федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

		СТИТУТ					
//T ₀	(институт) плогазоснабжение, вентиляция, водоснабжение и	по поотра паниа»					
	(кафедра)						
	270800.62 (08.03.01) «Строительство»						
(код и наименование направления подготовки, спе						
	«Теплогазоснабжение и вентиляц						
	(наименование профиля, специализации						
	1 1	,					
	БАКАЛАВРСКАЯ РАБО	TA					
на тему г. Москва. М	Микрорайон 2. Индивидуальный жило	й лом Инженерные сети					
110 1011) <u>1. 1.10 0 11201. 1</u>	·······poponion =, ···································	дени тименфили					
C - (-)	MCA						
Студент(ка)	М.С. Ахмеров	_					
D	(И.О. Фамилия)	(личная подпись)					
Руководитель	С.А. Анциферов	_					
Τ	(И.О. Фамилия)	(личная подпись)					
Консультанты	А.В. Щипанов						
TT	(И.О. Фамилия)	(личная подпись)					
Нормоконтроль	И.А. Живоглядова	_					
	(И.О. Фамилия)	(личная подпись)					
Допустить к защі	ите						
допустить к защ							
Danamuranum rada	TOOK AND TOUGHT MILE VILLED STATE						
заведующии кафе,	дрой <u>к.т.н., доцент М.Н. Кучеренко</u> (ученая степень, звание, И.О. Фамилия)	<u> </u>					
« »	2016 г	(личная подпись)					

федеральное государственное бюджетное образовательное учреждение высшего образования «Тольяттинский государственный университет»

	<u>ІТЕЛЛЬНЫЙ ИНСТИТУТ</u>					
(институт)						
— «Теплогазоснабжение, вентиляция, водоснабжение и водоотведение» (кафедра)						
\ 1	· 1 /					
	УТВЕРЖДАЮ					
	Зав. кафедрой ТГВЕ					
		М.Н. Кучеренко				
		(И.О. Фамилия) 20 г				
		1.				
	АНИЕ					
на выполнение бан	салаврской работы					
Студент Ахмеров Марсель Сергеевич						
1.Тема г. Москва. Микрорайон 2. Инд	ивидуальный жилой	дом. Инженерные				
сети.						
2. Срок сдачи студентом законченной	і выпускной квалифи	кационной работы				
_10.06.2016		-				
3. Исходные данные к выпускной к	choundingonnounoù nob	OTO ONVITAITMIN				
•	квалификационной рас	оте архитектурно-				
планировочные чертежи						
4. Содержание выпускной квалификац	ионной работы (пере	ечень подлежащих				
разработке вопросов, разделов): тепловой	баланс здания, констр	уирование системы				
отопления, конструкция систем вентиляции	и, водоснабжения и вод	оотведения, теплого				
пола, автоматизация котельной, организация	я монтажных работ сист	емы отопления, .				
5. Ориентировочный перечень графическо	-					
данные, планы с отоплением и вентиляци	-	-				
	•	.				
теплый пол, аксонометрические схемы сис	стем отопления и венти	ляции, холодного и				
горячего водоснабжения.						
6. Консультанты по разделам						
7. Дата выдачи задания «4» апреля 2016г.						
Руководитель выпускной		С.А.Анциферов				
квалификационной работы	(подпись)	(И.О. Фамилия)				
Задание принял к исполнению		М.С.Ахмеров				

(подпись)

(И.О. Фамилия)

федеральное государственное бюджетное образовательное учреждение высшего образования

«Тольяттинский государственный университет»

АРХИТЕКТУРНО-СТРОИТЕЛЛЬНЫЙ ИНСТИТУТ					
(институт)					
«Теплогазоснабжение, вентиляция, водоснабжение и водоотведение»					
(кафедра)					
УТВЕРЖДАЮ					
Зав. кафедрой ТГВВиВ					
М.Н. Кучеренко					
(подпись) (И.О. Фамилия)					
« <u>»</u> 20г.					

КАЛЕНДАРНЫЙ ПЛАН выполнения бакалаврской работы

Студент Ахмеров Марсель Сергеевич

по теме г. Москва. Микрорайон 2. Индивидуальный жилой дом. Инженерные сети.

Наименование раздела работы	Плановый срок выполнения раздела	Фактический срок выполнения раздела	Отметка о выполнении	Подпись руководителя
Тепловой баланс	04.04.2016	04.04.2016	Выполнено	
Конструирование системы отопления	18.04.2016	18.04.2016	Выполнено	
Конструкция систем вентиляции	30.04.2016	30.04.2016	Выполнено	
Автоматизация котельной	08.05.2016	08.05.2016	Выполнено	
Конструирование системы водоснабжения и водоотведения	13.05.2016	13.05.2016	Выполнено	
Организация монтажа	18.05.2016	18.05.2016	Выполнено	
Безопасность и экологичность объекта	24.05.2016	24.05.2016	Выполнено	

Руководитель выпускной квалификационной работы		С.А. Анциферов
квалификационной расоты	(подпись)	(И.О. Фамилия)
Задание принял к исполнению		М.С.Ахмеров
	(подпись)	(И.О. Фамилия)

АННОТАЦИЯ

В бакалаврской работе запроектированы инженерные системы жилого дома на две семьи, расположенного в Московской области.

Бакалаврская работа выполнена на основании утвержденного задания по дипломному проектированию, архитектурно-строительных чертежей.

Произведен теплотехнический расчет ограждающих конструкций.

В части отопления выполнен гидравлический расчет коллекторной системы отопления с поэтажной разводкой с тупиковым движением теплоносителя. Произведен расчет нагревательных приборов и подбор оборудования теплового пункта.

В помещениях жилого дома запроектирована приточно-вытяжная система вентиляции с искусственным и естественным побуждением. Из туалетов, душевых, теплового пункта удаление воздуха осуществляется отдельными вытяжными каналами. Приток воздуха в бассейн, осуществляется системами с механическим побуждением. Запроектированы системы водоснабжения, водоотведения и теплого пола.

Проектом также предусмотрена организация строительно-монтажных работ на монтаж внутренних инженерных систем.

СОДЕРЖАНИЕ

			Стр
BE	веде	НИЕ	6
1.	ИСХ	КОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ	7
2.	TEL	ІЛОТЕХНИЧЕСКИЙ РАСЧЕТ	9
	2.1	Теплотехнический расчет ограждающих конструкций	9
	2.2	Определение теплопотерь здания	16
	2.3	Определение теплопоступлений в здание	17
3.	TEL	ІЛОСНАБЖЕНИЕ	26
	3.1	Конструирование системы отопления	26
	3.2	Горячее водоснабжение	39
	3.3	Расчет и подбор оборудования котельной	41
4.	BEF	ІТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ ВОЗДУХА	45
	4.1	Определение требуемых воздухообменов	45
	4.2	Выбор принципиальных решений конструирования	47
	4.3	Аэродинамический и гидравлический расчеты	48
	4.4	Расчет и подбор оборудования	49
5.	ВОД	ОСНАБЖЕНИЕ И ВОДООТВЕДЕНИЕ	54
	5.1	Холодное водоснабжение	54
	5.2	Водоотведение	57
6.	ГАЗ	ОСНАБЖЕНИЕ	58
	6.1	Конструирование системы газоснабжения	58
	6.2	Гидравлический расчет внутренней системы	59
		газоснабжения	
7.	КОН	НТРОЛЬ И АВТОМАТИЗАЦИЯ	63
8.	ОРГ	ТОЗАЧ ХІНЖАТНОМ RUJIAEUHA	65
ЛΙ	ITEP	АТУРА	72
ПР	илс	РИНЗЖО	77

ВВЕДЕНИЕ

Основное назначение систем отопления и вентиляции состоит в обеспечении заданных климатических условий в помещениях зданий.

Поддержание определенных параметров среды в течение года важно в целях обеспечения долговечности строительных конструкций и сохранения здоровья персонала.

В связи с тенденцией роста цен на энергоноситель остро встает вопрос о применении новых энергосберегающих технологий и экономии топлива.

Для создания в зданиях нормального теплового режима, а тем самым комфортных условий осуществляется их отопление – искусственный обогрев помещений с целью возмещения в них тепловых потерь и поддержания на заданном уровне температур, отвечающих условиям теплового комфорта для людей. Создание и поддержание теплового комфорта необходимо для обеспечения соответствующего теплообмена между людьми и окружающей их средой. Для этого в каждом закрытом помещении, где находятся люди, надо поддерживать заданные параметры воздушной среды и температуру поверхностей внутренних конструкций, а также поверхностей приборов и оборудования с внутренними источниками теплоты, при которых устанавливается требуемый теплообмен между людьми и окружающей средой. Тепловой комфорт улучшает условия жизни людей, повышает производительность их труда. Поддерживать на заданном уровне температуру необходимо также для предотвращения водяных паров из влажного воздуха на внутренних конденсации поверхностях наружных ограждающих конструкций и в их толще. Благодаря этому не только улучшаются комфортные условия, но и снижаются теплопотери помещений, увеличивается срок службы зданий. Целью данного дипломного проекта является проектирование инженерных систем жилого дома.

1 ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ

Параметры наружного воздуха выбираем согласно справочной литературе для Московской области [1] и сводим в таблицу 1.1.

Таблица 1.1 - Климатические данные района строительства

№ п/п	Параметры наружного воздуха	Условное обозначение	Ед. изм.	Значение	
1	2	3	4	5	
	Холод	ный период			
1	Температура наружного воздуха наиболее холодной пятидневки, обеспеченностью 0,92	$t_{\rm ext}$	°C	- 28	
2	Количество дней со среднесуточной температурой наружного воздуха меньше 8 °C	$Z_{ m ht}$	сут	214	
3	Средняя температура периода, в котором температура наружного воздуха меньше 8 °C	t _{ht}	°C	-3,1	
4	Средняя скорость ветра м/с, за период со среднесуточной температурой воздуха 8 °C	υ	м/с	5,2	
	Теплый период				
1	Температура воздуха наиболее жаркого месяца	t _{VII}	°C	24,6	
2	Удельная энтальпия наружного воздуха	I	кДж/кг	52,8	

Зона влажности района строительства - норм [2, прил. В]

Условия эксплуатации ограждающих конструкций принимаем Б (в зависимости от влажностного режима помещений и зон влажности района строительства в соответствие с нормативной литературой [2]).

Исходя из функционального назначения помещения согласно справочной литературе [1], находим параметры внутреннего воздуха, а именно: расчетную температуру, относительную влажность и скорость движения воздуха в помещениях. Данные сводим в таблицу 1.2.

Таблица 1.2 – Параметры внутреннего воздуха

		Параметры внутреннего воздуха				
№ Назначение п/п помещения	Температура $t_{_{\!\scriptscriptstyle \it B}}$, °C	Относительная влажность ϕ , %	Скорость движения воздуха, м/с	Влажностный режим		
1	Тех. помещение	18	55	0,2	Нормальный	
2	Кладовая	18	55	0,2	Нормальный	
3	Спальня	20	55	0,2	Нормальный	
4	Гардероб	18	55	0,2	Нормальный	
5	Общая комната	20	55	0,2	Нормальный	
6	Кухня-столовая	18	55	0,2	Нормальный	
7	С/У	25	60	0,2	Влажный	
8	Гостиная комната	20	55	0,2	Нормальный	
9	Тренажерный зал	18	55	0,2	Нормальный	
10	Кабинет	20	55	0,2	Нормальный	
11	Бассейн	24	65	0,2	Нормальный	

Здание предназначено для проживания семьи из 8-х человек. Состоит из цокольного, первого, и второго этажей, а так же мансардного этажа. На цокольном этаже здания, на отм. -3.600 расположены помещения котельной, вент. камеры, комнаты отдыха, сан. узла, тренажерной, постирочной, гладильной, и техпомещений. Цокольный этаж дома на 2м

заглублен в грунт. На первом этаже дома, на отм. 0.000 расположены помещения гостиной, столовой, кухни, комнаты отдыха, бассейна, сан. узла, гараж на 2 машиноместа, техпомещения, сауны. Первый этаж имеет два отдельных выхода на территорию. На втором этаже дома, на отм. 3.600 расположены помещения кабинетов, библиотеки, двух спален, гардеробных, сан. узлов. На мансардном этаже находятся помещения мастерской, домашнего кинотеатра, сан узла. Проектируемый объект двухэтажный жилой дом с мансардой и цокольным этажом, находится в Московской области. Ориентация главного фасада здания - ЮГ.

Источник тепла — индивидуальная котельная на цокольном этаже. Теплоноситель — вода с параметрами $t_1 = 90~^{o}C$; $t_2 = 70~^{o}C$. Канализация — централизованная со спуском условно чистых стоков в ливневку. Водоснабжение — центральное с гарантированным напором в доме 30 м. в. ст. Подключение внутренней системы холодного водоснабжения проектируемого дома осуществляется от существующей кольцевой сети водопровода по одному вводу Ду 50.

2. ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЕТ

2.1 Теплотехнический расчет ограждающих конструкций

Основной задачей теплотехнического расчета является определение толщины теплоизоляции.

Теплотехнические свойства ограждения определяются коэффициентом, R_0 , $M^{2^o}C/Bm$, который должно быть не менее нормируемых значений, т. е. $R_o^{des} \geq R_o^{req}$. Условия эксплуатации Б.

Значение градусо-суток отопительного периода D_d , ${}^o C \cdot \mathit{cym}$, определяется по формуле:

$$D_d = (t_{\text{int}} - t_{ht}) \cdot z_{ht}, \qquad (2.1)$$

где t_{int} – нормируемая температура воздуха в помещении, °C, принимаемая равной 20 °C;

$$D_d = (20 + 3.1) \cdot 214 = 4943.4$$
 ° $C \cdot cym$

Значение R_o^{req} , $M^{2^o}C/Bm$, для величины D_d , $C \cdot cym$, отличающихся от значений приведенных в [3] определяется, согласно примечанию, по формуле

$$R_{req} = a \cdot D_d + b, \qquad (2.2)$$

где a,b – коэффициенты [3].

$$R_{reg} = 0.00035 \cdot 4943.4 + 1.3 = 3.14 \,\text{m}^{2^{\circ}} C / Bm$$

Требуемое сопротивление теплопередаче для стен отвечающее санитарно-гигиеническим и комфортным условиям определяем по формуле:

$$R_{req} = \frac{n \cdot (t_{int} - t_{ext})}{\Delta t_{n} \cdot \alpha_{int}}; \quad R_{req} = \frac{1 \cdot (20 + 28)}{4.0 \cdot 8.7} = 1.38 \ \text{m}^{2^{\circ}} C / Bm, \tag{2.3}$$

где n-коэффициент, учитывающий зависимость положения поверхности ограждающей конструкции, принимается равным 1, согласно [3]

 Δt_n – нормируемый температурный перепад между температурой внутреннего воздуха t_{int} °C, и температурой внутренней поверхности τ_{int} °C, ограждающей конструкции, °C, принимаемый по [3];

 α_{int} — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, $Bm/(M^2 \cdot {}^o C)$, принимаем по [3] равным 8,7 $Bm/(M^2 \cdot {}^o C)$; t_{int} — то же, что и в формуле (2.1);

 $t_{\it ext}$ —расчетная температура воздуха наиболее холодного помещения по [3]

Приведенное сопротивление теплопередаче, R_{req} , $M^{2^o}C/Bm$, входной двери, согласно [3, должно быть не менее $0.6 \cdot R_{req}$, $M^{2^o}C/Bm$, определенного по формуле (2.3).

Приведенное сопротивление теплопередаче, светопрозрачных конструкций (окон) принимается на основании свода правил [4].

Фактическое сопротивление теплопередаче, R_0^{des} , $M^{2^o}C/Bm$, ограждающих конструкций следует определять по формуле:

$$R_0^{des} = \frac{1}{\alpha_{int}} + \sum_{i=1}^n \delta_i / \lambda_i + \frac{1}{\alpha_{ext}}, \qquad (2.4)$$

где α_{int} – то же, что и в формуле (2.3);

 α_{ext} – коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции, $Bm/(M^2 \cdot {}^o C)$;

 δ_i – толщина слоя, м;

 λ_i – расчетный коэффициент теплопроводности материала слоя, $\mathit{Bm/(M\cdot{}^\circ\!C)}$.

Величину коэффициент теплопередачи, $Bm/(M^2 \cdot {}^{\circ} C)$, определяют по

формуле
$$k = \frac{1}{R_o^{dcs}},$$
 (2.5)

Определяется толщина утеплителя для наружной стены. Состав стены приведен в таблице 2.1.

Таблица 2.1 – Состав наружной стены.

	Материал слоя	δ,м	γ ,кг/м 3	λ,Вт/м°С
1	Штукатурка	0,020	1700	0,870
2	Кирпичная кладка из кирпича керамического плотностью 1600 на цементно-песчаном р-ре	0,380	1600	0,640
3	Клей Ceresit CT 190	0,002	1350	0,800
4	Мин.плита марки 175	?	175	0,041
5	Клей Ceresit CT 190	0,005	1350	0,800
6	Минеральная штукатурка Ceresit CT 137 (зерно 1.5мм)	0,002	1400	0,800
7	Силикатная краска Ceresit CT 54	0,0001	1350	1,000

$$R_o^{req} = 3,14, M^{2^o}C/Bm,$$

Толщину утеплителя определяем из неравенства (1), приняв

$$R_o^{des} \geq R_o^{req}$$

$$R_o = \frac{1}{\alpha_{\text{int}}} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3} + \frac{\delta_4}{\lambda_4} + \frac{\delta_5}{\lambda_5} + \frac{\delta_6}{\lambda_6} + \frac{\delta_7}{\lambda_7} + \frac{1}{\alpha_{ext}} = R_{req}, \quad (2.6)$$

где R_o - приведенное сопротивление теплопередаче ограждающих конструкций, (м 2 °C)/Вт,

 $lpha_{
m int}$ - коэффициент теплоотдачи внутренней поверхности ограждающей конструкции,

$$\alpha_{\text{int}}$$
=8,7 Вт/(м²°С), [2, табл. 7]

 $\alpha_{\mbox{\tiny ext}}$ - коэффициент теплоотдачи наружной поверхности ограждающей конструкции,

$$\alpha_{ext}$$
=23 Bт/(м²°C), [2, табл. 6]

 R^{reg} - нормируемое значение сопротивления теплопередаче ограждающих конструкций, $R_o^{req} = 3.14$, $M^{2o}C/Bm$,

Определим толщину утеплителя:

$$3,14 = \frac{1}{8.7} + \frac{0,020}{0.870} + \frac{0,38}{0.640} + \frac{0,002}{0.800} + \frac{\delta_{ym}}{0.041} + \frac{0,005}{0.800} + \frac{0,002}{0.800} + \frac{0,0001}{1.00} + \frac{1}{23},$$

Принимаем толщину утеплителя $\delta_{\mathit{ym}} = 0.12$ м и пересчитываем R_0

$$R_0 = \frac{1}{8.7} + \frac{0.020}{0.870} + \frac{0.38}{0.640} + \frac{0.002}{0.800} + \frac{0.12}{0.041} + \frac{0.005}{0.800} + \frac{0.002}{0.800} + \frac{0.0001}{1.00} + \frac{1}{23} =$$

$$= 3.6 \text{ m}^2 \cdot \text{°C/BT}$$

Полученное R_0 удовлетворяет условию, что $R_0^{mp} \le R_0$

$$R_0 = 3.6 \text{ m}^2 \cdot ^{\circ}\text{C/Bt}$$

После определения приведенного сопротивления теплопередаче ограждающих конструкций R_0 , (м²оС)/Вт, определяем коэффициент теплопередачи ограждающих конструкций k, Вт/(м² оС) по формуле:

$$k = \frac{1}{R_o},\tag{2.7}$$

где k - коэффициент теплопередачи ограждающих конструкций, $\mathrm{Br/(m^2\,^oC)},$ R_o - сопротивления теплопередаче ограждающих конструкций, $(\mathrm{m^2^oC})/\mathrm{Br}.$

По формуле (2.7) найдем
$$k$$
: $k = \frac{1}{R_o}$; $k = \frac{1}{3.6} = 0.28 \left(\frac{Bm}{M^{2 \circ} C}\right)$.

Сопротивление теплопередачи для утепленных полов на грунте, с коэффициентом теплопроводности $\lambda_h < 1,2$ $Bm/(m^2 \cdot {}^o C)$ утепляющего слоя определяют по формуле

$$R_h = R_c + \sum \frac{\delta}{\lambda_h}, \qquad (2.8)$$

где R_c — сопротивление теплопередачи, $M^2 \cdot {}^o C/Bm$, неутепленного пола, расположенного непосредственно на грунте, принимается равным:

для I зоны — 2,1
$$M^2 \cdot C/Bm$$
;
для II зоны — 4,3 $M^2 \cdot C/Bm$;
для III зоны — 8,6 $M^2 \cdot C/Bm$;
для IV зоны — 14,2 $M^2 \cdot C/Bm$

С учетом утепляющего слоя, гидроизоляции, и стяжки:

$$R_{I} = 2.1 + \frac{0.003}{0.74} + \frac{0.02}{0.052} + \frac{0.05}{0.76} = 2.55$$

$$M^{2^{o}}C/Bm$$

$$R_{II} = 4.3 + \frac{0.003}{0.74} + \frac{0.02}{0.052} + \frac{0.05}{0.76} = 4.75$$

$$M^{2^{o}}C/Bm$$

$$R_{III} = 8.6 + \frac{0.003}{0.74} + \frac{0.02}{0.052} + \frac{0.05}{0.76} = 9.05$$

$$M^{2^{o}}C/Bm$$

$$R_{IV} = 14.2 + \frac{0.003}{0.74} + \frac{0.02}{0.052} + \frac{0.05}{0.76} = 14.65$$

$$M^{2^{\circ}}C/Bm$$

$$k_{II} = \frac{1}{R_{I}} = \frac{1}{2,55} = 0,392Bm/M^{2} \cdot {}^{\circ}C$$

$$k_{II} = \frac{1}{R_{II}} = \frac{1}{4,75} = 0,210 Bm/M^{2} \cdot {}^{\circ}C$$

$$k_{III} = \frac{1}{R_{III}} = \frac{1}{9,05} = 0,110 Bm/M^{2} \cdot {}^{\circ}C$$

$$k_{IV} = \frac{1}{R_{IV}} = \frac{1}{14,65} = 0,068 Bm/M^{2} \cdot {}^{\circ}C$$

Наружная дверь и окна подбираются по справочным данным ориентируясь на $R_o^{req} = 0.53$, $M^{2^o}C/Bm$.

К установке принимается тройное остекление в раздельно-спаренных деревянных переплетах с $R_0 = 0.55 \text{ m}^2 \cdot ^{\circ}\text{C/Bt}$.

По формуле (2.7) найдем
$$k$$
: $k = \frac{1}{0.55} = 1.818 \left(\frac{Bm}{M^{2} {}^{o}C} \right)$

Сопротивление теплопередаче R_0 для дверей принимается равным $0,6\cdot R_0^{mp}$ стен посчитанное по формуле (2.2).

$$R_0=0.6\cdot 1.38=0.828~\mathrm{m}^2\cdot\mathrm{^{\circ}C/BT}.$$
 По формуле (2.7) найдем $k=\frac{1}{0.828}=1.208~(\frac{Bm}{m^2\mathrm{^{\circ}C}})$

Кровля

	Материал слоя	δ,м	γ ,k Γ /m ³	λ,Вт/м°С
1	Листы гипсовые обшивочные (сухая штукатурка) (ГОСТ 6266)	0,012	800	0,120
2	Вертикальная замкнутая воздушная прослойка толщиной 0,02м при положительной температуре	0,02	1,225	0,143
3	Сосна и ель поперек волокон (ГОСТ 8486-66**, ГОСТ 9463-72*)	0,012	500	0,180
4	Минплита марки 175	?	175	0,041
5	Сосна и ель поперек волокон (ГОСТ	0,012	500	0,180

	8486-66**, ΓΟCT 9463-72*)			
6	Рубероид (ГОСТ 10923-82),	0,002	600	0,170
7	Листы металочерепицы плоские	0,001	1600	0,410

Толщину утеплителя определяем аналогично для $R_o^{req} = 4,13 \, m^{2^o} C/Bm$,

$$R_o = \frac{1}{\alpha_{\text{int}}} + \frac{\delta_1}{\lambda_1} + \frac{\delta_2}{\lambda_2} + \frac{\delta_3}{\lambda_3} + \frac{\delta_4}{\lambda_4} + \frac{\delta_5}{\lambda_5} + \frac{\delta_6}{\lambda_6} + \frac{\delta_7}{\lambda_7} + \frac{1}{\alpha_{ext}} = R_{req},$$

Определим толщину утеплителя:

$$4,13 = \frac{1}{8,7} + \frac{0,012}{0,12} + \frac{0,02}{0,143} + \frac{0,012}{0,180} + \frac{\delta_{ym}}{0,041} + \frac{0,012}{0,180} + \frac{0,002}{0,170} + \frac{0,001}{0,410} + \frac{1}{23}$$

Толщина утеплителя $\delta_{ym}=0.15$ м, тогда R_0

$$R_0 = \frac{1}{8.7} + \frac{1}{8.7} + \frac{0.012}{0.12} + \frac{0.02}{0.143} + \frac{0.012}{0.180} + \frac{0.15}{0.041} + \frac{0.012}{0.180} + \frac{0.002}{0.170} + \frac{0.001}{0.410} + \frac{1}{23} = \frac{0.012}{0.180} + \frac{0.012}{0.180} + \frac{0.012}{0.180} + \frac{0.012}{0.180} + \frac{0.002}{0.180} + \frac{0.001}{0.180} + \frac{0.001}$$

$$=4,25 \text{ m}^2.{}^{\circ}\text{C/Bt}$$

Полученное R_0 удовлетворяет условию, что $R_0^{mp} \leq R_0$

$$k = \frac{1}{4,25} = 0,235 \left(\frac{Bm}{M^{2} {}^{\circ}C} \right),$$

Результаты теплотехнического расчета сведены в таблицу 2.1.

Таблица 2.2 - Результаты расчета ограждающих конструкций

Вид ограждающей конструкции	Толщина утеплителя, <i>м</i>	Сопротивление теплопередаче $M^{2^o}C/Bm$	Коэффициент теплопередачи, $Bm/(M^2 \cdot {}^{\circ}C)$
Наружная стена	0,12	3,6	0,28
Чердачное перекрытие	0,15	4,25	0,235
Пол	для I зоны для II зоны для III зоны для IV зоны	2,55 4,75 9,05 14,65	0,392 0,210 0,11 0,068
Окна	тройное остекление в раздельно-спаренных деревянных переплетах	0,55	1,818

Двери	-	0,828	1,208
-------	---	-------	-------

Проверка внутренней поверхности наружных ограждений на возможность конденсации влаги приведена в Приложении А.

2.2 Определение теплопотерь здания

Основные и добавочные потери теплоты через ограждающие конструкции помещений определяются по формуле

$$Q = A \cdot (t_{\text{int}} - t_{ext}) \cdot (1 + \sum \beta) \cdot n / R, \qquad (2.8)$$

где A – расчетная площадь ограждающей конструкции M^2 ;

R — сопротивление теплопередачи ограждающей конструкции, принимается по таблице 2.2;

 t_{int} – то же, что и в формуле (2.1), °С;

 t_{ext} – то же, что и в формуле (2.3), °С;

n – то же, что и в формуле (2.3);

 β – добавочные потери теплоты в долях от основных потерь.

Расчет основных и добавочных потери теплоты через ограждающие конструкции помещений сводится в таблицу 2.3.

Расход теплоты Q_i , Вт, на нагревание инфильтрирующегося воздуха в помещениях жилых зданий при естественной вытяжной вентиляции, не компенсируемого подогретым приточным воздухом, определяем по формуле:

$$Q_i = 0.28 \cdot L_n \cdot \rho \cdot c \cdot (t_{\text{int}} - t_{ext}) \cdot k \tag{2.9}$$

где L_n - расход удаляемого воздуха, м³/ч, не компенсируемый подогретым приточным воздухом; удельный нормативный расход 3 м³/ч на 1 м² помещений;

p - плотность воздуха в помещении, кг/м 3 .

c - удельная теплоемкость воздуха, равная 1 кДж/(кг·°С);

 t_{int}, t_{ext} - расчетные температуры воздуха, °С, соответственно в помещении и наружного воздуха в холодный период года;

k - коэффициент учета влияния встречного теплового потока в конструкциях.

Расчет теплоты, на нагревание инфильтрирующегося воздуха сводится в таблицу 2.3.

2.3 Определение теплопоступлений в здание

Тепловыделения в жилых помещениях и кухни от бытовой техники согласно нормативной литературе принимаются равными 10 Вт/м². Остальные теплопоступления не относятся к постоянным, поэтому их учет не производится. Здание жилого дома будет эксплуатироваться круглосуточно. Оно относится к зданию с устойчивым тепловым режимом, где нормативную температуру поддерживают системой отопления.

Тепловая мощность отопительной установки помещения Q_{om} для компенсации дефицита теплоты равна:

$$Q_{om} = Q + Q_i - Q_{out} \tag{2.10}$$

Результаты расчетов сведены в таблицу 2.3.

Затраты тепла на отопление Q_{con} , Вт при средней температуре отопительного периода составят:

$$Q_{con} = Q_{pacu} \cdot \frac{t_{int} - t_{ht}}{t_{int} - t_{ext}}$$

$$Q_{con} = 39895 \cdot \frac{20 + 31}{20 + 28} = 15922 \text{ BT}$$
(2.11)

Общее количество тепла за отопительный период Q_z , Гкал, находим по формуле: $Q_z = Q_{con} \cdot 24 \cdot Z_{OH} \cdot 3600 \qquad (2.12)$ $Q_z = 15922 \cdot 24 \cdot 214 \cdot 3600 = 294377 \, \text{МДж} = 70,31 \, \text{Гкал}$

Расход циркуляционной воды в системе отопления $G_{\mu\nu}$, кг/ч,

находим по формуле:
$$G_{\mu\nu\rho\kappa} = \frac{0.86 \cdot Q_{om}}{c \cdot (t_c - t_o)}$$
 (2.13),

где c – теплоемкость воды 1ккал/(кг·°С).

$$G_{_{\mathit{цирк}}} = \frac{0.86 \cdot 39895}{1 \cdot (90 - 70)} = 1869 \text{ кг/ч}$$

Таблица 2.3 - Тепловой баланс здания

№	Наим.	Наим.	ориентация	S,м2	k	Δt	Q,Bт	Добаво	чный коэ	ффициент	Q*m,Вт	Обы т.	Qинф	Qрасч
ПОМ	помещен.	ограждений.						ориент	проч	сумм				
001	Котельная	НС	3	4,05	0,28	46	52,1	5	5	10	57,4			
		I зона	-	5,06	0,39	46	91,3	0	5	5	95,8			
		Ок	3	0,84	1,54	46	59,4	5	5	10	65,4			
		НС	С	2,14	0,28	46	27,6	10	5	15	31,8			
		I зона	-	2,68	0,39	46	48,3	0	5	5	50,8			
		ПОЛ												
		II зона	-	9,9	0,21	46	95,9	0	0	0	95,9			
		III зона	-	5,7	0,11	46	29,0	0	0	0	29,0			
			S	15,6							425,9	0	506,3	932
002	Венткамера	ПОЛ												<u> </u>
		III зона	-	4,6	0,11	46	23,4	0	0	0	23,4			
		IV зона	-	12,7	0,07	46	39,9	0	0	0	39,9			<u> </u>
			S	17,3							63,3	0	0,0	63
003	Комната	НС	В	5,14	0,28	48	69,0	10	5	15	79,4			
	отдыха	I зона	-	6,42	0,39	48	120,8	0	5	5	126,9			<u> </u>
	с душевой	Ок	3	0,84	1,54	48	62,0	5	5	10	68,2			<u> </u>
		НС	C	2,14	0,28	48	28,8	10	5	15	33,1			<u> </u>
		I зона	-	2,68	0,39	48	50,4	0	5	5	53,0			<u> </u>
		ПОЛ												<u> </u>
		II зона	-	7,1	0,21	48	71,7	0	0	0	71,7			<u> </u>
		III зона	-	3,8	0,11	48	20,2	0	0	0	20,2			
			S	10,9							452,5		369,2	822
	<u> </u>	,												
004	С/У	ПОЛ												
		IV зона	-	3,77	0,07	48	12,4	0	0	0	12,4			
			S	3,77							12,4	0	0,0	12

												одолжен	THE TUON	1. 2.3
№ пом	Наим. помещен.	Наим. ограждений.	ориентация	Ѕ,м2	k	Δt	Q, В т	Добаво	очный ко	эффициент	Q*m,Вт	Обыт .	Qинф	Qрасч
пом	помещен.	ограждении.						ориент	проч	сумм				
005	Тренажерная	НС	В	11,2	0,28	46	144,3	10	5	15	165,9			
		I зона	-	14	0,39	46	252,5	0	5	5	265,2			
		Ок	В	1,68	1,54	46	118,9	10	5	15	136,7			
		НС	СВ	2,03	0,28	46	26,2	10	5	15	30,1			
		I зона	-	2,54	0,39	46	45,8	0	5	5	48,1			
		НС	ЮВ	2,03	0,28	46	26,2	5	5	10	28,8			
		I зона	-	2,54	0,39	46	45,8	0	5	5	48,1			
		НС	Ю	7,41	0,28	46	95,4	0	5	5	100,2			
		I зона	-	9,26	0,39	46	167,0	0	5	5	175,4			
		Ок	3	0,84	1,54	46	59,4	5	5	10	65,4			
		ПОЛ												
		II зона	-	22,1	0,21	46	214,0	0	0	0	214,0			
		III зона	-	13,7	0,11	46	69,6	0	0	0	69,6			
		IV зона	-	0,4	0,07	48	1,3	0	0	0	1,3			
			S	36,2							1348,8	0	0,0	1349
006	Комната	НС	В	5,49	0,28	48	73,8	10	5	15	84,8			
	отдыха	I зона	-	6,86	0,39	48	129,1	0	5	5	135,6			
		Ок	В	0,84	1,54	48	62,0	10	5	15	71,3			
		НС	Ю	8,58	0,28	48	115,3	0	5	5	121,0			
		I зона	-	10,7	0,39	48	201,8	0	5	5	211,9			
		НС	3	1,97	0,28	48	26,4	5	5	10	29,1			
		I зона	-	2,46	0,39	48	46,3	0	5	5	48,6			
		ПОЛ												
		II зона	-	4,1	0,21	48	41,4	0	0	0	41,4			
		III зона	-	15,6	0,11	48	82,7	0	0	0	82,7			
			S	19,7							826,5	197	667,2	1297

	1	T		ı	ı	1	l	1				<u>одолжег</u>	1110 1400	
No	Наим.	Наим.	ориентация	Ѕ,м2	k	Δt	Q,Вт			эффициент	Q*m,Вт	Обыт .	Qинф	Qрасч
пом	помещен.	ограждений.						ориент	проч	сумм			_	
007	Постирочная	НС	Ю	4,48	0,28	48	60,2	0	0	0	60,2			
		I зона	-	5,6	0,39	48	105,4	0	0	0	105,4			
		ПОЛ												
		II зона	-	5,5	0,21	48	55,6	0	0	0	55,6			
		III зона	-	6,6	0,11	48	35,0	0	0	0	35,0			
		IV зона	-	4,9	0,07	48	16,1	0	0	0	16,1			
			S	17							272,3	0		272
008	Гладильная	НС	Ю	6,29	0,28	48	84,5	0	5	5	88,7			
		I зона	-	7,86	0,39	48	148,0	0	5	5	155,4			
		НС	3	6,96	0,28	48	93,5	5	5	10	102,9			
		I зона	_	8,7	0,39	48	163,8	0	5	5	172,0			
		ПОЛ												
		II зона	-	10,1	0,21	48	102,1	0	0	0	102,1			
		III зона	-	2,3	0,11	48	12,2	0	0	0	12,2			
			S	12,4			,				633,2	0	0,0	633
009	Техническое	НС	3	4	0,28	46	51,5	5	0	5	54,1		,	
	помещение	I зона	-	5	0,39	46	90,2	0	0	0	90,2			
	·	ПОЛ					,				,			
		II зона	-	4,6	0,21	46	44,5	0	0	0	44,5			
		III зона	-	3	0,11	46	15,2	0	0	0	15,2			
			S	7,6			,				204,1	0	0,0	204
010	Техническое	НС	3	8,38	0,28	46	108,0	5	5	10	118,8		,	
	помещение	I зона	-	10,5	0,39	46	189,1	0	5	5	198,5			
		НС	С	4	0,28	46	51,5	10	5	15	59,2			
		I зона	-	5	0,39	46	90,2	0	5	5	94,7			
		ПОЛ			ŕ						,			
		II зона	-	9	0,21	46	87,2	0	0	0	87,2			
			S	9	,		,				558,4	0	0,0	558
011	Лестничный	ПОЛ									,		- , -	
	холл	III зона	-	8,6	0,11	46	43,7	0	0	0	43,7			
		IV зона	-	4,9	0,07	46	15,4	0	0	0	15,4			
			S	13,5	/		7			-	59,1	0	0,0	59

	1	1			1		1	1			111	одолже	1110 10001	
No	Наим.	Наим.	ориентация	Ѕ,м2	k	Δt	О,Вт	Добаво	чный ко	эффициент	Q*m,Вт	Обыт .	Qинф	Орасч
ПОМ	помещен.	ограждений.	1	ŕ				ориент	проч	сумм	,	_	. 1	4
012	Холл	ПОЛ												
		II зона	-	0,6	0,21	46	5,8	0	0	0	5,8			
		III зона	-	8,2	0,11	46	41,7	0	0	0	41,7			
		IV зона	-	8,4	0,07	46	26,4	0	0	0	26,4			
			S	17,2							73,9	0	0,0	74
	1	1												
013	Техническое	HC	3	15,8	0,28	46	204,0	5	5	10	224,4			
	помещение	I зона	-	19,8	0,39	46	357,2	0	5	5	375,0			
	бассейна	НС	С	20	0,28	46	257,6	10	5	15	296,2			
		I зона	-	25	0,39	46	451,0	0	5	5	473,5			
		НС	В	15,8	0,28	46	204,0	10	5	15	234,6			
		I зона	-	19,8	0,39	46	357,2	0	5	5	375,0			
		НС	Ю	1,28	0,28	46	16,5	0	5	5	17,3			
		I зона	-	1,6	0,39	46	28,9	0	5	5	30,3			
		ПОЛ												
		II зона	-	35,7	0,21	46	345,7	0	0	0	345,7			
		III зона	-	14,5	0,11	46	73,7	0	0	0	73,7			
		IV зона	-	12	0,07	46	37,7	0	0	0	37,7			
			S	62,2							2483,6	0	0,0	2484
101	Гостиная	НС	СВ	9,36	0,28	48	125,8	10	5	15	144,7			
		Ок	СВ	2,48	1,54	48	183,1	10	5	15	210,5			
		НС	В	45,4	0,28	48	609,6	10	5	15	701,1			
		Ок	В	11,8	1,54	48	869,6	10	5	15	1000,1			
		НС	ЮВ	9,36	0,28	48	125,8	5	5	10	138,4	İ		
		Ок	ЮВ	2,48	1,54	48	183,1	5	5	10	201,4	İ		
		НС	Ю	16,6	0,28	48	222,6	0	5	5	233,7			
		Ок	Ю	2,43	1,54	48	179,7	0	5	5	188,6			
			S	30,7	,-		- , .			•	2818,5	307	1039,8	3551
102	Столовая	НС	В	14,4	0,28	48	193,5	10	5	15	222,6		,	
		Ок	В	2,43	1,54	48	179,7	10	5	15	206,6			
		HC	C	4,68	0,28	48	62,9	10	5	15	72,3			
		110	S	14	0,20		~ _ ,,,				501,5	140	474,2	836
103	Кухня		~										,=	
			S	17,6								0	0,0	0

											11	юдолже	inc raon	1. 4.5
No	Наим.	Наим.	ориентация	Ѕ,м2	k	Δt	О,Вт	Добаво		эффициент	Q*m,Вт	Обыт .	Qинф	Qрасч
пом	помещен.	ограждений.		ĺ				ориент	проч	сумм			- 1	
104	Комната	HC	3	9	0,28	48	121,0	5	5	10	133,1			
	отдыха	HC	C	4,68	0,28	48	62,9	10	5	15	72,3			
	бассейна		S	14,4							205,4	144	487,7	549
105	Коридор													
			S	9,1							0,0	0	0,0	0
106	С/У													
			S	4,2								0	0,0	0
	•	•					•					•	•	
107	Лестница	НС	3	10,2	0,28	46	131,2	5	0	5	137,8			
	·	Ок	3	5,97	1,54	46	422,1	5	0	5	443,2			
			S	14,9	,		,				581,0	0	0,0	581
108	Коридор	НС	С	6,84	0,28	46	88,1	10	5	15	101,3		,	
	1 /, 1	НД	С	2,1	1,21	46	116,7	10	189	199	348,9			
		HC	3	8,89	0,28	46	114,5	5	5	10	126,0			
		320	S	3,43							576,2	0	0,0	576
	<u> </u>			-,	1		ı	I.					-,-	
109	Холл													
107	110000		S	12,6							0,0	0	0,0	0
110	Прихожая	BC	-	16,9	2,17	4	147,1	0	0	0	147,1		0,0	
110	Приножил	20	S	8,2	2,17		1 . , , 1		Ů	Ü	147,1	0	0,0	147
111	Тамбур	НС	Ю	13,7	0,28	46	176,2	0	5	5	185,0		0,0	11,
111	Тимоур	HC	3	4,68	0,28	46	60,3	5	5	10	66,3			
		НД	Ю	3,6	1,21	46	200,0	0	189	189	578,1			
		пд	S	4,4	1,21	40	200,0	U	109	109	829,4	0	0,0	829
112	Гором не	НС	3	24,6	0,28	46	316,2	5	5	10	347,9	U	0,0	029
112	Гараж на		3								,			
	2 м/м	ОК	Ю	2,8	1,54	46	198,1	5	5	10	217,9			
		НС		10,7	0,28	46	137,6	0	5	5	144,4			
		НД	Ю	13,8	1,21	46	766,8	0	194	194	2254,5	-	0.0	20.65
110		HO	S	36,5	0.20	4.6	07.4	0	 _		2964,7	0	0,0	2965
113	Техническое	НС	Ю	7,56	0,28	46	97,4	0	5	5	102,2			
	помещение	НС	В	13,7	0,28	46	176,2	10	5	15	202,6			
			S	1,4							304,9	0	0,0	305

	T	T			1		1					Т	THE TUON	
№	Наим.	Наим.	ориентация	Ѕ,м2	k	Δt	Q, В т	- ' '		эффициент	Q*m,Вт	Обыт .	Qинф	Qрасч
ПОМ	помещен.	ограждений.						ориент	проч	сумм				
114	Чаша	ПОЛ												
	бассейна	II зона	-	12,3	0,21	48	124,3	0	0	0	124,3			
		III зона	-	21	0,11	48	111,4	0	0	0	111,4			
		IV зона	-	3,5	0,07	48	11,5	0	0	0	11,5			
			S	36,8							247,1	0	0,0	247
115	Помещение	НС	3	35,9	0,28	50	502,0	5	5	10	552,2			
	бассейна	Ок	3	8,99	1,54	50	691,3	5	5	10	760,5			
		НС	С	45,4	0,28	50	635,0	10	5	15	730,3			
		Ок	С	7,29	1,54	50	560,2	10	5	15	644,2			
		НС	В	26,6	0,28	50	373,0	10	5	15	428,9			
		Ок	В	7,44	1,54	50	572,1	10	5	15	658,0			
		НС	Ю	2,88	0,28	50	40,3	0	5	5	42,3			
		Ок	Ю	2,43	1,54	50	187,1	0	5	5	196,5			
		Пт	-	95	0,24	50	1116,3	0	5	5	1172,1			
			S	60	,		,				5184,9	0	2116,8	7302
116	Сауна	НС	В	9	0,28	46	115,9	10	5	15	133,3		,	
	,	ПТ	-	4,8	0,24	46	51,9	0	0	0	51,9			
			S	4,8	ŕ		,				185,2	0	0,0	185
201	Кабинет	НС	3	21,8	0,28	48	292,5	5	5	10	321,7			
	библиотека	НС	Ю	21,7	0,28	48	291,6	0	5	5	306,2			
		Ок	Ю	4,87	1,54	48	359,3	0	5	5	377,3			
			S	23,1	,		,				1005,1	231	782,4	1557
202	Спальня 1	НС	3	3,84	0,28	48	51,6	5	5	10	56,8		,	
-		НС	Ю	17,3	0,28	48	232,2	0	5	5	243,9			
		Ок	Ю	3,98	1,54	48	294,1	0	5	5	308,8			
		НС	В	11,1	0,28	48	149,7	10	5	15	172,1			
		Ок	В	1,8	1,54	48	132,7	10	5	15	152,6			
		<u> </u>	S	21,9	- ,		,-				934,2	219	741,7	1457
203	Гардеробная		~	,-							, , , <u> </u>		, , ,	1.0,
	- ардересии		S	8,8							0,0	0	0,0	0

												одолис	THE TAOM	. 2.3
№	Наим.	Наим.	ориентация	Ѕ,м2	k	Δt	Q,Вт	Добаво	очный ко	эффициент	Q * m,Вт	Обыт .	Qинф	Qрасч
ПОМ	помещен.	ограждений.	1					ориент	проч	сумм		_	· 1	7
204	Спальня 2	HC	C	30,1	0,28	48	404,3	10	5	15	464,9			
		НД	С	3,3	1,21	48	191,3	10	5	15	220,0			
		Ок	С	2,43	1,54	48	179,7	10	5	15	206,6			
		НС	В	14,4	0,28	48	193,5	10	5	15	222,6			
		Ок	В	2,43	1,54	48	179,7	10	5	15	206,6			
			S	31,5							1320,7	315	1066,9	2073
205	Гардеробная	НС	3	8,26	0,28	48	111,0	5	5	10	122,1			
		HC	С	15	0,28	48	202,1	10	5	15	232,5			
		Ок	С	2,43	1,54	48	179,7	10	5	15	206,6			
			S	7,15	,		,				561,1	0	0,0	561
				,							,		,	
206	С/У1	НС	3	8,06	0,28	48	108,4	5	5	10	119,2			
		НС	Ю	8,26	0,28	48	111,0	0	5	5	116,5			
		110	S	10,3	0,20		111,0				235,7	0	0,0	236
			S	10,5							233,7	0	0,0	230
207	С/У2													
207	C/ 3 2		S	7,4							0,0	0	0,0	0
			5	7,4							0,0	0	0,0	0
208	Лестница	НС	3	9,06	0,28	46	116,6	5	0	5	122,5			
200	этестинца	Ок	3	2,43	1,54	46	172,2	5	0	5	180,8			
		OK	S	14,9	1,54	70	1/2,2	3	0	3	303,2	0	0.0	303
			5	17,7							303,2	U	0,0	303
209	Холл	НС	Ю	12,8	0,28	46	164,9	0	5	5	173,1			
209	AUJIJI	Ок	Ю	2,43	1,54	46	172,2	0	5	5	180,8			
		HC	В	15	0,28	46	193,7	10	5	15	222,8			
		Ок	В	2,43	1,54	46	172,2	10	5	15	198,0			
		OK	S		1,34	40	1/2,2	10	3	13		0	0.0	775
			3	26,1							774,6	0	0,0	775
210	1/	HC	מ	7.50	0.20	46	06.0	_	0	<i>E</i>	101.7			
210	Коридор	НС	3	7,52	0,28	46	96,9	5	0	5	101,7	0	0.0	102
			S	3,7							101,7	0	0,0	102
211	T.													
211	Терраса		G	110							0.0	0	0.0	0
			S	119							0,0	0	0,0	0

											116	одолжен	ine raosi	. 2.3
№	Наим.	Наим.	ориентация	Ѕ,м2	k	Δt	Q,Вт	- ' '		эффициент	Q * m,Вт	Обы т.	Qинф	Qрасч
ПОМ	помещен.	ограждений.						ориент	проч	сумм				
212	Балкон													
			S	119							0,0	0	0,0	0
301	Мастерская	НС	3	10,9	0,28	48	146,2	5	5	10	160,8			
		Ок	3	4,34	1,54	48	320,4	5	5	10	352,4			
		HC	Ю	10,8	0,28	48	145,8	0	5	5	153,1			
		Ок	Ю	4,34	1,54	48	320,4	0	5	5	336,4			
		Пт	-	44,4	0,24	48	500,9	0	5	5	526,0			
			S	34,2							1528,8	341,6	1157,0	2344
302	Лестница	HC	3	4,13	0,28	46	53,2	5	0	5	55,8			
		Ок	3	2,43	1,54	46	172,2	5	0	5	180,8			
		Пт	-	19,2	0,24	46	208,0	0	0	0	208,0			
			S	14,8							444,6	0	0,0	445
303	Венткамера	НС	3	10,2	0,28	48	137,6	5	5	10	151,4			
	-	НС	С	4,34	0,28	48	58,3	10	5	15	67,1			
		Пт	-	18,5	0,24	48	208,2	0	5	5	218,6			
			S	14,2							437,1	0	0,0	437
304	Домашний	НС	3	1,92	0,28	48	25,8	5	5	10	28,4			
	кинотеатр	НС	Ю	15,2	0,28	48	204,3	0	5	5	214,5			
	•	Ок	Ю	3,81	1,54	48	281,5	0	5	5	295,6			
		НС	В	19,2	0,28	48	258,0	10	5	15	296,8			
		Ок	Ю	2,43	1,54	48	179,7	0	5	5	188,6			
		НС	С	15,1	0,28	48	203,4	10	5	15	233,9			
		Пт	-	123	0,24	48	1384,3	0	5	5	1453,5			
			S	94,4			,				2711,3	0	0,0	2711
				,							,		,	
305	Санузел	Пт	-	5,54	0,24	48	62,5	0	0	0	62,5			
	<i>y</i>		S	4,26	- ,		,-				62,5	0	0,0	62
				.,_0		<u> </u>					,-		-,0	~ ~
306	Балкон													
230	ZWIKOII		S	2,84							0,0	0	0,0	0
			~								٠,٠	Ť	,-	<u> </u>
													Сумма	39895
			1	l			1	1					- J	-,-,-

3 ТЕПЛОСНАБЖЕНИЕ

3.1 Конструирование системы отопления

Принимаем к установке коллекторную систему отопления с лучевой разводкой с нижним подключением отопительных приборов с тупиковым движением теплоносителя см. рис. 3.1. Теплоноситель — вода с температурой 90 °C в подающей и 70 °C в обратной магистрали.

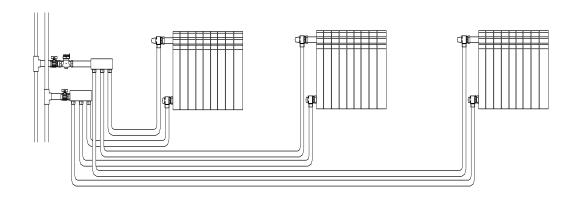


Рисунок 3.1- Схема систем отопления

Система с двухтрубными стояками и горизонтальной однотрубной лучевой или плинтусной коллекторной разводкой. Регулировка радиаторов осуществляться клапанами VT (50%) см рисунок 3.2, или клапанами VT (100%), расположенными на отопительных приборах, так и клапанами, расположенными на патрубках коллектора. В этом случае клапана оборудуются сервоприводом и регулируются по команде комнатных термостатов. Система является самой удобной в отношении возможностей регулировки, и наиболее экономичной в эксплуатации. Каждая подводка к прибору рассчитывается на пропуск теплоносителя только для одного (двухтрубка) конкретного прибора или нескольких (однотрубка). Все трубопроводы проложены в трубчатой теплоизоляции Энергофлекс.

Принимаем к установке стальной панельный радиатор MaxTerm. Предусматриваем установку радиаторов под световыми проемами. Отопительные приборы размещаем на расстоянии 160 мм от низа прибора до поверхности пола, так, чтобы были обеспечены их осмотр, регулировка и ремонт. Присоединение труб к приборам нижнее.

Отопительные приборы - радиаторы типа «МахТегт» представляют собой стальные панельные радиаторы с естественным течением воздуха греющей поверхности. Приборы снабжаются вдоль ИХ термостатическими клапанами VT.225К фирмы Valtec с термостатической головкой. Используя энергию посторонних внутренних и внешних тепловых источников, таких как солнечные лучи, отдача электроприборами, человеческим телом, термостатические головки поддерживают температуру воздуха в помещении постоянной, тем самым, позволяя избежать лишнего энергопотребления. Клапаны есть, как для двух трубного, так и одно трубного присоединения приборов см рис. 3.2.

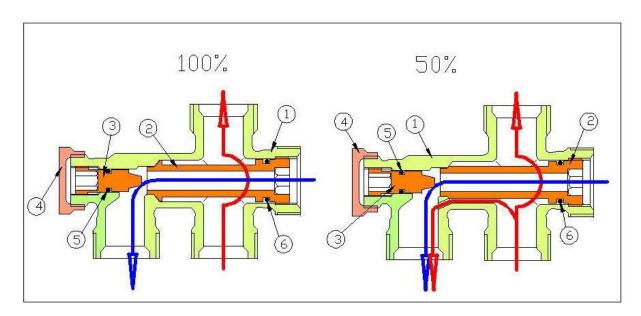


Рисунок 3.2- Клапан VT.225К фирмы Valtec.

В системе отопления расчетное циркуляционное давление определяем по формуле

$$\Delta P_{pq} = \Delta P_{H} + \Delta P_{e}, \Pi a \tag{3.1}$$

где ΔP_{H} – давление создаваемое насосом.

 ΔP_e – естественное циркуляционное давление.

Естественное циркуляционное давление ΔP_e не учитываем, так как оно очень мало по сравнению с потерями системы.

По расходу циркуляционной воды подбираем циркуляционный насос Willo Star RS30/4, и по кривым характеристик насоса находим $\Delta P_{\scriptscriptstyle H} = 2$ м = 20000 Па.

Гидравлический расчет ведем по удельным линейным потерям давления. Потери давления на параллельных участках должны быть равны, допускается невязка до 15%. Увязку производим изменением диаметров участков или регулировочными клапанами.

Расход воды на участках определяем по формуле

$$G = \frac{0.86 \cdot Q_{yq} \cdot \beta_1 \cdot \beta_2}{t_z - t_o}, \ \text{кг/ч}$$

(3.2) где Q_{yq} – тепловая нагрузка участка, Вт;

 eta_1 , eta_2 — поправочные коэффициенты, учитывающие сверх нормативное округление площади прибора, вид и место установки прибора, принимаемые по таблицам

$$\beta_1 = 1,044, \beta_2 = 1,02$$

 t_e – температура горячей воды, равная 90°С;

 t_o – температура обратной воды, равная 70°С.

Подбираем диаметр труб и находим потери давления в трубах по формуле

$$\Delta P = Rl + Z, \Pi a \tag{3.3}$$

где R_{ϕ} – потери давления на трение по длине трубопровода, Па;

Z – потери давления на местное сопротивление, вычисляемые по Гидравлический расчет системы отопления сводим в таблицу 3.1.

По результатам расчета строим эпюру циркуляционного давления см рисунок 3.3.

Таблица 3.1 Гидравлический расчет системы отопления

№ участка	Расход участка	Длина участка	Диаметр	Диаметр	Удельные потери давления	Потери давления на трение	Скорость воды	Динамическое давление	Сумма КМС	Потери давления на местное сопротивление	Потери давления на участке	Приме- чание
	G, кг/ч	ℓ, м	dн ,мм	dв ,мм	R, Па/м	R×ℓ, Па	W, M/c	(r×w2)/2, Πa	åx	Ζ, Па	R×ℓ+Z, Па	
1	2	3	4	4	5	6	7	8	9	10	11	12
				ветн	ка Г 3 этаж Г	ЦК						20000
1-2	1869	2	32	26,00	380	760	0,98	468,6	7	3280	4040	
2-3	1407,2	3,6	32	26,00	220	792	0,74	265,6	2	531	1323	
3-4	563,1	3,6	26	20,00	140	504	0,50	121,5	2	243	747	
4-5	254,4	3,0	26	20,00	35	105	0,22	24,8	6	149	254	
5-6	107,3	38,1	16	12,00	92	3517	0,26	34,0	46	1566	5083	
6-7	254,4	3,0	26	20,00	35	105	0,22	24,8	6	149	254	
7-8	563,1	3,6	26	20,00	140	504	0,50	121,5	2	243	747	
8-9	1407,2	3,6	32	26,00	220	792	0,74	265,6	2	531	1323	
9-1	1869	2	32	26,00	380	760	0,98	468,6	7	3280	4040	
											17810	
				В	етка А 3 этах	к						
5-6	20,0	22,2	16	12,00	4	99	0,05	1,2	34	40	139	4944
				В	етка Б 3 этаж	c						
5-6	63,5	39,2	16	12,00	36	1404	0,16	11,9	46	548	1953	3130
			_	В	етка В 3 этах	c						
5-6	63,5	33,1	16	12,00	36	1186	0,16	11,9	46	548	1734	3349

Же участка Раской участка Длина участка Јџиаметр участка Удельные потери давления и											COMME TOO	
1 2 3 4 5 6 7 8 9 10 11 12	№ участка			Диаметр	-	давления на				давления на местное	давления на	
Ветка А 2 этаж 5590 4-7 36,5 27,7 16 13 365 0,09 3,9 46 181 546 5044 Ветка Б 2 этаж 4-7 94,9 26,1 16 74 1931 0,23 26,6 58 1544 3475 2115 Ветка В 2 этаж 4-7 34,6 32,9 16 12 394 0,08 3,5 46 163 557 5033 Ветка Г 2 этаж 4-7 66,7 28,3 16 39 1108 0,16 13,2 46 605 1713 3877 Ветка Д 2 этаж 4-7 42,5 28,7 16 17 498 0,10 5,3 34 182 680 4910 Ветка Е 2 этаж 4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 <		G, кг/ч	ℓ, м	dн ,мм	R, Па/м	R×ℓ, Па	W, м/c	(r×w2)/2, Па		Ζ, Па		
4-7 36.5 27.7 16 13 365 0.09 3.9 46 181 546 5044 BETKA F 2 9TAW 4-7 94.9 26.1 16 74 1931 0.23 26.6 58 1544 3475 2115 BETKA B 2 9TAW 4-7 34.6 32.9 16 12 394 0.08 3.5 46 163 557 5033 BETKA Γ 2 9TAW 4-7 66.7 28.3 16 39 1108 0.16 13.2 46 605 1713 3877 BETKA J 2 9TAW 4-7 42.5 28.7 16 17 498 0.10 5.3 34 182 680 4910 BETKA E 2 9TAW 4-7 33.4 35.1 16 11 394 0.08 3.3 46 152 546 5044 BETKA A 1 9TAW 3-8 51.5 15.7 16 25 385 0.13 7.8 46 361 746 6338 BETKA Γ 1 9TAW	1	2	3	4	5	6	7	8	9	10	11	12
Ветка Б 2 этаж 4-7 94,9 26,1 16 74 1931 0,23 26,6 58 1544 3475 2115 Ветка В 2 этаж 4-7 34,6 32,9 16 12 394 0,08 3,5 46 163 557 5033 Ветка Г 2 этаж 4-7 66,7 28,3 16 39 1108 0,16 13,2 46 605 1713 3877 Ветка Д 2 этаж 4-7 42,5 28,7 16 17 498 0,10 5,3 34 182 680 4910 Ветка Е 2 этаж 4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 546 5044 Ветка А 1 этаж Това Ветка А 1 этаж Ветка С 1 этаж Ветка С 1 этаж Ветка С 1 этаж Ветка С 1 этаж Ветка С 1 этаж Ветка С 1 этаж					ветка А 2	зтаж						5590
4-7 94,9 26,1 16 74 1931 0,23 26,6 58 1544 3475 2115 BETKA B 2 9TAW 4-7 34,6 32,9 16 12 394 0,08 3,5 46 163 557 5033 BETKA Γ 2 9TAW 4-7 66,7 28,3 16 39 1108 0,16 13,2 46 605 1713 3877 BETKA J 2 9TAW 4-7 42,5 28,7 16 17 498 0,10 5,3 34 182 680 4910 BETKA E 2 9TAW 4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 546 5044 BETKA A 1 9TAW 3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 BETKA Γ 1 9TAW	4-7	36,5	27,7	16	13	365	0,09	3,9	46	181	546	5044
Ветка В 2 этаж 4-7					ветка Б 2	этаж						
4-7 34,6 32,9 16 12 394 0,08 3,5 46 163 557 5033 ВЕТКА Г 2 ЭТАЖ 4-7 66,7 28,3 16 39 1108 0,16 13,2 46 605 1713 3877 ВЕТКА Д 2 ЭТАЖ 4-7 42,5 28,7 16 17 498 0,10 5,3 34 182 680 4910 ВЕТКА Е 2 ЭТАЖ 4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 546 5044 ВЕТКА А 1 ЭТАЖ 7084 3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 ВЕТКА Г 1 ЭТАЖ	4-7	94,9	26,1	16	74	1931	0,23	26,6	58	1544	3475	2115
Ветка Г 2 этаж 4-7 66,7 28,3 16 39 1108 0,16 13,2 46 605 1713 3877 Ветка Д 2 этаж 4-7 42,5 28,7 16 17 498 0,10 5,3 34 182 680 4910 Ветка Е 2 этаж 4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 546 5044 Ветка А 1 этаж 7084 3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 Ветка Г 1 этаж					ветка В 2	жате						
4-7 66,7 28,3 16 39 1108 0,16 13,2 46 605 1713 3877 ——————————————————————————————————	4-7	34,6	32,9	16	12	394	0,08	3,5	46	163	557	5033
ВЕТКА Д 2 ЭТАЖ 4-7 42,5 28,7 16 17 498 0,10 5,3 34 182 680 4910 ВЕТКА Е 2 ЭТАЖ 4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 546 5044 ВЕТКА А 1 ЭТАЖ 7084 3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 ВЕТКА Г 1 ЭТАЖ					ветка Г 2	этаж						
4-7 42,5 28,7 16 17 498 0,10 5,3 34 182 680 4910 BETKA E 2 ЭТАЖ 4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 546 5044 BETKA A 1 ЭТАЖ 7084 3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 BETKA Γ 1 ЭТАЖ	4-7	66,7	28,3	16	39	1108	0,16	13,2	46	605	1713	3877
ВЕТКА Е 2 ЭТАЖ 4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 546 5044 ВЕТКА А 1 ЭТАЖ 7084 3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 ВЕТКА Г 1 ЭТАЖ					ветка Д 2	жате						
4-7 33,4 35,1 16 11 394 0,08 3,3 46 152 546 5044 BETKA A 1 этаж 7084 3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 ВЕТКА Г 1 этаж	4-7	42,5	28,7	16	17	498	0,10	5,3	34	182	680	4910
Ветка А 1 этаж 7084 3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 Ветка Г 1 этаж					ветка Е 2	этаж						
3-8 51,5 15,7 16 25 385 0,13 7,8 46 361 746 6338 ветка Г 1 этаж	4-7	33,4	35,1	16	11	394	0,08	3,3	46	152	546	5044
ветка Г 1 этаж					ветка А 1	этаж						7084
	3-8	51,5	15,7	16	25	385	0,13	7,8	46	361	746	6338
3-8 89,7 32,0 16 67 2138 0,22 23,8 46 1094 3232 3852					ветка Г 1	этаж						
	3-8	89,7	32,0	16	67	2138	0,22	23,8	46	1094	3232	3852

										родолжение	1a011. J.1
№ участка	Расход участка	Длина участка	Диаметр	Удельные потери давления	Потери давления на трение	Скорость воды	Динамическое давление	Сумма КМС	Потери давления на местное сопротивление	Потери давления на участке	Приме- чание
	G, кг/ч	ℓ, м	dн ,мм	R, Па/м	R×ℓ, Па	W, м/с	(r×w2)/2, Па		Ζ, Па	R×ℓ+Z, Па	
1	2	3	4	5	6	7	8	9	10	11	12
			1	вет	ка Б 1 этаж	ī			1		
3-10	193,4	18,1	26	25	453	0,17	14,3	6	86	538	
10-11	103,7	5,0	20	41	205	0,14	10,1	2	20	225	
11-12	77,8	8,7	16	52	450	0,19	17,9	2	36	485	
12-13	51,8	10,2	16	25	253	0,13	7,9	2	16	269	
13-14	25,9	9,6	16	7	68	0,06	2,0	22	44	112	3936
14-15	51,8	10,2	16	25	253	0,13	7,9	2	16	269	
15-16	77,8	8,7	16	52	450	0,19	17,9	2	36	485	
16-17	103,7	5,0	20	41	205	0,14	10,1	2	20	225	
17-8	193,4	18,1	26	25	453	0,17	14,3	6	86	538	
										3148	
								вместе	е с клапаном	7084	
				ветка В 1 э	таж						
3-18	77,8	8,7	16	52	450	0,19	17,9	6	107	557	
18-19	51,8	10,2	16	25	253	0,13	7,9	2	16	269	
19-20	25,9	9,6	16	7	68	0,06	2,0	22	44	112	5320
20-21	51,8	10,2	16	25	253	0,13	7,9	2	16	269	
21-8	77,8	8,7	16	52	450	0,19	17,9	6	107	557	
										1764	
								вместе	е с клапаном	7084	

Г						ı				родолжение	14031. 3.1
№ участка	Расход участка	Длина участка	Диаметр	Удельные потери давления	Потери давления на трение	Скорость воды	Динамическое давление	Сумма КМС	Потери давления на местное сопротивление	Потери давления на участке	Приме- чание
	G, кг/ч	ℓ, м	dн ,мм	R, Па/м	R×ℓ, Па	W, м/с	(r×w2)/2, Па	åx	Ζ, Па	R×ℓ+Z, Па	
1	2	3	4	5	6	7	8	9	10	11	12
	•	•		вет	ка Д 1 этаж						
3-8	87,9	34,2	16	64	2203	0,22	22,8	46	1051	3254	3830
				вет	ка Е 1 этаж						
3-8	113,0	34,8	16	101	3527	0,28	37,7	46	1736	5263	1821
	•	•		вет	ка И 1 этаж						
3-8	51,9	32,5	16	25	809	0,13	8,0	46	366	1175	5909
				вет	ка К 1 этаж						
3-8	6,7	34,8	16	1	22	0,02	0,1	34	5	26	7058
				вет	ка Л 1 этаж						
3-8	172,2	33,8	20	56	1893	0,24	27,7	58	1609	3501	3583
					цокольный	этаж					9731
2-9	77,6	35,8	16	51	1842	0,19	17,8	58	1032	2874	6857
				ветка Б	цокольный	этаж					
2-9	113,7	51,8	16	102	5309	0,28	38,2	46	1758	7067	2664
					цокольный						
2-9	58,2	31,6	16	31	967	0,14	10,0	46	461	1428	8303
				ветка Г	цокольный						
2-9	41,1	32,7	16	16	534	0,10	5,0	46	230	764	8967
					цокольный						
2-9	59,4	30,2	16	32	959	0,15	10,4	34	355	1314	8417
	_	1			цокольный	1	1		1	1	
2-22	41,4	21,4	16	17	354	0,10	5,1	2	10	364	
22-23	29,0	16,8	16	9	146	0,07	2,5	34	85	231	8771
23-9	41,4	21,4	16	17	354	0,10	5,1	2	10	364	
										960	
								вмест	те с клапаном	9731	
		Т			цокольный		_	1		1	
2-9	69,8	14,7	16	42	625	0,17	14,4	34	490	1114	8617

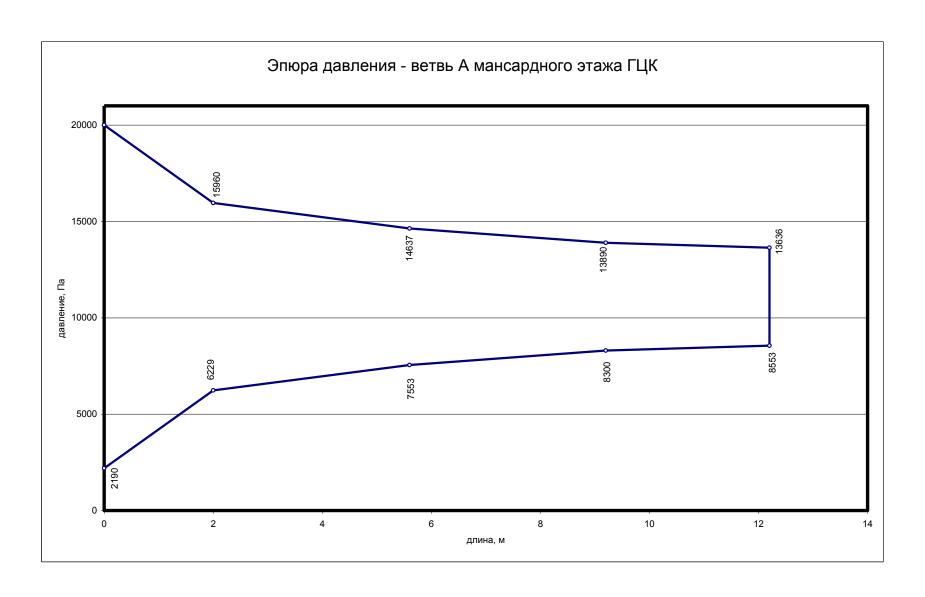


Рисунок 3.3- Эпюра циркуляционного давления системы отопления.

Тепловой расчет отопительных приборов ведется по методике, предложенной в справочной литературе.

Плотность теплового потока прибора q_{np} , определяется по формуле:

$$q_{np} = q_{\text{HOM}} \left(\frac{\Delta t_{cp}}{70}\right)^{1+n} \cdot \left(\frac{G_{np}}{360}\right)^{p} \tag{3.4}$$

где $q_{{\scriptscriptstyle HOM}}$ - номинальная плотность теплового потока для нормальных условий прибора ($\Delta t_{cp}=70\,$ и $G_{np}=360$);

 $\Delta t_{cp} = 0.5 \cdot (t_{\varepsilon} + t_0) - t_{\varepsilon}$ - температурный напор прибора, °C;

 $G_{\it np}$ - расход воды в приборе, кг/ч;

n и p - экспериментальные числовые показатели n =0,3, p =0;

На рисунках 3.4 и 3.5 показаны отопительные приборы, применяемые в проекте.

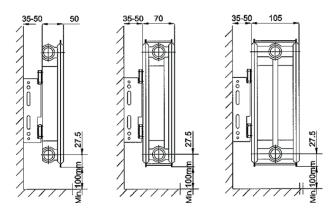


Рисунок 3.4- Отопительный прибор «МахТегт»

Рисунок 3.5- Отопительный прибор «IPM-KLIMA ТК»

Вычисляем площадь поверхности отопительного прибора по таблицам и номограммам расчет сводим его в таблицу 3.3.

Таблица 3.3 – Подбор отопительных приборов

010 558 77,6 0,38 79,0 61,7 009 204 77,6 0,38 72,4 66,1 цоколь 013 1380 113,7 1,00 90,0 78,9	75,5 70,3 69,2	55,5 50,3 49,2	0,735 0,645 0,626	Qну 1268 865 326	Тип 21 11	высота 500	1000									
001 932 77,6 0,38 90,0 61,0 010 558 77,6 0,38 79,0 61,7 009 204 77,6 0,38 72,4 66,1 цоколь 013 1380 113,7 1,00 90,0 78,9	75,5 70,3 69,2 дома Б 84,4 74,4 дома В 80,7	55,5 50,3 49,2	0,645 0,626	865	11											
010 558 77,6 0,38 79,0 61,7 009 204 77,6 0,38 72,4 66,1 цоколь 013 1380 113,7 1,00 90,0 78,9	70,3 69,2 дома Б 84,4 74,4 дома В 80,7	50,3 49,2 64,4	0,645 0,626	865	11											
009 204 77,6 0,38 72,4 66,1 цоколь 013 1380 113,7 1,00 90,0 78,9	69,2 дома Б 84,4 74,4 дома В 80,7	49,2 64,4	0,626			500										
013 1380 113,7 1,00 90,0 78,9	дома Б 84,4 74,4 дома В 80,7	64,4		326		500	900									
013 1380 113,7 1,00 90,0 78,9	84,4 74,4 дома В 80,7	64,4			11	500	400									
	74,4 дома В 80,7		цоколь дома Б 013 1380 113,7 1,00 90,0 78,9 84,4 64,4 0,896 1540 22 500 800													
013 1104 113,7 1,00 78,9 70,0	дома В 80,7	<i>E 1</i> 1 1	0,896	1540	22											
	80,7	54,4	0,716	1542	22	500	800									
		60,7	0,827	543	11	500	600									
	00.9	45,9	0,571	1440	22	500	800									
цоколь дома Г																
	85,0	65,0	0,906	496	11	500	600									
	75,0	55,0	0,726	619	11	500	600									
цоколь дома Д																
	80,0	60,0	0,815	1592	22	500	600									
цоколь,					Π		T									
	80,0	60,0	0,815	334	11	500	400									
	80,0	60,0	0,815	777	11	500	800									
цоколь , 011 1525 69,8 1,00 90,0 70,0			0.051	1702	22	500	1000									
011 1525 69,8 1,00 90,0 70,0 1 этаж д	80,0	62,0	0,851	1792	22	300	1000									
	76,5	56,5	0,753	765	11	500	800									
	66,9	46,9	0,733	935	11	500	1000									
1 этаж д		10,5	0,507	755	- 11	200	1000									
	80,0	60,0	0,815	2405	22	500	1300									
	80,0		IPM-KLIM 8/300x160	300	1600											
115 566 25,9 1,00 90,0 70,0	80,0		IPM-KLIN 8/300x160	300	1600											
115 566 25,9 1,00 90,0 70,0	80,0		IPM-KLIN			300	1600									
113 300 23,9 1,00 90,0 70,0	80,0	08/300X1600/011D					1000									
115 566 25,9 1,00 90,0 70,0	80,0		IPM-KLIM 8/300x160	300	1600											
1 этаж д	дома В															
115 566 25,9 1,00 90,0 70,0	80,0	IPM-KLIMA TK 08/300x1600/011D				300	1600									
	,-															
115 566 25,9 1,00 90,0 70,0	80,0	IPM-KLIMA TK 08/300x1600/011D				300	1600									
115 566 25,9 1,00 90,0 70,0	80,0	IPM-KLIMA TK 08/300x1600/011D				300	1600									
1 этаж д	пома Г	0	0/2008100	U/U11D			<u> </u>									
	80,0	60,0	0,815	2405	22	500	1300									
1 этаж д		,	0,013	2103		300	1300									
	75,1	55,1	0,728	1488	21	500	1100									
			•													
	67,2	47,2	0,593	1410	21	500	1100									
1 этаж дома Е																
101 1384 113,0 0,38 90,0 60,5	75,2	55,2	0,730	1896	22	500	1000									
101 1084 113,0 0,38 78,8 55,7	67,2	47,2	0,592	1829	22	500	1000									

Продолжение табл 3.3

No		Продолжение таол 3.3										14011 3.2)
111 829 51,9 0,38 90,0 61,5 70,8 52,8 0,687 1207 21 500 1000 13 305 51,9 0,38 75,4 61,2 68,3 53,8 0,644 473 11 500 600 147 6,7 1,00 90,0 70,0 80,0 60,0 0,815 180 11 500 400 18 18 172,2 0,38 90,0 74,8 82,4 64,4 0,895 1216 21 500 1000 113 988 172,2 0,38 84,2 70,4 77,3 59,3 0,802 1232 21 500 1000 114 888 172,2 0,38 90,0 65,5 72,7 54,7 0,721 1232 21 500 1000 114 888 172,2 0,38 90,0 53,0 71,5 53,5 0,699 803 11 500 900 120 236 36,5 0,38 79,0 66,5 72,7 54,7 0,721 1232 21 500 1000 120 236 36,5 0,38 79,0 66,5 72,7 54,7 0,721 1232 21 500 1000 120 236 36,5 0,38 79,0 66,5 72,7 54,7 0,721 1232 21 500 1000 240 256 36,5 0,38 79,0 66,5 72,7 54,7 0,721 1232 21 500 1000 240 256 36,5 0,38 79,0 66,5 72,7 54,7 0,721 1232 21 500 1000 240 257 36,8 34,6 0,38 75,7 53,0 36,0 36,0 38,8 11 500 1000 240 259 94,9 0,38 82,4 64,8 73,6 53,6 0,608 388 11 500 1000 240 259 94,9 0,38 75,7 56,7 3,6 3,6 0,701 98,6 11 500 1000 240 259 94,9 0,38 78,7 55,8 67,3 47,3 0,593 552 11 500 600 250 260 328 34,6 0,38 79,0 55,8 67,3 47,3 0,593 552 11 500 600 250 250 267 33,4 0,38 90,0 60,0 80,0 60,0 8,15 140 21 500 900 250 250 269 33,4 0,38 90,0 60,0 80,0 60,0 8,15 140 21 500 900 250 250 250 33,4 0,38 90,0 64,0 80,0 60,0 8,15 140 21 500 900 250 250 250 33,4 0,38 90,0 61,0 80,0 60,0 8,15 140 21 500 900 250 250 250 33,4 0,38 90,0 61,0 80,0 60,0 8,15 140 21 500 900 250 250 250 33,4 0,38 90,0 61,0 80,0 60,0 80,5 53,0 10,1 10	№пом	Qпp	Gпр		tвx	tвых	tep		f	Qну	Тип	высота	длина
13						1 этах	к дома И				•		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	111	829	51,9	0,38	90,0	51,5	70,8	52,8	0,687	1207	21	500	1000
147 6,7 1,00 90,0 70,0 80,0 60,0 0,815 180 11 500 400	113	305	51,9	0,38	75,4	61,2	68,3	50,3	0,644	473	11	500	600
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	ı	ı	1 этах	к дома К	· -		ı	T	Т	
112 1088 172,2 0,38 90,0 74,8 82,4 64,4 0,895 1216 21 500 1000 113 988 172,2 0,38 84,2 70,4 77,3 59,3 0,802 1232 21 500 1000 114 888 172,2 0,38 79,0 66,5 72,7 54,7 0,721 1232 21 500 1000 205 561 36,5 0,38 90,0 53,0 71,5 53,5 0,699 803 11 500 900 206 236 36,5 0,38 75,9 60,3 68,1 48,1 0,608 388 11 500 400 204 791 94,9 0,38 80,0 69,9 80,0 60,0 0,814 972 11 500 1000 204 591 94,9 0,38 82,4 64,8 73,6 53,6 0,701 986 <t< td=""><td>105</td><td>147</td><td>6,7</td><td>1,00</td><td>90,0</td><td>70,0</td><td>80,0</td><td>60,0</td><td>0,815</td><td>180</td><td>11</td><td>500</td><td>400</td></t<>	105	147	6,7	1,00	90,0	70,0	80,0	60,0	0,815	180	11	500	400
113 988 172,2 0,38 84,2 70,4 77,3 59,3 0,802 1232 21 500 1000 114 888 172,2 0,38 79,0 66,5 72,7 54,7 0,721 1232 21 500 1000 205 561 36,5 0,38 90,0 53,0 71,5 53,5 0,699 803 11 500 900 206 236 36,5 0,38 75,9 60,3 68,1 48,1 0,608 388 11 500 400 204 791 94,9 0,38 90,0 69,9 80,0 60,0 0,814 972 11 500 1000 204 691 94,9 0,38 75,7 60,7 68,2 48,2 0,609 971 11 500 1000 204 591 94,9 0,38 75,7 60,7 68,2 48,2 0,609 971 11 500 1000 209 428 34,6 0,38 90,0 60,2 75,1 55,1 0,727 588 11 500 600 209 328 34,6 0,38 87,7 55,8 67,3 47,3 0,593 552 11 500 600 209 328 34,6 0,38 90,0 61,2 75,6 55,6 0,736 1085 21 500 900 201 799 66,7 0,38 90,0 61,2 75,6 55,6 0,736 1085 21 500 900 202 799 66,7 0,38 90,0 61,2 75,6 55,6 0,736 1085 21 500 900 201 929 42,5 1,00 90,0 70,0 80,0 60,0 0,815 1140 21 500 900 201 929 42,5 1,00 90,0 70,0 80,0 60,0 0,815 1140 21 500 900 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 203 304 754 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 634			1							<u> </u>	1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	112	1088	172,2	0,38	90,0	74,8	82,4	64,4	0,895	1216	21	500	1000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	113	988	172,2	0,38	84,2	70,4	77,3	59,3	0,802	1232	21	500	1000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	114	888	172,2	0,38	79,0	,	,		0,721	1232	21	500	1000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			1	<u> </u>	<u> </u>						1		T
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	205	561	36,5	0,38	90,0	53,0	71,5	53,5	0,699	803	11	500	900
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	206	236	36,5	0,38	75,9		· ·		0,608	388	11	500	400
204 691 94,9 0,38 82,4 64,8 73,6 53,6 0,701 986 11 500 1000			1								1		
204 591 94,9 0,38 75,7 60,7 68,2 48,2 0,609 971 11 500 1000	204	791	94,9	0,38	90,0	69,9	80,0	60,0	0,814	972	11	500	1000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204	691	94,9	0,38	82,4	64,8	73,6	53,6	0,701	986	11	500	1000
209 428 34,6 0,38 90,0 60,2 75,1 55,1 0,727 588 11 500 600	204	591	94,9	0,38	75,7				0,609	971	11	500	1000
209 328 34,6 0,38 78,7 55,8 67,3 47,3 0,593 552 11 500 600			I	Π	Π	2 этах	к дома В			Ι	1	T	Т
2 9 1 3 3 4	209	428	34,6	0,38	90,0	60,2	75,1	55,1	0,727	588	11	500	600
202 799 66,7 0,38 90,0 61,2 75,6 55,6 0,736 1085 21 500 900 202 659 66,7 0,38 79,0 55,3 67,1 47,1 0,591 1114 21 500 900 29 42,5 1,00 90,0 70,0 80,0 60,0 0,815 1140 21 500 900 29 42,5 1,00 90,0 70,0 80,0 60,0 0,815 1140 21 500 900 201 102 33,4 0,38 90,0 82,7 86,3 66,3 0,931 110 11 500 400 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 303 437 20,0 1,00 90,0 70,0 80,0 60,0 0,815 536 11 <	209	328	34,6	0,38	78,7				0,593	552	11	500	600
202 659 66,7 0,38 79,0 55,3 67,1 47,1 0,591 1114 21 500 900 2 373 π μονα			1	1	1					1	1		<u> </u>
2 этаж дома Д 201 929 42,5 1,00 90,0 70,0 80,0 60,0 0,815 1140 21 500 900 ————————————————————————————————	-	799	66,7	0,38	90,0	61,2	75,6	55,6	0,736	1085	21	500	
201 929 42,5 1,00 90,0 70,0 80,0 60,0 0,815 1140 21 500 900	202	659	66,7	0,38	79,0				0,591	1114	21	500	900
2 этаж дома Е 210 102 33,4 0,38 90,0 82,7 86,3 66,3 0,931 110 11 500 400 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 303 437 20,0 1,00 90,0 70,0 80,0 60,0 0,815 536 11 500 600 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 754 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304			T								T		T
210 102 33,4 0,38 90,0 82,7 86,3 66,3 0,931 110 11 500 400 201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 3 этаж дома А 303 437 20,0 1,00 90,0 70,0 80,0 60,0 0,815 536 11 500 600 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 754 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100	201	929	42,5	1,00	90,0	·			0,815	1140	21	500	900
201 629 33,4 0,38 87,2 41,9 64,6 44,6 0,549 1146 21 500 900 3 этаж дома А 3 этаж дома В 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 3 этаж дома В 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 754 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591	210	102	22.4	0.39	00.0				0.021	110	11	500	400
303 437 20,0 1,00 90,0 70,0 80,0 60,0 0,815 536 11 500 600 ————————————————————————————————	-								•				
303 437 20,0 1,00 90,0 70,0 80,0 60,0 0,815 536 11 500 600 3 этаж дома Б 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 3 этаж дома Г 301 1322 107,3 0,38 90,0 60,3 75,2 55,2 0,728 1815 22 500 1100	201	629	33,4	0,38	87,2				0,549	1146	21	500	900
3 ЭТАЖ ДОМА Б 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 305 3 ЭТАЖ ДОМА Г 306 1322 107,3 0,38 90,0 60,3 75,2 55,2 0,728 1815 22 500 1100	202	407	20.0	1.00	00.0				0.015	526	1.1	500	600
304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 3 этаж дома В 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 3 этаж дома Г 301 1322 107,3 0,38 90,0 60,3 75,2 55,2 0,728 1815 22 500 1100	303	437	20,0	1,00	90,0				0,815	536	11	500	600
304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 ———————————————————————————————	304	754	63,5	0,38	90,0				0,738	1021	11	500	1100
3 этаж дома В 304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 ———————————————————————————————			•						•				
304 754 63,5 0,38 90,0 61,4 75,7 55,7 0,738 1021 11 500 1100 304 634 63,5 0,38 79,1 55,1 67,1 47,1 0,591 1073 11 500 1100 3 этаж дома Г 301 1322 107,3 0,38 90,0 60,3 75,2 55,2 0,728 1815 22 500 1100					, .	,			-,				
3 этаж дома Г 301 1322 107,3 0,38 90,0 60,3 75,2 55,2 0,728 1815 22 500 1100	304	754	63,5	0,38	90,0				0,738	1021	11	500	1100
301 1322 107,3 0,38 90,0 60,3 75,2 55,2 0,728 1815 22 500 1100	304	634	63,5	0,38	79,1	55,1	67,1	47,1	0,591	1073	11	500	1100
				<u> </u>	<u> </u>	3 этах	к дома Г	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	
301 1022 107,3 0,38 78,7 55,8 67,2 47,2 0,593 1724 22 500 1100	301	1322	107,3	0,38	90,0	60,3	75,2	55,2	0,728	1815	22	500	1100
	301	1022	107,3	0,38	78,7	55,8	67,2	47,2	0,593	1724	22	500	1100

В помещениях с плиточным покрытием проектируем водяной теплый пол с температурой теплоносителя с температурой 35 °C в подаче и 30 °C в обратке. С помощью номограмм определим теплоотдачу квадратного метра теплого пола с шагом труб 200 мм. Тип укладки – змейка.

$$q_{200} = 55 \text{ BT/M}^2$$

Температура на поверхности пола при шаге труб 200 мм составит 24 °C которая не превышает максимальную (35°C).

Теплоотдача теплых полов в различных помещениях определяется по формуле

$$Q_{m.n.} = q_{uaz} \cdot F \tag{3.5}$$

Расчет тепловой нагрузки пола и исходные данные для гидравлического расчета сведены в таблицу 3.4.

TD ~ 3 4	T)	U
$1 \circ \Omega \Pi \Pi \Pi \Omega \downarrow \Lambda$	Ρασιίοτ τοππορ	ΛΙΙ ΠΩΓ Μ ΥΙΩΙΛΙΙ ΠΛΠΩ
таолица э.+		ой нагрузки пола
1		· I J

№ пом	шаг	q	F	Q	L
003	200	55	8,84	486	49,5
004	200	55	2,54	139	14,2
106	200	55	2,02	111	11,3
115a	200	55	13,36	735	74,8
1156	200	55	13,84	761	77,5
206	200	55	4,39	242	24,6
207	200	55	3,66	201	20,5
305	200	55	3,11	171	17,4

Расход теплоносителя в петле рассчитывается для подбора окончательного диаметра труб и вычисления гидравлических потерь.

Максимальная скорость движения теплоносителя в трубах теплого пола должна лежать в пределах от 0,15 до 1 м/с. Принимаем трубу с наружным диаметром 16, как менее дорогую. Длину петель определяем на основании чертежа раскладки труб.

Потери давления в петлях теплого пола определяются для подбора насосного оборудования и расчета предварительной настройки

вентилей коллектора. Общие регулировочных потери петле складываются из линейных (от трения) потерь и потерь давления на преодоление местных сопротивлений (изменение направления, диаметра, Линейные характеристик потока). потери В петлях находим ПО таблицам. Гидравлический гидравлическим расчет пола выполняется аналогично расчету системы отопления и сводится в таблицу 3.5

Суммируя линейные и местные потери, получаем полное гидравлическое сопротивление петли. Потери давления в одной петле не должны превышать 20000 Па. При соблюдении данного ограничения не возникнет опасность появления «запертой» петли, когда увеличение мощности насоса пропорционально увеличивает гидравлические потери, что вновь вызывает необходимость повышения мощности насоса.

Таблица 3.5 Гидравлический расчет системы теплых полов.

№ пом	G	L	d	R	V	RL	КМС	Z	Р	Ркл
003	84	49,5	16	59	0,21	2938	44	918	3856	8644
004	24	14,2	16	6	0,06	88	44	75	163	12337
106	19	11,3	16	4	0,05	46	44	47	93	12407
115a	126	74,8	16	123	0,31	9227	44	2065	11292	1208
115б	131	77,5	16	132	0,32	10256	44	2232	12488	12
206	42	24,6	16	17	0,10	418	44	229	647	11853
207	35	20,5	16	12	0,09	251	44	159	410	12090
305	29	17,4	16	9	0,07	152	44	109	261	12239
	490									

Давление Ркл настраиваем на клапане установленном в коллекторе теплого пола на обратном трубопроводе.

Регулировка температуры теплоносителя осуществляется в специальном насосно-смесительном блоке установленном в помещении котельной.

3.2 Горячее водоснабжение

Приготовление горячей воды Т3, Т4 осуществляется в бойлере косвенного нагрева, расположенным в котельной на цокольном этаже Трубопроводы водоснабжения монтируются здания. ИЗ стальных водогазопроводных оцинкованных легких труб по ГОСТ 3262-75, санитарно-техническим приборам подводки К выполнены ИЗ труб ПНД "Питьевая" ∅15мм ГОСТ полиэтиленовых 18599-2001. Магистральные трубопроводы и стояки систем Т3, Т4 прокладываются в тепловой изоляции "Термофлекс". Места проходов трубопроводов сетей (стены, систем через ограждающие конструкции перекрытия) выполняются в защитных втулках.

Расчет систем горячего водоснабжения

U = 8 чел — число жителей;

N = 15 пр — число приборов.

Hg = 30 м - гарантированный напор в наружной водопроводной сети;

 $q_0^h = 0,18 \ \pi/c - ceкундный расход горячей воды прибором с наибольшим расходом Т3;$

 $q_{0,hr}^h = 200 \text{ л/ч} - \text{часовой расход горячей воды одним прибором Т3;}$

 $q_{hr,u}{}^{h} = 10$ л - норма расхода воды Т3 в час наибольшего водопотребления;

 $q_u^h = 120 \ л$ - норма расхода воды в сутки наибольшего водопотребления Т3.

 $K_{\text{сут}} = 1,2$ — коэффициент суточной неравномерности

Наибольший суточный расход воды Т3 найдем по формуле

$$q_u = \frac{q_u^h \cdot U}{1000}, \, \text{M}^3/\text{cyT}$$
 (3.6)

$$q_u = \frac{120 \cdot 8}{1000} = 0.96 \text{ m}^3/\text{cyt}$$

Максимальный секундный расход воды находим по формуле

$$q_0 = 5q_0^h \cdot \alpha , \quad \pi/c \tag{3.7}$$

Вероятность одновременного действия приборов вычисляем по формуле

$$P = \frac{q_{hr,u}^h \cdot U}{3600 q_0^h \cdot N} \tag{3.8}$$

$$P = \frac{10 \cdot 8}{3600 \cdot 0.18 \cdot 15} = 0,008$$

 $NP = 0.008 \cdot 15 = 0.123$ следовательно $\alpha = 0.37$

Максимальный секундный расход воды Т3 определим по формуле 3.7

$$q_0 = 5 \cdot 0.18 \cdot 0.37 = 0.333$$
 л/с

Для горячей воды

$$p_{hr} = \frac{3600 \cdot 0,008 \cdot 0,18}{200} = 0,026$$

$$NP_{hr} = 0.026 \cdot 15 = 0.39 \implies \alpha = 0.602$$

$$q_{hr} = 0.005 \cdot 200 \cdot 0.602 = 0.602 \text{ m}^3/\text{y}$$

Подбираем диаметры труб на расчетных участках, определяем потери напора на трение по длине каждого расчетного участка, потери напора на местные сопротивления, которые принимаем в размере 30 % от общих потерь напора, находим требуемый напор в сети водопровода.

Гидравлический расчет системы горячего водоснабжения сведен в таблицу 3.6

Таблица 3.6 - Гидравлический расчет внутреннего водопровода

Расчетный	L, м	N	P	NP	α	q_0 ,	d,	V,	ei,	1,3le _i ,
участок						л/с	MM	M/C	мв	M
									ст/м	
1	5,5	1	0,008	0,007	0,2	0,180	15	1,3	0,31	2,14
2	2,1	2	0,008	0,014	0,2	0,180	15	1,3	0,31	0,7
3	3,1	3	0,008	0,022	0,217	0,195	15	1,4	0,31	1,86
4	4,3	8	0,008	0,052	0,243	0,265	20	1,0	0,14	0,80
5	1,05	11	0,008	0,071	0,213	0,282	20	1,1	0,12	0,2
6	8,4	13	0,008	0,092	0,232	0,299	25	0,7	0,07	0,76
7	0,5	15	0,008	0,37	0,333	0,336	25	0,4	0,08	0,01
										2,2

На циркуляцию устанавливается латунный циркуляционный насос Grundfos UP 20-14BX см. рисунок 3.6.

Рисунок 3.6 - Циркуляционный насос Grundfos UP 20-14 BX

3.3 Расчет и подбор оборудования котельной

Котел работает на нагрев воды системы радиаторного отопления, отопления теплого пола и на нужды бойлера (по приоритету).

Котел выбирается по максимальной потребляемой мощности систем отопления и вентиляции с 10% запасом. Подбираем котел Феролли 56 F1 мощностью 56 кВт. Присоединение дымохода — 180мм КПД — 92%.

Комплектуем котел Ferroli Pegasus F1 56 емкостным бойлером BF на 300 литров с блоком приоритета. Компоновка котла с бойлером показана на рисунке 3.7.

Подбор мембранного расширительного бака Объем расширительного бака определяется по формуле

$$V = \frac{V_c}{H} \cdot A, \ \Pi \tag{3.9}$$

где V_c – объем воды в системе отопления, л;

А – процент теплового расширения воды;

A=0.03 при температуре воды 80° C;

Н – КПД расширительного бака

$$H = \frac{P_{v} - P_{c}}{P_{v} + 1} \tag{3.10}$$

где P_v – давление срабатывания предохранительного клапана, бар;

 ${\bf P}_{\rm s}$ — начальное давление расширительного бака, бар;

$$H = \frac{3-1}{3+1} = 0.5$$

Объем воды в системе отопления V_c =840 л

По формуле 5.1 определяем необходимый объем бака:

$$V = \frac{840}{0.5} \cdot 0.03 = 50.4 \,\text{n}$$

Выбираем расширительный бак reflex N 60 с объемом воды 60 л

Рисунок 3.7 - Компоновка котла Феролли 56 F1 с бойлером в помещении котельной.

Подбор запорной и регулирующей арматуры

В качестве запорной арматуры в системе отопления применяем шаровые краны фирмы VALTEC модельного ряда BASE.

Для увязки веток применяем ручные балансировочные клапана фирмы VALTEC на коллекторах. Дополнительно выбираем ручные регулировочные вентиля для радиаторов VALTEC.

Подбор воздухоудаляющих устройств

На радиаторах устанавливаем ручные воздухоотводчики. На коллекторах устанавливаем автоматические воздухоотводчики фирмы VALTEC, модель VT.502

Рисунок 3.9 - Автоматический воздухоотводчик VALTEC

1 — обойма золотника (ABS); 2 — пружина клапана (нержавеющая сталь); 3 — золотник (NBR); 4 — колпачок клапана (латунь или ABS); 5 — воздушный ниппель (латунь); 6 — прокладка (NBR); 7 — крышка корпуса (латунь); 8 — ограничительная пластина (нержавеющая сталь); 9 — поплавок (полипропилен); 10 — корпус (латунь); 11 - коромысло (ABS); 12 — корпус отсекающего клапана; 13 — золотник (ABS); 14 — стопорно-уплотнительное кольцо (NBR); 15 — пружина (нержавеющая сталь).

Выбор теплоизоляции трубопроводов

Принимаем трубчатую теплоизоляцию Энергофлекс толщиной 6 мм. Теплопроводность λ =0,039Bт/м^{2.0}C.

Подбор коллекторов на подаче

Принимаем к установке коллектора фирмы VALTEC, на подающую линию с регулировочными кранами VT.560.n, на обратную линию с отсекающими кранами VT.580.n Коллектора выпускаются на: 2,3,4 выхода, нужное количество выходов компонуем.

Рисунок 3.10- Коллектор VALTEC VT.560.n

Выбор насосного смесительного узла

Принимаем к установке насосно-смесительный блок для систем напольного отопления фирмы Oventrop арт. № 115 10 00.

работа на 2 – 8 отопительных контуров;

диапазон настройки терморегулятора 20-50°C;

диапазон настройки электрического накладного регулятора 10-90°C;

Насосно-смесительный блок состоит из:

- соединительных патрубков
- трехходового распределительного вентиля
- терморегулятора с накладным датчиком
- электрического накладного регулятора для защиты насоса от перегрева

Насосно-смесительный блок используется для подключения системы теплого пола к системе отопления. Трехходовой вентиль регулирует

установленную температуру подачи, температура контролируется накладным термодатчиком. Насос фирмы Grundfos альфа с частотным регулированием, изменяет значение напора в зависимости от потребности системы.

Рис. 3.11 Насосно-смесительный блок Oventrop

4. ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ ВОЗДУХА

4.1 Определение требуемых воздухообменов

Расчет воздухообмена котельной и гаража определим по нормируемой кратности воздухообмена по формуле:

$$L = n \cdot V, \, M^3 / vac \tag{8.1}$$

где n — нормируемая кратность воздухообмена;

V – внутренний объём помещения, в M^3 .

Расчет воздухообмена котельной приведен в табл. 8.1.

В помещении бассейна определение воздухообмена ведется исходя из уравнения воздушного баланса по влаге:

$$L_{an} = \frac{1000 \cdot W}{p \cdot \left(d_y - d_n\right)}, \, M^3 / uac \tag{8.2}$$

где p – плотность воздуха, ($p = 1.2 \ \kappa e/m^3$).

W – избытки влаги в помещении бассейна, $\kappa 2/4$;

 $d_y; d_n$ — влагосодержание соответственно удаляемого из помещения и поступающего в помещение воздуха, г/кг.

Количество влаги, испарившейся с поверхности некипящей воды W, $\kappa \Gamma / \Psi$, в инженерных расчетах определяется эмпирической зависимостью:

$$W = (a + 0.131 \cdot \nu_e) (p_{noe} - p_{osp}) \frac{101,325}{B} F$$
 (8.3)

Где a — коэффициент, зависящий от температуры поверхности испарения $t_{n.u}, \ a=0.02$

 $p_{nos}, p_{o\kappa p}$ — парциальное давление водяного пара, соответственно при температуре поверхности испарения жидкости при полном насыщении и в окружающем воздухе, определяется по I-d диаграмме, $p_{nos}=3,75\kappa\Pi a\;p_{o\kappa p}=1,9\kappa\Pi a\;;$

 $\upsilon_{_{\!\it g}}$ — скорость воздуха над поверхностью испарения, $\upsilon_{_{\!\it g}}=0.2\,{\rm m/c};$ F — площадь поверхности испарения, $36.9\,{\rm m}^2.$

$$W = (0.02 + 0.131 \cdot 0.2)(3.75 - 1.9) \cdot \frac{101.325}{99.0} \cdot 36.9 = 3.231 \frac{\kappa z}{vac}$$

Для теплого периода года:

$$L_{_{\!\mathit{BJR}}} = \frac{1000 \cdot 3,231}{1,2 \cdot \left(12,8-11,2\right)} = 1683 \,\mathrm{M}^3 \,/\, \mathrm{vac}$$

Для холодного периода года:

$$L_{_{B.\Pi}} = \frac{1000 \cdot 3,231}{1,2 \cdot (12,8-11,2)} = 218 \, \text{m}^3 / \text{vac}$$

Принимаем расход воздуха по теплому периоду $L_{en} = 1683 \ m^3 / vac$

Тогда пересчитаем d_y для зимнего периода $d_y = \frac{1000 \cdot 3,231}{1,2 \cdot 1683} + 0,5 = 2,21$ г/кг, что при 25 С дает относительную влажность в 17 %. Поэтому для экономии энергоресурсов целесообразно оснастить системы вентиляции П1 и В1 датчиком психрометрическим.

Из помещения кухни вытяжка осуществляется через систему BE5 в размере 90 м³/ч, а из сан узлов (BE4, BE7, BE8, BE9, BE10) в размере 50 м³/ч. Вытяжка из помещения комнаты отдыха душевой BE3 нормируется паспортом установленной душевой кабиной в размере 75 м³/ч. Расчет воздухообмена кухни и сан. узлов приведен в табл. 8.1.

Расчетный воздухообмен, Площадь, Объём. Нормируемая кратность, 1/ч Помещение $M^3/4$ \mathbf{M}^2 \mathbf{M}^3 Приток Вытяжка Приток Вытяжка 17,6 49,4 $90 \text{ m}^3/\text{q}$ 90 Кухня Сан.узел 50 m^3 0 50 $36,9m^2$ Бассейн По расчету = Притоку 1683 1683 75 м³/душ 75 Душевая кабину Гараж на 2 м/м 36,54 99 1 99 18.31 61 Котельная 1

Таблица 4.1 – Расчетный воздухообмен

4.2 Выбор принципиальных решений и конструирование

В проекте предусмотрена естественная вытяжка из котельной, кухни, санузлов, гаража и искусственная вытяжка из помещений бассейна (В1).

Системы приточной механической вентиляции проектируются в помещении бассейна (П1).

Приток воздуха в помещение котельной через жалюзийную решетку, устанавливаемой в нижней части дверного проема. Вытяжка из помещения котельной естественная через вытяжные каналы BE1.

Удаление загрязненного воздуха из помещений санузлов, кухни, гаража обеспечивается системами естественной вытяжной вентиляции BE2, BE3, BE4, BE5, BE6, BE7, BE8, BE9, BE10. Вентиляционные каналы

для естественной вытяжки выполняются в толще стен. Приточная механическая система вентиляции предусмотрена для подачи наружного обработанного воздуха в рабочую зону помещения бассейна включение вентиляции осуществляется по надобности хозяином с пульта и по психрометрическому датчику. Приточный воздух из воздуховодов подается в помещения вертикальной рассосредоточеными струями в направлении рабочей зоны через воздухораспределители типа ВРП а-3, имеющие клапаны регулирования расхода воздуха. Так как в данных помещениях будет установлен подшивной потолок типа «Армстронг», воздуховоды механических систем вентиляции запроектируем круглого сечения.

4.3 Аэродинамический и гидравлический расчеты

В качестве расчетной температуры наружного воздуха в аэродинамическом расчете вытяжных систем с естественным побуждением движения воздуха принимается $t_H = +5$ °C.

Расчетное гравитационное давление, Па, определяют по формуле:

$$P_{pacn} = h \cdot (\rho_{hap} - \rho_{gh}) \cdot g \tag{4.4},$$

где h - высота воздушного столба, м;

 $\rho_{{}_{\it Hap}}; \rho_{{}_{\it BH}}$ - плотность наружного воздуха при t = 5 °C и внутреннего воздуха, кг/м³;

g - ускорение свободного падения, $g = 9.81 \text{ м/c}^2$.

Величину запаса при определении потери давления в основном расчетном направлении принимают от 5 до 10%, т.е.

$$5 \le \frac{P_{pacn} - (Rl + Z)_{cucm}}{P_{pacn}} \cdot 100 \le 10 \%$$

Результаты расчета сведены в табл. 4.2.

Потери давления Δp , Πa , на участке воздуховода длиной l, м, определяют в соответствии с формулой (4.5):

$$\Delta p = R \cdot l + Z, \Pi a \tag{4.5}$$

где R – удельная потеря давления на 1 м стального воздуховода, Па/м;

Z – потеря давления в местных сопротивлениях.

Потерю давления в местных сопротивлениях Z, в Па определяем по номограмме. Нумерацию участков магистрали обычно начинают с участка с меньшим расходом. Расход, длину и результаты последующих расчетов заносят в табл. 8.2. Определяют удельную потерю давления на трение по номограммам, составленных для стальных круглых воздуховодов.

Расчет механических систем вентиляции П1, В1 сводим в таблицу 4.3.

4.4 Расчет и подбор оборудования

Принимаем к установке перфорированные воздухораспределители ВРП-А-3 для потолков типа АМСТРОНГ см. рисунок 8.1.

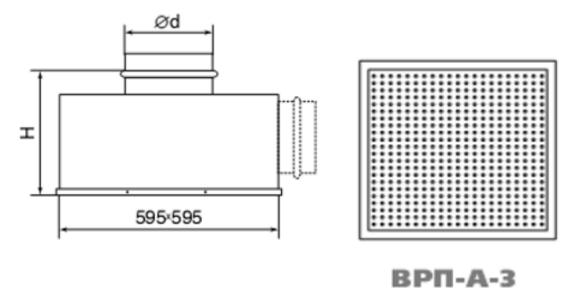


Рисунок 8.1 Воздухораспределитель ВРП-А-3

По номограммам определяем, что реальная скорость приточной струи бассейна через воздухораспределитель ВРП-А-3 не превышает допустимую.

По программе расчета ЛОТ ВЕНТ СЕРВИС принимаем к установке в системе П1 приточную камеру ВКК – 450д, Система комплектуется фильтром ФКК, калорифером ВВП, вентилятором и шумоглушителем.

Таблица 4.2 Аэродинамический расчет систем естественной вентиляции.

таолица	7.2	Тородинак	I		M ecreciber	IIION BCITTUD	лции.				D	0.400
					BE1						Ррасп=	9,138
	_				_						_	
№ уч	l, M	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1	2	3	4	5	6	7	8	9	10	11	12	13
1'		61	270x140	184	0,026703	0,63	Рреш=	6	полож Д	4	0,24	6,97
1	13,5	61	270x140	184	0,026703	0,63	0,05	1,3	0,88	2,2	0,24	1,41
											Рсист=	8,38
											невязка, %	8,35
					BE2						Ррасп=	9,138
№ уч	І, м	L, куб.м/ч	ахв, мм	дэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	KMC	Рдин	dРуч
1	2	3	4	5	6	7	8	9	10	11	12	13
1'		50	270x140	184	0,026703	0,52	Рреш=	6,8	полож Е	4	0,16	7,45
1	13,5	50	270x140	184	0,026703	0,52	0.04	1,3	0,70	2,2	0,16	1,06
	,				·	•		· · · · · · · · · · · · · · · · · · ·	·	,	Рсист=	8,51
											невязка, %	6,89
					BE3						Ррасп=	9,138
					_							-,
№ уч	І, м	L, куб.м/ч	ахв, мм	дэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1	2	3	4	5	6	7	8	9	10	11	12	13
1'		75	270x140	184	0,026703	0,78	Рреш=	4,5	В	4	0,37	5,96
1	13,5	75	270x140	184	0,026703	0,78	0,08	1,4	1,51	2,2	0,37	2,32
	,				,			,		,	Рсист=	8,28
											невязка, %	9,43
					BE4						Розси-	9,138
Nova	1 54	1 10/5 14/11	OVD MIL	down was	+	V 14/0	В По/м	n	R*I	КМС	Ррасп=	•
№ уч 1	l, м 2	L, куб.м/ч 3	ахв, мм 4	<u>дэкв, мм</u> 5	f, кв.м 6	v, м/с 7	R, Па/м 8	<u>n</u> 9	10	11	Рдин 12	<u>dРуч</u> 13
<u> </u> 1'		50	270x140	184	0,026703	0,52		<u>9</u> 6,8		4	0,16	7,45
1	13,5	50	270x140 270x140	184	0,026703	0,52	Рреш= 0,04	1,3	полож E 0,70	2,2	0,16	1,06
I	13,3	30	21 UX 14U	104	0,020703	0,32	0,04	1,3	0,70	۷,۷	· · · · · · · · · · · · · · · · · · ·	
											Рсист=	8,51
											невязка, %	6,89

Продолжение табл 4.2

				1								жение таол
					BE5						Ррасп=	6,8366
№ уч	І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1	2	3	4	5	6	7	8	9	10	11	12	13
1'		90	270x270	270	0,057254	0,44	Рреш=	5,3	полож В	4	0,11	5,76
1	10,1	90	270x270	270	0,057254	0,44	0,02	1,2	0,24	2,2	0,11	0,49
											Рсист=	6,25
											невязка, %	8,56
					BE6						Ррасп=	6,8366
											·	-
№ уч	І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1	2	3	4	5	6	7	8	9	10	11	12	13
1'		99	270x270	270	0,057254	0,48	Рреш=	5,1	полож Б	4	0,14	5,65
1	10,1	99	270x270	270	0,057254	0,48	0,02	1,2	0,24	2,2	0,14	0,55
						·				-	Рсист=	6,20
											невязка, %	9,30
					BE7						Ррасп=	6,8366
											'	,
№ уч	І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
1	2	3	4	5	6	7	8	9	10	11	12	13
1'		50	270x140	184	0,026703	0,52	Рреш=	4,7	полож Д	4	0,16	5,35
1	10,1	50	270x140	184	0,026703	0,52	0,04	1,3	0,53	2,2	0,16	0,88
						•	,	ŕ		•	Рсист=	6,23
											невязка, %	8,85
												•
					BE8						Ррасп=	4,3998
		1	L		טבט						i paon-	7,0000

Продолжение табл 4.2

1	ı	1				1		1		продол	іжение таол 4.
І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
2	3	4	5	6	7	8	9	10	11	12	13
	50	270x270	270	0,057254	0,24	Рреш=	3,8	полож Б	4	0,04	3,94
6,5	50	270x270	270	0,057254	0,24	0,01	1,2	0,08	2,2	0,04	0,16
										Рсист=	4,10
										невязка, %	6,88
•				BE9						Ррасп=	4,3998
І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
2	3	4	5	6	7	8	9	10	11	12	13
	50	270x270	270	0,057254	0,24	Рреш=	3,8	полож Б	4	0,04	3,94
6,5	50	270x270	270	0,057254	0,24	0,01	1,2	0,08	2,2	0,04	0,16
										Рсист=	4,10
										невязка, %	6,88
				BE10						Ррасп=	2,166
І, м	L, куб.м/ч	ахв, мм	dэкв, мм	f, кв.м	v, m/c	R, Па/м	n	R*I	КМС	Рдин	dРуч
2	3	4	5	6	7	8	9	10	11	12	13
	50	270x270	270	0,057254	0,24	Рреш=	1,7	полож А	4	0,04	1,84
3,2	50	270x270	270	0,057254	0,24	0,01	1,2	0,04	2,2	0,04	0,12
										Рсист=	1,96
										невязка, %	9,64
	2 6,5 6,5	2 3 50 6,5 50 I, M L, Ky6.M/4 2 3 50 6,5 50 I, M L, Ky6.M/4 2 3 50	2 3 4 50 270x270 6,5 50 270x270 1, м L, куб.м/ч ахв, мм 2 3 4 50 270x270 6,5 50 270x270 1, м L, куб.м/ч ахв, мм 2 3 4 50 270x270	2 3 4 5 50 270x270 270 6,5 50 270x270 270 I, M L, куб.м/ч ахв, мм dэкв, мм 2 3 4 5 50 270x270 270 6,5 50 270x270 270 I, м L, куб.м/ч ахв, мм dэкв, мм 2 3 4 5 50 270x270 270	2 3 4 5 6 50 270x270 270 0,057254 6,5 50 270x270 270 0,057254 ВЕ9 I, м L, куб.м/ч ахв, мм dэкв, мм f, кв.м 2 3 4 5 6 50 270x270 270 0,057254 6,5 50 270x270 270 0,057254 BE10 I, м L, куб.м/ч ахв, мм dэкв, мм f, кв.м 2 3 4 5 6 50 270x270 270 0,057254	2 3 4 5 6 7 50 270x270 270 0,057254 0,24 6,5 50 270x270 270 0,057254 0,24 BE9 I, M L, куб.м/ч ахв, мм dэкв, мм f, кв.м v, м/с 2 3 4 5 6 7 50 270x270 270 0,057254 0,24 6,5 50 270x270 270 0,057254 0,24 BE10 I, м L, куб.м/ч ахв, мм dэкв, мм f, кв.м v, м/с 2 3 4 5 6 7 50 270x270 270 0,057254 0,24	2 3 4 5 6 7 8 50 270x270 270 0,057254 0,24 Рреш= 6,5 50 270x270 270 0,057254 0,24 0,01 ВЕ9 1, м L, куб.м/ч ахв, мм дэкв, мм f, кв.м v, м/с R, Па/м 2 3 4 5 6 7 8 50 270x270 270 0,057254 0,24 Рреш= 6,5 50 270x270 270 0,057254 0,24 О,01 ВЕ10 1, м L, куб.м/ч ахв, мм дэкв, мм f, кв.м v, м/с R, Па/м 2 3 4 5 6 7 8 50 270x270 270 0,057254 0,24 О,01	2 3 4 5 6 7 8 9 50 270x270 270 0,057254 0,24 Ppeш= 3,8 6,5 50 270x270 270 0,057254 0,24 0,01 1,2 BE9 I, м L, куб.м/ч ахв, мм дэкв, мм f, кв.м v, м/с R, Па/м п 2 3 4 5 6 7 8 9 50 270x270 270 0,057254 0,24 Ppeш= 3,8 6,5 50 270x270 270 0,057254 0,24 Ppeш= 3,8 6,5 50 270x270 270 0,057254 0,24 O,01 1,2 BE10 I, м L, куб.м/ч ахв, мм дэкв, мм f, кв.м v, м/с R, Па/м п 2 3 4 5 6 7 8 9 50 270x270 270 0,057254 0,24 Ppeш= 1,7	2 3 4 5 6 7 8 9 10 50 270x270 270 0,057254 0,24 Ppeш= 3,8 полож Б 6,5 50 270x270 270 0,057254 0,24 0,01 1,2 0,08 BE9 I, M L, куб.м/ч ахв, мм dэкв, мм f, кв.м v, м/с R, Па/м n R*1 2 3 4 5 6 7 8 9 10 50 270x270 270 0,057254 0,24 Ppeш= 3,8 полож Б 6,5 50 270x270 270 0,057254 0,24 0,01 1,2 0,08 BE10 I, м L, куб.м/ч ахв, мм dэкв, мм f, кв.м v, м/с R, Па/м n R*1 2 3 4 5 6 7 8 9 10 50 270x270	2 3 4 5 6 7 8 9 10 11 ————————————————————————————————	I, M

Таблица 4.2 Аэродинамический расчет систем механической вентиляции

				Аэроди	намика П1						
№ уч	1, м	L, куб.м/ч	d, мм	f, кв.м	v, m/c	R, Па/м	n	R*l	Z	Рдин	dРуч
1'		240	200	0,031415	2,12	Рреш=		0,00	5	2,70	5,00
1	2,2	240	200	0,031415	2,12	0,5	1	1,10	2	2,70	3,10
2	1,4	480	200	0,031415	4,24	1,2	1	1,68	0,6	10,81	2,28
3	1,8	720	315	0,077929	2,57	0,2	1	0,36	0,8	3,95	1,16
4	1,4	960	315	0,077929	3,42	0,4	1	0,56	0,8	7,03	1,36
5	3,8	1200	355	0,098977	3,37	0,3	1	1,14	1,4	6,81	2,54
6	1,8	1440	450	0,159038	2,52	0,5	1	0,90	0,6	3,80	1,50
7	32,6	1683	450	0,159038	2,94	0,5	1	16,30	11	5,18	27,30
											44,24
		T	Аэрс	одинамика В1	основное направлени	e			_		T
№ уч	l, м	L, куб.м/ч	d, мм	f, кв.м	v, m/c	R, Па/м	n	R*l	Z	Рдин	dРуч
1'		240	200	0,031415	2,12	Рреш=	0,30	0,00	5	2,70	5,30
1	2,2	240	200	0,031415	2,12	0,5	1,01	1,11	2	2,70	3,11
2	1,4	480	200	0,031415	4,24	1,2	1	1,68	0,6	10,81	2,28
3	1,8	720	315	0,077929	2,57	0,2	1	0,36	0,8	3,95	1,16
4	0,7	960	315	0,077929	3,42	0,4	1	0,28	3,8	7,03	4,08
5	15,7	1683	450	0,159038	2,94	0,5	1	7,85	8	5,18	15,85
											31,78
			Аэроди	інамика В1 вто	ростепеное направле	ние					
										Ррасп	15,93
№ уч	1, м	L, куб.м/ч	d, мм	f, кв.м	v, m/c	R, Па/м	n	R*l	Z	Рдин	dРуч
1'		240	200	0,031415	2,12	Рреш=	0	0,00	5	2,70	5,00
1	2,2	240	200	0,031415	2,12	0,5	1	1,10	2	2,70	3,10
2	3,5	480	200	0,031415	4,24	1,2	1	4,20	0,6	10,81	4,80
3	0,3	720	450	0,159038	1,26	0,1	1	0,03	3	0,95	3,03
											15,93

5. ВОДОСНАБЖЕНИЕ И ВОДООТВЕДЕНИЕ

5.1 Холодное водоснабжение

Система хозяйственно-питьевого холодного водоснабжения B1 осуществляется от централизованной наружной сети водоснабжения и имеет тупиковую схему. Источником водоснабжения проектируемого здания является централизованная система водоснабжения города. Подключение внутренней системы проектируемого дома осуществляется от существующей кольцевой сети водопровода по одному вводу Ду 50. Для учета расхода воды предусмотрен счетчик холодной воды Ду 20, устанавливаемый В помещении постирочной. Трубопроводы водоснабжения монтируются ИЗ стальных водогазопроводных оцинкованных легких труб по ГОСТ 3262-75, подводки к санитарнотехническим приборам выполнены из полиэтиленовых труб ПНД "Питьевая" Ø15мм. Магистральные трубопроводы и стояки систем B1 прокладываются в тепловой изоляции "Термофлекс". Места проходов трубопроводов сетей систем через ограждающие конструкции (стены, перекрытия) выполняются В защитных втулках. Ha внутренней водопроводной сети установлена запорная арматура.

U = 8 чел — число жителей;

N = 21 пр — число приборов по B1.

Hg = 30 м - гарантированный напор в наружной водопроводной сети;

 $q_0^c = 0.18 \text{ л/c} - \text{секундный расход воды ванной с наибольшим расходом В1;}$

 $q_{0,hr}{}^c = 200 \text{ л/ч} - \text{часовой расход холодной воды одним прибором В1;}$

 $q_{hr,u}{}^{tot} = 13$ л - норма расхода воды в час наибольшего водопотребления В1;

 $q_u^{tot} = 250\ \pi$ - норма расхода воды в сутки наибольшего водопотребления В1;

 $K_{\text{сут}} = 1,2 -$ коэффициент суточной неравномерности

Наибольший суточный расход воды В1 определяется по формуле

$$q_u = \frac{q_u^{tot} \cdot U \cdot K_{cym}}{1000}, \, \text{M}^3/\text{cyT}$$
 (5.1)

$$q_u = \frac{250 \cdot 8 \cdot 1,2}{1000} = 2,4 \text{ m}^3/\text{cyt}$$

Вероятность одновременного действия приборов B1 вычисляется по формуле

$$P = \frac{q_{hr,u}^{tot} \cdot U}{3600q_0^c \cdot N} \tag{5.2}$$

$$P = \frac{13 \cdot 8}{3600 \cdot 0.18 \cdot 21} = 0,007$$

 $NP = 21 \cdot 0,007 = 0,16$ по справочным таблицам в нормативной литературе определяем что $\alpha = 0,41$, тогда максимальный секундный расход воды находится по формуле

$$q_0 = 5q_0^c \cdot \alpha \,, \quad \pi/c \tag{5.3}$$

$$q_0 = 5 \cdot 0.18 \cdot 0.41 = 0.37$$
 π/c

Часовую вероятность одновременного действия приборов В1 находим

по формуле

$$p_{hr} = \frac{3600P \cdot q_0^c}{q_{0\,hr}^c} \tag{5.4}$$

$$p_{hr} = \frac{3600 \cdot 0,007 \cdot 0,18}{200} = 0,022$$

$$NP_{hr} = 0.022 \cdot 21 = 0.48$$
, тогда $\alpha_{hr} = 0.665$

где α_{hr} – коэффициент, определяемый в зависимости от общего числа приборов на расчетном участке сети и часовой вероятности их одновременного действия.

Определяем максимальный часовой расход В1

$$q_{hr} = 0.005 q_{0,hr}^c \cdot \alpha_{hr}, \, \text{M}^3/\text{Y}$$
 (5.5)

$$q_{hr} = 0.005 \cdot 200 \cdot 0.665 = 0.665 \text{ m}^3/\text{H}$$

Подбираем диаметры труб на расчетных участках, определяем потери напора на трение по длине каждого расчетного участка, потери напора на местные сопротивления, которые принимаем в размере 30 % от общих потерь напора, находим требуемый напор в сети водопровода.

Гидравлический расчет систем сведен в таблицу 5.1

Расчетный L. N P NP d, V. $1,3le_i$ α ei. q_0 , участок л/с M/cM MM M м в ст/м 5,5 15 0,007 0,007 0,20,180 1,36 2,145 1 0,32 2 0,007 0,014 0,20,180 15 1,36 0,3 0,78 0.007 0,021 0,217 0,195 15 1,47 0,35 1,8655 3 4.1 3 4 4,4 0,007 0,283 0,255 20 8 0,056 1,00 0,14 0.8008 5 0.007 0,077 0,313 0,282 20 1,11 0,221 11 0,17 1 0,299 0,72 6 8,4 13 0,007 0,091 0,332 25 0,07 0,7644 0,5 18 | 0,007 0,126 0,373 0,336 0,48 0,03 0,0195 7 32 8 6,5 19 0,007 0,133 0,38 0,342 0,48 0,0306 0,2586 32 9 1,4 20 0,007 0,14 0,389 0,350 32 0,50 0,031 0,0564 10 0,2948 7,2 21 0,007 0,147 0,41 0,369 32 0,52 0,0315 7,206

Таблица 5.1 - Гидравлический расчет внутреннего водопровода

Определяем требуемый напор в сети водопровода по формуле

$$H_{mp} = H_{1,tot} + H_f + H_{geom} + H, M$$
 (5.6)

где $H_{l,tot}$ = 7,206 м - сумма потерь напора в сети;

 $H_f = 3 \text{ м} - \text{свободный напор у диктующего прибора;}$

 $H_{geom} = 7,55 \text{ м}$ — геодезическая высота расположения точки, принятой для определения, разность в абсолютных отметках указанной точки и верха трубы сельского водопровода;

Н - потери напора в водосчетчике, определяемые по формуле

$$H = S \cdot q_0^2, M \tag{5.7}$$

где $S = 14,5 \text{ м/}(\text{л}\cdot\text{c})^2$ – гидравлическое сопротивление счетчика

$$H = 14,5 \ 0,37^2 = 2,0 \ M$$

Требуемый напор в сети водопровода находим по формуле (5.6)

$$H_{TP} = 7.21 + 3 + 7.55 + 2.0 = 19.76 \text{ M} < Hg = 30 \text{ M},$$

Следовательно, установка повысительных насосов в системе не требуется. На участке 10 установлен счетчик универсальный крыльчатого типа ВСХ диаметром условного прохода 20 мм.

максимальный -5,0;

Порог чувствительности — $0.025 \text{ m}^3/\text{ч}$;

5.2 Водоотведение

Канализация бытовая предусмотрена для отвода бытовых стоков в бытовой канализации. Для отвода сточной воды от наружную сеть приборов цокольного санитарно-технических этажа предусмотрены канализационные насосные установки "Sololift" и "Multilift MD"фирмы "Grundfos". Канализация условно-чистых стоков предназначена для отвода сточной воды от бассейна и дренажной воды из котельной в наружную сеть ливневой канализации. Трубопроводы систем канализации монтируются из труб ПВХ Wawin Optima Ду 50-100 мм напорные трубопроводы систем канализации выполнить из труб ПЭ80.

Во избежание засорения трубопровода укладка труб производится с уклоном 2-4 см на 1 метр погонный трубы.

Глубина заложения колодца – 4,5 м.

Расчет выполняется согласно методики, изложенной в справочной литературе.

U = 8 чел – количество жителей;

N = 21 пр — число санитарно-технических приборов;

 $q_0^{tot} = 0,25 \ \text{п/c} - \text{общий секундный расход воды одним прибором с}$ наибольшим расходом;

 $q_0^s=1,6$ л/с - расход стоков от прибора (унитаз со смывным бачком) [12, прил.2];

 $q_{hr,u}{}^{tot} = 10,5\,$ л - норма расхода воды одним потребителем в час наибольшего водопотребления.

Определяем расход выпуска по формуле

$$q^{s} = q^{tot} + q_{0}^{s}, \pi/c$$
 (5.8)

где ${\bf q}^{\rm tot}$ - максимальный секундный расход воды, определяемый по формуле

$$q^{tot} = 5q_0^{tot} \cdot \alpha , \ \pi/c \tag{5.9}$$

где α – коэффициент, в зависимости от общего числа приборов на расчетном участке сети и вероятности их одновременного действия.

Вероятность одновременного действия приборов вычисляем по формуле

$$P = \frac{q_{hr,u}^{tot} \cdot U}{3600 q_0^{tot} \cdot N}$$
 (5.10)

$$P = \frac{10.5 \cdot 8}{3600 \cdot 0.25 \cdot 21} = 0.00583$$

$$NP = 0.00583 \cdot 21 = 0.047 \implies \alpha = 0.268$$

Максимальный секундный расход воды находим по формуле (5.9)

$$q^{tot} = 5 \cdot 0.25 \cdot 0.268 = 0.34$$
 π/c

Расход выпуска определяем по формуле (5.8)

$$q^s = 0.34 + 1.6 = 1.94 \text{ m/c}$$

Из-за недостаточной величины расхода бытовых сточных вод, безрасчетные участки трубопроводов диаметром 50 мм следует прокладывать с уклоном 0,03, а диаметром 110 мм – с уклоном 0,02, в соответствии с п. 18.2 [12].

6 ГАЗОСНАБЖЕНИЕ

6.1 Конструирование системы газоснабжения

В доме имеется напольный газовый котел. Отключающие устройства намечено установить на вводе в здание, перед счётчиком и котлом. Прокладка стальных газопроводных труб внутри здания ведётся открытой, крепеж их к стенам производится крючьями, соединения на сварке. Пересечение газопроводов и строительных конструкций производятся в гильзах. Отключающие устройства (шаровые краны) размещаются на вводе перед газовым прибором до и после счетчика. Ввод в жилой дом газопровода — фасадный. При выходе газопровода из грунта устанавливается футляр из металлических труб для защиты газопровода от

коррозии и механических повреждений. Кольцевое пространство между газопроводом и футляром забивается просмоленной ветошью (паклей) и заливается битумом или цементным раствором. Футляры устанавливаются и при проходе газопровода через стены.

Ответвление от централизованного газопровода к проектируемому зданию осуществляется на расстоянии 12 м. На ответвление у места врезки устанавливается кран газовый натяжной диаметром 32 мм. Ввод газопровода в дом запроектирован в котельную. Разводка проложена по стенам котельной.

6.2 Гидравлический расчет внутренней системы газоснабжения

Прокладка газопровода внутри здания открытая без уклона. Крепление к стенам производится хомутами на расстоянии, обеспечивающем возможность осмотра и ремонта газопровода.

Внутренний газопровод монтируется из стальных труб ГОСТ 3262-91*. Соединение труб выполняется сваркой. Разъемное соединение допускается только в местах установки запорной арматуры и газовых приборов.

Цель гидравлического расчёта сети — подобрать диаметры труб и определить потери давления в участках расчётного направления. Причём суммарные потери давления в участках расчётного направления должны быть меньше допустимого падения давления.

В участках расчетного направления часовые расходы определяются по формуле:

$$Q_d^h = q_{nom}, (6.1)$$

где q_{nom} – номинальный расход газа котлом, м³/ч;

Номинальный расход газа прибором определяется по формуле:

$$q_{nom} = 3600 \frac{N}{Q_H^C}, (6.2)$$

где Q_H^c – низшая теплота сгорания газа, кДж /м³;

 $Q_H^C = 35180 \text{ кДж/м}^3$;

N – мощность прибора, принимается для котла- 56 кВт.

Номинальный расход газа котлом:

$$q_{nom} = 3600 \frac{56000}{35180 \cdot 0.92} = 5.5 \quad m^3 / q$$

0,92-КПД котла

Предварительно подбираются диаметры труб для участков расчётного направления. Для этого вычисляется средний гидравлический уклон R_{cp} , $\Pi a/m$ по формуле:

$$R_{CP} = \frac{\Delta P_{\partial on}}{1.3 \sum l_i} = \frac{\Delta P_{3JJ} - \Delta P_{IJP} - \Delta P_{CY}}{1.3 \sum l_i},$$
(6.3)

где $\Delta P_{\partial on}$ – допустимое падение (потери) давления во внутренней сети;

 $\Delta P_{3/2}$ — падение давления во внутренней сети, при $P_0 = 1,3$ кПа;

 $\Delta P_{3/I}$ принимается 250 Па;

 $\Delta P_{\Pi P}$ — падение (потери) давления в трубах и арматуре прибора, (для котла 100Па);

 $\Delta P_{C^{\prime\prime}}$ – падение (потери) давления в счётчике, принимаем 100 Па;

 $\sum l_i$ — сумма действительных длин участков расчётного направления, м.

$$R_{cp.}^{\kappa om.} = \frac{250 - 100 - 100}{13.113} = 3.4 \Pi a / M$$

По величинам Q_d^h и R_{cp} с помощью номограммы подбираются диаметры труб для участков.

Вычисляются расчётные длины участков по формуле:

$$l = l_1 + \sum \xi \cdot ld , \qquad (6.4)$$

где l_1 – действительная длина участка, м;

 $\Sigma \; \xi$ — сумма коэффициентов местных сопротивлений участка;

ld — эквивалентная длина прямолинейного участка газопровода, м, потери давления, на котором равны потерям давления в местном сопротивлении со значением коэффициента $\xi = 1$.

Коэффициенты местных сопротивлений участка суммируются. Эквивалентная длина зависит от величины расхода газа в участке и для принятого диаметра труб находится по номограмме.

Вычисляются потери давления в участках Rl и суммарные потери в расчётном направлении ΣRl .

Величина суммарных потерь давления в расчётном направлении движения газа ΣRl сопоставляется с величиной допустимых потерь давления $\Delta P_{\partial on}$. Если $\Sigma Rl > \Delta P_{\partial on}$, то находится участок с наибольшими потерями давления и увеличивается диаметр трубы, принятый в ходе предыдущего расчёта.

Если $\Sigma Rl < \Delta P_{\partial on}$, то расчёт считается оконченным.

Результаты расчетов заносим в таблицу 6.1.

В качестве запорной арматуры устанавливаются краны шаровые муфтовые 11Б27п. Область применения: на газопроводах природного газа с диапазоном температур рабочей и окружающей среды -60 до $+50^{\circ}$ С и рабочим давлением 1,6 МПа.

Принимаем к установке счетчик газа бытовой «Берестье» Г6.

Система автоматического контроля загазованности модульная САКЗ — М предназначена для непрерывного автоматического контроля содержания топливного углеводородного газа (C_nH_m) (природного ГОСТ 5542 - 87) и оксида углерода (СО) в воздухе помещений потребителей газа, выдачи сигнализации (световой и звуковой) в случае превышения пороговых значений и перекрытия газопровода газовым запорным электромагнитным клапаном при аварийной сигнализации и при подаче на сигнализаторы системы внешнего управления сигнала.

Таблица 6.1 - Гидравлический расчет внутренней газовой сети местиле

				Местные						
№ участка	l_1 , M	Q_d^h ,M	d_y , mm	сопротивления и их	$\Sigma \xi$	ld, мм	$\Sigma\xi$ l d, м	<i>l</i> , м	R, Па/м	R <i>l</i> , Па
1	2	3	4	коэффициенты 5	6	7	O	9	10	11
1	2	3	4	5 0 2*5 1.5.	6	/	8	9	10	11
				5 отводов-0,3*5=1,5;						
1-2	6,2	5,5	25	Кран шаровой- 2,0	4,86	0,68	3,35	12,46	2,9	38,35
				Переход на следующий						
				диаметр-0,35						
2-3	11,1	5,5	32	2 крана шаровых- 4,0 Отвод 90 ⁰ -0,3	4,1	0,91	3,89	5,78	1,21	7,15
				Отвод 90°-0,3					5D.1	44.5
		_							$\Sigma Rl =$	44,5
$\Delta P_{\partial on}^{n.n.} = 250-1$	00-100=50	Па	44,5	5<50						

7 КОНТРОЛЬ И АВТОМАТИЗАЦИЯ

Важнейшей задачей автоматизации является обеспечение энергетического и материального баланса установок при оптимальном КПД, минимальных потреблении топливно-энергетических ресурсов, загрязнения окружающей среды, при экономичной и безопасной работе на любых нагрузках.

Автоматизация водяных систем теплоснабжения способствует поддержанию заданных гидравлических и тепловых режимов в различных точках системы.

Индивидуальное автоматическое регулирование обеспечивает надлежащий тепловой режим помещений. Наибольшая эффективность автоматической эксплуатации котельной предполагается при полной и комплексной автоматизации основного и вспомогательного оборудования. оборудованию относится: бойлер котёл и насосные Котел полностью автоматизирован, установки. имеет жидкокристаллический дисплей, на который выводится вся информация о работе и ошибках, отвечает повышенным требованиям безопасности, надежности. Автоматика имеет датчик температуры, поддерживающий температуру горячей воды изменением расхода топлива. Автоматика бойлера имеет регулируемый рабочий термостат, термостат безопасности, термометр, жидкокристаллический дисплей, регулятор температуры воды.

В аварийных ситуациях устройства технологической защиты должны перевести котел в режим пониженной нагрузки, либо произвести полную остановку.

Система отопления может работать в двух режимах в течении суток (режим повышенной температуры, режим пониженной температуры,) с дискретностью установки в 30 минут. Система регулирования получает команду от датчика температуры внутреннего воздуха и выстраивает отопительную кривую котла, включая и выключая горелку. Затем,

получая данные от датчика температуры теплых полов, производится управление смесительным вентилем, корректируя данные датчика температуры теплых полов и управляя насосом системы теплых полов. Такая сложная система управления необходима для максимальной экономии и полного использования полученной от котла тепловой энергии при условии максимального комфорта в помещении.

Смесительный вентиль необходим для подачи в систему теплых полов теплоносителя той температуры, которая необходима в данный момент независимо от температуры котла и работы горелки.

Получив данные от датчика температуры внутреннего воздуха о снижении температуры ниже установленной, автоматика включает насос системы отопления, контролируя температуру в подающей линии в соответствии с установленной или получив данные от датчика температуры наружного воздуха о изменении температуры, контролирует температуру в подающей линии в соответствии с графиком. При показаниях датчика соответствующих установленным, насос продолжает прокачивать теплоноситель через отопительные приборы.

Система автоматики управляет нагревом бойлера в режиме годового, недельного и суточного программирования с возможностью борьбы с бактериями путем кратковременного нагрева его один раз в неделю до 70 °C. При возникновении водоотбора из бойлера температура внутри бойлера понижается за счет поступления холодной водопроводной воды. Получив от датчика температуры ГВС информацию о снижении температуры в бойлере ниже установленной, автоматика отключает насосы отопления, теплого пола, теплообменника бассейна, затем включает насос бойлера и если температура котла ниже 75°C, то дает команду на запуск горелки. При достижении в бойлере установленной температуры, насос бойлера выключается, и насос системы отопления начинает работать ДО достижения теплоносителем необходимой температуры. Такой способ управления системы позволяет ограничить

максимальную мощность котла необходимую для системы отопления или для нагрева бойлера. В противном случае необходимая мощность котла была бы суммируемой мощностью системы отопления и ГВС. Такая система регулировки применяется только при периодическом использовании ГВС то есть с емкостным подогревателем.

8 ОРГАНИЗАЦИЯ МОНТАЖНЫХ РАБОТ

8.1 Определение объемов работ

Подсчет объемов строительных и монтажных работ производится по рабочим чертежам дипломного проекта.

Расчет объемов строительно-монтажных работ сводим в таблицу 8.1 Таблица 8.1 - Объем строительно-монтажных работ

№ π/π	Наименование работ	Единица измерения	Объем работ
1	Разметка мест прокладки трубопроводов	100 м	11,37
2	Сверление отверстий в кирпиче в бетоне	100 отв	0,12 0,26
3	Установка креплений	ШТ	47
4	Прокладка трубопроводов металлопластиковых d 16 полипропиленовых d20- d32 канализации d50- d100 стальные d32	M M M M	1137
5	Соединениетруб	ШТ	79
6	Первичное гидравлическое испытание труб на прочность и плотность металлопластиковых d 16 полипропиленовых d20- d32 канализации d50- d100 стальные d32	М М М	1137
7	Установка санитарно-технических приборов Установка сан приборов Мойка Умывальник Ванна Унитаз	ШТ	19
8	Установка шарового крана	ШТ	16
9	Установка арматуры (смесителей)	ШТ	6
10	Монтаж водомерного узла	ШТ	1
11	Установка регулятора давления	ШТ	1

		Продо	лжение табл. 8.1
№ п/п	Наименование работ	Единица измерения	Объем работ
12	Установка кронштейнов для радиаторов	ШТ	108
13	Навешивание радиаторов	ШТ	54
14	Установка воздушного крана	ШТ	54
15	Монтаж котла	ШТ	1
16	Установка расширительного бака	ШТ	1
17	Монтаж узла управления	ШТ	1
18	Окончательное испытание: труб систем отопления ГВ, ХВ, К, ТП, радиаторов	М ШТ	1030 107 54
19	Испытание котла	ШТ	1

8.2 Определение трудоемкости работ

Требуемые затраты труда и машинного времени устанавливаются едиными нормами и расценками — ЕНиРами. Трудозатраты даны в человеко-часах и машино-часах. Трудозатраты на объем работ по захваткам (в человеко-днях и машино-сменах) определяем по формуле

$$Tp = \frac{Hep \cdot V}{8.2}$$
, чел-дн (маш-см) (13.1)

где *Нвр* - норма времени на единицу объема работ по ЕНиР, чел-час (маш-час);

V - объем работ в днях;

8,2 - продолжительность смены, час.

Результаты расчета трудоемкости сводим в таблицу 8.2

Таблица 8.2 - Ведомость трудоемкости работ

Наименование работ	Ед. изм.	ЕНиР	Норма	времени	Сис	темы ВК, Г	Трудое ВС.		ема О, Тепл	пола	Все	его
			чел - час	маш-час	объем работ	чел-дни	маш- смены	объем работ	чел-дни	маш- смены	чел-дни	маш- смены
1	2	3	4	5	6	7	8	9	10	11	12	13
1. Разметка мест прокладки трубопроводов	100 м	E 9-1-1	1,2	-	1,07	0,16	- (3.47)	10,3	1,51	-	1,67	-
Состав бригады: мо	нтажник в	нутренних са	анитарно	-технически	іх систем	и оборудов	ания (МВС	J) 6 p. – I ¹	нел			
2. Сверление отверстий: в кирпиче в бетоне	100 отв	E 9-1-46	9,0 14,0	- -	0,06 0,02	0,07 0,03	- -	0,03 0,12	0,03 0,2	- -	0,1 0,5	- -
Состав бригады: МІ	3C 3p. – 1	чел										
3. Соединение труб Состав бригады: эле	1 стык	E 22-2-2 шик ручной с	0,05 варки 4р	- — 1чеп	-	-	-	55	0,335	-	0,335	
4. Установка креплений	1 шт	E 9-1-2	0,02	-	11	0,026	-	18	0,044	-	0,07	-
Состав бригады: МІ	3C 4 p. – 1	чел										
5. Прокладка трубопроводов О 16	1 м	E 9-1-2	0,21	-								
ГВ ХВ					46							
КК					40	2,74	-	1030	26,4	-	29,1	
Состав бригады: МІ	3C 4 p. − 1	чел										
6. Сварка труб	1 стык	E 22-2-2	0,06	-	15	0,11	-	-	-	-	0,11	
Состав бригады: эле	ектросварі	цик ручной с	варки 4р	. – 1чел								
7. Первичное испытание труб д16	100 м	E 9-1-18	5,3	-	1,07	0,69	-	10,30	6,65	-	7,35	
Соотор бругони он			1	1								

									Прод	олжені	ие табл.	8.2
1	2	3	4	5	6	7	8	9	10	11	12	13
8. Установка санитарных приборов:												
а) ванна			1,5	_	3	0,73	_				0,73	_
б) умывальник	1прибор	E 9-1-16	0,99	_	2	0,48	_				0,48	_
в) мойка	тирисор	27110	0,96	_	1	0,23	_	_	_	_	0,23	_
г) унитаз			0,41	_	3	0,20	_				0,20	_
д) бачок смывной			0,47	-	3	0,23	-				0,23	-
Состав бригады: MB0 9. Установка	С 4р. – 5 чел	I										
шарового крана	1 кран	E 9-1-40	0,33	-	10	0,40	-	-	-	-	0,40	-
Состав бригады: МВ 10. Установка арматуры:	С 4р. – 1чел;	3р. – 1чел										
а) смеситель для мойки	1 шт	E 9-1-18	0,24	-	1	0,06	-	_	_	_	0,06	-
б) душевая трубка			0,54	-	3	0,26	-				0,26	-
Состав бригады: МВ	С 4р. – 1чел											
11. Монтаж водомерного узла	1 узел	E 9-1-34	1,58	-	1	0,38	-	-	-	-	0,38	-
Состав бригады: МВ 12.Установка	С 5р. – 1чел	; 4р. – 2 чел;	3р. – 1чел									
регулятора давления	1 прибор	E 9-1-38	2,8	-	1	0,34	-	-	-	-	0,34	-
Состав бригады: МВ 13. Установка	С 5р. – 1чел	; 4р. – 1 чел;	3р. – 1чел									
кронштейнов для радиаторов	1 радиатор	E 9-1-12	0,34	-	-	-	-	108	4,5	-	4,5	-
Состав бригады: МВ		I										
14. Навешивание	1											
радиаторов	радиатор	E 9-1-12	0,081					54	0,53		0,53	
Состав бригады: МВ	С <mark>5р. − 1чел</mark>	; 4 р. – 1 чел;	3р. – 1чел		<u> </u>			<u> </u>				

										одолже		бл
1 15. Монтаж котла	2 1 котел	3 E 9-1-23	4 2,7	5 -	6 -	7 -	8 -	9 1	10 0,33	11 -	12 0,33	
Состав бригады: МЕ 16. Установка	BC 6p. – 1 че.	л; 5р. – 1чел;	4p. – 2 чел	; 3р. – 2ч	ел							
расширительного бака	1 бак	E 9-1-31	2,1	-	-	-	-	1	0,26	-	0,26	
Состав бригады: МЕ 17. Монтаж узла управления и автоматики:	3C 4p. – 1чел	; 3р. – 1чел										
а) монтаж насоса		E 9-1-37	2,0	_				3	0,73	_	0,73	
б) установка шарового крана	1 прибор		0,33	-	-	-	-	16	0,64	-	0,64	
в) установка фильтра		E 9-1-38	1,7	-				2	0,81	-	0,81	
г) установка термометра		E 9-1-22	0,54	-				1	0,07	-	0,07	
д) установка манометра		E 9-1-22	0,28	-				7	0,24	-	0,24	
Состав бригады: МЕ 18. Окончательное испытание:	3C 5p. – 4 че.	л; 4р. – 5 чел;	3р. – 7чел	I								
труб на прочность радиаторов	100 м	E 9-1-18	2,3	-	1,07	0,3	-	10,3	2,8	-	3,1	
	1радиатор	E 9-1-18	0,11	-	-	-	-	54	0,72	-	0,72	
Состав бригады: МЕ	ВС 6р. – 2 чел	ı; 5p. – 1 ч е л										
19. Испытание котла	1 котел	E 9-1-24	4,68	-	-	-	-	1	0,57	-	0,57	
Состав бригады: МЕ	3C бр. − 1 че л	ı; 4 <u>р. – 1</u> чел								Σ	43,52	
						Затраты тр	уда на по	одготовите	льные рабо		2,18	
					38	1 17			ные работы ные работ		1,09 4,35	

8.3 Определение потребности в материалах, изделиях и оборудовании.

Потребность в материалах, деталях, оборудовании определяется исходя из объемов работ. Результаты заносятся в таблицу 8.3.

Таблица 8.3 - Потребность в материалах, изделиях, деталях и оборудовании

№п/п	Наименование	Ед.изм.	Кол.	Macca	Общая масса
1	2	3	4	5	6
1	Котел	ШТ.	1	205	205
2	Расширительный бак	ШТ.	1	28,6	28,6
3	Бойлер	ШТ.	1	150	150
7	Трубы диаметром				
	16	M	1030	0,4	412
	25	M	214	0,5	107
	32	M	12	0,7	10,4
	40	M	2	0,9	1,8
	50	M	5	1,6	7,3
8	Крепление для труб	Шт.	48	0,046	2,2
9	Фиксатор пластмассовый	ШТ.	100	0,015	1,5
10	Отвод 90° 20	ШТ.	22	0,020	0,44
	25	ШТ.	88	0,025	2,2
	32	шт.	20	0,026	0,52
	40	ШТ.	12	0,030	0,36
	50	ШТ.	2	0,032	0,064
11	Тройник 15x20x20	шт.	10	0,021	0,21
	25x20x20	шт.	2	0,034	0,068
	25x15x25	шт.	12	0,024	0,29
	32x20x32	шт.	11	0,023	0,14
	40x32x32	шт.	6	0,022	0,24
13	Общий распределительный				
	коллектор Ду=100 мм	шт.	1	40	40
14	Фланцы стальные плоские приварные	шт.	3	0,45	0,45
		I		j	

Продолжение табл. 13.2

_		1	F -	' '	
1	2	3	4	5	6
15	Фильтр	ШТ.	1	0,25	0,25
	-				
16	Насос	ШТ.	1	4,2	4,2
17	Предохранительный клапан	ШТ.	1	0,24	0,24
18	Обратный клапан	ШТ.	1	0,150	0,150
19	Шаровый кран	ШТ.	5	0,350	0,175
20	Воздухоудалитель	ШТ.	54	0,120	1,1
21	Радиатор				
		ШТ.	54	22,3	1204,2

При производстве работ используется следующие инструменты и механизмы: паяльник для полипропилена, газо-электросварочные аппараты, трубогибочные станки, блоки, компрессор, отбойные молотки, наборы слесарных инструментов (молотки, дрели, болгарки, газовые ключи), пресс для металлопластика.

8.4 Техника безопасности при монтаже

Техника безопасности при монтаже инженерных систем приведена в приложении Б

ЛИТЕРАТУРА

- 1. Богословский В.Н. Строительная теплофизика (теплофизические основы отопления, вентиляции и кондиционирования воздуха) : [учеб. для вузов] / В.Н. Богословский. Изд. 3-е. СПб. : АВОК Северо-Запад, 2006. 400 с.
- 2. СП 50.13330.2012. Тепловая защита зданий.- М.: Минрегион России, 2012. 100 с.
- Дикман Л. Г. Организация строительного производства: учеб. для студ. вузов, обучающихся по спец. 290300 "Пром. и гражд.стр-во" / Л. Г. Дикман. Изд. 5-е, перераб. и доп.; Гриф УМО. М.: АСВ, 2006. 606 с.
- 4. Орлов К. С. Монтаж и эксплуатация санитарно-технических, вентиляционных систем и оборудования: учебник / К. С. Орлов. 5-е изд., стер.; Гриф МО. М.: Академия, 2008. 334 с.
- 5. Боровков В. М. Изготовление и монтаж технологических трубопроводов : учеб. для сред. проф. образования / В. М. Боровков, А. А. Калютик. Гриф УМО. М. : Академия, 2007. 239 с.
- 6. Хубаев С.-М. К. Автоматизация систем теплогазоснабжения и вентиляции : учеб. пособие / С.-М. К. Хубаев. Гриф УМО. Москва : Изд-во Ассоциации строит. вузов, 2004. 69 с.
- 7. Мухин О.А. Автоматизация систем теплогазоснабжения и вентиляции: Учебное пособие для вузов. Минск.: Высш. шк., 1986. 304 с.
- 8. Маслова Н. В. Технология и организация строительства наружных трубопроводов : учеб. пособие для вузов / Н. В. Маслова. ТГУ; Гриф УМО. Тольятти : ТГУ, 2006. 132 с.
- 9. Вентиляция. Оборудование и технологии : учеб.-практ. пособие / Р.Ф. Афанасьева [и др.]. М. : Стройинформ, 2007. 418 с.

- Вентиляция : учеб. пособие для вузов / В. И. Полушкин [и др.]. Гриф УМО. - Москва : Академия, 2008. - 414 с.
- 11. Внутренние санитарно-технические устройства. В 3 ч. Ч. 3. Вентиляция и кондиционирование воздуха. Кн. 1 / В.Н. Богословский [и др.]; под ред. Н. Н. Павлова, Ю. И. Шиллера. 4-е изд., перераб. и доп. . Москва : Стройиздат, 1992. 319 с.
- 12. Внутренние санитарно-технические устройства. В 3 ч. Ч. 3. Вентиляция и кондиционирование воздуха. Кн. 2 / Б. В. Баркалов [и др.]; под ред. Н. Н. Павлова, Ю. И. Шиллера. 4-е изд., перераб. и доп. . Москва : Стройиздат, 1992. 416 с.
- 13. ГОСТ 30494-2011. Здания жилые и общественные. Параметры микроклимата в помещениях. М.: Стандартинформ, 2013. 24 с.
- Еремкин А.И. Тепловой режим зданий: учеб. пособие для вузов / А.И. Еремкин, Т.И. Королева. - Гриф МО. - Ростов н/Д: Феникс, 2008. - 364 с.
- 15. Курсовое и дипломное проектирование по вентиляции гражданских и промышленных зданий : [учеб. пособие для вузов по спец. "Теплогазоснабжение и вентиляция"] / В. П. Титов [и др.]. Москва : Стройиздат, 1985. 208 с.
- Кучеренко М.Н. Вентиляция общественного здания: учеб.-метод. пособие по выполнению курс. работы по дисц. "Вентиляция" для студ. всех форм обучения спец. 270109 "Теплогазоснабжение и вентиляция" / М.Н. Кучеренко; ТГУ; каф. "Теплогазоснабжение и вентиляция". ТГУ. Тольятти: ТГУ, 2008. 45 с.
- 17. Михеев А. П. Проектирование зданий и застройки населенных мест с учетом климата и энергосбережения : учеб. пособие для вузов / А. П. Михеев, А. М. Береговой, Л. Н. Петрянина. 3-е изд., перераб. и доп. М. : ACB, 2002. 159 с.

- 18. Монастырев П.В. Технология устройства дополнительной теплозащиты стен жилых зданий: Учеб. пособие для строит. вузов / П.В. Монастырев. М: Изд-во АСВ, 2002. 156 с:
- 19. Монтаж, эксплуатация и сервис систем вентиляции и кондиционирования воздуха : учеб. пособие для вузов / С.И. Бурцев [и др.]; под общ. ред. В.Е. Минина. Гриф УМО. СПб. : Профессия, 2005. 375 с.
- 20. Организация работ ПО монтажу систем вентиляции И кондиционирования воздуха : метод. пособие К дипломному проектированию по разделу "Организация монтажных работ" для студ. спец. "Теплогазоснабжение и вентиляция" / ТГУ; [сост. Н.В. Маслова]. - 2-е изд., перераб. и доп.; ТГУ. - Тольятти: ТГУ, 2006. - 72 c.
- 21. Орлов К. С. Монтаж и эксплуатация санитарно-технических, вентиляционных систем и оборудования: учебник / К. С. Орлов. 5-е изд., стер.; Гриф МО. М.: Академия, 2008. 334 с.
- 22. Отопление: учеб. для студ. вузов, обуч. по направлению "Строительство" / В. И. Полушкин [и др.]. Москва: Академия, 2010. 248 с.
- 23. Русланов Г.В. Отопление и вентиляция жилых и гражданских зданий : Проектирование: Справочник / Г.В. Русланов, М.Я. Розкин, Э.Л. Ямпольский. Киев : Будівельник, 1983. 271 с.
- 24. Сканави А. Н. Отопление : учеб. для студ. вузов, обуч. по направлению "Строительство" (спец. 290700 "Теплогазоснабжение и вентиляция") / А. Н. Сканави, Л. М. Махов. Гриф МО. Москва : ACB, 2008. 576 с.
- 25. Сканави А.Н. Отопление : учеб. для вузов / А.Н. Сканави, Л.В. Махов. М. : Изд-во АСВ, 2002. 576 с. : ил. Библиогр.: с. 560-561.

- 26. СП 60.13330.2012 Отопление, вентиляция и кондиционирование воздуха. Актуализированная редакция СНиП 41-01-2003. М.: Минрегион России, 2012. 81 с.
- 27. Фокин К.Ф. Строительная теплотехника ограждающих частей зданий / К.Ф. Фокин. 5-е изд., пересмотр. М.: Авок-Пресс, 2006. 251 с.
- 28. Бабкин В. Ф. Инженерные сети: учеб. пособие / В. Ф. Бабкин, В. Н. Яценко, В. Ю. Хузин. Воронеж : ВГАСУ : ЭБС АСВ, 2012. 96 с.
- 29. Белоконев Е. Н. Водоотведение и водоснабжение : учеб. пособие для бакалавров / Е. Н. Белоконев, Т. Е. Попова, Г. П. Пурас. Изд. 2-е ; гриф УМО. Ростов-на-Дону : Феникс, 2012. 379 с.
- 30. Внутренние санитарно-технические устройства. В 3 ч. Ч. 2. Водопровод и канализация / Ю. Н. Саргин [и др.]; под ред. И. Г. Староверова [и др.]. 4-е изд., перераб. и доп. Москва : Стройиздат, 1990. 246 с.
- 31. Гидравлика, водоснабжение и канализация : [учебник для вузов] / В. И. Калицун [и др.]. 3-е изд., перераб. и доп. Москва : Стройиздат, 1980. 359 с.
- 32. Монастырев П.В. Технология устройства дополнительной теплозащиты стен жилых зданий: Учеб. пособие для строит. вузов / П.В. Монастырев. М: Изд-во АСВ, 2002. 156 с:
- 33. Отопление : учеб. для студ. вузов, обуч. по направлению "Строительство" / В. И. Полушкин [и др.]. М. : Академия, 2010. 248 с.
- 34. СП 31-106-2002. Проектирование и строительство инженерных систем одноквартирных жилых домов. ГУП ЦПП, 2003. 23 с.
- 35. СП 73.13330.2012 Внутренние санитарно-технические системы зданий. Актуализированная редакция СНиП 3.05.01-85. М.: Минрегион России, 2012. 46 с.

Приложение А

Проверка внутренней поверхности наружных ограждений на возможность конденсации влаги

Конденсация влаги из внутреннего воздуха на внутренней поверхности наружного ограждения, является причиной увлажнения наружных ограждений. Для устранения конденсации влаги температура на внутренней поверхности $\tau_{\it en}$, $^{\rm 0}$ C, и в толще ограждения должна превышать температуру точки росы $\tau_{\it p}$, $^{\rm 0}$ C, на 2-3 $^{\rm 0}$ C, т.е. должно соблюдаться условие $\tau_{\it en} > \tau_{\it p}$.

Расчетный температурный перепад, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин Δt_n , °C:

$$\Delta t_{o}^{des} \le \Delta t_{n} \tag{A.1}$$

где Δt_o^{des} - расчетный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, °C,

 Δt_n - нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, °C.

Расчетный температурный перепад Δt_o , °C, находится по формуле:

$$\Delta t_o = \frac{n \cdot (t_{\text{int}} - t_{ext})}{R_o^{des} \cdot \alpha_{\text{int}}}$$
(A.2)

где n - коэффициент, учитывающий зависимость положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху,

 R_o^{des} -приведенное сопротивление теплопередаче ограждающей конструкций.

Стена

$$\Delta t_n = 4$$
 °C, $\Delta t_o = \frac{1 \cdot (20 + 28)}{3.6 \cdot 8.7} = 1.53$ °C, $\Delta t_o^{des} \leq \Delta t_n$ - условие выполняется,

конденсат образовываться не будет.

Крыша

$$\Delta t_n = 3$$
 °C, $\Delta t_o = \frac{0.9 \cdot (20 + 28)}{4.25 \cdot 8.7} = 1.17$ °C, $\Delta t_o^{des} \leq \Delta t_n$ - условие выполняется,

конденсат образовываться не будет.

Наружный угол

Наиболее вероятное появление конденсата влаги у наружных углов стены, где температура τ_{yz} всегда ниже чем на других участках внутренней поверхности ограждения τ_{s} .

Значение τ_{v} ⁰С определяется из выражения:

$$\tau_{yz} = t_{\text{int}} - \frac{t_{\text{int}} - t_{ext}}{R_o^{des} \cdot \alpha_{\text{int}}} = 20 - \frac{20 + 28}{3.6 \cdot 8.7} = 18,47 \,^{\circ}\text{C}$$

Температура точки росы τ_p , 0 С, для данного состояния внутреннего воздуха t_B , 0 С, определяется по формуле:

$$\tau_p = 20.1 - (5.75 - 0.00206 \cdot e)^2;$$
 (A.3)

где, е- действительная упругость водяных паров, Па.

Действительная упругость водяных паров e, Па, при заданной температуре $t_{\rm B}$, и относительной влажности внутреннего воздуха $\varphi_{\rm e}$, %, определяется из выражения:

$$e = \frac{\varphi_{\scriptscriptstyle g}}{100} \cdot E_{\scriptscriptstyle g}; \tag{A.4}$$

где, $E_{\text{в}}$ - максимальная упругость водяных паров, Па при заданной температуре внутреннего воздуха $t_{\text{в}}$ 0 C, для 20 0 C =2339 Па;

$$\varphi_{\scriptscriptstyle 6}$$
-относительная влажность воздуха, %; $e = \frac{55}{100} \cdot 2339 = 1286,5$ Па

$$\tau_p = 20,1 - (5,75 - 0,00206 \cdot 1286,5)^2 = 10,49$$
 °C- конденсации не будет

Безопасность и экологичность технического объекта Технологическая характеристика объекта

Проектом разрабатывается монтаж системы отопления, канализации и водоснабжения жилого дома расположенного в Московской области. Рабочим местом называется зона, оснащенная необходимыми средствами и предметами труда, в которой осуществляется трудовая деятельность рабочего или бригады, выполняющих строительный процесс. В коттедже рабочими местами считаются все участки, где на данном этапе производится монтаж системы отопления, водоснабжения и канализации.

В монтажно-сборочном процессе значительный удельный вес занимают такелажные работы — доставка, оснастка, строповка, захват, подъем, ориентирование, установка и крепление оборудования систем отопления.

Опасный производственный фактор — это такой производственный фактор, воздействие которого на работающего в определенных условиях приводит к травме или к другому внезапному резкому ухудшению здоровья.

Вредный производственный фактор — это такой производственный фактор, воздействие которого на работающего в определенных условиях приводит к заболеванию или снижению трудоспособности.

Таблица Б.1 - Технологический паспорт объекта

№ п/п	Технологиче	Технологич	Наименование	Оборудование	Материалы,
	ский процесс	еская	должности работника,	устройство,	вещества
		операция,	выполняющего	приспособле	
		вид	технологический	ние	
		выполняем	процесс, операцию		
		ых работ			
1	Монтажно-	Соединение	Монтажник	Пресс наборы	Мп труба,
	сборочные	трубопрово	внутренних	слесарных	радиатор, котел
	работы	дов	санитарно-	инструментов	
		Устройство	технических систем и	(молотки, дрели,	
		отверстий,	оборудования	болгарки, газовые	
		проемов		ключи), блоки	

Идентификация профессиональных рисков

Таблица Б.2 – Идентификация профессиональных рисков.

№	Технологическая операция,	Опасный и вредный	Источник опасного и вредного
п/п	вид выполняемых работ ¹	производственный	производственного фактора ³
		фактор ²	
1	Строительно-монтажные	Повышенное значение	Болгарка, дрель
	работы с использованием	напряжения в	
	электрооборудования	электрической цепи	
		замыкание которой	
		может пройти через тело	
		человека	
2	работа с пневматическими	Производственный шум	Болгарка, дрель
	инструментами, работа		
	вблизи вибрационных машин		
	и другие шумные работы		
3	Выполнение всех	Недостаток	Слабая освещенность
	строительно-монтажных	естественного и	
	работ	искусственного	
		освещения	

Методы и средства снижения профессиональных рисков

Таблица Б.3 – Методы и средства снижения воздействия опасных и вредных производственных факторов

№ п/п	Опасный и вредный	Методы и средства защиты,	Средства
	производственный фактор	снижения, устранения	индивидуальной
		опасного и вредного	защиты работника
		производственного фактора	
1	Повышенное значение	Изоляция проводов,	перчатки с полимерным
	напряжения в электрической цепи	заземление	покрытием
	замыкание которой может пройти		
	через тело человека		
2	Производственный шум	Использование ИСЗ	для защиты от шума
			при производстве работ
			применяют вкладыши,
			наушники, шлемы
3	Недостаток естественного и	Искусственное освещение	Фонари, лампы
	искусственного освещения		

Обеспечение пожарной безопасности технического объекта

Таблица Б.4 – Идентификация классов и опасных факторов пожара.

№ п/п	Участ ок,	Оборуд ование	Класс пожа	Опасные Факторы	Сопутствующие проявления факторов пожара
			pa	пожара	
1	Котел	котел		Повышенна	При возникновении пожара, уже в самой его начальной
	ьная		Класс D	я температур а окружающе й среды	стадии, человеку угрожает опасность в результате того, что пожар сопровождается выделением теплоты, продуктов полного и неполного сгорания, токсических веществ, обрушением конструкций, что, так или иначе, угрожает здоровью и даже жизни человека. Обеспечение безопасности движения людей связано с проектированием эвакуационных выходов и путей, отвечающих установленным требованиям

Таблица Б.5 Средства обеспечения пожарной безопасности.

Первичные	Мобильн	Установ	Средс	Пожарное	Средства	Пожарный	Пожарн
средства	ые	ки	тва	оборудование	индивид	инструмент	ые
пожаротушен	средства	пожарот	пожар		уальной	(механизирова	сигнали
ия	пожарот	ушения	ной		защиты и	нный и	зация,
	ушения		автом		спасения	немеханизиро	связь и
			атики		людей	ванный)	оповещ
					при		ение.
					пожаре		
Огнетушитель	Пожарн	Пожарн	Дренч	Огнетушители	Защита	Лом,топор,	01 или
,песок,вода	ые	ые	ep	,пожарный	органов	ведро,клещи,л	c
	автомоб	гидрант		водопровод,	дыхания.	опата,багор	сот.112
	или,	Ы		насос	Пути		
	механич				эвакуаци		
	еская				И.		
	лопата						

Таблица Б.6 – Мероприятия по обеспечению пожарной безопасности.

Наименование технологического	Наименование видов работ	Требования по обеспечению
процесса, вид объекта		пожарной безопасности
Монтаж	Монтаж труб	Работать в специально отведенном
		месте, выполнение требований
		пожарной безопасности

Обеспечение экологической безопасности технического объекта.

Таблица Б.7 – Идентификация экологических факторов

Наименование технического объекта, технологического процесса	Структурные составляющие технического объекта,	Воздействие объекта на атмосферу (выбросы в окружающую среду)	Воздействие объекта на гидросферу	Воздействие объекта на литосферу (почву, растительный покров, недра)
котельная	монтаж	Не предусмотрено	Не предусмотрено	Не предусмотрено

Таблица Б.8 – Мероприятия по снижению антропогенного воздействия на окружающую среду.

Наименование технического	Монтаж инженерных систем
объекта	
Мероприятия по снижению	Мусорные отходы (обрезки трубы V класса) собираются в контейнеры и
антропогенного воздействия	затем сдаются в пункт приема или вывозятся на городскую
на атмосферу	санкционированную свалку
Мероприятия по снижению	Не предусмотрено
антропогенного воздействия	
на гидросферу	
Мероприятия по снижению	Не предусмотрено
антропогенного воздействия	
на литосферу	