федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ
(институт)
«Теплогазоснабжение, вентиляция, водоснабжение и водоотведение»
(кафедра)
270800.62 (08.03.01) «Строительство»
(код и наименование направления подготовки, специальности)
«Теплогазоснабжение и вентиляция»
(наименование профиля, специализации)

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

на тему Самарская обл. с. Красная горка. Теплоснабжение.

Студент(ка)	А.А. Скуратов	
Руководитель	(И.О. Фамилия) С.А. Анциферов	(личная подпись)
Консультанты	(И.О. Фамилия) А.В. Щипанов	(личная подпись)
Нормоконтроль	(И.О. Фамилия) И.А. Живоглядова	(личная подпись)
	(И.О. Фамилия)	(личная подпись)
Допустить к защите		
Заведующий кафедро	ой <u>к.т.н., доцент М.Н. Кучеренко</u>	
	(ученая степень, звание, И.О. Фамилия)	(личная подпись)
« <u> </u>	2016 г.	

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

<u> АРХИТЕКТУРНО-СТР</u>	ОИТЕЛЬНЫЙ ИНСТ	ГИТУТ
(ин	ститут)	
«Теплогазоснабжение, вентиляц	ия, водоснабжение и в	одоотведение»
(ка	афедра)	
		УТВЕРЖДАЮ
		Зав. кафедрой ТГВВиВ
		М.Н. Кучеренко
	(подпись	(И.О. Фамилия
	«	»20г
ЗА Д	ДАНИЕ	
на выполнение ба		боти
на выполнение о	акалаврской ра	ЮО 1 Б1
Студент Скуратов Антон Александрович		
1. Тема Самарская обл. с Красная горка. Теплосна	бжение.	
2. Срок сдачи студентом законченной выпускной	-	-
3. Исходные данные к выпускной квалификацио	нной работе: <u>Фраг</u>	мент Генплана села Крас-
ная Горка; тепловые нагрузки.		
4. Содержание выпускной квалификационной ра	боты (перечень по	длежащих разработке во-
просов, разделов)		
Проектирование системы теплоснабжения; разра	ботка функционал	ьной схемы; определение
трудоёмкости СМР.		
5. Ориентировочный перечень графического и и.	ллюстративного ма	атериала лист общих дан-
ных, генплан, схема монтажная, график пьезомет	рический, продоль	ный профиль
6. Консультанты по разделам		
7. Дата выдачи задания «4» апреля 2016г.		
Руководитель выпускной квалификаци-		С.А.Анциферов
онной работы	(подпись)	(И.О. Фамилия)
Задание принял к исполнению		А.А. Скуратов
	(подпись)	(И.О. Фамилия)

(подпись)

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

<u> АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ ИНСТИТ</u>	<u>YT</u>
(институт)	
«Теплогазоснабжение, вентиляция, водоснабжение и	и водоотведение»
(кафедра)	
	УТВЕРЖДАЮ
38	ав. кафедрой ТГВВиВ
	М.Н. Кучеренко
(подпись)	(И.О. Фамилия)
«	» 20 г.

КАЛЕНДАРНЫЙ ПЛАН выполнения бакалаврской работы

Студент <u>Скуратов Антон Александрович</u> по теме <u>Самарская обл. с Красная горка. Теплоснабжение.</u>

Наименование раз- дела работы	Плановый срок выполнения раздела	Фактический срок выполнения раздела	Отметка о выполнении	Подпись руководителя
Исходные данные для проектирования	04.04.2016	04.04.2016	Выполнено	
Построение графиков расхода теплоты	18.04.2016	18.04.2016	Выполнено	
Гидравлический расчёт	30.04.2016	30.04.2016	Выполнено	
Тепловая изоляция трубопроводов	08.05.2016	08.05.2016	Выполнено	
Контроль и автоматизация	13.05.2016	13.05.2016	Выполнено	
Организация монтажа	18.05.2016	18.05.2016	Выполнено	
Безопасность и экологичность объекта	24.05.2016	24.05.2016	Выполнено	

Руководитель выпускной квалификацион-		С.А. Анциферов
ной работы	(подпись)	(И.О. Фамилия)
Задание принял к исполнению		А.А. Скуратов
-	(подпись)	(И.О. Фамилия)

АННОТАЦИЯ

В бакалаврской работе рассмотрен проект централизованного теплоснабжения села Красная горка, Самарской области, в связи с монтажом модульной котельной мощностью 10 МВт, и подключению к ней тринадцати жилых и общественных зданий, расположенных в центральной части посёлка.

В основной части проекта обоснован выбор схемы, конструкций и оборудования системы теплоснабжения, проведены необходимые расчеты и сравнительные выводы, учтены новейшие разработки в области теплоснабжения.

Представленный дипломный проект состоит из 6 листов графической части и 69 листов пояснительной записки, в которой приведены основные расчеты по теплоснабжению посёлка, разработан раздел организации строительства новой тепловой сети, рассмотрены вопросы охраны труда, автоматизации ИТП.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	7
1 ИСХОДНЫЕ ДАННЫЕ	8
2 ТЕПЛОВЫЕ НАГРУЗКИ И РЕГУЛИРОВАНИЕ ОТПУСКА ТЕПЛА	11
2.1 График часового и годового потребления тепла	11
2.2 Выбор метода регулирования и график регулирования отпуска тепла	13
3 ТЕПЛОВАЯ СЕТЬ	17
3.1 Определение расчетных расходов теплоносителя	17
3.2 Конструирование и механический расчет тепловой сети,	
построение монтажной схемы	18
3.3 Гидравлический расчет	24
3.4 Расчет и подбор тепловой изоляции	28
4 КОТЕЛЬНАЯ	34
4.1 Расчет и подбор котельных агрегатов	34
4.2 Разработка тепловой схемы	34
4.3 Расчет и подбор вспомогательного оборудования	35
5 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ	38
6 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ	40
6.1 Определение объёмов работ	40
6.2 Определение трудоёмкости строительных и монтажных работ	45
7 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА	46
7.1 Технологическая характеристика объекта	46
7.2 Идентификация профессиональных рисков	48
7.3 Методы и средства снижения профессиональных рисков	48
7.4 Обеспечение пожарной безопасности технического объекта	49
7.5 Обеспечение экологической безопасности технического объекта.	50
ЛИТЕРАТУРА	51
ПРИЛОЖЕНИЯ	54

ВВЕДЕНИЕ

Одним из путей повышения энергоэффективности в отечественной теплоэнергетике является модульное теплоснабжение при количественном и качественно-количественном регулировании тепловой нагрузки на тепловых источниках. Особую значимость приобретает разработка новых технологий и методик расчета способов регулирования тепловой нагрузки систем теплоснабжения. Чрезвычайно важной является разработка методик расчета количественного и качественно-количественного регулирования, позволяющих учесть влияние нагрузки горячего водоснабжения на работу систем отопления.

Цель настоящей работы – проектирование системы теплоснабжения центральной части села Красная Горка, Самарской области.

Основными задачами, которые необходимо решить для достижения поставленной цели являются:

- гидравлический, тепловой, механический расчёты тепловой сети;
- разработка функциональной схемы ИТП;
- определение трудоёмкости строительно-монтажных работ;
- разработка мероприятий по безопасности и экологичности технического объекта

1 ИСХОДНЫЕ ДАННЫЕ

Проектирование ведётся на основании следующих исходных данных: фрагмент центральной части генплана села Красная Горка; проектных тепловых нагрузок на отопление, вентиляцию и горячее водоснабжение отдельных зданий (таблица 1.1).

Проектирование наружной сети теплоснабжения связано с переводом тринадцати жилых и общественных зданий, расположенных в центральной части посёлка на централизованное теплоснабжение и подключением к модульной котельной мощностью 10 МВт, и подключению к ней.

Тип грунта в районе застройки – суглинок, грунтовые воды до глубины 25 м, не обнаружены. Рельеф местности спокойный.

Источником тепла является модульная котельная мощностью 10 МВт, тепловая сеть проектируется из стальных труб по ГОСТ 10704-91, фасонные части и арматура, также стальные.

Первичный теплоноситель перегретая вода с параметрами:

$$T_1 = 110 \text{ °C};$$

 $T_2 = 70 \text{ °C};$

Система горячего водоснабжения — закрытая. Температура воды в системе горячего водоснабжения — 60° С. Горячее водоснабжение данных объектов осуществляется от теплообменников горячего водоснабжения, присоединенных по двухступенчатой смешанной схеме.

Прокладка трубопроводов – подземная в непроходных каналах Максимальная этажность застройки посёлка – пятиэтажные жилые дома.

Климатологические данные для Самарской области [2]:

расчетная температура наружного воздуха для проектирования отопления $t_{p,o}$ = - 30 o C;

расчетная температура наружного воздуха для проектирования вентиляции $t_{\text{D.B}}\!\!=\!-30$

продолжительность отопительного периода $n_0 = 203$ сут;

расчетная температура внутреннего воздуха $t_{BH} = 18$ °C;

средняя температура в период со среднесуточной температурой воздуха 8° С и менее: $t_{\text{cp.cvt.}} = -5,4^{\circ}$ С;

температура грунта среднегодовая $t_{rp} = 8.9$

максимальная скорость ветра за январь $g_{MAX} = 5,4$ м/с

средняя скорость ветра $g_{cp} = 3.2 \text{ м/c}$

преобладающее направление: ЮВ-ЮЮВ

Продолжительность стояния температур наружного воздуха с интервалом 5°C в течение отопительного периода по [2] приведена в таблице 1.1

Таблица 1.1 – Продолжительность стояния температур наружного воздуха

п нас	Температура наружного воздуха, °С									
п, час	-30	-25	-20	-15	-10	-5	0	8		
n	112	280	478	584	844	997	968	609		
Σn	112	392	870	1454	2298	3295	4263	4872		

Максимальные тепловые потоки на отопление, вентиляцию и горячее водоснабжение принимаются по проектным данным (таблица 1.2).

Таблица 1.2 – Тепловые нагрузки зданий

a	Наименование	Расчетный тепловой поток, МВт						
№ Дома	потребителя	Отопление	Венти- ляция	ГВС отоп. период	Всего	ГВС летний пе- риод		
2	Жилой дом	0,245	0	0,248	0,493	0,198		
4	Жилой дом	0,418	0	0,324	0,742	0,259		
5	Жилой дом	0,245	0	0,225	0,47	0,180		
6	Жилой дом	0,252	0	0,248	0,5	0,198		
	Жилой дом с							
7	магазином	0,607	0,023	0,547	1,177	0,438		
8	Жилой дом	0,543	0	0,602	1,145	0,482		
9	Жилой дом	0,145	0	0,248	0,393	0,198		
	школа	0,583	0,12	0,137	0,84	0,110		
	д/с	0,186	0,023	0,105	0,314	0,084		
	администрация	0,067	0,007	0,074	0,148	0,059		
	почта	0,03	0	0	0,03	0		
	пожарное депо	0,172	0,117	0,058	0,347	0,046		
	баня	0,208	0	0,463	0,671	0,370		
	ИТОГО	3,701	0,29	3,279	7,27	2,6232		

2 ТЕПЛОВЫЕ НАГРУЗКИ И РЕГУЛИРОВАНИЕ ОТПУСКА ТЕПЛА

2.1 График часового и годового потребления тепла

Расчет расходов теплоты производим по методике, приведённой в [10].

Графики часовых расходов теплоты строятся в координатах $Q - t_{H}$.

Определяются расходы теплоты на отопление в период со среднесуточной температурой наружного воздуха $t_{\rm H} = + 8^{\rm o}{\rm C}$:

$$Q_{o} = Q_{o}^{"} \cdot \frac{t_{s} - t_{n}}{t_{s} - t_{p,o}}, MBm;$$
 (2.1)

$$Q_o = 3,701 \cdot \frac{18 - 8}{18 + 30} = 0,77 \text{ MBm};$$

Точки, соответствующие значениям Q_o при различных t_H , соединяются прямой и получается график часового расхода теплоты на отопление (рис. 2.1, прямая Q_o).

Расход теплоты на вентиляцию определяется по формуле:

$$Qe = Q_{e} \cdot \frac{t_{e} - t_{n}}{t_{e} - t_{n}}, MBm; \qquad (2.2)$$

$$Q_6 = 0.29 \cdot \frac{18 - 8}{18 + 30} = 0.06 \text{ MBm};$$

Расход теплоты на горячее водоснабжение постоянный, не зависит от t_{H} , следовательно, график является прямой линией, параллельной оси абсцисс (прямая $Q_{\ell,B}$).

График суммарного часового расхода теплоты на отопление, вентиляцию и горячее водоснабжение строится путем сложения соответствующих ординат при $t_H = +8$, -30° C (линия $Q_{\text{сум}}$).

Строится график годового расхода теплоты по продолжительности стояния температур наружного воздуха и количеству теплоты при данной температуре. По [7, табл.1.3] находится общая продолжительность отопительного периода для г. Самары $n_o = 4872$ ч. Продолжительность стояния температур

наружного воздуха с интервалом 5°C в течение отопительного периода заносится в табл.2.1.

пп	Температура наружного воздуха, °С									
n, ч	-30	-25	-20	-15	-10	-5	0	8		
n	112	280	478	584	844	997	968	609		
Σn	112	392	870	1454	2298	3295	4263	4872		
Q, Мвт	7,26	6,75	6,26	5,79	5,34	4,91	4,50	4,11		

Таблица 2.1 – Продолжительность стояния температур наружного воздуха

В летний период (диапазон продолжительности стояния $t_{\rm H}$ 4872 — 8400 ч) тепловые нагрузки на отопление отсутствуют, а нагрузку на горячее водоснабжение можно рассчитать, согласно [1], по формуле:

$$Q_{e.s}^{n} = Q_{e.s}^{cp} \frac{55 - t_{x.n}}{55 - t_{x.s}} \beta, MBm.$$
 (2.3)

$$Q_6 = 3.28 \cdot \frac{55 - 5}{55 + 15} \cdot 0.8 = 2.62 \text{ MBm};$$

где β - коэффициент, учитывающий изменение среднего расхода воды на горячее водоснабжение в неотопительный период по отношению к отопительному периоду, принимаем для жилищно-коммунального сектора равным 0,8 [1, прил.1]

 $t_{\text{х.л}}$ — температура холодной водопроводной воды в неотопительный период, принимаем равной 15°C ;

 $t_{x,3}$ — температура холодной водопроводной воды в отопительный период, принимаем равной $5^{\rm o}C$.

Поскольку $Q_{r,B}^{\ \ n}$ не зависит от t_H , в диапазоне летных температур проводится горизонтальная прямая до пересечения с ординатой, соответствующей общему расчетному числу часов работы тепловой сети в году n=8400 ч. Годовой график представлен на рисунке 2.1.

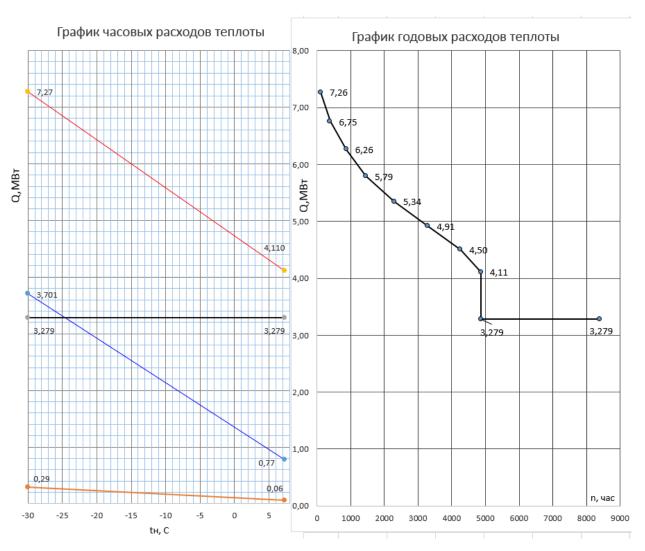


Рисунок 2.1 - График часовых и годовых расходов теплоты на отопление, вентиляцию, горячее водоснабжение и суммарного потребления тепла.

2.2 Выбор метода регулирования и график регулирования отпуска тепла

Передача тепла системы теплоснабжения в конечные нагреваемые среды осуществляется нагревательными приборами местных систем теплопотребления, по теплоотдаче которых судят, о качестве всего централизованного теплоснабжения. Совокупность мероприятий по изменению теплоотдачи приборов в соответствии с изменением потребности в тепле нагреваемых ими сред называется регулированием отпуска тепла. От правильной организации и надлежащего осуществления регулирования во многом зависят качество и экономичность теплоснабжения.

Расчетная температура воздуха в отапливаемых помещениях $t_{\text{в}} = 18$ °C, температура сетевой воды в подающей и обратной магистралях при $t_{\text{p.o}}$ $\tau_{1,0} = 110$ °C, $\tau_{2,0} = 70$ °C, температура воды в системе отопления домов подключенных по независимой схеме составляет $\tau_3 = 105$ °C.

Температура воды в подающей и обратной магистралях в течение отопительного периода, т.е. в диапазоне температур наружного воздуха +8...-30°C:

$$\tau_{1,0} = t_{s} + \Delta t' \left(\frac{t_{s} - t_{H}}{t_{s} - t_{H,0}} \right)^{0.8} + \left(\Delta \tau' - 0.5\theta' \right) \frac{t_{s} - t_{H}}{t_{s} - t_{H,0}}, {}^{\circ}C;$$
(2.4)

$$\tau_{1,0} = 18 + 64,5 \left(\frac{18 - 8}{18 - (-30)} \right)^{0.8} + (80 - 0.5 \cdot 25) \frac{18 - 8}{18 - (-30)} = 50,45^{\circ}\text{C};$$

$$\tau_{2,0} = t_{s} + \Delta t' \left(\frac{t_{s} - t_{H}}{t_{s} - t_{H,o}} \right)^{0.8} - 0.5\theta' \frac{t_{s} - t_{H}}{t_{s} - t_{H,o}}, {}^{o}C;$$
(2.5)

$$\tau_{2,0} = 18 + 64,5 \left(\frac{18 - 8}{18 - (-30)} \right)^{0.8} - 0.5 \cdot 25 \frac{18 - 8}{18 - (-30)} = 33,79^{\circ}\text{C};$$

где «штрих» означает, что значения величин взяты при $t_{p.o}$;

 Δt ' — температурный напор нагревательного прибора, при расчетной температуре воды в системе отопления τ_3 ' = $105^{\rm o}$ C, $\tau_{2,0}$ ' = $70^{\rm o}$ C;

$$\Delta t' = \frac{\tau'_3 + \tau_{2,0}}{2} - t_e \tag{2.6}$$

$$\Delta t' = \frac{105 + 70}{2} - 18 = 64,5$$
°C

 t_{H} – температура наружного воздуха, °C;

 $\Delta \tau$ ' – расчетный перепад температур воды в тепловой сети,

$$\Delta \tau' = \tau'_{1,0} - \tau'_{2,0} \tag{2.7}$$

$$\Delta \tau' = 110 - 70 = 40^{\circ}\text{C};$$

 θ ' – расчетный перепад температур воды в местной системе отопления ,

$$\theta' = \tau'_{3} - \tau'_{2,0} \tag{2.8}$$

$$\theta' = 105 - 70 = 35^{\circ}\text{C};$$

Задаваясь различными значениями $t_{\rm H}$ в пределах от +8 до -30 °C, определяется $\tau_{I,0}$ и $\tau_{2,0}$. полученные результаты сводятся в таблицу 2.2

Таблица 2.2 – Температура сетевой воды в подающем и обратном трубопроводах в зависимости от температуры наружного воздуха

Температура наружного воздуха t _н ,		8	5	0	-5	-10	-15	-20	-25	-30
Температура	τ1,0	42,5	48,5	58,1	67,4	76,3	85,0	93,5	101,8	110,0
сетевой воды, ⁰ С	τ2,0	34,2	37,7	43,1	48,2	52,9	57,5	61,8	66,0	70,0

По вычисленным значениям $au_{1.0}$ и $au_{2.0}$ строится отопительно-бытовой температурный график $au_{1.0} = f(t_{om})$ и $au_{2.0} = f(t_{om})$ (рис. 2.2).

Для обеспечения требуемой температуры воды в системе горячего водоснабжения минимальную температуру сетевой воды в подающей магистрали тепловой сети принимается равной 75°C, поэтому из точки, соответствующей 75°C на оси ординат, проводится горизонтальная прямая до пересечения с температурной кривой для подающей магистрали $(\tau_{1,0})$.

Температура наружного воздуха, соответствующая точке излома графика обозначается $t_{\text{н.и.}}$

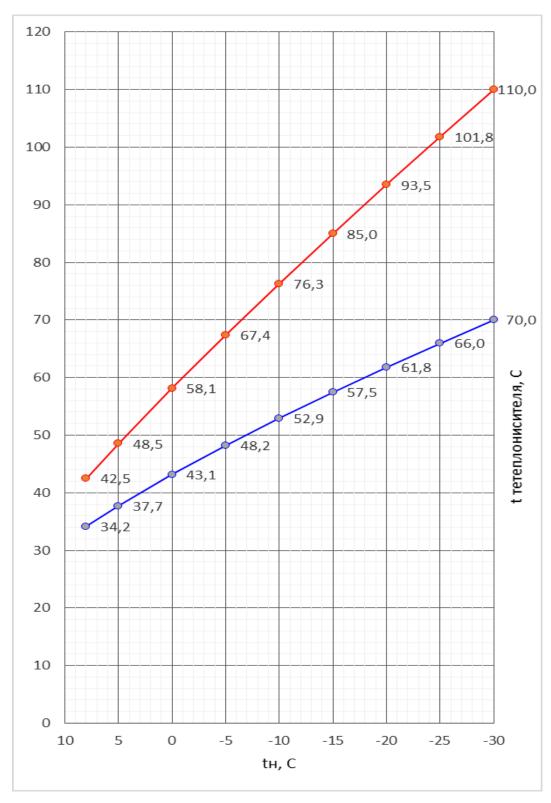


Рисунок 2.2 - Отопительно-бытовой температурный график

3 ТЕПЛОВАЯ СЕТЬ

3.1 Определение расчетных расходов теплоносителя

Так как система теплоснабжения двухтрубная расходы сетевой воды на отопление, вентиляцию и горячее водоснабжение суммируются. Расчет ведется в соответствии с [1] и справочной литературе [6-9]. Расчетные расходы сетевой воды на отопление определяются по формуле:

$$G_o = \frac{3.6Q_o}{c(\tau'_{1,0} - \tau'_{2,0})}, \text{ T/Y}, \tag{3.1}$$

$$G_o = \frac{3.6 \cdot 3.7}{4.19(110 - 40)} = 79.5, \text{ T/Y},$$

где Q_o –максимальный тепловой поток на отопление, кBт;

 $au'_{1,0}$ - $au'_{2,0}$ — расчетный перепад температур сетевой воды в подающей и обратной магистралях при $t_{\text{p.o.}}$

c – удельная теплоемкость воды, c = 4,19 кДж/кг°К;

Расчетный расход сетевой воды на вентиляцию определяется только на административные здания, так как в жилых домах вентиляция отсутствует.

$$G_{\theta} = \frac{3.6Q_{\theta}}{c(\tau '_{1.0} - \tau '_{2.0})} \text{ T/Y}, \tag{3.2}$$

$$G_o = \frac{3.6 \cdot 0.29}{4.19(110 - 40)} = 6.23, \text{ T/Y},$$

где Q_{s} –максимальный тепловой поток на вентиляцию, кBт;

Так как для потребителей тепловой поток менее 10 МВт расход воды на горячее водоснабжение определяем по формуле:

$$G_{2B} = \frac{3.6 \cdot 0.55Q_{2B}}{c(\tau''_{1.0} - \tau''_{2.0})}, \text{ T/Y}, \tag{3.3}$$

$$G_o = \frac{3.6 \cdot 0.55 \cdot 3.28}{4.19(75 - 45)} = 51.65, \text{ T/H},$$

где Q_{26} – расчетный расход теплоты на горячее водоснабжение, кВт;

 τ''_I — температура сетевой воды в подающей магистрали при $t_{\text{н.и.}}$, берется по температурному графику, $\tau''_1 = 75^{\circ}\text{C}$;

 $\tau''_{2,0}$ — температура сетевой воды в обратной магистрали при $t_{\text{н.и}}$ $\tau''_{2,0}$ =45°C; Результате расчетов по каждому потребителю приведены в таблице 3.1. Таблица 3.1 — Расчетные расходы сетевой воды

1a	Наименование	Расчетный расход сетевой воды, т/ч						
№ Дома	потребителя	на отопле- ние	на вентиля- цию	на горячее во- доснабжение	Суммарный расход	в летний период		
		$G_0{}^p$	$G_{\scriptscriptstyle \rm B}{}^{ m p}$	$G_{\scriptscriptstyle \Gamma B}$	G _{сум}	$G_{{\scriptscriptstyle \Gamma}{\scriptscriptstyle B}{\scriptscriptstyle J}{\scriptscriptstyle J}}$		
2	Жилой дом	5,26		3,91	9,17	3,41		
4	Жилой дом	8,98		5,10	14,08	4,45		
5	Жилой дом	5,26		3,54	8,81	3,09		
6	Жилой дом	5,41		3,91	9,32	3,41		
7	Жилой дом с магазином	13,04	0,49	8,62	22,15	7,52		
8	Жилой дом	11,66		9,48	21,15	8,28		
9	Жилой дом	3,11		3,91	7,02	3,41		
	школа	12,52	2,58	2,16	17,26	1,88		
	д/с	4,00	0,49	1,65	6,14	1,44		
	администрация	1,44	0,15	1,17	2,76	1,02		
	почта	0,64		0,00	0,64	0,00		
	пожарное депо	3,69	2,51	0,91	7,12	0,80		
	баня	4,47		7,29	11,76	6,36		
	ИТОГО	79,50	6,23	51,65	137,38	45,08		

3.2 Конструирование и механический расчет тепловой сети,

построение монтажной схемы

Конструирование наружной тепловой сети производится в соответствии с рекомендациями [1], [10-12]. Согласно местных условий застройки и технического задания принята подземная двухтрубная прокладка трубопроводов в непроходных каналах марок КЛ90-45, КЛ60-45 [6].

При ширине каналов, не превышающей 2,4 м, и массе до 1,6 т лотки изготавливаются длиной 3000 мм, плоские плиты – длиной 3000 мм.

Дно каналов укладывают с уклоном не менее 0,002 в сторону теплофикационных камер, где устроены приямки для сбора воды. Спуск воды осуществляют в дренажные колодцы, собранные из ж/б колец КС-15-10 с последующим ее отводом в систему канализации [10].

По трассе тепловых сетей в местах установки запорной арматуры, спускников и воздушников запроектированы теплофикационные камеры. Камеры изготовлены из сборных железобетонных конструкций: железобетонные стеновые блоки и ребристые плиты перекрытия. Переход труб с большого диаметра на меньший осуществляется в теплофикационных камерах ТК-1 – ТК-7.

Для стабилизации положения трубопроводов запроектированы скользящего опоры. Расстояние между ними определяется в зависимости от диаметра трубопровода [6]: для трубопроводов условным диаметром 159 мм – 4,5м; 108 мм – 4,0 м; 89 мм – 3,5 м; 57 мм – 3,5 м; 45 мм – 3 м; 38 мм – 3 м. В качестве неподвижных опор трубопроводов, запроектированы лобовые двухупорные опоры по ГОСТ 30732-2006.

Трубопроводы проектируемой системы теплоснабжения относятся к IV категории. В соответствии с этим для тепловых сетей запроектированы стальные электросварные прямошовные трубы по ГОСТ 10704-91 из стали марки В-20 по ГОСТ 1050-74** диаметрами: 38x2,5; 45x2,5; 57x2,5; 89x3,5; 108x4,0; 133x4; 159x4,5; 219x6 мм с тепловой изоляцией из пенополиуретана с защитной полиэтиленовой оболочкой по ГОСТ 30732-2006.

Для углов поворота применены отводы крутоизогнутые 90° по ГОСТ 17375-83 из стали 20 заводского изготовления Т 50 серии 4.903-10 выпуск 1. Ответвления трубопроводов запроектированы по ГОСТ 17376-83 заводского изготовления Т 90 серии 4,903-10 выпуск 1.

При изменении диаметра трубопроводов применены переходы сварные листовые концентрические по ГОСТ 17378-83 из стали 20 заводского изготовления Т 57 серии 4.903-10, выпуск 1.

В качестве запорной и спускной арматуры запроектированы стальные шаровые краны КШТ серии 61.103.200.

На всех ответвлениях трубопроводов в теплофикационных камерах установлена запорная арматура и спускная, согласно [3, п.7.17в]. Секционирующие задвижки и перемычки между подающими и обратными трубопроводами не предусмотрены из-за небольшого диаметра трубопроводов и небольшой протяженности тепловых сетей.

Для компенсации температурных удлинений использованы участки с самокомпенсацией - участки трубопроводов с поворотом на 90° -120°, и гнутые Побразные компенсаторы. На участках самокомпенсации расстояние между неподвижными опорами не более 60% от наибольших допустимых расстояний.

Тепловое удлинение трубопровода Δl между двумя неподвижными опорами вызывает изгиб вылетов и стенки компенсатора . Вылет, изгибаясь, смещается на величину $\Delta l/2$, а стенка — на величину Y, при этом на внешней стороне стенки возникают растягивающие напряжения, а на внутренней стягивающие.

Расчёт П-образных компенсаторов заключается в определении усилий и максимальных напряжений, возникающих в опасных сечениях, в выборе длин участков трубопроводов, закреплённых в неподвижных опорах и геометрических размеров компенсаторов, а также нахождении величины смещений при компенсации температурных деформаций.

При расчёте трубопроводов на температурную компенсацию, принимаются следующие условия:

неподвижные опоры считаются жёсткими;

сопротивление сил трения неподвижных опор при тепловом удлинении трубопровода не учитывается.

Расчёт трубопроводов на компенсацию тепловых удлинений производится согласно [6, 7]. Полное тепловое удлинение трубопровода определяется по формуле), мм:

$$\Delta l = \sqrt{\Delta l x^2 + \Delta l y^2} \tag{3.4}$$

Для симметричных относительно оси Y участков теплопровода, тепловое удлинение в направлении оси Y принимается равным нулю, т.е. $\Delta ly = 0$. Полное тепловое удлинение в этом случае $\Delta l = \Delta lx$.

Полное температурное удлинение расчетного участка трубопроводов между неподвижной опорой Н и УТ определяется по формуле [3, 76 (23)]

$$\Delta l = \alpha L(\tau - t_o), \text{ MM}, \tag{3.5}$$

где α - средний коэффициент линейного расширения стали при нагреве от 0 до τ ; мм/(м°С) принимаем α по [6] в зависимости от τ ;

 τ - расчетная температура воды в трубопроводе, °C; принимаемая для подающего трубопровода отопления τ =110°C, для обратного τ =70°C. t_o – расчетная температура воздуха для проектирования отопления t_o = - 30°C.

Для подающего и обратного трубопроводов отопления запроектирована предварительная растяжка П-образных компенсаторов. Тогда расчетное температурное удлинение трубопроводов для определения размеров П-образных компенсаторов определяется по формуле:

$$\Delta x = \varepsilon \, \Delta l \,,\, \text{MM},$$
 (3.6)

где ε – коэффициент, учитывающий релаксацию компенсационных напряжений и предварительную растяжку компенсатора в размере 50% полного температурного удлинения Δl ; принимается, согласно [6], ε =0,5. При этом должно выполняться условие не превышения $\sigma_{\text{доп}}$ = 80 Мпа в точках изгиба. Расчет изгибающих напряжений компенсаторов приведены в таблице 3.2.

Таблица 3.2 – Расчет изгибающих напряжений компенсаторов

Обо- значе- ние ком-	рассто- яние Д _у , между м опора-		Тепловое удлине- ние тру- бопрово-	Расчетное тепловое удлинение трубопро-	l, M	<i>l</i> ₁ , м	n1	n2	изгибающее напряжение в точке.	
пенса-		ми,	да,	вода,					МПа	
тора		M	M	M						
									A	В
K-1	0,1	82	0,0138	0,0069	1,1	1,2	1,1	74,5	0,914	34,83
К-2	0,04	40	0,0067	0,0034	0,5	0,8	1,6	80,0	0,792	12,73
К-3	0,08	84	0,0141	0,0071	1	1	1	84,0	0,810	34,03
K-4	0,05	56	0,0094	0,0047	0,5	0,8	1,6	112,0	0,982	22,21
К-5	0,08	57	0,0096	0,0048	1	1	1	57,0	0,812	23,14

По результатам расчёта видно, что условие не превышения $\sigma_{\text{доп}}$ выполнено. Рассчитанные компенсаторы принимаются к установке, чертежи приведены на 6 листе графической части.

В качестве гибких компенсаторов использованы углы поворота трубопроводов от 90° до 120° .

Расчетные тепловые удлинения участка трубопровода (мм) в направлении осей x и y определяют по формулам:

$$\Delta l_x = \alpha \Delta t (x_6 - x_a); \tag{3.7}$$

$$\Delta l = \alpha \Delta t (y_e - y_a); \tag{3.8}$$

где α - коэффициент линейных расширений, значение коэффициента принято по [6] α = 12·10⁻⁶ 1/°C.

Расчет Γ - образных участков трубопровода производим по методике [6]. Определяются коэффициенты - n; A;B;C,

$$n = \frac{l_{\delta}}{l_{\mu}}; \tag{3.9}$$

$$A = \frac{3(n^3 + 4n^2 + 3)}{n(n+1)} \tag{3.10}$$

$$B = \frac{3(3n^3 + 4n + 1)}{n^3(n+1)} \tag{3.11}$$

$$C_{(a)} = \frac{1,5(n^3 + 2n^2 + 1)}{n(n+1)}$$
 (3.12)

$$C_{(6)} = \frac{1,5(n^3 + 2n + 1)}{n^2(n+1)} \tag{3.13}$$

$$C_{(c)} = \frac{3(n^2 + 1)}{n(n+1)} \tag{3.14}$$

Рассчитываются силы упругой деформации: P_x и P_y (кН)

$$P_{x} = A \frac{\alpha \text{EI}\Delta t}{10^{7} l_{y}^{2}} \tag{3.15}$$

$$P_{y} = B \frac{\alpha \text{EI}\Delta t}{10^{7} l_{y}^{2}} \tag{3.16}$$

Изгибающие компенсационные напряжения определяются по формулам (МПа):

$$\sigma_{u(a)}^{\kappa} = C_{(a)} \frac{\alpha E D_u \Delta t}{10^7 l_u}; \tag{3.17}$$

$$\sigma_{u(\delta)}^{\kappa} = C_{(\delta)} \frac{\alpha E D_u \Delta t}{10^7 l_u}$$
(3.18)

$$\sigma_{u(c)}^{\kappa} = C_{(c)} \frac{\alpha E D_{\mu} \Delta t}{10^7 l_{\mu}}$$
(3.18)

Результат расчета участков самокомпенсации сведен в таблицу 3.3

Таблица 3.3 - Расчет участков самокомпенсации

	La	Lb	n	A	В	Ca	Cb	Сс	Px	Py	σa	σb	σс	dn
	M	M							кН	кН	МПа	МПа	МПа	M
УП1	19	28	0,68	13,58	23,03	2,94	5,18	3,85	139,6	236,9	0,00	11,67	0,01	0,108
УП2	12	25	0,48	17,03	55,55	3,32	9,11	5,20	219,7	716,7	0,01	33,78	0,01	0,089
УП4	13	34	0,38	20,66	100,37	3,83	13,51	6,51	144,1	700,2	0,00	50,58	0,01	0,057
УП7	20	32	0,63	14,20	28,31	2,99	5,89	4,11	111,8	223,0	0,00	16,51	0,00	0,057
УП8	12	22	0,55	15,49	40,00	3,13	7,35	4,62	258,1	666,5	0,01	27,04	0,01	0,057
УП9	7	11	0,64	14,05	27,06	2,98	5,73	4,05	936,5	878,2	0,03	15,48	0,04	0,057

На монтажной схеме обозначены трубопроводы, неподвижные опоры, компенсаторы, места сужения трубопроводов, запорная арматура, спускники и воздушники, теплофикационные камеры.

Монтажная схема тепловых сетей приведена на третьем листе графической части дипломного проекта.

Продольный профиль

Продольный профиль тепловых сетей разрабатывается от точки подключения в котельной до жилого дома 7 и от ТК1 до детского сада. При разработке продольного профиля учитывается необходимость сокращения расходов на земляные работы. Этому способствует минимально возможное заглубление каналов и теплофикационных камер. Кроме того, при разработке продольного профиля необходимо стремиться к уменьшению расходов на строительномонтажные работы. Этому способствует уменьшение числа переломов профиля. Ломанный профиль удорожает строительство тепловых сетей и усложняет их эксплуатацию из-за необходимости сооружения дополнительных камер для размещения и обслуживания спускников и воздушников.

Высота камер рассчитывается исходя из размещения в них оборудования и особенностей ответвления трубопроводов. Продольный профиль тепловых сетей приведен на пятом листе графической части.

3.3 Гидравлический расчет

В результате гидравлического расчета тепловой сети определяются диаметры всех участков теплопроводов, оборудования и запорно-регулирующей арматуры, а также потери давления теплоносителя на всех элементах сети [10]. Результаты гидравлического расчета используются для построения пьезометрических графиков. Потери давления на участках тепловой сети определяются методом удельных потерь давления на трение и приведённых длин. Расчётная схема приведена на рисунке 3.1.

Эквивалентную шероховатость внутренней поверхности труб k_3 для трубопроводов систем отопления принимается 0,0005 м [1], скорости движения теплоносителя (не должна превышать 3,5 м/с), удельные потери давления на трение R.

Эквивалентная длина для каждого расчетного участка определяется по характеру местных сопротивлений по справочнику [6, табл. 9.12].

Приведённая длина участка $l_{\rm np}$ равна сумме длин участка теплопровода по плану и эквивалентной местных сопротивлений $l_{\rm 3}$. Общие потери давления на участке определяются как произведение удельных линейных потерь R на приведённую длину участка $l_{\rm np}$.

$$P = R \cdot l_{np} = R (l_{\phi} + l_{\theta}), \Pi a$$
 (3.19)

Затем увязываются потери давления в ответвлениях и располагаемое давление, при этом невязка не должна превышать 10%. Результаты расчета сводятся в таблицу 3.4 (приложение 3).

Зная расчетные расходы воды на горячее водоснабжение каждого квартала, находятся расчетные расходы воды по участкам тепловой сети. Зная расчетные расходы воды и потери напора по участкам для зимнего периода (таблица 3.5), определяется сопротивление каждого участка сети:

$$S = \frac{H}{G_n^2} \tag{3.20}$$

где H - потери напора на участке в зимний период, м;

 G_p - расчетный расход воды на участке для отопительного периода, м 3 /ч Таблица $3.5 - \Gamma$ идравлический расчет тепловых сетей для летнего периода

				Расчетный	Потери
$\mathcal{N}_{\underline{0}}$	Расход воды	Потери напо	Сопротивле-	расход	напора
			ние уч-ка		
уч-ка	в зимний	ра на уч-ке в	сети-	воды в летний	на участке в
		зимний пе-	G 10-5		П
	период, т/ч	риода	S·10 ⁻⁵ ,	период,	Летний
	Gp	Н,м,	$\mathbf{M} \cdot \mathbf{q}^2 / \mathbf{M}^6$	Gп, т/ч	период Нп, м
1	22,15	3,42	696,42	7,5	0,39
2	30,96	1,17	121,83	10,9	0,15
3	40,12	0,81	50,25	14,3	0,10
4	71,46	5,28	103,42	20,4	0,43
5	74,22	0,22	4,02	21,4	0,02
6	123,57	0,63	4,14	40,2	0,07
7	137,38	0,52	2,74	45,1	0,06
8	6,14	4,11	10879,68	1,4	0,21
9	6,79	2,81	6102,82	1,4	0,12
10	13,81	3,67	1926,60	4,9	0,46

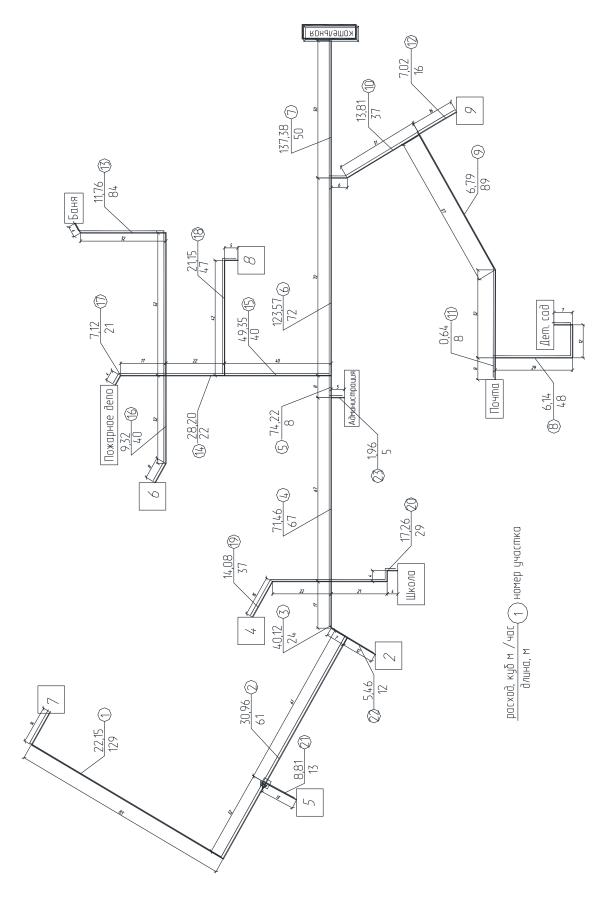


Рисунок 3.1 - Расчетная схема

Пьезометрический график строится на основании данных гидравлического расчета для расчетного направления и характерных ответвлений для отопительного и летнего периодов [9], [1]; для статического и динамического режимов работы системы теплоснабжения.

При построении графика за начало координат принимается отметка 130,0 (источник тепла). Максимальная высота зданий 18 м. Т.к. заглубления трубопроводов около 1,5 м ось теплотрассы принимается совпадающей с отметкой рельефа местности. Величина полного статического напора принимается 24 м (при температурном графике 110–70°С) для обеспечение не вскипания воды, т.к. расчётное значение составляет:

$$H_{cT} = H_{3\pi} + H_{\pi}O\Pi + Z_{TK},$$
 (3.21)

$$H_{ct} = 18 + 3 + 3 = 24 \text{ M}.$$

Напор на всасывающем патрубке сетевых насосов Н_{вс} принимаем равным 20 м. Зная потери напора на расчётных участках, определяются значения напоров в обратной магистрали:

 $H_7=28,63+3,42=32,04 \text{ m};$

 $H_6=27,46+1,17=28,63 \text{ M};$

 $H_5=26,65+0,81=27,46 \text{ M};$

 $H_4=21,37+5,28=26,56 \text{ m};$

 $H_3=21,15+0,22=21,37 \text{ M};$

 $H_2=20,52+0,63=21,15 \text{ M};$

 $H_1=20,0+0,52=20,52 \text{ M};$

значения напоров в подающей магистрали:

$$H_7=52,04+3,24=55,46 \text{ M};$$

$$H_6=55,46+1,17=56,63 \text{ M};$$

$$H_5=56,63+0,81=57,44 \text{ M}$$

$$H_4=57,44+5,28=62,72 \text{ m};$$

$$H_3=62,72+0,22=62,94 \text{ m};$$

$$H_2=62,94+0,63=63,57 \text{ M}$$

$$H_1=63,57+0,52=64,09 \text{ M}$$

Потребители присоединяются к тепловым сетям по зависимой схеме, согласно [8]. Установка дополнительных повысительных насосов на подключаемых объектах не требуется.

Требуемый напор сетевых насосов в отопительный период:

$$H_{cH} = H_{n\kappa} + H_c + H_{a6}; \tag{3.22}$$

где $H_{n\kappa}$ – потери напора на источнике тепла, 12,6 м;

 H_c — потери напора в подающих и обратных магистралях, 44,1м

 H_{ab} — требуемый напор у абонентов, 20 м.

$$H_{ch}=12,6+44,1+20=76,7 \text{ M}$$

Расход сетевой воды в зимний период: $G = 137,38 \text{ м}^3/\text{ч}$

3.4 Расчет и подбор тепловой изоляции

В качестве изоляции приняты по требованиям [3] и в соответствии с рекомендациями [29, 30] Основной изоляционный слой – прошивные минераловатные маты по ГОСТ 21880-86 на синтетическом связующем, марки 75 ГОСТ 9573-82, $\rho_{\text{сред}} = 125 \text{ кг/м}^3$, $\lambda = 0.034 \text{ Bт/m} \cdot {}^{\circ}\text{C}$. Защитное покрытие – стеклопластик рулонный РСТ толщиной 0,8 мм, $\lambda_{\text{п.с.}} = 0.163 \text{ Bt/m} \cdot {}^{\circ}\text{C}$ по ТУ6448-87-92 согласно технической документации серии 7.903.9-3, выпуск 3 «Теплоизоляционные конструкции». Арматура изолируется цилиндрами из оцинкованной стали, за-

полненными минватой. В качестве антикоррозийного покрытия принята мастики «Вектор». Все металлические конструкции окрасить двумя слоями.

Расчёт эффективности изоляционной двухтрубной тепловой сети, проложенной в каналах типа КЛ 150-90, КЛ 90-45, КЛ 60-45. Среднегодовая температура теплоносителя $\tau_I = 90$ °C, $\tau_2 = 50$ °C. Глубина заложения оси канала h = 1,5 м. Температура грунта на глубине заложения $t_0 = 6,7$ °C. Далее приводиться расчёт для канала КЛ 90-45 и трубопровода DxS 108x4

Эквивалентные наружный и внутренний диаметры канала КЛ 90-45:

$$d_{_{9}} = \frac{4 \cdot F}{P} \tag{3.23}$$

где F - наружная площадь канала, м²;

P - периметр канала, м.

$$d_{_{6.9.}} = \frac{4 \cdot 0.9 \cdot 0.46}{2 \cdot (0.9 + 0.46)} = 0.61 \text{ m};$$

$$d_{\scriptscriptstyle H.9.} = \frac{4 \cdot 0,78 \cdot 0,63}{2 \cdot (0,78 + 0,63)} = 0,67 \text{ M}.$$

Коэффициент теплоотдачи внутренней поверхности канала и наружной поверхности гидроизоляции, принимается $\lambda = 8,15$ Bt/(м·°K), [6].

Определяется термическое сопротивление внутренней поверхности канала:

$$R_{n.\kappa.} = \frac{1}{\pi \cdot d_{\kappa, \gamma} \cdot \lambda}; \tag{3.24}$$

$$R_{n.\kappa.} = \frac{1}{3,14 \cdot 0,61 \cdot 8,15} = 0,0641 \text{ m} \cdot {}^{\circ} \text{ K/Bm};$$

Приняв коэффициент теплопроводности конструкции канала λ_{κ} =2,04 Bt/(м·°K), определяется термическое сопротивление стенок канала:

$$R_{\kappa} = \frac{1}{2 \cdot \pi \cdot \lambda_{\kappa}} \cdot \ell n \frac{d_{\mu.s.}}{d_{g.s.}}; \tag{3.25}$$

$$R_{\kappa} = \frac{1}{6,28 \cdot 1,92} \ln \frac{0,67}{0,61} = 0,033 \,\text{m} \cdot {}^{o} \,\text{K/Bm}$$

Термическое сопротивление грунта при значении его коэффициента теплопроводности $\lambda_{\rm rp} = 1,92~{\rm Bt/(m\cdot {}^oK)}$:

$$R_{ep} = \frac{1}{2 \cdot \pi \cdot \lambda_{ep}} \cdot \ell n \frac{4 \cdot h}{d_{h.s.}}; \tag{3.26}$$

$$R_{ep} = \frac{1}{6.28 \cdot 1.92} \ln \frac{4 \cdot 1.5}{0.63} = 0.0713 \text{ m} \cdot {}^{o} \text{ K/Bm};$$

Общее термическое сопротивление канала и грунта:

$$R_o = R_{\kappa} + R_{n\kappa} + R_{2n}; \tag{3.27}$$

 $R_o = 0.033 + 0.0641 + 0.0713 = 0.139 \text{ m} \cdot {}^o \text{ K/Bm}.$

Наружные диаметры подающего и обратного теплопроводов 108 мм. Толщина слоя изоляции 100 мм. Толщина покровного слоя изоляции 3 мм.

$$R_{u} = \frac{1}{2 \cdot \pi \cdot \lambda_{u}} \cdot \ell n \frac{d_{u}}{d_{u}}; \tag{3.28}$$

$$R_u = \frac{1}{6.28 \cdot 0.034} \ell n \frac{0.208}{0.108} = 1,52 \text{ m} \cdot {}^{\circ} \text{ K/Bm};$$

Термическое сопротивление покровного слоя для каждой трубы:

$$R_{nc} = \frac{1}{2 \cdot \pi \cdot \lambda_{nc}} \cdot \ell n \frac{d_{nc}}{d_u}; \tag{3.29}$$

$$R_{nc} = \frac{1}{6,28 \cdot 0,163} \ln \frac{0,211}{0,208} = 0,0061 \,\text{m} \cdot {}^{o} \, K / Bm$$

где λ_{nc} – коэффициент покровного слоя, Bт/(м·°K);

 d_{nc} – наружный диаметр теплопровода с учетом покровного слоя, м.

Суммарное термическое сопротивление труб Т1, Т2 108х4:

$$\sum R = R_u + R_{nc}; \qquad (3.30)$$

$$\sum R = 1,52 + 0,0061 = 1,5242 \text{ m} \cdot {}^{\circ} \text{ K/Bm}$$

Температура воздуха в канале:

$$t_{\kappa} = \frac{\frac{\tau_{1}}{\sum R} + \frac{\tau_{2}}{\sum R} + \frac{t_{o}}{R_{o}}}{\frac{1}{\sum R} + \frac{1}{\sum R} + \frac{1}{R_{o}}};$$
(3.31)

$$t_{\kappa} = \frac{\frac{90}{1,52} + \frac{50}{1,52} + \frac{6,7}{0,139}}{\frac{1}{1,52} + \frac{1}{1,52} + \frac{1}{0,139}} = 16,82 \, {}^{o}C;$$

Удельные потери изолированными подающим и обратным теплопроводами:

$$q_1 = \frac{\tau_1 - t_{\kappa}}{\sum R}; {(3.32)}$$

$$q_2 = \frac{\tau_2 - t_{\kappa}}{\sum R}; {(3.33)}$$

$$q_1 = \frac{90 - 16,82}{1,52} = 48,01 \, Bm / M;$$

$$q_2 = \frac{50-16,82}{1.52} = 21,77 \; Bm/M;$$

Суммарные удельные теплопотери изолированных теплопроводов:

$$q_u = q_1 + q_2; (3.34)$$

$$q_u = 48,01 + 21,77 = 69,78 \ Bm / M.$$

Термическое сопротивление на поверхности неизолированного теплопровода:

$$R_{\scriptscriptstyle H} = \frac{1}{\pi \cdot d_{\scriptscriptstyle H} \cdot \lambda}; \tag{3.35}$$

$$R_{H} = \frac{1}{3,14 \cdot 0,108 \cdot 8,15} = 0,36 \text{ m} \cdot {}^{o} \text{ K/Bm}$$

Температура воздуха в канале при неизолированных теплопроводах:

$$t_{\kappa}^{H} = \frac{\frac{90}{0.36} + \frac{50}{0.36} + \frac{6.7}{0.139}}{\frac{1}{0.36} + \frac{1}{0.36} + \frac{1}{0.139}} = 35,57 \, {}^{\circ}C;$$

Удельные теплопотери неизолированных теплопроводов:

$$q_1^n = \frac{90 - 35,57}{0,36} = 202,55 \, Bm/m;$$

$$q_2^{"} = \frac{50 - 35,57}{0,36} = 91,83 \; Bm \, / \, M.$$

Суммарные теплопотери неизолированных теплопроводов:

$$q'' = q_1'' + q_2''; (3.36)$$

$$q^{\prime\prime} = 202,55 + 91,83 = 294,38 \, Bm/M$$

Эффективность тепловой изоляции:

$$\eta = \frac{q'' - q''}{q''} \cdot 100\%;$$

$$\eta = \frac{294,38 - 69,78}{294,38} \cdot 100\% = 79,7\%$$
(3.37)

Эффективность изоляции удовлетворительная.

Далее поэтапно приводится расчёт сопротивления тепловой изоляции трубопроводов, расположенных в каналах КЛ 60-45 и КЛс 150-90. Результаты расчёта приведены в таблице 3.6.

Таблица 3.6 – Расчёт сопротивления канала

_	меры нала	площадь сечения канала	пери- метр канала	внутренний эквивалент- ный диа- метр	наружный эквивалент- ный диа- метр	теплопровод- ность материа- ла канала	термическое сопротивление канала		
a	б	F	P	dв	dн	λ_{κ}	Rк		
M	M	\mathbf{M}^2	M	М	М	Вт/(м∙°К)	(м∙°К)/Вт		
	канал КЛ60-45								
0,6	0,46	0,276	2,12	0,52	0,57	2,04	0,0032		
	канал КЛ60-45								
0,9	0,46	0,414	2,72	0,61	0,67	2,04	0,0032		
	канал КЛ150-90								
1,5	0,9	1,35	4,8	1,13	1,24	2,04	0,0032		

Аналогично выполняются расчеты для трубопроводов других диаметров системы теплоснабжения. Результаты расчетов приведены в таблице 3.7.

Таблица 3.7 – Толщины изоляционных конструкций

Наименование и размеры трубопровода,	Толщи- на ос- новного слоя изоля- ции,	наружный диаметр трубы	наружный диаметр с изоляци- ей	дли- на	объём изоля- ционного ма- териала	площадь покровного слоя
MM	M	M	M	M	куб.м	KB.M
подающий 32х2,5	0,05	0,032	0,132	8	0,10	3,32
обратный 32х2,5	0,05	0,032	0,132	8	0,10	3,32
подающий 38х2,5	0,05	0,038	0,138	5	0,07	2,17
обратный 38х2,5	0,05	0,038	0,138	5	0,07	2,17
подающий 45х2,5	0,1	0,045	0,245	48	2,19	36,93
обратный 45х2,5	0,1	0,045	0,245	48	2,19	36,93
подающий 57х3,5	0,1	0,057	0,257	312	15,38	251,78
обратный 57х3,5	0,1	0,057	0,257	312	15,38	251,78
подающий 89х4	0,15	0,089	0,389	195	21,95	238,18
обратный 89х4	0,15	0,089	0,389	195	21,95	238,18
подающий 108х4	0,15	0,108	0,408	221	26,86	283,13
обратный 108х4	0,15	0,108	0,408	221	26,86	283,13
подающий 133х4	0,15	0,133	0,433	40	5,33	54,38
обратный 133х4	0,15	0,133	0,433	40	5,33	54,38
подающий 157х4,5	0,2	0,157	0,557	8	1,79	13,99
обратный 157х4,5	0,2	0,157	0,557	8	1,79	13,99
подающий 219х6	0,2	0,219	0,619	122	32,10	237,13
обратный 219х6	0,2	0,219	0,619	122	32,10	237,13

4 КОТЕЛЬНАЯ

4.1 Расчет и подбор котельных агрегатов

Проектом предусматривается модульная котельная на базе 2 водогрейных котлов KSBT 10/5.0 мощностью по 5 МВт, работающих на природном газе. Номинальный кпд составляет 92,8 %. Стандартизированная телекоммуникационная шина LONBUS позволяет интегрировать контроллер в систему диспетчерского управления. Котлы оснащены: горелками "Metan SD", которые являются полностью автоматизированными с электронной системой управления. В состав горелок входят:

- реле минимального давления газа
- реле максимального давления газа
- клапан электромагнитный для газа
- клапан электромагнитный для запального газа
- вентилятор воздуха горения
- двигатель регулировки мощности
- трансформатор зажигания, электроды и кабель зажигания
- детектор пламени

4.2 Разработка тепловой схемы

Два котла и вспомогательное оборудование находятся в блочном модуле котельной. Удаление дымовых газов в металлическую трубу диаметром 250 мм, высотой H=18 м без установки дымососа.

Построение и расчёт тепловой схемы необходимо для выбора оборудования, определения технико-экономических показателей работы котельной. Подбор оборудования, не входящего в спецификацию приведён в п 4.3, тепловая схема – на рисунке 4.1.

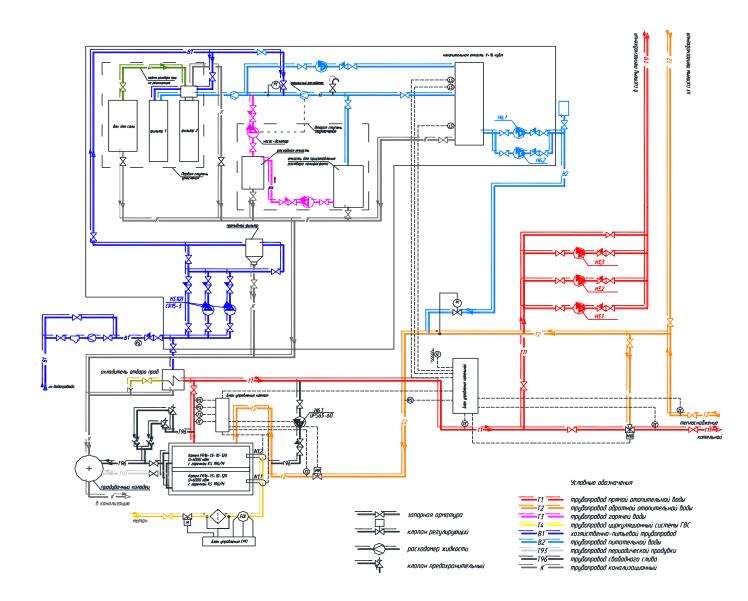


Рисунок 4.1 - Тепловая схема

4.3 Расчет и подбор вспомогательного оборудования

Схема автоматизации котельной предусматривает использование котловой автоматики для управления котельным оборудованием. Для управления системой теплоснабжения регулятор температуры, с помощью которого осуществляется установка параметров регулирования. Регулятор управляет трехходовым смесительным клапаном в системе теплоснабжения.

Подбор трехходовых смесительных клапанов фирмы «Danfoss» для систем отопления производится по методике, изложенной в каталоге производителя.

Расход теплоносителя через трехходовой клапан для внутреннего контура (котел — теплообменник) определяется по суммарной тепловой нагрузке всех потребителей, которая составляет: $Q_{\Sigma} = 10 \text{ MBT}$;

$$G = \frac{0.86 \cdot Q}{\left(t_z - t_o\right)} \tag{4.1}$$

Расход теплоносителя составляет: $G = 137,38 \, (\text{м}^3/\text{ч})$

Пропускная способность трехходового клапана:

$$K_{VS} = \frac{1.1 \cdot G_0}{\sqrt{\Delta P_{K/I}}} = \frac{1.1 \cdot 137,38}{\sqrt{0,15}} = 218 \left(\frac{M^3}{V}\right)$$
 (4.2)

По значению $K_{vs}=218~({\rm M}^3/{\rm q})$ подбирается клапан типа VF3 d_y 80; ход штока клапана — 50 мм.

Для управления регулирующего клапана типа ESBE 3F подбирается редукторный сервопривод с характеристиками:

- ход штока 0-50 мм;
- время перемещения штока 11 с на 1мм;

туры и регулирование ее на заданном уровне 80 С

- развиваемое усилие – 1500 Н.

Для контроля за изменением температур наружного и внутреннего воздуха принимается платиновый датчик температур.

Контрольно-измерительные приборы водогрейного котла и их эксплуатационное назначение:

-температура воды после котла: производится измерение температуры воды выходящей из котла и количество топлива регулируется до соответствия с температурой 105 TE 10

-температура воды после котла (локальная) 110 C TI 109

-температура обратной воды перед котлом: производится измерение темпера-

TE 1315

-температура воды перед котлом (локальная) 80 C TI 115

-температура дымовых газов после котла (локальная) 218 C TI 107

-давление в котле (локальное) 5 кгс/см² PI 212

Подбор сетевого насоса

В котельной устанавливается насосная станция Grundfoss с тремя насосами CR 120-7 A-F-A-E-HBQE (2 рабочих и резервный), характеристики и описание насосов приведены в приложении 1.

Подбор подпиточного насоса

Подбор подпиточного насоса для закрытой системы теплоснабжения жилого района с суммарной тепловой нагрузкой 7,3 МВт. Статический напор в системе составляет 24,0 м. Уровень воды в подпиточных баках, установленных в помещении котельной 3,0 м по отношению к оси подпиточных насосов, потери напора в подпиточной линии равны 1,0 м.

Объем воды в системе теплоснабжения определяется по выражению:

$$V = Q \cdot (V_c + V_w), \tag{4.3}$$

 $V = 7,3 \cdot (40 + 25) = 474 \text{ m}^3$

где Q - мощность системы теплоснабжения, MBт;

 V_c - удельный объем воды в тепловых сетях, $V_c = 40 \text{ м}^3/\text{MBt}$;

 $V_{\scriptscriptstyle M}$ - удельный объем сетевой воды в системах отопления жилых и общественных зданий, $V_{\scriptscriptstyle M} = 25~{\rm M}^3~/{\rm MBT}$

Подача подпиточного насоса

$$G_{nH} = 0.0075 \cdot V;$$
 (4.4)

 $G_{nu} = 0.0075 \cdot 474 = 3.56 \, \text{m}^3 / \text{u}.$

Требуемый напор подпиточного насоса:

$$H_{n\mu} = H_{cm} - H_{\delta} + H_{nc};$$
 (4.5)

 $H_{nn} = 24,0-3,0+1,0=22,0 \text{ } m.$

К установке принимается подпиточный насос Grundfoss CRE 3-8 один рабочий, резервный на складе. Характеристики и описание насосов приведены в приложении 2.

5 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ

Для автоматизации применяют пневматические, электрические, но чаще комбинированные электропневматические ACP (автоматические системы регулирования). Схема ACP содержит два самостоятельных контура регулирования – ACP топливосжигающего устройства (горелка) и ACP системы теплоснабжения [14].

Автоматика горелки, как правило, стабилизирующая, имеет рабочий терморегулятор, поддерживающий заданную температуру горячей воды изменением расхода топлива и воздуха. АСР горелки, работающей на газовом или жидком топливе, обеспечивают наиболее простой двух- или трёхпозиционный режим воздействием на электромагнитные топливные клапаны. Помимо терморегулятора, горелки оборудуются технологической защитой — автоматикой безопасности. В её обязанности входит немедленное прекращение подачи топлива в следующих аварийных случаях: погасание факела в топке, повышение температуры теплоносителя свыше 115°С или нарушение циркуляции в системе теплоснабжения, аварийного повышения или понижения давления газа, загазованности помещения. В качестве средств автоматизации применяют регуляторы прямого действия в сочетании с электронной автоматикой. В данном проекте применяется защитная автоматика идущая в комплекте с отопительным котлом и бойлером [15].

Во втором контуре АСР используются известные принципы регулирования отопительных систем с функционально различными регуляторами. Применяются программные устройства с суточной и недельной программами, с коррекцией по наружной температуре и температуре в обратном трубопроводе тепловой сети. В данном проекте применяется программное управление, входящее в комплекте отопительного котла – Logomatic 2107.

Цифровая система регулирования Logomatic 2107 получает данные от датчиков температур TE, сравнивает эти данные с запрограммированными и

отдаёт сигнал на регулирующие вентили P: например, при повышении или понижении температуры t_1 в котле, подаётся сигнал на закрытие или открытие клапана P1, тем самым увеличивая или уменьшая расход топлива. Так же при получении данных о температуре в обратном трубопроводе t_0 , подаётся сигнал на клапан подачи топлива, если температура выше расчётной 70° C, то уменьшается расход газа, при этом происходит экономия топлива.

При получении данных о температуре наружного воздуха подаётся сигнал на трехходовой клапан, происходит либо увеличение, либо уменьшение расхода воды из обратной магистрали тепловой сети [16].

Для контроля за изменением температур наружного воздуха принимаем датчик температур ESM-10: диапазон температур от -30 до 50°C. Для измерения температур воды используется датчик температур ESMU: диапазон температур от 0 до 140°C.

Для регулирования отпуска тепловой энергии применен регулятор температуры фирмы "Данфосс" ECL Comfort 300 с картой C55.

Для подпиточной линии предусмотрен прессостат KPI-35 с электромагнитным соленоидным клапаном EV220B H3 dy 25.

6 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ

6.1 Определение объёмов работ

Общая протяжённость проектируемой тепловой сети составляет 959 м, монтаж выполняется в одну захватку.

Для определения объёмов земляных работ определяются наружные размеры лотков каналов (таблица 6.1)

Таблица 6.1 – Типы, размеры, количество лотков каналов

		Разм	меры наружные	количество			
тип канала	длина	ширина А			станд.	длина	доборные
	M	M	M	M	ШТ	M	ШТ
КЛ60-45	8	0,78	0,63	3	2	2	1
КЛ60-45	5	0,78	0,63	3	1	2	1
КЛ60-45	48	0,78	0,63	3	16	0	0
КЛ60-45	312	0,78	0,63	3	104	0	0
КЛ90-45	195	1,15	0,78	3	65	0	0
КЛ90-45	221	1,15	0,78	3	73	2	1
КЛ90-45	40	1,15	0,78	3	13	1	1
КЛ90-45	8	1,15	0,78	3	2	2	1
КЛс150-90	122	1,64	0,98	3	40	2	1

Длина захватки определяется без учёта тепловых камер и компенсаторных ниш по формуле, м:

$$l = l_{3AX} - l_{KAM} - l\kappa \cdot n \tag{6.1}$$

где *lкам* – длина камеры, 3 м;

lзах – длина захватки, 959 м;

 $l\kappa$ – длина компенсаторной ниши, 42 м;

n — число компенсаторных 5 ниш.

$$l = 959 - 3.10 - (2.6,4 + 2.12,5 + 5,8) = 885,4_M$$

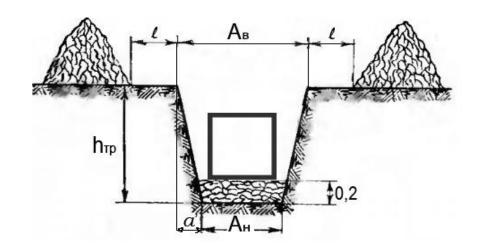


Рисунок 6.1. Монтажное расположение канала КЛ 90-60 в траншее

Средняя глубина траншеи на захватке определяется по формуле, м:

$$h_{cp} = \frac{\sum_{1}^{n} h}{n}, \quad h_{cp} = \frac{1,2+1,3+1,5}{3} = 1,33M$$
 (6.2)

где $\sum_{1}^{n} h$ - сумма всех глубин траншеи, м;

n- число сечений, определяется по участкам (характерным точкам поверхности земли), равна $0.5\,\mathrm{M}$.

Объём траншеи с откосами определяется по формуле, м³:

$$V_{TP} = (h_{TP} \cdot (AH + 0.2) + m \cdot h_{TP}^{2}) \cdot l, \qquad (6.3)$$

где m — коэффициент крутизны откосов траншей, при данном виде грунта и глубине выемки 1,5 м равен 0,5 [15, прил.3].

Ширина траншеи по верху определяется по формуле, м:

$$Ae = AH + 0.2 + 2 \cdot a' \tag{6.4}$$

где Ан – наружная ширина канала, м;

a' – определяется по формуле (4.5), м:

$$a' = h_{mp} \cdot m \tag{6.5}$$

где h_{mp} – глубина траншеи, с учётом наружной высота канала и подсыпки, равная 1,53 м.

$$a' = 1.53 \cdot 0.5 = 0.77 M$$

$$Ae = 1.15 + 0.2 + 2 \cdot 0.77 = 2.88M$$

$$V_{TP} = (1,53 \cdot (1,15+0,2) + 0,5 \cdot 1,53^2) \cdot 885,4 = 3414 M^3$$

Определяются объёмы котлованов для камер:

Длина дна котлована камеры определяется по формуле:

$$AH = a_{\kappa\alpha M} + 0.5 \tag{6.6}$$

Ширина дна котлована камеры определяется по формуле:

$$BH = b_{\kappa a.m} + 0.5 \tag{6.7}$$

Длина верха котлована камеры определяется по формуле:

$$Ae = A\mu + 2 \cdot a' \tag{6.8}$$

Ширина верха котлована камеры определяется по формуле:

$$B_6 = B_H + 2 \cdot b' \tag{6.9}$$

Площадь камеры по низу определяется по формуле:

$$F_{H} = A_{H} \cdot B_{H} \tag{6.10}$$

Площадь камеры по верху определяется по формуле:

$$F_{\theta} = A_{\theta} \cdot B_{\theta} \tag{6.11}$$

Объём котлована камеры определяется по формуле:

$$V_{KOT} = \frac{1}{3} H_K (F_{\mathcal{B}} + F_{\mathcal{H}} + \sqrt{F_{\mathcal{B}} + F_{\mathcal{H}}})$$
(6.12)

где H_{κ} – глубина заложения камеры, определяется по формуле, м:

$$H_K = h + h_{KAM}^{HAP} + 0.2 ag{6.13}$$

где *h* равна 0,5 м.

Так как рельеф местности не имеет значительных перепадов высот, заложение всех 10 тепловых камер находится в пределах 2,2-2,4 м. Размеры камер также одинаковы 3x3 м.

$$AH = 3.2 + 0.5 = 3.7M$$

$$BH = 3.2 + 0.5 = 3.7 M$$

$$AB = 3.7 + 2 \cdot 0.5 \cdot 0.77 = 5.24M$$

$$Be = 3.7 + 2 \cdot 0.5 \cdot 0.77 = 5.24 M$$

$$F_H = 3.7 \cdot 3.7 = 13.69 M^2$$

$$Fe = 5.24 \cdot 5.24 = 27.46 M^2$$

$$V_{KOT} = \frac{1}{3} \cdot 2,4 \cdot (27,46+13,69+\sqrt{27,46+13,69}) = 38,1 \text{ m}^3$$

Суммарный объем 10 котлованов составляет 381 м³.

Производится расчёт компенсаторных ниш. Объём компенсаторной ниши определяется по формуле, м³:

$$V_{K.H.} = (H_{TP} \cdot A_{H+0,2} + m \cdot h_{TP}^2) l_{ycn} \cdot n$$
(6.14)

где l_{ycn} — уловная длина П-образного компенсатора, зависящая от диаметра трубы, равная 4,5, согласно [21], м.

n — число компенсаторов, шт.

$$V^{1}_{K.H.} = (1, 2 \cdot 0.98 + 0.5 \cdot 1.53^{2}) \cdot 6 \cdot 1 = 7.1 M^{3}$$

$$V_{K.H.}^2 = (1.3 \cdot 1.35 + 0.5 \cdot 1.53^2) \cdot 6 \cdot 2 = 35.11 M^3$$

$$V^{3}_{K.H.} = (1,5 \cdot 1,84 + 0,5 \cdot 1,53^{2})12 \cdot 2 = 94,33 M^{3}$$

Суммарный объём компенсаторных ниш составляет 136,54 м³.

$$V_{Kon} = 3,14 \cdot 1,7^2 / 4 \cdot 2 = 4,54 M^3$$

Суммарный объём дренажных колодцев составляет 4,54 м³

Определяются объёмы существующих коммуникаций:

Объём обратной засыпки определяется по формуле:

$$V_{o\delta p}^{3ac} = (Vo - V\kappa) \cdot K_P \tag{6.15}$$

где V_o – объём отвала, определяется по формуле, м³:

$$V_{o} = V_{TP} + V_{KOTI} + V_{KOT} + V_{KOOM}$$
 (6.16)

где «`» означает, что это объёмы существующих коммуникаций.

Объём избыточного грунта определяется по формуле, м³:

$$V_{H35} = Vo \cdot K_P - V_{o\delta p}^{sac} \tag{6.17}$$

где K_p – коэффициент разрыхления грунта, равный, согласно 1,24 [16].

$$V_o = 3414 + 381 + 136,5 + 4,5 = 3936 M^3$$

$$V_{o\delta p}^{3ac} = (3936 - 1095,44) \cdot 1,24 = 3408 M^3$$

$$V_{U35} = 3936 \cdot 1,24 - 3408 = 527,4 M^3$$

Площадь планировки определяется по формуле (4.19), м²:

$$F_{nn} = (A_{cn} + 4)l_{3ax} ag{6.18}$$

где A_{cp} — средняя длина конструкции, определяется по формуле (4.20), м; l_{3ax} — длина захватки, м.

$$A_{cp} = \frac{A_B^{TP} + A_B^{KOTJI}}{2} \tag{6.19}$$

где A_{B}^{TP} – длина траншеи по верху, м;

 $A_{B}^{\text{котл}}$ – длина котлована по верху, м.

1 захватка:

$$A_{cp} = \frac{5,24+1,27}{2} = 3,25M$$

$$F_{nn} = (3,25+4) \cdot 959 = 6952 M^2$$

Площадь вскрытия и восстановления дорожного полотна определяется по формуле, \mathbf{m}^2 :

$$F_{\partial} = (A_{\sigma}^{TP} + 0.2)l_{\partial op} \cdot n \tag{6.20}$$

где $l_{\partial op}$ – длина дорожного покрытия, равная 10м;

n — количество транспортных коммуникаций, шт.

$$F_{\partial} = (5,24+0,2) \cdot 27,6 = 150,14 M^2$$

Результаты расчётов сводятся в таблицу 6.2.

Таблица 6.2 – Ведомость земляных работ

No		Объем	Объем	Объем	Площадь	Площадь
захватки	Общий	конструк-	обратной	избыточного	планировки,	вскрытия
						и восстановле-
	Vo, м3	ций, Vк,	засыпки,	грунта,	Fпл,	кин
						дорожного
		M ³	Vобр, м ³	Vизб,	M ²	покр.,
			M ³			Fдор, м²
I	3936,00	1095,4	3408,00	527,40	6952	150,14

Далее составляется спецификация плетей трубопроводов, которая приведена в приложении 4.

6.2 Определение трудоёмкости строительных и монтажных работ

Расчёт трудоёмкости СМР производится согласно [18, 19, 20] по ранее подсчитанным объёмам работ.

Трудоёмкость работ определяется по формуле, чел-дн, маш-см:

$$Tp = \frac{H_{BP} \cdot V}{8.2} \tag{6.21}$$

где Hвp — норма времени на единицу объёма работ, чел-час, маш-час; V — объём работ, т, шт, м, м 2 , м 3 ;

8,2 – продолжительность смены в часах.

Кроме определения трудоёмкости основных строительно-монтажных работ, необходимо учесть затраты труда на необъёмные работы, выполненные за счёт накладных расходов, а также на подготовительные работы, размеры которых принимаются в процентах от суммарной трудоёмкости основных работ. Результаты расчётов заносятся в ведомость трудоёмкости работ (приложение 5).

7 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ТЕХНИЧЕСКОГО ОБЪЕКТА

7.1 Технологическая характеристика объекта

Проектом разрабатывается монтаж системы теплоснабжения. Участок территории, на которой осуществляется трудовая деятельность рабочего или бригады, выполняющих строительный процесс, оснащенная необходимыми средствами и предметами труда, называется рабочим местом. При монтаже системы теплоснабжения рабочими местами считаются все участки, где на данном этапе производится монтаж этой системы.

В таком процессе значительный объём занимают такелажные работы – доставка, строповка, подъем, ориентирование, установка и крепление оборудования системы теплоснабжения (трубопровод и его элементы).

Вредный производственный фактор — это такой производственный фактор, воздействие которого на работающего в определенных условиях приводит к заболеванию или снижению трудоспособности.

Опасный производственный фактор — это такой производственный фактор, который при нарушении правил безопасности работ работающим, в определенных условиях приводит к травме или к другому внезапному резкому ухудшению здоровья.

Таблица 7.1 - Технологический паспорт объекта

№ п/п	Технологи- ческий про- цесс	Технологиче- ская операция, вид выполняе- мых работ	Наименование должности работни- ка, выполняющего технологический процесс, операцию	Оборудование устройство, приспособле ние	Материалы, вещества
1	Земляные работы	Рытьё тран- шей	Механизатор, рабочий	Экскаватор, лопата штыковая, лопата совковая, лом.	Грунт
2	Подвозка железобе- тонных лот- ков и вы- грузка их, на место уста- новки	Заготови- тельные рабо- ты	Водитель, Стро-пальщик.	Грузовой автомобиль, Автокран, чалочные приспособления	ЖБ конструк- ции
3	Подготови- тельные ра- боты	Обмазка лот- ков, снаружи, горячим биту- мом	Рабочий	Печь, для разогрева битума, кисть для обмазки.	Битум
4	Монтажно- сборочные работы	Установка и соединение железобетонных лотков	Монтажник ЖБК	Автокран, чалочные приспособления	ЖБ конструк- ции
5	Подвозка оборудования системы теплоснабжения (трубопровод и его элементы) и выгрузка их, на место установки	Заготови- тельные рабо- ты	Водитель, Стро- пальщик.	Грузовой автомобиль, Автокран	Трубопровод и его элементы
6	Монтажно- сварочные работы	Монтажные работы, Элек- тросварка	Стропальщик, Слесарь- монтажник, Элек- тросварщик	Автокран, чалочные приспособления, Аппарат электросварочный	Трубопровод и его элементы
7	Монтажно- сборочные работы	Закрытие железобетонных лотков плита-ми	Монтажник ЖБК	Автокран, чалочные приспособления	ЖБ конструк- ции
8	Подготови- тельные ра- боты	Обмазка лот- ков, снаружи, горячим биту- мом и герме- тизация сты- ков цементно- песчаным раствором	Рабочий	Печь, для разогрева битума, кисть для обмазки. Грузовой автомобиль для доставки цементно-песчаного раствора	Битум, це- ментно- песчаный рас- твор
9	Земляные работы	Засыпка траншей	Механизатор, ра- бочий	Экскаватор или бульдозер, лопата штыковая, лопата совковая.	Грунт

7.2 Идентификация профессиональных рисков

Таблица 7.2 – Идентификация профессиональных рисков.

№	Технологическая опе-	Опасный и вредный	Источник опасного и		
Π/Π	рация, вид выполняе-	производственный фак-	вредного производствен-		
	мых работ 1	тор ²	ного фактора ³		
1	Земляные работы	Движущиеся механиз-	Экскаватор, траншея		
		мы, опасность обруше-			
		ния грунта			
2	Погрузочно-	Опасность ущемления	Автокран, грузовой авто-		
	разгрузочные работы	грузом, рабочего	мобиль		
3	Подготовительные	Работа с горячими и го-	Печь, для разогрева биту-		
	работы (обмазка го-	рючими веществами	ма		
	рячим битумом ЖБ	(ожог, пожар)			
	изделий)				
4	Выполнение электро-	Опасность поражения	Аппарат электросвароч-		
	сварочных работ	электротоком	ный		
5	Все строительно-	Повышенная запылён-	Все механизмы		
	монтажные работы	ность, шум, недоста-			
		точная освещённость			

7.3 Методы и средства снижения профессиональных рисков

Таблица 7.3 — Методы и средства снижения воздействия опасных и вредных производственных факторов

Опасный и вред-	Методы и средства защиты, снижения,	Средства индивидуальной
ный производ-	устранения опасного и вредного произ-	защиты работника
ственный фактор	водственного фактора	_
Движущиеся меха-	Соблюдение правил техники безопас-	Каска, спецодежда, спец-
низмы, опасность	ности, при работе с движущимися ме-	обувь, рукавицы
обрушения грунта	ханизмами, при разработке грунта.	
	Быть внимательным	
Работа с горячими	Соблюдение правил пожарной безопас-	Спецодежда, спец-обувь, ру-
и горючими веще-	ности, использование СИЗ, иметь сред-	кавицы. Огнетушитель,
ствами	ства пожаротушения	кошма, запас воды
Опасность пора-	Ограничение доступа посторонних к	Спецодежда, спец-обувь, ру-
жения электрото-	электроаппаратуре, обеспечение	кавицы, очки или щиток с
ком	надёжного заземления электроаппара-	затемнёнными стёклами для
	туры, использование СИЗ	защиты зрения
Повышенная запы-	Использование СИЗ, использование ис-	Спецодежда, спец-обувь, ру-
лённость, шум, не-	кусственного освещения	кавицы, очки для защиты
достаточная осве-		зрения, наушники или беру-
щённость		ши, применение искусствен-
		ного освещения

7.4 Обеспечение пожарной безопасности технического объекта

Таблица 7.4 – Идентификация классов и опасных факторов пожара.

N_0N_0	Участок,	Обо-	Класс	Опасные	Сопутствующие проявления факторов
Π/Π	подразде-	рудо-	пожара	Факторы	пожара
	ление	вание		пожара	
1	Котельная	котел	Класс	Повышенная	При возникновении пожара, уже в самой
			D	температура	его начальной стадии, человеку угрожает
				окружающей	опасность в результате того, что пожар
				среды	сопровождается выделением теплоты,
					продуктов полного и неполного сгорания,
					токсических веществ, обрушением кон-
					струкций, что, так или иначе, угрожает
					здоровью и даже жизни человека. Поэто-
					му при проектировании здания принима-
					ем меры, чтобы процесс эвакуации мог
					бы завершится в необходимое время и
					безопасно. Обеспечение безопасности
					движения людей связано с проектирова-
					нием эвакуационных выходов и путей,
					отвечающих установленным требовани-
					ям

Таблица 7.5 – Средства обеспечения пожарной безопасности.

Первичные	Мобильные	Установ-	Сред-	Пожар-	Средства	Пожарный	Пожар-
средства	средства	ки пожа-	ства	ное обо-	индиви-	инстру-	ные сиг-
пожароту-	пожароту-	ротуше-	пожар-	рудова-	дуальной	мент (ме-	нализа-
шения	шения	ния	ной ав-	ние	защиты и	ханизиро-	ция,
			томати-		спасения	ванный и	связь и
			КИ		людей	немехани-	опове-
					при по-	зирован-	щение.
					жаре	ный)	
Огнетуши-	Пожарные	Пожар-	Дрен-	Огнету-	Защита	Лом, то-	01 или с
тель, песок,	автомобили,	ные гид-	чер	шители,	органов	пор, вед-	сот.112
вода	механиче-	ранты		пожар-	дыхания.	ро, клещи,	
	ская лопата			ный во-	Пути	лопата,	
				допро-	эвакуа-	багор	
				вод,	ции.		
				насос			

Таблица 7.6 – Мероприятия по обеспечению пожарной безопасности.

Наименование тех-	Наименование	Требования по обес-
нологического процесса,	видов работ	печению пожарной безопас-
вид объекта		ности
Монтаж	Монтаж труб	Работать в специаль-
		но отведенном месте, вы- полнение требований по- жарной безопасности

7.5 Обеспечение экологической безопасности технического объекта.

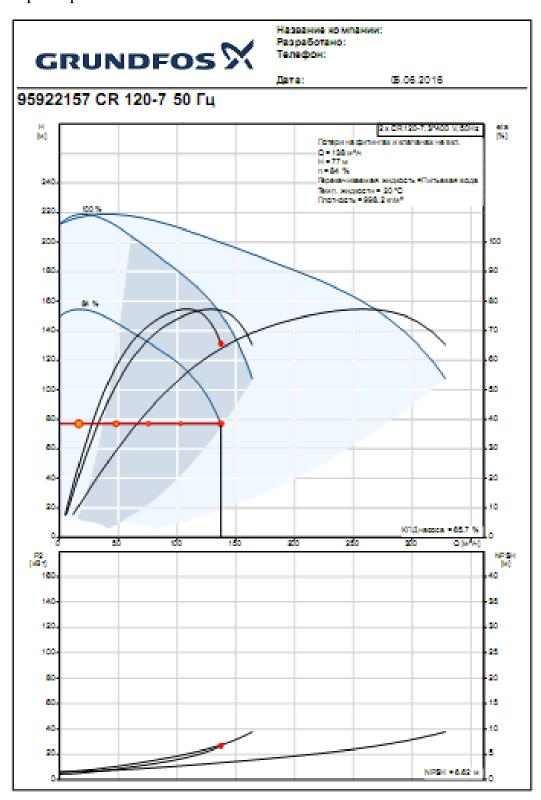
Таблица 7.7 – Идентификация экологических факторов

Наименование технического объекта, техно- логического про- цесса	Структурные со- ставляющие тех- нического объек- та, технологиче- ского процесса (здания по функ- циональному назначению, тех- нологические операции, обору- дование)	Воздействие объекта на атмосферу (выбросы в окружающую среду)	Воздействие объекта на гидросферу (образующие сточные воды, забор воды из источников водоснабжения)	Воздействие объекта на литосферу (почву, растительный покров, недра) (образование отходов, выемка плодородного слоя почвы, отчуждение земель, нарушение и загрязнение растительного почва и
				ние растительного покрова и т.д.)
котельная	монтаж	Не предусмотрено	Не предусмот- рено	Не предусмот- рено

Таблица 7.8 – Мероприятия по снижению антропогенного воздействия на окружающую среду.

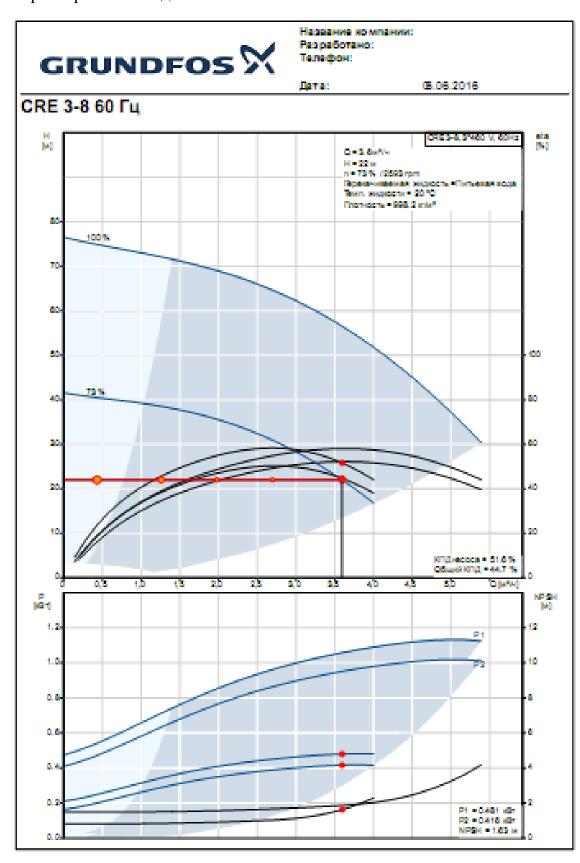
Наименование техниче-	Монтаж инженерных систем
ского объекта	
Мероприятия по сниже-	Мусорные отходы (обрезки трубы V класса) собираются в контейнеры и
нию антропогенного воздействия на атмосферу	затем сдаются в пункт приема или вывозятся на городскую санкциониро-
денетвия на атмосферу	ванную свалку
Мероприятия по сниже-	Не предусмотрено
нию антропогенного воз-	
действия на гидросферу	
Мероприятия по сниже-	Не предусмотрено
нию антропогенного воз-	
действия на литосферу	

ЛИТЕРАТУРА


- 1. СП 124.13330.2012 Актуализированная редакция СНиП 41-02-2003. Тепловые сети / Госстрой СССР-М: ЦНТП, 2013. 59 с.
- 2. СП 131.13330.2011 Актуализированная редакция СНиП 23.01-99*. Строительная климатология / М.: Госстрой России, ГУП ЦПП, 2012. 72 с.
- 3. СП 61.13330.2012 Актуализированная редакция СНиП 41-03-2003. Тепловая изоляция оборудования и трубопроводов / Госстрой России. М.: ГУП ЦПП, 2013. 38 с.
- 4. СП 77.13330.2011 Актуализированная редакция СНиП 3.05.07-85 Системы автоматизации / Госстрой России. М.: ГУП ЦПП, 2012. 24 с.
- ГОСТ 21605-82 Система проектной документации для строительства (СПДС). Сети тепловые (тепломеханическая часть). Рабочие чертежи (с Изменением № 1). МНТКС – М.: Госстрой России, ГУП ЦПП, 1997. - 12 с.
- 6. Справочник проектировщика. Проектирование тепловых сетей / Под ред. А.А.Николаева - М: Стройиздат, 1985. - 359 с.
- 7. Справочник по наладке и эксплуации водяных тепловых сетей / Под ред. Манюка В.И., Каплинского Я.И М.: Стройиздат, 1982. 215 с.
- 8. Водяные тепловые сети: Справочное пособие по проектированию. / Под ред. Н.К.Громова, Е.П.Шубина. - М.: Энергоатомиздат, 1988. - 315с.
- 9. Справочник монтажника сетей теплогазоснабжения / Под ред. Мельниковова О.Н., Ежова В.Т. 2-е изд. Л.: Стройиздат, 1980. 208с.
- 10. Ионин А.А. и др. Теплоснабжение. М.: Стройиздат, 1982. 336 с.
- 11.Соколов Е.Я. Теплофикация и тепловые сети.- М.: Энергоиздат, 1982. 360 с.
- 12.Зингер Н.М. Гидравлические и тепловые режимы теплофикационных сетей. М.: Энергоатомиздат, 1986, 319 с.
- 13. Козин В.Е. Теплоснабжение. Уч.пособие. М.: Высшая школа, 1980. 408 с.
- 14.Мухин О.А. Автоматизация систем теплогазоснабжения: Учебное пособие для вузов. М.: Высшая школа, 1986.-304 с.

- 15.Пырков В. В.Современные тепловые пункты. Автоматика и регулирование.— К.: II ДП «Такі справи», 2007.— 252 с.
- 16. Автоматика и автоматизация систем теплогазоснабжения и вентиляции: Учебник для вузов / Калмаков А. А., Кувшинов Ю. Я., Романова С. С., Щелкунов С. А.; Под ред. Богословского В. Н.– Москва: Стройиздат, 1986.-479 с.
- 17.СП 12-135-2002 «Безопасность труда в строительстве. Отраслевые инструкции по охране труда»
- 18. Андреев С.В., Ефимова О.С. Охрана труда. М.: Альфа-Пресс, 2003. 288с.
- 19. Справочник мастера строителя / П. Котов, А.П, Новак и др.; Под ред. Д.В. Коротеева.-2-е изд., перераб. и доп.- М.: Стройиздат, 1989.
- 20.Белецкий Б.Ф. Технология прокладки трубопроводов и коллекторов различного назначения. М.: Стройиздат, 1992.-336 с.
- 21. Организация работ по монтажу систем вентиляции: Методические указания/Сост. Маслова Н.В.- Тольятти: ТолПИ, 1995.
- 22. Единые нормы и расценки на строительные, монтажные и ремонтностроительные работы. Сборник Е1. Земляные работы Выпуск 1 Механизированные и ручные земляные работы / Госстрой России. - М.: ГУП ЦПП, 2013.
- 23. Единые нормы и расценки на строительные, монтажные и ремонтностроительные работы. Сборник Е2. Сооружение систем теплоснабжения, водоснабжения, газоснабжения и канализации. Наружные сети и сооружения / Госстрой России. - М.: ГУП ЦПП, 2013.
- 24. Единые нормы и расценки на строительные, монтажные и ремонтностроительные работы. Сборник Е22. Сварочные работы. Выпуск 1 Конструкции зданий и промышленных сооружений / Госстрой России. - М.: ГУП ЦПП, 2013.
- 25. Единые нормы и расценки на строительные, монтажные и ремонтностроительные работы. Сборник Е9. Сооружение систем теплоснабжения, водоснабжения, газоснабжения и канализации Выпуск 1 Санитарнотехническое оборудование зданий и сооружений. / Госстрой России. - М.: ГУП ЦПП, 2013.

- 26. Единые нормы и расценки на строительные, монтажные и ремонтностроительные работы. Сборник Е11. изоляционные работы / Госстрой России. - М.: ГУП ЦПП, 2013.
- 27. Приложение к методическим указаниям по выполнению курсовой работы. Строительство систем теплоснабжения. Тепловые сети. Тольятти, 1988. (С-30).
- 28. Расчет трубопроводов на прочность. Справочная книга. Камерштейн А.Г., Рождественский В.В., Ручимский Н.Н. Изд. 2, перераб. и доп. М., изд-во «Недра», 1989. 440 с., ил.
- 29. Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения МДК 4-05.2004.
- 30.Инструкция по организации в Минэнерго России работы по расчету и обоснованию нормативов технологических потерь при передаче тепловой энергии, утвержденной приказом Минэнерго России 30.12.2008 г. № 235
- 31. Нормы проектирования тепловой изоляции для трубопроводов и оборудования электростанций и тепловых сетей. М.: Государственное энергетическое издательство, 2009.
- 32. Оборудование фирмы «Danfoss» для систем инженерного обеспечения зданий. Москва. Каталог 2002 г.


Приложение 1

Характеристика сетевых насосов 120-7

Приложение 2

Характеристика подпиточных насосов CR64

Приложение 3

Таблица 2.4 – Гидравлический расчёт (отопительный период)

№ уч-	Расход	Ду, м	S,	Фактичес-	Эквива-	Приведен-	Ско-	Удельные потери	Потери	Потери	Суммарные
ка	воды,		M^2	кая длина	лентная длина	ная длина	рость	1	давления	напора	потери
	G, м ³ /ч			уч-ка,	уч-ка	уч-ка, м	воды	давления	на уч-ке	на уч-ке	давления
				ℓ_{ϕ} , M	ℓэ, м	$\ell_{\rm np} = \ell_{\rm o} + \ell_{\rm o}$	ω, м/c	R, Па/м	$R \cdot \ell_{np}$, Па	Н, м	$\sum \mathbf{R} \cdot \ell_{np}$, $\prod a$
1	2	3	4	5	6	7	8	9	10	11	14
1	22,15	0,08	0,005024	129	4,7	133,7	1,22	255,5	34163,31	3,42	34163,31
2	30,96	0,1	0,00785	61	12,4	73,4	1,10	159,1	11674,37	1,17	45837,68
3	40,12	0,1	0,00785	24	8,3	32,3	1,42	250,4	8089,42	0,81	53927,10
4	71,46	0,1	0,00785	67	9,8	76,8	2,53	687,7	52817,02	5,28	106744,12
5	74,22	0,15	0,01766	8	12,7	20,7	1,17	107,1	2216,66	0,22	108960,78
6	123,57	0,2	0,0314	72	22,8	94,8	1,09	66,6	6316,85	0,63	115277,64
7	137,38	0,2	0,0314	50	14,4	64,4	1,22	80,2	5165,24	0,52	120442,88
13	11,76	0,05	0,001962	84	1,2	85,2	1,66	786,9	67043,34	6,70	67043,34
14	28,20	0,1	0,00785	22	0,8	22,8	1,00	135,1	3080,81	0,31	70124,15
15	49,35	0,125	0,012265	40	2,4	42,4	1,12	124,6	5284,60	0,53	75408,75
											-0,04
8	6,14	0,04	0,001256	48	2,4	50,4	1,36	728,9	36735,94	3,67	36735,50
9	6,79	0,05	0,001962	89	4,5	93,5	0,96	300,7	28116,52	2,81	64852,02
10	13,81	0,05	0,001962	37	2,4	39,4	1,95	1042,1	41058,72	4,11	105910,73

Прод	Продолжение таблицы 2.4										
1	2	3	4	5	6	7	8	9	10	11	14
											0,08
11	0,64	0,025	0,0004906	8	5,1	13,1	0,36	131,4	1721,17	0,17	1721,17
12	7,02	0,05	0,0019625	16	1,3	17,3	0,99	319,0	5519,40	0,55	5519,40
16	9,32	0,05	0,0019625	40	1,2	41,2	1,32	523,7	21575,87	2,16	21575,87
17	7,12	0,05	0,0019625	21	1,2	22,2	1,01	327,1	7260,61	0,73	7260,61
18	21,15	0,1	0,00785	47	1,8	48,8	0,75	81,6	3984,07	0,40	3984,07
19	14,08	0,08	0,005024	37	4,2	41,2	0,78	115,7	4765,88	0,48	4765,88
20	17,26	0,08	0,005024	29	3,7	32,7	0,95	165,1	5399,69	0,54	5399,69
21	8,81	0,05	0,0019625	13	1,7	14,7	1,25	474,3	6972,47	0,70	6972,47
22	5,46	0,05	0,0019625	12	7,2	19,2	0,77	205,5	3944,90	0,39	3944,90
23	1,96	0,032	0,000803	5	5,1	10,1	0,68	284,9	2877,81	0,29	2877,81

Приложение 4Спецификация плетей трубопроводов

Диаметр			Состав	плети			Отводы	Арма	гура	Компен	саторы	Числ	о свар-
труб dy,	секци	и труб	станд	артные	неполном	ерные		наиме-		наиме-		ных (стыков
MM			тр	убы	трубі		кол-	нова-	кол-	нова-	кол- во	пово-	непо-
	длина,	кол-во,	длина,	кол-во,	ппина	кол-	ВО	ние	ВО	ние		рот	ророт
		ĺ		,	длина,	во,	ВО	нис	ВО	нис		рот-	ворот-
	L, м	ШТ	L, м	ШТ	L, м	ШТ						ных	ных
Ø 32x2,5	8	2			8	2		кран	2				
Ø 38x2,5	5	2			5	2		шаро-	2				
Ø 45x2,5	48	8	10,2	8	7,2	2	4	вой				4	8
Ø 57x3,5	312	60	10,2	60	6	2	12	сталь-	14	K5	1	8	26
Ø 89x4	195	22	10,2	22			4	ной	4			4	6
Ø 108x4	221	14	10,2	28	1,2	2	2		2	K3, K4	2	6	8
Ø 133x4	40	8	10,2	8					2			2	2
Ø 157x4,5	8	2			8	2							
Ø 219x6	122	24	10,2	24						K1, K2	2	6	6

Приложение 5Ведомость трудоемкости работ

			Нор	ома			
Наименование	Ед.	ЕНиР	врем	ени	Тр	удоемкос	ТЬ
работ	изм.		чел.ч	маш.ч	объем работ	чел-дн	маш-
1	2	3	4	5	6	7	8
1. Отрывка траншей и котлованов экскаватором:		E2-1-10					
с погрузкой на транспорт	100м ³		3,6	3,6	6,8737	14,37	6,31
на вымет			2,9	2,9	32,727	2,43	0,86
Состав бригады: машинист 6р-2							
2. Устройство песчаного основания	1 м ³	E9-2-32	0,9		749	82,21	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1							
3. Монтаж ж/б лотков каналов	1м	E9-2-25	0,55		885	59,36	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1							
4. Устройство днищ камер и дрен.колодцы	1шт	E9-2-28	0,3		10	0,37	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2 3p-2							
5. Устройство стен камер	1 m³	E9-2-28	3		5,6	2,06	
Состав бригады: каменщики 4р-1, 2р-1							

1	2	3	4	5	6	7	8
6. Сборка труб в секции на бровке траншей	1м	E9-2-1					
Ø 32x2,5			0,01		16	0,08	
Ø 38x2,5			0,01		10	0,04	
Ø 45x2,5			0,01		96	0,23	
Ø 57x3,5			0,01		624	1,52	
Ø 89x4			0,02		390	1,43	
Ø 108x4			0,02		442	1,62	
∅ 133x4			0,03		80	0,29	
Ø 157x4,5			0,03		16	0,06	
Ø 219x6			0,04		244	1,19	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2							
7. Поворотная сварка труб	1стык	E22-2-2					
Ø 45x2,5			0,08		4	0,0049	
Ø 57x3,5			0,1		8	0,0098	
Ø 89x4			0,2		4	0,0049	
Ø 108x4			0,26		6	0,0073	
Ø 133x4			0,29		2	0,0024	
Ø 219x6			0,7		6	0,0146	
Состав бригады: электросварщик 5р-1							

1	2	3	4	5	6	7	8
8. Укладка бетонных подушек под подвижные опоры	1шт	E9-2-28					
Ø 32x2,5			0,03		4	0,0154	
Ø 38x2,5			0,03		2	0,0068	
Ø 45x2,5			0,03		16	0,0585	
Ø 57x3,5			0,05		82	0,5006	
Ø 89x4			0,05		37	0,2243	
Ø 108x4			0,06		35	0,2527	
Ø 133x4			0,06		5	0,0396	
Ø 157x4,5			0,06		1	0,0073	
Ø 219x6			0,06		12	0,0911	
Состав бригады: монтажник наружных трубопроводов 4p-1, 3p-2							
9. Устройство подвижных опор	1шт	E9-2-18					
Ø 32x2,5			0,05		4	0,056	
Ø 38x2,5			0,05		2	0,011	
Ø 45x2,5			0,05		16	0,098	
Ø 57x3,5			0,05		82	0,501	
Ø 89x4			0,07		37	0,314	
Ø 108x4			0,07		35	0,295	
Ø 133x4			0,07		5	0,046	
Ø 157x4,5			0,07		1	0,009	
Ø 219x6			0,11		12	0,167	
Состав бригады: монтажник наружных трубопроводов 5p-1, 3p-1							

1	2	3	4	5	6	7	8
10. Устройство неподвижных опор	1шт	E9-2-18					
Ø 32x2,5			0,11		1	0,013	
Ø 38x2,5			0,11			0,000	
Ø 45x2,5			0,11		1	0,013	
Ø 57x3,5			0,11		6	0,080	
Ø 89x4			0,11		5	0,067	
Ø 108x4			0,11		1	0,013	
Ø 133x4			0,13		0	0,000	
Ø 157x4,5			0,17		1	0,021	
Ø 219x6			0,2		2	0,049	
Состав бригады: монтажник наружных трубопроводов 5p-1, 3p-1							
11. Укладка труб в каналы	1м	E9-2-1					
Ø 32x2,5			0,05		16	0,10	
Ø 38x2,5			0,05		10	0,10	
Ø 45x2,5			0,05		96	0,94	
Ø 57x3,5			0,08		624	6,09	
Ø 89x4			0,08		390	3,80	
Ø 108x4			0,08		442	5,39	
Ø 133x4			0,08		80	1,76	
Ø 157x4,5			0,1		16	0,20	
Ø 219x6			0,18		244	1,49	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1							

1	2	3	4	5	6	7	8
12. Монтаж фасонных частей:	1шт	E9-2-14					
отводы 45х2,5			0,42		4	0,04	
Ø 57x3,5			0,42		12	0,12	
Ø 89x4			0,42		4	0,05	
Ø 108x4			0,63		2	0,04	
переходы			0,49		6	0,36	
тройники более dy100			1,1		8	1,07	
тройники менее dy100			0,56		16	1,09	
Состав бригады: монтажник 4р-1, 3р-2							
13. Монтаж арматуры	1шт	E9-2-16					
Ø 38x2,5			1,2		2	0,29	
Ø 57x3,5			1,2		14	2,05	
Ø 89x4			1,4		4	0,68	
Ø 108x4			1,4		2	0,34	
Ø 133x4			1,9		2	0,46	
Состав бригады: монтажник 5р-1,4р-1, 3р-1							
14. Неповоротная сварка труб	1стык	E22-2-2					
Ø 45x2,5			0,16		8	0,16	
Ø 57x3,5			0,18		26	0,57	
Ø 89x4			0,22		6	0,16	
Ø 108x4			0,29		8	0,28	
Ø 133x4			0,54		2	0,13	
Ø 219x6			0,79		6	0,58	
Состав бригады: электросварщик 5р-1							

продолжение гаолицы	2	3	4	5	6	7	8
15 П					0	/	8
15. Первичное гидравлическое испытание на прочность	1м	E9-2-9	0.1		1106	10.05	
до dy100			0,1		1136	13,85	<u> </u>
до dy200			0,12		782	11,44	<u> </u>
Состав бригады: монтажник наружных трубопроводов 5р-1,							
4p-2, 3p-2							<u> </u>
16. Гидроизоляция сварных стыков	1стык	E9-2-12					<u> </u>
до dy100			0,27		58	1,91	
до dy200			0,3		16	0,59	
Состав бригады: изолировщик на термоизоляцию 4р-2, 3р-2							
17. Тепловая изоляция трубопроводов	1м	E9-2-13					
Ø 32x2,5			0,08		16	0,16	
Ø 38x2,5			0,08		10	0,10	
Ø 45x2,5			0,08		96	0,94	
Ø 57x3,5			0,1		624	7,61	
Ø 89x4			0,1		390	4,76	
Ø 108x4			0,1		442	5,39	
Ø 133x4			0,12		80	1,17	
Ø 157x4,5			0,12		16	0,23	
Ø 219x6			0,12		244	3,57	
Состав бригады: изолировщик на термоизоляцию 4р-1, 2р-1							
18. Укладка плит перекрытия каналов	1м	E9-2-24	0,95		885	102,53	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-2, 3p-2, 2p-1							

1	2	3	4	5	6	7	8
19. Укладка плит перекрытий камер	1шт	E9-2-28	0,3		10	0,37	
Состав бригады: монтажник наружных трубопроводов 4p-1, 3p-2							
20. Устройство гидроизоляции каналов	100м²	E9-2-24	0,28		12,64	0,43	
Состав бригады: изолировщик на гидроизоляцию 4p-1, 3p-1, 2p-1							
21. Устройство гидроизоляции перекрытий камер	100м²	E11-37	11,5		2,46	3,45	
Состав бригады: гидроизолировщик 4р-1							
22. Обратная засыпка траншей и котлованов бульдозером	100м³	E2-1-34	0,66	0,66	34,10	2,74	0,22
Состав бригады: машинист 6р-1							
23. Окончательное испытание трубопроводов	1м	E9-2-9					
до dy100			0,1		1136	13,85	
до dy200			0,12		782	11,44	
Состав бригады: монтажник наружных трубопроводов 5p-1, 4p-1, 3p-2							
24. Промывка и хлорирование трубопроводов	1м	E9-2-9					
до dy100			0,05		1136	6,93	
до dy200			0,06		782	5,72	
Состав бригады: монтажник наружных трубопроводов 4p-1, 3p-2, 2p-1							
25. Планирование площадей бульдозером	1000м²	E2-1-36	0,49	0,49	5,95	0,36	0,36
Состав бригады: машинист 6р-1		_					

1	2	3	4	5	6	7	8
Bcero:						398,41	7,74
Затраты труда на необъемные работы, выполняемые засчет							
накладных расходов, принимаемые 16%						63,7456	
от суммарной трудоемкости основных работ						824,82	
Затраты труда на подготовительные работы, принимаемые 8%							
от суммарной трудоемкости						31,8728	