	ЗПЛ	-	12100
«Норма дисконта» [6]	-	НД	_	0,1
«Период реализации мероприятий»	лет	T	_	21
[6]	J10 1	1		

«Рассчитать годовые материальные потери от пожара при наличии первичных средств пожаротушения $M(\Pi_1)$ » [6]:

$$M(\Pi) = M(\Pi_1) + M(\Pi_2) + M(\Pi_3)$$
(26)

«где $M(\Pi_1)$ – математическое ожидание годовых потерь от пожаров, потушенных первичными средствами пожаротушения

 $M(\Pi_2)$ — математическое ожидание годовых потерь от пожаров, потушенных привозными средствами пожаротушения

 $M(\Pi_3)$ – математическое ожидание годовых потерь от пожаров при отказе всех средств пожаротушения» [6].

$$M(\Pi_1) = 520167, 2+16120, 5+71540, 2=594230, 9$$

«Математическое ожидание годовых потерь от пожаров, потушенных первичными средствами пожаротушения» [6]:

$$M(\Pi_1) = J \cdot F \cdot C_T \cdot F_{nox} \cdot (1+k) \cdot p_1 \tag{27}$$

«где J — вероятность возникновения пожара, $1/m^2$ в год;

F – площадь объекта, M^2 ;

 C_T — стоимость поврежденного технологического оборудования и оборотных фондов, руб./м²;

 $F_{\text{пож}} - \text{площадь пожара на время тушения первичными средствами,} \\ \text{M^2;}$

 p_1 – вероятность тушения пожара первичными средствами;

к – коэффициент, учитывающий косвенные потери» [6].

$$M(\Pi_1) = 0,000016 \cdot 4200 \cdot 31000 \cdot 200 \cdot (1+1,3) \cdot 0,85 = 520167,2 \ py6 / cod$$

«Математическое ожидание годовых потерь от пожаров, потушенных привозными средствами пожаротушения» [6]:

$$M(\Pi_2) = J \cdot F \cdot \left(C_T \cdot F_{nose} + C_k\right) \cdot 0.52 \cdot \left(1 + k\right) \cdot \left(1 - p_1\right) \cdot p_2 \tag{28}$$

«где р₂— вероятность тушения пожара привозными средствами;

0,52 – коэффициент, учитывающий степень уничтожения объекта тушения пожара привозными средствами;

 C_{κ} – стоимость поврежденных частей здания, руб./м2;

 $F^{'}$ $_{\text{пож}}$ — площадь пожара за время тушения привозными средствами» [6].

$$M(\Pi_2) = 0,000016 \cdot 4200 \cdot (31000 \cdot 60 + 111000) \cdot 0,52 \cdot (1+1,3) \cdot (1-0,85) \cdot 0,95 = 16120,5 \ py6 / cod$$

«Математическое ожидание годовых потерь от пожаров при отказе всех средств пожаротушения» [6]:

$$M(\Pi_3) = J \cdot F \cdot \left(C_T \cdot F_{nose} + C_k\right) \cdot \left(1 + k\right) \cdot \left[1 - p_1 - \left(1 - p_1\right) \cdot p_2\right]$$

$$\tag{29}$$

«где $F^{"}_{now}$ – площадь пожара при отказе всех средств пожаротушения, $M^2 \gg [6]$.

$$M(\Pi_3) = 0,000016 \cdot 4200 \cdot (31000 \cdot 4200 + 111000) \cdot (1+1,3) \cdot$$
$$\cdot [1-0,85 - (1-0,85) \cdot 0,95] = 71540,2 \ py6 / cod$$

«Рассчитать годовые материальные потери от пожара при оборудовании объекта средствами автоматического пожаротушения $M(\Pi_2)$ » [6]:

$$M(\Pi_2) = M(\Pi_1) + M(\Pi_2) + M(\Pi_3) + M(\Pi_4)$$
(30)

«где $M(\Pi_1)$ – математическое ожидание годовых потерь от пожаров, потушенных первичными средствами пожаротушения

 $M(\Pi_2)$ — математическое ожидание годовых потерь от пожаров, потушенных установками автоматического пожаротушения

 $M(\Pi_3)$ – математическое ожидание годовых потерь от пожаров, потушенных привозными средствами пожаротушения

 $M(\Pi_4)$ — математическое ожидание годовых потерь от пожаров при отказе всех средств пожаротушения» [6].

$$M(\Pi_2) = 520167, 2 + 21920, 6 + 1641, 9 + 0 = 514650, 3 \text{ py6/200}$$

«Математическое ожидание годовых потерь от пожаров, потушенных установками автоматического пожаротушения» [6]:

$$M(\Pi_2) = J \cdot F \cdot C_T \cdot F_{now}^* \cdot (1+k) \cdot (1-p_1) \cdot p_3 \tag{31}$$

«где $F^*_{\text{пож}}$ – площадь пожара при тушении средствами автоматического пожаротушения, M^2 ;

р₃ – вероятность тушения средствами автоматического пожаротушения» [6].

$$M(\Pi_2) = 0,000016 \cdot 4200 \cdot 31000 \cdot 60 \cdot (1+1,3) \cdot (1-0,85) \cdot 0,86 = 21920,6$$

«Математическое ожидание годовых потерь от пожаров, потушенных привозными средствами пожаротушения» [6]:

$$M(\Pi_3) = J \cdot F \cdot (C_T \cdot F_{nose} + C_k) \cdot 0.52 \cdot (1+k) \cdot [1 - p_2 - (1-p_1) \cdot p_3] \cdot p_2$$
(32)

$$M(\Pi_3) = 0.000016 \cdot 4200 \cdot (31000 \cdot 60 + 111000) \cdot 0.52 \cdot (1 + 1.3) \cdot 1000 \cdot$$

«Математическое ожидание годовых потерь от пожаров при отказе всех средств пожаротушения» [6]:

$$M(\Pi_{4}) = J \cdot F \cdot \left(C_{T} \cdot F_{nose} + C_{k}\right) \cdot \left(1+k\right) \cdot \begin{cases} 1-p_{1}-\left(1-p_{1}\right) \cdot p_{3} - \\ -\left[1-p_{1}-\left(1-p_{1}\right) \cdot p_{3}\right] \cdot p_{2} \end{cases}$$

$$M(\Pi_{4}) = 0,000016 \cdot 4200 \cdot \left(31000 \cdot 4200 + 111000\right) \cdot \left(1+1.3\right) \cdot \left\{\begin{cases} 1-0,85-\left(1-0,85\right) \cdot 0,86 - \\ -\left[1-0,85-\left(1-0,85\right) \cdot 0,86\right] \cdot 0,95 \end{cases}\right\} = 0 \ py6 / cod$$

$$(33)$$

«Рассчитать эксплуатационные расходы Р на содержание автоматических систем пожаротушения» [6]:

$$P = A + C = 308436,325 \ py6 / cod$$
 (34)

«где A — затраты на амортизацию систем автоматических устройств пожаротушения, руб./год;

С – текущие затраты указанных систем (зарплата обслуживающего персонала, текущий ремонт и др.), руб./год» [6].

«Текущие затраты» [6]:

$$C_2 = C_{m,p} + C_{c,o,n} + C_{o,o} \tag{35}$$

«где $C_{\text{т.р.}}$ – затраты на текущий ремонт;

 $C_{\text{с.о.п.}}$ – затраты на оплату труда обслуживающего персонала;

 $C_{\text{о.в.}}$ – затраты на огнетушащее вещество» [6].

$$C_2 = C_{m.p.} + C_{c.o.n.} + C_{o.s.} = 158435,075 \ pyo / cod$$

«Затраты на текущий ремонт» [6]:

$$C_{m.p.} = \frac{K_2 \cdot H_{m.p.}}{100\%} \tag{36}$$

«где K_2 — капитальные затраты на приобретение, установку автоматических средств тушения пожара, руб.;

 $H_{\text{т.р.}}$ – норма текущего ремонта, %» [6].

$$C_{m.p.} = \frac{3000025 \cdot 0.3}{100} = 9000,075 \ py6 / 200$$

«Затраты на оплату труда обслуживающего персонала» [6]:

$$C_{con} = 12 \cdot Y \cdot 3\Pi\Pi \tag{37}$$

«где Ч — численность работников обслуживающего персонала, чел.; $3\Pi \Pi$ — заработная плата 1 работника, руб./мес» [6].

$$C_{c.o.n.} = 12 \cdot 1 \cdot 12100 = 145200 \ py6 \ / \ cod$$

«Затраты на огнетушащее вещество» [6]:

$$C_{o.s.} = W \cdot \mathcal{U} \cdot k_{m.s.c.p.} \tag{38}$$

«где W – суммарный годовой расход огнетушащего вещества;

Ц – оптовая цена единицы огнетушащего вещества, руб./т;

 $K_{\text{т.з.с.р.}}$ — коэффициент транспортно-заготовительно-складских расходов» [6].

$$C_{o.e.} = 70.110.0, 55 = 4235 \ py6 / cod$$

«Затраты на амортизацию систем автоматических устройств пожаротушения» [6]:

$$A = \frac{K_2 \cdot H_a}{100\%} \tag{39}$$

«где K_2 — капитальные затраты на приобретение, установку автоматических средств тушения пожара, руб.;

 H_a – норма амортизации, %» [6].

$$A = \frac{3000025 \cdot 5}{100\%} = 150001,25 \ py6 / cod$$

«Определение интегрального эффекта от противопожарных мероприятий» [6]:

$$U_{t} = \left\{ \left[M(\Pi_{1}) - M(\Pi_{2}) \right] - \left[P_{2} - P_{1} \right] \right\} \cdot \frac{1}{\left(1 + H \mathcal{I} \right)^{t}} - \left(K_{2} - K_{1} \right)$$
(40)

«где t – год осуществления затрат;

НД— постоянная норма дисконта, равная приемлемой для инвестора норме дохода на капитал.

 $M(\Pi 1)$, $M(\Pi 2)$ — расчетные годовые материальные потери в базовом и планируемом вариантах, руб./год;

К1, К2 – капитальные вложения на осуществление противопожарных мероприятий в базовом и планируемом вариантах, руб.;

P1, P2— эксплуатационные расходы в базовом и планируемом вариантах в t-м году, руб./год» [6].

$$U_{t} = \left\{ \left[584852,897 - 524696,041 \right] - 308436,325 \right\} \cdot \frac{1}{\left(1 + 0,1 \right)^{t}} - 3000025$$

«Определяем интегральный экономический эффект применения способа противопожарной защиты и системы для его осуществления путем суммирования чистых дисконтированных потоков доходов по каждому году проекта из таблицы 7» [6].

$$H = \sum_{t=0}^{T} H_{t} = 60853231,78 \tag{41}$$

«где T — горизонт расчета (продолжительность расчетного периода). U_t — чистый дисконтированный поток доходов на t-году проекта» [6].

Таблица 7 – Расчет денежных потоков за период времени

Год осуще ствлен ия проект а	М(П1)- М(П2)	P ₂ -P ₁	1/(1+HД) ^t	$[M(\Pi 1)-M(\Pi 2)-(P_2-P_1)]*1/(1+HД)$	K ₂ -K ₁	Чистый дисконтирова нный поток доходов по годам проекта (И)
2	60156,856	308436,325	1/(1+HД) ¹	5774341,392	3000025	2774316,392
3	60156,856	308436,325	$1/(1+HД)^2$	5794860,356	0	2794835,356
4	60156,856	308436,325	$1/(1+HД)^3$	5813512,96	0	2813488,96
5	60156,856	308436,325	1/(1+HД) ⁴	5830471,782	0	2830446,782
6	60156,856	308436,325	$1/(1+HД)^5$	5845887,984	0	2845862,984
7	60156,856	308436,325	1/(1+HД) ⁶	5859902,712	0	2859877,712
8	60156,856	308436,325	$1/(1+HД)^7$	5872643,375	0	2872618,375
9	60156,856	308436,325	1/(1+HД) ⁸	5884225,795	0	2884200,795
10	60156,856	308436,325	1/(1+HД) ⁹	5894755,269	0	2894730,269
11	60156,856	308436,325	$1/(1+HД)^{10}$	5904327,517	0	2904302,517
12	60156,856	308436,325	1/(1+HД) ¹¹	5913029,561	0	2913004,561
13	60156,856	308436,325	$1/(1+HД)^{12}$	5920940,51	0	2920915,51
14	60156,856	308436,325	$1/(1+HД)^{13}$	5928132,282	0	2928107,282
15	60156,856	308436,325	1/(1+HД) ¹⁴	5934670,256	0	2934645,256
16	60156,856	308436,325	$1/(1+HД)^{15}$	5940613,869	0	2940588,869
17	60156,856	308436,325	$1/(1+HД)^{16}$	5946017,154	0	2945992,154
18	60156,856	308436,325	$1/(1+HД)^{17}$	5950929,231	0	2950904,231
19	60156,856	308436,325	$1/(1+HД)^{18}$	5955394,755	0	2955369,755
20	60156,856	308436,325	1/(1+HД) ¹⁹	5959454,323	0	2959429,323

Итак, интегральный экономический эффект составит 2959429,323 руб.

Итак, анализируя рассчитанные денежные потоки от применения способа противопожарной защиты и системы для его осуществления, можно сделать вывод о том, что предлагаемые мероприятия обеспечения противопожарного режима являются эффективными.

Заключение

Объектом настоящего исследования является Ульяновская ТЭЦ №1, характеристика которого дана в первом разделе. Использование в технологических процессах легковоспламеняющихся и горючих жидкостей, горючих газов, едких химических веществ делает данный объект пожароопасным.

Также в работе изучен процесс эвакуации на рассматриваемом объекте, проведен расчет времени эвакуации производственных работников из организации.

В работе предложены мероприятия по повышению эффективности эвакуации из Ульяновская ТЭЦ №1.

Для Ульяновская ТЭЦ №1 разработана процедура прохождения обязательных предварительных и периодических медицинских осмотров. Проидентифицированы экологические аспекты организации.

В седьмом разделе рассчитана полученная экономическая эффективность мероприятий, которые предложены в настоящем исследовании.

Список используемых источников

- 1. Вишняков Я. Д. Безопасность жизнедеятельности 4-е изд., пер. и доп. учебник. Люберцы: Юрайт, 2017. 543 с.
- 2. Гришин А. М. О влиянии негативных экологических последствий пожаров // Экологические системы и приборы. 2016. №4. С. 40-43.
- 3. Исаева Л. К. Экология пожаров, техногенных и природных катастроф: учебное пособие. М.: Академия ГПС МВД России, 2016. 301 с.
- 4. Кукин П. П., Лапин В. Л., Пономарев П. Л., Сердюк Н. И. Безопасность технологических процессов и производств: учебное пособие. М.: Высшая школа, 2019. 314 с.
- 5. Орехова А. И. Экологические проблемы нефтеперерабатывающего производства // «Экология производства». № 1. 2017. С. 23-26.
- 6. Оценка эффективности мероприятий по обеспечению техносферной безопасности [Электронный ресурс] : Методические указания по выполнению раздела 7. URL: https://edu.rosdistant.ru/course/view.php?id=3014 (дата обращения: 05.03.2022).
- 7. Примерный перечень ежегодно реализуемых работодателем мероприятий по улучшению условий и охраны труда, ликвидации или снижению уровней профессиональных рисков либо недопущению повышения их уровней: утв. приказом Министерства труда и социальной защиты Российской Федерации от 29.10.2021 № 771н // Консультант плюс: справочно-правовая система.
- 8. Правила противопожарного режима в Российской Федерации: утв. постановлением правительства Российской Федерации от 16.09.2020 № 1479 (с изменениями на 21.05.2021) // Консультант плюс: справочно-правовая система.
- 9. Собурь С.В. Пожарная безопасность предприятия: учебносправочное пособие. 18-е изд., с изм. М.: ПожКнига, 2020. 472 с.

- 10. Соколов Ю.И., Иванова Е.А., Шлеин В.А. Управление качеством транспортного обслуживания: учебное пособие для студентов магистратуры по направлениям Менеджмент и Экономика. М.: РУТ (МИИТ). 2019. 136 с.
- 11. Санитарные правила 2.2.3670-20 Санитарно-эпидемиологические требования к условиям труда: утв. постановлением № 40 от 02.12.2020 // Консультант плюс: справочно-правовая система.
- 12. Технический регламент о требованиях пожарной безопасности [Электронный ресурс]: Федеральный закон от 28.07.2008 № 123 (ред. от 29.07.2017). URL: http://rulaws.ru/laws/Federalnyy-zakon-ot-22.07.2008-N-123-FZ/ (дата обращения: 10.03.2022).
- 13. План тушения пожара Ульяновская ТЭЦ №1 / 12 ПСЧ ФПС ГПС Главного управления по Ульяновской области», 2020. 198 с.
- 14. Журнал проведения инструктажей в Ульяновская ТЭЦ №1 / Ульяновская ТЭЦ №1, 2020. 45 с.
- 15. Система стандартов безопасности труда (ССБТ). Опасные и вредные производственные факторы. Классификация [Электронный ресурс]: ГОСТ 12.0.003-2015. URL: http://docs.cntd.ru/document/1200136071 (дата обращения 11.02.2022).
- 16. Система стандартов безопасности труда (ССБТ). Средства коллективной защиты работающих от воздействия механических факторов [Электронный ресурс] : ГОСТ 12.4.125-83 от 01.01.1984. URL: https://docs.cntd.ru/document/901702099 (дата обращения 11.02.2022).
- 17. Экология нефтепереработки / Под ред. А. Н. Болдина, С. С. Жуковского, А. Н. Поддубного, А. И. Яковлева, В. Л. Крохотина. Брянск : БГТУ, 2017. 144 с.
- 18. Юмаев И. Д. Безопасность технологических процессов в нефтегазовой отрасли // Наука и инновации. 2019. №5. С. 22-29.
- 19. Application of foam in the petroleum industry // Fire Int. 2016. № 98. 582 p.
 - 20. Neitzel R. L. A review of crane safety in the construction industry //

Applied Occupational and Environmental Hygiene. № 16. 2016. Pp. 1106–1117.

21. Zwetsloot G. I. Regulatory risk control through mandatory occupational safety and health (OSH) certification and testing regimes // Safety Science. № 49. 2016. Pp. 995–1006.