МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

Архитектурно-строительный институт

(наименование института полностью)

 Центр архитектурных, конструктивных решений и организации строительства (наименование)

08.03.01 Строительство

(код и наименование направления подготовки, специальности) Промышленное и гражданское строительство

(направленность (профиль)/специализация)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (БАКАЛАВРСКАЯ РАБОТА)

на тему Здание оф	исного центра				
Студент	В.А. Баженов				
Руководитель	Э. Д. Капелюшный		(личная подпись)		
	(ученая степень, звание, И.О. Фамилия)				
Консультанты	канд. пед. наук, доцент, Е.М. Третьякова				
	(ученая степень, звание, И.О. Фамилия)				
	канд. техн. наук, доцент, Д.С. Тошин				
	(ученая степень, звание, И.О. Фамилия)				
	П.Г. Поднебесов				
	(ученая степень, звание, И.О. Фамилия)				
	канд. экон. наук, доцент, А.М. Чупайда				
	(ученая степень, звание, И.О. Фамилия)				
	М.А. Веселова				
	(ученая степень, звание, И.О. Фамилия)				
	канд. техн. наук, доцент, В.Н. Шишканова				
	(ученая степень, звание, И.О. Фамилия)				

Аннотация

Разработана выпускная квалификационная работа направления подготовки 08.03.01 «Строительство» Тольяттинского государственного университета на тему «Здание офисного центра».

Актуальность объекта проектирования раскрыта во введении.

В разделе проектной документации «Архитектурные решения» указаны планировочная и функциональная организация, внешний и внутренний облик проектируемого объекта и принятые проектные решения.

В расчетно-конструктивном разделе произведен расчет свайного столбчатого фундамента.

В разделе технологии строительства разработана технологическая карта на монтаж и устройство свайных фундаментов. Описан состав технологических процессов, ресурсов и средств механизации, требования к качеству производства работ.

В разделе организации строительства разработан основной организационно-технологический документ – проект организации строительства. А именно, разработан строительный генеральный план и календарный график.

В разделе экономики строительства определена сметная стоимость строительства, используя государственные сметные нормативы НЦС 81-02-2020.

В разделе безопасность и экологичность технического объекта описаны требования безопасности на исполнение строительно-технического процесса разработанном в технологической карте.

Содержание

Введение	5
1 Архитектурно-планировочный раздел	6
1.1 Исходные данные	6
1.2 Планировочная организация земельного участка	7
1.3 Объемно-планировочное решение здания	8
1.4 Конструктивное решение здания	10
1.5 Архитектурно-художественное решение здания	12
1.6 Теплотехнический расчет ограждающих конструкций	13
1.7 Инженерные системы	16
2 Расчетно-конструктивный раздел	17
2.1 Исходные данные	17
2.2 Сбор нагрузок	17
2.3 Усилие от полной нагрузки на сваи фундамента	19
2.4 Определение глубины заложения ростверка и длины свай	20
2.5 Определение несущей способности сваи	20
2.6 Определение количества свай в фундаменте и их размещение	21
2.7 Расчет сваи по прочности материала	22
2.8 Расчет на осадку свайного фундамента	23
3 Технология строительства	26
3.1 Область применения технологической карты	26
3.2 Технология и организация выполнения работ	27
3 3 Требования к качеству и приемке работ	33

3.4 Безопасность труда, пожарная безопасность и экологическая	
безопасность	34
3.5 Потребность в материально-технических ресурсах	38
3.6 Технико-экономические показатели	38
4 Организация строительства	11
4.1 Определение объемов строительно-монтажных работ	11
4.2 Определение потребности в строительных конструкциях, изделиях и	
материалах	11
4.3 Подбор машин и механизмов для производства работ	11
4.4 Определение трудоемкости работ	15
4.5 Разработка календарного плана производства работ	16
4.6 Расчет и проектирование потребности во временных зданиях	18
4.7 Проектирование строительного генерального плана5	57
5 Экономика строительства	59
6 Безопасность и экологичность технического объекта	54
6.1 Конструктивно-технологическая и организационно-техническая	
характеристика офисного центра	54
6.2 Идентификация профессиональных рисков	55
Заключение	70
Список используемой литературы	71
Приложение А Архитектурно-планировочный раздел	75
Приложение Б Технология строительства	35
Приложение В Организация строительства) 2

Введение

В выпускной квалификационной работе был выполнен проект на тему «Здание офисного центра». Строительство данного здания предполагается в городе Волгодонск Ростовской области.

Проектирование офисного цента — это большая область проектных работ, касающаяся самых разных типов объектов. Возведение высотных «офисных центров и зданий началось свыше полутора веков назад, это стало реальным возможным за счет ряда технических усовершенствований, а также возникновения новых видов организации бизнеса. В это же время появилась возможность решить проблему с нормализацией социально-экологического микроклимата внутри здания офисного центра. На сегодняшний день масштабные, многоэтажные офисные центры являются» [1] незаменимой частью жизни больших современных городов. Проектирование строительство офисного центра - процесс достаточно продолжительный во временном отношении, и потому очень важно, чтобы это здание не потеряло своей значимости.

Выполняя данную квалификационную работу необходимо решить такие задачи как:

- обосновать эффективное объемно-планировочное решение, конструктивное решение;
 - разработать расчет фундаментов для производственного здания;
 - разработать технологическую карту;
- «разработать строительный генеральный план строительства и календарный план производства работ» [31];
- посчитать сметную стоимость строительства, выполнить раздел экономика строительства;
- предусмотреть мероприятия по обеспечению пожарной безопасности и экологичности объекта.

1 Архитектурно-планировочный раздел

1.1 Исходные данные

Район строительства - г. Волгодонск

Климатический район строительства - III-В (по таблице б.1 СП 131.13330.2018) [6]

-32°C - температура воздуха наиболее холодных суток с обеспеченностью 0,98;

-27°C – температура воздуха наиболее холодной пятидневки с обеспеченностью 0,98;

Снеговой район – II (по карте 1, приложение Е СП 20 13330.2016) $S_o=1,0$ кПа;

Ветровой район — III (по карте 2, приложение Е СП 20 13330.2016 W_0 =38 кгс/м²;

Класс и уровень ответственности здания - II (нормальный уровень ответственности)

Степень огнестойкости здания — II (Федеральный закон от 22.07.2008 N 123-ФЗ (ред. от 30.04.2021)

Класс конструктивной пожарной опасности здания – С 1(колонны – К0, стены наружные с внешней стороны – К2, стены, перегородки, перекрытия и покрытия – К0, стены лестничных клеток – К0, лестничные элементы – К0)

Класс функциональной пожарной опасности здания — Φ 4.3 (офисные помещения)

Класс пожарной опасности строительных конструкций – K1 (мало пожароопасные)

Расчетный срок службы здания – 100 лет.

Состав грунта:

- насыпной грунт (техногенные отложения), мощность слоя от 1,59 м. абсолютная отметка подошвы геологического элемента 41,40;
- песок мелкий, средней плотности, влажный, мощность слоя от 3,2 м.
 абсолютная отметка подошвы геологического элемента 38,20;
- песок пылеватый, средней плотности влажный, мощность слоя от
 1,9 м. абсолютная отметка подошвы геологического элемента 36,30;
- супесь пластичная, мощность слоя от 3,6 м. абсолютная отметка подошвы геологического элемента 32,70;
- глина полутвердая, мощность слоя от 3,9 м. абсолютная отметка подошвы геологического элемента 28,8;

Грунтовые воды обнаружены на глубине 7,8 метров.

Преобладающее направление ветра зимой – В

1.2 Планировочная организация земельного участка

Участок, отведенный под строительство здания офисного центра, размещается в освоенном микрорайоне г. Волгодонск в районе жилой застройки. Размеры здания «приняты с учетом размещения инженерных сетей, автодорог, тротуаров, элементов озеленения, а также в соответствии с санитарными и противопожарными нормами и правилами.

Участок офисного здания благоустроен и соответствует архитектурным требованиям застройки города.

Размещение офисного здания в системе застройки города определено планом развития в комплексе с предприятиями культурно-бытового назначения. Сеть городского обслуживания сформирована с учетом размещения магазинов и жилой застройки на центральных улицах, связанных транспортными линиями, вблизи остановок общественного транспорта» [35].

Пешеходная зона расположена недалеко от главного фасада. Также перед главным фасадом расположена парковка для посетителей и работников

здания. «Участки свободные от застройки, автодорог и инженерных сетей максимально озеленяются: высаживаются деревья, разбиваются газоны» [35].

С трех сторон обеспечен проезд пожарных машин на расстоянии 5 м по асфальтовому покрытию. Вдоль заднего фасада также «обеспечен проезд пожарных машин. Также между рядом стоящими зданиями обеспечен противопожарный разрыв 20м.

Вертикальная планировка территории выполнена с учетом существующего рельефа местности, а также отвода поверхностных дождевых и талых вод от здания к лоткам автодорог.

Отвод дождевых и талых вод от зданий и сооружений предусматривается по спланированной поверхности в пониженные точки рельефа. Принятые проектные уклоны спланированной поверхности предохраняют территорию от размыва ливневыми водами» [35].

1.3 Объемно-планировочное решение здания

Здание офисного центра пятиэтажное с подвалом и имеет размеры в осях 49,7х16,38 м.

Подвальные помещения используются как подсобные помещения кафе, для чего устанавливается грузовой подъемник. На первом этаже располагается кафе на 45 посадочных мест, предназначенное обслуживания как работников офисов, так и жителей города. В объеме первого этажа также имеется сквозной проезд (на колоннах), который используется для обслуживания кафе и временной стоянки автомобилей. Здание имеет несколько входов для удобства организации работы. На втором этаже находится банкетный зал кафе. Технологическая связь между кухней, располагающейся на первом этаже и банкетным залом, осуществляется с помощью лестницы и подъемника. Высота помещений кафе (первый и второй этаж) – 3,3 м. Над проездом организован технический этаж высотой 2,2м, предназначенный для прокладки коммуникаций.

Эвакуация предусмотрена по внутренней лестничной клетке в осях 5-6/В-Г, и наружным эвакуационным лестницам в осях 1-2/Б и 9-10/А-Б эвакуационные выходы из здания на первом этаже размещаются в осях 5-6 и 9-10 на фасаде 1-10.

Помещения кафе отделены в отдельный блок от административных помещений. Помещения, предназначенные для размещения в них офисов, располагаются на третьем, четвертом и пятом этажах и имеют отдельный вход. Для удобства служащих и посетителей офисов в холле первого этажа, помимо лестницы, имеется два лифта: пассажирский и грузовой. Высота третьего, четвертого и пятого этажей — 3,6 м. На пятом этаже из кабинетов имеются выходы на эксплуатируемую кровлю.

Для доступа МГН предусмотрены следующие мероприятия:

- на подходах к зданию нет ограждений и бордюров, по периметру здания предусмотрено ровное твердое асфальтовое покрытия, для беспрепятственного перемещения по участку;
- вход в здание в осях 5-6 на фасаде 1-10, оснащается пандусом для МГН;
- для подъема на нужные этаж имеется два лифта: пассажирский и грузовой;
- в здании для МГН запроектирован отдельный с/у предусмотренный согласно СП 59.13330.2020, снабжаемый необходимым оборудованием с учетом действующих требований;
- ширина коридоров и дверных проемов на пути движения не менее 1,2-1,5 м., ширина дверным проемов не менее 0,9 м., что не противоречит действующим требованиям.

Экспликация помещений приведена в приложении A, таблица A.1 – Экспликация помещений.

Технико-экономические показатели:

1.Общая площадь - 2748, 8 м²;

в т.ч. общая площадь помещений кафе $-900,48 \text{ м}^2$;

2.Площадь застройки - $700,8 \text{ м}^2$;

3.Строительный объем - 12103,2 м³.

1.4 Конструктивное решение здания

Конструктивная система здания каркасная, жесткость и устойчивость обеспечивается совместной работой, вертикальных и горизонтальных элементов и последующее распределение усилий между конструктивными элементами и передача нагрузки на фундаменты и основание.

Конструктивная схема каркаса - каркасная с безбалочным перекрытием, состоящая из вертикальных несущих конструкций — монолитных железобетонных колонн, горизонтальных конструкций — безбалочных монолитных железобетонных плит перекрытия и покрытия.

1.4.1 Фундаменты

Фундаменты в здании запроектированы свайные железобетонные забивные сваи марки СНпр8-30 по ГОСТ 19804-2012 квадратного сечения с размерами 300×300, длиной 8,0 м. Ростверк по верху свай монолитный из бетона В15, армированный сетками в двух уровнях, из арматурных стержней Ø10 мм. с ячейкой 200 мм. Гидроизоляция выполняется горячим битумом, 2 слоя.

1.4.2 Колонны

Колонны приняты монолитными из бетона марки B25 размещение колонн в плане с переменным шагом. Размер колонн 400×400 мм. армированные каркасами из продольных арматурных стержней диам. 28 мм. A400, и поперечных хомутов из арматурных стержней диам. 10 мм. A400.

Сопряжение колонн с монолитными ростверками жесткое, осуществляется за счет выпусков арматуры.

1.4.3 Перекрытия и покрытие

Перекрытия и покрытия приняты безбалочными монолитными, толщиной 200 мм. из бетона марки В 15. армированные сетками из арматурных стержней даим. 12 мм. А400 с ячейкой сетки 200 мм. Сопряжение плит перекрытия и покрытия с колоннами жесткое, обеспечивается за счет анкеровки.

1.4.4 Стены и перегородки

250 Стены подвала приняты монолитными, толщиной MM. армированные каркасами из стержней диам. 12 мм. А400 с ячейкой 150 мм. из бетона В 15. С наружной стороны утепление производится на высоту 1,8 толщиной утеплителем 50 Гидроизоляция экструзионным MM. Μ. вертикальная обмазочная, горячим битумом 2 слоя, горизонтальная гидроизоляция принята 2 слоя рубероида.

Наружная ограждающая конструкция выполняется из газобетонного блока толщиной 250 мм., с наружным утеплением из минераловатным плит «URSA» П – 30, толщиной 70 мм, согласно теплотехническому расчёту общая толщина составляет 400 мм. Наружная облицовка стен выполняется системой вентилируемых фасадов с установкой профилей и наружной облицовкой виниловыми панелями.

Внутренние стены выполняются из одинарного глиняного кирпича толщиной 250 мм. на цем. песчаном растворе М 150.

«Перегородки толщиной 120 мм. из глиняного кирпича на цем. песчаном растворе М 100» [35].

1.4.5 Лестницы

Лестницы в здании запроектированы из ж/б ступеней ЛС 10 ГОСТ 8717-2016 и металлических косоуров из швеллеров № 24. Крепление ступеней к металлическим конструкциям косоуров производится за счет приварки закладных деталей ступеней. Лестничные площадки

запроектированы толщиной 150 мм. из монолитные из бетона В 15. Площадки опираются на внутренние стены, опирание не менее 150 мм.

1.4.6 Окна, двери

В здание предусмотрено заполнение оконных проемов индивидуального изготовления из ПВХ профилей по ГОСТ 30674-99. Витражи выполняются из алюминиевых сплавов по ГОСТ 21519-2003.

Заполнение дверных проемов предусмотрено индивидуального изготовления из ПВХ профилей по ГОСТ 30970-2014 и деревянные по ГОСТ 475-2016. Информация по заполнения проемов сведена в приложение A, таблица A.2 – Спецификация элементов заполнения проемов.

1.4.7 Перемычки

Перемычки в наружных и внутренних стенах, перегородках предусмотрены ж/б по Серии 1.038.1-1 в.1. Ведомость перемычек и спецификация элементов перемычек приведена в приложении A, таблицы A.3 и A.4

1.4.8 Полы

Полы в здании запроектированы с учетом интенсивности перемещения, назначения помещений и технологических процессов. Залы кафе, вестибюли – полы облицовываются керамическим гранитом. В офисных помещениях, комнатах персонала – линолеум с повышенной изностойкостью. Помещения санузлов, кухни – керамическая плитка. Полный перечень и эскизы полов сведены в приложение А, таблица А.5 – Экспликация полов.

1.5 Архитектурно-художественное решение здания

Наружная облицовка стен и цоколя здания предусмотрена из долговечным материалов:

 цокольная часть стен - облицовка фасадной плиткой под естественный камень;

- наружные стены система вентилируемого фасада;
- крыльца облицовка тротуарной плиткой.

Внутренняя отделка помещений предусмотрена с учетом температурного и влажностного режима, а также назначения помещения. Информация по внутренней отделке помещений сведена в таблицу A.6 – Ведомость отделки помещений, приложения A.

1.6 Теплотехнический расчет ограждающих конструкций

1.6.1 Теплотехнический расчет наружных стен здания

«Площадка расположена в климатическом районе III В и относится к 3ей зоне влажности (сухая), влажностный режим – нормальный, условия эксплуатации ограждающих конструкций – А» [8].

Для данного района величина градусо-суток отопительного периода:

$$\Gamma CO\Pi = (t_{eH} - t_{om.n}) \cdot Z_{om.n} \tag{1.1}$$

$$\Gamma CO\Pi = (20 + 0.1) \cdot 166 = 3336,6$$

«По таблице 3 определим нормируемое расчетное сопротивление теплопроводности из условия энергосбережения» [8]:

$$R_{mp} = a \cdot \Gamma \text{CO}\Pi + b \tag{1.2}$$

$$R_{mp} = 0.00035 \cdot 3336.6 + 1.4 = 2.567 \,(\text{m}^2 \cdot {}^{\circ}\text{C})/\text{Bt}$$

Таблица 1.1 – Состав наружной несущей ограждающей конструкции

Наименование материала	Толщина слоя Плотность		Коэффициент		
	δ (мм)	ρ(κΓ/M ³)	теплопроводности		
Газобетонный блок	$\delta_2 = 250$	1000	$\lambda_2 = 0.29$		
Минераловатный утеплитель Ursa п-30	$\delta_3 = x$	35	$\lambda_3 = 0.04$		
Виниловые панели	$\delta_5 = 3$	1290	$\lambda_3 = 0.15$		

Расчетное сопротивление теплопроводности ограждающей конструкции равно:

$$R_o = \frac{1}{\alpha_{ou}} + \frac{\delta_1}{\lambda_1} + \frac{x}{\lambda_2} + \frac{\delta_3}{\lambda_2} + \frac{1}{\alpha_u} = \frac{1}{8.7} + \frac{0.25}{0.29} + \frac{x}{0.04} + \frac{0.003}{0.15} + \frac{1}{23}$$

$$R_o = R_{Tp} = 2,567 \text{ (M}^2 \cdot {}^{\circ}\text{C})/B_T$$

Далее рассчитываем:

$$x = (2,567-0,115-0,8-0,02-0,043)*0,04 = 0,064 \approx 0,07 \text{ M}.$$

Проверка:

$$R_o = \frac{1}{8.7} + \frac{0.25}{0.3} + \frac{0.06}{0.036} + \frac{1}{23} = 3.54 \text{ (M}^2 \cdot ^{\circ}\text{C)/BT}$$

$$R_o > R_{rp}$$
 2,67>2,567

Расчетный температурный перепад $^{\triangle t_0}$, $^{\circ}$ С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин $^{\triangle t_n}$, $^{\circ}$ С [8]:

$$\Delta t_0 = \frac{(t_{\text{BH}} - t_{\text{H}})}{R_0 \cdot \alpha_{\text{BH}}}$$

$$\Delta t_0 = \frac{(21 + 19)}{2.67 \cdot 8.7} = 1.72 \,^{\circ}C, \qquad \Delta t_0 < \Delta t_n , \qquad 1.76 \,^{\circ}C < 4 \,^{\circ}C$$
(1.3)

Согласно выполненным вычислениям, толщина утеплителя принимается не менее расчетной. Требованиям энергоэффективности для ограждающей конструкции выполняется. Следовательно, толщина утеплителя принимается 60 мм.

1.6.2 Теплотехнический расчет покрытия здания

Участок под застройку расположен в климатическом районе III В и относящийся к 3-й зоне влажности, условия эксплуатации – Б.[8]

Градусо-сутки отопительного периода по СП 50.13330.2012 формула 5.2 [6] в г.Волгодонск D_d =3776 °C.

Находим согласно исходным данным, что для перекрытия R $_{\rm red}$ =3,11 $_{\rm M}^{2\circ}{\rm C/Bt}.$

Согласно формулам (1) и (2) для покрытия получаем:

$$R_{\kappa} = \frac{0.2}{2.04} + \frac{0.04}{0.17} + \frac{0.15}{0.042} + \frac{0.04}{0.76} + \frac{0.005}{0.17} = 3.98,$$

где 2,04 – коэффициент теплопроводности плиты покрытия;

0,17 – коэффициент теплопроводности керамзитового гравия, при γ_{π} =600 кг/м³; [6]

0,042 — коэффициент теплопроводности утеплителя URSA XPS N-III-L, при γ_{Π} =35 кг/м 3 ; [6]

0,76 — коэффициент теплопроводности для цементно-песчаной выравнивающей стяжки. [6]

0,17 – коэффициент теплопроводности покрытия кровли.[6]

Сопротивление теплопередаче к R_o , м². °С/Вт определяем по формуле (1.3)

$$R_0 = \frac{1}{8.7} + 3.98 + \frac{1}{23} = 41$$
.

Так как $R_{red} = 3,11 \text{ m}^2 \cdot {}^{\circ}\text{C/B} < R_o = 4,1 \text{ m}^2 \cdot {}^{\circ}\text{C/B}$, то данная конструкция покрытия удовлетворяет расчету.

Согласно выполненным вычислениям, толщина утеплителя принимается не менее расчетной. Требованиям энергоэффективности для ограждающей конструкции выполняется. Следовательно, толщина утеплителя принимается 150 мм.

1.7 Инженерные системы

Проектируемое здание оснащается системой электроснабжения, теплоснабжения, водоснабжения, канализации и слаботочными системами. Подключение здания ко всем инженерным сетям предусмотрено от существующих коммуникаций города.

Освещенность помещений принята по СП 52.13330.2010 "Естественное и искусственное освещение" и СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания».[9]

Магистрали трубопровода, канализации, теплоснабжения и кабельная линия электроснабжения прокладываются под землей в лотках. Пропуск коммуникаций в здание осуществляется с помощью гильз в фундаменте. В подвале здания осуществляется разводка магистралей сетей по стоякам, а также для общедомовых нужд предусматривается отвод сети водопровода и электроснабжения.

Стояки ливневой канализации размещают в общем коридоре. Стояки теплоснабжения располагают около наружных стен с дальнейшей разводкой к приборам отопления, расположенным под окнами. Разводку сетей электроснабжения и слаботочных сетей по квартирам осуществляют от электрощитов по кабель-каналам в плитах перекрытия и стеновых панелях.

2 Расчетно-конструктивный раздел

2.1 Исходные данные

В расчетно-конструктивном разделе будет осуществлен расчет и проектирование свайных фундаментов офисного центра. Здание с подвалом и имеет размеры в осях 49,7х16,38 м. Конструктивная система здания каркасная, жесткость и устойчивость обеспечивается совместной работой, вертикальных и горизонтальных элементов и последующее распределение усилий между конструктивными элементами и передача нагрузки на фундаменты и основание. Фундаменты в здании запроектированы свайные железобетонные забивные сваи марки СНпр8-30 по ГОСТ 19804-2012 квадратного сечения с размерами 300×300, длиной 8,0 м. Ростверк по верху свай монолитный из бетона В15, армированный сетками в двух уровнях, из арматурных стержней диаметром 10 мм. с ячейкой 200 мм.

Состав грунта:

- насыпной грунт (техногенные отложения).
- песок мелкий, средней плотности, влажный.
- «песок пылеватый, средней плотности влажный.
- супесь пластичная, мощность слоя от 3,6 м.
- глина полутвердая, мощность слоя от 3,9 м» [35].

Грунтовые воды обнаружены на глубине 7,8 метров.

2.2 Сбор нагрузок

Нагрузка на перекрытие и покрытие определена в таблицах 2.1 и 2.2.

Таблица 2.1 - Нагрузка на 1 м 2 покрытия

«Вид нагрузки	Нормативная нагрузка, кН/м²	Коэффициент надежности по нагрузке	Расчетная нагрузка, кН/м ² »[11]				
По	стоянная нагрузка	l					
«2-хслойный водоизоляционный ковер»[30] ИЗОПЛАСТ К и ИЗОПЛАСТ П ТУ 5774-005-057 66 480-95 ($\delta = 0.004$ м, $\rho = 25$ к $H/м^3$)	0,1	1,3	0,13				
Стяжка из цементно-песчаного раствора М150 ($\delta = 0.04$ м, $\rho = 18$ $\kappa H/M^3$)	0,72	1,3	0,94				
Утеплитель "URSA" XPS N-III ($\delta = 0.1 \text{ м}, \rho = 3.6 \text{ кH/м}^3$)	0,36	1,2	0,43				
Керамзитовый гравий по уклону (δ = 0,2 м, ρ = 6 к $H/м^3$)	1,2	1,3	1,56				
Ж/б плита покрытия ($\delta=0,2$ м, $\rho=25~\kappa H/m^3$)	5	1,1	5,5				
Итого	7,38	-	8,56				
Временная нагрузка							
Снеговая нагрузка	1	1,4	1,4				
Итого	1	-	1,4				
Всего (постоянная + временная нагрузки)	8,38	-	9,96				

Таблица 2.2 - Нагрузка на 1 м 2 перекрытия

«Вид нагрузки	Нормативная нагрузка, кН/м²	Коэффициент надежности по нагрузке	Расчетная нагрузка, кН/м ² »[11]				
Постоянная нагрузка							
«Керамическая плитка ($\delta = 0.03$ м, $\rho = 26 \ \kappa H/m^3$)	0,78	1,2	0,94»[11]				
«Стяжка из цементно-песчаного раствора M150»[11] (δ = 0,03 м, ρ = 18 кH/м³)	0,54	1,3	0,7				
Монолитная плита перекрытия (δ = 0,2 м, ρ = 25 кH/м ³)	5	1,1	5,5				
Итого	6,6	-	7,14				
Временная нагрузка							
«Распределенная нагрузка на перекрытие	2	1,2	2,4»[11]				
Нагрузка от перегородок	0,5	1,3	0,65				
Итого	2,5	-	3,05				
Всего	9,1	-	10,19				

Грузовую площадь, от которой действуют нагрузки на фундамент, определяем графическим способом, исходя из сложности фигуры. Грузовая площадь составляет 27,7 м.

Определяем «нагрузку от собственной массы колонны:

$$N_{\text{\tiny KOJ}} = b \cdot h \cdot H \cdot \rho \cdot \gamma_f, \tag{2.1}$$

где: b и h – геометрические размеры колонны, м;

H – высота колонны, м;

 ρ – плотность железобетона, кН/м²;

 γ_f - коэффициент надежности по нагрузке от собственной массы.

$$N_{\text{кол}} = 0.4 \cdot 0.4 \cdot 20.1 \cdot 25 \cdot 1.1 = 85.3 \text{ кH}$$

Определяем нагрузку от перекрытия»[11]

$$N_{\text{nep}} = 10,19 \cdot 27,7 \cdot 6 = 1693,6$$
 κΗ

Определяем нагрузку от покрытия

$$N_{\text{покр}} = 9,96 \cdot 27,7 = 275,9 \text{ кH}$$

2.3 Усилие от полной нагрузки на сваи фундамента

«Определяем полную нагрузку на обрезе фундамента:

$$N = N_{\text{кол}} + N_{\text{пер}} + N_{\text{покр}} \gg [11]$$
 (2.2)

$$N = 85.3 + 1693.6 + 275.9 = 2054.8$$

2.4 Определение глубины заложения ростверка и длины свай

Принимаем сваи прямоугольного сечения размерами 300×300 мм длиной 8000 мм. Заделка сваи в ростверк принимается 50 мм. Нижний конец сваи заглублен в слой глины полутвердой на глубину 1,7 м.

2.5 Определение несущей способности сваи

«Несущую способность сваи определим по формуле:

$$F_d = \gamma_c(\gamma_{R,R}RA + u\Sigma\gamma_{R,f}f_ih_i)$$
 (2.3)

где γ_c — коэффициент условий работы сваи в грунте, принимаемый равным 1;2

R — расчетное сопротивление грунта под нижним концом сваи, кПа, принимаемое по таблице 7.2 СП 24.13330.2011;

A – площадь опирания сваи на грунт, принимаем $A = 0.09 \text{ м}^2$;

u — наружный периметр поперечного сечения ствола сваи, принимаем u=1,2 м;

 f_i — расчетное сопротивление і-го слоя грунта основания на боковой поверхности сваи, принимаемое по таблице 7.3 СП 24.13330.2011;

 h_i — толщина і-го слоя грунта, соприкасающегося с боковой поверхностью сваи;

 $\gamma_{R,R}, \gamma_{R,f}$ — коэффициенты условий работы грунта соответственно под нижним концом и на боковой поверхности сваи, учитывающие влияние

способа погружения сваи на расчетные сопротивления грунта и принимаемые по таблице 7.4 СП 24.13330.201» [21].

$$uΣγ_{R,f}f_ih_i$$

= 1·(34,1·0,765 + 26,4·1 + 28,9·1,1 + 9·1,8 + 9·1,8
+ 61,7·1,485) = 208 κΗ

$$F_d = 1 \cdot (1.4920 \cdot 0.09 + 1.2.208) = 692 \text{ kH}$$

Определяем сопротивление сваи по грунту $F = \frac{Fd}{\gamma k} = \frac{692}{1,4} = 494$ кH.

2.6 Определение количества свай в фундаменте и их размещение

Определяем количество свай:

$$n = \frac{N\Pi \gamma k}{Fd} = \frac{2054.8 \cdot 1.4}{692} = 4.02$$

Окончательно принимаем под колонну 4 сваи.

Сваи располагаем с расстоянием между центрами свай

$$a = 3 \cdot d = 3 \cdot 0,3 = 0,9$$
 м.

Монолитный ростверк принимаем конструктивно, рисунок 1. Подколонник имеет размеры в плане 1500×1500 мм, плитная часть имеет высоту 500 мм.

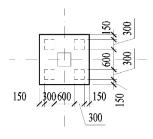


Рисунок 1 – Схема расположение свай

2.7 Расчет сваи по прочности материала

Свая погружена в грунт без крепления стенок. Свая выполнена из бетона класса В25, армирована стержнями Ø 16 мм класса А 400.

Определяем «допустимую расчетную нагрузку на сваю по материалу:

$$N = \gamma_{cb} R_b A_b + R_{sc} A_{sc} \tag{2.4}$$

где γ_{cb} — коэффициент, учитывающий влияние способа производства свайных работ;

 R_{h} — расчетное сопротивление бетона сжатию;

 A_b — площадь сечения сваи нетто;

 R_{sc} — расчетное сопротивление арматуры сжатию;

 A_{sc} — площадь сечения арматуры.

Определяем площадь поперечного сечения сваи $A_b = 0.3 \cdot 0.3 = 0.09 \,\mathrm{m}^2.$

Определяем площадь поперечного сечения арматуры»[13] $A_{sc}=804\cdot 10^{-6}$.

На основании СП 63.13330.2018 Бетонные и железобетонные конструкции «определяем:

- расчетное сопротивление бетона сжатию: R_b = 14,5 МПа.
- расчетное сопротивление арматуры сжатию: $R_{sc} = 355 \text{ M}\Pi \text{a}$;
- коэффициент, учитывающий влияние способа производства свайных работ γ_{cb} = 1,0» [13].

$$N = 1 \cdot 14.5 \cdot 0.09 + 355 \cdot 0.000804 = 1.6$$
 MΠa = 1600 κH

Определяем усилие нагрузки на одну сваю:

$$N_{\text{полн1}} = \frac{N}{n} = \frac{2054.8}{4} = 514 \text{ кH}$$

Проверяем выполнение условия

$$N_{\text{полн1}} \le N \tag{2.5}$$

514 к $H \le 1600$ кH, условие выполняется.

Окончательно принимаем 4 Ø 16 мм A 400

Поперечную арматуру принимаем из условия $16 \cdot 0.25 = 4$ мм.

Конструктивно принимаем попрочнею арматуру Ø 6 мм.

Определяем шаг поперечной арматуры $d \cdot 15 = 16 \cdot 15 = 240$ мм.

2.8 Расчет на осадку свайного фундамента

Забивная свая С-1 по ГОСТ 19804-2012 квадратного сечения с размерами 300×300 , длиной 8,0 м.

Состав грунта:

1 слой - насыпной грунт;

2 слой – песок мелкий, средней плотности, влажный (Е=28 МПа);

3 слой (до УГВ)- песок пылеватый, средней плотности влажный (E=11 МПа);

3 слой (после УГВ) – супесь пластичная (Е=16 МПа);

4 слой– глина полутвердая (Е=24 МПа).

«Осадка сваи в свайном кусте определяется по формуле:

$$si = s(Ni) + \sum \delta ij \cdot \left(\frac{Nj}{G1} \cdot l\right) < snp,$$
 (2.6)

si = 0.62 + 0.76 = 1.38 cm < 8 cm

где s(Ni) — осадка одиночной сваи;

 $\sum \delta ij \cdot \left(\frac{Nj}{G1} \cdot l\right)$ - дополнительная осадка от свай, находящихся в кусте на расстоянии і от данной сваи;

ѕпр-проедельная осадка сваи при железобетонном каркасе.

Определяем осадку одиночной сваи:

$$s = \beta \frac{N}{G_1 \cdot l} = 0.74 \frac{45.2}{716 \cdot 7.5} = 0.0062 \text{M} = 0.62 \text{ cm}$$
 (2.7)

где N - вертикальная нагрузка, передаваемая на сваю

$$N = \frac{52}{1.15} = 45.2$$

 G_{I} -модуль сдвига грунта по всей длине сваи

$$G_1 = 0.4 \cdot E_0 = 0.4 \cdot 17.9 = 7.16 \text{ M}\Pi \text{a} (716 \frac{\text{T}}{\text{M}^2})$$

 G_2 — модуль сдвига грунта на глубине от 1 до 3,1

$$G_2 = 0.4 \cdot E_0 = 0.4 \cdot 16 = 6.4 \text{ M}\Pi a$$

 E_0 - осредненный модуль деформации грунтов в пределах длины сваи» [12].

(Толщина первого слоя 1,3 м; второго слоя 2,1; третьего 3,1 м; четвертого 1 м.)

$$E_0 = \frac{28 \cdot 1.3 + 11 \cdot 2.1 + 16 \cdot 3,1 + 24 \cdot 1}{7,5} = 17,9$$
 МПа

$$d = (0.3^2 + 0.3^2)^{0.5} = 0.42$$

$$\beta = 0.17 ln \frac{k_v G_1 l}{G_2 d} = 0.17 ln \frac{4 \cdot 7.16 \cdot 7.5}{6.4 \cdot 0.42} = 0.74$$

$$\alpha' = 0.17 ln \frac{k_{v1}l}{d} = 0.17 ln \frac{4 \cdot 7.19 \cdot 7.5}{0.49} = 1.03$$

$$X = \frac{EA}{G_1 l^2} = \frac{28 \cdot 10^3 \cdot 0.09}{7.16 \cdot 7.5^2} = 5.89$$

$$\lambda_1 = \frac{2.12X^{3/4}}{1 + 2.12X^{3/4}} = \frac{2.12 \cdot 3.78}{1 + 2.12 \cdot 3.78} = 0.889$$

Выполняем дополнительную проверку осадки свай, находящихся в кусте

$$s_{ad} = \delta \frac{N}{G_1 l} = 0.323 \frac{201}{716 \cdot 7.5} = 0.012 \text{m} = 1,2 \text{ cm}$$

Вывод по разделу

В расчетно-конструктивном разделе был произведен сбор нагрузок от покрытия и перекрытий на ростверк от вышележащих конструкций. Произведен расчет свайного фундамента и определен шаг свай. Определена осадка свайных фундаментов.

3 Технология строительства

3.1 Область применения технологической карты

В рассматриваемом разделе разработана технологическая карта на устройство свайных фундаментов с монолитным ростверком поверху, для здания офисного центра в г. Волгодонск.

В рассматриваемую технологическую карту входят работы:

- разгрузка и складирование свай стреловым краном;
- разметка свай краской по длине через 1,0 м.;
- подача свай к месту погружения стреловым краном;
- перемещение копра;
- забивка свай;
- срезка оголовков свай;
- устройство песчаной подготовки под ростверк;
- установка опалубки монолитных ростверков;
- армирование ростверков;
- бетонирование монолитных ростверков;
- распалубка.

Свайный фундамент предусмотрен из железобетонных свай заводского изготовления сечением 300×300 мм. СНпр8-30 длиной 8,0 м. Забивка свай производится гусеничным копром СП-49-РН-12 на базе бульдозера БТ10МБ. Разгрузка, складирование и подача свай производится пневмоколесным стреловым краном Terex-Demag AC-40 грузоподъемностью 40 т. и длинной стрелы 31,2 м. Бетонирование ростверков производится при помощи стрелового бетононасоса.

Работы по устройству свайных фундаментов и бетонирование ростверков производятся в теплое время года в 1 смену. При производстве работ в период перепадов температуры ниже +5 °C, необходимо учесть

регламентирующий документ «Р-НП СРО ССК-02-2015 Рекомендации по производству бетонных работ в зимнее время».[13]

Объем бетонирования ростверков составит - 34,88 м³; забивка свай 124 шт.

3.2 Технология и организация выполнения работ

3.2.1 Требование законченности подготовительных работ

Подготовительные работы, предусмотренные в технологической карте, включают в себя следующие работы:

- земляные работы завершены, акты, подтверждающие правильность выполнения работ приняты и подписаны;
 - устройство площадок для временного складирования материалов;
- обеспечение работников средствами индивидуальной защиты (далее CИЗ), пожарным инвентарём;
- проведение инструктажей по безопасным приемам и методам производства работ, а также технологией;
- доставка к месту производства работ необходимого инвентаря, материалов и конструкций, инструмента, строительных машин и механизмов.

3.2.2 Определение расхода материалов

Объемы и состав работ, предусмотренных данной технологической картой представлены в приложении В, таблица В.1

Необходимые материалы и изделия для устройства свайного фундамента подобраны исходя из объемов и номенклатуры работ, определяемым согласно сборников ГЭСН и ЕНиР, данные сведены в приложение В, таблица В.2 – Потребность в основных материалах конструкциях и изделиях.

3.2.3 Выбор монтажных и грузозахватных приспособлений

Разгрузка свай, сеток и щитовой опалубки осуществляется стреловым краном на пневмоколесном ходу Terex-Demag AC-40. на площадках для временного складирования.

Подача материалов в котлован предусмотрена согласно технологической последовательности производства работ.

При производстве работ применяется свайный ключ, необходимый для поворота и выравнивания подвешенной сваи. Двух и четырех ветвевые стропа применяются для разгрузки и подачи материалов. Кольцевой строп необходим для захвата свай. Приспособления для подъема и перемещения материалов и конструкций приведены в приложении В, таблица В.3 – Грузозахватные приспособления и устройства.

3.2.4 Определение технических параметров механизмов

Для подачи материалов в котлован, а также работам по разгрузке, кантовка и перемещение материалов и конструкций необходим мобильный кран, с техническими характеристиками, подходящими под вычисляемые значения:

- высота подъема крюка:

$$H_k = h_0 + h_3 + h_5 + h_{cr} (3.1)$$

$$H_k = 4 + 1.0 + 0.3 + 6 = 11.03 M.$$

- наклон стрелы крана относительно горизонта:

$$tg \alpha = \sqrt[3]{\frac{(h_0 - h_n)}{0.5b_1 + S}}$$
 (3.2)

$$tg \alpha = \sqrt[3]{\frac{11,03 - 1,4}{0,5 \cdot 0,3 + 5}} = 1,23$$

$$\alpha \approx 51^{\circ}$$

- длинна стрелы:

$$L_{\rm c} = \frac{H_k + h_n - h_{\rm CT}}{\sin\alpha} \tag{3.3}$$

$$L_{\rm c} = \frac{11,03 + 1,4 - 6}{\sin 51} = 9,6 \text{ M}.$$

- вылет стрелы:

$$L_{K} = L_{C} \cdot \cos\alpha + d \tag{3.4}$$

$$L_{\text{\tiny K}} = 9.6 \cdot \cos 51 + 2.985 = 10.11 \text{ M}.$$

- отклонение в горизонтальной плоскости:

$$tg \varphi = \frac{D}{L_{K}}$$
 (3.5)

$$tg \varphi = \frac{9.8}{10.11} = 0.96$$

- проекция горизонтальной плоскости длинны стрелы в повернутом положении:

$$L_{c\varphi}^{\dagger} = \frac{L_{\kappa}}{\cos\varphi} - d \tag{3.6}$$

$$L_{c\phi}^{\dagger} = \frac{10,11}{\cos 44} - 2,985 = 7,13 \text{ m}.$$

- угол наклона стрелы, с учетом угла поворота:

$$tg\alpha_{\varphi} = \frac{H_{\kappa} - h_{c} + h_{n}}{L_{c\varphi}}$$
 (3.7)

$$tg\alpha_{\varphi} = \frac{11,03 - 2,985 + 1,4}{7,13} = 1,32$$

- наименьшая длинна стрелы для самого удаленного элемента:

$$L_{c\varphi} = \frac{L'_{c\varphi}}{\cos \alpha_{\varphi}} \tag{3.8}$$

$$L_{c\phi} = \frac{7,13}{\cos 44} = 7,13 \text{ M}.$$

- в повернутом положении:

_

$$L_{c\varphi} = L'_{c\varphi} + d \tag{3.9}$$

$$L_{\kappa,\phi} = 7,13 + 2,985 = 10,11$$
 м.

С учетом выполненных вычислений принимаем кран на пневмоколесном ходу Terex-Demag AC-40. С учетом специфики принятой технологии, необходим мобильный и компактный кран, с высоким клиренсом, для работы в условиях площадки без твердого покрытия. Технические характеристики приведены в таблице 3.1. Грузовысотные характеристики отражены на рисунке 2.

Таблица 3.1 – Технические характеристики стрелового крана.

Наименование	Macca	Высота		Вылет стрелы,		Вылет	Длинна	Грузоподъемн	
монтируемого	элемента	подъема крюка L_{κ} , м.		стрелы,	стрелы,	ость			
элемента	Q, T.	Н, м	1.			Цк, м.	L, м.		
		H_{max}	H_{min}	L_{max}	L_{min}			Q _{max}	Q_{min}
Сваи	1,83	29	10	16,0	7,12	10,11	31,2	19,7	3,6

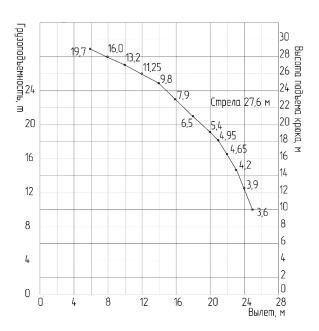


Рисунок 2 – График грузо-высотных характеристик крана Terex-Demag AC-40

3.2.5 Методы и последовательность производства монтажных работ

Работы по устройству свайного фундамента с монолитным ростверком ведутся в следующей технологической последовательности:

- подготовительные работы;
- забивка свай при помощи копровой установки СП-49-РН-12 на базе бульдозера БТ10МБ;
 - устройство песчаной подготовки под свайный ростверк;
 - армирование свайных ростверков;
 - бетонирование свайных ростверков;
 - распалубка.

Подготовительные работу представляют собой ряд организационных мероприятий направленных на заготовку материалов и конструкций, организацию рабочих мест и площадок складирования, с учетом требований технологии и безопасности при производстве работ. Мероприятия включают в себя работы по устройству временного ограждения опасных участков производства работ, распределение свай по дну котлована рядом с местом установки копра, на прямой линии видимости, с заделом на одну рабочую смену, заготовка материалов для бетонирования.

Копровую установку СП-49-РН-12 на базе бульдозера устанавливают на место производства забивки сваи СНпр8-30, стрелу устанавливают в рабочее положение, молот копра ориентируют над местом забивки, затем молот поднимают до размеров длинны сваи, сваю находящуюся уложенной на деревянных подкладках в прямой видимости машиниста установки, закрепляют стропом, производят подтаскивание и подъем сваи при помощи механизмов копровой установки, с заведением оголовка под наголовник. Подтаскивание допускается по спланированному котлована ДНУ на расстояние не дальше 6 метров, с использованием нижнего блока, для одновременного заведения оголовка. Контроль вертикальности конструкции выверяется с помощью строительных отвесов и теоделитов в двух Забивка плоскостях. производится несколькими легкими ударами последующим увеличением мощности ударов до рабочих показателей.

После завершения забивки сваи, производится срубка оголовков свай и очистка выпусков арматуры для заведения в ростверки. Срубка оголовков производится после окончания забивки свай куста, работы производятся вне участка с действием опасной зоны в непосредственной близости копровой установки. Срубка выполняется при помощи отбойных пневмомолотов МОП-4 и компрессора ЗИФ-ПВ-12/0,7 (МЗА 9-50-03), бетонщиком 3 разряда.

После завершения срубки, выполняется уплотнение и выравнивание песчаной подготовки под ростверки, подсыпка и выравнивание основания производится песком. После завершения песчаной подготовки к работе

приступает бригада плотников, для устройства опалубки. Подача щитов опалубки в котлован обеспечивается краном Terex-Demag AC-40. В процессе опалубочных работ необходимо обеспечить надежное скрепление всех элементов, для предотвращения пролива бетонной смеси.

После завершения работ по устройству опалубки приступают к выполнению армирования. Связки арматуры и каркасы подают в котлован при помощи крана. Соединение арматурных элементов между собой производят вязальной проволокой. Работы по армированию производит несколько звеньев арматурщиков.

После завершения работ по армированию приступают к бетонным работам. Работы по бетонированию ведутся звеном бетонщиков. Бетонирование производится при помощи автобетонасоса марки М20-4. После укладки бетонной смеси выполняется вибрирование глубинными вибраторами. После заключения лаборатории о наборе 70 % прочности бетона приступают к распалубке. Работы по устройству фундаментов носят поточный характер организации производства, каждый последующий процесс производства технологической операции начинается по мере завершения предыдущих работ на смежной делянке.

3.3 Требования к качеству и приемке работ

Операционный контроль производится всех видах работ, на технологической Требования рассматриваемых карте. К качеству В выполняемых работ предъявляются на основании действующих документов регламентирующих качество работ и допустимые отклонения от проектной и рабочей документации, допускаемые в процессе выполнения работ.

Операционный контроль осуществляется мастером, начальником участка, представителем службы контроля, геодезические службы и представители технического надзора за строительством.

Основным видом операционного контроля на строительной площадке является входной контроль материалов и конструкций, обеспечивающий надзор за поступлением материалов, отвечающих требованиям проектной и рабочей документации, а также стандартам, предъявляемым к материалам и конструкциям.

Основным виды операционного контроля:

- измерительный контроль применение измерительных приборов и инструментов;
- визуальный контроль оценка качества выполненных работ по средствам осмотров изделий, конструкций после завершения работ, их положение и внешний вид.

В приложение В, таблицы В.4 приведены основные виды контроля, методы и этапы при проведении забивки свай.

3.4 Безопасность труда, пожарная безопасность и экологическая безопасность

Организация труда в процессе строительства регламентируется соответствующими документами: СНиП 12-03-2001 «Безопасность труда в строительстве. Часть 1. Общие требования» [18]; приказ №883н от 11.12.2020 «Об утверждении правил по охране труда при строительстве, реконструкции и ремонте» [19].

3.4.1 Общие требования безопасности

Общие требования безопасности относятся ко всем строительным участкам, независимо от вида строительства, жилого и промышленного.

В процессе производства СМР необходимо следовать требованиям безопасности при производстве работ грузоподъемными машинами и механизмами:

- персонал, занятый на производстве работ с кранами и грузоподъемными машинами необходимо обучать по направлениям, соответствующим профессии методам безопасного производства работ;
- строповка материалов и конструкций производится согласно утверждённым схем, соответствующих грузозахватным приспособлениям отвечающим требованиям безопасности и снабженные соответствующими предохранительными фиксаторами, с указанием маркировки на бирке;
- в процессе производства работ с использованием грузоподъемных механизмов, необходимо выделять опасную зону действия крана, участки с возможным падением с высоты переносимых грузов, специальными знаками.
- при порывистом ветре более 10 м/с, грозе, ухудшение видимости на участке производства работ, тумане, работы прекращаются до момента улучшения погодных условий;

Для ознакомления с мерами пожарной, промышленной, безопасности, весь персонал по прибытию на объект допускается к работе только после успешного прохождения вводного, первичного инструктажа с учетом требований ГОСТ 12.0.004-2015 «ССБТ. Организация обучения безопасности труда. Общие положения» [19].

3.4.2 Пожарная безопасность

Мероприятия по пожарной безопасности на территории строительной площадке на весь период производства работ регламентируются постановлением «Об утверждении Правил противопожарного режима в Российской Федерации (с изменениями на 31 декабря 2020 года)». Постановление от 16 сентября 2020 года N 1479. [19]

Для реализации мер по пожарной безопасности необходимо предусмотреть мероприятия:

- стенд со схемой движения, временными и строящимися зданиями размещается при въезде на территорию строительного городка;
- расположение ближайшего противопожарного гидранта указывается на пути движения транспорта;

- места для курения организовываются на свободной территории вдали от складов, временных зданий, и оснащаются первичными средствами пожаротушения;

Пожароопасные материалы на строительной площадке допускается складировать с учетом требований безопасности в соответствии с РД 34.03.307-87 «Правила пожарной безопасности при производстве строительно-монтажных работ на объектах Минэнерго СССР» [16] «При хранении на открытых площадках горючих строительных материалов (лесопиломатериалы, толь, рубероид и др.), изделий и конструкций из горючих материалов, а также оборудования и грузов в горючей упаковке они должны размещаться в штабелях или группами площадью не более 100м². Расстояния между штабелями (группами) и от них до строящихся или подсобных зданий и сооружений надлежит принимать не менее 24м» [16].

3.4.3 Экологическая безопасность

Мероприятия по экологической безопасности предусмотрены с учетом требований предъявляемых к строительной площадке и организации строительства по СП 48.13330.2019 «8.1.3 Строительно-монтажные работы проводятся с соблюдением мероприятий по охране окружающей среды в процессе строительства, реконструкции, капитального ремонта, сноса объектов, в части требований к местам сбора и хранения отходов, обращению с отходами, мероприятий по защите атмосферного воздуха, водных объектов, почвы, формы документов, оформляемых применительно к объекту капитального строительства, подтверждающих соблюдение природоохранных мероприятий (журнал учета образования и движения отходов на объекте капитального строительства, приказы о назначении ответственных лиц за обращение с отходами и лиц, ответственных за охрану окружающей среды и т.д.). Полный перечень требований к составу и содержанию мероприятий по охране окружающей среды формируется с требований, соответствующих региональных и учетом федеральных нормативных актов» [16]

Мероприятия, предусмотренные для соблюдения природоохранных мероприятий, включают в себя:

- при производстве работ по выемке грунта, необходимо предварительно плодородный верхний слой снять и вывезти в место хранения на обособленном участке, для предотвращения загрязнения;
- деревья и кустарники расположенные на участке строительства для сохранения и предотвращения повреждения огородить, деревянным ограждением высотой не менее 2,0 м;
- при попадании деревьев и кустарников в пятно застройки, необходимо согласовать срубку, а после выполнения работ разделать на месте и вывезти с территории площадки;
- на территории строительной площадки организовываются пункты мойки колес, с площадками, имеющими твердое покрытие, для предотвращения распространения загрязнения через колеса транспорта и гусеничные траки техники.
- для предотвращения выветривания мусора и грунтов, при транспортировании в открытом кузове, необходимо использовать тент;
- для работы использовать только сертифицированные машины и механизмы, отвечающие требованиям природоохранных и санитарным действующим нормативным документам, в части выхлопных выбросов, шума;
- складирование бытовых и строительных отходов организуется в специально предусмотренном месте, вывоз и утилизация осуществляется утилизирующей организацией, имеющей разрешения и лицензии на данный вид деятельности;
- для машин и механизмов на территории строительной площадки предусматриваются площадки с твердым покрытием, на которых производится заправка, мойка и стоянка, для предотвращения попадания на грунт нефтепродуктов. При попадании на грунт нефтепродуктов необходимо

участок загрязнения засыпать песком, собрать в закрытый контейнер и отправить на переработку;

- мероприятия по защите от загрязнения атмосферы предусматривают остановку двигателей на холостом ходу механизмов, не привлеченных к СМР.

Кроме перечисленных мероприятий необходимо следовать указаниям приведенных в природоохранной нормативной базе, предусмотренной для сохранения окружающей среды и понижение воздействия в результате урбанизации и застройки территорий.

3.5 Потребность в материально-технических ресурсах

Перечень потребности формируется из состава и численности на одно звено, выполняющее работы, с учетом перечня, приведенного в ГЭСН 05-01-003-06, ГЭСН 05-01-003-06. Потребность в материально-технических ресурсах (далее МТР) приведена в приложении В, таблица В.5. Грузозахватные приспособления необходимые для производства работ сведены в таблицу В.3, приложения В.

3.6 Технико-экономические показатели

3.6.1 Калькуляция затрат труда и машинного времени

«Затраты труды определяются исходя из объемов работ, рассчитываются по соответствующим статьям ГЭСН. Расчёты сводятся в таблицу калькуляции затрат труда и машинного времени приведены» [15] в приложении В, таблица В.6

3.6.2 График производства работ

«График производства работ разработан на основании калькуляции затрат труда и машинного времени. График изо» [11] изображен в графической части ВКР на лист 6.

Продолжительность выполнения работ определяется по формуле:

$$\Pi = \frac{T_p}{n \cdot k}$$
, дни

где T_p – общая трудоемкость, чел.-дн.;

n – число работников в одну смену;

k – количество смен.

Среднее количество рабочих в смене определяется по формуле:

$$R_{\rm cp} = rac{\sum T_p}{\Pi}$$
, человек

$$R_{\rm cp} = \frac{60}{18} = 3$$
 человека

где $\sum T_p$ — суммированная трудоемкость, чел.-дн.

 Π – продолжительность, дни.

Коэффициент неравномерного движения рабочих:

$$K_{\text{Hep}} = \frac{R_{max}}{R_{\text{cp}}}$$

$$K_{\text{Hep}} = \frac{4}{3} = 1.3$$

где R_{max} — максимальное количество работников.

3.6.3 Технико-экономические показатели

Затраты труда – 64,6 чел-смен

Продолжительность работ – 19 дней

Среднее число рабочих – 3 чел.

Максимально количество работников в смену – 4 чел.

Коэффициент неравномерности движения рабочего состава – 3,3

Выработка на одного рабочего в смену:

Выр =
$$\frac{V \cdot 8}{T_p}$$
;

где: V – объем работ (M^2);

 T_p —затраты труда рабочих (чел.-час).

Выр =11,5
$$M^3/$$
чел.-смен.

Затраты труда на единицу объема определяется по формуле:

Твыр =
$$\frac{T_p}{V \cdot 8}$$
;

где: V – объем работ (M^2);

 T_p —затраты труда рабочих (чел.-час).

Tвыр =0,08 чел.-смен/м³

4 Организация строительства

4.1 Определение объемов строительно-монтажных работ

Подсчёт объемов работ выполняется на основании графической и текстовой части раздела «Архитектурные решения». Расчет сводится в таблицу с описанием подсчетов и конструкций, приложение В, таблица В.1 — Ведомость объемов строительно-монтажных работ.

4.2 Определение потребности в строительных конструкциях, изделиях и материалах

«Определение потребности в строительных конструкциях, изделиях и материалах произведено на основании ведомости объемов работ, а также производственных норм расходов строительных материалов» [5].

Ведомость потребности в конструкциях, изделиях, материалах приведена в таблице В.2 приложения В.

4.3 Подбор машин и механизмов для производства работ

«Выбор грузоподъемного крана производится по его техническим параметрам, а именно: грузоподъемность, наибольший вылет стрелы, наибольшая высота подъема крюка» [16].

В связи с тем, что максимальная высота здания 23,41 м, то подбирается башенный кран.

Подбор крана осуществляется геометрически.

«Подбор грузозахватных приспособлений (строп) производится с учетом подъема самого тяжелого и самого удаленного элемента. Для этого составляется табл. 4.3» [16].

Определим высоту подъема крюка:

Определим высоту подъема крюка:

$$H_{K} = h_0 + h_3 + h_9 + h_{CT} \tag{4.1}$$

$$H_{K} = 10,26 + 1,0 + 3,0 + 0,76 = 15,02M$$

Вычисляем угол наклона стрелы к горизонту:

$$tg \alpha = \frac{2(h_{CT} + h_n)}{b_1 + 2S}$$
 (4.2)

$$tg \alpha = \frac{2 * (0,76 + 5,0)}{12 + 2 * 1.5} = 0,42,$$

$$\alpha = 37.3^{\circ}$$

С учетом угла наклона и подъема крюка определим длину стрелы крана и вылет крюка:

$$L_{c} = \frac{H_{\kappa} + h_{n} - h_{c}}{\sin \alpha} \tag{4.3}$$

$$L_{c} = \frac{15,02 + 5,0 - 1,5}{0,793} = 23,35M$$

$$L_{\kappa} = L_{c} \cdot \cos \alpha + d \tag{4.4}$$

$$L_{\kappa} = 23,35 \cdot 0,793 + 1,5 = 24,85 \text{M}$$

Определим отклонение стрелы в горизонтальной плоскости:

$$tg \varphi = \frac{D}{L_{\kappa}} \tag{4.5}$$

$$tg\,\phi = \frac{24.9}{24.85} = 1$$

Определяем угол наклона стрелы крана в повернутом положении, с учетом угла поворота стрелы:

$$tg\alpha_{\varphi} = \frac{H_{K} - h_{c} + h_{n}}{L_{c\varphi}}$$
 (4.6)

$$tg\alpha_{\phi} = \frac{15,02 - 1,5 + 5,0}{24,9} = 0,74$$

$$L_{c\phi} = \frac{L'_{c\phi}}{\cos \alpha_{\phi}} \tag{4.7}$$

$$L_{c\phi} = \frac{24.9}{\cos 0.74} = 24.9 M$$

Определим вылет крюка в повернутом положении:

$$L_{\kappa \Phi} = L'_{c \varphi} + d \tag{4.8}$$

$$L_{K\Phi} = 24.9 + 1.5 = 26.4 \text{ M}$$

Вычисляем грузоподъемность, с учетом веса грузозахватных приспособлений:

$$Q_{K} = Q_{9} + Q_{rp} \tag{4.9}$$

$$Q_{K} = 2.5 + 0.364 = 3.4 \text{ T}.$$

Определяем расчетную грузоподъемность крана с учетом запаса в 20 %:

$$Q_{\text{pac}_{\text{Y}}} = 1.2 \cdot Q_{\text{K}} \tag{4.10}$$

$$Q_{pac4} = 1.2 \cdot 3.4 = 4.32 \text{ T}.$$

С учётом технических характеристик и полученных расчетных данных, используем пневмоколесный кран TEREX-DEMAG AC60. Характеристики приведены в таблице 4 - Технические характеристики стрелового самоходного крана. На рисунке 3 представлен График грузоподъемных характеристик пневмоколесного крана TEREX-DEMAG AC 60

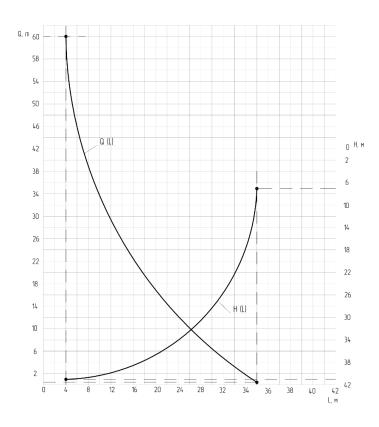


Рисунок 3 – График грузоподъемных характеристик пневмоколесного крана TEREX-DEMAG AC 60

Таблица 4.1 – Технические характеристики пневмоколесного самоходного стрелового крана.

Наимено	Macca	Высота по	одъема	Вылет с	трелы,	Вылет	Длинна	Грузопо	дъемн
вание	элеме	крюка I	Н, м.	L_{κ}	M.	стрелы,	стрелы,	ОСТ	Ъ
монтируе	нта Q,	H _{max}	H_{min}	L _{max}	L _{min}	L _к , м.	L, м.	Q _{max}	H _{max}
МОГО	T.								
элемента									
Бадья с	2,5	41	7	35	1	42	50	60	0,8
бетоном	2,3	'	/	33	+	42	30	00	0,8

4.4 Определение трудоемкости работ

Затраты труда и времени эксплуатации машин, механизмов для производства строительно-монтажных работ необходимо определить объемы работ и продолжительность рабочего дня, и сменность.

Норма времени $H_{вр}$ применяются на основании ЕНИР/ГЭСН на строительные работы. Согласно ТК РФ продолжительность смены не должна превышать 8 часов.[16]

Нормы времени на каждый вид работ приняты по соответствующей статье ГЭСН (Государственный элементные сметные нормы), вычисления производятся в чел-час и маш-час. Трудоемкость работ — это отношение нормы времени на выполнение всего объема данного вида работ к продолжительности смены и определяется по формуле (4.11):

$$Tp = (V \cdot H \text{вр})/8$$
, чел — дн (маш — см), (4.11)

где V – объем работ[31];

 $H_{\text{вр}}$ – норма времени, чел-час, маш-час[31];

8 – продолжительность смены, час. [31]

Все расчеты по трудозатратам сведены в ведомость (таблица В.3 приложения В).

4.5 Разработка календарного плана производства работ

«После составления ведомости трудоемкости работ, на ее основе создается календарный план. В календарном плане учитывается состав бригад, на основе которого вычисляется продолжительность работ, а затем составляется график движения рабочих.

Под календарным планом понимается проектно-технический документ, устанавливающий последовательность, интенсивность и сроки производства работ.

Продолжительность выполнения работ определяется по формуле (4.12)

$$T = \frac{T_{\rm p}}{n \cdot k}$$
, дни, (4.12)

где $T_{\rm p}$ – трудозатраты, чел-дн;

n – количество рабочих в звене;

k – сменность.

Продолжительность работ округляется в большую сторону с точностью до дня.

Календарный график представляет собой графическую часть, с наглядным порядком и длительностью ведения работ, а также расчетная часть с числовым пояснением к графике» [31].

«Под календарным графиком вычерчивается диаграмма движения людских ресурсов и производится их оптимизация.

По данным графика рассчитываются следующие показатели:

- степень достигнутой поточности строительства по числу людских ресурсов по формуле (4.13)

$$\alpha = \frac{R_{\rm cp}}{R_{\rm max}},\tag{4.13}$$

где $R_{\rm cp}$ — среднее число рабочих на объекте;

 $R_{\rm max}$ — максимальное число рабочих на объекте.

$$\alpha = \frac{18}{38} = 0.46.$$

$$R_{\rm cp} = \frac{\Sigma T_{\rm p}}{T_{\rm ofm} \cdot k}$$
, чел, (4.14)

где $\Sigma T_{\rm p}$ — суммарная трудоемкость работ с учетом подготовительных, электромонтажных, санитарно-технических и неучтенных работ, чел-дн;

 $T_{\text{общ}}$ – общий срок строительства по графику» [31];

k – преобладающая сменность.

$$R_{\rm cp} = \frac{6048,8}{340 \cdot 1} = 18$$
 чел.

 степень достигнутой поточности строительства по времени [31] по формуле (4.15)

$$\beta = \frac{T_{\text{ycr}}}{T_{\text{offul}}},\tag{4.15}$$

где $T_{\rm уст}$ – период установившегося потока.

$$\beta = \frac{89}{340} = 0.26.$$

Календарный график, график движения людских ресурсов и механизмов приведены в графической части.

4.6 Расчет и проектирование потребности во временных зданиях

«Площади и количество временных зданий рассчитываются, исходя из максимального количества работающих в смену и среднего числа работников в наиболее загруженную смену. Максимальное количество рабочих определяется по календарному графику» [16].

Общее количество работающих рассчитывается по формуле (4.16)

$$N_{\text{общ}} = N_{\text{раб}} + N_{\text{итр}} + N_{\text{служ}} + N_{\text{моп}},$$
 (4.16)

где $N_{\rm pab}$ — численность рабочих, принимаемая по календарному графику

$$N_{\rm pa6} = 38$$
 чел.;

 $N_{\text{итр}}$ – численность ИТР.

«Все временные здания и сооружения должны соответствовать требованиям п.п 7.31 Временные здания и сооружения для нужд строительства возводятся (устанавливаются) на строительной площадке или в полосе отвода линейных объектов лицом, осуществляющим строительство, специально для обеспечения строительства и после его окончания подлежат ликвидации. Временные здания и сооружения в основном должны быть мобильными (инвентарными)» [16].

Общая численность определяется по формуле:

$$N_{oби \mu} = N_{pa bou ue} + N_{UTP} + N_{cлуж} + N_{MOII}$$

 $N_{paбoчue} = 38$ человек

$$N_{\rm MTP} = 0.11 \cdot N_{\rm pa6} = 0.11 \cdot 38 = 4$$

 $N_{\text{служ}}$ - количество обслуживающего персонала

$$N_{\text{служ}} = 0.036 \cdot N_{\text{pa6}} = 0.036 \cdot 38 = 1$$

 $N_{\mathrm{MO\Pi}}$ - количество младшего обслуживающего персонала

$$N_{\text{MO\Pi}} = 0.015 \cdot N_{\text{pa6}} = 0.015 \cdot 38 = 1$$

$$N_{\text{обш}} = 38 + 4 + 1 + 1 = 44$$

Расчетное количество работающих на стройплощадке:

$$N_{pacu} = 1.05 \cdot N_{o \delta u u} = 46$$

Исходя из нормативов площади, подбираются типы зданий по размерам. Расчет временных зданий сводится в таблице 4.2.

Таблица 4.2 – Ведомость временных зданий

Наименов ание задний	Численно сть персо- нала	Норма площади	Расчетн ая площад ь S _p , м ²	Принимае мая площадь S_{ϕ} , M^2	Размер ы А×В, м	Кол- во здани й	Характерист ика
Диспетче рская	4	7 м ² /чел	28	18	6,7×3	2	Контейнерны й
Прорабск ая	4	3 м ² /чел	12	12	6,7×3	1	420-01-3 передвижной
Гардероб ная	46	0,9 м ² /чел	67,5	41,4	10×3,2	2	Г-10 передвижной
Душевая	46·0,5= =23	0,43 м²/чел	9,89	27	9×3	1	ГОССД-6 контейнерны й
Столовая	46	0,6 м ² /чел	45	41,4	10×3,2	1	СК-16 передвижной

На территории строительной площадки временные здания необходимо размещать за пределами действия опасной зоны. А также учитывать п.п 7.38 «Временные здания и сооружения, расположенные на строительной площадке или на территории, используемой застройщиком по соглашению с ее владельцем, вводятся в эксплуатацию решением лица, осуществляющего строительство. Ввод в эксплуатацию оформляется актом или записью в журнале работ, и п.п 7.39 «Ответственность за сохранность временных зданий и сооружений, а также отдельных помещений в существующих зданиях и сооружениях, приспособленных к использованию для нужд строительства, техническую за ИХ эксплуатацию несет лицо, осуществляющее строительство» [16].

4.6.1 Расчет площадей складов

«Склады устраиваются на строительной площадке для временного хранения материалов, изделий и конструкций. Площадь складов зависит от их вида, способа хранения изделий и конструкций и их количества.

Запас материала на складе определяется по формуле (4.17)

$$Q_{\text{зап}} = \frac{Q_{\text{общ}}}{T} \cdot n \cdot k_1 \cdot k_2, \tag{4.17}$$

где $Q_{
m oбщ}$ – общее количество материала данного вида, необходимого для строительства;

T — продолжительность работ, выполняющихся с использованием этих материальных ресурсов, дни;

n — норма запаса материала данного вида на площадке; [31]

 k_1 — коэффициент неравномерности поступления материалов на склад; [31]

 k_2 — коэффициент неравномерности потребления материалов в течении расчетного периода» [16].

Полезная площадь для складирования данного вида ресурса определяется по формуле (4.18)

$$F_{\text{пол}} = \frac{Q_{\text{зап}}}{q}, \text{ M}^2, \tag{4.18}$$

где q — норма складирования.

Общая площадь склада с учетом проходов и проездов определяется по формуле (4.19)

$$F_{\text{общ}} = F_{\text{пол}} \cdot k_{\text{исп}}, \text{M}^2, \tag{4.19}$$

где $k_{\rm исп}$ – коэффициент использования площади склада.

4.6.2 Расчет и проектирование сетей временного водоснабжения

«На основе календарного графика производства работ устанавливается период строительства, когда какие-либо строительные процессы требуют наибольшего водопотребления. Для этого периода рассчитывают максимальный расход воды на производственные нужды по формуле (4.16)

$$Q_{\rm np} = \frac{K_{\rm Hy} \cdot q_{\rm H} \cdot n_{\rm H} \cdot K_{\rm q}}{3600 \cdot t_{\rm CM}}, \pi/\text{cek},$$
 (4.20)

где $K_{\text{ну}}$ – неучтенные расходы воды;

 $q_{\mbox{\tiny H}}$ – удельный расход воды на единицу объема работ, равный 1300 л/1 $\mbox{\scriptsize M}^3;$

 $n_{\rm m}$ – объем работ (в сутки) по наиболее нагруженному процессу, требующему воду, рассчитываемый по формуле (4.21)

$$n_{\Pi} = \frac{V}{t_{\text{ZH}} \cdot n_{\text{CM}} \cdot 1000};$$
 (4.21)

где $K_{\text{ч}}$ — коэффициент часовой неравномерности потребления воды; $t_{\text{см}}$ — число часов в смену.

Самым нагруженным процессом, требующим большого расхода воды, является устройство монолитных перекрытий:

$$Q_{\text{пр}} = \frac{1,2 \cdot 250 \cdot 13,15 \cdot 1,5}{3600 \cdot 8,2} = 0,2 \text{ л/сек,}$$

$$n_{\text{п}} = \frac{750}{57} = 13,15 \text{ м}^3/\text{день}.$$

Далее рассчитывается расход воды на хозяйственно-бытовые нужды в смену, с учетом максимального количества человек по формуле (4.22)

$$Q_{\text{хоз}} = \frac{q_{\text{y}} \cdot n_{\text{p}} \cdot K_{\text{q}}}{3600 \cdot t_{\text{см}}} + \frac{q_{\text{д}} \cdot n_{\text{д}}}{60 \cdot t_{\text{д}}}, \pi/\text{сек},$$
 (4.22)

где $q_{\rm y}$ – удельный расход воды на хозяйственно-бытовые нужды;

 $q_{\text{д}}$ – удельный расход воды в душе на 1 работающего;

 $n_{\rm p}$ – максимальное число работающих в смену;

 $K_{\text{\tiny H}}$ – коэффициент часовой неравномерности потребления воды;

 $t_{\text{д}}$ – продолжительность пользования душем;

 $n_{\rm д}$ — число людей, пользующихся душем в наиболее нагруженную смену.

$$Q_{\text{хоз}} = \frac{20 \cdot 46 \cdot 1,5}{3600 \cdot 8,2} + \frac{30 \cdot 38}{60 \cdot 45} = 0,43 \text{ л/сек.}$$

Расход воды на пожаротушение $Q_{\text{пож}}$ определяется по степени огнестойкости и здания и категории пожарной опасности. Для проектируемой школы степень огнестойкости — II, категория пожарной

опасности — В, следовательно, расход воды для тушения пожара на строительной площадке будет равен $Q_{\text{пож}} = 15 \text{ л/сек}$.

Определим требуемый максимальный (суммарный) расход воды на строительной площадке в сутки наибольшего водопотребления по формуле (4.23)

$$Q_{\text{общ}} = Q_{\text{пр}} + Q_{\text{хоз}} + Q_{\text{пож}}, \pi/\text{сек}.$$
 (4.23)

$$Q_{\text{общ}} = 0.2 + 0.43 + 15 = 15.63 \text{ л/сек}.$$

По требуемому расходу воды рассчитывается диаметр труб временной водопроводной сети по формуле (4.20)

$$D = \sqrt{\frac{4 \cdot 1000 \cdot Q_{\text{общ}}}{\pi \cdot \nu}}, \text{MM}, \tag{4.24}$$

где $\pi = 3,14$;

v – скорость движения воды по трубам.

$$D = \sqrt{\frac{4 \cdot 1000 \cdot 15,63}{3,14 \cdot 1,5}} = 114,12 \text{ mm,}$$

Следовательно, принимаем условный диаметр трубопровода $D_{\rm y}=100$ мм.

Диаметр труб временной канализации рассчитывается по формуле (4.25)

$$D_{\text{кан}} = 1,4D_{\text{вод}}, \text{мм}.$$
 (4.25)

$$D_{\mathrm{кан}} = 1,4 \cdot 114,12 = 159,7$$
 мм.

Принимаем $D_{\text{кан}} = 200 \text{ мм} > [16].$

4.6.3 Расчет и проектирование временного электроснабжения

«Проектирование и организацию электроснабжения строительной площадки начинают с определения ее расчетной нагрузки, то есть величины необходимой электрической мощности трансформаторной подстанции. Требуемую мощность определяют В период потребления пика электроэнергии. Электроэнергия потребляется на производственные, хозяйственно-бытовые технологические, нужды, ДЛЯ наружного внутреннего освещения» [16]. Наиболее точным является метод расчета по установленной мощности электроприемников и коэффициенту спроса (4.26)

$$P_p = \alpha \left(\sum \frac{k_{1c} \cdot P_c}{\cos \varphi} + \sum \frac{k_{2c} \cdot P_T}{\cos \varphi} + \sum k_{3c} \cdot P_{\text{OB}} + \sum k_{4c} \cdot P_{\text{OH}} \right), \text{ KBT}, \tag{4.26}$$

«где α — коэффициент, учитывающий потери в электросети в зависимости от протяженности, сечения проводов и т.п.;

 k_{1c} , k_{2c} , k_{3c} , k_{4c} — коэффициенты одновременности спроса, зависящие от числа потребителей, учитывающие неполную нагрузку электропотребителей, неоднородность их работы;

 $P_{\rm c},~P_{\rm T},~P_{\rm ob},~P_{\rm oh}~-$ установленная мощность силовых токоприемников «с», технологических потребителей «т», осветительных приборов внутреннего «ов» и наружного «он» освещения, к ${\rm BT}$;

 $\cos \varphi$ – коэффициент мощности» [16].

Для дальнейших расчетов составляется ведомость установленной мощности силовых потребителей (таблица 4.6.2).

Таблица 4.6.2 – Ведомость установленной мощности силовых потребителей

Поз.	Наименование потребителей	Ед. изм.	Установленная мощность, кВт	Кол-во	Общая установленная мощность, кВт
1	Сварочный аппарат Ресанта САИ 220	ШТ.	5,28	2	10,56
2	Вибратор глубинный ИВ-91 А	ШТ.	0,8	2	1,6
				Итого:	12,16

Далее определяются значения средних коэффициентов спроса и мощности для стройплощадки и сводятся в таблицу 4.6.2.

По формуле (4.27) определяется мощность силовых потребителей

$$P_{\rm c} = \frac{k_1 \cdot P_{\rm c1}}{\cos \varphi_1} + \frac{k_2 \cdot P_{\rm c2}}{\cos \varphi_2} + \frac{k_3 \cdot P_{\rm c3}}{\cos \varphi_3} + \frac{k_4 \cdot P_{\rm c4}}{\cos \varphi_4} + \frac{k_5 \cdot P_{\rm c5}}{\cos \varphi_5}, \text{ kBt.}$$
(4.27)

$$P_{\rm c} = \frac{0.35 \cdot 10.56}{0.4} + \frac{0.1 \cdot 1.6}{0.4} = 9.64 \text{ кВт.}$$

Таким образом, с учетом коэффициентов k_c и $cos\phi$ мощность силовых потребителей уменьшилась с 12,16 кВт до 9,64 кВт.

«Затем определяется удельная мощность наружного и внутреннего освещения. Выбрав территории, которые нужно освещать и подобрав временные здания, составляются таблицы потребления мощности для наружного и внутреннего освещения» [11]. (таблицы 4.6.3 и 4.6.4).

Таблица 4.6.3 – Потребная мощность наружного освещения

	Потребители	Ед.	Удельная	Норма	Действител	Потребная
Поз.	_	ЕД. ИЗМ.	мощность,	освещенно	ьная	мощность,
	электроэнергии	изм.	кВт	сти, лк	площадь	кВт
1	Территория	1000	0,4	4	5,9	2,08
1	строительства	м ²	0,4	4	3,9	2,08
2	Открытые склады	1000 _M ²	0,8	10	0,35	0,28
3	Внутрипостроечные дороги	1 км	2,5	2	0,15	0,375
					Итого:	2,735

Таблица 4.6.4 – Потребная мощность внутреннего освещения

Поз.	Потребители электроэнергии	Ед. изм.	Удельная мощность, кВт	Норма освещен- ности, лк	Действител ьная площадь	Потребная мощность, кВт
1	Диспетчерская	100 m ²	1,5		13,4	0,2
2	Прорабская	100 m ²	1,5	75	28	1,1
3	Гардеробная	100 m ²	1,5	50	41,4	0,6
4	Душевая	100 m ²	0,8	50	27	0,2
5	Столовая	100 m ²	1,0	75	41,4	0,75
6	Туалет	100 m ²	0,8		27	0,2
7	кпп	100 m ²	0,8		9	0,07
8	Сушилка	100 m ²	0,8	50	39	0,3
9	Закрытые склады	100 m ²	1,2	15	4,13	4,9
	Итого:					8,32

Суммарная установленная мощность электроприемников рассчитывается по формуле 4.12

$$P_p = 1,05 (12,16 + \sum 0.8 \cdot 2,735 + \sum 1 \cdot 8,32) = 23,8$$
 кВт.

Далее произведем перерасчет мощности из кВт в кВ·А по формуле (4.24)

$$P = P_{y} \cdot \cos\varphi, \, \kappa B \cdot A. \tag{4.24}$$

$$P = 23.8 \cdot 0.8 = 19.04 \text{ кB} \cdot \text{A}.$$

Так как суммарная мощность всех потребителей 20 кВ·А, то подбираем временный трансформатор СКТП-30-6/10/0,4 мощностью 30 кВ·А.

Исходя из площади стройплощадки 5900 м 2 , нормативно освещенности площадки E=2 лк, рассчитываем количество ламп прожекторов N, необходимых для освещения стройплощадки, по формуле (4.25)

$$N = \frac{P_{y,z} \cdot E \cdot S}{P_{z}}, \text{ IIIT.}$$
 (4.25)

$$N = \frac{0.2 \cdot 2 \cdot 5900}{1000} = 2.36 \approx 4$$
 шт.

Принимаем к установке 4 прожектора ПЗС-40.

4.7 Проектирование строительного генерального плана

«Строительный генеральный план представляет собой планировку строительный площадки, с расположением временных зданий и дорог, в котором также изображают постоянные и временные сети, временные здания, дороги, зоны движения и покрытия крана и др.

Зона работы крана является опасной. Во избежание несчастных случаев, необходимо четко разграничить эту зону флажками. Для этого необходимо провести расчет опасной зоны крана» [16] по формуле (8.1)

$$R_{\text{OII}} = R_{max} + 10 \text{ M},$$
 (4.26)

где $R_{\text{п.с.}}$ – радиус падения стрелы, определяемый длиной стрелы, м.

$$R_{\text{OII}} = 24 + 10 = 34 \text{ M}.$$

Чертеж строительного генерального плана и технико-экономические показатели приведены в графической части на листе 8.

4.11 Технико-экономические показатели проекта производства работ

- 1. Площадь здания 2748.8 м^2
- 2. Общая трудоемкость T_p = 6043,8 чел./дня
- 3. Средняя трудоемкость работ- 2 чел-д/м³
- 4. Общая трудоемкость работ машин-252,74 маш-смен
- 5. Общая площадь стройплощадки
- 5900 м^2
- 6. Площадь временных зданий- $212,5 \text{ м}^2$
- 7. Площадь открытых складов- 306 m^2
- 8. Протяженность:
 - водопровода-120 м
 - временных дорог-276 м
 - осветительной линии-324 м
 - электросети-130 м
 - канализация бытовая-57 м
- 9. Количество работающих на стройплощадке:
 - максимальное R_{max} =38 чел.
 - среднее R_{cp} =18 чел.

- минимальное R_{min}=4 чел.

5 Экономика строительства

Проектируемый объект - здание офисного центра.

Место строительства – г. Волгодонск, Ростовская область.

Конструктивная каркасная безбалочным схема каркаса перекрытием, состоящая ИЗ вертикальных несущих конструкций железобетонных колонн, горизонтальных монолитных конструкций безбалочных монолитных железобетонных плит перекрытия и покрытия. Фундаменты в здании запроектированы свайные железобетонные. Колонны приняты монолитными из бетона марки В25 размещение колонн в плане с переменным шагом. Размер колонн 400×400 мм. Высота колонны на один этаж. Стены подвала приняты монолитными из бетона В 15.

Сметные расчеты составлены с «использованием Укрупненных нормативов цены строительства НЦС 81-02-2020. Сборники УНЦС применяются с 1 января 2020г.

Укрупненный норматив цены строительства — показатель потребности в денежных средствах, необходимых для создания единицы мощности строительной продукции, предназначенный для планирования (обоснования) инвестиций (капитальных вложений) в объекты капитального строительства. Показатели НЦС рассчитаны в уровне цен по состоянию на 01.01.2020г. для базового района (Московская область).

Показателями НЦС 81-02-2020 в редакции 2020 г. учитываются затраты на оплату труда рабочих и эксплуатацию строительных машин, стоимость материальных ресурсов и оборудования, накладные расходы и сметную прибыль, а также затраты на строительство временных титульных зданий и сооружений, дополнительные затраты при производстве строительно-монтажных работ в зимнее время, затраты на проектно-изыскательские работы и экспертизу проекта, строительный контроль, резерв

средств на непредвиденные работы и затраты. Данными показателями НЦС предусмотрены конструктивные решения, обеспечивающие использование объектов маломобильными группами населения» [35].

Для определения стоимости строительства здания офисного центра, благоустройства и озеленения территории проектируемого объекта в городе Волгодонск были использованы «Укрупненные нормативы цены строительства, используемые в сметных расчетах:

- НЦС 81-02-02-2020 Сборник N02. Административные здания;
- НЦС 81-02-16-2020 Сборник N16. Малые архитектурные формы;
- НЦС 81-02-17-2020 Сборник N17. Озеленение» [35].

Для определения стоимости строительства здания офисного центра в сборнике НЦС 81-02-02-2020 выбираем таблицу 02-01-001 и методом интерполяции определяем стоимость 1 m^2 общей площади здания — 48,72 тыс. руб. Общая площадь $F = 2748,8\text{ m}^2$.

«Расчет стоимости объекта строительства: показатель умножается на полученную мощность объекта строительства и на поправочные коэффициенты, учитывающие изменения стоимости строительства на территории РФ по отношению к стоимости базового района (производим приведение к условиям субъекта Российской Федерации» [35] — г. Волгодонск):

$$C = 48,72 \times 2748,8 \times 0,94 \times 1.10 = 138474,87$$
 тыс. руб. (без НДС),

«где: 0,94 — (К_{пер}) коэффициент перехода от стоимостных показателей базового района (Московская область) к уровню цен Ростовская области, (п. 31 технической части сборника 01 НЦС 81-02-02-2020, таблица 1);

1,10 — (К_{рег1}) коэффициент, учитывающий изменение стоимости строительства на территории субъекта Российской Федерации — Ростовская область, связанный с регионально-климатическими условиями (пункт 32 технической части сборника 02, таблица 2)» [35]

Сводный сметный расчет стоимости объекта строительства составлен в ценах по состоянию на 01.01.2020 г. и представлен в таблице 5.1.

Объектные сметные расчеты стоимости объекта строительства и благоустройство и озеленение представлены в таблицах 5.2. и 5.3.

Таблица 5.1 - Сводный сметный расчёт стоимости строительства

«Поз.	Номера сметных	Наименование глав, объектов,	Общая сметная
	расчётов и смет	работ и затрат	стоимость, тыс.
			руб. »[35]
1	2	3	8
1	«OC-02-01	<u>Глава 2.</u> Основные объекты	138474,87
		строительства.	
		Здание офисного центра»[35]	
2		<u>Глава 7.</u>	
	«OC-07-01	Благоустройство и озеленение	4449,0
		территории»[35]	
Итого			142923,87
НДС 2	0%		28584,77
Всего	по смете		171508,64

Таблица 5.2 - Объектный сметный расчет № ОС-02-01. Здание Офисного центра

Поз.	Наименование сметного расчета	Выполняемый вид работ	Единица измерения	Объем работ	Стоимость единицы объема работ, тыс. руб	Итоговая стоимость, тыс. руб
1	2	3	4	5	6	7
1	НЦС 81-02-02- 2020 Таблица 02-01-001	Здание Офисного центра	1 m ²	2748,8	43,22	43,22 x 2748,8 x 0,84 x 1.00 = 138474,87
Итого:						138474,87

Таблица 5.3 – Объектный сметный расчет № ОС-07-01. Благоустройство и озеленение

«Поз.	Наименование сметного расчета	Выполняемый вид работ	Едини ца измере ния	Объем работ	Стоимост ь единицы объема работ, тыс. руб	Итоговая стоимость, тыс. руб»[35]
1	2	3	4	5	6	7
1	«НЦС 81-02-16- 2020 Таблица 16-06-002-01	Площадки, дорожки, тротуары шириной от 2,6 м до 6 м с покрытием из литой асфальтобетон ной смеси однослойные» [35]	100 m^2	17,6	166,18	166,18 x 17,6 x 0,94 x 1,10 = 3024,2
2	«НЦС 81-02-17- 2020 Таблица 17-01-002-01	Озеленение придомовых территорий с площадью газонов 30%» [35]	100 м ²	12,1	125,27	125,27 x 12,1 x 0,94 = 1424,80
Итого:						4449,0

НДС в размере 20 % принят в соответствии налогового кодекса Российской Федерации.

Сметная стоимость строительства здания офисного центра составляет 171508,64 тыс. руб., в т ч. НДС – 28584,77 тыс. руб.

Стоимость за 1 м^2 составляет 50,38 тыс. руб.

«При составлении сметных расчетов руководствовались положениями, приведенными в Методических рекомендациях по применению государственных сметных нормативов — укрупненных нормативов цены строительства различных видов объектов капитального строительства (МД 81-02-12-2011)» [35].

В таблице 5.4 приведены технико-экономические показатели.

Таблица 5.4 – Технико-экономические показатели

«Поз.	Наименование показателей	Единицы измерения	Обоснование	Результат»[35]
1	Общая площадь здания	м2	по проекту	2748,8
2	Общая площадь помещений кафе	м2	по проекту	900,48
3	Объем здания	м3	по проекту	12103,2
4	Сметная стоимость общестроительных работ	тыс. руб.	сводный сметный расчет	138474,87
5	Сметная стоимость строительства с НДС	тыс. руб.	сводный сметный расчет	171508,64
6	Стоимость 1 м2	тыс. руб/м2	138474,87/2748,8	50,38
7	Стоимость 1 м3	тыс. руб./м3	171508,64/12103,2	14,17

Выводы по разделу

В данном разделе произведен расчет стоимости строительства детского сада. Приведен сводный сметный расчет, а также объектные сметные расчеты объекта капительного строительства, озеленения и благоустройства.

6 Безопасность и экологичность технического объекта

Для возведения пятиэтажного здания офисного центра отведен земельный участок в г. Волгодонск. Строительство недопустимо без рассмотрения таких вопросов, как безопасность И экологичность технического объекта. Любое строительство здания не должно оказывать влияние на окружающую среду. Необходимо предусмотреть все меры безопасности и экологичности технического объекта. Принять меры по обеспечению безопасности труда рабочих и соблюдение экологических норм при производстве работ по погружении буронабивных свай. Необходимо изучить и выявить опасные факторы при производстве строительных работ. Это является основой для безопасности жизнедеятельности.

6.1 Конструктивно-технологическая и организационнотехническая характеристика офисного центра

Конструктивно-технологическая и организационно-техническая характеристика офисного центра представлена в таблице 6.1.

Таблица 1 – Технологический паспорт здания

«Поз.	Технолог	Технолог	Состав	Оборудование	Материалы,
	ический	ическая	бригады		вещества»[3]
	процесс	операция			
1	Погружен	Свайные	Такелажники;	Копровая	Сваи
	ие свай	работы	машинист	установка на бузе	железобетонны
			крана;	бульдозера;	е; опалубка для
			работники,	автомобильный	оголовков свай
			обслуживающ	кран; экскаватор	из деревянных
			ие	одноковшовый с	щитов;
			сваебойный	обратной лопатой;	арматурные
			агрегат,	автобетононасос;	изделия; бетон.
			бетонщики;	автобетоносмесите	
			арматурщики;	ль; приемная	
			плотники.	воронка	

6.2 Идентификация профессиональных рисков

В таблице 6.2 представлены результаты идентификации профессиональных рисков.

Таблица 6.2 – Идентификация профессиональных рисков

«Поз.	Технологическая	Опасный и /или вредный	Источник опасного и /
\\1103.		производственный фактор	
	операция	производственный фактор	или вредного
			производственного
1	0 v c	П	фактора» [3]
1	Свайные работы.	Подвижные части	Коровая установка на
	Погружение свай	производственного	базе бульдозера;
		оборудования	автомобильный кран;
			экскаватор
			одноковшовый с
			обратной лопатой;
			автомобиль-самосвал;
			бортовой автомобиль;
			автобетононасос;
			автобетоносмеситель;
		Острые кромки и	Свайный ключ
		шероховатость	
		Чрезмерное напряжение в	Глубинный ручной
		электрической цепи	электрический вибратор
		оборудования	с валом на гибком конце;
			преобразователь для
			присоединения
			вибратора,
			трансформатор
			сварочный для
			общепромышленных
			нужд.
		Повышенный уровень шума на	Копровая установка;
		рабочем месте при работе на	автомобильный кран;
			± ′
		механических прессах и	пневмоинструмент
		молотах	

6.3 Методы и средства снижения профессиональных рисков

В таблице 6.3 отражены методы и средства снижения профессиональных рисков.

Таблица 3 — Организационно-технические методы устранения воздействия опасных и вредных производственных факторов

«Поз.	Опасный и / или вредный производственный фактор Подвижные части производственного оборудования	Методы и технические средства защиты, устранения опасного и / или вредного производственного фактора Проверка исправности копровой установки, надежность закрепления сборочных единиц и стяжек, устройств механизмов, ограждения. Проверка готовности и исправности грузоподъёмных устройств, тросов, блоков и лебёдок	Средства индивидуально й защиты работника» [3] Работники должен быть обеспечены средствами индивидуально й защиты: -костюм хлопчатобумаж ный; -ботинки кожаные; -рукавицы брезентовые; -очки защитные
2	Острые кромки и шероховатость	Работники должны иметь индивидуальные защитные средства: -хлопковый защитный костюм; костюм из хлопчатобумажной ткани; -ботинки из натуральной кожи; -перчатки из брезента; -протекторные защитные очки	
3	Повышенное напряжение в электрической цепи оборудования	Проверить исправность инструмента, приспособлений. Проверить наличие и исправность заземления электрооборудования	
4	Повышенный уровень шума на рабочем месте при работе на механических прессах и молотах	Глушители шума, противошумные шлемы и каски; противовибрационные рукавицы	

6.4 Обеспечение пожарной безопасности здания

В таблице 6.4 представлена идентификация классов и опасных факторов пожара.

Таблица 6.4 – Идентификация классов и опасных факторов пожара

«Поз.	Участок	Оборудован	Класс	Опасные	Сопутствующие проявления
		ие	пожара	факторы	факторов пожара»[3]
				пожара	
1	Участок	Копровая	Класс А	Пламя и	Сопутствующие проявления
	В Γ.	установка;		искры	факторов пожара указаны в
	Волгодо	автомобильн			учебно-методическом пособии
	нск под	ый кран;			в пункте 3.4.1.3 [19].
	строител	экскаватор;			Применительно к нашему
	ьство	автобетонон			участку можно отнести
	пятиэта	acoc;			проявления таких факторов
	жного	автобетонос			как: тепловое поле,
	офисног	меситель;			образующееся за счет
	О	приемная			эндотермических
	центра.	воронка;			окислительных процессов в
		вибратор			зоне пожара; осколочное поле,
		ручной			образуемое при разлете из
		глубинный			зоны взрыва обломков
		электрическ			оборудования, обладающих
		ий;			высокой кинетической
		трансформат			энергией; поле токсичных
		оры;			веществ, разбрасываемых при
		устройство			взрыве либо образующихся
		для			при горении
		свинчивания			
		обсадных			
		труб			

Для того чтобы избежать пожара, необходимо произвести подбор эффективных организационно-технических способов и технических средств (см. табл. 6.5). Эффективные организационные и технические методы, принятые для защиты от пожаров, должны быть основаны на таких нормативных документах.

Таблица 6.5 – Технические средства обеспечения пожарной безопасности

«Первич	Мобильны	Стацион	Средств	Пожарн	Средства	Пожарный	Связь и
ные	е средства	арные	a	oe	индивиду	инструмент	оповещен
средства	пожароту	установк	пожарн	оборудо	альной		ие»[1]
пожарот	шения	И	ой	вание	защиты и		
ушения		системы	автомат		спасения		
		пожарот	ики		людей		
		ушения					
Огнетуш	Пожарные	Гидрант	Извещат	Огнетуш	Защитны	Пожарный	01; 112
итель	автомобили	Ы	ели	ители	й экран	топор	

Для предотвращения возгорания нужно назначить и организационные мероприятия (см. табл. 6.6). Проведение организационных мер по обеспечению пожарной безопасности также предписано в приведенных выше нормативных документах.

Таблица 6.6 – Организационные мероприятия по обеспечению пожарной безопасности

«Наименование технологического	Наименование видов	Предъявляемые нормативные требования по обеспечению пожарной безопасности,
процесса	реализуемых организационных мероприятий	реализуемые эффекты»
Свайные работы. Погружение свай	Свайные работы	ФЗ-123 Федеральный закон технический регламент «О требованиях пожарной безопасности» (выборочно). Постановление правительства Российской Федерации от 25 апреля 2012 г. № 390 «О противопожарном режиме». «ГОСТ 12.1.018-93. ССБТ. Пожаровзрывобезопасность статического электричества. Общие требования». «ГОСТ 12.1.033-81. ССБТ. Пожарная безопасность. Термины и определения». ГОСТ Р 12.3.047-2012 Национальный стандарт Российской Федерации. ССБТ. Пожарная безопасность технологических процессов. Общие требования. Методы контроля.

6.5 Обеспечение экологической безопасности офисного центра

Обеспечение экологической безопасности регламентируется следующими нормативными документами.

В таблице 6.7 приведено обеспечение экологической безопасности.

Таблица 6.7 – Идентификация негативных экологических факторов

«Техническ	Структурные	Негативное	Негативное	Негативное
ий объект	составляющие	экологическое	экологическое	экологическое
	технического	воздействие на	воздействие на	воздействие
	объекта	атмосферу	гидросферу	технического объекта
				на литосферу»[3]
Строительст	Свайные	Выбросы в	Загрязнение и	Загрязнение
ВО	работы.	воздушную	засорение	грунтовых вод,
пятиэтажног		окружающую	поверхностных	нарушением и
о офисного		среду; работа с	водоемов	засорением
центра		токсичными	сточными	растительного
		материалами,	водами;	покрова; изъятием
		таким как	строительный	земли под застройку.
		битум	мусор;	
			дизельное	
			топливо	

Для снижения негативного воздействия на окружающую среду разработаны следующие мероприятия, приведенные в таблице 8.

Таблица 8 — Мероприятия по снижению негативного антропогенного воздействия заданного технического объекта на окружающую среду

«Наименовані	ие технического	Здание офисного центра»[3]		
обт	ьекта			
	1	2		
Мероприятия	по снижению	Привлечение подрядной строительной организации,		
негативного	антропогенного	имеющей необходимые разрешительные документы		
воздействия на	атмосферу	природоохранительного значения.		
Мероприятия	по снижению	Рациональное потребление водных ресурсов,		
негативного	антропогенного	ликвидация врезок производственных стоков со		
воздействия на	гидросферу	строительной площадки в канализационную ливневую		
		сеть		
Мероприятия	по снижению	Механический вынос загрязнителей совместно с		
негативного	антропогенного	породой и их перемещение в места хранения, удаление		
воздействия на .	литосферу	загрязняющих веществ с помощью потока		
		фильтрующейся жидкости		

Заключение

В соответствии с заданием на тему «Здание офисного центра» был разработан дипломный проект, строительство ведется в городе Волгодонск.

В процессе выполнения выпускной квалификационной работы были решены основные задачи.

- 1. Разработан раздел проектной документации «Архитектурные решения», указаны планировочная и функциональная организация, внешний и внутренний облик проектируемого объекта.
 - 2. Произведен расчет столбчатого свайного фундамента.
- 3. Разработана технологическая карта на исполнение строительнотехнического процесса — устройство конструкции свайного фундамента. Описан состав технологических процессов, ресурсов и средств механизации, требования к качеству выполняемых работ и инструкций для рабочих.
- 4. Разработан проект организации строительства, определяющий общую продолжительность производства работ и последовательность строительно-монтажных работ. Разработан календарный график и строительный генеральный план.
- 5. Произведен расчет сметной стоимости строительства с использованием Укрупненных нормативов цены строительства НЦС 81-02-2020. Составлены сводный сметный расчет, объектные сметы объекта капительного строительства, озеленения и благоустройства.
- 6. В разделе безопасность и экологичность технического объекта описаны требования безопасности на исполнение строительно-технического процесса разработанном в технологической карте. Идентифицированы возникающие профессиональные риски. Продуманы и разработаны мероприятия по снижению опасных и профессиональных рисков. Подобраны индивидуальные защитные средства для рабочих кадров.

Цели и задачи дипломного проекта достигнуты.

Список используемой литературы

- 1. Алиев С. А. Основы архитектуры зданий и сооружений: учебник / А. 3. Абуханов, Е. Н. Белоконев, Т. М. Белоконева, С. А. Алиев. 5-е изд., перераб. и доп. Москва: РИОР: ИНФРА-М, 2019. 296 с. (Высшее образование). ISBN 978-5-369-01817-0. Текст: электронный. URL: https://znanium.com/catalog/product/1031255 (дата обращения: 15.05.2021).
- 2. Березнев, В.А. Основания и фундаменты: методическое пособие по выполнению курсового проекта / В.А. Березнев, П.Ю. Иванов; М-во с.-х. РФ, федеральное гос. бюджетное образов. учреждение высшего проф. образов. «Пермская гос. с.-х. акад. им. акад. Д.Н. Прянишникова». Пермь: ИПЦ «Прокростъ», 2015. 54 с.
- 3. Горина, Л.Н. Раздел выпускной квалификационной работы «Безопасность и экологичность технического объекта»: электрон. учеб.-метод. пособие / Л.Н. Горина, М.И. Фесина. Тольятти: Изд-во ТГУ, 2018. 1 оптический диск.
- 4. ГОСТ 2.304-81 ЕСКД. Шрифты чертежные. [Текст]. введ. 01.01.1982. Москва: Стандартинформ, 2007. 21 с.
- 5. ГОСТ 475-2016. Блоки дверные деревянные и комбинированные. Общие технические условия. Взамен ГОСТ 475-78; введ. 01.07.2017. М.: Стандартинформ, 2017. 39 с.
- 6. ГОСТ 9561-2016. Плиты перекрытий железобетонные многопустотные для зданий и сооружений. Стандартинформ, 2016. 23с.
- 7. ГОСТ 9818-2015. Марши и площадки лестниц железобетонные. Технические условия. Стандартинформ, 2015. 27с.
- 8. ГОСТ 23166-99. Блоки оконные. Общие технические условия. Введ. 01.01.2001. М.: Госстрой России, ГУЛ ЦПП, 2000. 35 с.
- 9. ГОСТ 31173-2016. Блоки дверные стальные. Технические условия. Стандартинформ, 2016. 44 с.

- 10. ГОСТ 30674-99. Блоки оконные из поливинилхлоридных профилей. Технические условия. Введ. 2001-01-01. Межгосударственная научнотехническая комиссия по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС). Москва, 1999. 54 с.
- 11. Маслова, Н.В. Организация строительного производства: электрон. учеб.-метод. пособие / Н.В. Маслова, Л.Б. Кивилевич. Тольятти: Изд-во ТГУ, 2015. 147 с.: 1 опт. диск.
- 12.МДС 81-35.2004. Методика определения стоимости строительной продукции на территории Российской Федерации (с Изменениями от 16.06.2014). [Текст.] Введ. 2004-03-09. М.: Минстрой России, 2014. 38 с.
- 13. Михайлов, А. Ю. Организация строительства. Календарное и сетевое планирование [Электронный ресурс]: учеб. пособие / А. Ю. Михайлов. Москва: Инфра-Инженерия, 2016. 296 с.: ил. ISBN 978-5-9729-0134-0. -Режим доступа: http://www.iprbookshop.ru/51728.html(дата обращения: 25.05.2021).
- 14. Михайлов, А. Ю. Организация строительства. Стройгенплан [Электронный ресурс]: учеб. пособие / А. Ю. Михайлов. Москва: Инфра-Инженерия, 2016. 172 с.: ил. ISBN 978-5-9729-0113-5. Режим доступа:http://www.iprbookshop.ru/51729.html(дата обращения: 27.05.2021).
- 15. Михайлов, А. Ю. Технология и организация строительства. Практикум: учебно-практическое пособие / А. Ю. Михайлов. 2-е изд. Москва, Вологда: Инфра-Инженерия, 2020. -200 с. ISBN 978-5-9729-0461-7. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/98402.html (дата обращения: 15.05.2021).
- 16. Плешивцев, А. А. Технология возведения зданий и сооружений: учебное пособие / А. А. Плешивцев. Саратов: Ай Пи Ар Медиа, 2020. 443 с. ISBN 978-5-4497-0281-4. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/89247.html (дата обращения: 24.05.2021).

- 17.Плотникова, И. А. Сметное дело в строительстве [Электронный ресурс] : учеб. пособие / И. А. Плотникова, И. В. Сорокина. Саратов: Ай Пи Эр Медиа, 2018. 187 с. ISBN 978-5-4486-0142-2. Режим доступа:http://www.iprbookshop.ru/70280.html(дата обращения: 28.05.2021).
- 18. Рыжевская, М. П. Технология строительного производства: учебник / М. П. Рыжевская. Минск: Республиканский институт профессионального образования (РИПО), 2019. 520 с. ISBN 978-985-503-890-1. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/94331.html
- 19.СП 1.13330.2009. «Системы противопожарной защиты. Эвакуационные пути и выходы» [Текст.] Введ. 2009-05-01, М.: ТАН ФГУ ВНИИПО МЧС России, 2009. 40 с.
- 20.СП 12-135-2003. Безопасность труда в строительстве. Отраслевые типовые инструкции по охране труда. Введ. 08.01.2003. М.: Госстрой России: ГУП ЦПП, 2003. 171 с.
- 21.СП 20.13330.2016. Нагрузки и воздействия. Актуализированная редакция СНиП 2.01.07-85* (с Изменением N 1). Введ. 04.06.2017. М.: Стандартинформ, 2018. 86 с.
- 22.СП 22.13330.2016. Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83. Введ. 17.06.2017. М.: Минстрой России, 2016. 220 с.
- 23.СП 23-101-2004. Проектирование тепловой защиты зданий. Введ. 01.07.2013. М.: Стандартинформ, 2018. 98 с.
- 24.СП 29.13330.2011. Полы. Актуализированная редакция СНиП 2.03.13-88. Введ. 20.05.2011. М.: Минрегион России, 2011. 58 с.
- 25.СП 42.13330.2016. Градостроительство. Планировка и застройка городских и сельских поселений. (с изменениями на 10 февраля 2017 года) [Текст.] Введ. 2017-02-10, М.: Госстрой России, 2017. 107 с.

- 26.СП 48.13330.2019. Организация строительства. Актуализированная редакция СНиП 12.01.2004. Введ. 2020-06-25. Технический комитет по стандартизации ТК465 «Строительство». М.: Минрегион РФ, 2020. 69 с.
- 27.СП 50-101-2004. Проектирование и устройство оснований и фундаментов зданий и сооружений. Введ. впервые. М.: Госстрой России, 2004. 207 с.
- 28.СП 50.13330.2012. Тепловая защита зданий. Введ. 2013-01-07. М.: Минрегион России, 2013. (Актуализированная редакция СНиП 23-02-2003). 93 с.
- 29.СП 70.13330.2012. Несущие и ограждающие конструкции. Введ. 01.07.2013. М.: Госстрой России, 2012. 198 с.
- 30. СП 71.13330.2017. Изоляционные и отделочные покрытия. [Текст]. введ. 28.08.2017. Москва: ФГБОУ ВО НИУ МГСУ, 2017. 82 с.
- 31.СП 112.13330.2011. Пожарная безопасность зданий и сооружений. Взамен СНиП 21-01-97. Введ. 01.01.1998. М.: Госстрой России. М.: ГУП ЦПП, 2002. 33 с.
- 32.СП 131.13330.2020. Строительная климатология. Введ. 25.06.2021. М.: Минстрой России, 2020. 146 с.
- 33. Технический регламент о требованиях пожарной безопасности [Электронный ресурс]: Федеральный закон от 28.07.2008 №123 (ред. от 02.07.2013). URL: http://docs.cntd.ru/document/902192610.
- 34. Третьякова Е.М. Конструкция промышленных и гражданских зданий [Электронный ресурс]: электрон. учеб.-метод. пособие. Тольятти: ТГУ, 2016. 150 с. http://hdl.handle.net/123456789/2960 (дата обращения: 10.04.2021 В.)
- 35. Ценообразование в строительстве [Электронный ресурс]: сб. нормат. актов и документов / [сост. Ю. В. Хлистун]. Саратов: Ай Пи Эр Медиа, 2015. 511 с. (Библиотека архитектора и строителя). ISBN 978-5-905916-65-6. Режим доступа: http://www.iprbookshop.ru/30278.html. (дата обращения: 21.05.2021 В.)

Приложение А Архитектурно-планировочный раздел

Таблица А.1 - Экспликация помещений

Помещения 1-го этажа на отм. 0,000

Номер помещения	Наименование	Площадь м2	Категория помещения
1	Лестнично-лифтовый холл	35,85	Д
2	С/у для МГН	4,00	
3	Подсобное помещение	1,97	Д
4	Коридор	18,40	
5	Тамбур выхода 2	2,64	
6	Гардероб для персонала	4,82	B2
7	Гардероб официантов	7,39	B2
8	Кабинет заведующего производством	7,43	B2
9	Помещение для резки хлеба	4,61	Д
10	Моечная столовой посуды	12,10	
11	Зал на 45 мест	85,60	B4
12	Тамбур входа 1	5,11	
13	Вестибюль	13,00	Д
14	C/y	2,74	
15	Гардероб	5,34	B2
16	Горячий цех	18,70	Γ
17	Заготовка мясо-рыбных продуктов	7,45	Γ
18	Холодный цех	7,34	
	Общее:	244,49	

Помещения 2-го, 3-го, 4-го этажей на отм. +3,300; +6,600; +10,200

Номер помещения	Наименование	Площадь м2	Категория помещения
1	Офис	36,90	B2
2	Тамбур	1,71	
3	C/y	1,02	
4	Офис	27,80	B2
5	Тамбур	1,71	
6	C/y	1,02	
7	Офис	35,00	B2
8	Тамбур	1,71	
9	C/y	1,02	
10	Офис	37,80	B2

Продолжение таблицы А.1

Номер помещения	Наименование	Площадь м2	Категория помещения
16	Офис	28,60	B2
17	Тамбур	1,71	
18	C/y	1,02	
19	Лестнично-лифтовый холл	22,40	Д
20	Вестибюль	189,60	B4
21	Кладовая	1,97	B2
22	Офис	19,10	B2
23	Офис	27,70	B2
24	Офис	48,80	B2
25	Тамбур	2,86	
26	C/y	1,09	
27	C/y	1,10	
28	Кладовая уборочного инвентаря	4,94	B4
	Общее:	529,84	

Помещения 5-го этажа на отм. +13,800

Номер помещения	Наименование	Площадь м2	Категория помещения
1	Teppaca	88,30	
2	Офис	40,80	B2
3	Тамбур	1,71	
4	C/y	1,02	
5	Офис	37,00	B2
6	Тамбур	1,71	
7	C/y	1,02	
8	Офис	46,90	B2
9	Тамбур	1,71	
10	C/y	1,02	
11	Лестнично-лифтовый холл	22,40	
12	Вестибюль	183,10	B4
13	Кладовая	2,11	B4
14	Тамбур	1,76	
15	C/y	1,00	
16	Офис	26,20	B2
17	Teppaca	15,60	
18	Тамбур	2,86	
19	C/y	1,09	

Таблица А.2 - Спецификация элементов заполнения проемов

Поз.	0.5	**		Кол-во	о по ф	асадам	1	Приме
	Обозначения	Наименование	10-1	1-10	Б-Д	А-В	Все го	чание
		Двери						
1	ГОСТ 30970-2014	ДПН О Б Дв 2300- 1500		2			2	2370x151 0
2	ГОСТ 30970-2014	ДПВ О Б Дв 2300- 1500					5	2370x151 0
3	ГОСТ 30970-2014	ДПВ Д Б Дв 2300- 1300					6	2370x131 0
4	ГОСТ 475-2016	ДВ 1 Рл 21х12 Г Пр					2	2070x119 0
5	ГОСТ 30970-2014	ДПН Г П Пр 2100- 1000		1			1	2070x970
6	ГОСТ 30970-2014	ДПН Г П Л 2100- 1000			2		2	2070x970
7	ГОСТ 30970-2014	ДПН Г П Пр 2100- 900		3			3	2070x870
8	ГОСТ 30970-2014	ДПН Г П Л 2100- 900	5				5	2070x870
9	НПО «ПУЛЬС»	ДПМ- 01/30(900*2100)П p					2	2070x870
10	НПО «ПУЛЬС»	ДПМ- 01/30(900*2100)Л					1	2070x870
11	ГОСТ 475-2016	ДВ 1 Рл 21х9 Г Пр Мд1					2	2070x870
12	ГОСТ 475-2016	ДВ 1 Рп 21х9 Г Пр					8	2070x870
13	ГОСТ 475-2016	ДВ 1 Рл 21х9 Г Пр					4	2070x870
14	ГОСТ 30970-2014	ДВП Г Б Пр 2100- 900					2	2070x870
15	ГОСТ 30970-2014	ДПВ Г Б Л 2100- 900					6	2070x870
16	ГОСТ 30970-2014	ДПВ Г Б Пр 2100- 700					24	2070x670
17	ГОСТ 30970-2014	ДПВ Г Б Л 2100- 700					30	2070x670
		Окна						
O-1	ГОСТ 30674-99	ОП В2 3500-1200			2		2	3560x116 0
O-2	ГОСТ 30674-99	ОП В2 2400-1500			3		3	2360x150 0

O-3	ГОСТ 30674-99	ОП В2 1600-1200	24				24	1560x116				
								0				
O-4	ГОСТ 30674-99	ОП В2 1600-900	12		5	3	20	1560x860				
O-5	ГОСТ 30674-99	ОП В2 1200-900			2		2	1160x860				
O-6	ГОСТ 30674-99	ОП В2 900-900			2		2	860x860				
		Витражи										
B-1	ГОСТ 30674-99	ОП В2 6800-15000		1			1	6740x150				
D-1	1001 30074-99	(4M-16-K4)					1	10				
B-2	ГОСТ 30674-99	ОП В2 3800-17800		1			1	3720x177				
D- 2	1001 30074-99	(4M-16-K4)		1			1	40				
B-3	ГОСТ 30674-99	ОП В2 3000-14400		2			2	2940x143				
D- 3	1001 30074-99	(4M-16-K4)		2			4	20				
B-4	ГОСТ 30674-99	ОП В2 3000-14400					2940x143					
D-4	1001 30074-99	(4M-16-K4)		2			4	20				
B-5	ГОСТ 30674-99	ОП В2 3000-8700		1	1	1	1	1	1		1	2940x861
D- 3	1001 30074-99	(4M-16-K4)		1			1	0				
B-6	ГОСТ 30674-99	ОП В2 2200-14300		1	1		1	2140x142				
Б-0	1001 306/4-99	(4M-16-K4)		1			1	60				

Таблица А.3 – Ведомость перемычек

Марка поз.	Схема сечения
ПР-1	3
ПР-2	3
ПР-3	2
ПР-4	4
ПР-5	1
ПР-6	1
ПР-7	2

Таблица А.4 – Спецификация элементов перемычек

Поз		Наименование		Кол-во по этажам						
	Обозначение			2	3	4	5	всего	Масса ед., кг	Примеч.
1	Серия 1.038.1-1 в.1	3ПБ 21-8	7	4	4	4	6	25	137	
2	Серия 1.038.1-1 в.1	3ПБ18-8	3	20	20	20	20	83	119	
3	Серия 1.038.1-1 в.1	2ПБ16-2	31	17	17	17	10	92	65	
4	Серия 1.038.1-1 в.1	2ПБ13-1	7	15	15	15	11	63	54	

Таблица А.5 – Экспликация полов

№ помещения	Ти	Схема пола или тип пола по	Данные элементов пола	Пл.,
	П	схеме	(наименование,	M^2
			толщина, основание и	
			тд.), мм	
Зал на 45 мест			1.керамический гранит-	
лестнично-	_		25мм.	
лифтовый холл,	I		Клей для	
банкетный зал,			керамического	0.50
кафе,			профильного камня	960,
вестибюли			CM16	5
		560	Эластофикатор СС83	
		5000	Грунтовка СТ17.	
			2.стяжка на цементно-	
			песчанном растворе	
			М150- 30мм.	
			3.монолитная плита	
Vanyyyan			перекрытия-200мм.	
Коридор,		_	1.керамическая плитка ГОСТ 13996-2019 по	
гардероб,		30	прослойке из цементно-	
раздаточная, помещение для	II	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	песчанного раствора	51,4
помещение для резки хлеба,	11	09	M150- 30мм	31,4
подсобные			2.стяжка из цементно-	
помещения,		256	песчанного раствора	
артистическая и			М150- 30мм	
хранение			3.монолитная ж/б	
инструментов			плита- 200мм.	
Тамбуры, входа 1,			1. керамическая плитка	
2, душевая,		15	ГОСТ 13996-2019 по	
горячий цех,	TTT	\	прослойке из цементно-	
холодный цех,	III	2, 4	песчанного раствора	
заготовочная		7///// 57 +9	М150- 15мм	126
мясо-рыбных		2//////////////////////////////////////	2. стяжка из цементно-	136,
продуктов,		500 [песчанного раствора М150- 20мм	1
моечные,				
тамбуры, кладовые,уборочн			3.2слоя гидроизола ГОСТ 7415-86 по	
ого инвенторя, с/н			горячей битумной	
ото ипвенторя, с/н			мастике ГОСТ 2889-80	
			- 5MM	
			4.монолитная ж/б плита	
			- 200мм.	
	<u> </u>		2001VIIVI.	

Лестница и площадки лестниц	IV	150	1.керамическая плитка ГОСТ 13996-2019 по прослойке из цементно-песчанного раствора М150-50мм. 2. монолитная ж/б плита — 150мм.	264, 5
Кабинет заведующего производства, гардероб для персонала, гардероб официантов, офисы, кладовые	V	200 55 5	1.линолеум с повышенной износостойкостью по прослойке из быстро твердеющей мастики ГОСТ 30307-95 – 5мм 2.стяжка из цементнопесчанного раствора М150- 55мм 3.монолитная ж/б плита – 200мм	928,
Техэтаж	VI		1.стяжка из цементно- песчанного раствора М150- 60мм 2.монолитная ж/б плита – 200мм	256, 7

Таблица А.6 - Ведомость отделки помещений

Наименование	Потолок	Пл. м ²	Стены или	Пл. м ²	Низ стен или	Пл. м ²
помещения	T V	M	перегородки	M	перегородок	M
Зал на 45 мест,	Подвесной	1564				
вестибюль,	потолок	1564,	**			
тамбур входа1,	«Армстронг»	3	Улучшенная	2.402		
вестибюли,	~~		штукатурка,	3403		
офисы,	Облицовка		шлифовка,			
лестнично-	листами ГКЛ	20	окраска водно-			
лифтовые холлы	12.5мм по	287,5	дисперсионны			
	металлическом		ми красками			
	у каркасу,		(высококач.)			
	шпаклевка,					
	окраска водно-					
	дисперсионной					
	краской					
Санузлы,	Облицовка		Улучшенная		Подготовка	
душевая,	листами ГКЛВ-		штукатурка,		поверхности	
тамбуры,	12,5 мм по		шлифовка,		, облицовка	
кладовая	металлическом	154,3	окраска водно-	398,	глазурованн	612,
уборочного	у каркасу,		дисперсионны	5	ой плиткой	4
инвентаря,	шпаклевка,		ми красками		на высоту 2	
холодный цех,	окраска водно-		(высококач.)		M	
горячий цех,	дисперсионной					
заготовочная	краской					
мясорыбных						
продуктов,						
моечная кухонной						
посуды, моечная						
столовой посуды.						
Коридор, тамбур	Облицовка		Улучшенная			
2 входа,	листами ГКЛВ-		штукатурка,			
помещение для	12,5 мм по		шлифовка,			
резки хлеба,	металлическом	58,7	окраска водно-	254,		
раздаточная,	у каркасу,	,	дисперсионны	4		
подсобное	шпаклевка,		ми красками			
помещение,	окраска водно-		(высококач.)			
артистическая и	дисперсионной					
хранение	краской					
инструментов,	1					
подсобное						
помещение.						
Кабинет	Облицовка		Улучшенная			
заведующего	листами ГКЛВ-		штукатурка,			
производством,	12,5 мм по		шпаклевка,			
гардероб для	металлическом	19,0	шлифовка,	92,3		
персонала	у каркасу	1,0	,	, _,		
Topoonana	J Rupkucy		l	I		

Кладовые	Облицовка листами ГКЛВ-12,5 мм по металлическом у каркасу, шпаклевка, окраска воднодисперсионной краской	4,1	Улучшенная штукатурка, шлифовка, окраска водно-дисперсионны ми красками (высококач.)	36,0	
Техэтаж	Подготовка поверхности, окраска воднодисперсионной краской	256,7	штукатурка, шлифовка, окраска водно- дисперсионны ми красками	123, 5	

Приложение Б Технология строительства

Таблица Б.1 – Ведомость объемов работ

Наименование	Ед. изм.	Кол-во
1	2	3
Забивка свай в грунты 1 группы длинной до 8 м.	ШТ.	128
Устройство песчаной подготовки	M^3	6,98
Бетонирование монолитных ростверков	M ³	43,2

Таблица Б.2 – Ведомость потребности в конструкциях, материалах и изделиях.

Наименование			Исходн	ые данные		Потребность
материалов, изделий и конструкций, марка, ГОСТ, ТУ	зделий и нструкций, га, ГОСТ, ТУ Расхода Обоснование расхода		Ед. изм. по норме	Объем работ в нормативных единицах	Норма расхода	на измеритель конечной продукции
1	2	3	4	5	6	7
Краски масляные земляные марки МА-0115 мумия, сурик железный	т.	ГЭСН 05-01- 003-03	T.	1 м3	0,00002	0,002
Гвозди строительные	T.	ГЭСН 05-01- 003-03	T.	1 м3	0,00002	0,002
Доски дубовые II сорта	м3	ГЭСН 05-01- 003-03	м3	1 м3	0,004	0,36
Конструктивные элементы вспомогательного назначения массой не более 50 кг с преобладанием толстолистовой стали собираемые из двух и более деталей, с отверстиями и без отверстий, соединяемые на сварке	т.	ГЭСН 05-01- 003-03	Т.	1 м3	0,00007	0,01
Сваи железобетонные	м3	ГЭСН 05-01- 003-03	м3	1 м3	1,01	93,44
Проволока горячекатаная в мотках, диаметром 6,3-6,5 мм	T.	ГЭСН 06-01- 001-05	T.	100 м3	0,0375	0,02
Проволока светлая диаметром 1,1 мм	T.	ГЭСН 06-01- 001-05	ΚΓ	100 м3	0,0061	0,26

Рогожа	м2	ГЭСН 06-01- 001-05	м2	100 м3	153	64,03
Гвозди строительные	Т.	ГЭСН 06-01- 001-05	м2	100 м3	0,0238	0,01
Доски обрезные хвойных пород длиной 4-6,5 м, шириной 75-150 мм, толщиной 44 мм и более, III сорта	м3	ГЭСН 06-01- 001-05	м3	100 м3	0,74	0,31
Щиты из досок толщиной 25 мм	м2	ГЭСН 06-01- 001-05	м2	100 м3	64,1	26,83
Арматура	T.	ГЭСН 06-01- 001-05	T.	100 м3	4,5	1,88
Бетон В25	м3	ГЭСН 06-01- 001-05	м3	100 м3	101,5	43,85
Известь строительная негашеная комовая, сорт I	T.	ГЭСН 06-01- 001-05	T.	100 м3	0,027	0,011
Вода	м3	ГЭСН 06-01- 001-05	м3	100 м3	0,041	0,02

Таблица Б.3 – Ведомость грузозахватных устройств и приспособлений

Поз.	Устройство	ГОСТ, марка	Грузоподъёмность, т.	Груз
1	2	3	4	5
1	Строп 2-х ветвевой	2CK1-6,0	6,0 т.	Разгрузка, складирование,
2	Строп 4-х ветвевой	2CK1-10,0	10,0 т.	подача материалов
3	Свайный ключ	-	-	Поворот сваи
4	Кольцевой строп	CKK13,5/2,5	2,5 т.	Подъём сваи

Таблица Б.4 – Операционный контроль качества работ

Лица, осуществляющи е контроль качества	Операции, подлежащ ие контролю	Состав контроля	Способ контроля	Время контроля	Лица, привлекаемы е к контролю
Нач. участка, мастер, служба строительного контроля	Подготови тельные работы	- наличие сертификатов и документов о качестве поступаемых конструкций и материалов; -наличие разметки мест установки конструкций и разбивки; - соответствие применяемого оборудования при производстве работ;	Визуальны й, измерител ьный	-поступление материалов и конструкций на строительну ю площадку; -до начала работ.	Служба строительног о контроля
Нач. участка, мастер, служба строительного контроля	Забивка свай	-правильность разметки мест погружения; - проектное положение сваи; - вертикальность оси; -величина отказа.	измерител ьный	В процессе производства работ	Мастер, служба строительног о контроля
Нач. участка, мастер, служба строительного контроля	Срубка оголовков	- дефекты оголовков свай после забивки; - высотное положение оголовков свай.	Визуальны й, измерител ьный	В процессе производства работ	Служба строительног о контроля

Таблица Б.5 – Ведомость потребности в инструментах и приспособлениях

Поз.	Наименование	ГОСТ, марка	Характеристики	Предназначение
1	Кран на пневмоколесном ходу	Terex- Demag AC- 40CITY	L _{стр} =31,2м.	Разгрузка конструкций и материалов на склад, подача материалов и конструкций
2	Копровая установка на базе бульдозера БТ10МБ	СП-49- PH-12	m=30,3т. 4,728×5,045×18,465	Забивка свай
3	Автобетононасос	Pitzmister M20-4	90 м ³ /ч.	Подача бетона в опалубку
4	Пневмомолот	МОП-4	1020 уд/мин.	Срубка оголовков свай
5	Компрессор	ЗИФ-ПВ- 12/0,7	12м ³ /мин 6,85 бар	Срубка оголовков свай
6	Вибратор глубинный	ВИ-120	313 Гц	Уплотнение бетонной смеси
7	Пила цепная	ПЦ-200	2000Вт	Устройство опалубки
8	Угловая шлифмашина	УШМ- 180-1800 ПМЗ	8000 об/мин.	Устройство армирования
9	Дрель	ДУ- 550ЭР	550 Вт	Устройство опалубки
10	Рулетка	-	-	Устройство опалубки
11	Молоток плотничный	-	-	Устройство опалубки
12	Угольник металлический	-	300 мм.	Устройство опалубки

Таблица Б.6 – Калькуляция затрат труда и машинного времени

Поз.	Наименование работ	Ед.	Обоснование	Норма времени на единицу объёма		Трудоёмкость на весь объём		
		nsw.		Чел- час	Маш- час	Объем работ	Чел- дн.	Маш.
1	2	3	4	5	6	7	8	9
1	Забивка свай	1 м3	ГЭСН 05-	3,51	1,93	93,44	41,0	22,5
		сваи	01-003-04					
2	Устройство	1 м3	ГЭСН 08-	2,3	0,29	6,98	2,0	0,3
	песчаной		01-002-01					
	подготовки							
3	Устройство	100	ГЭСН 06-	400,22	24,08	0,43	21,6	1,3
	монолитных	м3	01-001-03					
	фундаментов							

Приложение В Организация строительства

Таблица В.1 – Ведомость объемов строительно-монтажных работ

Поз	Строительные процессы	Ед. изм.	Кол-во по захваткам	Примечание
1	Срезка растительного слоя бульдозером		захваткам	Примечание S _{cp} = 0,5 * 5,73 * 0,74 + 0, (17,08 * 18,48 * $\sin 28$) + 2(2,135 * 10,51 + 5,94 * 13,95; 13,43 * 7,49 + 0,5 * 14,6 * 7 $\sin 52$) + 5,7 * 4 = 764,07 м ²
				7775

Разработка грунта ковшовым экскаватором 2	000 M ³		$V_{\text{кот}} = (\frac{1}{3} H_{\text{кот}} * \frac{F_{\text{B}} + F_{\text{H}}(\sqrt{F_{\text{B}} \times F_{\text{H}}})}{100} = (1/3 * 2.95 * (906,1 + 764,07 + \sqrt{906,1 * 764,07}) = 2460,5 \text{ m}^3$ $F_{\text{B}} = 906,1 \text{ m}^2$ $F_{\text{B}} = 764,07 \text{ m}^2$ $V_{\text{подземн.}} = V_{\text{фунд.}} - V_{\text{ст.}} - V_{\text{код.под.}} - V_{\text{подв.}} = 43,2 +$
- с погрузкой в транспортн. ср-ва;	М	1,429	15,36 + 1102,6 = 1161,16 M^3 $V_{\text{обр.зас}} = (V_{\text{кот}} - V_{\text{подземн.}}) \times k_p$ $V_{\text{обр.зас}} = (2460,5 - 1161,16) * 1,1 = 1429,3 \text{ M}^3$
- навымет		1,277	$V_{\text{из6}} = V_{\text{кот}} * k_p - V_{\text{обр.зас}}$ $V_{\text{из6}} = 2460,5 * 1,1 - 1429,3 = 1277,25 \text{ m}^3$
3 Обратная засыпка	100 _M ³	14,29	$V_{ m oбp.sac} = (V_{ m KOT} - V_{ m подзен.}) * k_p$ $V_{ m oбp.sac} = (2460,5 - 1161,16) * 1,1 = 1429,27 { m M}^3$
4 Подчистка дна котлована	100 _M ³	0,42	$V_{\text{под,дна}} = S_{\text{под,фунд}} * 0.1 = (0.5 * 3.115 * 7.01 + 0.5 * (11.35 + 5.41 + 1 + 2.43 + 1 + 2.9) * 3.05 * 2 + 2.86 * (4.4 + 0.25 + 4.31 + 0.12 + 1.32 + 0.12 + 4.03) + 2.85 * (4.4 + 0.25 + 4.31 + 0.12 + 1.32 + 0.12 + 4.03 + 1.17) + 0.5 * 12.2 * 19.05 + 0.5 * (1.9 + 0.25 + 2.77 + 3.19) * 4.2 + (6 + 5.5) * 4.0) + 1.5 * 1.5 * 32) * 0.1 = 42.2 м³$
	2.	Основа	ния и фундаменты
5 Забивка свай	шт.	128	Чертежи раздела АР
Устройство песчаной 6 подготовки под свайные ростверки	100 _M ³	0,072	$V_{ m nec q. nogr} = S_{ m nog. фунд} * h_{ m фунд} * n_{ m фунд} = 1,5 * 1,5 * 0,1 * 32 = 7,2 м3$
7 Устройство монолитных ростверков	100 _M ³	0,43	$V_{\text{бет.фунд}} = (S_{\text{под.}} * h_{\text{под.}}) * n_{\text{фунд}}$ $V_{\text{бет.фунд.}} = (1,5 * 1,5 * 0,6) * 32 = 43,2 \text{м}^3$
8 Устройство плиты на отм 3,560	100 M ³	0,91	$V_{\text{пл.осн.подв.}} = S_{\text{пл}} * h_{\text{пл}}$ $V_{\text{пл.осн.подв.}} = (0.5 * 3.115 * 7.01 + 0.5 * (11.35 + 5.41 + 1 + 2.43 + 1 + 2.9) * 3.05 * 2 + 2.86 * (4.4 + 0.25 + 4.31 + 0.12 + 1.32 + 0.12 + 4.03) + 2.85 * (4.4 + 0.25 + 4.31 + 0.12 + 1.32 + 0.12 + 4.03 + 1.17) + 0.5 * 12.2 * 19.05 + 0.5 * (1.9 + 0.25 + 2.77 + 3.19) * 4.2 + (6 + 5.5) * 4.0) * 0.26 = 91.01 m3$
9 Устройство монолитных колонн на отм. от -3,360 до 0,000	100 _M ³	0,15	$V_{\text{кол.подв.}} = (S_{\text{кол.}} * h_{\text{кол.}}) * n_{\text{кол}}$ $V_{\text{кол.подв.}} = 0.4 * 0.4 * 3.0 * 32 = 15.36 \text{ m}^3$
10 Устройство стен подвала	100 M ³	0,437	$V_{\text{ст.подв.}} = (l_{\text{ст.под.}} * h_{\text{ст.под.}} * t_{\text{ст.под.}}) - V_{\text{кол.подв.}}$ $V_{\text{ст.подв.}} = ((2,9 + 1,01 + 2,431 + 5,41 + 7,01 + 2,86 + 2,85 + 15,01 + 1,27 + 4,43 + 3,19 + 2,0 + 28,4) * 3,0 * 0,25) - 15,36 = 43,71 м3$
11 Устройство вертикальной обмазочной гидроизоляции	100 _M ²	2,36	$S_{\text{CT.\PiOQB.}} = l_{\text{CT.\PiOQ.}} * h_{\text{CT.\PiOQ.}}$ $S_{\text{CT.\PiOQB.}} = (2.9 + 1.01 + 2.431 + 5.41 + 7.01 + 2.86 + 2.85 + 15.01 + 1.27 + 4.43 + 3.19 + 2.0 + 28.4) * 3.0 = 236.3 \text{ M}^2$
12 Устройство горизонтальной гидроизоляции	100 _M ²	0,27	$S_{\text{гор.}} = l_{\text{ст.}} * b_{\text{ст.}}$ $S_{\text{ст.подв.}} = (2.9 + 1.01 + 2.431 + 5.41 + 7.01 + 2.86 + 2.85 + 15.01 + 1.27 + 4.43 + 3.19 + 2.0 + 28.4) * 0.35 = 27.57 \text{ m}^2$
		3. Ha	дземная часть

13	Устройство монолитного перекрытия подвала на отм 0,300	100 M ³	0,91	$\begin{split} V_{\text{пл.осн.подв.}} &= S_{\text{пл}} * h_{\text{пл}} \\ V_{\text{пл.осн.подв.}} &= (0.5*3.115*7.01+0.5*(11.35+5.41+1+2.43+1+2.9)*3.05*2+2.86*(4.4+0.25+4.31+0.12+1.32+0.12+4.03)+2.85*(4.4+0.25+4.31+0.12+1.32+0.12+4.03+1.17)+0.5*12.2*19.05+0.5*(1.9+0.25+2.77+3.19)*4.2+(6+5.5)*4.0)* \\ 0.26 &= 91.01 \text{ m}^3 \end{split}$
14	Устройство монолитных колонн от отм. 0,000 до +3,300	100 _M ³	0,16	$V_{\text{кол.1}} = (S_{\text{кол.}} * h_{\text{кол.}}) * n_{\text{кол}} $ $V_{\text{кол.1}} = 0.4 * 0.4 * 3.3 * 32 = 16.89 \text{ m}^3$
15	Устройство монолитного перекрытия на отм. +3,000	100 _M ³	1,81	$\begin{array}{c} V_{\text{мон.пер.}} = & (24,85*10,53+0,5*(6,06+10,53)*3,2+0,5*(14,53+6,69)*17,4+0,5*(6,69+2,59)*3,76+(12,2^2/2)*((3,14*106)/180-\sin 106)+(3,5^2/2)*((125*3,14)/125-\sin 125)+0,5*(18,59+15,13)*3,39)*0,26=181,7 \text{ M}^3 \end{array}$
16	Устройство монолитных колонн от отм. +3,300 до +6,340	100 M ³	0,15	$V_{\text{кол.2}} = (S_{\text{кол.}} * h_{\text{кол.}}) * n_{\text{кол}} $ $V_{\text{кол.2}} = 0.4 * 0.4 * 3.04 * 32 = 15,56 \text{ m}^3$
17	Устройство монолитного перекрытия на отм. +6,340	100 _M ³	1,81	$\begin{array}{c} V_{\text{мон.пер.}} = & (24.85*10.53+0.5*(6.06+10.53)*3.2+0.5*(14.53+6.69)*17.4+0.5*(6.69+2.59)*3.76+(12.2^2/2)*((3.14*106)/180-sin106)+(3.5^2/2)*((125*3.14)/125-sin125)+0.5*(18.59+15.13)*3.39)*0.26=181.7 \text{ M}^3 \end{array}$
18	Устройство монолитных колонн от отм. +6,600 до +9,940	100 _M ³	0,17	$V_{\text{кол.3}} = (S_{\text{кол.}} * h_{\text{кол.}}) * n_{\text{кол}} $ $V_{\text{кол.3}} = 0.4 * 0.4 * 3.34 * 32 = 17.1 \text{ m}^3$
19	Устройство монолитного перекрытия на отм. +9,940	100 _M ³	1,81	$\begin{array}{c} V_{\text{мон.пер.}} = & (24.85*10.53+0.5*(6.06+10.53)*3.2+0.5*(14.53+6.69)*17.4+0.5*(6.69+2.59)*3.76+(12.2^2/2)*((3.14*106)/180-sin106)+(3.5^2/2)*((125*3.14)/125-sin125)+0.5*(18.59+15.13)*3.39)*0.26=181.7 \text{ M}^3 \end{array}$
20	Устройство монолитных колонн от отм. +10,200 до +13,540	100 _M ³	0,17	$V_{\text{кол.4}} = (S_{\text{кол.}} * h_{\text{кол.}}) * n_{\text{кол}} V_{\text{кол.4}} = 0,4 * 0,4 * 3,34 * 32 = 17,1 \text{ m}^3$
21	Устройство монолитного перекрытия на отм. +13,540	100 _M ³	1,81	$\begin{array}{c} V_{\text{мон.пер.}} = & (24.85*10.53+0.5*(6.06+10.53)*3.2+0.5*(14.53+6.69)*17.4+0.5*(6.69+2.59)*3.76+(12.2^2/2)*((3.14*106)/180-\sin 106)+(3.5^2/2)*((125*3.14)/125-\sin 125)+0.5*(18.59+15.13)*3.39)*0.26=181.7 \ \text{m}^3 \end{array}$
22	Устройство монолитных колонн от отм. +13,800 до +17,340	100 m ³	0,18	$V_{\text{кол.5}} = (S_{\text{кол.}} * h_{\text{кол.}}) * n_{\text{кол.}}$ $V_{\text{кол.5}} = 0.4 * 0.4 * 3.54 * 32 = 18.12 \text{ m}^3$
23	Устройство монолитного перекрытия на отм. +13,540	100 m ³	0,17	$S_{\text{MOH. IIE}p}$ = $(2,8*5,3+0,5*(3,72+7,52)*2,6+3,14*72/360*(22,3^2-18,8^2)+0,5*12,22*5,8)*0,26=17,44 m3$
24	Устройство монолитных колонн от отм. +17,600 до +20,100	100 м ³	0,18	$V_{\text{вых.кр.}} = (S_{\text{кол.}} * h_{\text{кол.}}) * n_{\text{кол}}$ $V_{\text{вых.кр.}} = 0.4 * 0.4 * 3.54 * 32 = 18.12 \text{ m}^3$
25	Устройство монолитного перекрытия на отм. +20,100	100 m ³	0,14	$\begin{array}{c} V_{\text{мон.пер.}} = & (0.5*3.74*6.6+0.5*5.66*6.78+0.5*3.14*(3.1)^2+0.5*\\ & 4.41*6.78+0.5*3.01*6.78*\sin 56)*0.26=14.61 \text{ m}^3 \end{array}$

26	Устройство кладки наружных стен из газобетонного блока t=250 мм.	1 m ³	607,3	$\begin{array}{c} V_{\text{KII},6\pi\text{OK},=}((0,4*4*12+2,55+2,9++1,0+2,43+1,0+5,41+7,01+2,8\\ 6+1,17+2,85+15,01+1,27+2,77+2,61+4,43+3,19+2,0+4,2+18,\\ 2+0,6+1,01+0,7+1,01+2,98+0,35)*3,78+(1,45+0,8+0,91+3,24\\ +0,9+0,755+7,94+0,35+0,95+14,32+0,3+0,35+3,9+6,61+1,1+\\ 1,51+3,69+15,01+1,28+4,4+5,19+50,04+2,6)*14,41+(7,15+3,72+0,69+14,260+2,43+1,61+5,56+0,98+1,51+3,69+8,61+0,97\\ +5,495+11,24+5,19+4,2+0,35+5,5+6,0+5,87+0,35+2,6+24,85\\)*4,5+(11,28+4,47+6,24+5,9+7,56)*3,55)-\\ (484,01+15,03))*0,25=607,3\text{M}^3 \end{array}$
27	Устройство утепления наружных стен	M ³	170	$S_{\varphi ac.} = ((0,4*4*12+2,55+2,9++1,0+2,43+1,0+5,41+7,01+2,86+1,17+2,85+15,01+1,27+2,77+2,61+4,43+3,19+2,0+4,2+18,2+0,6+1,01+0,7+1,01+2,98+0,35)*3,78+(1,45+0,8+0,91+3,24+0,9+0,755+7,94+0,35+0,95+14,32+0,3+0,35+3,9+6,61+1,1+1,51+3,69+15,01+1,28+4,4+5,19+50,04+2,6)*14,41+(7,15+3,72+0,69+14,260+2,43+1,61+5,56+0,98+1,51+3,69+8,61+0,97+5,495+11,24+5,19+4,2+0,35+5,5+6,0+5,87+0,35+2,6+24,85)*4,5+(11,28+4,47+6,24+5,9+7,56)*3,55-(484,01+15,03))*0,07=170 m³$
28	Облицовка наружных стен панелями	100 m²	24,29	$\begin{array}{l} S_{\varphi a c a \pi}\!\!=\!\!(S_{\varphi a c a \pi}\!\!-\!S_{O K H a ^ + J B E P H}) \\ S_{\varphi a c a \pi}\!\!=\!\!(0,\!4\!\!+\!4\!\!+\!12\!\!+\!2,\!55\!\!+\!2,\!9\!\!+\!1,\!0\!\!+\!2,\!43\!\!+\!1,\!0\!\!+\!5,\!41\!\!+\!7,\!01\!\!+\!2,\!86\!\!+\!1},\!17\!\!+\!2,\!85\!\!+\!15,\!01\!\!+\!1,\!27\!\!+\!2,\!77\!\!+\!2,\!61\!\!+\!4,\!43\!\!+\!3,\!19\!\!+\!2,\!0\!\!+\!4,\!2\!\!+\!18,\!2\!\!+\!0},\!6\!\!+\!1,\!01\!\!+\!0,\!7\!\!+\!1,\!01\!\!+\!2,\!98\!\!+\!0,\!35)\!\!*\!3,\!78\!\!+\!(1,\!45\!\!+\!0,\!8\!\!+\!0,\!91\!\!+\!3,\!24\!\!+\!0},\!9\!\!+\!0,\!755\!\!+\!7,\!94\!\!+\!0,\!35\!\!+\!0,\!95\!\!+\!14,\!32\!\!+\!0,\!3\!\!+\!0,\!35\!\!+\!3,\!9\!\!+\!6,\!61\!\!+\!1,\!1\!\!+\!1,\!5} \\ 1\!\!+\!3,\!69\!\!+\!15,\!01\!\!+\!1,\!28\!\!+\!4,\!4\!\!+\!5,\!19\!\!+\!50,\!04\!\!+\!2,\!6)\!\!*\!14,\!41\!\!+\!(7,\!15\!\!+\!3,\!72\!\!+\!0,\!69\!\!+\!14,\!260\!\!+\!2,\!43\!\!+\!1,\!61\!\!+\!5,\!56\!\!+\!0,\!98\!\!+\!1,\!51\!\!+\!3,\!69\!\!+\!8,\!61\!\!+\!0,\!97\!\!+\!5,\!495\!\!+\!11,\!24\!\!+\!5,\!19\!\!+\!4,\!2\!\!+\!0,\!35\!\!+\!5,\!5\!\!+\!6,\!0\!\!+\!5,\!87\!\!+\!0,\!35\!\!+\!2,\!6\!\!+\!24,\!85) \\ \!$
29	Устройство кирпичной кладки внутренних стен t=250 мм.	M ³	165,1	$V_{\text{кл.кирпич}}= \begin{tabular}{l} V_{\text{кл.кирпич}}= \begin{tabular}{l} ((3,3+0,9+7,3+4,8*2+1,9*3+2,73+5,6+8,7+1,15+5,6+3,76) \\ *13,98- \\ (3,72*17,8+2,07*0,97*2+2,3*1,5*5+2,3*1,01*5))*0,25=165, \\ 1\ \text{м}^3 \end{tabular}$
30	Устройство кирпичной кладки перегородок t=120 мм.	100 _M ²	18,29	$\begin{array}{c} V_{\text{\tiny KI.Ineper.}} \!\!=\!\! ((2,\!0+2,\!05+2,\!0+1,\!41+8,\!37+5,\!1+4,\!03*5+2,\!82+1,\!89+1,\!3+2,\!52+1,\!4+14,\!46+11,\!24+1,\!51*2+4,\!31*5+2,\!71+1,\!8+2,\!41+2,\!44+1,\!44+1,\!2)*3,\!04*2+(1,\!42+9,\!85+5,\!1*2+1,\!41+5,\!5+2*3+1,\!2+5,\!6*3+3,\!6+1,\!2*12+2,\!64*6+4,\!13+20,\!35)*3*3,\!34+(2,\!03*3+5,\!5+1,\!2+2,\!61*2+5,\!1+1,\!41+1,\!2+2,\!81+8,\!66+8,\!07+1,\!2*9+2,\!64*3)*3)-\\ (17,\!89+18,\!63+4,\!93+3,\!6+1,\!8+3,\!6+14,\!41+7,\!2+3,\!6+10,\!81+33,\!2+1,\!61)=1828,\!5\text{m}^2 \end{array}$
31	Устройство монолитной лестницы	100 _M ³	0,24	$\begin{array}{c} V_{\text{мон.лестн.}} \!\!=\!\! (19*0,\!3*1,\!4*0,\!27\!+\!1,\!5*1,\!9*0,\!2\!+\!3,\!14*(67/360)*(3,\!15^2\!-\!1,\!6^2)*0,\!2\!+\!3,\!14*(80/360)*(3,\!15^2\!-\!1,\!6^2)*0,\!27)*5\!=\!24,\!86~\text{m}^3 \end{array}$

32	Монтаж железобетонных ступеней:	100 m ²	0,33	$S_{\text{лестн.}} = (12 * 0.3 * 1.0) * 7 + (11 * 0.3 * 1.0) * 2 + (4 * 0.3 * 1.0) = 33 \text{ m}^2$
33	Устройство монолитных лестничных площадок t=150 мм.	100 _M ³	0,015	$V_{\text{пл.}} = 1,2 * 1,2 * 0,15 * 7 = 1,51 \text{ m}^3$
			4.	Кровля
34	Устройство гидроизоляционного ковра кровли с заведением на вертикальные поверхности не менее 500 мм.	100 _{M²}	5,48	$S_{\text{покр.}+14,000} = 2,8 * 5,3 + 0,5 * (3,72 + 7,52) * 2,6 + 3,14 * 72/360 * (22,3^2 - 18,8^2) + 0,5 * 12,22 * 5,8=153,9 \text{ m}^2$ $S_{\text{покр.}+17,600} = 7,4 * 23,84 + 0,5 * 9,46 * 11,6 + 0,5 * (10,8 + 7,8) * 5,04 + 0,5 * (12,4 + 17,4) * 3,08 + 0,5 * 13,64 * 9,76 * SIN30 + 0,5 * 13,84 * 12,86 * SIN11 + 0,5 * (4,2 + 2,3) * 1,08 + ((18,1/2) * (3,14 * (37/180) - SIN37) - 0,5 * 18,1 * 18,1 * SIN37) + 0,5 * 17,7 * 17,6 * SIN15 + 0,5 * 17,5 * 17,6 * SIN6 = 333,4 \text{ m}^2$ $S_{\text{покр.}+20,550} = 0,5 * 3,74 * 6,6 + 0,5 * 5,66 * 6,78 + 0,5 * 3,14 * 3,1^2 + 0,5 * 4,41 * 6,78 + 0,5 * 3,01 * 6,78 * sin56 = 61,56 \text{ m}^2$ $S_{\text{покр.}} = 153,9 + 333,4 + 61,56 = 548,86 \text{ m}^2$
35	Утепление кровли плитами «URSA»	100 _M ²	5,48	$V_{\text{утепл.}} = 548,86 \times 0,1 = 54,8 \text{м}^3$
36	Наплавляемая пароизоляция с заведением на вертикальные поверхности.	100 M ²	5,48	$S_{\text{покр.}+14,000} = 2,8 * 5,3 + 0,5 * (3,72 + 7,52) * 2,6 + 3,14 * 72/360 * (22,3^2 - 18,8^2) + 0,5 * 12,22 * 5,8=153,9 \text{ m}^2$ $S_{\text{покр.}+17,600} = 7,4 * 23,84 + 0,5 * 9,46 * 11,6 + 0,5 * (10,8 + 7,8) * 5,04 + 0,5 * (12,4 + 17,4) * 3,08 + 0,5 * 13,64 * 9,76 * SIN30 + 0,5 * 13,84 * 12,86 * SIN11 + 0,5 * (4,2 + 2,3) * 1,08 + ((18,1/2) * (3,14 * (37/180) - SIN37) - 0,5 * 18,1 * 18,1 * SIN37) + 0,5 * 17,7 * 17,6 * SIN15 + 0,5 * 17,5 * 17,6 * SIN6 = 333,4 \text{ m}^2$ $S_{\text{покр.}+20,550} = 0,5 * 3,74 * 6,6 + 0,5 * 5,66 * 6,78 + 0,5 * 3,14 * 3,1^2 + 0,5 * 4,41 * 6,78 + 0,5 * 3,01 * 6,78 * sin56 = 61,56 \text{ m}^2$ $S_{\text{покр.}} = 153,9 + 333,4 + 61,56 = 548,86 \text{ m}^2$
37	Устройство цементно- песчаной стяжки t=40 мм.	100 M ²	5,07	$S_{\text{ПОКр.}+14,000} = 2,8 * 5,3 + 0,5 * (3,72 + 6,52) * 2,6 + 3,14 * 72/360 * (22,3^2 - 18,8^2) + 0,5 * 12,22 * 5,8=145,3 м² S_{\text{ПОКр.}+17,600} = 7,4 * 22,84 + 0,5 * 9,46 * 11,6 + 0,5 * (10,8 + 7,8) * 5,04 + 0,5 * (12,4 + 17,4) * 3,08 + 0,5 * 13,64 * 9,76 * SIN30 + 0,5 * 13,84 * 12,86 * SIN11 + 0,5 * (4,2 + 2,3) * 1,08 + ((18,1/2) * (3,14 * (37/180) - SIN37) - 0,5 * 18,1 * 18,1 * SIN37) + 0,5 * 17,7 * 17,6 * SIN15 + 0,5 * 17,5 * 17,6 * SIN6 = 307,5 м² S_{\text{ПОКр.}+20,550} = 0,5 * 3,74 * 6,6 + 0,5 * 5,66 * 6,78 + 0,5 * 3,14 * 3,1² + 0,5 * 4,41 * 6,78 + 0,5 * 3,01 * 6,78 * sin56 = 54,6 м² S_{\text{ПОКр.}} = 145,3 + 307,5 + 54,6 = 507,5 м²$
			5.	Полы
38	Устройство покрытия полов:			

		1	T	1
	- линолеум;	100 m ²	9,28	$S_{\text{лин.}} = \sum S_{\text{пом}} (N_{2}3,6,7,8,15,1,4,7,10,13,16,19,22,23,24,2,5,8,16) = = 928,6 \text{ м}^{2}$
	- керамическая плитка;	100 M ²	4,52	$\begin{split} \mathbf{S}_{\text{кер.п.п.}} = & \sum \mathbf{S}_{\text{пом}} (\mathbb{N}_{2}, 4, 5, 9, 10, 12, 14, 16, 17, 18 + (2, 3, 5, 6, 8, 9, 11, 12, \\ & 14, 15, 17, 18, 21, 25, 26, 27, 28) * 3 + 4, 7, 9, 10, 13, 14, 15, 18, 19, 20, 21 \\) = 452 \text{ M}^{2} \end{split}$
	- керамогранитная плитка	100 м ^{2ё}	9,6	$S_{\text{керамогр.пл.}} = \sum S_{\text{пом}}(N_{2}1,11,13,20,1,3,6,11,12,17) = 960,5 \text{ м}^{2}$
39	Устройство гидроизоляции напольного покрытия	100 m ²	1,36	Только в помещениях с влажным режимом и покрытием из керамической плиткой $S_{\text{гидроизол.}} = 1,36 \text{ м}^2$
		I	6. O	жна и двери
40	Установка оконных конструкций	100 m ²	4,84	О-1=3,56*1,16*2=8,26 О-2=2,36*1,5*3=10,62 О-3=1,56*1,16*24=43,43 О-4=1,56*0,86*20=26,83 О-5=1,16*0,86*2=2 О-6=0,86*0,86*2=1,48 В-1=6,74*15,01*1=101,17 В-2=3,72*17,74*1=65,99 В-3=2,94*14,32*2=84,2 В-4=2,94*14,32*2=84,2 В-5=2,94*8,61*1=25,31 В-6=2,14*14,26*1=30,52 $S_{\text{ОбЩ.}} = \sum S_{\text{ОКОН}} + S_{\text{ВИТР}} = 484,01 \text{ M}^2$
41	Установка дверей	100 M ²	1,88	Дв-1=2,37*1,51*2=7,16 Дв-2=2,37*1,51*5=17,89 Дв-3=2,37*1,31*6=18,63 Дв-4=2,07*1,19*2=4,93 Дв-5=2,07*0,97*1=2,01 Дв-6=2,07*0,97*2=4,02 Дв-7=2,07*0,87*3=5,4 Дв-8=2,07*0,87*5=9 Дв-9=2,07*0,87*2=3,6 Дв-10=2,07*0,87*2=3,6 Дв-11=2,07*0,87*2=3,6 Дв-12=2,07*0,87*8=14,41 Дв-13=2,07*0,87*4=7,2 Дв-14=2,07*0,87*2=3,6 Дв-15=2,07*0,87*6=10,81

		7	. Отле	лочные работы
42	Оштукатуривание стен	100 м ²	43,07	$\begin{split} &\mathbf{S}_{\text{CT}} = & \mathbf{\Sigma}\mathbf{S}_{\text{ПОМ}} \mathbf{N}\!$
43	Покрытие стен из керамической плитки	100 m ²	6,12	$S_{\text{кер.пл.}} = \Sigma S_{\text{пом.}} \mathcal{N}_{2}(2,10,14,16,17,18+(3,6,9,12,15,18,26,27,28)*$ $3+4,7,10,15,19,20,21)*3,0-S_{\text{дв+окна}} = 612,4\text{m}^{2}$
44	Окрашивание стен	100 _M ²	42,15	$\begin{split} \mathbf{S}_{\text{окраска}} = & \sum \mathbf{S}_{\text{пом}} (\mathbb{N}\underline{0}1, 3, 4, 5, 9, 11, 12, 13, 15 + (1, 2, 4, 5, 7, 8, 10, 11, 13, 1\\ & 4, 16, 17, 19, 20, 21, 22, 23, 24, 25) * 3 + 1, 2, 3, 5, 6, 8, 9, 11, 12, 13, 14, 16,\\ & 17, 18) * 3, 0 - \mathbf{S}_{\text{дв+окна}} = 4215, 4 \text{ m}^2 \end{split}$
45	Наклеивание обоев	100 м2	0,92	$S_{\text{обои.}} = \Sigma S_{\text{пом.}} \mathcal{N}_{0} (6,7,8+13*3)*3,0-S_{\text{дв+окна}} = 92,3 \text{ м}^2$
46	Окрашивание потолков	100 м2	7,8	$\begin{split} \mathbf{S}_{\text{окр.потолков}} = & \mathbf{\Sigma} \mathbf{S}_{\text{пом}} \mathbf{N} \underline{\mathbf{e}} (2,3,4,5,6,7,8,9,10,14,15,16,17,18+(2,3,5,6,8,9,11,12,14,15,17,18,21,25,26,27,28)*3+1,3,4,6,7,9,10,13,14,15,17,18,19,20,21) = & 780, 3 \ \mathbf{m}^2 \end{split}$
47	Устройство подвесного потолка «Армстронг»	100 м2	15,64	$S_{\text{CT.}} = \sum S_{\text{HOM.}} \mathcal{N}_{2}(1,,11,12,13+(1,4,7,10,13,16,19,20,22,23,24)*3+2,5,8,11,12,16)$
48	Облицовка потолков листами ГКЛ	100 м2	7,8	$\begin{split} S_{\text{TKJ}} = & \Sigma S_{\text{HOM}}.\text{Ne}(2,3,4,5,6,7,8,9,10,14,15,16,17,18+(2,3,5,6,8,9,1\\ 1,12,14,15,17,18,21,25,26,27,28)*3+1,3,4,6,7,9,10,13,14,15,1\\ 7,18,19,20,21) = & 780,3 \text{ m}^2 \end{split}$
		8.	Благоустр	оойство территории
49	Посадка деревьев, кустов	10 шт.	3	См. «Ведомость элементов озеленения»
50	Посев газона	100 m ²	31,07	См. «Ведомость элементов озеленения»
51	Устройство асфальтобетонной отмостки	100 M ²	0,78	$\begin{split} S_{\text{OTM}} &= l_{\text{OTM}} * b_{\text{OTM}} \\ S_{\text{OTM.}} &= (2,9+1,01+2,431+5,41+7,01+2,86+2,85+15,01+1,27+4,\\ 43+3,19+2,0+28,4)*1,0=78,77 \text{ m}^2 \end{split}$

Таблица В.2 – Потребность в строительных конструкциях, изделиях и материалах

	Работы			Изделия, к	онструкции	и, материалі	ы			
Поз.	Наименование работ	Ед. изм.	Кол-во	Наименование	Ед. изм.	Вес единицы	Потребность на весь объем			
			I Основа	ния и фундаменты	<u> </u>					
	G		120	G GH 0.20	ШТ	1	128			
1	Сваи	ШТ.	128	Сваи СНпр8-30	м ³	0,73	93,44			
	Устройство	100 3	0.422	E D 15	м ³	1	43,2			
	монолитных ростверков	100м ³	0,432	Бетон В 15	Т	2,4	103,68			
2	Установка арматурных			Горячекатаная	M	1	787,0			
	сеток и каркасов фундаментов	T.	1,944	арматурная сталь d=20 мм.	КГ	2,47	1944			
	Устройство	2			м ³	1	43,7			
	монолитных стен подвала	100м ³	0,437	Бетон В 15	Т	2,4	104,88			
3	Установка арматурных			Горячекатаная	M	1	4980,2			
	сеток и каркасов стен	T.	4,42	арматурная сталь d=16 мм.	КГ	0,888	4422,44			
4	Устройство	100м ²	2.26		M ²	1	236			
4	гидроизоляции	100M	2,36	Битумная мастика	T	0,016	3,8			
II Надземная часть										
	Устройство плит	100м ³	9,37	Бетон В 15	M ³	1	937			
_	перекрытия и покрытия	TOOM	7,57		T	2,4	2248,8			
5	Установка арматурных	T.	62,12	Горячекатаная арматурная сталь d=16	M	1	69958,4			
	сеток и каркасов стен	1.	02,12	мм.	КГ	0,888	62123,1			
	Устройство	100м ³	1,16	Бетон В 15	M ³	1	116			
_	монолитных колонн	TOOM	1,10	Deton D 13	Т	2,4	278,4			
6	Армирование	Т.	9,29	Горячекатаная арматурная сталь d=28	M	1	1923,7			
	монолитных колонн	1.	9,29	мм.	КГ	4,83	9291,6			
	Кладка наружных стен	1м ³	607.2	Глон	1 m ³	1	607,3			
7	из газобетонного блока	1 M	607,3	Блок	1000шт.	0,029	20941			
,	Раствор готовый	м ³	133,606	Раствор кладочный	M ³	1	133,6			
	кладочный		,	M100	T2	1,8	240,5			
	Облицовка наружных стен сайдингом	100м ²	24,29	Виниловые панели	м ² п.м.	4	2429,0 9716,0			
8		2		Минераловатные	M ³	1	170,0			
	Утеплитель	M ³	170	плиты	T.	0,037	6,3			
	Кладка внутренних стен	. 2			1 m ³	1	165,1			
9	из кирпича толщиной 250 мм.	1m ³	165,1	Камни	1000шт.	0,395	418			

Таблица В.2 – Потребность в строительных конструкциях, изделиях и материалах

	Кладка перегородок из	адка перегородок из опича толщиной 120 — 100м ² — 18,29 — Камни		Voyany	1 m ²	1	1829
10	кирпича толщиной 120 мм.	100M	10,29	камни	1000шт.	5,04	363
10	Раствор готовый	м ³	42,07	Раствор кладочный	M ³	1	42,1
	кладочный		,-,	M50	Т	1,8	75,7
	Устройство монолитных	100м ³	0,24	Бетон В 15	M ³	1	24
	стен подвала	10011			T	2,4	57,6
11	Установка арматурных	_	0.15	Горячекатаная арматурная сталь d=10	M	1	243,1
	сеток и каркасов стен	Т.	0,15	мм.	КГ	0,617	150
	Монтаж лестничных элементов:						
1.0	- косоуров;				шт.	1	20
12		ШТ.	20	Швеллер №22	T	0,099	1,98
	- ступеней;				шт.	1	106
		шт.	106	Ступени ж/б	T	0,128	13,57
	Бетонирование	м ³	1.51	Бетон В 15	м ³	1	2,17
	лестничных площадок	М	1,51		T	2,4	5,21
13	Установка арматурных			Горячекатаная	M	1	157,2
	сеток площадки	T.	0,181	арматурная сталь d=10 мм.	КГ	0,617	181,2
14	Устройство гидроизоляционного покрытия кровли	100м ²	5,48	Рулонный кровельный материал	м ²	1	5,48
	верхний слой			матернал	КГ	2,2	12,1
15	Устройство гидроизоляционного	100м ²	5,48	Рулонный кровельный	м ²	1	5,48
	покрытия кровли нижний слой			материал	КГ	1,7	9,32
16	Утепление кровли	100м ²	5,48	Плиты	\mathbf{M}^2	1	548
10	у тепление кровли	TOOM	3,40	теплоизоляционные	ΚΓ	1,26	690,34
1.7	Стяжка цементно	1 m ³	20.2	D ~	M ²	1	20,3
17	песчаная	1 M	20,3	Раствор кладочный	T.	1,8	36,54
				III Кровля	<u> </u>		•
1.5	Устройство гидроизоляционного	100м ²	5 40	Рулонный кровельный	M ²	1	5,48
15	покрытия кровли нижний слой	100M	5,48	материал	КГ	1,7	9,32
14	Vacantonica	100м ²	5 10	Плиты	M ²	1	548
16	Утепление кровли	TOOM	5,48	теплоизоляционные	ΚΓ	1,26	690,34
17	Стяжка цементно	1. 3	20.2	D	M ²	1	20,3
17	песчаная	1 m ³	20,3	Раствор кладочный	T.	1,8	36,54

Таблица В.3 - Механизмы, машины и оборудование

Наименование	Тип, марка	Кол-во, шт.	Примечание
Бульдозер	Д3-17	1	Планировка участка
Экскаватор гусеничный	UMG E180C	1	Разработка грунта
Копровая установка СП-49- РН-12 на базе бульдозера БТ10МБ	СП-49-РН-12	1	Забивка свай
Пневмоколесный кран	TEREX-DEMAG AC 40	1	Подача материалов в котлован
Пневмоколесный кран	TEREX-DEMAG AC 60	1	Подъем и монтаж опалубки, каркасов, сеток
Самоходный каток	ET-DVH-600L	1	Устройство временных и постоянных дорог
Автобетоносмеситель (миксер)	СБ-92	4	Доставка бетонной смеси
Автобетононасос	Pitzmister M20-4	1	Подача смеси в опалубку
Самосвал	KAMA3-55111	2	Доставка сыпучих материалов и вывоз растительного грунта
Автомобиль (бортовой)	KAMA3-43253	2	Доставка стройматериалов, вывоз мусора.
Электросварочный пост	Ресанта	1	Сварочные работы
Вибратор поверхностный	ИВ-106	3	Уплотнение верхнего слоя бетонной смеси
Вибратор глубинный	ADA ZDB35-CL A00245	3	Уплотнение толщи бетона
Гибочный станок для арматуры	СГА-1	2	Изготовление каркасов и сеток
Станок для резки арматуры	KMC-32	2	Изготовление каркасов и сеток

Таблица В.4 – Ведомость грузозахватных приспособлений

По	Наименова ние	Macca	Наименов ание грузозахв	Характ	Высота стропов ки, h, м.		
3.	монтируем ого элемента	элеме нта, т.	атного устройств а, его марка	Эскиз с размерами, в мм.	Грузоп одъем ность, т.	Масс а,т.	
1	Самый тяжелый элемент - бадья Самый			2 3			
2	удаленный элемент по горизонтали – бадья	2,5	Строп 4СК- 6,0/3,0	90"-100	6,0	0,1	3,0
3	Самый уделенный элемент по высоте - бадья						

Таблица В.5 - Ведомость трудоемкости и затрат машинного времени

					рма мени	Тру	удоемкос	ТЬ	Вс	его	Профессиональный
Поз.	Наименование элементов	Ед. измер.	Обоснование ЕНиР, ГЭСН	Челчас.	Машчас	Объем работ	Чел-дн	Машсмен	Чел-дн	Машсмен	квалификационный состав звена рекомендуемый ЕНиР или ГЭСН
1	2	3	4	5	6	7	8	9	10	11	12
I Зем.	ляные работы	_									
1	Планировка площадки срезка растительного слоя	1000 м2	01-01-036-02	0,23	0,23	0,76	0,02	0,02	0,02	0,02	Машинист 6 разр.
2	Разработка грунта: - навымет	1000 м3	01-01-003-08	10,48	22,77	1,277	1,67	3,6	1,67	3,6	Машинист 6 разр. Пом машиниста 2 разр.
	- с погрузкой	1000 м3	01-01-013-14	15,08	43,62	1,429	2,69	7,8	2,69	7,8	Машинист 6 разр. Пом машиниста 2 разр.
3	Ручная зачистка дна котлована	100 м3	01-02-057-2	154	-	0,42	8,09	-	8,085	-	Землекоп 2 р1
4	Уплотнение грунта самоходными катками	1000 м2	01-02-013-01	6,74	1,34	0,76	0,64	0,1	0,64	0,1	Машинист 6 разр.
5	Обратная засыпка	1000 м3	01-03-031-04	3,5	3,5	14,29	6,25	6,3	6,25	6,3	Машинист 6 разр.
II Oci	нования и фундаменты		,								
6	Забивка свай	1 м3	05-01-003-03	3,51	1,93	93,44	41,00	22,5	41	22,5	Машинист копра 6 разр. Машинист компрессора 4 разр.

					рма мени	Тр	удоемкос	ТЬ	Вс	его	Профессиональный
Поз.	Наименование элементов	Ед. измер.	Обоснование ЕНиР, ГЭСН	Челчас.	Машчас	Объем	Чел-дн	Машсмен	Чел-дн	Машсмен	квалификационный состав звена рекомендуемый ЕНиР или ГЭСН
1	2	3	4	5	6	7	8	9	10	11	12
7	Бетонирование монолитных ростверков под колонны	100 м3	06-01-001-02	535,5	28,49	0,43	28,78	1,5	28,8	1,5	Бетонщик 4p-1; 2p-1, Машинист бетононасосной установки 4 разр., Слесарь строительный 4 разр. Плотник 4 разр 1 , 3разр 2, Арматурщик 4p1, 2p-1
8	Бетонирование плиты на отм3,560	100 м3	06-08-001-01	806	30,95	0,91	91,68	3,5	91,7	3,5	Бетонщик 4p-1; 2p-1, Машинист бетононасосной установки 4 разр., Слесарь строительный 4 разр. Плотник 4 разр 1 , 3pasp 2

				Норма вре	емени	Тр	удоемкос	ГЬ	Все	его	Профессиональный
Поз.	Наименование элементов	Ед. измер.	Обоснование ЕНиР, ГЭСН	Челчас.	Машчас	Объем	Чел-дн	Машсмен	Чел-дн	Машсмен	квалификационный состав звена рекомендуемый ЕНиР или ГЭСН
1	2	3	4	5	6	7	8	9	10	11	12
9	Бетонирование стен подвала	100 м3	06-01-024-03	1051,83	37,85	0,437	57,46	2,1	57,5	2,1	Бетонщик 4p-1; 2p- 1, Машинист бетононасосной установки 4 разр., Слесарь строительный 4 разр.
10	Гидроизоляция	100 м2	08-01-003-07	21,2	-	2,63	6,97	-	6,97	-	Гидроизоляровщик 4 р.азр1 , 3 разр
III Ha	адземная часть										
11	Бетонирование монолитных колонн 400х400 мм.	100 м3	06-01-026-01	1463,2	88,46	1,16	212,16	12,8	212,16	12,83	Бетонщик 4p-1; 2p- 1, Машинист бетононасосной установки 4 разр.

				1	рма иени	Тр	удоемкос	ГЬ	Все	его	Профессиональный	
Поз.	Наименование элементов	Ед. измер.	Обоснование ЕНиР, ГЭСН	Челчас.	Машчас	Объем работ	Чел-дн	Машсмен	чел-дн	эме	квалификационный состав звена рекомендуемый ЕНиР или ГЭСН	
1	2	3	4	5	6	7	8	9	10	11	12	
12	Бетонирование перекрытия	100 м3	06-21-002-01	743,9	42,57	8,46	786,62	45,0	786,6	45,02	Бетонщик 4p-1; 2p-1, Машинист бетононасосной установки 4 разр., Слесарь строительный 4 разр. Плотник 4 разр 1 , 3pasp 2	
13	Кладка наружных стен из газобетонного блока t=250 мм.	1м3	08-02-008-01	3,85	0,35	607,3	292,26	26,6	292,26	26,57	Каменьщик 3разр1 2 разр-1	
14	Кладка внутренних стен из кирпича t=250 мм.	1м3	08-02-001-07	5,21	0,4	165,1	107,52	8,3	107,52	8,26	Каменьщик 3разр1 2 разр-1	
15	Монтаж лестничных элементов	100 м2	29-01-217-01	389	2,14	0,33	16,05	0,1	16,05	0,09	Монтажники 4p-2, 3p-1, Машинист крана 6p-1	
16	Бетонирование лестниц	100 м3	06-21-002-01	743,9	42,57	0,255	23,71	1,4	23,7	1,4	Бетонщик 4p-1; 2p-1, Машинист	

	Наименование	Ед.	Обоснование	Нор врем		Tj	рудоемкос	ТЬ	Всег	О	Профессиональный квалификационный
Поз.	элементов	ед. измер.	ЕНиР, ГЭСН	Чел час.	Маш час	Объем работ	Чел-дн	Маш	Чел-дн	Маш	состав звена рекомендуемый ЕНиР или ГЭСН
1	2	3	4	5	6	7	8	9	10	11	12
17	Кладка перегородок из кирпича t=120 мм.	100 м2	08-02-002-03	143	4,21	18,29	326,93	9,6	326,9	9,6	Каменщик 4 разр, 3 разр.
18	Облицовка наружных стен с утеплением	100 м2	15-01-090-01	334,66	34,02	24,29	1016,11	103,3	1016,1	103,3	"Монтажник 5 разр - 1
					IV Кро	вля					
19	Пароизоляция кровли	100 м2	112-01-015- 01	17,51	0,18	5,48	11,99	0,1	12,0	0,12	Кровельщик 4 разр. – 1 3 разр 1
20	Утепление покрытия минераловатными плитами "URSA"	100 м2	12-01-013-03	45,54	0,55	5,48	31,19	0,4	31,2	0,38	Изоляровщик 3 разр 1, 2 разр1, Машинист крана 6р-1
21	Устройство стяжки цементно-песчаной	100 м2	12-01-017-01	27,22	1,94	5,07	17,25	1,2	17,250675	1,23	Кровельщик 4 разр. – 1 3 разр 1,
22	Устройство гидроизоляционного ковра кровли	100 м2	112-01-002- 09	14,36	0,2	16,44	29,51	0,4	29,51	0,41	Кровельщик 4 разр. – 1 3 разр 1,
V По	лы										
23	Устройство покрытия полов из линолеума	100 м2				9,28	0,00	0,0	0,00	0,00	Паркетчик 5 разр1, 3 разр1

				Нор врем		Тру	удоемкос	ТЬ	Все	его	Профессиональный
Поз.	Наименование элементов	Ед. измер.	Обоснование ЕНиР, ГЭСН	Челчас.	Машчас	Объем	Чел-дн	Машсмен	Чел-дн	Машсмен	квалификационный состав звена рекомендуемый ЕНиР или ГЭСН
1	2	3	4	5	6	7	8	9	10	11	12
25	Устройство покрытия полов из керамической плитки	100 м2	11-01-027-02	119,8	2,66	4,52	67,68	1,5	67,68	1,50	Облицовщик-плиточник 4 разр-1, 2 разр-1
26	Гидроизоляция полов	100 м2	11-01-004-05	26,97	0,18	1,36	4,58	0,0	4,58	0,03	Гидроизоляровщик 4 р.азр 1, 3 разр 1
VI Oı	кна и двери										
27	Монтаж окон	100м2 проемов	10-01-027-10	216	-	4,84	130,7	-	7,56	-	Плотник 3р-2
28	Монтаж дверей	100м2 проемов	10-01-039-3	126,9	-	1,88	29,82	-	29,82	-	Плотник 3р-2
VII C	тделочные работы							•			
29	Оштукатуривание стен	100 м2	15-02-016-03	85,84	-	43,07	462,14	-	462,1	-	Штукатур 3 разр1
30	Облицовка стен керамической плиткой	100 м2	15-01-018-01	159	1,65	6,12	121,64	1,3	121,6	1,26	Облицовщик-плиточник 4 разр-1, 2 разр-1
31	Покраска стен водоэмульсионными составами	100 м2	15-04-005-03	42,9	0,2	42,15	226,03	1,1	226,03	1,05	Маляр 3р-1, 2р-1

Продолжение таблицы В.5 - Ведомость трудоемкости и затрат машинного времени

Поз.	Наименование элементов	Ед. измер.	Обоснование ЕНиР, ГЭСН	Норма времени		Трудоемкость			Всего		Профессиональный
				Челчас.	Машчас	Объем работ	нт-гэҺ	Машсмен	нү-гэҺ	Машсмен	квалификационный состав звена рекомендуемый ЕНиР или ГЭСН
1	2	3	4	5	6	7	8	9	10	11	12
35	Устройство перегородок ГКЛ	100 м2	15-01-019-05	103	-	7,8	100,43	-	100,4	-	Штукатур 3 разр1
VIII Благоустройство											
36	Посадка деревьев, кустов	10шт.	47-01-025-01	1,89	0,11	3	0,71	0,04	0,71	0,04	Рабочий зел стр. 1 разр1
37	Посев газона	100 м2	47-01-046-06	5,99	2,74	31,07	23,26	10,6	23,26	10,64	Рабочий зел стр. 1 разр1
38	Устройство бетонной отмостки	100 м2	31-01-025-01	34,88	3,24	0,78	3,40	0,3	3,40	0,32	Бетонщик 3 разр2, 2р-1

2300,7 105,63